1
|
Kim HE, Kim J, Park HK, Lee JB, Yun SJ. Correlations between inflammatory cytokine levels and degree of pigmentation in acral melanomas. Melanoma Res 2024; 34:38-43. [PMID: 37924528 DOI: 10.1097/cmr.0000000000000939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2023]
Abstract
Cutaneous melanoma, a highly aggressive skin tumor, is characterized by complex signaling pathways in terms of its pathogenesis and progression. Although the degree of pigmentation in melanoma determines its progression, metastasis, and prognosis, its association with inflammatory cytokines remains unclear. Thus, we evaluated the associations between melanoma pigmentation and plasma levels of inflammatory cytokines; furthermore, we investigated the potential variations in this relationship across the primary anatomic sites of melanoma. We enrolled patients with cutaneous melanoma who visited Chonnam National University Hwasun Hospital between January 2021 and December 2021. The anatomical sites of melanoma were categorized as acral and non-acral sites. The degree of pigmentation was quantified using computer software. In total, nine inflammatory cytokines were analyzed, including interleukin (IL)-2, IL-4, IL-5, IL-10, IL-12, IL-13, granulocyte-macrophage colony-stimulating factor (GM-CSF), interferon-γ (IFN-γ), and tumor necrosis factor-α (TNF-α). This study included 80 melanoma patients. Of these, 53 had acral melanoma and 27 had non-acral melanoma. Overall, plasma concentrations of IL-2, IL-4, IL-5, GM-CSF, and IFN-γ demonstrated significant correlations with diminished pigmentation. Furthermore, in the acral melanoma patients group, plasma concentrations of IL-2, IL-4, IL-5, GM-CSF, IFN-γ, and TNF-α revealed significant correlations with diminished pigmentation. Our results reveal significant associations between melanoma pigmentation and various cytokine levels, particularly in acral melanoma patients; these associations can be influenced by factors related to acral melanoma, such as physical stress or trauma. These correlations may also provide directions for the treatment of acral melanoma.
Collapse
Affiliation(s)
- Hong Euy Kim
- Department of Dermatology, Chonnam National University Medical School, Gwangju, South Korea
| | | | | | | | | |
Collapse
|
2
|
Surcel M, Constantin C, Munteanu AN, Costea DA, Isvoranu G, Codrici E, Popescu ID, Tănase C, Ibram A, Neagu M. Immune Portrayal of a New Therapy Targeting Microbiota in an Animal Model of Psoriasis. J Pers Med 2023; 13:1556. [PMID: 38003872 PMCID: PMC10672519 DOI: 10.3390/jpm13111556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/27/2023] [Accepted: 10/27/2023] [Indexed: 11/26/2023] Open
Abstract
BACKGROUND Despite all the available treatments, psoriasis remains incurable; therefore, finding personalized therapies is a continuous challenge. Psoriasis is linked to a gut microbiota imbalance, highlighting the importance of the gut-skin axis and its inflammatory mediators. Restoring this imbalance can open new perspectives in psoriasis therapy. We investigated the effect of purified IgY raised against pathological human bacteria antibiotic-resistant in induced murine psoriatic dermatitis (PSO). METHODS To evaluate the immune portrayal in an imiquimod experimental model, before and after IgY treatment, xMAP array and flow cytometry were used. RESULTS There were significant changes in IL-1α,β, IL-5, IL-6, IL-9, IL-10, IL-12 (p70), IL-13, IL-15, IL-17a, IFN-γ, TNF-α, IP-10/CXCL10, MCP-1/CCL2, MIP-1α/CCL3, MIP-1β/CCL4, MIG/CXCL9, and KC/CXCL1 serum levels. T (CD3ε+), B (CD19+) and NK (NK1.1+) cells were also quantified. In our model, TNF-α, IL-6, and IL-1β cytokines and CXCL1 chemokine have extremely high circulatory levels in the PSO group. Upon experimental therapy, the cytokine serum values were not different between IgY-treated groups and spontaneously remitted PSO. CONCLUSIONS Using the murine model of psoriatic dermatitis, we show that the orally purified IgY treatment can lead to an improvement in skin lesion healing along with the normalization of cellular and humoral immune parameters.
Collapse
Affiliation(s)
- Mihaela Surcel
- Immunology Department, Victor Babes National Institute of Pathology, Splaiul Independentei 99-101, 050096 Bucharest, Romania; (M.S.); (A.N.M.); (D.A.C.); (M.N.)
| | - Carolina Constantin
- Immunology Department, Victor Babes National Institute of Pathology, Splaiul Independentei 99-101, 050096 Bucharest, Romania; (M.S.); (A.N.M.); (D.A.C.); (M.N.)
- Department of Pathology, Colentina University Hospital, Șos. Ștefan cel Mare 19-21, 020125 Bucharest, Romania
| | - Adriana Narcisa Munteanu
- Immunology Department, Victor Babes National Institute of Pathology, Splaiul Independentei 99-101, 050096 Bucharest, Romania; (M.S.); (A.N.M.); (D.A.C.); (M.N.)
- Doctoral School of Biology, Faculty of Biology, University of Bucharest, Splaiul Independentei 91-95, 050095 Bucharest, Romania
| | - Diana Antonia Costea
- Immunology Department, Victor Babes National Institute of Pathology, Splaiul Independentei 99-101, 050096 Bucharest, Romania; (M.S.); (A.N.M.); (D.A.C.); (M.N.)
- Doctoral School of Biology, Faculty of Biology, University of Bucharest, Splaiul Independentei 91-95, 050095 Bucharest, Romania
| | - Gheorghița Isvoranu
- Animal Husbandry, Victor Babes National Institute of Pathology, Splaiul Independentei 99-101, 050096 Bucharest, Romania;
| | - Elena Codrici
- Biochemistry-Proteomics Department, Victor Babes National Institute of Pathology, Splaiul Independentei 99-101, 050096 Bucharest, Romania; (E.C.); (I.D.P.)
| | - Ionela Daniela Popescu
- Biochemistry-Proteomics Department, Victor Babes National Institute of Pathology, Splaiul Independentei 99-101, 050096 Bucharest, Romania; (E.C.); (I.D.P.)
| | - Cristiana Tănase
- Faculty of Medicine, Titu Maiorescu University, Calea Văcăreşti 189, 031593 Bucharest, Romania;
| | - Alef Ibram
- Research Laboratory, Romvac Company SA, Şos. Centurii 7, 077190 Voluntari, Romania;
| | - Monica Neagu
- Immunology Department, Victor Babes National Institute of Pathology, Splaiul Independentei 99-101, 050096 Bucharest, Romania; (M.S.); (A.N.M.); (D.A.C.); (M.N.)
- Department of Pathology, Colentina University Hospital, Șos. Ștefan cel Mare 19-21, 020125 Bucharest, Romania
- Doctoral School of Biology, Faculty of Biology, University of Bucharest, Splaiul Independentei 91-95, 050095 Bucharest, Romania
| |
Collapse
|
3
|
Caruntu C, Ilie MA, Neagu M. Looking into the Skin in Health and Disease: From Microscopy Imaging Techniques to Molecular Analysis. Int J Mol Sci 2023; 24:13737. [PMID: 37762038 PMCID: PMC10531494 DOI: 10.3390/ijms241813737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023] Open
Abstract
The skin is a complex organ that includes a wide variety of tissue types with different embryological origins [...].
Collapse
Affiliation(s)
- Constantin Caruntu
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
- Department of Dermatology, “Prof. N.C. Paulescu” National Institute of Diabetes, Nutrition and Metabolic Diseases, 011233 Bucharest, Romania
| | | | - Monica Neagu
- Faculty of Biology, University of Bucharest, Splaiul Independentei 91-95, 050095 Bucharest, Romania;
- Immunology Department, “Victor Babes” National Institute of Pathology, 050096 Bucharest, Romania
- Department of Pathology, Colentina University Hospital, 020125 Bucharest, Romania
| |
Collapse
|
4
|
Holmes AD, White KA, Pratt MA, Johnson TB, Likhite S, Meyer K, Weimer JM. Sex-split analysis of pathology and motor-behavioral outcomes in a mouse model of CLN8-Batten disease reveals an increased disease burden and trajectory in female Cln8 mnd mice. Orphanet J Rare Dis 2022; 17:411. [PMID: 36369162 PMCID: PMC9652919 DOI: 10.1186/s13023-022-02564-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 10/23/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND CLN8-Batten disease (CLN8 disease) is a rare neurodegenerative disorder characterized phenotypically by progressive deterioration of motor and cognitive abilities, visual symptoms, epileptic seizures, and premature death. Mutations in CLN8 results in characteristic Batten disease symptoms and brain-wide pathology including accumulation of lysosomal storage material, gliosis, and neurodegeneration. Recent investigations of other subforms of Batten disease (CLN1, CLN3, CLN6) have emphasized the influence of biological sex on disease and treatment outcomes; however, little is known about sex differences in the CLN8 subtype. To determine the impact of sex on CLN8 disease burden and progression, we utilized a Cln8mnd mouse model to measure the impact and progression of histopathological and behavioral outcomes between sexes. RESULTS Several notable sex differences were observed in the presentation of brain pathology, including Cln8mnd female mice consistently presenting with greater GFAP+ astrocytosis and CD68+ microgliosis in the somatosensory cortex, ventral posteromedial/ventral posterolateral nuclei of the thalamus, striatum, and hippocampus when compared to Cln8mnd male mice. Furthermore, sex differences in motor-behavioral assessments revealed Cln8mnd female mice experience poorer motor performance and earlier death than their male counterparts. Cln8mnd mice treated with an AAV9-mediated gene therapy were also examined to assess sex differences on therapeutics outcomes, which revealed no appreciable differences between the sexes when responding to the therapy. CONCLUSIONS Taken together, our results provide further evidence of biologic sex as a modifier of Batten disease progression and outcome, thus warranting consideration when conducting investigations and monitoring therapeutic impact.
