1
|
Zhang Y, Guo J, Chen Z, Chang Y, Zhang X, Liu Z, Li X, Zha X, Sun G, Li Y. Triclocarban disrupts the activation and differentiation of human CD8 + T cells by suppressing the vitamin D receptor signaling. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136096. [PMID: 39383692 DOI: 10.1016/j.jhazmat.2024.136096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/04/2024] [Accepted: 10/05/2024] [Indexed: 10/11/2024]
Abstract
Triclocarban (TCC) is a widely applied environmental endocrine-disrupting chemical (EDC). Similar to most of EDCs, TCC potentially damages the immunity of various species. However, whether and how TCC impacts the adaptive immunity in mammals has yet to be determined. Herein, we discovered that TCC disrupts the activation and differentiation of CD8+ T cells in primary human peripheral blood samples, purified CD8+ T cells, and in mice in vivo. Mechanistically, TCC might block the activation of the vitamin D receptor (VDR) and reduce the synthesis of cholesterol, a precursor of vitamin D, resulting in inhibition of VDR signaling due to the suppression of both its ligand and the receptor itself by TCC. Our findings elucidate the hazard and potential mechanisms of TCC in mammalian adaptive immunity and highlighted VDR as a potential therapeutic target for the immunodeficiency caused by TCC.
Collapse
Affiliation(s)
- Yikai Zhang
- Guangdong Provincial Key Laboratory of Spine and Spinal Cord Reconstruction, The Fifth Affiliated Hospital of Jinan University (Heyuan Shenhe People's Hospital), Jinan University, Heyuan 517000, China; Department of Hematology, First Affiliated Hospital of Jinan University, Guangzhou 510632, China; Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, Jinan University, Guangzhou 510632, China
| | - Jiafan Guo
- Department of Clinical Laboratory, First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Zhixi Chen
- Department of Hematology, First Affiliated Hospital of Jinan University, Guangzhou 510632, China; Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, Jinan University, Guangzhou 510632, China
| | - Yiming Chang
- Department of Pediatrics, First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Xingwei Zhang
- Department of Clinical Laboratory, First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Zirui Liu
- Department of Hematology, First Affiliated Hospital of Jinan University, Guangzhou 510632, China; Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, Jinan University, Guangzhou 510632, China
| | - Xinye Li
- Department of Hematology, First Affiliated Hospital of Jinan University, Guangzhou 510632, China; Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, Jinan University, Guangzhou 510632, China
| | - Xianfeng Zha
- Department of Clinical Laboratory, First Affiliated Hospital of Jinan University, Guangzhou 510632, China.
| | - Guodong Sun
- Guangdong Provincial Key Laboratory of Spine and Spinal Cord Reconstruction, The Fifth Affiliated Hospital of Jinan University (Heyuan Shenhe People's Hospital), Jinan University, Heyuan 517000, China.
| | - Yangqiu Li
- Department of Hematology, First Affiliated Hospital of Jinan University, Guangzhou 510632, China; Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
2
|
Sun Z, Liang C, Ling Y, Chen Y, Ma Z, Xu Y, Liu Z. A study on the subchronic toxicity of triclocarban to the early-life development of oryzias melastigma and focused on the analysis of osmoregulatory regulation mechanisms. Comp Biochem Physiol C Toxicol Pharmacol 2024; 279:109882. [PMID: 38437996 DOI: 10.1016/j.cbpc.2024.109882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/27/2024] [Accepted: 02/29/2024] [Indexed: 03/06/2024]
Abstract
Triclocarban (TCC), a novel antimicrobial agent found in personal care products, has been extensively detected in marine environments. However, research on the toxic effects of TCC on marine organisms remains inadequate. This study delved into the subchronic toxic effects of TCC on the early life stages of marine medaka (Oryzias melastigma, O. melastigma), revealing that TCC could reduce embryo heart rate and hatching rate while diminishing the survival rate of larvae. Biomarker assays indicated that TCC could inflict damage on the embryos' antioxidant and nervous systems. Transcriptomic analysis suggested that TCC could impact cell growth, reproduction, and various life processes, activating cancer signaling pathways, increasing the likelihood of cancer, and exerting toxic effects on the immune and osmoregulatory systems. To validate and enhance our understanding of TCC's unique toxic impact on the osmoregulatory system of O. melastigma, we conducted homology modeling and molecular docking analyses on the protein involved in osmoregulation. The study intuitively revealed the potential binding affinity of TCC to sodium/potassium-transporting ATPase subunit alph (ATP1A1), indicating its ability to disrupt osmotic balance in marine fish by affecting this target protein. In summary, the results of this study will further enhance our comprehension of the potential toxic effects and mechanisms of TCC on the early stages of marine fish, with a specific focus on its unique toxic effects in osmoregulation.
Collapse
Affiliation(s)
- Zhecheng Sun
- School of Environmental Science and Engineering, Nanjing tech university, Nanjing 211816, China
| | - Chuan Liang
- School of Environmental Science and Engineering, Nanjing tech university, Nanjing 211816, China
| | - Yunzhe Ling
- School of Environmental Science and Engineering, Nanjing tech university, Nanjing 211816, China
| | - Yang Chen
- School of Environmental Science and Engineering, Nanjing tech university, Nanjing 211816, China
| | - Zhengzhuo Ma
- School of Environmental Science and Engineering, Nanjing tech university, Nanjing 211816, China
| | - Yanhua Xu
- School of Environmental Science and Engineering, Nanjing tech university, Nanjing 211816, China
| | - Zhiying Liu
- School of Environmental Science and Engineering, Nanjing tech university, Nanjing 211816, China.
| |
Collapse
|
3
|
Wang J, Zhao C, Feng J, Sun P, Zhang Y, Han A, Zhang Y, Ma H. Advances in understanding the reproductive toxicity of endocrine-disrupting chemicals in women. Front Cell Dev Biol 2024; 12:1390247. [PMID: 38606320 PMCID: PMC11007058 DOI: 10.3389/fcell.2024.1390247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 03/20/2024] [Indexed: 04/13/2024] Open
Abstract
Recently, there has been a noticeable increase in disorders of the female reproductive system, accompanied by a rise in adverse pregnancy outcomes. This trend is increasingly being linked to environmental pollution, particularly through the lens of Endocrine Disrupting Chemicals (EDCs). These external agents disrupt natural processes of hormones, including synthesis, metabolism, secretion, transport, binding, as well as elimination. These disruptions can significantly impair human reproductive functions. A wealth of animal studies and epidemiological research indicates that exposure to toxic environmental factors can interfere with the endocrine system's normal functioning, resulting in negative reproductive outcomes. However, the mechanisms of these adverse effects are largely unknown. This work reviews the reproductive toxicity of five major environmental EDCs-Bisphenol A (BPA), Phthalates (PAEs), Triclocarban Triclosan and Disinfection Byproducts (DBPs)-to lay a foundational theoretical basis for further toxicological study of EDCs. Additionally, it aims to spark advancements in the prevention and treatment of female reproductive toxicity caused by these chemicals.
Collapse
Affiliation(s)
- Jinguang Wang
- Reproductive Medicine Center of Weifang People’s Hospital, Weifang, China
| | - Chunwu Zhao
- Gastrointestinal Surgery Center of Weifang People’s Hospital, Weifang, China
| | - Jie Feng
- Gynecology and Obstetrics Department, Fangzi District People’s Hospital, Weifang, China
| | - Pingping Sun
- Reproductive Medicine Center of Weifang People’s Hospital, Weifang, China
| | - Yuhua Zhang
- Reproductive Medicine Center of Weifang People’s Hospital, Weifang, China
| | - Ailing Han
- Reproductive Medicine Center of Weifang People’s Hospital, Weifang, China
| | - Yuemin Zhang
- Reproductive Medicine Center of Weifang People’s Hospital, Weifang, China
| | - Huagang Ma
- Reproductive Medicine Center of Weifang People’s Hospital, Weifang, China
| |
Collapse
|
4
|
Zhang Y, He L, Yang Y, Cao J, Su Z, Zhang B, Guo H, Wang Z, Zhang P, Xie J, Li J, Ye J, Zha Z, Yu H, Hong A, Chen X. Triclocarban triggers osteoarthritis via DNMT1-mediated epigenetic modification and suppression of COL2A in cartilage tissues. JOURNAL OF HAZARDOUS MATERIALS 2023; 447:130747. [PMID: 36680903 DOI: 10.1016/j.jhazmat.2023.130747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 12/20/2022] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
Triclocarban (TCC) is a widely used environmental endocrine-disrupting chemical (EDC). Articular injury of EDCs has been reported; however, whether and how TCCs damage the joint have not yet been determined. Herein, we revealed that exposure to TCC caused osteoarthritis (OA) within the zebrafish anal fin. Mechanistically, TCC stimulates the expression of DNMT1 and initiates DNA hypermethylation of the type II collagen coding gene, which further suppresses the expression of type II collagen and other extracellular matrices. This further results in decreased cartilage tissue and narrowing of the intraarticular space, which is typical of the pathogenesis of OA. The regulation of OA occurrence by TCC is conserved between zebrafish cartilage tissue and human chondrocytes. Our findings clarified the hazard and potential mechanisms of TCC towards articular health and highlighted DNMT1 as a potential therapeutic target for OA caused by TCC.
