1
|
Kim KY, Kang HH, Cho YJ, Kim SH, Lee SH, Kim SW. Knowledge and Attitudes Toward Obstructive Sleep Apnea Among Korean Pulmonologists: A Nationwide Survey. Cureus 2024; 16:e61747. [PMID: 38975551 PMCID: PMC11226236 DOI: 10.7759/cureus.61747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/05/2024] [Indexed: 07/09/2024] Open
Abstract
BACKGROUND Obstructive sleep apnea (OSA) significantly impacts cardiovascular, metabolic, and respiratory health. In Korea, OSA patients are treated by specialists in internal medicine, otolaryngology, neurology, and psychiatry, but the participation rate of pulmonologists in OSA management is relatively low compared to other specialties. This study investigated the knowledge and attitudes about OSA among Korean pulmonologists. MATERIALS AND METHODS An online survey was conducted, targeting respiratory specialists listed in the Korean Academy of Tuberculosis and Respiratory Diseases directory. The survey used the validated "Obstructive Sleep Apnea Knowledge and Attitudes" (OSAKA) questionnaire, which consists of questions about knowledge and attitudes on OSA. To maximize participation, email invitations were sent three times to the target audience. RESULTS Out of 634 queried pulmonologists, 127 (20%) responded to the survey. The mean age of respondents was 45.4 ± 8.6 years. The respondents' years of specialty acquisition ranged from the 1980s to the 2010s. Additionally, 74 (58.3%) held a doctor's degree, and 96 (75.6%) worked in hospitals with a sleep center. Furthermore, 71 (55.9%) of the pulmonologists reported having experience with OSA patients. Pulmonologists with experience managing OSA patients had significantly higher knowledge and attitude scores compared to those without such experience. Interestingly, older respondents and those who completed their pulmonology training earlier had higher attitude scores. In addition, the knowledge score significantly correlated with responses to the five items of the attitude questionnaire. CONCLUSION This study provides valuable insights into the knowledge and attitudes of Korean pulmonologists regarding OSA. The findings indicate that their knowledge levels are comparable to or better than those in previous studies. These results underscore the need for targeted educational programs and practical training, especially for younger pulmonologists, to enhance their proficiency in managing OSA and to encourage a more active role in its treatment.
Collapse
Affiliation(s)
- Kyu Yean Kim
- Department of Internal Medicine, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Uijeongbu, KOR
| | - Hyeon Hui Kang
- Department of Internal Medicine, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, KOR
| | - Young-Jae Cho
- Department of Internal Medicine, Seoul National University, Bundang Hospital, Seongnam, KOR
| | - Sang-Ha Kim
- Department of Internal Medicine, Wonju College of Medicine, Yonsei University, Wonju, KOR
| | - Sang Haak Lee
- Department of Internal Medicine, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, KOR
| | - Sei Won Kim
- Department of Internal Medicine, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, KOR
| |
Collapse
|
2
|
Self AA, Mesarwi OA. Intermittent Versus Sustained Hypoxemia from Sleep-disordered Breathing: Outcomes in Patients with Chronic Lung Disease and High Altitude. Sleep Med Clin 2024; 19:327-337. [PMID: 38692756 DOI: 10.1016/j.jsmc.2024.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
In a variety of physiologic and pathologic states, people may experience both chronic sustained hypoxemia and intermittent hypoxemia ("combined" or "overlap" hypoxemia). In general, hypoxemia in such instances predicts a variety of maladaptive outcomes, including excess cardiovascular disease or mortality. However, hypoxemia may be one of the myriad phenotypic effects in such states, making it difficult to ascertain whether adverse outcomes are primarily driven by hypoxemia, and if so, whether these effects are due to intermittent versus sustained hypoxemia.
Collapse
Affiliation(s)
- Alyssa A Self
- Division of Pulmonary, Critical Care, and Sleep Medicine and Physiology, University of California, San Diego, 9500 Gilman Drive Mail Code 0623A, La Jolla, CA 92093, USA
| | - Omar A Mesarwi
- Division of Pulmonary, Critical Care, and Sleep Medicine and Physiology, University of California, San Diego, 9500 Gilman Drive Mail Code 0623A, La Jolla, CA 92093, USA.
| |
Collapse
|
3
|
Margaritopoulos GA, Proklou A, Trachalaki A, Badenes Bonet D, Kokosi M, Kouranos V, Chua F, George P, Renzoni EA, Devaraj A, Desai S, Nicholson AG, Antoniou KM, Wells AU. Overnight desaturation in interstitial lung diseases: links to pulmonary vasculopathy and mortality. ERJ Open Res 2024; 10:00740-2023. [PMID: 38348245 PMCID: PMC10860199 DOI: 10.1183/23120541.00740-2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 11/21/2023] [Indexed: 02/15/2024] Open
Abstract
Background Overnight desaturation predicts poor prognosis across interstitial lung diseases (ILDs). The aim of the present study was to investigate whether nocturnal desaturation is associated with pulmonary vasculopathy and mortality. Methods A retrospective single centre study of 397 new ILD patients was carried out including patients with idiopathic pulmonary fibrosis (IPF) (n=107) and patients with non-IPF fibrotic ILD (n=290). This is the largest study to date of the effect of significant nocturnal desaturation (SND) (≥10% of total sleep time with oxygen saturation ≤90% measured by pulse oximetry). Results The prevalence of SND was 28/107 (26.2%) in IPF and 80/290 (27.6%) in non-IPF ILD. The prevalence of SND was higher in non-IPF ILDs than in IPF (p=0.025) in multivariate analysis. SND was associated with noninvasive markers of pulmonary hypertension (PH): tricuspid regurgitation velocity (TRV) (p<0.0001), brain natriuretic peptide (p<0.007), carbon monoxide transfer coefficient (p<0.0001), A-a gradient (p<0.0001), desaturation >4% in 6-min walking test (p<0.03) and pulmonary artery diameter (p<0.005). SND was independently associated with high echocardiographic PH probability in the entire cohort (OR 2.865, 95% CI 1.486-5.522, p<0.002) and in non-IPF fibrotic ILD (OR 3.492, 95% CI 1.597-7.636, p<0.002) in multivariate analysis. In multivariate analysis, SND was associated with mortality in the entire cohort (OR 1.734, 95% CI 1.202-2.499, p=0.003) and in IPF (OR 1.908, 95% CI 1.120-3.251, p=0.017) and non-IPF fibrotic ILD (OR 1.663, 95% CI 1.000-2.819, p=0.041). Separate models with exclusion of each one of the diagnostic subgroups showed that no subgroup was responsible for this finding in non-IPF ILDs. SND was a stronger marker of 5-year mortality than markers of PH. Conclusion SND was associated with high echocardiographic probability and mortality and was a stronger predictor of mortality in IPF and non-IPF ILDs grouped together to power the study.
Collapse
Affiliation(s)
- George A. Margaritopoulos
- Interstitial Lung Disease Unit, London North West University Hospital Healthcare Trust, London, UK
- National Heart and Lung Institute, Imperial College, London, UK
- Interstitial Lung Disease Unit, Royal Brompton Hospital, London, UK
| | - Athanasia Proklou
- Interstitial Lung Disease Unit, Royal Brompton Hospital, London, UK
- Intensive Care Unit, University Hospital of Herakleio, Heraklion, Greece
- These authors contributed equally
| | - Athina Trachalaki
- Interstitial Lung Disease Unit, Royal Brompton Hospital, London, UK
- These authors contributed equally
| | - Diana Badenes Bonet
- Interstitial Lung Disease Unit, Royal Brompton Hospital, London, UK
- Hospital del Mar, Parc de Salut Mar, Barcelona, Spain
| | - Maria Kokosi
- Interstitial Lung Disease Unit, Royal Brompton Hospital, London, UK
| | - Vasilis Kouranos
- Interstitial Lung Disease Unit, Royal Brompton Hospital, London, UK
| | - Felix Chua
- Interstitial Lung Disease Unit, Royal Brompton Hospital, London, UK
| | - Peter George
- Interstitial Lung Disease Unit, Royal Brompton Hospital, London, UK
| | | | - Anand Devaraj
- Radiology Department, Royal Brompton Hospital, London, UK
| | - Sujal Desai
- Radiology Department, Royal Brompton Hospital, London, UK
| | - Andrew G. Nicholson
- National Heart and Lung Institute, Imperial College, London, UK
- Department of Histopathology, Royal Brompton and Harefield Hospitals, Guy's and St Thomas’ NHS Foundation Trust, London, UK
| | - Katerina M. Antoniou
- Interstitial Lung Disease Unit, University Hospital of Herakleio, Heraklion, Greece
- These authors contributed equally
| | - Athol U. Wells
- Interstitial Lung Disease Unit, Royal Brompton Hospital, London, UK
- These authors contributed equally
| |
Collapse
|
4
|
Lee H, Kim IK, Im J, Jin BS, Kim HH, Kim SW, Yeo CD, Lee SH. Effects of aging on accompanying intermittent hypoxia in a bleomycin-induced pulmonary fibrosis mouse model. Korean J Intern Med 2023; 38:934-944. [PMID: 37793985 PMCID: PMC10636542 DOI: 10.3904/kjim.2023.090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/26/2023] [Accepted: 05/30/2023] [Indexed: 10/06/2023] Open
Abstract
BACKGROUND/AIMS Obstructive sleep apnea (OSA) is prevalent in older patients with idiopathic pulmonary fibrosis (IPF); however, it is underrecognized. OSA is characterized by intermittent hypoxia (IH) and sleep fragmentation. In this study, we evaluated the effects of IH in an older mouse model of bleomycin-induced lung fibrosis. METHODS Bleomycin-induced mice (C57BL/6, female) were randomly divided into four groups of young vs. old and room air (RA)-exposed vs. IH-exposed. Mice were exposed to RA or IH (20 cycles/h, FiO2 nadir 7 ± 0.5%, 8 h/day) for four weeks. The mice were sacrificed on day 28, and blood, bronchoalveolar lavage (BAL) fluid, and lung tissue samples were obtained. RESULTS The bleomycin-induced IH-exposed (EBI) older group showed more severe inflammation, fibrosis, and oxidative stress than the other groups. The levels of inflammatory cytokines in the serum and BAL fluid increased in the EBI group. Hydroxyproline levels in the lung tissue increased markedly in the EBI group. CONCLUSION This study demonstrates the possible harmful impact of OSA in an elderly mouse model of lung fibrosis. This study further suggests that older patients with IPF and OSA may be more of a concern than younger patients with IPF. Further research is required in this area.