Collapse
Affiliation(s)
- Andrew D. Holmes
- grid.430154.70000 0004 5914 2142Pediatrics and Rare Diseases Group, Sanford Research, 2301 E 60Th St N, Sioux Falls, SD USA ,grid.267169.d0000 0001 2293 1795Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD USA
| | - Katherine A. White
- grid.430154.70000 0004 5914 2142Pediatrics and Rare Diseases Group, Sanford Research, 2301 E 60Th St N, Sioux Falls, SD USA
| | - Melissa A. Pratt
- grid.430154.70000 0004 5914 2142Pediatrics and Rare Diseases Group, Sanford Research, 2301 E 60Th St N, Sioux Falls, SD USA
| | - Tyler B. Johnson
- grid.430154.70000 0004 5914 2142Pediatrics and Rare Diseases Group, Sanford Research, 2301 E 60Th St N, Sioux Falls, SD USA
| | - Shibi Likhite
- grid.240344.50000 0004 0392 3476The Research Institute at Nationwide Children’s Hospital, Columbus, OH USA
| | - Kathrin Meyer
- grid.240344.50000 0004 0392 3476The Research Institute at Nationwide Children’s Hospital, Columbus, OH USA ,grid.261331.40000 0001 2285 7943Department of Pediatrics, The Ohio State University, Columbus, OH USA
| | - Jill M. Weimer
- grid.430154.70000 0004 5914 2142Pediatrics and Rare Diseases Group, Sanford Research, 2301 E 60Th St N, Sioux Falls, SD USA ,grid.267169.d0000 0001 2293 1795Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD USA
| |
Collapse
|
5
|
Munteanu AN, Surcel M, Isvoranu G, Constantin C, Neagu M. Healthy Ageing Reflected in Innate and Adaptive Immune Parameters. Clin Interv Aging 2022; 17:1513-1526. [PMID: 36247200 PMCID: PMC9555218 DOI: 10.2147/cia.s375926] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 09/06/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose The aim of the paper is to establish and quantify the relation between healthy ageing and the innate and adaptive immune parameters as indicators of age-related diseases. Patients In order to observe the immunological changes that occur according to age, several humoral and cellular immune parameters were investigated for 288 healthy donors (30-80 years). Subjects' selection was done using clinical, biochemical and immunological parameters of inclusion/exclusion criteria from SENIEUR protocol. Results Age-related changes were observed for both humoral and cellular immune parameters. Lymphocyte immunophenotyping revealed several significant differences in the distribution of cells, both intra- and inter-age groups, namely decreased values of T-CD3+, T-CD8+ and NK cells, and elevated values for T-CD4+, T-CD4+/T-CD8+ ratio and B cells. The percentages of unstimulated neutrophils that show basal oxidative activity and the intensity of this activity had an increasing tendency age-related. The percentage of N-Formyl-Methionyl-Leucyl-Phenylalanine stimulated neutrophils clearly decreases with age, and is associated with an increasing intensity of oxidative activity. Our data also have shown an increased percentage of oxidative neutrophils after phorbol 12-myristate 13-acetate stimulation and an elevated oxidative activity with age. Conclusion Overall healthy ageing is governed by some immune-related deregulations that account for immune exhaustion due to numerous developed immune processes during a life-time and the age-related diseases.
Collapse
Affiliation(s)
- Adriana Narcisa Munteanu
- Immunology Laboratory, Victor Babes National Institute of Pathology, Bucharest, 050096, Romania,Doctoral School of Biology, Faculty of Biology, University of Bucharest, Bucharest, 050095, Romania
| | - Mihaela Surcel
- Immunology Laboratory, Victor Babes National Institute of Pathology, Bucharest, 050096, Romania
| | - Gheorghița Isvoranu
- Immunology Laboratory, Victor Babes National Institute of Pathology, Bucharest, 050096, Romania
| | - Carolina Constantin
- Immunology Laboratory, Victor Babes National Institute of Pathology, Bucharest, 050096, Romania,Department of Pathology, Colentina University Hospital, Bucharest, 020125, Romania
| | - Monica Neagu
- Immunology Laboratory, Victor Babes National Institute of Pathology, Bucharest, 050096, Romania,Doctoral School of Biology, Faculty of Biology, University of Bucharest, Bucharest, 050095, Romania,Department of Pathology, Colentina University Hospital, Bucharest, 020125, Romania,Correspondence: Monica Neagu, Immunology Laboratory, Victor Babes National Institute of Pathology, 99-101 Splaiul Independentei, Bucharest, 050096, Romania, Tel/Fax +4021-3194528, Email
| |
Collapse
|
6
|
Binmama S, Dang CP, Visitchanakun P, Hiengrach P, Somboonna N, Cheibchalard T, Pisitkun P, Chindamporn A, Leelahavanichkul A. Beta-Glucan from S. cerevisiae Protected AOM-Induced Colon Cancer in cGAS-Deficient Mice Partly through Dectin-1-Manipulated Macrophage Cell Energy. Int J Mol Sci 2022; 23:10951. [PMID: 36142859 PMCID: PMC9505986 DOI: 10.3390/ijms231810951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 11/29/2022] Open
Abstract
Although the impacts of Saccharomyces cerevisiae on cancers are mentioned, data on its use in mice with cyclic GMP-AMP synthase deficiency (cGAS-/-) are even rarer. Here, 12 weeks of oral administration of S. cerevisiae protected cGAS-/- mice from azoxymethane (AOM)-induced colon cancers, partly through dysbiosis attenuation (fecal microbiome analysis). In parallel, a daily intralesional injection of a whole glucan particle (WGP; the beta-glucan extracted from S. cerevisiae) attenuated the growth of subcutaneous tumor using MC38 (murine colon cancer cell line) in cGAS-/- mice. Interestingly, the incubation of fluorescent-stained MC38 with several subtypes of macrophages, including M1 (using Lipopolysaccharide; LPS), M2 (IL-4), and tumor-associated macrophages (TAM; using MC38 supernatant activation), could not further reduce the tumor burdens (fluorescent intensity) compared with M0 (control culture media). However, WGP enhanced tumoricidal activities (fluorescent intensity), the genes of M1 pro-inflammatory macrophage polarization (IL-1β and iNOS), and Dectin-1 expression and increased cell energy status (extracellular flux analysis) in M0, M2, and TAM. In M1, WGP could not increase tumoricidal activities, Dectin-1, and glycolysis activity, despite the upregulated IL-1β. In conclusion, S. cerevisiae inhibited the growth of colon cancers through dysbiosis attenuation and macrophage energy activation, partly through Dectin-1 stimulation. Our data support the use of S. cerevisiae for colon cancer protection.
Collapse
Affiliation(s)
- Sulaiman Binmama
- Center of Excellence on Translational Research in Inflammation and Immunology (CETRII), Department of Microbiology, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Cong Phi Dang
- Center of Excellence on Translational Research in Inflammation and Immunology (CETRII), Department of Microbiology, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Peerapat Visitchanakun
- Center of Excellence on Translational Research in Inflammation and Immunology (CETRII), Department of Microbiology, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Pratsanee Hiengrach
- Center of Excellence on Translational Research in Inflammation and Immunology (CETRII), Department of Microbiology, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Naraporn Somboonna
- Microbiome Research Unit for Probiotics in Food and Cosmetics, Chulalongkorn University, Bangkok 10330, Thailand
| | - Thanya Cheibchalard
- Program in Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Prapaporn Pisitkun
- Division of Allergy, Immunology, and Rheumatology, Department of Medicine, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok 10330, Thailand
| | - Ariya Chindamporn
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Asada Leelahavanichkul
- Center of Excellence on Translational Research in Inflammation and Immunology (CETRII), Department of Microbiology, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Nephrology Unit, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
7
|
Bairwa SC, Shaw CA, Kuo M, Yoo J, Tomljenovic L, Eidi H. Cytokines profile in neonatal and adult wild-type mice post-injection of U. S. pediatric vaccination schedule. Brain Behav Immun Health 2021; 15:100267. [PMID: 34589773 PMCID: PMC8474652 DOI: 10.1016/j.bbih.2021.100267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 05/02/2021] [Accepted: 05/03/2021] [Indexed: 11/09/2022] Open
Abstract
Introduction A recent study from our laboratory demonstrated a number of neurobehavioral abnormalities in mice colony injected with a mouse-weight equivalent dose of all vaccines that are administered to infants in their first 18 months of life according to the U. S. pediatric vaccination schedule. Cytokines have been studied extensively as blood immune and inflammatory biomarkers, and their association with neurodevelopmental disorders. Given the importance of cytokines in early neurodevelopment, we aimed to investigate the potential post-administration effects of the U. S. pediatric vaccines on circulatory cytokines in a mouse model. In the current study, cytokines have been assayed at early and late time points in mice vaccinated early in postnatal life and compared with placebo controls. Materials and methods Newborn mouse pups were divided into three groups: i) vaccine (V1), ii) vaccine × 3 (V3) and iii) placebo control. V1 group was injected with mouse weight-equivalent of the current U. S. pediatric vaccine schedule. V3 group was injected with same vaccines but at triple the dose and the placebo control was injected with saline. Pups were also divided according to the sampling age into two main groups: acute- and chronic-phase group. Blood samples were collected at postnatal day (PND) 23, two days following vaccine schedule for the acute-phase group or at 67 weeks post-vaccination for the chronic-phase groups. Fifteen cytokines were analyzed: GM-CSF, IFN-γ, IL-1β, IL-2, IL-4, IL-5, IL-6, IL-9, IL-10, IL-12p70, IL-13, IL-17A, MCP-1, TNF-α, and VEGF-A. Wilcoxon Rank Sum test or unpaired Student's t-test was performed where applicable. Results IL-5 levels in plasma were significantly elevated in the V1 and V3 group compared with the control only in the acute-phase group. The elevation of IL-5 levels in the two vaccine groups were significant irrespective of whether the sexes were combined or analyzed separately. Other cytokines (VEGF-A, TNF-α, IL-10, MCP-1, GM-CSF, IL-6, and IL-13) were also impacted, although to a lesser extent and in a sex-dependent manner. In the acute-phase group, females showed a significant increase in IL-10 and MCP-1 levels and a decrease in VEGF-A levels in both V1 and V3 group compared to controls. In the acute-phase, a significant increase in MCP-1 levels in V3 group and CM-CSF levels in V1 and V3 group and decrease in TNF-α levels in V1 group were observed in treated males as compared with controls. In chronic-phase females, levels of VEGF-A in V1 and V3 group, TNF-α in V3 group, and IL-13 in V1 group were significantly decreased in contrast with controls. In chronic-phase males, TNF-α levels were significantly increased in V1 group and IL-6 levels decreased in V3 group in comparison to controls. The changes in levels of most tested cytokines were altered between the early and the late postnatal assays. Conclusions IL-5 levels significantly increased in the acute-phase of the treatment in the plasma of both sexes that were subjected to V1 and V3 injections. These increases had diminished by the second test assayed at week 67. These results suggest that a profound, albeit transient, effect on cytokine levels may be induced by the whole vaccine administration supporting our recently published observations regarding the behavioral abnormalities in the same mice. These observations support the view that the administration of whole pediatric vaccines in a neonatal period may impact at least short-term CNS functions in mice.