Collapse
Affiliation(s)
- Yibo Zhang
- Department of Cell Biology, College of Life Science and Technology, Jinan University, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, Guangdong Provincial biotechnology drug & Engineering Technology Research Center, Jinan University, Guangzhou 510632, China
| | - Liu He
- Department of Cell Biology, College of Life Science and Technology, Jinan University, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, Guangdong Provincial biotechnology drug & Engineering Technology Research Center, Jinan University, Guangzhou 510632, China
| | - Yiqi Yang
- The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Jieqiong Cao
- Department of Cell Biology, College of Life Science and Technology, Jinan University, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, Guangdong Provincial biotechnology drug & Engineering Technology Research Center, Jinan University, Guangzhou 510632, China
| | - Zijian Su
- Department of Cell Biology, College of Life Science and Technology, Jinan University, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, Guangdong Provincial biotechnology drug & Engineering Technology Research Center, Jinan University, Guangzhou 510632, China
| | - Bihui Zhang
- Department of Cell Biology, College of Life Science and Technology, Jinan University, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, Guangdong Provincial biotechnology drug & Engineering Technology Research Center, Jinan University, Guangzhou 510632, China
| | - Huiying Guo
- The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Zhenyu Wang
- Department of Cell Biology, College of Life Science and Technology, Jinan University, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, Guangdong Provincial biotechnology drug & Engineering Technology Research Center, Jinan University, Guangzhou 510632, China
| | - Peiguang Zhang
- Department of Cell Biology, College of Life Science and Technology, Jinan University, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, Guangdong Provincial biotechnology drug & Engineering Technology Research Center, Jinan University, Guangzhou 510632, China
| | - Junye Xie
- Department of Cell Biology, College of Life Science and Technology, Jinan University, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, Guangdong Provincial biotechnology drug & Engineering Technology Research Center, Jinan University, Guangzhou 510632, China
| | - Jieruo Li
- The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Jinshao Ye
- School of Environment, Jinan University, Guangzhou 510632, China
| | - Zhengang Zha
- The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Hengyi Yu
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - An Hong
- Department of Cell Biology, College of Life Science and Technology, Jinan University, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, Guangdong Provincial biotechnology drug & Engineering Technology Research Center, Jinan University, Guangzhou 510632, China..
| | - Xiaojia Chen
- Department of Cell Biology, College of Life Science and Technology, Jinan University, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, Guangdong Provincial biotechnology drug & Engineering Technology Research Center, Jinan University, Guangzhou 510632, China..
| |
Collapse
|
5
|
Arifin SNH, Radin Mohamed RMS, Al-Gheethi A, Lai CW, Gopalakrishnan Y, Hairuddin ND, Vo DV. Photocatalytic degradation of triclocarban in aqueous solution using a modified zeolite/TiO 2 composite: kinetic, mechanism study and toxicity assessment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:25103-25118. [PMID: 34617227 DOI: 10.1007/s11356-021-16732-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 09/22/2021] [Indexed: 06/13/2023]
Abstract
The current work aimed to investigate the degradation of the triclocarban (TCC) in aqueous solution using a modified zeolite/TiO2 composite (MZTC) synthesized by applying the electrochemical anodization (ECA). The synthesis process was conducted at different voltages (10, 40, and 60) V in 1 h and using electrophoresis deposition (EPD) in doping zeolite. The MZTC was covered with the array ordered, smooth and optimum elongated nanotubes with 5.1 μm of the length, 120.3 nm of the inner diameter 14.5 nm of the wall thickness with pure titanium and crystalline titania as determined by FESEM/EDS, and XRD. The kinetic study by following Langmuir-Hinshelwood(L-H) model and pseudo first order, the significant constant rate was obtained at pH 11 which was 0.079 ppm/min, 0.75 cm2 of MZTC catalyst loading size achieved 0.076 ppm/min and 5 ppm of TCC initial concentration reached 0.162 ppm/min. The high-performance liquid chromatography (HPLC) analysis for mechanism study of TCC photocatalytic degradation revealed eleven intermediate products after the whole process of photocatalysis. In regard of toxicology assessment by the bacteria which is Photobacterium phosphoreum, the obtained concentration of TCC at minute 60 was less satisfied with remained 0.36 ppm of TCC was detected indicates that the concentration was above allowable level. Where the allowable level of TCC in stream is 0.1 ppm.
Collapse
Affiliation(s)
- Siti Nor Hidayah Arifin
- Micropollutant Research Center (MPRC), Department of Civil Engineering, Faculty of Civil Engineering and Built Environment, Universiti Tun Husssein Onn Malaysia (UTHM), 86400 Parit Raja, Batu Pahat, Johor, Malaysia
| | - Radin Maya Saphira Radin Mohamed
- Micropollutant Research Center (MPRC), Department of Civil Engineering, Faculty of Civil Engineering and Built Environment, Universiti Tun Husssein Onn Malaysia (UTHM), 86400 Parit Raja, Batu Pahat, Johor, Malaysia.
| | - Adel Al-Gheethi
- Micropollutant Research Center (MPRC), Department of Civil Engineering, Faculty of Civil Engineering and Built Environment, Universiti Tun Husssein Onn Malaysia (UTHM), 86400 Parit Raja, Batu Pahat, Johor, Malaysia
| | - Chin Wei Lai
- Nanotechnology and Catalysis Research Centre (NANOCAT), Institute of Postgraduate Studies (IPS), University of Malaya, 3rd Floor, Block A, 50603, Kuala Lumpur, Malaysia
| | - Yashni Gopalakrishnan
- School of Applied Science. Faculty of Engineering, Science and Technology, Nilai University, 71800, Nilai, Negeri Sembilan, Malaysia
| | - Nur Diyana Hairuddin
- Micropollutant Research Center (MPRC), Department of Civil Engineering, Faculty of Civil Engineering and Built Environment, Universiti Tun Husssein Onn Malaysia (UTHM), 86400 Parit Raja, Batu Pahat, Johor, Malaysia
| | - Dai-Viet Vo
- College of Medical and Health Science, Asia University, Taichung, Taiwan
- Center of Excellence for Green Energy and Environmental Nanomaterials (CE@GrEEN), Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Vietnam
| |
Collapse
|
6
|
Jozkowiak M, Piotrowska-Kempisty H, Kobylarek D, Gorska N, Mozdziak P, Kempisty B, Rachon D, Spaczynski RZ. Endocrine Disrupting Chemicals in Polycystic Ovary Syndrome: The Relevant Role of the Theca and Granulosa Cells in the Pathogenesis of the Ovarian Dysfunction. Cells 2022; 12:cells12010174. [PMID: 36611967 PMCID: PMC9818374 DOI: 10.3390/cells12010174] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is the most common heterogeneous endocrine disorder among women of reproductive age. The pathogenesis of PCOS remains elusive; however, there is evidence suggesting the potential contribution of genetic interactions or predispositions combined with environmental factors. Among these, endocrine disrupting chemicals (EDCs) have been proposed to potentially contribute to the etiology of PCOS. Granulosa and theca cells are known to cooperate to maintain ovarian function, and any disturbance can lead to endocrine disorders, such as PCOS. This article provides a review of the recent knowledge on PCOS pathophysiology, the role of granulosa and theca cells in PCOS pathogenesis, and the evidence linking exposure to EDCs with reproductive disorders such as PCOS.
Collapse
Affiliation(s)
- Malgorzata Jozkowiak
- Department of Toxicology, Poznan University of Medical Sciences, Dojazd 30, 60-631 Poznan, Poland
- Doctoral School, Poznan University of Medical Sciences, Bukowska 70, 60-812 Poznan, Poland
| | - Hanna Piotrowska-Kempisty
- Department of Toxicology, Poznan University of Medical Sciences, Dojazd 30, 60-631 Poznan, Poland
- Department of Basic and Preclinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland
- Correspondence: ; Tel.: +48-61847-0721
| | - Dominik Kobylarek
- Department of Toxicology, Poznan University of Medical Sciences, Dojazd 30, 60-631 Poznan, Poland
| | - Natalia Gorska
- Department of Toxicology, Poznan University of Medical Sciences, Dojazd 30, 60-631 Poznan, Poland
| | - Paul Mozdziak
- Physiology Graduate Program, North Carolina State University, Raleigh, NC 27695, USA
- Prestage Department of Poultry Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Bartosz Kempisty
- Prestage Department of Poultry Sciences, North Carolina State University, Raleigh, NC 27695, USA
- Division of Anatomy, Department of Human Morphology and Embryology, Wroclaw Medical University, Chalubinskiego 6a, 50-368 Wroclaw, Poland
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland
| | - Dominik Rachon
- Department of Clinical and Experimental Endocrinology, Medical University of Gdansk, Debinki 7, 80-211 Gdansk, Poland
| | - Robert Z. Spaczynski
- Center for Gynecology, Obstetrics and Infertility Treatment Pastelova, Pastelowa 8, 60-198 Poznan, Poland
| |
Collapse
|
7
|
Wang H, Yun H, Ma X, Li M, Qi M, Wang L, Li Z, Gao S, Tao Y, Liang B, Wang A. Bioelectrochemical catabolism of triclocarban through the cascade acclimation of triclocarban-hydrolyzing and chloroanilines-oxidizing microbial communities. ENVIRONMENTAL RESEARCH 2022; 210:112880. [PMID: 35123970 DOI: 10.1016/j.envres.2022.112880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/27/2022] [Accepted: 01/31/2022] [Indexed: 06/14/2023]
Abstract
Chlorinated antimicrobial triclocarban (3,4,4'-trichlorocarbanilide, TCC) is an emerging refractory contaminant omnipresent in various environments. Preferential microbial hydrolysis of TCC to chloroanilines is essential for its efficient mineralization. However, the microbial mineralization of TCC in domestic wastewater is poorly understood. Here, the bioelectrochemical catabolism of TCC to chloroanilines (3,4-dichloroaniline and 4-chloroaniline) and then to CO2 was realized through the cascade acclimation of TCC-hydrolyzing and chloroanilines-oxidizing microbial communities. The biodegradation of chloroanilines was obviously enhanced in the bioelectrochemical reactors. Pseudomonas, Diaphorobacter, and Sphingomonas were the enriched TCC or chloroanilines degraders in the bioelectrochemical reactors. The addition of TCC enhanced the synergistic effect within functional microbial communities based on the feature of the phylogenetic ecological networks. This study provides a new idea for the targeted domestication and construction of functionally differentiated microbial communities to efficiently remove TCC from domestic wastewater through a green and low-carbon bioelectrochemical method.
