1
|
Feng H, Wu T, Chin J, Ding R, Long C, Wang G, Yan D, Ma X, Yue R. Tangzu granule alleviate neuroinflammation in diabetic peripheral neuropathy by suppressing pyroptosis through P2X7R /NLRP3 signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118792. [PMID: 39251151 DOI: 10.1016/j.jep.2024.118792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 09/01/2024] [Accepted: 09/04/2024] [Indexed: 09/11/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Diabetic peripheral neuropathy (DPN) is a common complication of diabetes mellitus, mainly manifested as paresthesia. Tangzu granule (TZG) is derived from famous traditional Chinese medicine decoctions and optimized by long-term temporary practice. TZG has good efficacy in improving numbness, pain and pruritus of the lower extremities of DPN patients. However, the overall regulatory mechanisms underlying its effects on DPN remain unclear. AIM OF THE STUDY This study aims to explore the potential mechanism of TZG for treating DPN. MATERIALS AND METHODS Sprague-Dawley (SD) rats were used to establish an in vivo model of DPN with streptozotocin (STZ) injection and high-fat diet (HFD) feeding. Additionally, sciatic glial RSC96 cells were induced with high glucose in vitro. SD rats in intervention group received TZG treatment for 12 weeks. After 12 weeks of treatment, sciatic nerve function was evaluated by intelligent hot plate meter and neuro electrophysiology detector. The morphological changes of sciatic nerve cells were observed by hematoxylin-eosin staining and transmission electron microscope. IL-1β, IL-18 inflammatory cytokines, pyroptosis and P2X7R/NLRP3 signaling pathway were observed by Western blotting, immunofluorescence staining and ELISA. RESULTS TZG improved nerve conduction velocity and sciatic neuropathy rational structural changes in DPN rats. It also inhibited RSC96 inflammatory response and cell death that induced by high glucose. This may be related to TZG inhibiting P2X7R, decreasing the activation of NLRP3 inflammasomes, down-regulating the levels of pyroptosis proteins such as caspase-1, cleaved caspase-1, gasdermin D (GSDMD), and GSDMD-N, and inhibiting the release of interleuki (IL)-18 and IL-1β inflammatory cytokines. CONCLUSIONS TZG inhibited pyroptosis through P2X7R/NLRP3 signaling pathway, alleviated neuroinflammation, and showed protective effect in the treatment of DPN.
Collapse
Affiliation(s)
- Haoyue Feng
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.
| | - Tingchao Wu
- Chengdu Second People׳s Hospital, Chengdu, Sichuan, China.
| | - Jiawei Chin
- School of Integrative Medicine, Mae Fah Luang University, Chiangrai, Thailand.
| | - Rui Ding
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.
| | - Caiyi Long
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.
| | - Gang Wang
- Zigong First People's Hospital, Zigong, Sichuan, China.
| | - Dawei Yan
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.
| | - Xitao Ma
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.
| | - Rensong Yue
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.
| |
Collapse
|
2
|
Moqbel Redhwan MA, M G H, Samaddar S, Bafail D, Hard SAAA, Guha S, Dhavale A. siRNA targeting PARP-1 alleviates diabetic peripheral neuropathy in a streptozotocin-induced rat model. J Drug Target 2024:1-12. [PMID: 39565138 DOI: 10.1080/1061186x.2024.2431316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 10/31/2024] [Accepted: 11/13/2024] [Indexed: 11/21/2024]
Abstract
Diabetic peripheral neuropathy (DPN) is a debilitating complication of diabetes mellitus, affecting nearly 50% of diabetic patients and leading to chronic pain, numbness and progressive sensory and motor function loss. This study investigates the potential of siRNA-mediated silencing of poly(ADP-ribose) polymerase 1 (PARP1) to alleviate DPN in a rat model. PARP1 overactivation, driven by hyperglycaemia-induced oxidative stress, exacerbates neuronal damage in DPN. Using chitosan nanoparticles (ChNPs) to deliver PARP1-targeting siRNA intrathecally in diabetic rats induced with streptozotocin (STZ) 55 mg/kg intraperitoneally, we conducted behavioural and physiological assessments, including Sciatic Functional Index (SFI), motor nerve conduction velocity (MNCV), grip strength and pain sensitivity tests, alongside qRT-PCR analyses, to evaluate therapeutic outcomes. Our findings indicate statistically significant improvements, with siRNA ChNPs-mediated PARP1 silencing alleviating neuropathic symptoms in DPN rats (p < .001 for SFI and MNCV improvements). Biochemical analyses revealed reductions in oxidative stress markers, such as MDA, and increased antioxidant levels, including GSH, CAT and SOD (p < .001). Pro-inflammatory cytokines and apoptotic markers, including NF-κB, IL6, IL1β, TNFa, TGF-β, CAS3, CAS9, BAK and BAX, also showed significant reductions (p < .01), confirming the neuroprotective effects of PARP1 inhibition. These results highlight the potential of siRNA-based therapies targeting PARP1 as a promising therapeutic approach for DPN, paving the way for future research with clinical applications.
Collapse
Affiliation(s)
- Moqbel Ali Moqbel Redhwan
- Department of Pharmacology, KLE College of Pharmacy, Bengaluru, India
- Basic Science Research Center (Off-Campus), KLE College of Pharmacy, Bengaluru, India
| | - Hariprasad M G
- Department of Pharmacology, KLE College of Pharmacy, Bengaluru, India
- Basic Science Research Center (Off-Campus), KLE College of Pharmacy, Bengaluru, India
| | - Suman Samaddar
- BGS GIMS Research Institute, BGS Global Institute of Medical Sciences, Bengaluru, India
| | - Duaa Bafail
- Department of Clinical Pharmacology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sumaia Abdulbari Ahmed Ali Hard
- Basic Science Research Center (Off-Campus), KLE College of Pharmacy, Bengaluru, India
- Department of Pharmaceutics, KLE College of Pharmacy, Bengaluru, India
| | - Sourav Guha
- Department of Pharmacology, KLE College of Pharmacy, Bengaluru, India
- Basic Science Research Center (Off-Campus), KLE College of Pharmacy, Bengaluru, India
| | - Apurwa Dhavale
- Department of Pharmacology, KLE College of Pharmacy, Bengaluru, India
- Basic Science Research Center (Off-Campus), KLE College of Pharmacy, Bengaluru, India
| |
Collapse
|
3
|
Saha P, Sharma SS. RNA Interference Unleashed: Current Perspective of Small Interfering RNA (siRNA) Therapeutics in the Treatment of Neuropathic Pain. ACS Pharmacol Transl Sci 2024; 7:2951-2970. [PMID: 39416962 PMCID: PMC11475279 DOI: 10.1021/acsptsci.4c00329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/12/2024] [Accepted: 09/09/2024] [Indexed: 10/19/2024]
Abstract
Neuropathic pain (NP) is one of the debilitating pain phenotypes that leads to the progressive degeneration of the central as well as peripheral nervous system. NP is often associated with hyperalgesia, allodynia, paresthesia, tingling, and burning sensations leading to disability, motor dysfunction, and compromised psychological state of the patients. Most of the conventional pharmacological agents are unable to improve the devastating conditions of pain because of their limited efficacy, undesirable side effects, and multifaceted pathophysiology of the diseased condition. A rapid rise in new cases of NP warrants further research for identifying the potential novel therapeutic modalities for treating NP. Recently, small interfering RNA (siRNA) approach has shown therapeutic potential in many disease conditions including NP. Delivery of siRNAs led to potential and selective downregulation of target mRNA and abolished the pain-related behaviors/pathophysiological pain response. The crucial role of siRNA in the treatment of NP by considering all of the pathways associated with NP that could be managed by siRNA therapeutics has been discussed. However, their therapeutic use is limited by several hurdles such as instability in systemic circulation due to their negative charge and membrane impermeability, off-target effects, immunogenicity, and inability to reach the intended site of action. This review also emphasizes several strategies and techniques to overcome these hurdles for translating these therapeutic siRNAs from bench to bedside by opening a new avenue for obtaining a potential therapeutic approach for treating NP.
Collapse
Affiliation(s)
- Priya Saha
- Department
of Pharmacology and Toxicology, National
Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Mohali, Punjab 160062, India
| | - Shyam S. Sharma
- Department
of Pharmacology and Toxicology, National
Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Mohali, Punjab 160062, India
| |
Collapse
|
4
|
Nevins S, McLoughlin CD, Oliveros A, Stein JB, Rashid MA, Hou Y, Jang MH, Lee KB. Nanotechnology Approaches for Prevention and Treatment of Chemotherapy-Induced Neurotoxicity, Neuropathy, and Cardiomyopathy in Breast and Ovarian Cancer Survivors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2300744. [PMID: 37058079 PMCID: PMC10576016 DOI: 10.1002/smll.202300744] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/05/2023] [Indexed: 06/19/2023]
Abstract
Nanotechnology has emerged as a promising approach for the targeted delivery of therapeutic agents while improving their efficacy and safety. As a result, nanomaterial development for the selective targeting of cancers, with the possibility of treating off-target, detrimental sequelae caused by chemotherapy, is an important area of research. Breast and ovarian cancer are among the most common cancer types in women, and chemotherapy is an essential treatment modality for these diseases. However, chemotherapy-induced neurotoxicity, neuropathy, and cardiomyopathy are common side effects that can affect breast and ovarian cancer survivors quality of life. Therefore, there is an urgent need to develop effective prevention and treatment strategies for these adverse effects. Nanoparticles (NPs) have extreme potential for enhancing therapeutic efficacy but require continued research to elucidate beneficial interventions for women cancer survivors. In short, nanotechnology-based approaches have emerged as promising strategies for preventing and treating chemotherapy-induced neurotoxicity, neuropathy, and cardiomyopathy. NP-based drug delivery systems and therapeutics have shown potential for reducing the side effects of chemotherapeutics while improving drug efficacy. In this article, the latest nanotechnology approaches and their potential for the prevention and treatment of chemotherapy-induced neurotoxicity, neuropathy, and cardiomyopathy in breast and ovarian cancer survivors are discussed.
Collapse
Affiliation(s)
- Sarah Nevins
- Department of Chemistry and Chemical Biology, Rutgers
University, the State University of New Jersey, 123 Bevier Road, Piscataway, NJ
08854, U.S.A
| | - Callan D. McLoughlin
- Department of Chemistry and Chemical Biology, Rutgers
University, the State University of New Jersey, 123 Bevier Road, Piscataway, NJ
08854, U.S.A
| | - Alfredo Oliveros
- Department of Neurosurgery, Robert Wood Johnson Medical
School, Rutgers University, the State University of New Jersey, 661 Hoes Ln W,
Piscataway, NJ, 08854, U.S.A
| | - Joshua B. Stein
- Department of Chemistry and Chemical Biology, Rutgers
University, the State University of New Jersey, 123 Bevier Road, Piscataway, NJ
08854, U.S.A
| | - Mohammad Abdur Rashid
- Department of Neurosurgery, Robert Wood Johnson Medical
School, Rutgers University, the State University of New Jersey, 661 Hoes Ln W,
Piscataway, NJ, 08854, U.S.A
| | - Yannan Hou
- Department of Chemistry and Chemical Biology, Rutgers
University, the State University of New Jersey, 123 Bevier Road, Piscataway, NJ
08854, U.S.A
| | - Mi-Hyeon Jang
- Department of Neurosurgery, Robert Wood Johnson Medical
School, Rutgers University, the State University of New Jersey, 661 Hoes Ln W,
Piscataway, NJ, 08854, U.S.A
| | - Ki-Bum Lee
- Department of Chemistry and Chemical Biology, Rutgers
University, the State University of New Jersey, 123 Bevier Road, Piscataway, NJ
08854, U.S.A
| |
Collapse
|
5
|
Kiaie SH, Hatami Z, Nasr MS, Pazooki P, Hemmati S, Baradaran B, Valizadeh H. Pharmacological interaction and immune response of purinergic receptors in therapeutic modulation. Purinergic Signal 2024; 20:321-343. [PMID: 37843749 PMCID: PMC11303644 DOI: 10.1007/s11302-023-09966-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 09/10/2023] [Indexed: 10/17/2023] Open
Abstract
Nucleosides and purine nucleotides serve as transmitter and modulator agents that extend their functions beyond the cell. In this context, purinergic signaling plays a crucial role in regulating energy homeostasis and modulating metabolic alterations in tumor cells. Therefore, it is essential to consider the pharmacological targeting of purinergic receptors (PUR), which encompass the expression and inhibition of P1 receptors (metabotropic adenosine receptors) as well as P2 receptors (extracellular ATP/ADP) comprising P2X and P2Y receptors. Thus, the pharmacological interaction between inhibitors (such as RNA, monoclonal antibodies, and small molecules) and PUR represents a key aspect in facilitating the development of therapeutic interventions. Moreover, this review explores recent advancements in pharmacological inhibitors and the regulation of innate and adaptive immunity of PUR, specifically in relation to immunological and inflammatory responses. These responses encompass the release of pro-inflammatory cytokines (PIC), the production of reactive oxygen and nitrogen species (ROS and RNS), the regulation of T cells, and the activation of inflammasomes in all human leukocytes.