Collapse
Affiliation(s)
- S C Bairwa
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - C A Shaw
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Pathology, University of British Columbia, Vancouver, British Columbia, Canada.,Program in Neuroscience, University of British Columbia, Vancouver, British Columbia, Canada.,Program in Experimental Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - M Kuo
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - J Yoo
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - L Tomljenovic
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - H Eidi
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, British Columbia, Canada.,French Agency for Veterinary Medicinal Products (ANMV) - French Agency for Food, Environmental and Occupational Health Safety (ANSES), Fougères, France
| |
Collapse
|
8
|
Porcher L, Bruckmeier S, Burbano SD, Finnell JE, Gorny N, Klett J, Wood SK, Kelly MP. Aging triggers an upregulation of a multitude of cytokines in the male and especially the female rodent hippocampus but more discrete changes in other brain regions. J Neuroinflammation 2021; 18:219. [PMID: 34551810 PMCID: PMC8459490 DOI: 10.1186/s12974-021-02252-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 08/25/2021] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Despite widespread acceptance that neuroinflammation contributes to age-related cognitive decline, studies comparing protein expression of cytokines in the young versus old brains are surprisingly limited in terms of the number of cytokines and brain regions studied. Complicating matters, discrepancies abound-particularly for interleukin 6 (IL-6)-possibly due to differences in sex, species/strain, and/or the brain regions studied. METHODS As such, we clarified how cytokine expression changes with age by using a Bioplex and Western blot to measure multiple cytokines across several brain regions of both sexes, using 2 mouse strains bred in-house as well as rats obtained from NIA. Parametric and nonparametric statistical tests were used as appropriate. RESULTS In the ventral hippocampus of C57BL/6J mice, we found age-related increases in IL-1α, IL-1β, IL-2, IL-3, IL-4, IL-6, IL-9, IL-10, IL-12p40, IL-12p70, IL-13, IL-17, eotaxin, G-CSF, interfeuron δ, KC, MIP-1a, MIP-1b, rantes, and TNFα that are generally more pronounced in females, but no age-related change in IL-5, MCP-1, or GM-CSF. We also find aging is uniquely associated with the emergence of a module (a.k.a. network) of 11 strongly intercorrelated cytokines, as well as an age-related shift from glycosylated to unglycosylated isoforms of IL-10 and IL-1β in the ventral hippocampus. Interestingly, age-related increases in extra-hippocampal cytokine expression are more discreet, with the prefrontal cortex, striatum, and cerebellum of male and female C57BL/6J mice demonstrating robust age-related increase in IL-6 expression but not IL-1β. Importantly, we found this widespread age-related increase in IL-6 also occurs in BALB/cJ mice and Brown Norway rats, demonstrating conservation across species and rearing environments. CONCLUSIONS Thus, age-related increases in cytokines are more pronounced in the hippocampus compared to other brain regions and can be more pronounced in females versus males depending on the brain region, genetic background, and cytokine examined.
Collapse
Affiliation(s)
- Latarsha Porcher
- Pharmacology, Physiology & Neuroscience, University of South Carolina School of Medicine, 6439 Garners Ferry Rd, Columbia, SC, 29209, USA
| | - Sophie Bruckmeier
- Department of Anatomy & Neurobiology, University of Maryland School of Medicine, 20 Penn St, HSFII Rm 216, Baltimore, MD, 21201, USA
| | - Steven D Burbano
- Pharmacology, Physiology & Neuroscience, University of South Carolina School of Medicine, 6439 Garners Ferry Rd, Columbia, SC, 29209, USA
| | - Julie E Finnell
- Pharmacology, Physiology & Neuroscience, University of South Carolina School of Medicine, 6439 Garners Ferry Rd, Columbia, SC, 29209, USA
| | - Nicole Gorny
- Department of Anatomy & Neurobiology, University of Maryland School of Medicine, 20 Penn St, HSFII Rm 216, Baltimore, MD, 21201, USA
| | - Jennifer Klett
- Pharmacology, Physiology & Neuroscience, University of South Carolina School of Medicine, 6439 Garners Ferry Rd, Columbia, SC, 29209, USA
| | - Susan K Wood
- Pharmacology, Physiology & Neuroscience, University of South Carolina School of Medicine, 6439 Garners Ferry Rd, Columbia, SC, 29209, USA
| | - Michy P Kelly
- Pharmacology, Physiology & Neuroscience, University of South Carolina School of Medicine, 6439 Garners Ferry Rd, Columbia, SC, 29209, USA. .,Department of Anatomy & Neurobiology, University of Maryland School of Medicine, 20 Penn St, HSFII Rm 216, Baltimore, MD, 21201, USA. .,Center for Research on Aging, University of Maryland School of Medicine, 20 Penn St, HSFII Rm 216, Baltimore, MD, 21201, USA.
| |
Collapse
|
9
|
Zurac S, Nichita L, Mateescu B, Mogodici C, Bastian A, Popp C, Cioplea M, Socoliuc C, Constantin C, Neagu M. COVID‑19 vaccination and IgG and IgA antibody dynamics in healthcare workers. Mol Med Rep 2021; 24:578. [PMID: 34132379 PMCID: PMC8223110 DOI: 10.3892/mmr.2021.12217] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 05/27/2021] [Indexed: 12/11/2022] Open
Abstract
Given the current outbreak of coronavirus disease 2019 (COVID‑19) and the development and implementation of mass vaccination, data are being obtained by analyzing vaccination campaigns. In the present study, 69 healthcare workers who were exposed to patients with severe acute respiratory syndrome coronavirus‑2 were monitored for specific immunoglobulin (Ig)G and IgA levels at different time periods. Prior to vaccination, after the first round of vaccination at 21 days (when the second dose of vaccine was administrated) and 24 days after the second round of vaccination, with an mRNA‑based vaccine. The basal IgG and IgA levels in previously infected subjects and non‑infected subjects notably differed. Vaccination increased the IgG and IgA levels after the first dose in most subjects from both groups, the levels of which further increased following the second round of vaccination. The associations between IgG and IgA levels following the first and second rounds of vaccination demonstrated that in the entire vaccination group, regardless of prior exposure to the infectious agent, the increment and levels of IgG and IgA were similar. Thus, the levels upon vaccination were statistically similar irrespective of the starting base line prior to vaccination. In the present study, seroconversion was achieved in all subjects following the second round of vaccination, with similar antibodies levels.
Collapse
Affiliation(s)
- Sabina Zurac
- Department of Pathology, Faculty of Dental Medicine, ‘Carol Davila’ University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Department of Pathology, Colentina University Hospital, 020125 Bucharest, Romania
| | - Luciana Nichita
- Department of Pathology, Faculty of Dental Medicine, ‘Carol Davila’ University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Department of Pathology, Colentina University Hospital, 020125 Bucharest, Romania
| | - Bogdan Mateescu
- Internal Medicine Department, ‘Carol Davila’ University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Department of Gastroenterology, Colentina University Hospital, 020125 Bucharest, Romania
| | - Cristian Mogodici
- Department of Pathology, Colentina University Hospital, 020125 Bucharest, Romania
| | - Alexandra Bastian
- Department of Pathology, Faculty of Dental Medicine, ‘Carol Davila’ University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Department of Pathology, Colentina University Hospital, 020125 Bucharest, Romania
| | - Cristiana Popp
- Department of Pathology, Colentina University Hospital, 020125 Bucharest, Romania
| | - Mirela Cioplea
- Department of Pathology, Faculty of Dental Medicine, ‘Carol Davila’ University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Department of Pathology, Colentina University Hospital, 020125 Bucharest, Romania
| | - Claudiu Socoliuc
- Department of Pathology, Faculty of Dental Medicine, ‘Carol Davila’ University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Department of Pathology, Colentina University Hospital, 020125 Bucharest, Romania
| | - Carolina Constantin
- Department of Pathology, Colentina University Hospital, 020125 Bucharest, Romania
- Immunology Laboratory, ‘Victor Babes’ National Institute of Pathology, 050096 Bucharest, Romania
| | - Monica Neagu
- Department of Pathology, Colentina University Hospital, 020125 Bucharest, Romania
- Immunology Laboratory, ‘Victor Babes’ National Institute of Pathology, 050096 Bucharest, Romania
- Doctoral School of Biology, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania
| |
Collapse
|
10
|
Wu BG, Sulaiman I, Tsay JCJ, Perez L, Franca B, Li Y, Wang J, Gonzalez AN, El-Ashmawy M, Carpenito J, Olsen E, Sauthoff M, Yie K, Liu X, Shen N, Clemente JC, Kapoor B, Zangari T, Mezzano V, Loomis C, Weiden MD, Koralov SB, D'Armiento J, Ahuja SK, Wu XR, Weiser JN, Segal LN. Episodic Aspiration with Oral Commensals Induces a MyD88-dependent, Pulmonary T-Helper Cell Type 17 Response that Mitigates Susceptibility to Streptococcus pneumoniae. Am J Respir Crit Care Med 2021; 203:1099-1111. [PMID: 33166473 DOI: 10.1164/rccm.202005-1596oc] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Rationale: Cross-sectional human data suggest that enrichment of oral anaerobic bacteria in the lung is associated with an increased T-helper cell type 17 (Th17) inflammatory phenotype.Objectives: In this study, we evaluated the microbial and host immune-response dynamics after aspiration with oral commensals using a preclinical mouse model.Methods: Aspiration with a mixture of human oral commensals (MOC; Prevotella melaninogenica, Veillonella parvula, and Streptococcus mitis) was modeled in mice followed by variable time of killing. The genetic backgrounds of mice included wild-type, MyD88-knockout, and STAT3C backgrounds.Measurements and Main Results: 16S-rRNA gene sequencing characterized changes in microbiota. Flow cytometry, cytokine measurement via Luminex and RNA host-transcriptome sequencing was used to characterize the host immune phenotype. Although MOC aspiration correlated with lower-airway dysbiosis that resolved within 5 days, it induced an extended inflammatory response associated with IL-17-producing T cells lasting at least 14 days. MyD88 expression was required for the IL-17 response to MOC aspiration, but not for T-cell activation or IFN-γ expression. MOC aspiration before a respiratory challenge with S. pneumoniae led to a decrease in hosts' susceptibility to this pathogen.Conclusions: Thus, in otherwise healthy mice, a single aspiration event with oral commensals is rapidly cleared from the lower airways but induces a prolonged Th17 response that secondarily decreases susceptibility to S. pneumoniae. Translationally, these data implicate an immunoprotective role of episodic microaspiration of oral microbes in the regulation of the lung immune phenotype and mitigation of host susceptibility to infection with lower-airway pathogens.