Collapse
Affiliation(s)
- Hao Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Hui Yun
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Xiaodan Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Minghan Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Mengyuan Qi
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Ling Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Zhiling Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Shuhong Gao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China; State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China
| | - Yu Tao
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China
| | - Bin Liang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China; State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China.
| | - Aijie Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China; State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China
| |
Collapse
|
8
|
Arifin SNH, Radin Mohamed RMS, Al-Gheethi AA, Wei LC, Yashni G, Fitriani N, Naushad M, Albadarin AB. Modified TiO₂ nanotubes-zeolite composite photocatalyst: Characteristics, microstructure and applicability for degrading triclocarban. CHEMOSPHERE 2022; 287:132278. [PMID: 34826939 DOI: 10.1016/j.chemosphere.2021.132278] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 09/02/2021] [Accepted: 09/16/2021] [Indexed: 06/13/2023]
Abstract
The study explored the characteristics and effectiveness of modified TiO2 nanotubes with zeolite as a composite photocatalyst (MTNZC) for the degradation of triclocarban (TCC) from the aqueous solution. MTNZC samples have been produced via electrochemical anodisation (ECA) followed by electrophoretic deposition (EPD). Three independent factors selected include MTNZC size (0.5-1 cm2), pH (3-10), and irradiation time (10-60 min). The observation revealed that the surface of Ti substrate by the 40 V of anodisation and 3 h of calcination was covered with the array ordered, smooth and optimum elongated nanotubes with average tube length was approximately 5.1 μm. EDS analysis proved the presence of Si, Mg, Al, and Na on MTNZC due to the chemical composition present in the zeolite. The average crystallite size of TiO₂ nanotubes increased from 2.07 to 3.95 nm by increasing anodisation voltage (10, 40, and 60 V) followed by 450 °C of calcination for 1, 3, and 6 h, respectively. The optimisation by RSM shows the F-value (36.12), the p-value of all responses were less than 0.0001, and the 95% confidence level of the model by all the responses indicated the model was significant. The R2 in the range of 0.9433-0.9906 showed the suitability of the model to represent the actual relationship among the parameters. The photocatalytic degradation rate of TCC from the first and the fifth cycles were 94.2 and 77.4%, indicating the applicability of MTNZC to be used for several cycles.
Collapse
Affiliation(s)
- Siti Nor Hidayah Arifin
- Micropollutant Research Centre (MPRC), Faculty of Civil Engineering and Built Environment, Universiti Tun Hussein Onn Malaysia (UTHM), 86400, Parit Raja, Batu Pahat, Johor, Malaysia
| | - Radin Maya Saphira Radin Mohamed
- Micropollutant Research Centre (MPRC), Faculty of Civil Engineering and Built Environment, Universiti Tun Hussein Onn Malaysia (UTHM), 86400, Parit Raja, Batu Pahat, Johor, Malaysia.
| | - Adel Ali Al-Gheethi
- Micropollutant Research Centre (MPRC), Faculty of Civil Engineering and Built Environment, Universiti Tun Hussein Onn Malaysia (UTHM), 86400, Parit Raja, Batu Pahat, Johor, Malaysia.
| | - Lai Chin Wei
- Nanotechnology & Catalysis Research Centre (NANOCAT), Institute of Postgraduate Studies (IPS), University of Malaya, 3rd Floor, Block A, 50603, Kuala Lumpur, Malaysia
| | - G Yashni
- School of Applied Science, Faculty of Engineering, Science and Technology, Nilai University, 71800, Nilai, Negeri Sembilan, Malaysia
| | - Nurina Fitriani
- Biology Department, Faculty of Science and Technology, Universitas Airlangga, Kampus C Jl.Mulyorejo, Surabaya, 60115, Indonesia
| | - Mu Naushad
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh-11451, Saudi Arabia
| | - Ahmad B Albadarin
- Department of Chemical Sciences, Bernal Institute, University of Limerick, Limerick, Ireland
| |
Collapse
|
9
|
Chen XF, Chen ZF, Lin ZC, Liao XL, Zou T, Qi Z, Cai Z. Toxic effects of triclocarban on larval zebrafish: A focus on visual dysfunction. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 241:106013. [PMID: 34731642 DOI: 10.1016/j.aquatox.2021.106013] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 10/07/2021] [Accepted: 10/24/2021] [Indexed: 06/13/2023]
Abstract
Triclocarban (TCC) is considered an endocrine disruptor and shows antagonist activity on thyroid receptors. In view of the report that thyroid hormone signaling mediates retinal cone photoreceptor specification, we hypothesize that TCC could impair visual function, which is vital to wildlife. In order to verify our hypothesis, we assessed alteration in the retinal structure (retinal layer thickness and cell density), visually-mediated behavior, cone and rod opsin gene expression, and photoreceptor immunostaining in zebrafish larvae exposed to TCC at environmentally realistic concentrations (0.16 ± 0.005 µg/L, L-group) and one-fifth of the median lethal concentrations (25.4 ± 1.02 µg/L, H-group). Significant decrease in eye size, ganglion cell density, optokinetic response, and phototactic response can be observed in the L-group, while the thickness of outer nuclear layer, where the cell bodies of cone and rod cells are located, was significantly reduced with the down-regulation of critical opsin gene (opn1sw2, opn1mw1, opn1mw3, opn1lw1, opn1lw2, and rho) expression and rhodopsin immunofluorescence in the H-group. It should be noted that TCC could affect the sensitivity of zebrafish larvae to red and green light according to the results of behavioral and opsin gene expression analysis. These findings provide the first evidence to support our hypothesis that the visual system, a novel toxicological target, is affected by TCC. Consequently, we urgently call for a more in-depth exploration of TCC-induced ocular toxicity to aquatic organisms and even to humans.
Collapse
Affiliation(s)
- Xiao-Fan Chen
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhi-Feng Chen
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, South China Normal University, Guangzhou 510006, China.
| | - Zhi-Cheng Lin
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Xiao-Liang Liao
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Ting Zou
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Zenghua Qi
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Zongwei Cai
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China; State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong 999077, China
| |
Collapse
|
10
|
Patisaul HB. REPRODUCTIVE TOXICOLOGY: Endocrine disruption and reproductive disorders: impacts on sexually dimorphic neuroendocrine pathways. Reproduction 2021; 162:F111-F130. [PMID: 33929341 PMCID: PMC8484365 DOI: 10.1530/rep-20-0596] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 04/30/2021] [Indexed: 11/08/2022]
Abstract
We are all living with hundreds of anthropogenic chemicals in our bodies every day, a situation that threatens the reproductive health of present and future generations. This review focuses on endocrine-disrupting compounds (EDCs), both naturally occurring and man-made, and summarizes how they interfere with the neuroendocrine system to adversely impact pregnancy outcomes, semen quality, age at puberty, and other aspects of human reproductive health. While obvious malformations of the genitals and other reproductive organs are a clear sign of adverse reproductive health outcomes and injury to brain sexual differentiation, the hypothalamic-pituitary-gonadal (HPG) axis can be much more difficult to discern, particularly in humans. It is well-established that, over the course of development, gonadal hormones shape the vertebrate brain such that sex-specific reproductive physiology and behaviors emerge. Decades of work in neuroendocrinology have elucidated many of the discrete and often very short developmental windows across pre- and postnatal development in which this occurs. This has allowed toxicologists to probe how EDC exposures in these critical windows can permanently alter the structure and function of the HPG axis. This review includes a discussion of key EDC principles including how latency between exposure and the emergence of consequential health effects can be long, along with a summary of the most common and less well-understood EDC modes of action. Extensive examples of how EDCs are impacting human reproductive health, and evidence that they have the potential for multi-generational physiological and behavioral effects are also provided.