Collapse
Affiliation(s)
- Seyed Hossein Kiaie
- Drug Applied Research Center, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zahra Hatami
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Sadegh Nasr
- Department of Computer Science and Engineering Multi-Interprofessional Center for Health Informatics (MICHI), The University of Texas at Arlington, Arlington, TX, USA
| | - Pouya Pazooki
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Salar Hemmati
- Institute Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Hadi Valizadeh
- Drug Applied Research Center, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
6
|
Wen W, Wei Y, Gao S. Functional nucleic acids for the treatment of diabetic complications. NANOSCALE ADVANCES 2023; 5:5426-5434. [PMID: 37822913 PMCID: PMC10563837 DOI: 10.1039/d3na00327b] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 08/26/2023] [Indexed: 10/13/2023]
Abstract
In recent decades, diabetes mellitus (DM) has become a major global health problem owing to its high prevalence and increased incidence of diabetes-associated complications, including diabetic wounds (DWs), diabetic nephropathy, metabolic syndrome, diabetic retinopathy, and diabetic neuropathy. In both type 1 and type 2 diabetes, tissue damage is organ-specific, but closely related to the overproduction of reactive oxygen species (ROS) and hyperglycaemia-induced macrovascular system damage. However, existing therapies have limited effects on complete healing of diabetic complications. Fortunately, recent advances in functional nucleic acid materials have provided new opportunities for the treatment and diagnosis of diabetic complications. Functional nucleic acids possess independent structural functions that can replace traditional proteases and antibodies and perform specific biological non-genetic functions. This review summarises the current functional nucleic acid materials reported for the treatment of diabetic complications, including tetrahedral framework nucleic acids (tFNAs), short interfering RNA (siRNA), micorRNA (miRNA), locked nucleic acids, antisense oligonucleotides (ASOs), and DNA origami, which may assist in the development of novel nucleic acids with new functions and capabilities for better healing of diabetic complications.
Collapse
Affiliation(s)
- Wen Wen
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University Chengdu 610041 Sichuan China
| | - Yuzi Wei
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University Chengdu 610041 Sichuan China
| | - Shaojingya Gao
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University Chengdu 610041 Sichuan China
| |
Collapse
|
7
|
Lin Q, Li K, Chen Y, Xie J, Wu C, Cui C, Deng B. Oxidative Stress in Diabetic Peripheral Neuropathy: Pathway and Mechanism-Based Treatment. Mol Neurobiol 2023:10.1007/s12035-023-03342-7. [PMID: 37115404 DOI: 10.1007/s12035-023-03342-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 04/04/2023] [Indexed: 04/29/2023]
Abstract
Diabetic peripheral neuropathy (DPN) is a major complication of diabetes mellitus with a high incidence. Oxidative stress, which is a crucial pathophysiological pathway of DPN, has attracted much attention. The distortion in the redox balance due to the overproduction of reactive oxygen species (ROS) and the deregulation of antioxidant defense systems promotes oxidative damage in DPN. Therefore, we have focused on the role of oxidative stress in the pathogenesis of DPN and elucidated its interaction with other physiological pathways, such as the glycolytic pathway, polyol pathway, advanced glycosylation end products, protein kinase C pathway, inflammation, and non-coding RNAs. These interactions provide novel therapeutic options targeting oxidative stress for DPN. Furthermore, our review addresses the latest therapeutic strategies targeting oxidative stress for the rehabilitation of DPN. Antioxidant supplements and exercise have been proposed as fundamental therapeutic strategies for diabetic patients through ROS-mediated mechanisms. In addition, several novel drug delivery systems can improve the bioavailability of antioxidants and the efficacy of DPN.
Collapse
Affiliation(s)
- Qingxia Lin
- Department of Psychiatry, First Affiliated Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Kezheng Li
- Department of Neurology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
- First School of Clinical Medicine, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Yinuo Chen
- Department of Neurology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
- First School of Clinical Medicine, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Jiali Xie
- Department of Neurology, Shanghai East Hospital, Tongji University, Shanghai, People's Republic of China
| | - Chunxue Wu
- Department of Neurology, Wencheng County People's Hospital, Wenzhou, People's Republic of China
| | - Can Cui
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Binbin Deng
- Department of Neurology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China.
| |
Collapse
|
8
|
Miyashita A, Kobayashi M, Yokota T, Zochodne DW. Diabetic Polyneuropathy: New Strategies to Target Sensory Neurons in Dorsal Root Ganglia. Int J Mol Sci 2023; 24:ijms24065977. [PMID: 36983051 PMCID: PMC10051459 DOI: 10.3390/ijms24065977] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/10/2023] [Accepted: 03/11/2023] [Indexed: 03/29/2023] Open
Abstract
Diabetic polyneuropathy (DPN) is the most common type of diabetic neuropathy, rendering a slowly progressive, symmetrical, and length-dependent dying-back axonopathy with preferential sensory involvement. Although the pathogenesis of DPN is complex, this review emphasizes the concept that hyperglycemia and metabolic stressors directly target sensory neurons in the dorsal root ganglia (DRG), leading to distal axonal degeneration. In this context, we discuss the role for DRG-targeting gene delivery, specifically oligonucleotide therapeutics for DPN. Molecules including insulin, GLP-1, PTEN, HSP27, RAGE, CWC22, and DUSP1 that impact neurotrophic signal transduction (for example, phosphatidylinositol-3 kinase/phosphorylated protein kinase B [PI3/pAkt] signaling) and other cellular networks may promote regeneration. Regenerative strategies may be essential in maintaining axon integrity during ongoing degeneration in diabetes mellitus (DM). We discuss specific new findings that relate to sensory neuron function in DM associated with abnormal dynamics of nuclear bodies such as Cajal bodies and nuclear speckles in which mRNA transcription and post-transcriptional processing occur. Manipulating noncoding RNAs such as microRNA and long-noncoding RNA (specifically MALAT1) that regulate gene expression through post-transcriptional modification are interesting avenues to consider in supporting neurons during DM. Finally, we present therapeutic possibilities around the use of a novel DNA/RNA heteroduplex oligonucleotide that provides more efficient gene knockdown in DRG than the single-stranded antisense oligonucleotide.
Collapse
Affiliation(s)
- Akiko Miyashita
- Department of Neurology, Neurological Science, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
- Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | - Masaki Kobayashi
- Department of Neurology, Neurological Science, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
- Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
- Department of Neurology, Nissan Tamagawa Hospital, Tokyo 158-0095, Japan
| | - Takanori Yokota
- Department of Neurology, Neurological Science, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
- Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | - Douglas W. Zochodne
- Division of Neurology and Department of Medicine, Faculty of Medicine and Dentistry, The Neuroscience and Mental Health Institute and The Alberta Diabetes Institute, University of Alberta, Edmonton, AB T6G 2G3, Canada
- Correspondence: ; Tel.: +1-780-248-1928; Fax: +1-780-248-1807
| |
Collapse
|
9
|
Zhang C, Gao R, Zhou R, Chen H, Liu C, Zhu T, Chen C. The emerging power and promise of non-coding RNAs in chronic pain. Front Mol Neurosci 2022; 15:1037929. [PMID: 36407760 PMCID: PMC9668864 DOI: 10.3389/fnmol.2022.1037929] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/07/2022] [Indexed: 08/26/2023] Open
Abstract
Chronic pain (CP) is an unpleasant sensory and emotional experience associated with, or resembling that associated with, actual or potential tissue damage lasting longer than 3 months. CP is the main reason why people seek medical care and exerts an enormous economic burden. Genome-wide expression analysis has revealed that diverse essential genetic elements are altered in CP patients. Although many possible mechanisms of CP have been revealed, we are still unable to meet all the analgesic needs of patients. In recent years, non-coding RNAs (ncRNAs) have been shown to play essential roles in peripheral neuropathy and axon regeneration, which is associated with CP occurrence and development. Multiple key ncRNAs have been identified in animal models of CP, such as microRNA-30c-5p, ciRS-7, and lncRNA MRAK009713. This review highlights different kinds of ncRNAs in the regulation of CP, which provides a more comprehensive understanding of the pathogenesis of the disease. It mainly focuses on the contributions of miRNAs, circRNAs, and lncRNAs to CP, specifically peripheral neuropathic pain (NP), diabetic NP, central NP associated with spinal cord injury, complex regional pain syndrome, inflammatory pain, and cancer-induced pain. In addition, we summarize some potential ncRNAs as novel biomarkers for CP and its complications. With an in-depth understanding of the mechanism of CP, ncRNAs may provide novel insight into CP and could become new therapeutic targets in the future.
Collapse
Affiliation(s)
- Changteng Zhang
- Department of Anesthesiology and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University and The Research Units of West China (2018RU012), Chinese Academy of Medical Sciences, Chengdu, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Rui Gao
- Department of Anesthesiology and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University and The Research Units of West China (2018RU012), Chinese Academy of Medical Sciences, Chengdu, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Ruihao Zhou
- Department of Anesthesiology and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University and The Research Units of West China (2018RU012), Chinese Academy of Medical Sciences, Chengdu, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Hai Chen
- Department of Respiratory and Critical Care Medicine, West China Medical School/West China Hospital, Sichuan University, Chengdu, China
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Changliang Liu
- Department of Anesthesiology and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University and The Research Units of West China (2018RU012), Chinese Academy of Medical Sciences, Chengdu, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Tao Zhu
- Department of Anesthesiology and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University and The Research Units of West China (2018RU012), Chinese Academy of Medical Sciences, Chengdu, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Chan Chen
- Department of Anesthesiology and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University and The Research Units of West China (2018RU012), Chinese Academy of Medical Sciences, Chengdu, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
10
|
Li X, Xu W, Lin X, Wu J, Wu B. Effect of LncRNA-MALAT1 on mineralization of dental pulp cells in a high-glucose microenvironment. Front Cell Dev Biol 2022; 10:921364. [PMID: 36035997 PMCID: PMC9402893 DOI: 10.3389/fcell.2022.921364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 07/18/2022] [Indexed: 11/21/2022] Open
Abstract
Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) belongs to the long non-coding RNA (LncRNA) family. LncRNA-MALAT1 is expressed in a variety of tissues and is involved in a variety of diseases and biological processes. Although LncRNA-MALAT1 is upregulated in a high-glucose microenvironment and may participate in odontogenic differentiation, the underlying mechanism is not yet well elucidated. Here, we show that MALAT1 was mainly expressed in the cytoplasm of dental pulp cells (DPCs) in situ hybridization. In addition, high levels of mineralization-related factors, namely, tumor growth factors β 1 and 2 (TGFβ-1 and TGFβ-2), bone morphogenetic proteins 2 and 4 (BMP2 and BMP4), bone morphogenetic protein receptor 1 (BMPR1), SMAD family member 2 (SMAD2), runt-related transcription factor 2 (RUNX2), Msh homeobox 2 (MSX2), transcription factor SP7 (SP7), alkaline phosphatase (ALP), dentin matrix acidic phosphoprotein 1 (DMP1), and dentin sialophosphoprotein (DSPP), were expressed, and MALAT1 was significantly overexpressed in DPCs 7 and 14 days after mineralization induction in a high-glucose microenvironment, but only TGFβ-1, BMP2, MSX2, SP7, ALP, and DSPP were significantly downregulated in DPCs after MALAT1 inhibition. MALAT1 may participate in the mineralization process of DPCs by regulating multiple factors (TGFβ-1, BMP2, MSX2, SP7, ALP, and DSPP).