Collapse
Affiliation(s)
- Heayon Lee
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Eunpyeong St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - In Kyoung Kim
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Eunpyeong St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jeonghyeon Im
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Eunpyeong St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Bae Suk Jin
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Eunpyeong St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Hwan Hee Kim
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Eunpyeong St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Sei Won Kim
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Eunpyeong St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Chang Dong Yeo
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Eunpyeong St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Sang Haak Lee
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Eunpyeong St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
5
|
Sotiropoulos JX, Oei JL. The role of oxygen in the development and treatment of bronchopulmonary dysplasia. Semin Perinatol 2023; 47:151814. [PMID: 37783577 DOI: 10.1016/j.semperi.2023.151814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Oxygen (O2) is crucial for both the development and treatment of one of the most important consequences of prematurity: bronchopulmonary dysplasia (BPD). In fetal life, the hypoxic environment is important for alveolar development and maturation. After birth, O2 becomes a double-edged sword. While O2 is needed to prevent hypoxia, it also causes oxidative stress leading to a plethora of morbidities, including retinopathy and BPD. The advent of continuous O2 monitoring with pulse oximeters has allowed clinicians to recognize the narrow therapeutic margins of oxygenation for the preterm infant, but more knowledge is needed to understand what these ranges are at different stages of the preterm infant's life, including at birth, in the neonatal intensive care unit and after hospital discharge. Future research, especially in innovative technologies such as automated O2 control and remote oximetry, will improve the understanding and treatment of the O2 needs of infants with BPD.
Collapse
Affiliation(s)
- J X Sotiropoulos
- School of Women's and Children's Health, Faculty of Medicine, University of New South Wales, Australia; Department of Newborn Care, The Royal Hospital for Women, Randwick, New South Wales, Australia; NHMRC Clinical Trials Centre, Faculty of Medicine and Health, University of Sydney, Australia
| | - J L Oei
- School of Women's and Children's Health, Faculty of Medicine, University of New South Wales, Australia; Department of Newborn Care, The Royal Hospital for Women, Randwick, New South Wales, Australia; NHMRC Clinical Trials Centre, Faculty of Medicine and Health, University of Sydney, Australia.
| |
Collapse
|
6
|
Yegen CH, Marchant D, Bernaudin JF, Planes C, Boncoeur E, Voituron N. Chronic pulmonary fibrosis alters the functioning of the respiratory neural network. Front Physiol 2023; 14:1205924. [PMID: 37383147 PMCID: PMC10293840 DOI: 10.3389/fphys.2023.1205924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/02/2023] [Indexed: 06/30/2023] Open
Abstract
Some patients with idiopathic pulmonary fibrosis present impaired ventilatory variables characterised by low forced vital capacity values associated with an increase in respiratory rate and a decrease in tidal volume which could be related to the increased pulmonary stiffness. The lung stiffness observed in pulmonary fibrosis may also have an effect on the functioning of the brainstem respiratory neural network, which could ultimately reinforce or accentuate ventilatory alterations. To this end, we sought to uncover the consequences of pulmonary fibrosis on ventilatory variables and how the modification of pulmonary rigidity could influence the functioning of the respiratory neuronal network. In a mouse model of pulmonary fibrosis obtained by 6 repeated intratracheal instillations of bleomycin (BLM), we first observed an increase in minute ventilation characterised by an increase in respiratory rate and tidal volume, a desaturation and a decrease in lung compliance. The changes in these ventilatory variables were correlated with the severity of the lung injury. The impact of lung fibrosis was also evaluated on the functioning of the medullary areas involved in the elaboration of the central respiratory drive. Thus, BLM-induced pulmonary fibrosis led to a change in the long-term activity of the medullary neuronal respiratory network, especially at the level of the nucleus of the solitary tract, the first central relay of the peripheral afferents, and the Pre-Bötzinger complex, the inspiratory rhythm generator. Our results showed that pulmonary fibrosis induced modifications not only of pulmonary architecture but also of central control of the respiratory neural network.
Collapse
Affiliation(s)
- Céline-Hivda Yegen
- Laboratoire Hypoxie & Poumon, UMR INSERM U1272, Université Sorbonne Paris Nord, Bobigny, France
| | - Dominique Marchant
- Laboratoire Hypoxie & Poumon, UMR INSERM U1272, Université Sorbonne Paris Nord, Bobigny, France
| | - Jean-François Bernaudin
- Laboratoire Hypoxie & Poumon, UMR INSERM U1272, Université Sorbonne Paris Nord, Bobigny, France
- Faculté de Médecine, Sorbonne Université, Paris, France
| | - Carole Planes
- Laboratoire Hypoxie & Poumon, UMR INSERM U1272, Université Sorbonne Paris Nord, Bobigny, France
- Service de Physiologie et d’Explorations Fonctionnelles, Hôpital Avicenne, APHP, Bobigny, France
| | - Emilie Boncoeur
- Laboratoire Hypoxie & Poumon, UMR INSERM U1272, Université Sorbonne Paris Nord, Bobigny, France
| | - Nicolas Voituron
- Laboratoire Hypoxie & Poumon, UMR INSERM U1272, Université Sorbonne Paris Nord, Bobigny, France
- Département STAPS, Université Sorbonne Paris Nord, Bobigny, France
| |
Collapse
|
7
|
Xiong M, Wu Z, Zhao Y, Zhao D, Pan Z, Wu X, Liu W, Hu K. Intermittent hypoxia exacerbated depressive and anxiety-like behaviors in the bleomycin-induced pulmonary fibrosis mice. Brain Res Bull 2023; 198:55-64. [PMID: 37094614 DOI: 10.1016/j.brainresbull.2023.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 03/29/2023] [Accepted: 04/21/2023] [Indexed: 04/26/2023]
Abstract
Depression and anxiety are prevalent in patients with idiopathic pulmonary fibrosis (IPF). Recent researchers reveal that intermittent hypoxia (IH) increases the severity of bleomycin (BLM)-induced lung injury. However, experimental studies dealing with anxiety- and depression-like behavior in animal models of BLM-induced pulmonary fibrosis in a combination of IH are lacking, hence, this study aimed to investigate that. In this study, 80 C57BL/6J male mice were intratracheally injected with BLM or normal saline at day0 and then exposed to IH (alternating cycles of FiO2 21% for 60s and FiO2 10% for 30s, 40 cycles/hour, 8hours/day) or intermittent air (IA) for 21 days. Behavioral tests, including open field test (OFT), sucrose preference test (SPT) and tail suspension test (TST), were detected from day22 to day26. This study found that pulmonary fibrosis developed and lung inflammation were activated in BLM-induced mice, which were potentiated by IH. Significant less time in center and less frequency of entries in the centre arena in OFT were observed in BLM treated mice, and IH exposure further decreased that. Marked decreased percent of sucrose preference in SPT, and significant increased immobility time of the TST were detected in BLM treated mice and IH widen the gaps. The expression of ionized calcium-binding adaptor molecule (Iba1) was activated in the hippocampus of BLM instillation mice and IH enlarged it. Moreover, a positive correlation between hippocampal microglia activation and inflammatory factors was observed. Our results demonstrated that IH exacerbated depressive and anxiety-like behaviors in the BLM-induced pulmonary fibrosis mice. The changes in pulmonary inflammation-hippocampal microglia activation may be a potential mechanism in this phenomenon, which can be researched in future.
Collapse
Affiliation(s)
- Mengqing Xiong
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| | - Zuotian Wu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Yang Zhao
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| | - Dong Zhao
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| | - Zhou Pan
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| | - Xiaofeng Wu
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| | - Wei Liu
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| | - Ke Hu
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| |
Collapse
|
8
|
Zhu C, Potenza DM, Yang Y, Ajalbert G, Mertz KD, von Gunten S, Ming XF, Yang Z. Role of pulmonary epithelial arginase-II in activation of fibroblasts and lung inflammaging. Aging Cell 2023; 22:e13790. [PMID: 36794355 PMCID: PMC10086530 DOI: 10.1111/acel.13790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 01/19/2023] [Indexed: 02/17/2023] Open
Abstract
Elevated arginases including type-I (Arg-I) and type-II isoenzyme (Arg-II) are reported to play a role in aging, age-associated organ inflammaging, and fibrosis. A role of arginase in pulmonary aging and underlying mechanisms are not explored. Our present study shows increased Arg-II levels in aging lung of female mice, which is detected in bronchial ciliated epithelium, club cells, alveolar type 2 (AT2) pneumocytes, and fibroblasts (but not vascular endothelial and smooth muscle cells). Similar cellular localization of Arg-II is also observed in human lung biopsies. The age-associated increase in lung fibrosis and inflammatory cytokines, including IL-1β and TGF-β1 that are highly expressed in bronchial epithelium, AT2 cells, and fibroblasts, are ameliorated in arg-ii deficient (arg-ii-/- ) mice. The effects of arg-ii-/- on lung inflammaging are weaker in male as compared to female animals. Conditioned medium (CM) from human Arg-II-positive bronchial and alveolar epithelial cells, but not that from arg-ii-/- cells, activates fibroblasts to produce various cytokines including TGF-β1 and collagen, which is abolished by IL-1β receptor antagonist or TGF-β type I receptor blocker. Conversely, TGF-β1 or IL-1β also increases Arg-II expression. In the mouse models, we confirmed the age-associated increase in IL-1β and TGF-β1 in epithelial cells and activation of fibroblasts, which is inhibited in arg-ii-/- mice. Taken together, our study demonstrates a critical role of epithelial Arg-II in activation of pulmonary fibroblasts via paracrine release of IL-1β and TGF-β1, contributing to pulmonary inflammaging and fibrosis. The results provide a novel mechanistic insight in the role of Arg-II in pulmonary aging.