Collapse
Affiliation(s)
- Benjamin G Wu
- Division of Pulmonary, Critical Care and Sleep Medicine.,Department of Medicine.,Division of Pulmonary and Critical Care, New York Harbor Veterans Affairs, New York, New York
| | - Imran Sulaiman
- Division of Pulmonary, Critical Care and Sleep Medicine.,Department of Medicine
| | - Jun-Chieh J Tsay
- Division of Pulmonary, Critical Care and Sleep Medicine.,Department of Medicine.,Division of Pulmonary and Critical Care, New York Harbor Veterans Affairs, New York, New York
| | - Luisanny Perez
- Division of Pulmonary, Critical Care and Sleep Medicine.,Department of Medicine
| | - Brendan Franca
- Division of Pulmonary, Critical Care and Sleep Medicine.,Department of Medicine
| | - Yonghua Li
- Division of Pulmonary, Critical Care and Sleep Medicine.,Department of Medicine
| | - Jing Wang
- Division of Pulmonary, Critical Care and Sleep Medicine.,Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Amber N Gonzalez
- Division of Pulmonary, Critical Care and Sleep Medicine.,Department of Medicine
| | | | - Joseph Carpenito
- Division of Pulmonary, Critical Care and Sleep Medicine.,Department of Medicine
| | - Evan Olsen
- Division of Pulmonary, Critical Care and Sleep Medicine.,Department of Medicine
| | - Maya Sauthoff
- Division of Pulmonary, Critical Care and Sleep Medicine.,Department of Medicine
| | - Kevin Yie
- Division of Pulmonary, Critical Care and Sleep Medicine.,Department of Medicine
| | - Xiuxiu Liu
- Division of Pediatrics, Longhua Hospital, Shanghai University of Chinese Medicine, Shanghai, China
| | - Nan Shen
- Department of Genetics and Genomic Sciences and Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Jose C Clemente
- Department of Genetics and Genomic Sciences and Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | | | | | - Valeria Mezzano
- Division of Cardiology, Department of Medicine and.,Experimental Pathology Research Laboratory, Division of Advanced Research Technologies, and
| | - Cynthia Loomis
- Division of Cardiology, Department of Medicine and.,Department of Pathology, NYU Langone Health, New York, New York
| | - Michael D Weiden
- Division of Pulmonary, Critical Care and Sleep Medicine.,Department of Medicine
| | | | - Jeanine D'Armiento
- Department of Anesthesiology, School of Medicine, Columbia University, New York, New York; and
| | - Sunil K Ahuja
- University of Texas Health Science Center, San Antonio, Texas
| | - Xue-Ru Wu
- Department of Pathology, NYU Langone Health, New York, New York.,Department of Urology, School of Medicine, New York University, New York, New York
| | | | - Leopoldo N Segal
- Division of Pulmonary, Critical Care and Sleep Medicine.,Department of Medicine
| |
Collapse
|
11
|
Darzianiazizi M, Allison KE, Kulkarni RR, Sharif S, Karimi K, Bridle BW. Disruption of type I interferon signaling causes sexually dimorphic dysregulation of anti-viral cytokines. Cytokine X 2021; 3:100053. [PMID: 34189454 PMCID: PMC8215187 DOI: 10.1016/j.cytox.2021.100053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 04/09/2021] [Accepted: 06/01/2021] [Indexed: 12/01/2022] Open
Abstract
Type I interferons (IFNs) play a crucial role in the establishment of an antiviral state via signaling through their cognate type I IFN receptor (IFNAR). In this study, a replication-competent but highly attenuated strain of VSV (rVSVΔm51) carrying a deletion at position 51 of the matrix protein to remove suppression of anti-viral type I IFN responses was used to explore the effect of disrupted IFNAR signaling on inflammatory cytokine responses in mice. The kinetic responses of interleukin-6, tumor necrosis factor-α and interleukin-12 were evaluated in virus-infected male and female mice with or without concomitant antibody-mediated IFNAR-blockade. Unlike controls, both male and female IFNAR-blocked mice showed signs of sickness by 24-hours post-infection. Female IFNAR-blocked mice experienced greater morbidity as demonstrated by a significant decrease in body temperature. This was not the case for males. In addition, females with IFNAR-blockade mounted prolonged and exaggerated systemic inflammatory cytokine responses to rVSVΔm51. This was in stark contrast to controls with intact IFNAR signaling and males with IFNAR-blockade; they were able to down-regulate virus-induced inflammatory cytokine responses by 24-hours post-infection. Exaggerated cytokine responses in females with impaired IFNAR signaling was associated with more effective control of viremia than their male counterparts. However, the trade-off was greater immune-mediated morbidity. The results of this study demonstrated a role for IFNAR signaling in the down-regulation of antiviral cytokine responses, which was strongly influenced by sex. Our findings suggested that the potential to mount toxic cytokine responses to a virus with concomitant disruption of IFNAR signaling was heavily biased towards females.
Collapse
Affiliation(s)
- Maedeh Darzianiazizi
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, 50 Stone Rd. E., Guelph, Ontario N1G 2W1, Canada
| | - Katrina E Allison
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, 50 Stone Rd. E., Guelph, Ontario N1G 2W1, Canada
| | - Raveendra R Kulkarni
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA
| | - Shayan Sharif
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, 50 Stone Rd. E., Guelph, Ontario N1G 2W1, Canada
| | - Khalil Karimi
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, 50 Stone Rd. E., Guelph, Ontario N1G 2W1, Canada
| | - Byram W Bridle
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, 50 Stone Rd. E., Guelph, Ontario N1G 2W1, Canada
| |
Collapse
|
12
|
Scheau C, Draghici C, Ilie MA, Lupu M, Solomon I, Tampa M, Georgescu SR, Caruntu A, Constantin C, Neagu M, Caruntu C. Neuroendocrine Factors in Melanoma Pathogenesis. Cancers (Basel) 2021; 13:cancers13092277. [PMID: 34068618 PMCID: PMC8126040 DOI: 10.3390/cancers13092277] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 05/03/2021] [Accepted: 05/05/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Melanoma is a very aggressive and fatal malignant tumor. While curable if diagnosed in its early stages, advanced melanoma, despite the complex therapeutic approaches, is associated with one of the highest mortality rates. Hence, more and more studies have focused on mechanisms that may contribute to melanoma development and progression. Various studies suggest a role played by neuroendocrine factors which can act directly on tumor cells, modulating their proliferation and metastasis capability, or indirectly through immune or inflammatory processes that impact disease progression. However, there are still multiple areas to explore and numerous unknown features to uncover. A detailed exploration of the mechanisms by which neuroendocrine factors can influence the clinical course of the disease could open up new areas of biomedical research and may lead to the development of new therapeutic approaches in melanoma. Abstract Melanoma is one of the most aggressive skin cancers with a sharp rise in incidence in the last decades, especially in young people. Recognized as a significant public health issue, melanoma is studied with increasing interest as new discoveries in molecular signaling and receptor modulation unlock innovative treatment options. Stress exposure is recognized as an important component in the immune-inflammatory interplay that can alter the progression of melanoma by regulating the release of neuroendocrine factors. Various neurotransmitters, such as catecholamines, glutamate, serotonin, or cannabinoids have also been assessed in experimental studies for their involvement in the biology of melanoma. Alpha-MSH and other neurohormones, as well as neuropeptides including substance P, CGRP, enkephalin, beta-endorphin, and even cellular and molecular agents (mast cells and nitric oxide, respectively), have all been implicated as potential factors in the development, growth, invasion, and dissemination of melanoma in a variety of in vitro and in vivo studies. In this review, we provide an overview of current evidence regarding the intricate effects of neuroendocrine factors in melanoma, including data reported in recent clinical trials, exploring the mechanisms involved, signaling pathways, and the recorded range of effects.
Collapse
Affiliation(s)
- Cristian Scheau
- Department of Physiology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.S.); (C.C.)
| | - Carmen Draghici
- Dermatology Research Laboratory, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.D.); (M.A.I.); (M.L.); (I.S.)
| | - Mihaela Adriana Ilie
- Dermatology Research Laboratory, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.D.); (M.A.I.); (M.L.); (I.S.)
| | - Mihai Lupu
- Dermatology Research Laboratory, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.D.); (M.A.I.); (M.L.); (I.S.)
| | - Iulia Solomon
- Dermatology Research Laboratory, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.D.); (M.A.I.); (M.L.); (I.S.)
| | - Mircea Tampa
- Department of Dermatology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (M.T.); (S.R.G.)
| | - Simona Roxana Georgescu
- Department of Dermatology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (M.T.); (S.R.G.)
| | - Ana Caruntu
- Department of Oral and Maxillofacial Surgery, “Carol Davila” Central Military Emergency Hospital, 010825 Bucharest, Romania
- Department of Oral and Maxillofacial Surgery, Faculty of Dental Medicine, “Titu Maiorescu” University, 031593 Bucharest, Romania
- Correspondence:
| | - Carolina Constantin
- Immunology Department, Victor Babes National Institute of Pathology, 050096 Bucharest, Romania; (C.C.); (M.N.)
- Department of Pathology, Colentina University Hospital, 020125 Bucharest, Romania
| | - Monica Neagu
- Immunology Department, Victor Babes National Institute of Pathology, 050096 Bucharest, Romania; (C.C.); (M.N.)
- Department of Pathology, Colentina University Hospital, 020125 Bucharest, Romania
- Faculty of Biology, University of Bucharest, 076201 Bucharest, Romania
| | - Constantin Caruntu
- Department of Physiology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.S.); (C.C.)