Collapse
Affiliation(s)
- Xinzhu Li
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wenan Xu
- Department of Pediatric Dentistry, Shenzhen Stomatology Hospital (Pingshan), Southern Medical University, Shenzhen, China
| | - Xiaoyu Lin
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jingyi Wu
- Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Buling Wu
- Department of Pediatric Dentistry, Shenzhen Stomatology Hospital (Pingshan), Southern Medical University, Shenzhen, China
- *Correspondence: Buling Wu,
| |
Collapse
|
11
|
Hua SQ, Hu JL, Zou FL, Liu JP, Luo HL, Hu DX, Wu LD, Zhang WJ. P2X7 receptor in inflammation and pain. Brain Res Bull 2022; 187:199-209. [PMID: 35850190 DOI: 10.1016/j.brainresbull.2022.07.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/15/2022] [Accepted: 07/13/2022] [Indexed: 11/02/2022]
Abstract
Different studies have confirmed P2X7 receptor-mediated inflammatory mediators play a key role in the development of pain. P2X7 receptor activation can induce the development of pain by mediating the release of inflammatory mediators. In view of the fact that P2X7 receptor is expressed in the nervous system and immune system, it is closely related to the stability and maintenance of the nervous system function. ATP activates P2X7 receptor, opens non-selective cation channels, activates multiple intracellular signaling, releases multiple inflammatory cytokines, and induces pain. At present, the role of P2X7 receptor in inflammatory response and pain has been widely recognized and affirmed. Therefore, in this paper, we discussed the pathological mechanism of P2X7 receptor-mediated inflammation and pain, focused on the internal relationship between P2X7 receptor and pain. Moreover, we also described the effects of some antagonists on pain relief by inhibiting the activities of P2X7 receptor. Thus, targeting to inhibit activation of P2X7 receptor is expected to become another potential target for the relief of pain.
Collapse
Affiliation(s)
- Shi-Qi Hua
- Nanchang University, Nanchang City 343000, Jiangxi Province, China
| | - Jia-Ling Hu
- Emergency Department, The Second Affiliated Hospital, Nanchang University, Nanchang City 343000, Jiangxi Province, China
| | - Fei-Long Zou
- Gastrointestinal Surgery, The Second Affiliated Hospital, Nanchang University, Nanchang City 343000, Jiangxi Province, China
| | - Ji-Peng Liu
- Gastrointestinal Surgery, The Second Affiliated Hospital, Nanchang University, Nanchang City 343000, Jiangxi Province, China
| | - Hong-Liang Luo
- Gastrointestinal Surgery, The Second Affiliated Hospital, Nanchang University, Nanchang City 343000, Jiangxi Province, China
| | - Dong-Xia Hu
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Nanchang University, Nanchang City 343000, Jiangxi Province, China.
| | - Li-Dong Wu
- Emergency Department, The Second Affiliated Hospital, Nanchang University, Nanchang City 343000, Jiangxi Province, China.
| | - Wen-Jun Zhang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Nanchang University, Nanchang City 343000, Jiangxi Province, China.
| |
Collapse
|
12
|
Jiang M, Wang Y, Wang J, Feng S, Wang X. The etiological roles of miRNAs, lncRNAs, and circRNAs in neuropathic pain: A narrative review. J Clin Lab Anal 2022; 36:e24592. [PMID: 35808924 PMCID: PMC9396192 DOI: 10.1002/jcla.24592] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 06/24/2022] [Accepted: 06/25/2022] [Indexed: 11/16/2022] Open
Abstract
Background Non‐coding RNAs (ncRNAs) are involved in neuropathic pain development. Herein, we systematically searched for neuropathic pain‐related ncRNAs expression changes, including microRNAs (miRNAs), long non‐coding RNAs (lncRNAs), and circular non‐coding RNAs (circRNAs). Methods We searched two databases, PubMed and GeenMedical, for relevant studies. Results Peripheral nerve injury or noxious stimuli can induce extensive changes in the expression of ncRNAs. For example, higher serum miR‐132‐3p, ‐146b‐5p, and ‐384 was observed in neuropathic pain patients. Either sciatic nerve ligation, dorsal root ganglion (DRG) transaction, or ventral root transection (VRT) could upregulate miR‐21 and miR‐31 while downregulating miR‐668 and miR‐672 in the injured DRG. lncRNAs, such as early growth response 2‐antisense‐RNA (Egr2‐AS‐RNA) and Kcna2‐AS‐RNA, were upregulated in Schwann cells and inflicted DRG after nerve injury, respectively. Dysregulated circRNA homeodomain‐interacting protein kinase 3 (circHIPK3) in serum and the DRG, abnormally expressed lncRNAs X‐inactive specific transcript (XIST), nuclear enriched abundant transcript 1 (NEAT1), small nucleolar RNA host gene 1 (SNHG1), as well as ciRS‐7, zinc finger protein 609 (cirZNF609), circ_0005075, and circAnks1a in the spinal cord were suggested to participate in neuropathic pain development. Dysregulated miRNAs contribute to neuropathic pain via neuroinflammation, autophagy, abnormal ion channel expression, regulating pain‐related mediators, protein kinases, structural proteins, neurotransmission excitatory–inhibitory imbalances, or exosome miRNA‐mediated neuron–glia communication. In addition, lncRNAs and circRNAs are essential in neuropathic pain by acting as antisense RNA and miRNA sponges, epigenetically regulating pain‐related molecules expression, or modulating miRNA processing. Conclusions Numerous dysregulated ncRNAs have been suggested to participate in neuropathic pain development. However, there is much work to be done before ncRNA‐based analgesics can be clinically used for various reasons such as conservation among species, proper delivery, stability, and off‐target effects.
Collapse
Affiliation(s)
- Ming Jiang
- Department of Anesthesiology and Pain Medicine, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, China
| | - Yelong Wang
- Department of Anesthesiology, Gaochun People's Hospital, Nanjing, China
| | - Jing Wang
- Department of Anesthesiology and Pain Medicine, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, China
| | - Shanwu Feng
- Department of Anesthesiology and Pain Medicine, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, China
| | - Xian Wang
- Department of Anesthesiology and Pain Medicine, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
13
|
Emerging roles of lncRNAs in the pathogenesis, diagnosis, and treatment of trigeminal neuralgia. Biochem Soc Trans 2022; 50:1013-1023. [PMID: 35437600 DOI: 10.1042/bst20220070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/25/2022] [Accepted: 03/30/2022] [Indexed: 02/05/2023]
Abstract
Trigeminal neuralgia (TN) is one of the most common neuropathic pain disorders and is often combined with other comorbidities if managed inadequately. However, the present understanding of its pathogenesis at the molecular level remains lacking. Long noncoding RNAs (lncRNAs) play crucial roles in neuropathic pain, and many studies have reported that specific lncRNAs are related to TN. This review summarizes the current understanding of lncRNAs in the pathogenesis, diagnosis, and treatment of TN. Recent studies have shown that the lncRNAs uc.48+, Gm14461, MRAK009713 and NONRATT021972 are potential candidate loci for the diagnosis and treatment of TN. The current diagnostic system could be enhanced and improved by a workflow for selecting transcriptomic biomarkers and the development of lncRNA-based molecular diagnostic systems for TN. The discovery of lncRNAs potentially impacts drug selection for TN; however, the current supporting evidence is limited to preclinical studies. Additional studies are needed to further test the diagnostic and therapeutic value of lncRNAs in TN.
Collapse
|
14
|
Felix R, Muñoz-Herrera D, Corzo-López A, Fernández-Gallardo M, Leyva-Leyva M, González-Ramírez R, Sandoval A. Ion channel long non-coding RNAs in neuropathic pain. Pflugers Arch 2022; 474:457-468. [PMID: 35235008 DOI: 10.1007/s00424-022-02675-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 02/01/2023]
Abstract
Neuropathic pain is one of the primary forms of chronic pain and is the consequence of the somatosensory system's direct injury or disease. It is a relevant public health problem that affects about 10% of the world's general population. In neuropathic pain, alteration in neurotransmission occurs at various levels, including the dorsal root ganglia, the spinal cord, and the brain, resulting from the malfunction of diverse molecules such as receptors, ion channels, and elements of specific intracellular signaling pathways. In this context, there have been exciting advances in elucidating neuropathic pain's cellular and molecular mechanisms in the last decade, including the possible role that long non-coding RNAs (lncRNAs) may play, which open up new alternatives for the development of diagnostic and therapeutic strategies for this condition. This review focuses on recent studies associated with the possible relevance of lncRNAs in the development and maintenance of neuropathic pain through their actions on the functional expression of ion channels. Recognizing the changes in the function and spatio-temporal patterns of expression of these membrane proteins is crucial to understanding the control of neuronal excitability in chronic pain syndromes.
Collapse
Affiliation(s)
- Ricardo Felix
- Department of Cell Biology, Centre for Research and Advanced Studies (Cinvestav), 07360, Mexico City, Mexico.
| | - David Muñoz-Herrera
- Department of Cell Biology, Centre for Research and Advanced Studies (Cinvestav), 07360, Mexico City, Mexico
| | - Alejandra Corzo-López
- Department of Cell Biology, Centre for Research and Advanced Studies (Cinvestav), 07360, Mexico City, Mexico
| | | | - Margarita Leyva-Leyva
- Department of Molecular Biology and Histocompatibility, "Dr. Manuel Gea González" General Hospital, Mexico City, Mexico
| | - Ricardo González-Ramírez
- Department of Molecular Biology and Histocompatibility, "Dr. Manuel Gea González" General Hospital, Mexico City, Mexico
| | - Alejandro Sandoval
- School of Medicine FES Iztacala, National Autonomous University of Mexico (UNAM), Tlalnepantla, Mexico
| |
Collapse
|
15
|
Xu S, Dong H, Zhao Y, Feng W. Differential Expression of Long Non-Coding RNAs and Their Role in Rodent Neuropathic Pain Models. J Pain Res 2021; 14:3935-3950. [PMID: 35002313 PMCID: PMC8722684 DOI: 10.2147/jpr.s344339] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/14/2021] [Indexed: 12/12/2022] Open
Abstract
Neuropathic pain, which is accompanied by an unpleasant sensation, affects the patient's quality of life severely. Considering the complexity of the neuropathic pain, there are huge unmet medical needs for it while current effective therapeutics remain far from satisfactory. Accordingly, exploration of mechanisms of neuropathic pain could provide new therapeutic insights. While numerous researches have pointed out the contribution of sensory neuron-immune cell interactions, other mechanisms of action, such as long non-coding RNAs (lncRNAs), also could contribute to the neuropathic pain observed in vivo. LncRNAs have more than 200 nucleotides and were originally considered as transcriptional byproducts. However, recent studies have suggested that lncRNAs played a significant role in gene regulation and disease pathogenesis. A substantial number of long non-coding RNAs were expressed differentially in neuropathic pain models. Besides, therapies targeting specific lncRNAs can significantly ameliorate the development of neuropathic pain, which reveals the contribution of lncRNAs in the generation and maintenance of neuropathic pain and provides a new therapeutic strategy. The primary purpose of this review is to introduce recent studies of lncRNAs on different neuropathic pain models.
Collapse
Affiliation(s)
- Songchao Xu
- Department of Anesthesiology, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, People’s Republic of China
| | - He Dong
- Department of Anesthesiology, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, People’s Republic of China
| | - Yang Zhao
- Department of Anesthesiology, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, People’s Republic of China
| | - Wei Feng
- Department of Anesthesiology, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, People’s Republic of China
| |
Collapse
|
16
|
Li Z, Li X, Jian W, Xue Q, Liu Z. Roles of Long Non-coding RNAs in the Development of Chronic Pain. Front Mol Neurosci 2021; 14:760964. [PMID: 34887726 PMCID: PMC8649923 DOI: 10.3389/fnmol.2021.760964] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 10/21/2021] [Indexed: 01/15/2023] Open
Abstract
Chronic pain, a severe public health issue, affects the quality of life of patients and results in a major socioeconomic burden. Only limited drug treatments for chronic pain are available, and they have insufficient efficacy. Recent studies have found that the expression of long non-coding RNAs (lncRNAs) is dysregulated in various chronic pain models, including chronic neuropathic pain, chronic inflammatory pain, and chronic cancer-related pain. Studies have also explored the effect of these dysregulated lncRNAs on the activation of microRNAs, inflammatory cytokines, and so on. These mechanisms have been widely demonstrated to play a critical role in the development of chronic pain. The findings of these studies indicate the significant roles of dysregulated lncRNAs in chronic pain in the dorsal root ganglion and spinal cord, following peripheral or central nerve lesions. This review summarizes the mechanism underlying the abnormal expression of lncRNAs in the development of chronic pain induced by peripheral nerve injury, diabetic neuropathy, inflammatory response, trigeminal neuralgia, spinal cord injury, cancer metastasis, and other conditions. Understanding the effect of lncRNAs may provide a novel insight that targeting lncRNAs could be a potential candidate for therapeutic intervention in chronic pain.