Collapse
Affiliation(s)
- Cui Zhu
- Laboratory of Cardiovascular and Aging Research, Department of Endocrinology, Metabolism, and Cardiovascular System, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Duilio M Potenza
- Laboratory of Cardiovascular and Aging Research, Department of Endocrinology, Metabolism, and Cardiovascular System, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Yang Yang
- Laboratory of Cardiovascular and Aging Research, Department of Endocrinology, Metabolism, and Cardiovascular System, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Guillaume Ajalbert
- Laboratory of Cardiovascular and Aging Research, Department of Endocrinology, Metabolism, and Cardiovascular System, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Kirsten D Mertz
- Institute for Pathology, Cantonal Hospital Baselland, Liestal, Switzerland
| | | | - Xiu-Fen Ming
- Laboratory of Cardiovascular and Aging Research, Department of Endocrinology, Metabolism, and Cardiovascular System, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Zhihong Yang
- Laboratory of Cardiovascular and Aging Research, Department of Endocrinology, Metabolism, and Cardiovascular System, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
9
|
Chen J, Zhu H, Chen Q, Yang Y, Chen M, Huang J, Chen M, Lian N. The role of ferroptosis in chronic intermittent hypoxia-induced lung injury. BMC Pulm Med 2022; 22:488. [PMID: 36572881 PMCID: PMC9793575 DOI: 10.1186/s12890-022-02262-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 11/24/2022] [Indexed: 12/28/2022] Open
Abstract
PURPOSE Chronic intermittent hypoxia (CIH) causes lung injury but the mechanism is unclear. Ferroptosis is a novel form of programmed cell death. In this research, we attempted to explore the role of ferroptosis in CIH-induced lung injury both in vitro and in vivo. METHODS Sprague-Dawley rats were randomly separated into control group, CIH group and CIH + ferrostatin-1 group (CIH + Fer-1). Rats in the CIH group and CIH + Fer-1 group were exposed to intermittent hypoxia for 12 weeks. Human bronchial epithelial cell line (BEAS-2B) was cultivated for 24 h in either conventional culture medium or under CIH conditions. Fer-1 was applied to observe its treatment effects. Histological changes were evaluated by Hematoxylin-eosin (HE) staining and masson staining. The expression levels of Acyl-CoA synthetase long-chain family member 4 (ACSL4), glutathione peroxidase 4 (GPX4), interleukin-6 (IL-6) and tumour necrosis factor α (TNFα) were detected via qRT-PCR or Western blot. Cell counting kit-8 (CCK-8) was used to assess cell viability. The apoptotic rate and reactive oxygen species (ROS) was calculated by flow cytometry. RESULTS Histology showed that CIH treatment induced lung injury and pulmonary fibrosis in lung tissue. After Fer-1 treatment, the pathological changes caused by CIH alleviated. The mRNA and protein levels of GPX4 decreased significantly in lung tissues of CIH-treated rats and BEAS-2B, (p < 0.05). The mRNA and protein levels of ACSL4 increased significantly in lung tissues of CIH-treated rats and BEAS-2B, (p < 0.05). The mRNA levels of IL-6 and TNFα in BEAS-2B increased after CIH treatment, (p < 0.05). Cell viability decreased, apoptosis rate and ROS increased in CIH-treated BEAS-2B, (p < 0.05). Cotreatment with Fer-1 reversed CIH-induced apoptosis, cell viability, ROS accumulation, mRNA and protein levels of GPX4, ACSL4, IL-6 and TNFα both in vitro and in vivo (p < 0.05). CONCLUSIONS Ferroptosis occurred in CIH-induced lung injury, both in vitro and in vivo. The ferroptosis inhibitor Fer-1 alleviated cell injury and ferroptosis in CIH-treated BEAS-2B and lung tissues of rats.
Collapse
Affiliation(s)
- Jia Chen
- grid.412683.a0000 0004 1758 0400Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Fujian Medical University, No. 20, Chazhong Road, Taijiang District, Fuzhou, 350005 Fujian Province People’s Republic of China ,grid.256112.30000 0004 1797 9307Fujian Provincial Sleep-Disordered Breathing Clinic Center, Institute of Respiratory Disease, Fujian Medical University, Fuzhou, Fujian People’s Republic of China ,grid.256112.30000 0004 1797 9307Department of Respiratory and Critical Care Medicine, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212 People’s Republic of China
| | - Huixin Zhu
- grid.412683.a0000 0004 1758 0400Department of Surgical Care Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian People’s Republic of China
| | - Qin Chen
- grid.411504.50000 0004 1790 1622Clinical Skills Teaching Center, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian Province People’s Republic of China
| | - Yisong Yang
- grid.412683.a0000 0004 1758 0400Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Fujian Medical University, No. 20, Chazhong Road, Taijiang District, Fuzhou, 350005 Fujian Province People’s Republic of China ,grid.256112.30000 0004 1797 9307Fujian Provincial Sleep-Disordered Breathing Clinic Center, Institute of Respiratory Disease, Fujian Medical University, Fuzhou, Fujian People’s Republic of China ,grid.256112.30000 0004 1797 9307Department of Respiratory and Critical Care Medicine, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212 People’s Republic of China
| | - Mengxue Chen
- grid.412683.a0000 0004 1758 0400Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Fujian Medical University, No. 20, Chazhong Road, Taijiang District, Fuzhou, 350005 Fujian Province People’s Republic of China ,grid.256112.30000 0004 1797 9307Fujian Provincial Sleep-Disordered Breathing Clinic Center, Institute of Respiratory Disease, Fujian Medical University, Fuzhou, Fujian People’s Republic of China ,grid.256112.30000 0004 1797 9307Department of Respiratory and Critical Care Medicine, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212 People’s Republic of China
| | - Jiefeng Huang
- grid.412683.a0000 0004 1758 0400Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Fujian Medical University, No. 20, Chazhong Road, Taijiang District, Fuzhou, 350005 Fujian Province People’s Republic of China ,grid.256112.30000 0004 1797 9307Fujian Provincial Sleep-Disordered Breathing Clinic Center, Institute of Respiratory Disease, Fujian Medical University, Fuzhou, Fujian People’s Republic of China ,grid.256112.30000 0004 1797 9307Department of Respiratory and Critical Care Medicine, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212 People’s Republic of China
| | - Menglan Chen
- grid.412683.a0000 0004 1758 0400Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Fujian Medical University, No. 20, Chazhong Road, Taijiang District, Fuzhou, 350005 Fujian Province People’s Republic of China ,grid.256112.30000 0004 1797 9307Fujian Provincial Sleep-Disordered Breathing Clinic Center, Institute of Respiratory Disease, Fujian Medical University, Fuzhou, Fujian People’s Republic of China ,grid.256112.30000 0004 1797 9307Department of Respiratory and Critical Care Medicine, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212 People’s Republic of China
| | - Ningfang Lian
- grid.412683.a0000 0004 1758 0400Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Fujian Medical University, No. 20, Chazhong Road, Taijiang District, Fuzhou, 350005 Fujian Province People’s Republic of China ,grid.256112.30000 0004 1797 9307Fujian Provincial Sleep-Disordered Breathing Clinic Center, Institute of Respiratory Disease, Fujian Medical University, Fuzhou, Fujian People’s Republic of China ,grid.256112.30000 0004 1797 9307Department of Respiratory and Critical Care Medicine, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212 People’s Republic of China
| |
Collapse
|
10
|
Alrashedi MG, Ali AS, Ahmed OA, Ibrahim IM. Local Delivery of Azithromycin Nanoformulation Attenuated Acute Lung Injury in Mice. Molecules 2022; 27:8293. [PMID: 36500388 PMCID: PMC9739299 DOI: 10.3390/molecules27238293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Humanity has suffered from the coronavirus disease 2019 (COVID-19) pandemic over the past two years, which has left behind millions of deaths. Azithromycin (AZ), an antibiotic used for the treatment of several bacterial infections, has shown antiviral activity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) as well as against the dengue, Zika, Ebola, and influenza viruses. Additionally, AZ has shown beneficial effects in non-infective diseases such as cystic fibrosis and bronchiectasis. However, the systemic use of AZ in several diseases showed low efficacy and potential cardiac toxicity. The application of nanotechnology to formulate a lung delivery system of AZ could prove to be one of the solutions to overcome these drawbacks. Therefore, we aimed to evaluate the attenuation of acute lung injury in mice via the local delivery of an AZ nanoformulation. The hot emulsification-ultrasonication method was used to prepare nanostructured lipid carrier of AZ (AZ-NLC) pulmonary delivery systems. The developed formulation was evaluated and characterized in vitro and in vivo. The efficacy of the prepared formulation was tested in the bleomycin (BLM) -mice model for acute lung injury. AZ-NLC was given by the intratracheal (IT) route for 6 days at a dose of about one-eighth oral dose of AZ suspension. Samples of lung tissues were taken at the end of the experiment for immunological and histological assessments. AZ-NLC showed an average particle size of 453 nm, polydispersity index of 0.228 ± 0.07, zeta potential of -30 ± 0.21 mV, and a sustained release pattern after the initial 50% drug release within the first 2 h. BLM successfully induced a marked increase in pro-inflammatory markers and also induced histological changes in pulmonary tissues. All these alterations were significantly reversed by the concomitant administration of AZ-NLC (IT). Pulmonary delivery of AZ-NLC offered delivery of the drug locally to lung tissues. Its attenuation of lung tissue inflammation and histological injury induced by bleomycin was likely through the downregulation of the p53 gene and the modulation of Bcl-2 expression. This novel strategy could eventually improve the effectiveness and diminish the adverse drug reactions of AZ. Lung delivery could be a promising treatment for acute lung injury regardless of its cause. However, further work is needed to explore the stability of the formulation, its pharmacokinetics, and its safety.