Collapse
Affiliation(s)
- Heather B Patisaul
- Department of Biological Sciences, Center for Human Health and the Environment, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
11
|
Tan J, Kuang H, Wang C, Liu J, Pang Q, Xie Q, Fan R. Human exposure and health risk assessment of an increasingly used antibacterial alternative in personal care products: Chloroxylenol. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 786:147524. [PMID: 33975105 DOI: 10.1016/j.scitotenv.2021.147524] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 04/28/2021] [Accepted: 04/28/2021] [Indexed: 06/12/2023]
Abstract
The ban of some antibacterial ingredients, such as triclosan (TCS) and triclocarban (TCC), in personal care products (PCPs) in some countries (but not in China) has resulted in the increasing use of antibacterial alternatives, such as chloroxylenol (PCMX). However, the underlying human health risks and environmental impacts of PCMX exposure are largely unknown. Thus, the distribution characteristics of PCMX in PCPs and susceptible populations and the major routes and health risks of human exposure to PCMX were investigated. The PCMX, TCS, and TCC concentrations in PCPs, urine, drinking water, and surface water were determined using high-performance liquid chromatograph system equipped with diode array detector or triple quadrupole mass spectrometer. Results showed that PCMX is widely used in antibacterial hand sanitizers and household disinfectants in China. The addition of PCMX as an antibacterial ingredient in PCPs showed an increasing trend. The geomean concentrations of urinary PCMX in children and pregnant women were 21.6 and 31.9 μg·L-1, respectively, which were much higher than TCS and TCC. A considerable concentration of PCMX ranging from 1.62 to 9.57 μg·L-1 was observed in the aquatic environment, suggesting a potential massive-use of PCMX by humans. Human PCMX exposure via drinking was negligible because the PCMX concentrations in drinking water were less than 2.00 ng·L-1. During human simulation experiment, we found that dermal contact was the dominant route of human PCMX exposure, accounting for 92.1% of the urinary PCMX concentration. The estimated daily intake of PCMX in 9.68% of children and 5.66% of pregnant women was higher than the reference dose. However, the urinary 8-hydroxy-2'-deoxyguanosine concentrations remained stable despite the elevated PCMX concentrations, thereby suggesting that daily PCMX exposure may not cause oxidative DNA damage in humans. Nevertheless, the potential ecotoxicity and health risks induced by chronic PCMX exposure cannot be ignored because of its increasing use.
Collapse
Affiliation(s)
- Jianhua Tan
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Guangzhou Quality Supervision and Testing Institute, Guangzhou 511447, China
| | - Hongxuan Kuang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Congcong Wang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Jian Liu
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Qihua Pang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Qilai Xie
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China.
| | - Ruifang Fan
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangzhou 510631, China; Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, South China Normal University, Guangzhou 510006, China.
| |
Collapse
|
12
|
Mandour DA, Aidaros AAM, Mohamed S. Potential long-term developmental toxicity of in utero and lactational exposure to Triclocarban (TCC) in hampering ovarian folliculogenesis in rat offspring. Acta Histochem 2021; 123:151772. [PMID: 34428603 DOI: 10.1016/j.acthis.2021.151772] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/07/2021] [Accepted: 08/12/2021] [Indexed: 12/17/2022]
Abstract
Triclocarban (TCC), an antimicrobial compound commonly added to a wide range of household and personal hygiene care products, is one of the most prevalent endocrine-disrupting substances (EDS). This study was conducted to elucidate whether in utero and lactational exposure to TCC could adversely affect folliculogenesis and the onset of puberty in female rat offspring. Twenty pregnant Sprague Dawley rats were equally divided into Control and TCC dam groups (supplemented daily with drinking water enriched with 0.5 mg/L of TCC) from gestational day5 to postnatal day21 (PND21). Female offspring, 20 from control and 20 from TCC dams, were subdivided into 4 subgroups (PND21, PND28, PND35 & PND42). The day of vaginal opening and first estrous cycle were determined. Ovarian sections of the offspring were processed for H&E staining and for immunohistochemical expression of Ki67, Caspase-3 and androgen receptors (AR) on the granulosa cells of ovarian follicles. Follicular count and atretic index were assessed besides, serum estradiol, progesterone, FSH and LH, C-reactive protein (CRP), malondialdehyde (MDA) and total antioxidant capacity (TAC) were measured. TCC offspring exhibited a significant delay in the onset of puberty and impedance of normal transition of the primordial follicles to more developed ones with altered cyctoarchitecture. Also, TCC decreased follicular count, proliferation and gonado-somatic index while it increased atretic index, apoptosis and AR of the granulosa cells along with disturbance of the feminine hormonal profile and oxidant/antioxidant balance. This study highlighted the potential long-term consequences of in utero and lactational exposure to TCC on the postnatal development of the ovary in rat offspring.
Collapse
Affiliation(s)
- Dalia A Mandour
- Department of Human Anatomy and Embryology, Faculty of Medicine, Zagazig University, Egypt.
| | - Abd Al-Mawla Aidaros
- Department of Human Anatomy and Embryology, Faculty of Medicine, Zagazig University, Egypt
| | - Soad Mohamed
- Department of Human Anatomy and Embryology, Faculty of Medicine, Zagazig University, Egypt
| |
Collapse
|
13
|
Martín-Pozo L, Gómez-Regalado MDC, Moscoso-Ruiz I, Zafra-Gómez A. Analytical methods for the determination of endocrine disrupting chemicals in cosmetics and personal care products: A review. Talanta 2021; 234:122642. [PMID: 34364451 DOI: 10.1016/j.talanta.2021.122642] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 12/13/2022]
Abstract
Personal care products (PCPs) and cosmetics are indispensable product in our daily routine. Their widespread use makes them a potential route of exposure for certain contaminants to which human would not be normally exposed. One of these contaminants includes endocrine disrupting chemicals, molecules capable of mimicking the body's natural hormones and interfering with the endocrine system. Some of them are ingredients included in the product's formulation, such as UV-filters (sunscreens), phthalates (plasticizers and preservatives), synthetic musks (fragrances), parabens and other antimicrobial agents (antimicrobial preservatives). Others are non-intended added substances that may result from the manufacturing process or migration from the plastic packaging, as with bisphenols and perfluorinated compounds. Some of these endocrine disruptors have been restricted or even banned in cosmetics and PCPs given the high risk they pose to health. Thus, the development of fast, sensitive and precise methods for the identification and quantification of these compounds in cosmetics is a substantial need in order to ensure consumer safety and provide insight into the real risk of human exposure. The present work aims at reviewing the more recently developed analytical methods published in the literature for the determination of endocrine disrupting chemicals in cosmetics and PCPs using chromatographic techniques, with a focus on sample treatment and the quality of analytical parameters.
Collapse
Affiliation(s)
- Laura Martín-Pozo
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, E-18071, Granada, Spain.
| | | | - Inmaculada Moscoso-Ruiz
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, E-18071, Granada, Spain; Department of Nutrition and Bromatology, Faculty of Pharmacy, University of Granada, E-18071, Granada, Spain
| | - Alberto Zafra-Gómez
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, E-18071, Granada, Spain; Instituto de Investigación Biosanitaria ibs, E-18016, Granada, Spain.
| |
Collapse
|
14
|
Padmanabhan V, Song W, Puttabyatappa M. Praegnatio Perturbatio-Impact of Endocrine-Disrupting Chemicals. Endocr Rev 2021; 42:295-353. [PMID: 33388776 PMCID: PMC8152448 DOI: 10.1210/endrev/bnaa035] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Indexed: 02/07/2023]
Abstract
The burden of adverse pregnancy outcomes such as preterm birth and low birth weight is considerable across the world. Several risk factors for adverse pregnancy outcomes have been identified. One risk factor for adverse pregnancy outcomes receiving considerable attention in recent years is gestational exposure to endocrine-disrupting chemicals (EDCs). Humans are exposed to a multitude of environmental chemicals with known endocrine-disrupting properties, and evidence suggests exposure to these EDCs have the potential to disrupt the maternal-fetal environment culminating in adverse pregnancy and birth outcomes. This review addresses the impact of maternal and fetal exposure to environmental EDCs of natural and man-made chemicals in disrupting the maternal-fetal milieu in human leading to adverse pregnancy and birth outcomes-a risk factor for adult-onset noncommunicable diseases, the role lifestyle and environmental factors play in mitigating or amplifying the effects of EDCs, the underlying mechanisms and mediators involved, and the research directions on which to focus future investigations to help alleviate the adverse effects of EDC exposure.
Collapse
Affiliation(s)
| | - Wenhui Song
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan, USA
| | | |
Collapse
|
15
|
The Different Facets of Triclocarban: A Review. Molecules 2021; 26:molecules26092811. [PMID: 34068616 PMCID: PMC8126057 DOI: 10.3390/molecules26092811] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/04/2021] [Accepted: 05/08/2021] [Indexed: 02/07/2023] Open
Abstract
In the late 1930s and early 1940s, it was discovered that the substitution on aromatic rings of hydrogen atoms with chlorine yielded a novel chemistry of antimicrobials. However, within a few years, many of these compounds and formulations showed adverse effects, including human toxicity, ecotoxicity, and unwanted environmental persistence and bioaccumulation, quickly leading to regulatory bans and phase-outs. Among these, the triclocarban, a polychlorinated aromatic antimicrobial agent, was employed as a major ingredient of toys, clothing, food packaging materials, food industry floors, medical supplies, and especially of personal care products, such as soaps, toothpaste, and shampoo. Triclocarban has been widely used for over 50 years, but only recently some concerns were raised about its endocrine disruptive properties. In September 2016, the U.S. Food and Drug Administration banned its use in over-the-counter hand and body washes because of its toxicity. The withdrawal of triclocarban has prompted the efforts to search for new antimicrobial compounds and several analogues of triclocarban have also been studied. In this review, an examination of different facets of triclocarban and its analogues will be analyzed.