Collapse
Affiliation(s)
- Zheng Li
- Department of Anesthesiology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China.,Department of Geriatric & Spinal Pain Multi-Department Treatment, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Xiongjuan Li
- Department of Anesthesiology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China.,Department of Geriatric & Spinal Pain Multi-Department Treatment, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Wenling Jian
- Department of Anesthesiology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China.,Department of Geriatric & Spinal Pain Multi-Department Treatment, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Qingsheng Xue
- Department of Anesthesiology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhiheng Liu
- Department of Anesthesiology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China.,Department of Geriatric & Spinal Pain Multi-Department Treatment, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| |
Collapse
|
17
|
Alipoor B, Nikouei S, Rezaeinejad F, Malakooti-Dehkordi SN, Sabati Z, Ghasemi H. Long non-coding RNAs in metabolic disorders: pathogenetic relevance and potential biomarkers and therapeutic targets. J Endocrinol Invest 2021; 44:2015-2041. [PMID: 33792864 DOI: 10.1007/s40618-021-01559-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 03/22/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND It has been suggested that dysregulation of long non-coding RNAs (lncRNAs) could be associated with the incidence and development of metabolic disorders. AIM Accordingly, this narrative review described the molecular mechanisms of lncRNAs in the development of metabolic diseases including insulin resistance, diabetes, obesity, non-alcoholic fatty liver disease (NAFLD), cirrhosis, and coronary artery diseases (CAD). Furthermore, we investigated the up-to-date findings on the association of deregulated lncRNAs in the metabolic disorders, and potential use of lncRNAs as biomarkers and therapeutic targets. CONCLUSION LncRNAs/miRNA/regulatory proteins axis plays a crucial role in progression of metabolic disorders and may be used in development of therapeutic and diagnostic approaches.
Collapse
Affiliation(s)
- B Alipoor
- Department of Laboratory Sciences, Faculty of Paramedicine, Yasuj University of Medical Sciences, Yasuj, Iran
| | - S Nikouei
- Student Research Committee, Yasuj University of Medical Sciences, Yasuj, Iran
| | - F Rezaeinejad
- Department of Biochemistry, Faculty of Medicine, Yasuj University of Medical Sciences, Yasuj, Iran
| | | | - Z Sabati
- MSc student of Hematology, Student Research Committee, School of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - H Ghasemi
- Abadan Faculty of Medical Sciences, Abadan, Iran.
| |
Collapse
|
18
|
Pan Z, Du S, Wang K, Guo X, Mao Q, Feng X, Huang L, Wu S, Hou B, Chang Y, Liu T, Chen T, Li H, Bachmann T, Bekker A, Hu H, Tao Y. Downregulation of a Dorsal Root Ganglion-Specifically Enriched Long Noncoding RNA is Required for Neuropathic Pain by Negatively Regulating RALY-Triggered Ehmt2 Expression. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2004515. [PMID: 34383386 PMCID: PMC8356248 DOI: 10.1002/advs.202004515] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 03/19/2021] [Indexed: 05/07/2023]
Abstract
Nerve injury-induced maladaptive changes of gene expression in dorsal root ganglion (DRG) neurons contribute to neuropathic pain. Long non-coding RNAs (lncRNAs) are emerging as key regulators of gene expression. Here, a conserved lncRNA is reported, named DRG-specifically enriched lncRNA (DS-lncRNA) for its high expression in DRG neurons. Peripheral nerve injury downregulates DS-lncRNA in injured DRG due, in part, to silencing of POU domain, class 4, transcription factor 3, a transcription factor that interacts with the DS-lncRNA gene promoter. Rescuing DS-lncRNA downregulation blocks nerve injury-induced increases in the transcriptional cofactor RALY-triggered DRG Ehmt2 mRNA and its encoding G9a protein, reverses the G9a-controlled downregulation of opioid receptors and Kcna2 in injured DRG, and attenuates nerve injury-induced pain hypersensitivities in male mice. Conversely, DS-lncRNA downregulation increases RALY-triggered Ehmt2/G9a expression and correspondingly decreases opioid receptor and Kcna2 expression in DRG, leading to neuropathic pain symptoms in male mice in the absence of nerve injury. Mechanistically, downregulated DS-lncRNA promotes more binding of increased RALY to RNA polymerase II and the Ehmt2 gene promoter and enhances Ehmt2 transcription in injured DRG. Thus, downregulation of DS-lncRNA likely contributes to neuropathic pain by negatively regulating the expression of RALY-triggered Ehmt2/G9a, a key neuropathic pain player, in DRG neurons.
Collapse
Affiliation(s)
- Zhiqiang Pan
- Department of AnesthesiologyNew Jersey Medical School, RutgersThe State University of New JerseyNewarkNJ07103USA
| | - Shibin Du
- Department of AnesthesiologyNew Jersey Medical School, RutgersThe State University of New JerseyNewarkNJ07103USA
| | - Kun Wang
- Department of AnesthesiologyNew Jersey Medical School, RutgersThe State University of New JerseyNewarkNJ07103USA
| | - Xinying Guo
- Department of AnesthesiologyNew Jersey Medical School, RutgersThe State University of New JerseyNewarkNJ07103USA
| | - Qingxiang Mao
- Department of AnesthesiologyNew Jersey Medical School, RutgersThe State University of New JerseyNewarkNJ07103USA
| | - Xiaozhou Feng
- Department of AnesthesiologyNew Jersey Medical School, RutgersThe State University of New JerseyNewarkNJ07103USA
| | - Lina Huang
- Department of AnesthesiologyNew Jersey Medical School, RutgersThe State University of New JerseyNewarkNJ07103USA
| | - Shaogen Wu
- Department of AnesthesiologyNew Jersey Medical School, RutgersThe State University of New JerseyNewarkNJ07103USA
| | - Bailing Hou
- Department of AnesthesiologyNew Jersey Medical School, RutgersThe State University of New JerseyNewarkNJ07103USA
| | - Yun‐Juan Chang
- The Office of Advanced Research ComputingRutgersThe State University of New JerseyNewarkNJ07103USA
| | - Tong Liu
- Center for Advanced Proteomics ResearchDepartments of Biochemistry, Microbiology & Molecular GeneticsNew Jersey Medical School, RutgersThe State University of New JerseyNewarkNJ07103USA
| | - Tong Chen
- Center for Advanced Proteomics ResearchDepartments of Biochemistry, Microbiology & Molecular GeneticsNew Jersey Medical School, RutgersThe State University of New JerseyNewarkNJ07103USA
| | - Hong Li
- Center for Advanced Proteomics ResearchDepartments of Biochemistry, Microbiology & Molecular GeneticsNew Jersey Medical School, RutgersThe State University of New JerseyNewarkNJ07103USA
| | - Thomas Bachmann
- Department of AnesthesiologyNew Jersey Medical School, RutgersThe State University of New JerseyNewarkNJ07103USA
| | - Alex Bekker
- Department of AnesthesiologyNew Jersey Medical School, RutgersThe State University of New JerseyNewarkNJ07103USA
| | - Huijuan Hu
- Department of AnesthesiologyNew Jersey Medical School, RutgersThe State University of New JerseyNewarkNJ07103USA
- Department of Physiology, Pharmacology & NeuroscienceNew Jersey Medical SchoolRutgersThe State University of New JerseyNewarkNJ07103USA
| | - Yuan‐Xiang Tao
- Department of AnesthesiologyNew Jersey Medical School, RutgersThe State University of New JerseyNewarkNJ07103USA
- Department of Physiology, Pharmacology & NeuroscienceNew Jersey Medical SchoolRutgersThe State University of New JerseyNewarkNJ07103USA
- Department of Cell Biology & Molecular MedicineNew Jersey Medical SchoolRutgersThe State University of New JerseyNewarkNJ07103USA
| |
Collapse
|
19
|
Wang A, Shi X, Yu R, Qiao B, Yang R, Xu C. The P2X 7 Receptor Is Involved in Diabetic Neuropathic Pain Hypersensitivity Mediated by TRPV1 in the Rat Dorsal Root Ganglion. Front Mol Neurosci 2021; 14:663649. [PMID: 34163328 PMCID: PMC8215290 DOI: 10.3389/fnmol.2021.663649] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 05/05/2021] [Indexed: 12/30/2022] Open
Abstract
The purinergic 2X7 (P2X7) receptor expressed in satellite glial cells (SGCs) is involved in the inflammatory response, and transient receptor potential vanilloid 1 (TRPV1) participates in the process of neurogenic inflammation, such as that in diabetic neuropathic pain (DNP) and peripheral neuralgia. The main purpose of this study was to explore the role of the P2X7 receptor in DNP hypersensitivity mediated by TRPV1 in the rat and its possible mechanism. A rat model of type 2 diabetes mellitus-related neuropathic pain (NPP) named the DNP rat model was established in this study. The mechanical withdrawal threshold (MWT) and thermal withdrawal latency (TWL) of DNP rats were increased after intrathecal injection of the P2X7 receptor antagonist A438079, and the mRNA and protein levels of TRPV1 in the dorsal root ganglion (DRG) were decreased in DNP rats treated with A438079 compared to untreated DNP rats; in addition, A438079 also decreased the phosphorylation of p38 and extracellular signal-regulated kinase 1/2 (ERK1/2) in the DNP group. Based on these results, the P2X7 receptor might be involved in DNP mediated by TRPV1.
Collapse
Affiliation(s)
- Anhui Wang
- Department of Physiology, Basic Medical College of Nanchang University, Nanchang, China
| | - Xiangchao Shi
- Medical Department, Queen Mary School, Nanchang University, Nanchang, China
| | - Ruoyang Yu
- Medical Department, Queen Mary School, Nanchang University, Nanchang, China
| | - Bao Qiao
- Medical Department, Queen Mary School, Nanchang University, Nanchang, China
| | - Runan Yang
- Department of Physiology, Basic Medical College of Nanchang University, Nanchang, China
| | - Changshui Xu
- Department of Physiology, Basic Medical College of Nanchang University, Nanchang, China.,Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, China
| |
Collapse
|
20
|
Genetic and Epigenomic Modifiers of Diabetic Neuropathy. Int J Mol Sci 2021; 22:ijms22094887. [PMID: 34063061 PMCID: PMC8124699 DOI: 10.3390/ijms22094887] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 04/29/2021] [Accepted: 05/03/2021] [Indexed: 12/18/2022] Open
Abstract
Diabetic neuropathy (DN), the most common chronic and progressive complication of diabetes mellitus (DM), strongly affects patients’ quality of life. DN could be present as peripheral, autonomous or, clinically also relevant, uremic neuropathy. The etiopathogenesis of DN is multifactorial, and genetic components play a role both in its occurrence and clinical course. A number of gene polymorphisms in candidate genes have been assessed as susceptibility factors for DN, and most of them are linked to mechanisms such as reactive oxygen species production, neurovascular impairments and modified protein glycosylation, as well as immunomodulation and inflammation. Different epigenomic mechanisms such as DNA methylation, histone modifications and non-coding RNA action have been studied in DN, which also underline the importance of “metabolic memory” in DN appearance and progression. In this review, we summarize most of the relevant data in the field of genetics and epigenomics of DN, hoping they will become significant for diagnosis, therapy and prevention of DN.