Collapse
Affiliation(s)
- Mohsen G. Alrashedi
- Department of Pharmacology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Ministry of Health, Riyadh 12628, Saudi Arabia
| | - Ahmed Shaker Ali
- Department of Pharmacology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut 71515, Egypt
| | - Osama Abdelhakim Ahmed
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ibrahim M. Ibrahim
- Department of Pharmacology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
11
|
Yegen CH, Haine L, Da Costa Ferreira K, Marchant D, Bernaudin JF, Planès C, Voituron N, Boncoeur E. A New Model of Acute Exacerbation of Experimental Pulmonary Fibrosis in Mice. Cells 2022; 11:3379. [PMID: 36359778 PMCID: PMC9654438 DOI: 10.3390/cells11213379] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/07/2022] [Accepted: 10/23/2022] [Indexed: 11/27/2023] Open
Abstract
RATIONALE idiopathic pulmonary fibrosis (IPF) is the most severe form of fibrosing interstitial lung disease, characterized by progressive respiratory failure leading to death. IPF's natural history is heterogeneous, and its progression unpredictable. Most patients develop a progressive decline of respiratory function over years; some remain stable, but others present a fast-respiratory deterioration without identifiable cause, classified as acute exacerbation (AE). OBJECTIVES to develop and characterize an experimental mice model of lung fibrosis AE, mimicking IPF-AE at the functional, histopathological, cellular and molecular levels. METHODS we established in C57BL/6 male mice a chronic pulmonary fibrosis using a repetitive low-dose bleomycin (BLM) intratracheal (IT) instillation regimen (four instillations of BLM every 2 weeks), followed by two IT instillations of a simple or double-dose BLM challenge to induce AE. Clinical follow-up and histological and molecular analyses were done for fibrotic and inflammatory lung remodeling analysis. MEASUREMENTS AND MAIN RESULTS as compared with a low-dose BLM regimen, this AE model induced a late burst of animal mortality, worsened lung fibrosis and remodeling, and superadded histopathological features as observed in humans IPF-AE. This was associated with stronger inflammation, increased macrophage infiltration of lung tissue and increased levels of pro-inflammatory cytokines in lung homogenates. Finally, it induced in the remodeled lung a diffuse expression of hypoxia-inducible factor 1α, a hallmark of tissular hypoxia response and a major player in the progression of IPF. CONCLUSION this new model is a promising model of AE in chronic pulmonary fibrosis that could be relevant to mimic IPF-AE in preclinical trials.
Collapse
Affiliation(s)
- Céline-Hivda Yegen
- Laboratoire Hypoxie & Poumon, UMR INSERM U1272, Université Sorbonne Paris-Nord, 93000 Bobigny, France
| | - Liasmine Haine
- Laboratoire Hypoxie & Poumon, UMR INSERM U1272, Université Sorbonne Paris-Nord, 93000 Bobigny, France
| | - Kevin Da Costa Ferreira
- Laboratoire Hypoxie & Poumon, UMR INSERM U1272, Université Sorbonne Paris-Nord, 93000 Bobigny, France
| | - Dominique Marchant
- Laboratoire Hypoxie & Poumon, UMR INSERM U1272, Université Sorbonne Paris-Nord, 93000 Bobigny, France
| | - Jean-Francois Bernaudin
- Laboratoire Hypoxie & Poumon, UMR INSERM U1272, Université Sorbonne Paris-Nord, 93000 Bobigny, France
- Faculté de Médecine, Sorbonne Université, 75006 Paris, France
- Service de Physiologie et d’Explorations Fonctionnelles, Hôpital Avicenne, APHP, 93000 Bobigny, France
| | - Carole Planès
- Laboratoire Hypoxie & Poumon, UMR INSERM U1272, Université Sorbonne Paris-Nord, 93000 Bobigny, France
- Service de Physiologie et d’Explorations Fonctionnelles, Hôpital Avicenne, APHP, 93000 Bobigny, France
| | - Nicolas Voituron
- Laboratoire Hypoxie & Poumon, UMR INSERM U1272, Université Sorbonne Paris-Nord, 93000 Bobigny, France
- Département STAPS, Université Sorbonne Paris-Nord, 93000 Bobigny, France
| | - Emilie Boncoeur
- Laboratoire Hypoxie & Poumon, UMR INSERM U1272, Université Sorbonne Paris-Nord, 93000 Bobigny, France
| |
Collapse
|
12
|
Torres-Soria AK, Romero Y, Balderas-Martínez YI, Velázquez-Cruz R, Torres-Espíndola LM, Camarena A, Flores-Soto E, Solís-Chagoyán H, Ruiz V, Carlos-Reyes Á, Salinas-Lara C, Luis-García ER, Chávez J, Castillejos-López M, Aquino-Gálvez A. Functional Repercussions of Hypoxia-Inducible Factor-2α in Idiopathic Pulmonary Fibrosis. Cells 2022; 11:cells11192938. [PMID: 36230900 PMCID: PMC9562026 DOI: 10.3390/cells11192938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022] Open
Abstract
Hypoxia and hypoxia-inducible factors (HIFs) are essential in regulating several cellular processes, such as survival, differentiation, and the cell cycle; this adaptation is orchestrated in a complex way. In this review, we focused on the impact of hypoxia in the physiopathology of idiopathic pulmonary fibrosis (IPF) related to lung development, regeneration, and repair. There is robust evidence that the responses of HIF-1α and -2α differ; HIF-1α participates mainly in the acute phase of the response to hypoxia, and HIF-2α in the chronic phase. The analysis of their structure and of different studies showed a high specificity according to the tissue and the process involved. We propose that hypoxia-inducible transcription factor 2a (HIF-2α) is part of the persistent aberrant regeneration associated with developing IPF.
Collapse
Affiliation(s)
- Ana Karen Torres-Soria
- Red MEDICI, Carrera de Médico Cirujano, Facultad de Estudios Superiores de Iztacala Universidad Nacional Autónoma de México, Mexico City 54090, Mexico
| | - Yair Romero
- Facultad de Ciencias, Universidad Nacional Autónoma México, Mexico City 04510, Mexico
| | - Yalbi I. Balderas-Martínez
- Laboratorio de Biología Computacional, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico
| | - Rafael Velázquez-Cruz
- Laboratorio de Genómica del Metabolismo Óseo, Instituto Nacional de Medicina Genómica, Mexico City 14610, Mexico
| | | | - Angel Camarena
- Laboratorio de HLA, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 04530, Mexico
| | - Edgar Flores-Soto
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Héctor Solís-Chagoyán
- Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City 14370, Mexico
| | - Víctor Ruiz
- Departamento de Fibrosis Pulmonar, Laboratorio de Biología Molecular, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico
| | - Ángeles Carlos-Reyes
- Laboratorio de Onco-Inmunobiología, Departamento de Enfermedades Crónico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico
| | - Citlaltepetl Salinas-Lara
- Red MEDICI, Carrera de Médico Cirujano, Facultad de Estudios Superiores de Iztacala Universidad Nacional Autónoma de México, Mexico City 54090, Mexico
| | - Erika Rubí Luis-García
- Departamento de Fibrosis Pulmonar, Laboratorio de Biología Celular, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico
| | - Jaime Chávez
- Departamento de Hiperreactividad Bronquial, Instituto Nacional de Enfermedades, Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico
| | - Manuel Castillejos-López
- Departamento de Epidemiología y Estadística, Instituto Nacional de Enfermedades, Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico
- Correspondence: (M.C.-L.); (A.A.-G.)
| | - Arnoldo Aquino-Gálvez
- Departamento de Fibrosis Pulmonar, Laboratorio de Biología Molecular, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico
- Correspondence: (M.C.-L.); (A.A.-G.)
| |
Collapse
|
13
|
Ali AS, Alrashedi MG, Ahmed OAA, Ibrahim IM. Pulmonary Delivery of Hydroxychloroquine Nanostructured Lipid Carrier as a Potential Treatment of COVID-19. Polymers (Basel) 2022; 14:polym14132616. [PMID: 35808662 PMCID: PMC9269041 DOI: 10.3390/polym14132616] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 06/24/2022] [Indexed: 12/23/2022] Open
Abstract
Coronavirus Disease 2019 (COVID-19) is a pandemic caused by severe acute respiratory syndrome coronavirus 2. Pneumonia is considered the most severe and long-term complication of COVID-19. Among other drugs, hydroxychloroquine (HCQ) was repurposed for the management of COVID-19; however, low efficacy and cardiac toxicity of the conventional dosage form limited its use in COVID-19. Therefore, utilizing nanotechnology, a pulmonary delivery system of HCQ was investigated to overcome these limitations. HCQ was formulated in nanostructured lipid carriers (HCQ-NLCs) using the hot emulsification–ultrasonication method. Furthermore, the prepared formulation was evaluated in vitro. Moreover, the efficacy was tested in vivo in a bleomycin-induced acute lung injury mice model. Intriguingly, nanoformulations were given by the intratracheal route for 6 days. HCQ-NLCs showed a mean particle size of 277 nm and a good drug release profile. Remarkably, acute lung injury induced by bleomycin was associated with a marked elevation of inflammatory markers and histological alterations in lung tissues. Astoundingly, all these changes were significantly attenuated with HCQ-NLCs. The pulmonary delivery of HCQ-NLCs likely provided adequate targeting to lung tissues. Nevertheless, there is hope that this novel strategy will eventually lead to the improved effectiveness and diminished probability of alarming adverse drug reactions.
Collapse
Affiliation(s)
- Ahmed Shaker Ali
- Department of Pharmacology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.S.A.); (M.G.A.)
- Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut 71515, Egypt
| | - Mohsen Geza Alrashedi
- Department of Pharmacology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.S.A.); (M.G.A.)
- Ministry of Health, Riyadh 12628, Saudi Arabia
| | - Osama Abdelhakim Aly Ahmed
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Ibrahim M. Ibrahim
- Department of Pharmacology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.S.A.); (M.G.A.)