- Department of Dermatology, “Prof. N. Paulescu” National Institute of Diabetes, Nutrition and Metabolic Diseases, 011233 Bucharest, Romania
| |
Collapse
|
13
|
Carreira B, Acúrcio RC, Matos AI, Peres C, Pozzi S, Vaskovich‐Koubi D, Kleiner R, Bento M, Satchi‐Fainaro R, Florindo HF. Nanomedicines as Multifunctional Modulators of Melanoma Immune Microenvironment. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202000147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Barbara Carreira
- Research Institute for Medicines (iMed.ULisboa) Faculty of Pharmacy, University of Lisbon Av. Prof. Gama Pinto Lisboa 1649‐003 Portugal
| | - Rita C. Acúrcio
- Research Institute for Medicines (iMed.ULisboa) Faculty of Pharmacy, University of Lisbon Av. Prof. Gama Pinto Lisboa 1649‐003 Portugal
| | - Ana I. Matos
- Research Institute for Medicines (iMed.ULisboa) Faculty of Pharmacy, University of Lisbon Av. Prof. Gama Pinto Lisboa 1649‐003 Portugal
| | - Carina Peres
- Research Institute for Medicines (iMed.ULisboa) Faculty of Pharmacy, University of Lisbon Av. Prof. Gama Pinto Lisboa 1649‐003 Portugal
| | - Sabina Pozzi
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine Tel Aviv University Tel Aviv 6997801 Israel
| | - Daniella Vaskovich‐Koubi
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine Tel Aviv University Tel Aviv 6997801 Israel
| | - Ron Kleiner
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine Tel Aviv University Tel Aviv 6997801 Israel
| | - Mariana Bento
- Research Institute for Medicines (iMed.ULisboa) Faculty of Pharmacy, University of Lisbon Av. Prof. Gama Pinto Lisboa 1649‐003 Portugal
| | - Ronit Satchi‐Fainaro
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine Tel Aviv University Tel Aviv 6997801 Israel
| | - Helena F. Florindo
- Research Institute for Medicines (iMed.ULisboa) Faculty of Pharmacy, University of Lisbon Av. Prof. Gama Pinto Lisboa 1649‐003 Portugal
| |
Collapse
|
14
|
Was H, Cichon T, Smolarczyk R, Lackowska B, Mazur-Bialy A, Mazur M, Szade A, Dominik P, Mazan M, Kotlinowski J, Zebzda A, Kusienicka A, Kieda C, Dulak J, Jozkowicz A. Effect of Heme Oxygenase-1 on Melanoma Development in Mice-Role of Tumor-Infiltrating Immune Cells. Antioxidants (Basel) 2020; 9:E1223. [PMID: 33287312 PMCID: PMC7761646 DOI: 10.3390/antiox9121223] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/25/2020] [Accepted: 12/01/2020] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVE Heme oxygenase-1 (HO-1) is a cytoprotective, proangiogenic and anti-inflammatory enzyme that is often upregulated in tumors. Overexpression of HO-1 in melanoma cells leads to enhanced tumor growth, augmented angiogenesis and resistance to anticancer treatment. The effect of HO-1 in host cells on tumor development is, however, hardly known. METHODS AND RESULTS To clarify the effect of HO-1 expression in host cells on melanoma progression, C57BL/6xFvB mice of different HO-1 genotypes, HO-1+/+, HO-1+/-, and HO-1-/-, were injected with the syngeneic wild-type murine melanoma B16(F10) cell line. Lack of HO-1 in host cells did not significantly influence the host survival. Nevertheless, in comparison to the wild-type counterparts, the HO-1+/- and HO-1-/- males formed bigger tumors, and more numerous lung nodules; in addition, more of them had liver and spleen micrometastases. Females of all genotypes developed at least 10 times smaller tumors than males. Of importance, the growth of primary and secondary tumors was completely blocked in HO-1+/+ females. This was related to the increased infiltration of leukocytes (mainly lymphocytes T) in primary tumors. CONCLUSIONS Although HO-1 overexpression in melanoma cells can enhance tumor progression in mice, its presence in host cells, including immune cells, can reduce growth and metastasis of melanoma.
Collapse
Affiliation(s)
- Halina Was
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland; (M.M.); (A.S.); (P.D.); (M.M.); (J.K.); (A.K.); (J.D.); (A.J.)
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine, 04-141 Warsaw, Poland;
| | - Tomasz Cichon
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-102 Gliwice, Poland; (T.C.); (R.S.)
| | - Ryszard Smolarczyk
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-102 Gliwice, Poland; (T.C.); (R.S.)
| | - Bozena Lackowska
- Department of Pathology, Oncology Center, 31-115 Krakow, Poland;
| | - Agnieszka Mazur-Bialy
- Department of Ergonomics and Exercise Physiology, Faculty of Health Science, Jagiellonian University Medical College, 31-126 Krakow, Poland;
| | - Magdalena Mazur
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland; (M.M.); (A.S.); (P.D.); (M.M.); (J.K.); (A.K.); (J.D.); (A.J.)
| | - Agata Szade
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland; (M.M.); (A.S.); (P.D.); (M.M.); (J.K.); (A.K.); (J.D.); (A.J.)
| | - Pawel Dominik
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland; (M.M.); (A.S.); (P.D.); (M.M.); (J.K.); (A.K.); (J.D.); (A.J.)
| | - Milena Mazan
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland; (M.M.); (A.S.); (P.D.); (M.M.); (J.K.); (A.K.); (J.D.); (A.J.)
| | - Jerzy Kotlinowski
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland; (M.M.); (A.S.); (P.D.); (M.M.); (J.K.); (A.K.); (J.D.); (A.J.)
| | - Anna Zebzda
- Transplantation Centre, Jagiellonian University, 30-663 Krakow, Poland;
| | - Anna Kusienicka
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland; (M.M.); (A.S.); (P.D.); (M.M.); (J.K.); (A.K.); (J.D.); (A.J.)
| | - Claudine Kieda
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine, 04-141 Warsaw, Poland;
| | - Jozef Dulak
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland; (M.M.); (A.S.); (P.D.); (M.M.); (J.K.); (A.K.); (J.D.); (A.J.)
| | - Alicja Jozkowicz
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland; (M.M.); (A.S.); (P.D.); (M.M.); (J.K.); (A.K.); (J.D.); (A.J.)
| |
Collapse
|
15
|
Parkman GL, Kircher DA, Stehn CM, McMahon M, Holmen SL. Model-dependent outcomes: Sex as a biological variable in preclinical mouse models of melanoma. Pigment Cell Melanoma Res 2020; 34:655-658. [PMID: 33098202 DOI: 10.1111/pcmr.12940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/01/2020] [Accepted: 10/13/2020] [Indexed: 10/23/2022]
Affiliation(s)
- Gennie L Parkman
- Department of Oncological Sciences, University of Utah Health Sciences Center, Salt Lake City, UT, USA.,Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, UT, USA
| | - David A Kircher
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, UT, USA.,Department of Surgery, University of Utah Health Sciences Center, Salt Lake City, UT, USA
| | - Christopher M Stehn
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, UT, USA
| | - Martin McMahon
- Department of Oncological Sciences, University of Utah Health Sciences Center, Salt Lake City, UT, USA.,Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, UT, USA.,Department of Dermatology, University of Utah Health Sciences Center, Salt Lake City, UT, USA
| | - Sheri L Holmen
- Department of Oncological Sciences, University of Utah Health Sciences Center, Salt Lake City, UT, USA.,Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, UT, USA.,Department of Surgery, University of Utah Health Sciences Center, Salt Lake City, UT, USA
| |
Collapse
|
16
|
Abstract
Herd immunity is a form of indirect protection that is offered to the community when a large proportion of individuals contained in the community are immune to a certain infection. This immunity can be due to vaccination or to the recovery post-disease. Effective herd immunity in SARS-CoV-2 infection has several hurdles upon achievement. Herd immunity cannot be obtained concomitantly in many geographical areas because the areas have different population density and the societal measures to contain the spreading are different. A proportion of 50-66% of the population needs to be immunized naturally or artificially in this SARS-Cov2 pandemic and this percentage is not easily achievable. The duration of herd immunity is another issue while information on the long-term immune response against SARS-CoV2 is yet scarce. Epitope stability, another issue to be solved when achieving herd immunity, is important. Mutation in the viral structure will call upon other sets of neutralizing antibodies and hence for other herd immunity type installment. The societal tactics to achieve the much-needed herd immunity should be developed keeping in mind the welfare of the population. Without being exhaustive, throughout our paper we will elaborate on each of the hurdles encountered in developing herd immunity to SARS-Cov2 infection.
Collapse
Affiliation(s)
- Monica Neagu
- Immunology Laboratory, Victor Babes National Institute of Pathology , Bucharest, Romania.,Pathology Department, Colentina Clinical Hospital , Bucharest, Romania
| |
Collapse
|
17
|
Recent Advances in Signaling Pathways Comprehension as Carcinogenesis Triggers in Basal Cell Carcinoma. J Clin Med 2020; 9:jcm9093010. [PMID: 32961989 PMCID: PMC7565128 DOI: 10.3390/jcm9093010] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 09/07/2020] [Accepted: 09/16/2020] [Indexed: 12/14/2022] Open
Abstract
Basal cell carcinoma (BCC) is the most common malignant skin tumor. BCC displays a different behavior compared with other neoplasms, has a slow evolution, and metastasizes very rarely, but sometimes it causes an important local destruction. Chronic ultraviolet exposure along with genetic factors are the most important risk factors involved in BCC development. Mutations in the PTCH1 gene are associated with Gorlin syndrome, an autosomal dominant disorder characterized by the occurrence of multiple BCCs, but are also the most frequent mutations observed in sporadic BCCs. PTCH1 encodes for PTCH1 protein, the most important negative regulator of the Hedgehog (Hh) pathway. There are numerous studies confirming Hh pathway involvement in BCC pathogenesis. Although Hh pathway has been intensively investigated, it remains incompletely elucidated. Recent studies on BCC tumorigenesis have shown that in addition to Hh pathway, there are other signaling pathways involved in BCC development. In this review, we present recent advances in BCC carcinogenesis.