Collapse
|
21
|
Asadi G, Rezaei Varmaziar F, Karimi M, Rajabinejad M, Ranjbar S, Gorgin Karaji A, Salari F, Afshar Hezarkhani L, Rezaiemanesh A. Determination of the transcriptional level of long non-coding RNA NEAT-1, downstream target microRNAs, and genes targeted by microRNAs in diabetic neuropathy patients. Immunol Lett 2021; 232:20-26. [PMID: 33508370 DOI: 10.1016/j.imlet.2021.01.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 10/24/2020] [Accepted: 01/11/2021] [Indexed: 01/29/2023]
Abstract
BACKGROUND Diabetic neuropathy (DN) is one of the microvascular complications of diabetes that leads to peripheral sensorimotor and autonomic nervous system damages. In this study, we first examined the expression of lncRNA NEAT-1 and its downstream microRNAs, miR-183-5p, miR-433-3p, and then examined mRNA expression of ITGA4, ITGB1, SESN1, and SESN3 as the downstream targets of miR-183-5p, miR-433-3p. METHODS The blood sample was obtained from a total of 40 patients with type 2 diabetes (20 DN patients and 20 non-DN diabetic cases) and ten healthy individuals. After RNA extraction from peripheral blood samples and cDNA synthesis, expression measurements were performed by the RT-qPCR technique. RESULTS Our results showed that the expression level of lncRNA NEAT-1 was significantly higher, and the expression level of miR-183-5p was significantly lower in DN patients compared to the healthy control group. Besides, the expression level of miR-433-3p was significantly lower, and the mRNA expression of ITGA4, SESN1, and SESN3 was significantly higher in DN patients compared to the diabetes group. The ROC curve analysis showed that the miR-183-5p with high levels of accuracy could discriminate DN patients from healthy control (AUC = 0.836) and NEAT-1, SESN1, SESN3, ITGA4 have a high ability to distinguish DN from non-DN patients (AUC = 0.701, 0.772, 0.815 and 0.780, respectively). CONCLUSION It seems that the NEAT-1 probably targets miR-183-5p and miR-433-3p, as a result of which the expression of ITGA4, SESN1, and SESN3 is affected. Dysregulated expression of NEAT-1 and related miRNAs and genes might be involved in the pathogenesis of DN.
Collapse
Affiliation(s)
- Gelayol Asadi
- Student Research Committee, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran; Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Fatemeh Rezaei Varmaziar
- Student Research Committee, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran; Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mojgan Karimi
- Student Research Committee, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran; Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Misagh Rajabinejad
- Student Research Committee, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran; Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Sedigheh Ranjbar
- Student Research Committee, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran; Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ali Gorgin Karaji
- Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Farhad Salari
- Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Leila Afshar Hezarkhani
- Department of Neurology, School of Medicine, Farabi Hospital, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Alireza Rezaiemanesh
- Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
22
|
Yan C, Chen J, Yang X, Li W, Mao R, Chen Z. Emerging Roles of Long Non-Coding RNAs in Diabetic Foot Ulcers. Diabetes Metab Syndr Obes 2021; 14:2549-2560. [PMID: 34135607 PMCID: PMC8200159 DOI: 10.2147/dmso.s310566] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 05/13/2021] [Indexed: 12/13/2022] Open
Abstract
Diabetes mellitus is one of the most widespread metabolic diseases in the world, and diabetic foot ulcer (DFU), as one of its chronic complications, not only causes a large amount of physiological and psychological pain to patients but also places a tremendous burden on the entire economy and society. Despite significant advances in knowledge on the mechanism and in the treatment of DFU, clinical practice is still not satisfactory, and our understanding of its cellular and molecular pathogenesis is far from complete. Fortunately, progress in studying the roles of long non-coding RNAs (lncRNAs), which play important regulatory roles in the expression of genes at multiple levels, suggests that we can apply them in the early diagnosis and potential targeted intervention of DFU. In this review, we briefly summarize the current knowledge regarding the functional roles and potential mechanisms of reported lncRNAs in regulating DFU.
Collapse
Affiliation(s)
- Chengqi Yan
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
| | - Jing Chen
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
| | - Xiaofan Yang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
| | - Wenqing Li
- Department of Hand and Foot Surgery, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, Guangdong, People’s Republic of China
| | - Renqun Mao
- Department of Hand and Foot Surgery, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, Guangdong, People’s Republic of China
| | - Zhenbing Chen
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
- Correspondence: Zhenbing Chen Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of ChinaTel +86 13871103730Fax +86 2785351628 Email
| |
Collapse
|
23
|
Ren W, Xi G, Li X, Zhao L, Yang K, Fan X, Gao L, Xu H, Guo J. Long non-coding RNA HCG18 promotes M1 macrophage polarization through regulating the miR-146a/TRAF6 axis, facilitating the progression of diabetic peripheral neuropathy. Mol Cell Biochem 2020; 476:471-482. [PMID: 32996080 DOI: 10.1007/s11010-020-03923-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 09/19/2020] [Indexed: 01/18/2023]
Abstract
Diabetic peripheral neuropathy (DPN) is one of the most important complications in diabetes mellitus (DM), which has been reported to be modulated by long non-coding RNAs (lncRNAs). The purpose of the current study is to explore the regulatory mechanism of lncRNA HCG18 on DPN in vitro. The expression of lncRNA HCG18, miR-146a, TRAF6, CD11c, and iNOS was detected by qRT-PCR. Through Enzyme-linked immunosorbent assay, the levels of inflammatory factors (TNF-α, IL-1β, and IL-6) were determined. M1 macrophage polarization was measured by flow cytometry analysis. The interactions between miR-146a and HCG18/TRAF6 were predicted by Starbase/Targetscan software and verified by the dual luciferase reporter assay. Western blot assay was performed to determine the protein expression of TRAF6. LncRNA HCG18 was highly expressed in DPN model and HG-induced macrophages. The levels of inflammatory factors (TNF-α, IL-1β, and IL-6) were elevated in DPN model. The expression of M1 markers (CD11c and iNOS) was visibly up-regulated in DPN model and was positively correlated with HCG18 expression. LncRNA HCG18 facilitated M1 macrophage polarization. In addition, miR-146a was identified as a target of lncRNA HCG18. Overexpression of miR-146a reversed the promoting effect of HCG18 on M1 macrophage polarization. Simultaneously, TRAF6 was a target gene of miR-146a TRAF6 expression was positively modulated by HCG18 and was negatively modulated by miR-146a. Down-regulation of TRAF6 reversed the promoting effect of HCG18 on M1 macrophage polarization. LncRNA HCG18 promotes M1 macrophage polarization via regulating the miR-146a/TRAF6 axis, facilitating the progression of DPN. This study provides a possible therapeutic strategy for DPN.
Collapse
Affiliation(s)
- Wei Ren
- Department of Endocrinology and Metabolism, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, No. 99, Longcheng Street, Taiyuan City, 030032, Shanxi Province, China
| | - Guangxia Xi
- Department of Endocrinology and Metabolism, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, No. 99, Longcheng Street, Taiyuan City, 030032, Shanxi Province, China
| | - Xing Li
- Department of Endocrinology and Metabolism, The Second Clinical Medical College of Shanxi Medical University, The Second Hospital of Shanxi Medical University, No. 382, WuYi Road, Taiyuan City, 030001, Shanxi Province, China
| | - Lingxia Zhao
- Department of Endocrinology and Metabolism, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, No. 99, Longcheng Street, Taiyuan City, 030032, Shanxi Province, China
| | - Kun Yang
- Department of Endocrinology and Metabolism, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, No. 99, Longcheng Street, Taiyuan City, 030032, Shanxi Province, China
| | - Xuemei Fan
- Department of Endocrinology and Metabolism, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, No. 99, Longcheng Street, Taiyuan City, 030032, Shanxi Province, China
| | - Linlin Gao
- Department of Endocrinology and Metabolism, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, No. 99, Longcheng Street, Taiyuan City, 030032, Shanxi Province, China
| | - Hongmei Xu
- Department of Endocrinology and Metabolism, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, No. 99, Longcheng Street, Taiyuan City, 030032, Shanxi Province, China
| | - Jianjin Guo
- Department of Endocrinology and Metabolism, The Second Clinical Medical College of Shanxi Medical University, The Second Hospital of Shanxi Medical University, No. 382, WuYi Road, Taiyuan City, 030001, Shanxi Province, China.
| |
Collapse
|
24
|
Ren X, Yang R, Li L, Xu X, Liang S. Long non coding RNAs involved in MAPK pathway mechanism mediates diabetic neuropathic pain. Cell Biol Int 2020; 44:2372-2379. [PMID: 32844535 DOI: 10.1002/cbin.11457] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Diabetes is the largest global epidemic of the 21st century, and the cost of diabetes and its complications comprise about 12% of global health expenditure. Diabetic neuropathy is the most common complication of diabetes, affecting up to 50% of patients over the course of their disease. Among them, 30%-50% develop neuropathic pain, which has typical symptoms that originate from the toes and progress to foot ulcers and seriously influence quality of life. The pathogenesis of diabetic neuropathic pain (DNP) is complicated and incompletely understood and there is no effective treatment except supportive treatment. Long noncoding RNAs (lncRNAs), a class of noncoding RNAs exceeding 200 nucleotides in length, have been shown to play key roles in fundamental cellular processes, and are considered to be potential targets for treatment. Recent research indicates that lncRNA is involved in the pathogenesis of DNP. Certain overexpressed lncRNAs can enhance the purinergic receptor-mediated neuropathic pain in peripheral ganglia and inflammatory cytokines are released due to receptors activated by adenosine triphosphate. In recent years, our laboratory also has been exploring the relationship and pathogenesis between lncRNAs and DNP. In this review, we focus on the recent progress in functional lncRNAs associated with DNP and investigate their roles related to respective receptors.
Collapse
Affiliation(s)
- Xinlu Ren
- Queen Mary University of London Joint Programme, Nanchang University, Nanchang, Jiangxi, China
| | - Runan Yang
- Neuropharmacology Laboratory of Physiology Department, Basic Medical School of Nanchang University, Nanchang, Jiangxi, 330006, China.,Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, Jiangxi, 330006, China
| | - Lin Li
- Neuropharmacology Laboratory of Physiology Department, Basic Medical School of Nanchang University, Nanchang, Jiangxi, 330006, China.,Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, Jiangxi, 330006, China
| | - Xiumei Xu
- Neuropharmacology Laboratory of Physiology Department, Basic Medical School of Nanchang University, Nanchang, Jiangxi, 330006, China.,Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, Jiangxi, 330006, China
| | - Shangdong Liang
- Neuropharmacology Laboratory of Physiology Department, Basic Medical School of Nanchang University, Nanchang, Jiangxi, 330006, China.,Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, Jiangxi, 330006, China
| |
Collapse
|
25
|
P2X7 Receptors Amplify CNS Damage in Neurodegenerative Diseases. Int J Mol Sci 2020; 21:ijms21175996. [PMID: 32825423 PMCID: PMC7504621 DOI: 10.3390/ijms21175996] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/07/2020] [Accepted: 08/17/2020] [Indexed: 12/11/2022] Open
Abstract
ATP is a (co)transmitter and signaling molecule in the CNS. It acts at a multitude of ligand-gated cationic channels termed P2X to induce rapid depolarization of the cell membrane. Within this receptor-channel family, the P2X7 receptor (R) allows the transmembrane fluxes of Na+, Ca2+, and K+, but also allows the slow permeation of larger organic molecules. This is supposed to cause necrosis by excessive Ca2+ influx, as well as depletion of intracellular ions and metabolites. Cell death may also occur by apoptosis due to the activation of the caspase enzymatic cascade. Because P2X7Rs are localized in the CNS preferentially on microglia, but also at a lower density on neuroglia (astrocytes, oligodendrocytes) the stimulation of this receptor leads to the release of neurodegeneration-inducing bioactive molecules such as pro-inflammatory cytokines, chemokines, proteases, reactive oxygen and nitrogen molecules, and the excitotoxic glutamate/ATP. Various neurodegenerative reactions of the brain/spinal cord following acute harmful events (mechanical CNS damage, ischemia, status epilepticus) or chronic neurodegenerative diseases (neuropathic pain, Alzheimer’s disease, Parkinson’s disease, multiple sclerosis, amyotrophic lateral sclerosis) lead to a massive release of ATP via the leaky plasma membrane of neural tissue. This causes cellular damage superimposed on the original consequences of neurodegeneration. Hence, blood-brain-barrier permeable pharmacological antagonists of P2X7Rs with excellent bioavailability are possible therapeutic agents for these diseases. The aim of this review article is to summarize our present state of knowledge on the involvement of P2X7R-mediated events in neurodegenerative illnesses endangering especially the life quality and duration of the aged human population.