- Correspondence:
| |
Collapse
|
14
|
Extracellular Lipids in the Lung and Their Role in Pulmonary Fibrosis. Cells 2022; 11:cells11071209. [PMID: 35406772 PMCID: PMC8997955 DOI: 10.3390/cells11071209] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/20/2022] [Accepted: 03/25/2022] [Indexed: 02/04/2023] Open
Abstract
Lipids are major actors and regulators of physiological processes within the lung. Initial research has described their critical role in tissue homeostasis and in orchestrating cellular communication to allow respiration. Over the past decades, a growing body of research has also emphasized how lipids and their metabolism may be altered, contributing to the development and progression of chronic lung diseases such as pulmonary fibrosis. In this review, we first describe the current working model of the mechanisms of lung fibrogenesis before introducing lipids and their cellular metabolism. We then summarize the evidence of altered lipid homeostasis during pulmonary fibrosis, focusing on their extracellular forms. Finally, we highlight how lipid targeting may open avenues to develop therapeutic options for patients with lung fibrosis.
Collapse
|
15
|
Rajtik T, Galis P, Bartosova L, Paulis L, Goncalvesova E, Klimas J. Alternative RAS in Various Hypoxic Conditions: From Myocardial Infarction to COVID-19. Int J Mol Sci 2021; 22:ijms222312800. [PMID: 34884604 PMCID: PMC8657827 DOI: 10.3390/ijms222312800] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/20/2021] [Accepted: 11/24/2021] [Indexed: 12/28/2022] Open
Abstract
Alternative branches of the classical renin–angiotensin–aldosterone system (RAS) represent an important cascade in which angiotensin 2 (AngII) undergoes cleavage via the action of the angiotensin-converting enzyme 2 (ACE2) with subsequent production of Ang(1-7) and other related metabolites eliciting its effects via Mas receptor activation. Generally, this branch of the RAS system is described as its non-canonical alternative arm with counterbalancing actions to the classical RAS, conveying vasodilation, anti-inflammatory, anti-remodeling and anti-proliferative effects. The implication of this branch was proposed for many different diseases, ranging from acute cardiovascular conditions, through chronic respiratory diseases to cancer, nonetheless, hypoxia is one of the most prominent common factors discussed in conjugation with the changes in the activity of alternative RAS branches. The aim of this review is to bring complex insights into the mechanisms behind the various forms of hypoxic insults on the activity of alternative RAS branches based on the different duration of stimuli and causes (acute vs. intermittent vs. chronic), localization and tissue (heart vs. vessels vs. lungs) and clinical relevance of studied phenomenon (experimental vs. clinical condition). Moreover, we provide novel insights into the future strategies utilizing the alternative RAS as a diagnostic tool as well as a promising pharmacological target in serious hypoxia-associated cardiovascular and cardiopulmonary diseases.
Collapse
Affiliation(s)
- Tomas Rajtik
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, 832 32 Bratislava, Slovakia; (P.G.); (L.B.); (J.K.)
- Correspondence: ; Tel.: +42-12-501-17-391
| | - Peter Galis
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, 832 32 Bratislava, Slovakia; (P.G.); (L.B.); (J.K.)
| | - Linda Bartosova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, 832 32 Bratislava, Slovakia; (P.G.); (L.B.); (J.K.)
| | - Ludovit Paulis
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, 811 08 Bratislava, Slovakia;
| | - Eva Goncalvesova
- Department of Heart Failure, Clinic of Cardiology, National Institute of Cardiovascular Diseases, 831 01 Bratislava, Slovakia;
| | - Jan Klimas
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, 832 32 Bratislava, Slovakia; (P.G.); (L.B.); (J.K.)
| |
Collapse
|
16
|
Xiong M, Zhao Y, Mo H, Yang H, Yue F, Hu K. Intermittent hypoxia increases ROS/HIF-1α 'related oxidative stress and inflammation and worsens bleomycin-induced pulmonary fibrosis in adult male C57BL/6J mice. Int Immunopharmacol 2021; 100:108165. [PMID: 34560512 DOI: 10.1016/j.intimp.2021.108165] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/05/2021] [Accepted: 09/14/2021] [Indexed: 10/20/2022]
Abstract
Obstructive sleep apnea (OSA) has been increasingly recognized as a risk factor for idiopathic pulmonary fibrosis (IPF). The intermittent hypoxia (IH) and re-oxygenation of OSA contribute to poor outcomes of IPF, however, the potential mechanism remains unknown. Here, C57BL/6J mice were administered intratracheal injection of Bleomycin (BLM) or saline and then exposed to IH (alternating cycles of FiO2 21% for 60S and FiO2 10% for 30 s, 40 cycles/hour, 8 h/day) to mimic OSA or intermittent air (IA) for 4 days, 8 days or 21 days. This study found that pulmonary fibrosis in BLM + IH treated mice was more severe than that in BLM + IA group at day 8 and 21, but not observed at day 4. Besides, the expression of reactive oxygen species (ROS) and hypoxia inducible factor-1α (HIF-1α),which are related to hypoxia reduced oxidative stress and inflammation, were higher in BLM + IH treated mice than BLM + IA mice, and IH increased these indexes in BLM treated mice from day 4 to day 21. Interestingly, a positive linear correlation between the HIF-1α expression and hydroxyproline (HYP) content was observed. We further found some inflammatory cells in bronchoalveolar lavage fluid were increased significantly from day 4 to 21, and there was a positive correlation between inflammation and ROS expression. Our results demonstrated that IH aggravated BLM-induced pulmonary fibrosis, and ROS/HIF-1α related oxidative stress and inflammation involved. The increase of ROS/HIF-1α related oxidative stress and inflammation may be a potential mechanism of moderate-to-severe OSA in potentiating pulmonary fibrosis of IPF, which warrants further study.
Collapse
Affiliation(s)
- Mengqing Xiong
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| | - Yang Zhao
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| | - Huaheng Mo
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| | - Haizhen Yang
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| | - Fang Yue
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| | - Ke Hu
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| |
Collapse
|
17
|
Haine L, Bravais J, Yegen CH, Bernaudin JF, Marchant D, Planès C, Voituron N, Boncoeur E. Sleep Apnea in Idiopathic Pulmonary Fibrosis: A Molecular Investigation in an Experimental Model of Fibrosis and Intermittent Hypoxia. Life (Basel) 2021; 11:973. [PMID: 34575121 PMCID: PMC8466672 DOI: 10.3390/life11090973] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/09/2021] [Accepted: 09/10/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND High prevalence of obstructive sleep apnea (OSA) is reported in incident and prevalent forms of idiopathic pulmonary fibrosis (IPF). We previously reported that Intermittent Hypoxia (IH), the major pathogenic element of OSA, worsens experimental lung fibrosis. Our objective was to investigate the molecular mechanisms involved. METHODS Impact of IH was evaluated on C57BL/6J mice developing lung fibrosis after intratracheal instillation of Bleomycin (BLM). Mice were Pre-exposed 14 days to IH before induction of lung fibrosis or Co-challenged with IH and BLM for 14 days. Weight loss and survival were daily monitored. After experimentations, lungs were sampled for histology, and protein and RNA were extracted. RESULTS Co-challenge or Pre-exposure of IH and BLM induced weight loss, increased tissue injury and collagen deposition, and pro-fibrotic markers. Major worsening effects of IH exposure on lung fibrosis were observed when mice were Pre-exposed to IH before developing lung fibrosis with a strong increase in sXBP1 and ATF6N ER stress markers. CONCLUSION Our results showed that IH exacerbates BLM-induced lung fibrosis more markedly when IH precedes lung fibrosis induction, and that this is associated with an enhancement of ER stress markers.
Collapse
Affiliation(s)
- Liasmine Haine
- UMR INSERM U1272 Hypoxie & Poumon, Université Sorbonne Paris Nord, 93017 Bobigny, France; (L.H.); (J.B.); (C.-H.Y.); (J.-F.B.); (D.M.); (C.P.); (N.V.)
| | - Juliette Bravais
- UMR INSERM U1272 Hypoxie & Poumon, Université Sorbonne Paris Nord, 93017 Bobigny, France; (L.H.); (J.B.); (C.-H.Y.); (J.-F.B.); (D.M.); (C.P.); (N.V.)
| | - Céline-Hivda Yegen
- UMR INSERM U1272 Hypoxie & Poumon, Université Sorbonne Paris Nord, 93017 Bobigny, France; (L.H.); (J.B.); (C.-H.Y.); (J.-F.B.); (D.M.); (C.P.); (N.V.)
| | - Jean-Francois Bernaudin
- UMR INSERM U1272 Hypoxie & Poumon, Université Sorbonne Paris Nord, 93017 Bobigny, France; (L.H.); (J.B.); (C.-H.Y.); (J.-F.B.); (D.M.); (C.P.); (N.V.)
- Faculté de Médecine, Sorbonne Université, 75012 Paris, France
| | - Dominique Marchant
- UMR INSERM U1272 Hypoxie & Poumon, Université Sorbonne Paris Nord, 93017 Bobigny, France; (L.H.); (J.B.); (C.-H.Y.); (J.-F.B.); (D.M.); (C.P.); (N.V.)
| | - Carole Planès
- UMR INSERM U1272 Hypoxie & Poumon, Université Sorbonne Paris Nord, 93017 Bobigny, France; (L.H.); (J.B.); (C.-H.Y.); (J.-F.B.); (D.M.); (C.P.); (N.V.)
- Service de Physiologie et d’Explorations Fonctionnelles, Hôpital Avicenne, APHP, Hôpitaux de Paris, 93000 Bobigny, France
| | - Nicolas Voituron
- UMR INSERM U1272 Hypoxie & Poumon, Université Sorbonne Paris Nord, 93017 Bobigny, France; (L.H.); (J.B.); (C.-H.Y.); (J.-F.B.); (D.M.); (C.P.); (N.V.)