Collapse
|
18
|
Lifshits LM, Roque Iii JA, Konda P, Monro S, Cole HD, von Dohlen D, Kim S, Deep G, Thummel RP, Cameron CG, Gujar S, McFarland SA. Near-infrared absorbing Ru(ii) complexes act as immunoprotective photodynamic therapy (PDT) agents against aggressive melanoma. Chem Sci 2020; 11:11740-11762. [PMID: 33976756 PMCID: PMC8108386 DOI: 10.1039/d0sc03875j] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/04/2020] [Indexed: 12/15/2022] Open
Abstract
Mounting evidence over the past 20 years suggests that photodynamic therapy (PDT), an anticancer modality known mostly as a local treatment, has the capacity to invoke a systemic antitumor immune response, leading to protection against tumor recurrence. For aggressive cancers such as melanoma, where chemotherapy and radiotherapy are ineffective, immunomodulating PDT as an adjuvant to surgery is of interest. Towards the development of specialized photosensitizers (PSs) for treating pigmented melanomas, nine new near-infrared (NIR) absorbing PSs based on a Ru(ii) tris-heteroleptic scaffold [Ru(NNN)(NN)(L)]Cln, were explored. Compounds 2, 6, and 9 exhibited high potency toward melanoma cells, with visible EC50 values as low as 0.292–0.602 μM and PIs as high as 156–360. Single-micromolar phototoxicity was obtained with NIR-light (733 nm) with PIs up to 71. The common feature of these lead NIR PSs was an accessible low-energy triplet intraligand (3IL) excited state for high singlet oxygen (1O2) quantum yields (69–93%), which was only possible when the photosensitizing 3IL states were lower in energy than the lowest triplet metal-to-ligand charge transfer (3MLCT) excited states that typically govern Ru(ii) polypyridyl photophysics. PDT treatment with 2 elicited a pro-inflammatory response alongside immunogenic cell death in mouse B16F10 melanoma cells and proved safe for in vivo administration (maximum tolerated dose = 50 mg kg−1). Female and male mice vaccinated with B16F10 cells that were PDT-treated with 2 and challenged with live B16F10 cells exhibited 80 and 55% protection from tumor growth, respectively, leading to significantly improved survival and excellent hazard ratios of ≤0.2. Ru(ii) photosensitizers (PSs) destroy aggressive melanoma cells, triggering an immune response that leads to protection against tumor challenge and mouse survival.![]()
Collapse
Affiliation(s)
- Liubov M Lifshits
- Department of Chemistry and Biochemistry, The University of Texas at Arlington Arlington Texas 76019-0065 USA
| | - John A Roque Iii
- Department of Chemistry and Biochemistry, The University of Texas at Arlington Arlington Texas 76019-0065 USA .,Department of Chemistry and Biochemistry, The University of North Carolina at Greensboro Greensboro North Carolina 27402 USA
| | - Prathyusha Konda
- Department of Microbiology and Immunology, Dalhousie University Halifax Nova Scotia B3H 1X5 Canada
| | - Susan Monro
- Department of Chemistry, Acadia University Wolfville Nova Scotia B4P 2R6 Canada
| | - Houston D Cole
- Department of Chemistry and Biochemistry, The University of Texas at Arlington Arlington Texas 76019-0065 USA
| | - David von Dohlen
- Department of Chemistry and Biochemistry, The University of North Carolina at Greensboro Greensboro North Carolina 27402 USA
| | - Susy Kim
- Department of Cancer Biology, Wake Forest School of Medicine Winston Salem NC 27157 USA
| | - Gagan Deep
- Department of Cancer Biology, Wake Forest School of Medicine Winston Salem NC 27157 USA
| | - Randolph P Thummel
- Department of Chemistry, University of Houston 112 Fleming Building Houston Texas 77204-5003 USA
| | - Colin G Cameron
- Department of Chemistry and Biochemistry, The University of Texas at Arlington Arlington Texas 76019-0065 USA
| | - Shashi Gujar
- Department of Microbiology and Immunology, Dalhousie University Halifax Nova Scotia B3H 1X5 Canada .,Department of Pathology, Dalhousie University Halifax Nova Scotia B3H 1X5 Canada.,Department of Biology, Dalhousie University Halifax Nova Scotia B3H 1X5 Canada.,Beatrice Hunter Cancer Research Institute Halifax Nova Scotia B3H 4R2 Canada
| | - Sherri A McFarland
- Department of Chemistry and Biochemistry, The University of Texas at Arlington Arlington Texas 76019-0065 USA
| |
Collapse
|
19
|
Sirufo MM, De Pietro F, Bassino EM, Ginaldi L, De Martinis M. Osteoporosis in Skin Diseases. Int J Mol Sci 2020; 21:E4749. [PMID: 32635380 PMCID: PMC7370296 DOI: 10.3390/ijms21134749] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/30/2020] [Accepted: 07/01/2020] [Indexed: 12/14/2022] Open
Abstract
Osteoporosis (OP) is defined as a generalized skeletal disease characterized by low bone mass and an alteration of the microarchitecture that lead to an increase in bone fragility and, therefore, an increased risk of fractures. It must be considered today as a true public health problem and the most widespread metabolic bone disease that affects more than 200 million people worldwide. Under physiological conditions, there is a balance between bone formation and bone resorption necessary for skeletal homeostasis. In pathological situations, this balance is altered in favor of osteoclast (OC)-mediated bone resorption. During chronic inflammation, the balance between bone formation and bone resorption may be considerably affected, contributing to a net prevalence of osteoclastogenesis. Skin diseases are the fourth cause of human disease in the world, affecting approximately one third of the world's population with a prevalence in elderly men. Inflammation and the various associated cytokine patterns are the basis of both osteoporosis and most skin pathologies. Moreover, dermatological patients also undergo local or systemic treatments with glucocorticoids and immunosuppressants that could increase the risk of osteoporosis. Therefore, particular attention should be paid to bone health in these patients. The purpose of the present review is to take stock of the knowledge in this still quite unexplored field, despite the frequency of such conditions in clinical practice.
Collapse
Affiliation(s)
- Maria Maddalena Sirufo
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (M.M.S.); (F.D.P.); (E.M.B.); (L.G.)
- Allergy and Clinical Immunology Unit, Center for the Diagnosis and Treatment of Osteoporosis, AUSL 04 64100 Teramo, Italy
| | - Francesca De Pietro
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (M.M.S.); (F.D.P.); (E.M.B.); (L.G.)
- Allergy and Clinical Immunology Unit, Center for the Diagnosis and Treatment of Osteoporosis, AUSL 04 64100 Teramo, Italy
| | - Enrica Maria Bassino
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (M.M.S.); (F.D.P.); (E.M.B.); (L.G.)
- Allergy and Clinical Immunology Unit, Center for the Diagnosis and Treatment of Osteoporosis, AUSL 04 64100 Teramo, Italy
| | - Lia Ginaldi
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (M.M.S.); (F.D.P.); (E.M.B.); (L.G.)
- Allergy and Clinical Immunology Unit, Center for the Diagnosis and Treatment of Osteoporosis, AUSL 04 64100 Teramo, Italy
| | - Massimo De Martinis
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (M.M.S.); (F.D.P.); (E.M.B.); (L.G.)
- Allergy and Clinical Immunology Unit, Center for the Diagnosis and Treatment of Osteoporosis, AUSL 04 64100 Teramo, Italy
| |
Collapse
|
20
|
Mancuso F, Lage S, Rasero J, Díaz-Ramón JL, Apraiz A, Pérez-Yarza G, Ezkurra PA, Penas C, Sánchez-Diez A, García-Vazquez MD, Gardeazabal J, Izu R, Mujika K, Cortés J, Asumendi A, Boyano MD. Serum markers improve current prediction of metastasis development in early-stage melanoma patients: a machine learning-based study. Mol Oncol 2020; 14:1705-1718. [PMID: 32485045 PMCID: PMC7400797 DOI: 10.1002/1878-0261.12732] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 04/10/2020] [Accepted: 05/27/2020] [Indexed: 12/11/2022] Open
Abstract
Metastasis development represents an important threat for melanoma patients, even when diagnosed at early stages and upon removal of the primary tumor. In this scenario, determination of prognostic biomarkers would be of great interest. Serum contains information about the general status of the organism and therefore represents a valuable source for biomarkers. Thus, we aimed to define serological biomarkers that could be used along with clinical and histopathological features of the disease to predict metastatic events on the early‐stage population of patients. We previously demonstrated that in stage II melanoma patients, serum levels of dermcidin (DCD) were associated with metastatic progression. Based on the relevance of the immune response on the cancer progression and the recent association of DCD with local and systemic immune response against cancer cells, serum DCD was analyzed in a new cohort of patients along with interleukin 4 (IL‐4), IL‐6, IL‐10, IL‐17A, interferon γ (IFN‐γ), transforming growth factor‐β (TGF‐ β), and granulocyte–macrophage colony‐stimulating factor (GM‐CSF). We initially recruited 448 melanoma patients, 323 of whom were diagnosed as stages I‐II according to AJCC. Levels of selected cytokines were determined by ELISA and Luminex, and obtained data were analyzed employing machine learning and Kaplan–Meier techniques to define an algorithm capable of accurately classifying early‐stage melanoma patients with a high and low risk of developing metastasis. The results show that in early‐stage melanoma patients, serum levels of the cytokines IL‐4, GM‐CSF, and DCD together with the Breslow thickness are those that best predict melanoma metastasis. Moreover, resulting algorithm represents a new tool to discriminate subjects with good prognosis from those with high risk for a future metastasis.