Collapse
|
26
|
The Actions and Mechanisms of P2X7R and p38 MAPK Activation in Mediating Bortezomib-Induced Neuropathic Pain. BIOMED RESEARCH INTERNATIONAL 2020; 2020:8143754. [PMID: 32733956 PMCID: PMC7376423 DOI: 10.1155/2020/8143754] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 04/12/2020] [Accepted: 06/13/2020] [Indexed: 01/12/2023]
Abstract
The proteasome inhibitor bortezomib (BTZ) is a potent first-line anticancer drug for multiple myeloma; nonetheless, it induced peripheral neuropathy. It has been suggested that many cytokines may play a role in mediating neuropathic pain, but the underlying molecular mechanism is not fully understood. Recent studies have shown that neuropathic pain is closely related to the purinergic ligand-gated ion channel 7 receptor (P2X7R), one of the P2X receptors, which is richly expressed in glial cells. P2X7-p38 pathway is correlated with microglia- and satellite glial cell- (SGC-) mediated neuropathic pain. However, the association of P2X7R and p38MAPK in mediating BTZ-induced neuropathic pain remains unclear. In this study, the relationship between P2X7R activation and p38 phosphorylation in the dorsal root ganglion (DRG) and spinal dorsal horn (SDH) in the development and maintenance of BTZ-induced neuropathic pain was elucidated. The results showed that BTZ increased mechanical thresholds in rats, accompanied with upregulation of P2X7R expression and p38MAPK phosphorylation, indicating that P2X7R and p38MAPK are key molecules in the development and maintenance of BTZ-induced neuropathic pain. Inhibiting p38MAPK phosphorylation with SB203580 resulted in downregulation of P2X7R expression levels. Inhibition of P2X7R with Brilliant Blue G (BBG) reversed neuropathic pain might decrease through the expression of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and IL-6 via inhibiting p38MAPK phosphorylation. The P2X7R/p38MAPK signaling pathway in SGCs of DRG and microglia of SDH might be a potential pharmacological target behind this mechanism as an opportunity to relieve BTZ-induced neuropathic pain.
Collapse
|
27
|
Wang C, Xu X, Chen J, Kang Y, Guo J, Duscher D, Yang X, Guo G, Ren S, Xiong H, Yuan M, Jiang T, Machens HG, Chen Z, Chen Y. The Construction and Analysis of lncRNA-miRNA-mRNA Competing Endogenous RNA Network of Schwann Cells in Diabetic Peripheral Neuropathy. Front Bioeng Biotechnol 2020; 8:490. [PMID: 32523943 PMCID: PMC7261901 DOI: 10.3389/fbioe.2020.00490] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 04/27/2020] [Indexed: 12/13/2022] Open
Abstract
Background Diabetes mellitus is a worldwide disease with high incidence. Diabetic peripheral neuropathy (DPN) is one of the most common but often ignored complications of diabetes mellitus that cause numbness and pain, even paralysis. Recent studies demonstrate that Schwann cells (SCs) in the peripheral nervous system play an essential role in the pathogenesis of DPN. Furthermore, various transcriptome analyses constructed by RNA-seq or microarray have provided a comprehensive understanding of molecular mechanisms and regulatory interaction networks involved in many diseases. However, the detailed mechanisms and competing endogenous RNA (ceRNA) network of SCs in DPN remain largely unknown. Methods Whole-transcriptome sequencing technology was applied to systematically analyze the differentially expressed mRNAs, lncRNAs and miRNAs in SCs from DPN rats and control rats. Gene ontology (GO) and KEGG pathway enrichment analyses were used to investigate the potential functions of the differentially expressed genes. Following this, lncRNA-mRNA co-expression network and ceRNA regulatory network were constructed by bioinformatics analysis methods. Results The results showed that 2925 mRNAs, 164 lncRNAs and 49 miRNAs were significantly differently expressed in SCs from DPN rats compared with control rats. 13 mRNAs, 7 lncRNAs and 7 miRNAs were validated by qRT-PCR and consistent with the RNA-seq data. Functional and pathway analyses revealed that many enriched biological processes of GO terms and pathways were highly correlated with the function of SCs and the pathogenesis of DPN. Furthermore, a global lncRNA–miRNA–mRNA ceRNA regulatory network in DPN model was constructed and miR-212-5p and the significantly correlated lncRNAs with high degree were identified as key mediators in the pathophysiological processes of SCs in DPN. These RNAs would contribute to the diagnosis and treatment of DPN. Conclusion Our study has shown that differentially expressed RNAs have complex interactions among them. They also play critical roles in regulating functions of SCs involved in the pathogenesis of DPN. The novel competitive endogenous RNA network provides new insight for exploring the underlying molecular mechanism of DPN and further investigation may have clinical application value.
Collapse
Affiliation(s)
- Cheng Wang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiang Xu
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Chen
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Kang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiahe Guo
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dominik Duscher
- Department of Plastic and Hand Surgery, Technical University of Munich, Munich, Germany
| | - Xiaofan Yang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guojun Guo
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sen Ren
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hewei Xiong
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Meng Yuan
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Jiang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hans-Günther Machens
- Department of Plastic and Hand Surgery, Technical University of Munich, Munich, Germany
| | - Zhenbing Chen
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanhua Chen
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
28
|
Wu M, Feng Y, Shi X. Advances with Long Non-Coding RNAs in Diabetic Peripheral Neuropathy. Diabetes Metab Syndr Obes 2020; 13:1429-1434. [PMID: 32431526 PMCID: PMC7201007 DOI: 10.2147/dmso.s249232] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 04/16/2020] [Indexed: 01/11/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are a group of non-coding RNAs longer than 200 nucleotides, which are defined as transcripts. The lncRNAs are involved in regulating gene expression at epigenetic, transcriptional, and post-transcriptional levels. Recent studies have found that lncRNA is closely related to many diseases like neurological diseases, endocrine and metabolic disorders. Diabetic peripheral neuropathy (DPN) is one of the most common chronic complications of diabetes mellitus. In this review, we highlight the latest research related to lncRNAs in DPN.
Collapse
Affiliation(s)
- Men Wu
- Department of Endocrinology, Jinshan Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Yonghao Feng
- Department of Endocrinology, Jinshan Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Xiaohong Shi
- Department of Endocrinology, Jinshan Hospital, Fudan University, Shanghai, People’s Republic of China
| |
Collapse
|
29
|
Kalpachidou T, Kummer K, Kress M. Non-coding RNAs in neuropathic pain. Neuronal Signal 2020; 4:NS20190099. [PMID: 32587755 PMCID: PMC7306520 DOI: 10.1042/ns20190099] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/31/2020] [Accepted: 04/02/2020] [Indexed: 02/07/2023] Open
Abstract
Neuro-immune alterations in the peripheral and central nervous system play a role in the pathophysiology of chronic pain in general, and members of the non-coding RNA (ncRNA) family, specifically the short, 22 nucleotide microRNAs (miRNAs) and the long non-coding RNAs (lncRNAs) act as master switches orchestrating both immune as well as neuronal processes. Several chronic disorders reveal unique ncRNA expression signatures, which recently generated big hopes for new perspectives for the development of diagnostic applications. lncRNAs may offer perspectives as candidates indicative of neuropathic pain in liquid biopsies. Numerous studies have provided novel mechanistic insight into the role of miRNAs in the molecular sequelae involved in the pathogenesis of neuropathic pain along the entire pain pathway. Specific processes within neurons, immune cells, and glia as the cellular components of the neuropathic pain triad and the communication paths between them are controlled by specific miRNAs. Therefore, nucleotide sequences mimicking or antagonizing miRNA actions can provide novel therapeutic strategies for pain treatment, provided their human homologues serve the same or similar functions. Increasing evidence also sheds light on the function of lncRNAs, which converge so far mainly on purinergic signalling pathways both in neurons and glia, and possibly even other ncRNA species that have not been explored so far.
Collapse
Affiliation(s)
| | - Kai K. Kummer
- Institute of Physiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Michaela Kress
- Institute of Physiology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
30
|
Sun RM, Wei J, Wang SS, Xu GY, Jiang GQ. Upregulation of lncRNA-NONRATT021203.2 in the dorsal root ganglion contributes to cancer-induced pain via CXCL9 in rats. Biochem Biophys Res Commun 2020; 524:983-989. [PMID: 32061390 DOI: 10.1016/j.bbrc.2020.01.163] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 01/30/2020] [Indexed: 12/16/2022]
Abstract
Cancer-induced pain (CIP) is a kind of chronic pain that occurs during cancer progression over time. However, the mechanisms are largely unknown, and clinical treatment remains challenging. LncRNAs have been reported to play critical roles in various biological processes, including chronic pain. The aim of our study was to investigate whether lncRNAs participate in the development of CIP by regulating the expression levels of some molecules related to pain modulation. The CIP model was established by injecting Walker 256 mammary gland tumor cells into the tibial canal of rats. In this study, we found that lncRNA-NONRATT021203.2 was increased in the CIP rats and that lncRNA-NONRATT021203.2-siRNA could relieve hyperalgesia in these rats. For elucidation of the underlying mechanism, we showed that lncRNA-NONRATT021203.2 could target C-X-C motif chemokine ligand 9 (CXCL9), which was increased in the CIP rats, and that CXCL9-siRNA could relieve hyperalgesia. At the same time, silencing lncRNA-NONRATT021203.2 expression decreased the mRNA and protein levels of CXCL9. Immunofluorescence analysis showed that CXCL9 was mainly expressed in the CGRP-positive and IB4-positive DRG neurons. Further research showed that lncRNA-NONRATT021203.2 and CXCL9 were colocalized in the DRG neurons. Our data suggested that lncRNA-NONRATT021203.2 participated in the CIP in rats and likely mediates the upregulation of CXCL9. The present study provided us with a new potential target for the clinical treatment of cancer-induced pain.
Collapse
Affiliation(s)
- Rong-Mao Sun
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, Jiangsu, PR China
| | - Jinrong Wei
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, Jiangsu, PR China
| | - Shu-Sheng Wang
- Center for Translational Medicine, Affiliated Zhangjiagang Hospital of Soochow University, Zhangjiagang, 215600, PR China
| | - Guang-Yin Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, The Second Affiliated Hospital, Soochow University, Suzhou, 215123, PR China; Center for Translational Medicine, Affiliated Zhangjiagang Hospital of Soochow University, Zhangjiagang, 215600, PR China
| | - Guo-Qin Jiang
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, Jiangsu, PR China.
| |
Collapse
|
31
|
Zhang WJ, Zhu ZM, Liu ZX. The role and pharmacological properties of the P2X7 receptor in neuropathic pain. Brain Res Bull 2020; 155:19-28. [PMID: 31778766 DOI: 10.1016/j.brainresbull.2019.11.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 11/03/2019] [Accepted: 11/11/2019] [Indexed: 02/07/2023]
Abstract
Neuropathic Pain (NPP) is caused by direct or indirect damage to the nervous system and is a common symptom of many diseases. Clinically, drugs are usually used to suppress pain, such as (lidocaine, morphine, etc.), but the effect is short-lived, poor analgesia, and there are certain dependence and side effects. Therefore, the investigation of the treatment of NPP has become an urgent problem in medical, attracting a lot of research attention. P2X7 is dependent on Adenosine triphosphate (ATP) ion channel receptors and has dual functions for the development of nerve damage and pain. In this review, we explored the link between the P2X7 receptor (P2X7R) and NPP, providing insight into the P2X7R and NPP, discussing the pathological mechanism of P2 X7R in NPP and the biological characteristics of P2X7R antagonist inhibiting its over-expression for the targeted therapy of NPP.