- Département STAPS, Université Sorbonne Paris-Nord, 93000 Bobigny, France
| | - Emilie Boncoeur
- UMR INSERM U1272 Hypoxie & Poumon, Université Sorbonne Paris Nord, 93017 Bobigny, France; (L.H.); (J.B.); (C.-H.Y.); (J.-F.B.); (D.M.); (C.P.); (N.V.)
| |
Collapse
|
18
|
Yuan Y, Li Y, Qiao G, Zhou Y, Xu Z, Hill C, Jiang Z, Wang Y. Hyperbaric Oxygen Ameliorates Bleomycin-Induced Pulmonary Fibrosis in Mice. Front Mol Biosci 2021; 8:675437. [PMID: 34150851 PMCID: PMC8211992 DOI: 10.3389/fmolb.2021.675437] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 04/30/2021] [Indexed: 11/25/2022] Open
Abstract
The prevalence of pulmonary fibrosis is increasing with an aging population and its burden is likely to increase following COVID-19, with large financial and medical implications. As approved therapies in pulmonary fibrosis only slow disease progression, there is a significant unmet medical need. Hyperbaric oxygen (HBO) is the inhaling of pure oxygen, under the pressure of greater than one atmosphere absolute, and it has been reported to improve pulmonary function in patients with pulmonary fibrosis. Our recent study suggested that repetitive HBO exposure may affect biological processes in mice lungs such as response to wounding and extracellular matrix. To extend these findings, a bleomycin-induced pulmonary fibrosis mouse model was used to evaluate the effect of repetitive HBO exposure on pulmonary fibrosis. Building on our previous findings, we provide evidence that HBO exposure attenuates bleomycin-induced pulmonary fibrosis in mice. In vitro, HBO exposure could reverse, at least partially, transforming growth factor (TGF)-β-induced fibroblast activation, and this effect may be mediated by downregulating TGF-β-induced expression of hypoxia inducible factor (HIF)-1α. These findings support HBO as a potentially life-changing therapy for patients with pulmonary fibrosis, although further research is needed to fully evaluate this.
Collapse
Affiliation(s)
- Yuan Yuan
- Department of Neurophysiology and Neuropharmacology, Institute of Special Environmental Medicine and Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Yali Li
- Department of Neurophysiology and Neuropharmacology, Institute of Special Environmental Medicine and Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Guoqiang Qiao
- Department of Neurophysiology and Neuropharmacology, Institute of Special Environmental Medicine and Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Yilu Zhou
- Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, United Kingdom
- Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Zijian Xu
- Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Charlotte Hill
- Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Zhenglin Jiang
- Department of Neurophysiology and Neuropharmacology, Institute of Special Environmental Medicine and Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Yihua Wang
- Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, United Kingdom
- Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
19
|
Macarlupu J, Marchant D, Jeton F, Villafuerte F, Richalet J, Voituron N. Effect of exercise training in rats exposed to chronic hypoxia: Application for Monge's disease. Physiol Rep 2021; 9:e14750. [PMID: 33904648 PMCID: PMC8077116 DOI: 10.14814/phy2.14750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 01/18/2021] [Accepted: 01/18/2021] [Indexed: 11/26/2022] Open
Abstract
Physical exercise may improve hematological conditions in high altitude dwellers suffering from Chronic Mountain Sickness (CMS), in reducing hemoglobin concentration. Therefore, the present study aimed to characterize the effects of 1-month exercise training session in a model of rats exposed to chronic hypoxia. Four groups of male rats were studied: normoxic sedentary (NS, n = 8), normoxic training (NT, n = 8), hypoxic sedentary (HS, n = 8), and hypoxic training group (HT, n = 8). Hypoxic groups were exposed to hypobaric hypoxia for one month (PB =433 Torr). Training intensity was progressively increased from a running speed of 10.4 to 17.8 m/min. Chronic hypoxia led to an increase in hematocrit (HCT) associated with a decrease in plasma volume despite an increase in water intake. Training led to a reduction in HCT (p < 0.01), with a non-significant increase in plasma volume and weight gain. Hypoxia and training had inhibitory effects on haptoglobin (NS group: 379 ± 92; HT: 239 ± 34 µg/ml, p < 0.01). Chronic hypoxia and exercise training increased SpO2 measured after acute hypoxic exposure. Training blunted the decrease in V ˙ O2 peak, time of exhaustion, and maximum speed associated with chronic exposure to hypoxia. Chronic hypoxia led to a right ventricular hypertrophy, which was not corrected by 1-month exercise training. Altogether, by decreasing hematocrit, reducing body weight, and limiting performance decrease, training in hypoxia may have a beneficial effect on excessive erythropoiesis in chronic hypoxia. Therefore, regular exercise training might be beneficial to avoid worsening of CMS symptoms in high altitude dwellers and to improve their quality of life.
Collapse
Affiliation(s)
- José‐Luis Macarlupu
- Laboratorio de Fisiología ComparadaLaboratorio de Adaptación a la Altura‐LIDUnidad de Transporte de Oxigeno‐IIAUniversidad Peruana Cayetano HerediaLimaPeru
- Laboratoire Hypoxie et PoumonUMR INSERM U1272Université Sorbonne Paris NordBobignyFrance
| | - Dominique Marchant
- Laboratoire Hypoxie et PoumonUMR INSERM U1272Université Sorbonne Paris NordBobignyFrance
| | - Florine Jeton
- Laboratoire Hypoxie et PoumonUMR INSERM U1272Université Sorbonne Paris NordBobignyFrance
- Laboratory of Excellence GReXParisFrance
| | - Francisco Villafuerte
- Laboratorio de Fisiología ComparadaLaboratorio de Adaptación a la Altura‐LIDUnidad de Transporte de Oxigeno‐IIAUniversidad Peruana Cayetano HerediaLimaPeru
| | - Jean‐Paul Richalet
- Laboratoire Hypoxie et PoumonUMR INSERM U1272Université Sorbonne Paris NordBobignyFrance
- Laboratory of Excellence GReXParisFrance
| | - Nicolas Voituron
- Laboratoire Hypoxie et PoumonUMR INSERM U1272Université Sorbonne Paris NordBobignyFrance
- Laboratory of Excellence GReXParisFrance
- Département STAPSUniversité Sorbonne Paris NordBobignyFrance
| |
Collapse
|
20
|
Wu G, Lee YY, Gulla EM, Potter A, Kitzmiller J, Ruben MD, Salomonis N, Whitsett JA, Francey LJ, Hogenesch JB, Smith DF. Short-term exposure to intermittent hypoxia leads to changes in gene expression seen in chronic pulmonary disease. eLife 2021; 10:63003. [PMID: 33599610 PMCID: PMC7909952 DOI: 10.7554/elife.63003] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 02/17/2021] [Indexed: 12/16/2022] Open
Abstract
Obstructive sleep apnea (OSA) results from episodes of airway collapse and intermittent hypoxia (IH) and is associated with a host of health complications. Although the lung is the first organ to sense changes in oxygen levels, little is known about the consequences of IH to the lung hypoxia-inducible factor-responsive pathways. We hypothesized that exposure to IH would lead to cell-specific up- and downregulation of diverse expression pathways. We identified changes in circadian and immune pathways in lungs from mice exposed to IH. Among all cell types, endothelial cells showed the most prominent transcriptional changes. Upregulated genes in myofibroblast cells were enriched for genes associated with pulmonary hypertension and included targets of several drugs currently used to treat chronic pulmonary diseases. A better understanding of the pathophysiologic mechanisms underlying diseases associated with OSA could improve our therapeutic approaches, directing therapies to the most relevant cells and molecular pathways.
Collapse
Affiliation(s)
- Gang Wu
- Divisions of Human Genetics and Immunobiology, Center for Circadian Medicine, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, United States
| | - Yin Yeng Lee
- Divisions of Human Genetics and Immunobiology, Center for Circadian Medicine, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, United States.,Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, United States
| | - Evelyn M Gulla
- Division of Pediatric Otolaryngology - Head and Neck Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, United States
| | - Andrew Potter
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, United States
| | - Joseph Kitzmiller
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, United States
| | - Marc D Ruben
- Divisions of Human Genetics and Immunobiology, Center for Circadian Medicine, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, United States
| | - Nathan Salomonis
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, United States.,Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, United States
| | - Jeffery A Whitsett
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, United States
| | - Lauren J Francey
- Divisions of Human Genetics and Immunobiology, Center for Circadian Medicine, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, United States
| | - John B Hogenesch
- Divisions of Human Genetics and Immunobiology, Center for Circadian Medicine, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, United States
| | - David F Smith
- Division of Pediatric Otolaryngology - Head and Neck Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, United States.,Division of Pulmonary Medicine and the Sleep Center, Cincinnati Children's Hospital Medical Center, Cincinnati, United States.,The Center for Circadian Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, United States.,Department of Otolaryngology-Head and Neck Surgery, University of Cincinnati College of Medicine, Cincinnati, United States
| |
Collapse
|
21
|
Periera-Simon S, Xia X, Catanuto P, Coronado R, Kurtzberg J, Bellio M, Lee YS, Khan A, Smith R, Elliot SJ, Glassberg MK. Anti-fibrotic effects of different sources of MSC in bleomycin-induced lung fibrosis in C57BL6 male mice. Respirology 2021; 26:161-170. [PMID: 32851725 DOI: 10.1111/resp.13928] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 07/14/2020] [Accepted: 07/20/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND OBJECTIVE IPF is a fatal and debilitating lung disorder increasing in incidence worldwide. To date, two approved treatments only slow disease progression, have multiple side effects and do not provide a cure. MSC have promising therapeutic potential as a cell-based therapy for many lung disorders based on the anti-fibrotic properties of the MSC. METHODS Critical questions remain surrounding the optimal source, timing and efficacy of cell-based therapies. The present study examines the most effective sources of MSC. Human MSC were derived from adipose, WJ, chorionic membrane (CSC) and chorionic villi (CVC). MSC were injected into the ageing mouse model of BLM-induced lung fibrosis. RESULTS All sources decreased Aschroft and hydroxyproline levels when injected into BLM-treated mice at day 10 with the exception of CSC cells that did not change hydroxyproline levels. There were also decreases in mRNA expression of αv -integrin and TNFα in all sources except CSC. Only ASC- and WJ-derived cells reduced AKT and MMP-2 activation, while Cav-1 was increased by ASC treatment as previously reported. BLM-induced miR dysregulation of miR-29 and miR-199 was restored only by ASC treatment. CONCLUSION Our data suggest that sources of MSC may differ in the pathway(s) involved in repair.