Collapse
|
16
|
Catalano A, Iacopetta D, Rosato A, Salvagno L, Ceramella J, Longo F, Sinicropi MS, Franchini C. Searching for Small Molecules as Antibacterials: Non-Cytotoxic Diarylureas Analogues of Triclocarban. Antibiotics (Basel) 2021; 10:204. [PMID: 33669633 PMCID: PMC7922224 DOI: 10.3390/antibiotics10020204] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 02/11/2021] [Accepted: 02/18/2021] [Indexed: 12/18/2022] Open
Abstract
Triclocarban (TCC), a broad-spectrum lipophilic antimicrobial agent, is a diarylurea derivative that has been used for more than 60 years as a major ingredient of toys, clothing, food packaging materials, food industry floors, medical supplies and especially of personal care products, such as soaps, toothpaste and shampoo. In September 2016, the U.S. FDA banned nineteen antimicrobial ingredients, including TCC, in over-the-counter consumer antiseptic wash products, due to their toxicity. Withdrawal of TCC has prompted efforts to search for new antimicrobial compounds. In this paper, we present the synthesis and biological evaluation, as antibiotic and non-cytotoxic agents, of a series of diarylureas, analogues of TCC. These compounds are characterized by an intriguingly simple chemistry and can be easily synthesized. Among the synthesized compounds, 1ab and 1bc emerge as the most interesting compounds as they show the same activity of TCC (MIC = 16 µg/mL) against Staphylococcus aureus, and a higher activity than TCC against Enterococcus faecalis (MIC = 32 µg/mL versus MIC = 64 µg/mL). Moreover, 1ab and 1bc show no cytotoxicity towards the human mammary epithelial cells MCF-10A and embryonic kidney epithelial cells Hek-293, in opposition to TCC, which exhibits a marked cytotoxicity on the same cell lines and shows a good antitumor activity on a panel of cell lines tested.
Collapse
Affiliation(s)
- Alessia Catalano
- Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, 70126 Bari, Italy; (A.R.); (L.S.); (F.L.); (C.F.)
| | - Domenico Iacopetta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata, Italy; (D.I.); (J.C.); (M.S.S.)
| | - Antonio Rosato
- Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, 70126 Bari, Italy; (A.R.); (L.S.); (F.L.); (C.F.)
| | - Lara Salvagno
- Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, 70126 Bari, Italy; (A.R.); (L.S.); (F.L.); (C.F.)
| | - Jessica Ceramella
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata, Italy; (D.I.); (J.C.); (M.S.S.)
| | - Francesca Longo
- Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, 70126 Bari, Italy; (A.R.); (L.S.); (F.L.); (C.F.)
| | - Maria Stefania Sinicropi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata, Italy; (D.I.); (J.C.); (M.S.S.)
| | - Carlo Franchini
- Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, 70126 Bari, Italy; (A.R.); (L.S.); (F.L.); (C.F.)
| |
Collapse
|
17
|
Waidyanatha S, Black SR, Patel PR, Watson SL, Snyder RW, Sutherland V, Stanko J, Fennell TR. Disposition and metabolism of antibacterial agent, triclocarban, in rodents; a species and route comparison. Xenobiotica 2020; 50:1469-1482. [PMID: 32501182 PMCID: PMC7584751 DOI: 10.1080/00498254.2020.1779391] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/02/2020] [Accepted: 06/03/2020] [Indexed: 01/26/2023]
Abstract
Triclocarban is a residue-producing antibacterial agent used in a variety of consumer products. These studies investigated the disposition and metabolism of [14C]triclocarban. In male rats following a single gavage administration of 50, 150, and 500 mg/kg, excretion was primarily via feces (feces, 85-86%; urine, 3-6%) with no apparent dose-related effect. In male rats, 29% of the administered dose was excreted in bile suggesting some of the fecal excretion is from the absorbed dose which was excreted to the intestine via bile. The tissue retention of radioactivity was low in male rats (24 h, 3.9%; 72 h, 0.1%). Disposition pattern following gavage administration of 50 mg/kg in female rats and male and female mice were similar to male rats. Plasma elimination half-life of triclocarban in rats following gavage administration was shorter (∼2 h) compared to that based on total radioactivity (≥9 h) which included all products of triclocarban. Absorption following a single dermal application of 1.5 or 3% was low (≤3%) in rodents. Hydroxylated and conjugated metabolites of triclocarban predominated in bile. In hepatocytes, clearance of triclocarban in mouse and human was similar and was faster than in rat.
Collapse
Affiliation(s)
- Suramya Waidyanatha
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Sherry R. Black
- RTI International, Discovery Sciences, Research Triangle Park, NC, USA
| | - Purvi R. Patel
- RTI International, Discovery Sciences, Research Triangle Park, NC, USA
| | - Scott L. Watson
- RTI International, Discovery Sciences, Research Triangle Park, NC, USA
| | - Rodney W. Snyder
- RTI International, Discovery Sciences, Research Triangle Park, NC, USA
| | - Vicki Sutherland
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Jason Stanko
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | | |
Collapse
|
18
|
Waidyanatha S, Black SR, Silinski M, Sutherland V, Fletcher BL, Fernando RA, Fennell TR. Comparative toxicokinetics of bisphenol S in rats and mice following gavage administration. Toxicol Appl Pharmacol 2020; 406:115207. [PMID: 32853628 DOI: 10.1016/j.taap.2020.115207] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/12/2020] [Accepted: 08/18/2020] [Indexed: 01/01/2023]
Abstract
Bisphenol S (BPS) is a component of polyether sulfone used in a variety of industrial applications and consumer products. We investigated the plasma toxicokinetic (TK) behavior of free (unconjugated parent) and total (parent and conjugated) BPS in rats and mice following a single gavage administration (34, 110, or 340 mg/kg). In male rats, BPS was rapidly absorbed with free BPS maximum concentration (Cmax) reached at ≤2.27 h. Elimination of free BPS in male rats was dose-dependent with estimated half-lives of 5.77-11.9 h. Cmax and area under the concentration versus time curve (AUC) increased with dose although the increase in AUC was more than dose proportional. In male rats, total BPS Cmax was reached ≤2.77 h with both Cmax (≥ 10-fold) and AUC (≥ 15-fold) higher than free BPS demonstrating rapid and extensive conjugation of BPS. In male mice, the increase in Cmax and AUC of free BPS was dose-proportional; Cmax was higher and AUC was lower than in male rats. BPS was cleared more rapidly in male mice (half-life 2.86-4.21 h) compared to male rats (half-life 5.77-11.9 h). Similar to rats, total BPS Cmax (≥ 6-fold) and AUC (≥ 12-fold) were higher than corresponding free BPS. Oral bioavailability of free BPS was low to moderate (rats, ≤ 21%; mice, ≤ 19%). There were some species differences in TK parameters of free and total BPS and limited sex difference in rats and mice. In addition, there were dose-related effects of plasma TK parameters in rats.
Collapse
Affiliation(s)
- Suramya Waidyanatha
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA.
| | - Sherry R Black
- RTI International, Discovery Sciences, Research Triangle Park, NC, USA
| | - Melanie Silinski
- RTI International, Discovery Sciences, Research Triangle Park, NC, USA
| | - Vicki Sutherland
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Brenda L Fletcher
- RTI International, Discovery Sciences, Research Triangle Park, NC, USA
| | - Reshan A Fernando
- RTI International, Discovery Sciences, Research Triangle Park, NC, USA
| | - Timothy R Fennell
- RTI International, Discovery Sciences, Research Triangle Park, NC, USA
| |
Collapse
|
19
|
Costa NO, Forcato S, Cavichioli AM, Pereira MRF, Gerardin DCC. In utero and lactational exposure to triclocarban: Age-associated changes in reproductive parameters of male rat offspring. Toxicol Appl Pharmacol 2020; 401:115077. [PMID: 32479917 DOI: 10.1016/j.taap.2020.115077] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 05/25/2020] [Accepted: 05/26/2020] [Indexed: 12/26/2022]
Abstract
Triclocarban (TCC) is an antimicrobial compound, widely used in personal care products, such as soaps, toothpaste, and shampoo. This agent is incompletely removed by wastewater treatment and represents an environmental contaminant. Studies show that TCC has been associated with some endocrine disruptions. In vitro, TCC demonstrated potent androgen-augmenting activity and aromatase inhibition. In this sense, exposure during critical periods of development (gestation and lactation) could lead to some adverse health outcomes in offspring. Therefore, the present study evaluated if maternal exposure to three different doses of TCC could interfere in the reproductive parameters of male offspring. Pregnant female Wistar rats were separated into four groups: vehicle Control (CTR); TCC 0.3 mg/kg (TCC 0.3); TCC 1.5 mg/kg (TCC 1.5); TCC 3.0 mg/kg (TCC 3.0). Dams were treated daily by oral gavage from gestational day 0 to lactational day 21. The males were evaluated in different timepoint: infancy (PND 21), puberty (PND 50) and adult life (PND 90-120). The histomorphometric analysis of testis and testosterone level were assessed on PND 21, 50, 120; sexual behavior and sperm parameters at adulthood. In the TCC 3.0 group, a decrease in the testis interstitial volume and an increase in testosterone levels were observed on PND 21. Moreover, there was a decrease in the diameter of the seminiferous tubules on PND 50, and a decrease in sexual competency in adulthood. These results suggest that exposure to a human relevant dose of TCC may interfere with reproduction and could have implications for human health.