Collapse
Affiliation(s)
- Filippo Mancuso
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, UPV/EHU, Leioa, Spain
| | - Sergio Lage
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, UPV/EHU, Leioa, Spain
| | - Javier Rasero
- Biocruces Bizkaia Health Research Institute, Barakaldo, Spain.,Department of Psychology, Carnegie Mellon University, Pittsburgh, PA, USA
| | - José Luis Díaz-Ramón
- Biocruces Bizkaia Health Research Institute, Barakaldo, Spain.,Department of Dermatology, Cruces University Hospital, Barakaldo, Spain
| | - Aintzane Apraiz
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, UPV/EHU, Leioa, Spain.,Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - Gorka Pérez-Yarza
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, UPV/EHU, Leioa, Spain.,Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - Pilar Ariadna Ezkurra
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, UPV/EHU, Leioa, Spain.,Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - Cristina Penas
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, UPV/EHU, Leioa, Spain
| | - Ana Sánchez-Diez
- Biocruces Bizkaia Health Research Institute, Barakaldo, Spain.,Department of Dermatology, Basurto University Hospital, Bilbao, Spain
| | | | - Jesús Gardeazabal
- Biocruces Bizkaia Health Research Institute, Barakaldo, Spain.,Department of Dermatology, Cruces University Hospital, Barakaldo, Spain
| | - Rosa Izu
- Biocruces Bizkaia Health Research Institute, Barakaldo, Spain.,Department of Dermatology, Basurto University Hospital, Bilbao, Spain
| | - Karmele Mujika
- Department of Medical Oncology, Onkologikoa Hospital, Donostia, Spain.,Biodonostia Institute, Donostia, Spain
| | - Jesús Cortés
- Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - Aintzane Asumendi
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, UPV/EHU, Leioa, Spain.,Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - María Dolores Boyano
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, UPV/EHU, Leioa, Spain.,Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| |
Collapse
|
21
|
Georgescu SR, Tampa M, Mitran CI, Mitran MI, Caruntu C, Caruntu A, Lupu M, Matei C, Constantin C, Neagu M. Tumour Microenvironment in Skin Carcinogenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1226:123-142. [PMID: 32030681 DOI: 10.1007/978-3-030-36214-0_10] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Tumour microenvironment is a complex system comprising cells and molecules that will provide the necessary conditions for tumour development and progression. Cells residing in the tumour microenvironment gain specific phenotypes and specific functions that are pro-tumorigenic. Tumour progression is in fact a combination between tumour cell characteristics and its interplay with tumour microenvironment. This dynamic network will allow tumour cells to grow, migrate and invade tissues. In the present chapter, we are highlighting some traits that characterise tumour microenvironment in basal cell carcinoma, squamous cell carcinoma and cutaneous melanoma. In skin cancers, there are some common tumour microenvironment characteristics such as the presence of tumour-associated macrophages and regulatory T lymphocytes that are non-tumour cells promoting tumorigenesis. There are also skin cancer type differences in terms of tumour microenvironment characteristics. Thus, markers such as macrophage migration inhibitory factor in melanoma or the extraordinary diverse genetic make-up in the cancer-associated fibroblasts associated to squamous cell carcinoma are just a few of specific traits in skin cancer types. New technological advances for evaluation of tumour environment are presented. Thus, non-invasive skin imaging techniques such as reflectance confocal microscopy can evaluate skin tumour inflammatory infiltrates for density and cellular populations. Analysing tumour micromedium in depth may offer new insights into cancer therapy and identify new therapy targets.
Collapse
Affiliation(s)
- Simona Roxana Georgescu
- "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania.,"Victor Babes" Clinical Hospital for Infectious Diseases, Bucharest, Romania
| | - Mircea Tampa
- "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania. .,"Victor Babes" Clinical Hospital for Infectious Diseases, Bucharest, Romania.
| | - Cristina Iulia Mitran
- "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania.,"Cantacuzino" National Medico-Military Institute for Research and Development, Bucharest, Romania
| | - Madalina Irina Mitran
- "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania.,"Cantacuzino" National Medico-Military Institute for Research and Development, Bucharest, Romania
| | - Constantin Caruntu
- "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania. .,Department of Dermatology, "Prof. N. Paulescu" National Institute of Diabetes, Nutrition and Metabolic Diseases, Bucharest, Romania.
| | - Ana Caruntu
- Department of Oral and Maxillofacial Surgery, "Carol Davila" Central Military Emergency Hospital, Bucharest, Romania.,Faculty of Medicine, Department of Preclinical Sciences, "Titu Maiorescu" University, Bucharest, Romania
| | - Mihai Lupu
- Department of Dermatology, MEDAS Medical Center, Bucharest, Romania
| | - Clara Matei
- "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
| | - Carolina Constantin
- Immunology Department, "Victor Babes" National Institute of Pathology, Bucharest, Romania.,Colentina Clinical Hospital, Bucharest, Romania
| | - Monica Neagu
- Immunology Department, "Victor Babes" National Institute of Pathology, Bucharest, Romania. .,Colentina Clinical Hospital, Bucharest, Romania. .,Faculty of Biology, University of Bucharest, Bucharest, Romania.
| |
Collapse
|
22
|
Cannabinoids in the Pathophysiology of Skin Inflammation. Molecules 2020; 25:molecules25030652. [PMID: 32033005 PMCID: PMC7037408 DOI: 10.3390/molecules25030652] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 01/26/2020] [Accepted: 02/02/2020] [Indexed: 12/22/2022] Open
Abstract
Cannabinoids are increasingly-used substances in the treatment of chronic pain, some neuropsychiatric disorders and more recently, skin disorders with an inflammatory component. However, various studies cite conflicting results concerning the cellular mechanisms involved, while others suggest that cannabinoids may even exert pro-inflammatory behaviors. This paper aims to detail and clarify the complex workings of cannabinoids in the molecular setting of the main dermatological inflammatory diseases, and their interactions with other substances with emerging applications in the treatment of these conditions. Also, the potential role of cannabinoids as antitumoral drugs is explored in relation to the inflammatory component of skin cancer. In vivo and in vitro studies that employed either phyto-, endo-, or synthetic cannabinoids were considered in this paper. Cannabinoids are regarded with growing interest as eligible drugs in the treatment of skin inflammatory conditions, with potential anticancer effects, and the readiness in monitoring of effects and the facility of topical application may contribute to the growing support of the use of these substances. Despite the promising early results, further controlled human studies are required to establish the definitive role of these products in the pathophysiology of skin inflammation and their usefulness in the clinical setting.
Collapse
|
23
|
Koster BD, de Jong TD, van den Hout MFCM, Sluijter BJR, Vuylsteke RJCLM, Molenkamp BG, Vosslamber S, van den Tol MP, van den Eertwegh AJM, de Gruijl TD. In the mix: the potential benefits of adding GM-CSF to CpG-B in the local treatment of patients with early-stage melanoma. Oncoimmunology 2019; 9:1708066. [PMID: 32002303 PMCID: PMC6959435 DOI: 10.1080/2162402x.2019.1708066] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 10/25/2019] [Accepted: 10/26/2019] [Indexed: 12/11/2022] Open
Abstract
Whereas TLR9 agonists are recognized as powerful stimulators of antitumor immunity, GM-CSF has had mixed reviews. In previously reported randomized trials we assessed the effects of local immune modulation in early-stage melanoma with CpG-B alone or with GM-CSF. Here we discuss the added value of GM-CSF and show sex-related differences.
Collapse
Affiliation(s)
- Bas D Koster
- Departments of Medical Oncology, Amsterdam UMC, Vrije Universiteit, Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Tamarah D de Jong
- Departments of Rheumatology, Amsterdam UMC, Vrije Universiteit, Amsterdam Rheumatology and Immunology Center, Amsterdam, the Netherlands
| | - Mari F C M van den Hout
- Departments of Pathology, Amsterdam UMC, Vrije Universiteit, Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Berbel J R Sluijter
- Departments of Surgical Oncology, Amsterdam UMC, Vrije Universiteit, Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Ronald J C L M Vuylsteke
- Departments of Surgical Oncology, Amsterdam UMC, Vrije Universiteit, Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Barbara G Molenkamp
- Departments of Surgical Oncology, Amsterdam UMC, Vrije Universiteit, Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Saskia Vosslamber
- Departments of Rheumatology, Amsterdam UMC, Vrije Universiteit, Amsterdam Rheumatology and Immunology Center, Amsterdam, the Netherlands
| | - M Petrousjka van den Tol
- Departments of Surgical Oncology, Amsterdam UMC, Vrije Universiteit, Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Alfons J M van den Eertwegh
- Departments of Medical Oncology, Amsterdam UMC, Vrije Universiteit, Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Tanja D de Gruijl
- Departments of Medical Oncology, Amsterdam UMC, Vrije Universiteit, Cancer Center Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
24
|
Paganelli A, Garbarino F, Toto P, Martino GD, D’Urbano M, Auriemma M, Giovanni PD, Panarese F, Staniscia T, Amerio P, Paganelli R. Serological landscape of cytokines in cutaneous melanoma. Cancer Biomark 2019; 26:333-342. [DOI: 10.3233/cbm-190370] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Alessia Paganelli
- Department of Dermatology, University of Modena and Reggio Emilia, Modena, Italy
- Department of Medicine and Aging Sciences, University “G. d’Annunzio” Chieti-Pescara, Chieti, Italy
- Department of Dermatology, University of Modena and Reggio Emilia, Modena, Italy
| | - Federico Garbarino
- Department of Dermatology, University of Modena and Reggio Emilia, Modena, Italy
- Department of Medicine and Aging Sciences, University “G. d’Annunzio” Chieti-Pescara, Chieti, Italy
- Department of Dermatology, University of Modena and Reggio Emilia, Modena, Italy
| | - Paola Toto
- Private practice, Chieti, Italy
- Department of Dermatology, University of Modena and Reggio Emilia, Modena, Italy
| | - Giuseppe Di Martino
- Department of Medicine and Aging Sciences, Section of Hygiene, University “G. d’Annunzio” Chieti-Pescara, Chieti, Italy
| | - Marika D’Urbano
- Department of Medicine and Aging Sciences, University “G. d’Annunzio” Chieti-Pescara, Chieti, Italy
| | - Matteo Auriemma
- Department of Medicine and Aging Sciences, Section of Dermatology, University “G. d’Annunzio” Chieti-Pescara, Chieti, Italy
| | - Pamela Di Giovanni
- Department of Pharmacy, University “G. d’Annunzio” Chieti-Pescara, Chieti, Italy
| | - Fabrizio Panarese
- Department of Medicine and Aging Sciences, Section of Dermatology, University “G. d’Annunzio” Chieti-Pescara, Chieti, Italy
| | - Tommaso Staniscia
- Department of Medicine and Aging Sciences, Section of Hygiene, University “G. d’Annunzio” Chieti-Pescara, Chieti, Italy
| | - Paolo Amerio
- Department of Medicine and Aging Sciences, Section of Dermatology, University “G. d’Annunzio” Chieti-Pescara, Chieti, Italy
| | - Roberto Paganelli
- Department of Medicine and Aging Sciences, University “G. d’Annunzio” Chieti-Pescara, Chieti, Italy
| |
Collapse
|
25
|
Ilie MA, Caruntu C, Lupu M, Lixandru D, Tampa M, Georgescu SR, Bastian A, Constantin C, Neagu M, Zurac SA, Boda D. Current and future applications of confocal laser scanning microscopy imaging in skin oncology. Oncol Lett 2019; 17:4102-4111. [PMID: 30944603 PMCID: PMC6444326 DOI: 10.3892/ol.2019.10066] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 10/10/2018] [Indexed: 11/05/2022] Open
Abstract
Confocal laser scanning microscopy (CLSM) is a modern imaging technique that enables the in vivo or ex vivo characterization of skin lesions located in the epidermis and superficial dermis with a high quasi-microscopic resolution. Currently, it is considered to be the most promising imaging tool for the evaluation of superficial skin tumors. The in vivo mode adds the advantage of noninvasive, dynamic, in real-time assessment of the tumor associated vasculature and inflammation. It offers the possibility to repeatedly examine the same skin area without causing any damage and to monitor disease progression and treatment outcome. Furthermore, this novel technology allows the evaluation of the entire lesion and can be used to guide biopsies and to define tumor margins before surgical excision or other invasive therapies. CLSM diagnostic features may differentiate between the various histologic subtypes of skin tumors and therefore helps in choosing the best therapeutic approach. In this study, we present the CLSM characteristic features of the most common melanocytic and non-melanocytic skin tumors, as well as future possible CLSM applications in the study of experimental skin tumorigenesis on animal models.