Collapse
Affiliation(s)
- Wen-Jun Zhang
- The Second Affiliate Hospital. Nanchang University, Nanchang City. Jiangxi Province, China; Basic Medical School, Nanchang University, Nanchang City, Jiangxi Province, China
| | - Zheng-Ming Zhu
- The Second Affiliate Hospital. Nanchang University, Nanchang City. Jiangxi Province, China.
| | - Zeng-Xu Liu
- Basic Medical School, Nanchang University, Nanchang City, Jiangxi Province, China
| |
Collapse
|
32
|
Santoro M, Vollono C, Pazzaglia C, Di Sipio E, Giordano R, Padua L, Arendt‐Nielsen L, Valeriani M. ZNRD1‐AS
and
RP11‐819C21.1
long non‐coding RNA changes following painful laser stimulation correlate with laser‐evoked potential amplitude and habituation in healthy subjects: A pilot study. Eur J Pain 2020; 24:593-603. [DOI: 10.1002/ejp.1511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 11/21/2019] [Accepted: 11/26/2019] [Indexed: 12/27/2022]
Affiliation(s)
| | - Catello Vollono
- Unit of Neurophysiopathology Fondazione Policlinico Universitario Agostino Gemelli IRCCS Rome Italy
- Università Cattolica del Sacro Cuore Rome Italy
| | - Costanza Pazzaglia
- Unit of High Intensity NeurorehabilitationFondazione Policlinico Universitario Agostino Gemelli IRCCS Rome Italy
| | | | - Rocco Giordano
- Center for Neuroplasticity and Pain (CNAP) SMI Department of Health Science and Technology Faculty of Medicine Aalborg University Aalborg Denmark
| | - Luca Padua
- Università Cattolica del Sacro Cuore Rome Italy
- Unit of High Intensity NeurorehabilitationFondazione Policlinico Universitario Agostino Gemelli IRCCS Rome Italy
| | - Lars Arendt‐Nielsen
- Center for Neuroplasticity and Pain (CNAP) SMI Department of Health Science and Technology Faculty of Medicine Aalborg University Aalborg Denmark
| | - Massimiliano Valeriani
- Neurology Unit, Ospedale Pediatrico Bambino Gesú IRCCSPiazza di Sant'Onofrio Rome Italy
- Center for Sensory-Motor Interaction Aalborg University Aalborg Denmark
| |
Collapse
|
33
|
Wu W, Ji X, Zhao Y. Emerging Roles of Long Non-coding RNAs in Chronic Neuropathic Pain. Front Neurosci 2019; 13:1097. [PMID: 31680832 PMCID: PMC6813851 DOI: 10.3389/fnins.2019.01097] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 09/30/2019] [Indexed: 02/06/2023] Open
Abstract
Chronic neuropathic pain, a type of chronic and potentially disabling pain caused by a disease or injury of the somatosensory nervous system, spinal cord injury, or various chronic conditions, such as viral infections (e.g., post-herpetic neuralgia), autoimmune diseases, cancers, and metabolic disorders (e.g., diabetes mellitus), is one of the most intense types of chronic pain, which incurs a major socio-economic burden and is a serious public health issue, with an estimated prevalence of 7–10% in adults throughout the world. Presently, the available drug treatments (e.g., anticonvulsants acting at calcium channels, serotonin-noradrenaline reuptake inhibitors, tricyclic antidepressants, opioids, topical lidocaine, etc.) for chronic neuropathic pain patients are still rare and have disappointing efficacy, which makes it difficult to relieve the patients’ painful symptoms, and, at best, they only try to reduce the patients’ ability to tolerate pain. Long non-coding RNAs (lncRNAs), a type of transcript of more than 200 nucleotides with no protein-coding or limited capacity, were identified to be abnormally expressed in the spinal cord, dorsal root ganglion, hippocampus, and prefrontal cortex under chronic neuropathic pain conditions. Moreover, a rapidly growing body of data has clearly pointed out that nearly 40% of lncRNAs exist specifically in the nervous system. Hence, it was speculated that these dysregulated lncRNAs might participate in the occurrence, development, and progression of chronic neuropathic pain. In other words, if we deeply delve into the potential roles of lncRNAs in the pathogenesis of chronic neuropathic pain, this may open up new strategies and directions for the development of novel targeted drugs to cure this refractory disorder. In this article, we primarily review the status of chronic neuropathic pain and provide a general overview of lncRNAs, the detailed roles of lncRNAs in the nervous system and its related diseases, and the abnormal expression of lncRNAs and their potential clinical applications in chronic neuropathic pain. We hope that through the above description, readers can gain a better understanding of the emerging roles of lncRNAs in chronic neuropathic pain.
Collapse
Affiliation(s)
- Wei Wu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Xiaojun Ji
- Department of Neurology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yang Zhao
- Department of Anesthesiology, Affiliated Hospital to Qingdao University, Qingdao, China
| |
Collapse
|
34
|
|
35
|
Tang S, Zhou J, Jing H, Liao M, Lin S, Huang Z, Huang T, Zhong J, HanbingWang. Functional roles of lncRNAs and its potential mechanisms in neuropathic pain. Clin Epigenetics 2019; 11:78. [PMID: 31092294 PMCID: PMC6521530 DOI: 10.1186/s13148-019-0671-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 04/25/2019] [Indexed: 12/20/2022] Open
Abstract
Neuropathic pain (NP) is ranked as one of the major forms of chronic pain and emerges as a direct consequence of a lesion or disease affecting the somatosensory nervous system. Despite great advances into the mechanisms of NP, clinical practice is still not satisfactory. Fortunately, progress in elucidating unique features and multiple molecular mechanisms of long non-coding RNAs (lncRNAs) in NP has emerged in the past 10 years, suggesting that novel therapeutic strategies for pain treatment may be proposed. In this review, we will concentrate on recent studies associated with lncRNAs in NP. First, we will describe the alterations of lncRNA expression after spinal cord injury (SCI) and peripheral nerve injury (PNI), and then we illustrate the role of some specific lncRNAs in detail, which may offer new insights into our understanding of the etiology and pathophysiology of NP. Finally, we put special emphasis on the altered expression of lncRNAs in the diverse biological process of NP. Recent advances we summarized above in the development of NP may facilitate translation of these findings from bench to bedside in the future.
Collapse
Affiliation(s)
- Simin Tang
- Department of Anesthesiology, The First People's Hospital of Foshan, Foshan, 528000, Guangdong Province, China.,Sun Yet-sen University, Guangzhou, 510000, Guangdong Province, China
| | - Jun Zhou
- Department of Anesthesiology, The First People's Hospital of Foshan, Foshan, 528000, Guangdong Province, China.
| | - Huan Jing
- Department of Anesthesiology, The First People's Hospital of Foshan, Foshan, 528000, Guangdong Province, China.,ZunYi Medical University, ZunYi, 563100, China
| | - Meijuan Liao
- Department of Anesthesiology, The First People's Hospital of Foshan, Foshan, 528000, Guangdong Province, China
| | - Sen Lin
- Department of Anesthesiology, The First People's Hospital of Foshan, Foshan, 528000, Guangdong Province, China
| | - Zhenxing Huang
- Department of Anesthesiology, The First People's Hospital of Foshan, Foshan, 528000, Guangdong Province, China
| | - Teng Huang
- Department of Anesthesiology, The First People's Hospital of Foshan, Foshan, 528000, Guangdong Province, China
| | - Jiying Zhong
- Department of Anesthesiology, The First People's Hospital of Foshan, Foshan, 528000, Guangdong Province, China
| | - HanbingWang
- Department of Anesthesiology, The First People's Hospital of Foshan, Foshan, 528000, Guangdong Province, China
| |
Collapse
|
36
|
Guo G, Ren S, Kang Y, Liu Y, Duscher D, Machens HG, Chen Z. Microarray analyses of lncRNAs and mRNAs expression profiling associated with diabetic peripheral neuropathy in rats. J Cell Biochem 2019; 120:15347-15359. [PMID: 31025414 DOI: 10.1002/jcb.28802] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 02/01/2019] [Accepted: 02/04/2019] [Indexed: 12/12/2022]
Abstract
Diabetic peripheral neuropathy (DPN) is considered to be the most frequent neuropathic complication of diabetes, and severely affects the quality of life of patients. Long noncoding RNAs (lncRNAs) participate in various pathophysiological processes and associate with many diseases. However, the exact impact of lncRNAs on DPN remains obscure. To discover a potential connection, a microarray study was conducted to analyze the expression profiling of lncRNAs and messenger RNAs (mRNAs) in dorsal root ganglia (DRG) from streptozotocin-induced diabetic rats with DPN. As a result, 983 lncRNAs and 1357 mRNAs were aberrantly expressed compared with control samples. Using bioinformatics analyses, we identified 558 Gene Ontology terms and 94 Kyoto Encyclopedia of Genes and Genomes pathways to be significantly enriched. Additionally, the signal-net analysis indicated that integrin receptors, including Itgb3, Itgb1, Itgb8, and Itga6, might be important players in network regulation. Furthermore, the lncRNA-mRNA network analysis showed dynamic interactions between the dysregulated lncRNAs and mRNAs. This is the first study to present an overview of lncRNA and mRNA expressions in DRG tissues from DPN rats. Our results indicate that these differentially expressed lncRNAs may have crucial roles in pathological processes of DPN by regulating their coexpressed mRNAs. The data may provide novel targets for future studies, which should focus on validating their roles in the progression of DPN.
Collapse
Affiliation(s)
- Guojun Guo
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sen Ren
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Kang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yutian Liu
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dominik Duscher
- Department of Plastic and Hand Surgery, Technical University of Munich, Munich, Germany
| | - Hans-Günther Machens
- Department of Plastic and Hand Surgery, Technical University of Munich, Munich, Germany
| | - Zhenbing Chen
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
37
|
Zou L, Gong Y, Liu S, Liang S. Natural compounds acting at P2 receptors alleviate peripheral neuropathy. Brain Res Bull 2018; 151:125-131. [PMID: 30599217 DOI: 10.1016/j.brainresbull.2018.12.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 12/23/2018] [Accepted: 12/26/2018] [Indexed: 12/29/2022]
Abstract
Neuropathic pain is generally resistant to currently available treatments, and it is often a consequence of nerve injury due to surgery, diabetes or infection. Myocardial ischemic nociceptive signaling increases the sympathoexcitatory reflex to aggravate myocardial injury. Elucidation of the pathogenetic factors might provide a target for optimal treatment. Abundant evidence in the literature suggests that P2X and P2Y receptors play important roles in signal transmission. Traditional Chinese medicines, such as emodin, puerarin and resveratrol, antagonize nociceptive transmission mediated by purinergic 2 (P2) receptors in primary afferent neurons. This review summarizes recently published data on P2 receptor-mediated neuropathic pain and myocardial ischemia in dorsal root ganglia (DRG), superior cervical ganglia (SCG) and stellate ganglia (SG), with a special focus on the beneficial role of natural compounds.
Collapse
Affiliation(s)
- Lifang Zou
- Neuropharmacological Labratory of Physiology Department, Medical School of Nanchang University, Nanchang, Jiangxi, 330006, Peoples Republic of China; Jiangxi Provincial Key Laboratory of autonomic nervous function and disease, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Yingxin Gong
- Undergraduate student of the First Clinical Department, Medical School of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Shuangmei Liu
- Neuropharmacological Labratory of Physiology Department, Medical School of Nanchang University, Nanchang, Jiangxi, 330006, Peoples Republic of China; Jiangxi Provincial Key Laboratory of autonomic nervous function and disease, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Shangdong Liang
- Neuropharmacological Labratory of Physiology Department, Medical School of Nanchang University, Nanchang, Jiangxi, 330006, Peoples Republic of China; Jiangxi Provincial Key Laboratory of autonomic nervous function and disease, Nanchang, Jiangxi, 330006, People's Republic of China.
| |
Collapse
|
38
|
Fan Z, Zheng J, Xue Y, Liu X, Wang D, Yang C, Ma J, Liu L, Ruan X, Wang Z, Liu Y. NR2C2-uORF targeting UCA1-miR-627-5p-NR2C2 feedback loop to regulate the malignant behaviors of glioma cells. Cell Death Dis 2018; 9:1165. [PMID: 30518750 PMCID: PMC6281640 DOI: 10.1038/s41419-018-1149-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 09/25/2018] [Accepted: 10/01/2018] [Indexed: 12/15/2022]
Abstract
Accumulating evidence has highlighted the potential role of non-coding RNAs (ncRNAs) and upstream open-reading frames (uORFs) in the biological behaviors of glioblastoma. Here, we elucidated the function and possible molecular mechanisms of the effect of some ncRNAs and NR2C2-uORF on the biological behaviors of gliomas. Quantitative real-time PCR was conducted to profile the cell expression of lnc-UCA1 and microRNA-627-5p (miR-627-5p) in glioma tissues and cells. Western blot assay was used to determine the expression levels of NR2C2, SPOCK1, and NR2C2-uORF in glioma tissues and cells. Stable knockdown of lnc-UCA1 or overexpression of miR-627-5p in glioma cell lines (U87 and U251) were established to explore the function of lnc-UCA1 and miR-627-5p in glioma cells. Further, Dual luciferase report assay was used to investigate the correlation between lnc-UCA1 and miR-627-5p. Cell Counting Kit-8, transwell assays, and flow cytometry were used to investigate lnc-UCA1 and miR-627-5p function including cell proliferation, migration and invasion, and apoptosis, respectively. ChIP assays were used to ascertain the correlations between NR2C2 and SPOCK1 as well as NR2C2 between lnc-UCA1. This study confirmed that lnc-UCA1 was up-regulated in glioma tissues and cells. UCA1 knockdown inhibited the malignancies of glioma cells by reducing proliferation, migration, and invasion, but inducing apoptosis. We found that lnc-UCA1 acted as miR-627-5p sponge in a sequence-specific manner. Meanwhile, upregulated lnc-UCA1 inhibited miR-627-5p expression. In addition, miR-627-5p targeted 3'UTR of NR2C2 and down-regulated its expression. Moreover, UCA1 knockdown impaired NR2C2 expression by upregulating miR-627-5p. An uORF was identified in mRNA 5'UTR of NR2C2 and overexpression of whom negatively regulated NR2C2 expression. Remarkably, lnc-UCA1 knockdown combined with uORF overepression and NR2C2 knockdown led to severe tumor suppression in vivo. This study demonstrated that the NR2C2-uORF impaired the pivotal roles that UCA1-miR-627-5p-NR2C2 feedback loop had in regulating the malignancies of glioma cells by targeting NR2C2 directly. And this may provide a potential therapeutic strategy for treating glioma.