Collapse
Affiliation(s)
- Nathália Orlandini Costa
- Department of Physiological Sciences, State University of Londrina, 86051-980, Londrina, Paraná, Brazil
| | - Simone Forcato
- Department of Physiological Sciences, State University of Londrina, 86051-980, Londrina, Paraná, Brazil
| | | | | | | |
Collapse
|
20
|
Yun H, Liang B, Kong D, Li X, Wang A. Fate, risk and removal of triclocarban: A critical review. JOURNAL OF HAZARDOUS MATERIALS 2020; 387:121944. [PMID: 31901847 DOI: 10.1016/j.jhazmat.2019.121944] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 12/01/2019] [Accepted: 12/19/2019] [Indexed: 06/10/2023]
Abstract
The halogenated antimicrobial triclocarban (TCC) has large production and consumption over last decades. Its extensive utilization in personal care products and insufficient treatment in conventional wastewater treatment plants (WWTPs) has led to its listing as one of emerging organic contaminants (EOCs). Due to the hydrophobicity and chemical stability of TCC, it has been omnipresent detected in terrestrial and aquatic environments, and its prolonged exposure has thrown potential pernicious threat to ecosystem and human health. Considering its recalcitrance, especially under anoxic conditions, both biological and non-biological methods have been exploited for its removal. The efficiency of advanced oxidation processes was optimistic, but complete removal can rarely be realized through a single method. The biodegradation of TCC either with microbial community or pure culture is feasible but efficient bacterial degraders and the molecular mechanism of degradation need to be further explored. This review provides comprehensive information of the occurrence, potential ecological and health effects, and biological and non-biological removal of TCC, and outlines future prospects for the risk evaluation and enhanced bioremediation of TCC in various environments.
Collapse
Affiliation(s)
- Hui Yun
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environment Pollution, School of Life Science, Lanzhou University, Tianshui South Road #222, Lanzhou, 730000, Gansu, China; Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Tianshui South Road #222, Lanzhou, 730000, Gansu, China; Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Bin Liang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| | - Deyong Kong
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Shenyang Academy of Environmental Sciences, Shenyang, 110167, China
| | - Xiangkai Li
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environment Pollution, School of Life Science, Lanzhou University, Tianshui South Road #222, Lanzhou, 730000, Gansu, China; Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Tianshui South Road #222, Lanzhou, 730000, Gansu, China
| | - Aijie Wang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| |
Collapse
|
21
|
Xie X, Lu C, Wu M, Liang J, Ying Y, Liu K, Huang X, Zheng S, Du X, Liu D, Wen Z, Hao G, Yang G, Feng L, Jing C. Association between triclocarban and triclosan exposures and the risks of type 2 diabetes mellitus and impaired glucose tolerance in the National Health and Nutrition Examination Survey (NHANES 2013-2014). ENVIRONMENT INTERNATIONAL 2020; 136:105445. [PMID: 31918332 PMCID: PMC7027658 DOI: 10.1016/j.envint.2019.105445] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 11/30/2019] [Accepted: 12/24/2019] [Indexed: 05/16/2023]
Abstract
BACKGROUND There has been increasing interest in the concept that exposure to environmental chemicals may be contributing factors to epidemics of diabetes mellitus (DM). Triclocarban and triclosan (TCs) are synthetic antibacterial chemicals that are widely used in personal care products. Studies have shown that TCs are endocrine disruptors that alter metabolic conditions. However, it remains unclear whether exposure to TCs is a risk factor for impaired glucose tolerance (IGT) and type 2 diabetes mellitus (T2DM). OBJECTIVE We explored the hypothesis that TCs exposure is associated with an increased risk of IGT and T2DM. METHOD To test our hypothesis, we analyzed the U.S. National Health and Nutrition Examination Survey (NHANES) cross-sectional data from 2013 to 2014. IGT and T2DM were diagnosed based on an oral glucose tolerance test (OGTT) and the WHO standards. The levels of urinary TCs were measured using an HPLC-MS/MS method that NHANES investigators developed. The association between urinary TCs status and IGT and T2DM was examined separately in men and women using multivariable logistic regression models adjusted for age, race, BMI, education, ratio of family income to poverty, smoking, exercise and hypertension. RESULTS Nine hundred US participants (429 men and 471 women) were included in the analysis, of whom 242 (26.89%) were diagnosed with T2DM and 117 (13.00%) had IGT. Among women, there was a significant positive association between triclocarban, but not triclosan exposure and T2DM (OR: 1.79, 95% CI: 1.05, 2.05) after adjusting for potential confounding factors. Among men, no significant association between TCs exposure and IGT or T2DM was observed. CONCLUSIONS Triclocarban exposure may increase the risk of T2DM in the women, although additional studies are needed to confirm the results of this study and to investigate the underlying mechanisms.
Collapse
Affiliation(s)
- Xin Xie
- Department of Epidemiology, School of Medicine, Jinan University, No. 601 Huangpu Ave West, Guangzhou 510632, Guangdong, China
| | - Congying Lu
- Department of Epidemiology, School of Medicine, Jinan University, No. 601 Huangpu Ave West, Guangzhou 510632, Guangdong, China
| | - Min Wu
- Department of Epidemiology, School of Medicine, Jinan University, No. 601 Huangpu Ave West, Guangzhou 510632, Guangdong, China
| | - Jiayu Liang
- Department of Epidemiology, School of Medicine, Jinan University, No. 601 Huangpu Ave West, Guangzhou 510632, Guangdong, China
| | - Yuting Ying
- Department of Epidemiology, School of Medicine, Jinan University, No. 601 Huangpu Ave West, Guangzhou 510632, Guangdong, China
| | - Kailiang Liu
- Department of Epidemiology, School of Medicine, Jinan University, No. 601 Huangpu Ave West, Guangzhou 510632, Guangdong, China
| | - Xiuxia Huang
- Department of Epidemiology, School of Medicine, Jinan University, No. 601 Huangpu Ave West, Guangzhou 510632, Guangdong, China
| | - Shaoling Zheng
- Department of Epidemiology, School of Medicine, Jinan University, No. 601 Huangpu Ave West, Guangzhou 510632, Guangdong, China
| | - Xiuben Du
- Department of Epidemiology, School of Medicine, Jinan University, No. 601 Huangpu Ave West, Guangzhou 510632, Guangdong, China
| | - Dandan Liu
- Department of Epidemiology, School of Medicine, Jinan University, No. 601 Huangpu Ave West, Guangzhou 510632, Guangdong, China
| | - Zihao Wen
- Department of Epidemiology, School of Medicine, Jinan University, No. 601 Huangpu Ave West, Guangzhou 510632, Guangdong, China
| | - Guang Hao
- Department of Epidemiology, School of Medicine, Jinan University, No. 601 Huangpu Ave West, Guangzhou 510632, Guangdong, China.
| | - Guang Yang
- Department of Pathogen Biology, School of Medicine, Jinan University, Guangzhou 510632, Guangdong, China; Guangdong Key Laboratory of Environmental Exposure and Health, Jinan University, Guangzhou 510632, Guangdong, China.
| | - Liping Feng
- Department of Obstetrics and Gynecology, Duke University School of Medicine, Durham, NC, USA.
| | - Chunxia Jing
- Department of Epidemiology, School of Medicine, Jinan University, No. 601 Huangpu Ave West, Guangzhou 510632, Guangdong, China; Guangdong Key Laboratory of Environmental Exposure and Health, Jinan University, Guangzhou 510632, Guangdong, China.
| |
Collapse
|
22
|
Sun D, Zhao T, Wang T, Wu M, Zhang Z. Genotoxicity assessment of triclocarban by comet and micronucleus assays and Ames test. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:7430-7438. [PMID: 31884548 DOI: 10.1007/s11356-019-07351-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 12/09/2019] [Indexed: 06/10/2023]
Abstract
The widespread usage and ubiquitous distribution of triclocarban (3,4,4'-trichlorocarbanilide, TCC) have raised public concerns about its health effects. At present, there is little information about the genotoxicity of TCC. In this study, we used a battery of genotoxicity testing methods including salmonella reverse mutation test (Ames test), comet assay and micronucleus assay to detect the effects of TCC on gene mutation, DNA breakage, and chromosome damage. The results of Ames test showed that TCC at 0.1-1000 μg/plate did not significantly increase the number of revertant colonies in the four standard Salmonella typhimurium strains, i.e., TA97, TA98, TA100, and TA102, when compared to the vehicle control. The results from comet assay demonstrated that exposure to 5, 10, or 15 μM TCC for 24 h did not significantly increase the percentage of comet cells, tail length (TL), DNA in tail (T DNA%), or olive tail moment (OTM) in keratinocyte HaCaT and hepatic L02 cells. Moreover, TCC did not markedly enhance the frequency of micronucleated cells or micronuclei in HaCaT and L02 cells in the micronucleus assay. Taken together, the results indicated that TCC did not exhibit any genotoxic effects. Our study provides additional information for the safety profile of TCC.