Collapse
Affiliation(s)
- Mihaela Adriana Ilie
- Dermatology Research Laboratory, ‘Carol Davila’ University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Biochemistry, ‘Carol Davila’ University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Constantin Caruntu
- Department of Physiology, ‘Carol Davila’ University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Dermatology, ‘Prof. N. Paulescu’ National Institute of Diabetes, Nutrition and Metabolic Diseases, 011233 Bucharest, Romania
| | - Mihai Lupu
- Department of Dermatology, MEDAS Medical Center, 030442 Bucharest, Romania
| | - Daniela Lixandru
- Department of Biochemistry, ‘Carol Davila’ University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Mircea Tampa
- Department of Dermatology, ‘Victor Babes’ Hospital, ‘Carol Davila’ University of Medicine and Pharmacy, 030303 Bucharest, Romania
| | - Simona-Roxana Georgescu
- Department of Dermatology, ‘Victor Babes’ Hospital, ‘Carol Davila’ University of Medicine and Pharmacy, 030303 Bucharest, Romania
| | - Alexandra Bastian
- Department of Pathology, ‘Carol Davila’ University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Pathology, Colentina Clinical Hospital, 020125 Bucharest, Romania
| | - Carolina Constantin
- Department of Pathology, Colentina Clinical Hospital, 020125 Bucharest, Romania
- Department of Immunology, ‘Victor Babes’ National Institute of Pathology, 050096 Bucharest, Romania
| | - Monica Neagu
- Department of Pathology, Colentina Clinical Hospital, 020125 Bucharest, Romania
- Department of Immunology, ‘Victor Babes’ National Institute of Pathology, 050096 Bucharest, Romania
- Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania
| | - Sabina Andrada Zurac
- Department of Pathology, ‘Carol Davila’ University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Pathology, Colentina Clinical Hospital, 020125 Bucharest, Romania
| | - Daniel Boda
- Dermatology Research Laboratory, ‘Carol Davila’ University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Dermatology, ‘Prof. N. Paulescu’ National Institute of Diabetes, Nutrition and Metabolic Diseases, 011233 Bucharest, Romania
| |
Collapse
|
26
|
Grigore O, Mihailescu AI, Solomon I, Boda D, Caruntu C. Role of stress in modulation of skin neurogenic inflammation. Exp Ther Med 2019; 17:997-1003. [PMID: 30679965 PMCID: PMC6327627 DOI: 10.3892/etm.2018.7058] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 09/28/2018] [Indexed: 12/16/2022] Open
Abstract
There are complex interconnections between the nervous system and the skin highlighted by the impact of stress and neuroendocrine factors on various dermatological conditions. We investigated the influence of stress on skin neurogenic inflammation induced by capsaicin. A total of 31 healthy subjects were randomized into two groups: subjects in the stress group underwent a stress-inducing protocol and those in the control group were exposed to indifferent conditions. Subsequently, topical capsaicin cream was administered on the non-dominant anterior forearm of each subject from the two groups. The assessment of the local inflammatory reaction induced by capsaicin was performed by thermography at 25 and 40 min post-application. In both groups the inflammatory reaction induced by capsaicin was evidenced at 25 min and was maintained at 40 min post-application. However, at 40 min post-application the hyperthermal area was larger in subjects from the stress group, suggesting that stress exposure is associated with an amplification of the mechanisms involved in capsaicin-induced skin neurogenic inflammation.
Collapse
Affiliation(s)
- Ovidiu Grigore
- Department of Applied Electronics and Information Engineering, Polytechnic University of Bucharest, 061071 Bucharest, Romania
| | - Alexandra Ioana Mihailescu
- Department of Medical Psychology, ‘Carol Davila’ University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Iulia Solomon
- Department of Dermatology and Allergology, Elias Emergency University Hospital, 011461 Bucharest, Romania
| | - Daniel Boda
- Dermatology Research Laboratory, ‘Carol Davila’ University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Dermatology, ‘Prof. N. Paulescu’ National Institute of Diabetes, Nutrition and Metabolic Diseases, 011233 Bucharest, Romania
| | - Constantin Caruntu
- Department of Dermatology, ‘Prof. N. Paulescu’ National Institute of Diabetes, Nutrition and Metabolic Diseases, 011233 Bucharest, Romania
- Department of Physiology, ‘Carol Davila’ University of Medicine and Pharmacy, 050474 Bucharest, Romania
| |
Collapse
|
27
|
Mediators of Inflammation - A Potential Source of Biomarkers in Oral Squamous Cell Carcinoma. J Immunol Res 2018; 2018:1061780. [PMID: 30539028 PMCID: PMC6260538 DOI: 10.1155/2018/1061780] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 10/25/2018] [Indexed: 01/15/2023] Open
Abstract
Oral squamous cell carcinoma (OSCC) is the most common tumour of the oral cavity, associated with significant morbidity and mortality. It is a multifactorial condition, both genetic and environmental factors being involved in its development and progression. Its pathogenesis is not fully elucidated, but a pivotal role has been attributed to inflammation, strong evidence supporting the association between chronic inflammation and carcinogenesis. Moreover, an increasing number of studies have investigated the role of different mediators of inflammation in the early detection of OSCC. In this review, we have summarized the main markers of inflammation that could be useful in diagnosis and shed some light in OSCC pathogenesis.
Collapse
|
28
|
Georgescu SR, Mitran CI, Mitran MI, Caruntu C, Sarbu MI, Matei C, Nicolae I, Tocut SM, Popa MI, Tampa M. New Insights in the Pathogenesis of HPV Infection and the Associated Carcinogenic Processes: The Role of Chronic Inflammation and Oxidative Stress. J Immunol Res 2018; 2018:5315816. [PMID: 30225270 PMCID: PMC6129847 DOI: 10.1155/2018/5315816] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 08/08/2018] [Indexed: 11/17/2022] Open
Abstract
Human papillomavirus (HPV) is a small double-stranded DNA virus with tropism for epithelial cells. To this date, over 150 genotypes are known and are classified into two major groups, low-risk and high-risk strains, depending on the ability of the virus to induce malignant transformation. The host's immunity plays a central role in the course of the infection; therefore, it may not be clinically manifest or may produce various benign or malignant lesions. The pathogenic mechanisms are complex and incompletely elucidated. Recent research suggests the role of chronic inflammation and oxidative stress (OS) in the pathogenesis of HPV infection and the associated carcinogenic processes. Chronic inflammation induces OS, which in turn promotes the perpetuation of the inflammatory process resulting in the release of numerous molecules which cause cell damage. Reactive oxygen species exert a harmful effect on proteins, lipids, and nucleic acids. Viral oncogenes E5, E6, and E7 are involved in the development of chronic inflammation through various mechanisms. In addition, HPV may interfere with redox homeostasis of host cells, inducing OS which may be involved in the persistence of the infection and play a certain role in viral integration and promotion of carcinogenesis. Knowledge regarding the interplay between chronic inflammation and OS in the pathogenesis of HPV infection and HPV-induced carcinogenesis has important consequences on the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Simona Roxana Georgescu
- “Victor Babes” Clinical Hospital for Infectious Diseases, 281 Mihai Bravu, 030303 Bucharest, Romania
- “Carol Davila” University of Medicine and Pharmacy, 37 Dionisie Lupu, 020021 Bucharest, Romania
| | - Cristina Iulia Mitran
- “Victor Babes” Clinical Hospital for Infectious Diseases, 281 Mihai Bravu, 030303 Bucharest, Romania
- “Carol Davila” University of Medicine and Pharmacy, 37 Dionisie Lupu, 020021 Bucharest, Romania
| | - Madalina Irina Mitran
- “Victor Babes” Clinical Hospital for Infectious Diseases, 281 Mihai Bravu, 030303 Bucharest, Romania
- “Carol Davila” University of Medicine and Pharmacy, 37 Dionisie Lupu, 020021 Bucharest, Romania
| | - Constantin Caruntu
- “Carol Davila” University of Medicine and Pharmacy, 37 Dionisie Lupu, 020021 Bucharest, Romania
- “Prof. N. Paulescu” National Institute of Diabetes, Nutrition and Metabolic Diseases, 22-24 Gr. Manolescu, Bucharest 011233, Romania
| | - Maria Isabela Sarbu
- “Carol Davila” University of Medicine and Pharmacy, 37 Dionisie Lupu, 020021 Bucharest, Romania
| | - Clara Matei
- “Carol Davila” University of Medicine and Pharmacy, 37 Dionisie Lupu, 020021 Bucharest, Romania
| | - Ilinca Nicolae
- “Victor Babes” Clinical Hospital for Infectious Diseases, 281 Mihai Bravu, 030303 Bucharest, Romania
| | | | - Mircea Ioan Popa
- “Carol Davila” University of Medicine and Pharmacy, 37 Dionisie Lupu, 020021 Bucharest, Romania
- “Cantacuzino” National Medico-Military Institute for Research and Development, 103 Splaiul Independentei, 050096 Bucharest, Romania
| | - Mircea Tampa
- “Victor Babes” Clinical Hospital for Infectious Diseases, 281 Mihai Bravu, 030303 Bucharest, Romania
- “Carol Davila” University of Medicine and Pharmacy, 37 Dionisie Lupu, 020021 Bucharest, Romania
| |
Collapse
|