Collapse
MESH Headings
- Animals
- Apoptosis/genetics
- Brain Neoplasms/genetics
- Brain Neoplasms/metabolism
- Brain Neoplasms/mortality
- Brain Neoplasms/pathology
- Cell Line, Tumor
- Cell Movement
- Cell Proliferation
- Feedback, Physiological
- Gene Expression Regulation, Neoplastic
- Glioblastoma/genetics
- Glioblastoma/metabolism
- Glioblastoma/mortality
- Glioblastoma/pathology
- Humans
- Mice
- Mice, Nude
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Open Reading Frames
- Promoter Regions, Genetic
- Proteoglycans/genetics
- Proteoglycans/metabolism
- RNA, Long Noncoding/antagonists & inhibitors
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- Receptors, Steroid/genetics
- Receptors, Steroid/metabolism
- Receptors, Thyroid Hormone/genetics
- Receptors, Thyroid Hormone/metabolism
- Signal Transduction
- Survival Analysis
- Tumor Burden
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Zirong Fan
- Department of Neurosurgery, Shengjing Hospital of China Medical University, 110004, Shenyang, China
- Liaoning Clinical Medical Research Center in Nervous System Disease, 110004, Shenyang, China
- Key Laboratory of Neuro-oncology in Liaoning Province, 110004, Shenyang, China
| | - Jian Zheng
- Department of Neurosurgery, Shengjing Hospital of China Medical University, 110004, Shenyang, China
- Liaoning Clinical Medical Research Center in Nervous System Disease, 110004, Shenyang, China
- Key Laboratory of Neuro-oncology in Liaoning Province, 110004, Shenyang, China
| | - Yixue Xue
- Department of Neurobiology, College of Basic Medicine, China Medical University, 110122, Shenyang, China
- Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, 110122, Shenyang, China
- Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, 110122, Shenyang, China
| | - Xiaobai Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, 110004, Shenyang, China
- Liaoning Clinical Medical Research Center in Nervous System Disease, 110004, Shenyang, China
- Key Laboratory of Neuro-oncology in Liaoning Province, 110004, Shenyang, China
| | - Di Wang
- Department of Neurosurgery, Shengjing Hospital of China Medical University, 110004, Shenyang, China
- Liaoning Clinical Medical Research Center in Nervous System Disease, 110004, Shenyang, China
- Key Laboratory of Neuro-oncology in Liaoning Province, 110004, Shenyang, China
| | - Chunqing Yang
- Department of Neurosurgery, Shengjing Hospital of China Medical University, 110004, Shenyang, China
- Liaoning Clinical Medical Research Center in Nervous System Disease, 110004, Shenyang, China
- Key Laboratory of Neuro-oncology in Liaoning Province, 110004, Shenyang, China
| | - Jun Ma
- Department of Neurobiology, College of Basic Medicine, China Medical University, 110122, Shenyang, China
- Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, 110122, Shenyang, China
- Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, 110122, Shenyang, China
| | - Libo Liu
- Department of Neurobiology, College of Basic Medicine, China Medical University, 110122, Shenyang, China
- Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, 110122, Shenyang, China
- Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, 110122, Shenyang, China
| | - Xuelei Ruan
- Department of Neurobiology, College of Basic Medicine, China Medical University, 110122, Shenyang, China
- Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, 110122, Shenyang, China
- Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, 110122, Shenyang, China
| | - Zhenhua Wang
- Department of Physiology, College of Basic Medicine, China Medical University, 110122, Shenyang, Liaoning, China
| | - Yunhui Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, 110004, Shenyang, China.
- Liaoning Clinical Medical Research Center in Nervous System Disease, 110004, Shenyang, China.
- Key Laboratory of Neuro-oncology in Liaoning Province, 110004, Shenyang, China.
| |
Collapse
|
39
|
Wu S, Bono J, Tao YX. Long noncoding RNA (lncRNA): a target in neuropathic pain. Expert Opin Ther Targets 2018; 23:15-20. [PMID: 30451044 DOI: 10.1080/14728222.2019.1550075] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Current treatments for neuropathic pain are limited in part due to the incomplete understanding of its underlying mechanisms. Recent evidence reveals the dysregulated expression of long non-coding RNAs (lncRNAs) in the damaged nerve, dorsal root ganglion (DRG), and spinal cord dorsal horn following peripheral nerve injury. However, the role of the majority of lncRNAs in neuropathic pain genesis is still elusive. Unveiling the mechanisms of how lncRNAs participate in neuropathic pain may develop new strategies to prevent and/or treat this disorder. Areas covered: This review focuses on the dysregulation of lncRNAs in the DRG, dorsal horn, and the injured nerves from preclinical models of neuropathic pain. We provide evidence of how peripheral nerve injury causes the dysregulation of lncRNAs in these pain-related regions. The potential mechanisms of how dysregulated lncRNAs contribute to the pathogenesis of neuropathic pain are discussed. Expert opinion: The investigation on the role of the dysregulated lncRNAs in neuropathic pain might open up a novel avenue for therapeutic treatment of this disorder. However, current investigation is at the infancy stage, which challenges the translation of preclinical findings. More intensive studies on lncRNAs are required before the preclinical findings are translated into therapeutic management for neuropathic pain.
Collapse
Affiliation(s)
- Shaogen Wu
- a Department of Anesthesiology , New Jersey Medical School, Rutgers, The State University of New Jersey , Newark , NJ , USA
| | - Jamie Bono
- a Department of Anesthesiology , New Jersey Medical School, Rutgers, The State University of New Jersey , Newark , NJ , USA
| | - Yuan-Xiang Tao
- a Department of Anesthesiology , New Jersey Medical School, Rutgers, The State University of New Jersey , Newark , NJ , USA
| |
Collapse
|
40
|
Tang Y, Yin HY, Liu J, Rubini P, Illes P. P2X receptors and acupuncture analgesia. Brain Res Bull 2018; 151:144-152. [PMID: 30458249 DOI: 10.1016/j.brainresbull.2018.10.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 10/13/2018] [Accepted: 10/18/2018] [Indexed: 12/20/2022]
Abstract
Purinergic signaling has recently been suggested to constitute the cellular mechanism underlying acupuncture-induced analgesia (AA). By extending the original hypothesis on endogenous opioids being released during AA, Geoffrey Burnstock and Maiken Nedergaard supplied evidence for the involvement of purinoceptors (P2 and P1/A1 receptors) in the beneficial effects of AA. In view of certain pain states (e.g. neuropathic pain) which respond only poorly to therapy with standard analgesics, as well as with respect to the numerous unwanted effects of opioids and non-steroidal anti-inflammatory drugs, it is of great significance to search for alternative therapeutic options. Because clinical studies on AA yielded sometimes heterogeneous results, it is of eminent importance to relay on experiments carried out on laboratory animals, by evaluating the data with stringent statistical methods including comparison with a sufficient number of control groups. In this review, we summarize the state of the art situation with respect to the participation of P2 receptors in AA and try to forecast how the field is likely to move forward in the future.
Collapse
Affiliation(s)
- Yong Tang
- Medical & Nursing School, Chengdu University, 610106 Chengdu, China; Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, 610075 Chengdu, China.
| | - Hai-Yan Yin
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, 610075 Chengdu, China
| | - Juan Liu
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, 610075 Chengdu, China
| | - Patrizia Rubini
- Rudolf-Boehm-Institut für Pharmakologie und Toxikologie, Universität Leipzig, 04107 Leipzig, Germany
| | - Peter Illes
- Rudolf-Boehm-Institut für Pharmakologie und Toxikologie, Universität Leipzig, 04107 Leipzig, Germany; Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, 610075 Chengdu, China.
| |
Collapse
|
41
|
Li Z, Li X, Chen X, Li S, Ho IHT, Liu X, Chan MTV, Wu WKK. Emerging roles of long non-coding RNAs in neuropathic pain. Cell Prolif 2018; 52:e12528. [PMID: 30362191 PMCID: PMC6430490 DOI: 10.1111/cpr.12528] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/01/2018] [Accepted: 08/28/2018] [Indexed: 12/12/2022] Open
Abstract
Neuropathic pain, a type of chronic and potentially disabling pain resulting from primary injury/dysfunction of the somatosensory nervous system and spinal cord injury, is one of the most intense types of chronic pain, which incurs a significant economic and public health burden. However, our understanding of its cellular and molecular pathogenesis is still far from complete. Long non‐coding RNAs (lncRNAs) are important regulators of gene expression and have recently been characterized as key modulators of neuronal functions. Emerging evidence suggested that lncRNAs are deregulated and play pivotal roles in the development of neuropathic pain. This review summarizes the current knowledge about the roles of deregulated lncRNAs (eg, KCNA2‐AS, uc.48+, NONRATT021972, MRAK009713, XIST, CCAT1) in the development of neuropathic pain. These studies suggested that specific regulation of lncRNAs or their downstream targets might provide novel therapeutic avenues for this refractory disease.
Collapse
Affiliation(s)
- Zheng Li
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xingye Li
- Department of Orthopedic Surgery, Beijing Jishuitan Hospital, Fourth Clinical College of Peking University, Jishuitan Orthopaedic College of Tsinghua University, Beijing, China
| | - Xin Chen
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shugang Li
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Idy H T Ho
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong, Hong Kong Special Administrative Region, Hong Kong
| | - Xiaodong Liu
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong, Hong Kong Special Administrative Region, Hong Kong
| | - Matthew T V Chan
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong, Hong Kong Special Administrative Region, Hong Kong
| | - William K K Wu
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong, Hong Kong Special Administrative Region, Hong Kong.,State Key Laboratory of Digestive Diseases, LKS Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong Special Administrative Region, Hong Kong
| |
Collapse
|
42
|
Liu CL, Deng ZY, Du ER, Xu CS. Long non‑coding RNA BC168687 small interfering RNA reduces high glucose and high free fatty acid‑induced expression of P2X7 receptors in satellite glial cells. Mol Med Rep 2018; 17:5851-5859. [PMID: 29436679 PMCID: PMC5866030 DOI: 10.3892/mmr.2018.8601] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 12/12/2017] [Indexed: 12/19/2022] Open
Abstract
Purinergic signaling contributes to inflammatory and immune responses. The activation of the P2X purinoceptor 7 (P2X7) in satellite glial cells (SGCs) may be an essential component in the promotion of inflammation and neuropathic pain. Long non-coding RNAs (lncRNAs) are involved in multiple physiological and pathological processes. The aim of the present study was to investigate the effects of a small interfering RNA for the lncRNA BC168687 on SGC P2X7 expression in a high glucose and high free fatty acids (HGHF) environment. It was demonstrated that BC168687 small interfering (si)RNA downregulated the co-expression of the P2X7 and glial fibrillary acidic protein and P2X7 mRNA expression. Additionally, HGHF may activate the mitogen-activated protein kinase signaling pathway by increasing the release of nitric oxide and reactive oxygen species in SGCs. Taken together, these results indicate that silencing BC168687 expression may downregulate the increased expression of P2X7 receptors in SGCs induced by a HGHF environment.
Collapse
Affiliation(s)
- Cheng-Long Liu
- Department of Physiology, Basic Medical College of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Ze-Yu Deng
- Department of Physiology, Basic Medical College of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Er-Rong Du
- Department of Physiology, Basic Medical College of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Chang-Shui Xu
- Department of Physiology, Basic Medical College of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|