Collapse
Affiliation(s)
- Simone Periera-Simon
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Xiaomei Xia
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Paola Catanuto
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | | | - Joanne Kurtzberg
- Marcus Center for Cellular Cures at Duke, Duke University School of Medicine, Durham, NC, USA
| | - Michael Bellio
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Yee-Shuan Lee
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Aisha Khan
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Robin Smith
- Department of Medicine, Rutgers University, New Brunswick, NJ, USA
| | - Sharon J Elliot
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Marilyn K Glassberg
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, The University of Arizona School of Medicine, Phoenix, AZ, USA
| |
Collapse
|
22
|
Kang HH, Kim IK, Yeo CD, Kim SW, Lee HY, Im JH, Kwon HY, Lee SH. The Effects of Chronic Intermittent Hypoxia in Bleomycin-Induced Lung Injury on Pulmonary Fibrosis via Regulating the NF-κB/Nrf2 Signaling Pathway. Tuberc Respir Dis (Seoul) 2020; 83:S63-S74. [PMID: 33027868 PMCID: PMC7837382 DOI: 10.4046/trd.2020.0112] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 10/08/2020] [Indexed: 12/15/2022] Open
Abstract
Background Obstructive sleep apnea (OSA) is associated with pulmonary fibrosis. Chronic intermittent hypoxia (CIH) is considered to be a surrogate of OSA. However, its exact role in pulmonary fibrosis remains uncertain. Therefore, we investigated the mechanism underlying CIH-induced pulmonary fibrosis and the role of the anti-fibrotic agent in bleomycin (BLE) induced lung injury. Methods Mice were divided into eight groups: the normoxia (NOR), CIH, NOR plus BLE, CIH plus BLE, NOR plus pirfenidone (PF), CIH plus PF, NOR plus BLE and PF, and CIH plus BLE and PF groups. BLE was administered intratracheally on day 14 following CIH or NOR exposure. Subsequently, the mice were exposed to CIH or NOR for an additional 4 weeks. PF was administered orally on day 5 after BLE instillation once daily for 3 weeks. Results In the BLE-treated groups, CIH-induced more collagen deposition in lung tissues than NOR, and significantly increased hydroxyproline and transforming growth factor-β expression. The CIH and BLE-treated groups showed increased lung inflammation compared to NOR or CIH groups. Following CIH with BLE treatment, nuclear factor-κB (NF-κB) protein expression was significantly increased, whereas nuclear factor-erythroid-related factor 2 (Nrf2) and heme oxygenase-1 protein levels were decreased. After PF treatment, NF-κB and Kelch-like ECH-associated protein 1 expression were suppressed, and Nrf2 expression was increased. Conclusion CIH accelerated lung fibrosis in BLE-induced lung injury in mice, potentially by regulating the NF-κB/Nrf2 signaling pathway. Our results implicate PF as a potential therapeutic agent for treating pulmonary fibrosis in individuals with OSA and idiopathic pulmonary fibrosis.
Collapse
Affiliation(s)
- Hyeon Hui Kang
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Korea
| | - In Kyoung Kim
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea.,Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Chang Dong Yeo
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Sei Won Kim
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Hea Yon Lee
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jeong Hyeon Im
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Hee Young Kwon
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Sang Haak Lee
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea.,Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
23
|
Kim SW, Kim IK, Yeo CD, Kang HH, Ban WH, Kwon HY, Lee SH. Effects of chronic intermittent hypoxia caused by obstructive sleep apnea on lipopolysaccharide-induced acute lung injury. Exp Lung Res 2020; 46:341-351. [PMID: 32791028 DOI: 10.1080/01902148.2020.1804646] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
AIM OF THE STUDY Obstructive sleep apnea (OSA) is a common disease associated with significant morbidity and mortality. Sleep quality is an important issue; some patients with acute lung injury (ALI) have underlying OSA. However, the potential influences of OSA on ALI have not been reported until now. In this study, we evaluated the impact of preceding intermittent hypoxia (IH), a typical characteristic of OSA, on lipopolysaccharide (LPS)-induced ALI in a mouse model. METHODS C57BL/6J mice were randomly divided into four groups: room air-control (RA-CTL), intermittent hypoxia-control (IH-CTL), room air-lipopolysaccharide (RA-LPS), and intermittent hypoxia-lipopolysaccharide (IH-LPS) groups. The mice were exposed to RA or IH (20 cycles/h, FiO2 nadir 7 ± 0.5%, 8 h/day) for 30 days. The LPS groups received intratracheal LPS on day 28. RESULTS The IH-LPS group tended to exhibit more severe inflammation, fibrosis, and oxidative stress compared to the other groups, including the RA-LPS group. Total cell, neutrophil, and eosinophil counts in bronchoalveolar lavage fluid increased significantly in the IH-LPS group compared to the RA-LPS group. Compared to the RA-LPS group, the hydroxyproline level increased significantly in the IH-LPS group. In addition, the IH-LPS group exhibited significantly more terminal deoxynucleotidyl transferase dUTP nick end labeled-positive cells compared to the RA-LPS group. CONCLUSIONS We found that prior IH may negatively impact LPS-induced ALI in a mouse model. This result suggests that ALI in patients with OSA may be more of a concern. Further research into the mechanisms underlying the effects of IH on ALI is needed.
Collapse
Affiliation(s)
- Sei Won Kim
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - In Kyoung Kim
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.,Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Chang Dong Yeo
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hyeon Hui Kang
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Woo Ho Ban
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hee Young Kwon
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sang Haak Lee
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.,Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
24
|
Luo S, Gong J, Cao X, Liu S. Ligustilide modulates oxidative stress, apoptosis, and immunity to avoid pathological damages in bleomycin induced pulmonary fibrosis rats via inactivating TLR4/MyD88/NF-KB P65. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:931. [PMID: 32953731 PMCID: PMC7475441 DOI: 10.21037/atm-20-4233] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Background Pulmonary fibrosis (PF) is a fatal disease with increasing incidence. Ligustilide (LIG) has been shown to inhibit oxidative stress, apoptosis, and inflammation. Here we investigated the possible effect of LIG on bleomycin-induced PF in Sprague-Dawley rats. Methods PF rats were set up through a single endotracheal injection of bleomycin (5 mg/kg). Then rats were treated with 20, 40, and 80 mg/kg LIG for four weeks, and the effects were estimated. Results Overall, LIG significantly improved ventilation and reduced hyperplasia, and treatment of LIG reduced fibrosis as indicated by Masson staining and reduced expression of transforming growth factor-beta (TGF-β), Fibronectin, and alpha-smooth muscle actin (α-SMA). Oxidative stress was induced with bleomycin while inhibited with LIG, as showed with rebalanced serum lactate dehydrogenase (LDH), and tissue superoxide dismutase (SOD), glutathione peroxidase (GSH) and malondialdehyde (MDA). Apoptosis was further inhibited with LIG, as shown with Terminal dUTP nick-end labeling (TUNEL) staining and expression of Caspase-3, Caspase-9, Bax, and Bcl-2. Th1/Th2 balance was also rebuilt as evaluated with CD4 and IFNγ/IL-4 labeled flow cytometry of peripheral blood mononuclear cells (PBMCs) and expression of inducible nitric oxide synthase (iNOS) and IL-10 in the serum and lung. Protein expression of Toll-like receptor 4 (TLR4), HSP60-TLR4-myeloid differentiation factor 88 (Myd88) and nuclear factor-kappa B (NF-κB) p-P65/P65 was significantly reduced with LIG treatment. All the effects of LIG exhibited in a dose-dependent way. Conclusions LIG improved bleomycin-induced PF with improved ventilation, reduced fibroblast, reduced oxidative stress and apoptosis, and rebalanced Th1/Th2 immunity, through TLR4/MyD88/NF-κB P65 signaling.
Collapse
Affiliation(s)
- Shu Luo
- Department of Emergency, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Junzuo Gong
- Department of Emergency, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Xiaoping Cao
- Department of Emergency, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Shiping Liu
- Department of Emergency, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| |
Collapse
|
25
|
Yu Q, Tai YY, Tang Y, Zhao J, Negi V, Culley MK, Pilli J, Sun W, Brugger K, Mayr J, Saggar R, Saggar R, Wallace WD, Ross DJ, Waxman AB, Wendell SG, Mullett SJ, Sembrat J, Rojas M, Khan OF, Dahlman JE, Sugahara M, Kagiyama N, Satoh T, Zhang M, Feng N, Gorcsan J, Vargas SO, Haley KJ, Kumar R, Graham BB, Langer R, Anderson DG, Wang B, Shiva S, Bertero T, Chan SY. BOLA (BolA Family Member 3) Deficiency Controls Endothelial Metabolism and Glycine Homeostasis in Pulmonary Hypertension. Circulation 2020; 139:2238-2255. [PMID: 30759996 DOI: 10.1161/circulationaha.118.035889] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Deficiencies of iron-sulfur (Fe-S) clusters, metal complexes that control redox state and mitochondrial metabolism, have been linked to pulmonary hypertension (PH), a deadly vascular disease with poorly defined molecular origins. BOLA3 (BolA Family Member 3) regulates Fe-S biogenesis, and mutations in BOLA3 result in multiple mitochondrial dysfunction syndrome, a fatal disorder associated with PH. The mechanistic role of BOLA3 in PH remains undefined. METHODS In vitro assessment of BOLA3 regulation and gain- and loss-of-function assays were performed in human pulmonary artery endothelial cells using siRNA and lentiviral vectors expressing the mitochondrial isoform of BOLA3. Polymeric nanoparticle 7C1 was used for lung endothelium-specific delivery of BOLA3 siRNA oligonucleotides in mice. Overexpression of pulmonary vascular BOLA3 was performed by orotracheal transgene delivery of adeno-associated virus in mouse models of PH. RESULTS In cultured hypoxic pulmonary artery endothelial cells, lung from human patients with Group 1 and 3 PH, and multiple rodent models of PH, endothelial BOLA3 expression was downregulated, which involved hypoxia inducible factor-2α-dependent transcriptional repression via histone deacetylase 1-mediated histone deacetylation. In vitro gain- and loss-of-function studies demonstrated that BOLA3 regulated Fe-S integrity, thus modulating lipoate-containing 2-oxoacid dehydrogenases with consequent control over glycolysis and mitochondrial respiration. In contexts of siRNA knockdown and naturally occurring human genetic mutation, cellular BOLA3 deficiency downregulated the glycine cleavage system protein H, thus bolstering intracellular glycine content. In the setting of these alterations of oxidative metabolism and glycine levels, BOLA3 deficiency increased endothelial proliferation, survival, and vasoconstriction while decreasing angiogenic potential. In vivo, pharmacological knockdown of endothelial BOLA3 and targeted overexpression of BOLA3 in mice demonstrated that BOLA3 deficiency promotes histological and hemodynamic manifestations of PH. Notably, the therapeutic effects of BOLA3 expression were reversed by exogenous glycine supplementation. CONCLUSIONS BOLA3 acts as a crucial lynchpin connecting Fe-S-dependent oxidative respiration and glycine homeostasis with endothelial metabolic reprogramming critical to PH pathogenesis. These results provide a molecular explanation for the clinical associations linking PH with hyperglycinemic syndromes and mitochondrial disorders. These findings also identify novel metabolic targets, including those involved in epigenetics, Fe-S biogenesis, and glycine biology, for diagnostic and therapeutic development.