Collapse
Affiliation(s)
- Donglei Sun
- Department of Environmental and Occupational Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Tianhe Zhao
- Department of Environmental and Occupational Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Ting Wang
- Department of Environmental and Occupational Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Mei Wu
- Department of Environmental and Occupational Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Zunzhen Zhang
- Department of Environmental and Occupational Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
23
|
Patrick L. Diabetes and Toxicant Exposure. Integr Med (Encinitas) 2020; 19:16-23. [PMID: 32549860 PMCID: PMC7238916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The worldwide prevalence of obesity has near tripled between 1975 and 2016. Diabetes was the direct cause of an estimated 1.6 million deaths in 2015. Diabetogens, otherwise known as toxicants that cause insulin resistance in animal models and humans as a result of pancreatic β-cell damage include the persistent organochlorine pesticides trans-nonachlor, oxychlordane, and DDE -the main metabolite of DDT, as well as another class of persistent organic pollutants, polychlorinated biphenyls (PCBs). Other toxicants that are now considered diabetogens: BPA, arsenic, phthalates, perfluorinates (PFOS), diethyl hexyl phthalate (DEHP), and dioxin (TCDD) are commonly found in the blood and urine in the CDC NHANES populations and presumed to also be commonly found in the U.S. population as a whole. A review of the literature on the risk for diabetes in epidemiologic studies considering these toxicants, challenges for clinicians using lab testing for these diabetogens, and the necessary interventions for lowering body burden of persistent toxicants are discussed.
Collapse
|
24
|
Bethea TN, Wesselink AK, Weuve J, McClean MD, Hauser R, Williams PL, Ye X, Calafat AM, Baird DD, Wise LA. Correlates of exposure to phenols, parabens, and triclocarban in the Study of Environment, Lifestyle and Fibroids. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2020; 30:117-136. [PMID: 30692588 PMCID: PMC6661224 DOI: 10.1038/s41370-019-0114-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 12/10/2018] [Accepted: 12/26/2018] [Indexed: 05/22/2023]
Abstract
We performed a cross-sectional analysis to identify correlates of urinary concentrations of seven phenols (bisphenols A, F, and S; 2,4-dichlorophenol; 2,5-dichlorophenol; benzophenone-3; triclosan), triclocarban, and four parabens (butyl, ethyl, methyl, and propyl). We analyzed baseline data from 766 participants in the Study of Environment, Lifestyle, and Fibroids, a prospective cohort study of 1693 Black women aged 23-34 years residing in Detroit, Michigan (2010-2012). We collected data on demographic, behavioral, and anthropometric factors via telephone interviews, clinic visits, and self-administered questionnaires. For each biomarker, we used linear regression models to estimate mean differences in log-transformed, creatinine-corrected concentrations across factors of interest. Each biomarker was detected in >50% of participants. Median creatinine-corrected concentrations were the highest for methyl paraben (116.8 μg/g creatinine), propyl paraben (16.8 μg/g creatinine), and benzophenone-3 (13.4 μg/g creatinine). Variables most strongly associated with biomarker concentrations included season of urine collection, education, and body mass index (BMI). BMI was positively associated with bisphenol A and S and triclocarban concentrations and inversely associated with butyl and methyl paraben concentrations. In this cohort of Black women, exposure to phenols, parabens, and triclocarban was prevalent and several factors were associated with biomarker concentrations.
Collapse
Affiliation(s)
- Traci N Bethea
- Slone Epidemiology Center at Boston University, Boston, MA, USA.
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA.
| | - Amelia K Wesselink
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
| | - Jennifer Weuve
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
| | - Michael D McClean
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, USA
| | - Russ Hauser
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Paige L Williams
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Xiaoyun Ye
- National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Antonia M Calafat
- National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Donna D Baird
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Lauren A Wise
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
| |
Collapse
|
25
|
Costa NO, Borges LI, Cavalcanti LF, Montagnini BG, Anselmo Franci JA, Kiss ACI, Gerardin DCC. In utero and lactational exposure to triclocarban: reproductive effects on female rat offspring. J Appl Toxicol 2019; 40:504-514. [PMID: 31869449 DOI: 10.1002/jat.3922] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 10/01/2019] [Accepted: 10/15/2019] [Indexed: 12/29/2022]
Abstract
Triclocarban (TCC) is an antimicrobial compound widely used in personal care products such as soaps, toothpaste, and shampoo. This agent is incompletely removed by wastewater treatment and represents an environmental contaminant. Recent studies have shown that TCC is associated with some endocrine disruptions. The aim of the present study was to evaluate if TCC exposure during critical periods of development (gestation and lactation) could lead to adverse effects on reproductive and behavior parameters of female offspring. Pregnant female Wistar rats were divided into four groups (n = 8-11/group): Control; TCC 0.3 mg/kg (TCC 0.3); TCC 1.5 mg/kg; TCC 3.0 mg/kg (TCC 3.0); and treated daily by oral gavage from gestational day 0 to lactational day 21. The female pups (F1 generation) were weaned on post-natal day 21 and included in the study. No litter-mates were used for the same group. There was a decrease in estradiol levels in the TCC 0.3 and TCC 3.0 groups. Moreover, there was a decrease in progesterone levels and an increase in pre-implantation loss in the TCC 3.0 group in adulthood. It is suggested, in this study, that the decrease in progesterone biosynthesis could interfere with implantation process. The exposure window to TCC is an important factor, as we found alterations only in the offspring.
Collapse
Affiliation(s)
| | - Lorena Ireno Borges
- Department of Physiological Sciences, State University of Londrina, Londrina, Paraná, Brazil
| | | | - Bruno Garcia Montagnini
- Department of Physiological Sciences, State University of Londrina, Londrina, Paraná, Brazil
| | | | - Ana Carolina Inhasz Kiss
- Department of Physiology, Botucatu Biosciences Institute, São Paulo State University, São Paulo, Brazil
| | | |
Collapse
|
26
|
Aker AM, Ferguson KK, Rosario ZY, Mukherjee B, Alshawabkeh AN, Cordero JF, Meeker JD. The associations between prenatal exposure to triclocarban, phenols and parabens with gestational age and birth weight in northern Puerto Rico. ENVIRONMENTAL RESEARCH 2019; 169:41-51. [PMID: 30412856 PMCID: PMC6347499 DOI: 10.1016/j.envres.2018.10.030] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 10/25/2018] [Accepted: 10/26/2018] [Indexed: 05/17/2023]
Abstract
BACKGROUND Prenatal exposure to certain xenobiotics has been associated with adverse birth outcomes. We examined the associations of triclocarban, phenols and parabens in a cohort of 922 pregnant women in Puerto Rico, the Puerto Rico Testsite for Exploring Contamination Threats Program (PROTECT). METHODS Urinary triclocarban, phenols and parabens were measured at three time points in pregnancy (visit 1: 16-20 weeks, visit 2: 20-24 weeks, visit 3: 24-28 weeks gestation). Multiple linear regression (MLR) models were conducted to regress gestational age and birthweight z-scores against each woman's log average concentrations of exposure biomarkers. Logistic regression models were conducted to calculate odds of preterm birth, small or large for gestational age (SGA and LGA) in association with each of the exposure biomarkers. An interaction term between the average urinary biomarker concentration and infant sex was included in models to identify effect modification. The results were additionally stratified by study visit to look for windows of vulnerability. Results were transformed into the change in the birth outcome for an inter-quartile-range difference in biomarker concentration (Δ). RESULTS Average benzophenone-3, methyl- and propyl-paraben concentrations were associated with an increase in gestational age [(Δ 1.90 days; 95% CI: 0.54, 3.26); (Δ 1.63; 95% CI: 0.37, 2.89); (Δ 2.06; 95% CI: 0.63, 3.48), respectively]. Triclocarban was associated with a suggestive 2-day decrease in gestational age (Δ - 1.96; 95% CI: -4.11, 0.19). Bisphenol A measured at visit 1 was associated with a suggestive increase in gestational age (Δ 1.37; 95% CI: -0.05, 2.79). Triclosan was positively associated with gestational age among males, and negatively associated with gestational age among females. Methyl-, butyl- and propyl-paraben were associated with significant 0.50-0.66 decreased odds of SGA. BPS was associated with an increase in the odds of SGA at visit 3, and a suggestive increase in the odds of LGA at visit 1. CONCLUSION Benzophenone-3, methyl-paraben and propyl-paraben were associated with an increase in gestational age. Concentrations of triclocarban, which were much higher than reported in other populations, were associated with a suggestive decrease in gestational age. The direction of the association between triclosan and gestational age differed by infant sex. Parabens were associated with a decrease in SGA, and BPS was associated with both SGA and LGA depending on the study visit. Further studies are required to substantiate these findings.
Collapse
Affiliation(s)
- Amira M Aker
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Kelly K Ferguson
- Epidemiology Branch, Intramural Research Program, National Institute of Environmental Health Sciences, USA
| | - Zaira Y Rosario
- Graduate School of Public Health, Medical Sciences Campus, University of Puerto Rico, San Juan, PR, USA
| | - Bhramar Mukherjee
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | | | - José F Cordero
- College of Public Health, University of Georgia, Athens, GA, USA
| | - John D Meeker
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA.
| |
Collapse
|
27
|
Hipwell AE, Kahn LG, Factor-Litvak P, Porucznik CA, Siegel EL, Fichorova RN, Hamman RF, Klein-Fedyshin M, Harley KG. Exposure to non-persistent chemicals in consumer products and fecundability: a systematic review. Hum Reprod Update 2019; 25:51-71. [PMID: 30307509 PMCID: PMC6295794 DOI: 10.1093/humupd/dmy032] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 07/17/2018] [Accepted: 09/25/2018] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Exposure to non-persistent chemicals in consumer products is ubiquitous and associated with endocrine-disrupting effects. These effects have been linked to infertility and adverse pregnancy outcomes in some studies and could affect couple fecundability, i.e. the capacity to conceive a pregnancy, quantified as time to pregnancy (TTP). OBJECTIVE AND RATIONALE Few epidemiologic studies have examined the impact of non-persistent chemicals specifically on TTP, and the results of these studies have not been synthesized. We undertook a systematic review to summarize the strength of evidence for associations of common non-persistent chemicals with couple fecundability and to identify gaps and limitations in the literature, with the aim of informing policy decisions and future research. SEARCH METHODS We performed an electronic search of English language literature published between 1 January 2007 and 25 August 2017 in MEDLINE, EMBASE.com, Global Health, DART/TOXLINE, POPLINE and DESTAF. We included human retrospective and prospective cohort, cross-sectional and case-control studies that examined phthalates, bisphenol A, triclosan, triclocarban, benzophenones, parabens and glycol ethers in consumer products, and considered TTP or fecundability as an outcome among women, men and couples conceiving without medical assistance. We excluded editorials, opinion pieces, introductions to special sections, articles that described only lifestyle (e.g. caffeine, stress) or clinical factors (e.g. semen parameters, IVF success). Standardized forms for screening, data extraction and study quality were developed using DistillerSR software and completed in duplicate. We used the Newcastle-Ottawa Scale to assess risk of bias and devised additional quality metrics based on specific methodological features of fecundability studies. OUTCOMES The search returned 3456 articles. There were 15 papers from 12 studies which met inclusion criteria, of which eight included biomarkers of chemical exposure. Studies varied widely in terms of exposure characterization, precluding a meta-analytic approach. Among the studies that measured exposure using biospecimens, results were equivocal for associations between either male or female phthalate exposure and TTP. There was preliminary support for associations of female exposure to some parabens and glycol ethers and of male exposure to benzophenone with longer TTP, but further research and replication of these results are needed. The results provided little to no indication that bisphenol A, triclocarban or triclosan exposure was associated with TTP. WIDER IMPLICATIONS Despite a growing literature on couple exposure to non-persistent endocrine-disrupting chemicals and fecundability, evidence for associations between biologically measured exposures and TTP is limited. Equivocal results with different non-persistent chemical compounds and metabolites complicate the interpretation of our findings with respect to TTP, but do not preclude action, given the documented endocrine disrupting effects on other reproductive outcomes as well as fetal development. We therefore advocate for common-sense lifestyle changes in which both females and males seeking to conceive minimize their exposure to non-persistent chemicals. SYSTEMATIC REVIEW REGISTRATION NUMBER CRD42018084304.
Collapse
Affiliation(s)
- Alison E Hipwell
- Department of Psychiatry, University of Pittsburgh, 3811 O'Hara Street, Pittsburgh, PA, USA
| | - Linda G Kahn
- Department of Pediatrics, New York University School of Medicine, 403 East 34th Street, New York, NY, USA
| | - Pam Factor-Litvak
- Department of Epidemiology, Mailman School of Public Health, Columbia University, 722 West 168 Street, New York, NY, USA
| | - Christina A Porucznik
- Department of Family and Preventive Medicine, School of Medicine, University of Utah, 375 Chipeta Way, Salt Lake City, UT, USA
| | - Eva L Siegel
- Department of Epidemiology, Mailman School of Public Health, Columbia University, 722 West 168 Street, New York, NY, USA
| | - Raina N Fichorova
- Department of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women’s Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, USA
| | - Richard F Hamman
- Department of Epidemiology, Colorado School of Public Health, University of Colorado, 13001 East 17th Place, Denver, CO, USA
| | - Michele Klein-Fedyshin
- Health Sciences Library System, School of Medicine, University of Pittsburgh, 3550 Terrace Street, Pittsburgh, PA, USA
| | - Kim G Harley
- Center for Environmental Research and Children’s Health, University of California Berkeley, 1995 University Avenue, Berkley CA, USA
| | | |
Collapse
|
28
|
Delgado DR, Mogollon-Waltero EM, Ortiz CP, Peña MÁ, Almanza OA, Martínez F, Jouyban A. Enthalpy-entropy compensation analysis of the triclocarban dissolution process in some {1,4-dioxane (1) + water (2)} mixtures. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.09.026] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
29
|
Ashrap P, Watkins DJ, Calafat AM, Ye X, Rosario Z, Brown P, Vélez-Vega CM, Alshawabkeh A, Cordero JF, Meeker JD. Elevated concentrations of urinary triclocarban, phenol and paraben among pregnant women in Northern Puerto Rico: Predictors and trends. ENVIRONMENT INTERNATIONAL 2018; 121:990-1002. [PMID: 30316544 PMCID: PMC6361519 DOI: 10.1016/j.envint.2018.08.020] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 07/23/2018] [Accepted: 08/07/2018] [Indexed: 05/21/2023]
Abstract
BACKGROUND Understanding important sources and pathways of exposure to common chemicals known or suspected to impact human health is critical to eliminate or reduce the exposure. This is particularly important in areas such as Puerto Rico, where residents have higher exposures to numerous chemicals, as well as higher rates of many adverse health outcomes, compared to the mainland US. OBJECTIVE The aim of this study was to assess distributions, time trends, and predictors of urinary triclocarban, phenol, and paraben biomarkers measured at multiple times during pregnancy among women living in Northern Puerto Rico. METHODS We recruited 1003 pregnant women between years 2010 and 2016 from prenatal clinics and collected urine samples and questionnaire data on personal care product use at up to three separate visits, between 16 and 28 weeks gestation. Urine samples were analyzed for triclocarban, seven phenols and four parabens: 2,4-dichlorophenol, 2,5-dichlorophenol, benzophenone-3, bisphenol A (BPA), bisphenol S (BPS), bisphenol F, triclosan, butylparaben, ethylparaben, methylparaben, and propylparaben. RESULTS Detectable triclocarban, phenol and paraben concentrations among pregnant women were prevalent and tended to be higher than levels measured in women of reproductive age from the general US population, especially triclocarban, which had a median concentration 37 times higher in Puerto Rico participants (2.6 vs 0.07 ng/mL). A decreasing temporal trend was statistically significant for urine concentrations of BPA during the study period, while the BPA substitute BPS showed an increasing temporal trend. Significant and positive associations were found between biomarker concentrations with the products use in the past 48-h (soap, sunscreen, lotion, cosmetics). There was an increasing trend of triclocarban/triclosan urinary concentrations with increased concentrations of triclocarban/triclosan listed as the active ingredient in the bar soap/liquid soap products reported being used. CONCLUSION Our results suggest several potential exposure sources to triclocarban, phenols, and parabens in this population and may help inform targeted approaches to reduce exposure.
Collapse
Affiliation(s)
- Pahriya Ashrap
- University of Michigan School of Public Health, Department of Environmental Health Sciences, Ann Arbor, MI, United States
| | - Deborah J Watkins
- University of Michigan School of Public Health, Department of Environmental Health Sciences, Ann Arbor, MI, United States
| | - Antonia M Calafat
- Centers for Disease and Control and Prevention, Atlanta, GA, United States
| | - Xiaoyun Ye
- Centers for Disease and Control and Prevention, Atlanta, GA, United States
| | - Zaira Rosario
- Department of Epidemiology and Biostatistics, University of Georgia, Athens, GA, United States
| | - Phil Brown
- College of Social Sciences and Humanities, Northeastern University, Boston, MA, United States
| | - Carmen M Vélez-Vega
- University of Puerto Rico Graduate School of Public Health, UPR Medical Sciences Campus, San Juan, Puerto Rico
| | - Akram Alshawabkeh
- College of Engineering, Northeastern University, Boston, MA, United States
| | - José F Cordero
- Department of Epidemiology and Biostatistics, University of Georgia, Athens, GA, United States
| | - John D Meeker
- University of Michigan School of Public Health, Department of Environmental Health Sciences, Ann Arbor, MI, United States.
| |
Collapse
|