Collapse
Affiliation(s)
- Qiujun Yu
- Center for Pulmonary Vascular Biology and Medicine, Center for Metabolism and Mitochondrial Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology and Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, PA (Q.Y., Y.-Y.T., Y.T., J.Z., V.N., M.K.C., J.P., W.S., J.S., M.R., M.S., N.K., T.S., M.Z., N.F., S.S., S.Y.C.)
| | - Yi-Yin Tai
- Center for Pulmonary Vascular Biology and Medicine, Center for Metabolism and Mitochondrial Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology and Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, PA (Q.Y., Y.-Y.T., Y.T., J.Z., V.N., M.K.C., J.P., W.S., J.S., M.R., M.S., N.K., T.S., M.Z., N.F., S.S., S.Y.C.)
| | - Ying Tang
- Center for Pulmonary Vascular Biology and Medicine, Center for Metabolism and Mitochondrial Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology and Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, PA (Q.Y., Y.-Y.T., Y.T., J.Z., V.N., M.K.C., J.P., W.S., J.S., M.R., M.S., N.K., T.S., M.Z., N.F., S.S., S.Y.C.)
| | - Jingsi Zhao
- Center for Pulmonary Vascular Biology and Medicine, Center for Metabolism and Mitochondrial Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology and Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, PA (Q.Y., Y.-Y.T., Y.T., J.Z., V.N., M.K.C., J.P., W.S., J.S., M.R., M.S., N.K., T.S., M.Z., N.F., S.S., S.Y.C.)
| | - Vinny Negi
- Center for Pulmonary Vascular Biology and Medicine, Center for Metabolism and Mitochondrial Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology and Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, PA (Q.Y., Y.-Y.T., Y.T., J.Z., V.N., M.K.C., J.P., W.S., J.S., M.R., M.S., N.K., T.S., M.Z., N.F., S.S., S.Y.C.)
| | - Miranda K Culley
- Center for Pulmonary Vascular Biology and Medicine, Center for Metabolism and Mitochondrial Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology and Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, PA (Q.Y., Y.-Y.T., Y.T., J.Z., V.N., M.K.C., J.P., W.S., J.S., M.R., M.S., N.K., T.S., M.Z., N.F., S.S., S.Y.C.)
| | - Jyotsna Pilli
- Center for Pulmonary Vascular Biology and Medicine, Center for Metabolism and Mitochondrial Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology and Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, PA (Q.Y., Y.-Y.T., Y.T., J.Z., V.N., M.K.C., J.P., W.S., J.S., M.R., M.S., N.K., T.S., M.Z., N.F., S.S., S.Y.C.)
| | - Wei Sun
- Center for Pulmonary Vascular Biology and Medicine, Center for Metabolism and Mitochondrial Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology and Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, PA (Q.Y., Y.-Y.T., Y.T., J.Z., V.N., M.K.C., J.P., W.S., J.S., M.R., M.S., N.K., T.S., M.Z., N.F., S.S., S.Y.C.)
| | - Karin Brugger
- Department of Pediatrics, Paracelsus Medical University Salzburg, Austria (K.B., J.M.)
| | - Johannes Mayr
- Department of Pediatrics, Paracelsus Medical University Salzburg, Austria (K.B., J.M.)
| | - Rajeev Saggar
- Department of Medicine, University of Arizona, Phoenix (Rajeev Saggar)
| | - Rajan Saggar
- Departments of Medicine and Pathology, David Geffen School of Medicine, University of California, Los Angeles (Rajan Saggar, W.D.W., D.J.R.)
| | - W Dean Wallace
- Departments of Medicine and Pathology, David Geffen School of Medicine, University of California, Los Angeles (Rajan Saggar, W.D.W., D.J.R.)
| | - David J Ross
- Departments of Medicine and Pathology, David Geffen School of Medicine, University of California, Los Angeles (Rajan Saggar, W.D.W., D.J.R.)
| | - Aaron B Waxman
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (A.B.W., K.J.H.)
| | - Stacy G Wendell
- Department of Pharmacology and Chemical Biology (S.G.W.), University of Pittsburgh, PA
- Health Sciences Metabolomics and Lipidomics Core (S.G.W., S.J.M.), University of Pittsburgh, PA
| | - Steven J Mullett
- Health Sciences Metabolomics and Lipidomics Core (S.G.W., S.J.M.), University of Pittsburgh, PA
| | - John Sembrat
- Center for Pulmonary Vascular Biology and Medicine, Center for Metabolism and Mitochondrial Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology and Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, PA (Q.Y., Y.-Y.T., Y.T., J.Z., V.N., M.K.C., J.P., W.S., J.S., M.R., M.S., N.K., T.S., M.Z., N.F., S.S., S.Y.C.)
| | - Mauricio Rojas
- Center for Pulmonary Vascular Biology and Medicine, Center for Metabolism and Mitochondrial Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology and Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, PA (Q.Y., Y.-Y.T., Y.T., J.Z., V.N., M.K.C., J.P., W.S., J.S., M.R., M.S., N.K., T.S., M.Z., N.F., S.S., S.Y.C.)
| | - Omar F Khan
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge (O.F.K., R.L., D.G.A.)
| | - James E Dahlman
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta (J.E.D.)
| | - Masataka Sugahara
- Center for Pulmonary Vascular Biology and Medicine, Center for Metabolism and Mitochondrial Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology and Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, PA (Q.Y., Y.-Y.T., Y.T., J.Z., V.N., M.K.C., J.P., W.S., J.S., M.R., M.S., N.K., T.S., M.Z., N.F., S.S., S.Y.C.)
| | - Nobuyuki Kagiyama
- Center for Pulmonary Vascular Biology and Medicine, Center for Metabolism and Mitochondrial Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology and Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, PA (Q.Y., Y.-Y.T., Y.T., J.Z., V.N., M.K.C., J.P., W.S., J.S., M.R., M.S., N.K., T.S., M.Z., N.F., S.S., S.Y.C.)
| | - Taijyu Satoh
- Center for Pulmonary Vascular Biology and Medicine, Center for Metabolism and Mitochondrial Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology and Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, PA (Q.Y., Y.-Y.T., Y.T., J.Z., V.N., M.K.C., J.P., W.S., J.S., M.R., M.S., N.K., T.S., M.Z., N.F., S.S., S.Y.C.)
| | - Manling Zhang
- Center for Pulmonary Vascular Biology and Medicine, Center for Metabolism and Mitochondrial Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology and Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, PA (Q.Y., Y.-Y.T., Y.T., J.Z., V.N., M.K.C., J.P., W.S., J.S., M.R., M.S., N.K., T.S., M.Z., N.F., S.S., S.Y.C.)
| | - Ning Feng
- Center for Pulmonary Vascular Biology and Medicine, Center for Metabolism and Mitochondrial Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology and Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, PA (Q.Y., Y.-Y.T., Y.T., J.Z., V.N., M.K.C., J.P., W.S., J.S., M.R., M.S., N.K., T.S., M.Z., N.F., S.S., S.Y.C.)
| | - John Gorcsan
- Division of Cardiology, Department of Medicine, Washington University in St. Louis, MO (J.G.)
| | - Sara O Vargas
- Department of Pathology, Boston Children's Hospital, MA (S.O.V.)
| | - Kathleen J Haley
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (A.B.W., K.J.H.)
| | - Rahul Kumar
- Program in Translational Lung Research, University of Colorado Denver, Aurora, CO (R.K., B.B.G.)
| | - Brian B Graham
- Program in Translational Lung Research, University of Colorado Denver, Aurora, CO (R.K., B.B.G.)
| | - Robert Langer
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge (O.F.K., R.L., D.G.A.)
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge (R.L., D.G.A.)
| | - Daniel G Anderson
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge (O.F.K., R.L., D.G.A.)
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge (R.L., D.G.A.)
| | - Bing Wang
- Molecular Therapy Lab, Stem Cell Research Center, University of Pittsburgh School of Medicine, PA (B.W.)
| | - Sruti Shiva
- Center for Pulmonary Vascular Biology and Medicine, Center for Metabolism and Mitochondrial Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology and Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, PA (Q.Y., Y.-Y.T., Y.T., J.Z., V.N., M.K.C., J.P., W.S., J.S., M.R., M.S., N.K., T.S., M.Z., N.F., S.S., S.Y.C.)
| | - Thomas Bertero
- Université Côte d'Azur, CNRS UMR7275, IPMC, Sophia-Antipolis, France (T.B.)
| | - Stephen Y Chan
- Center for Pulmonary Vascular Biology and Medicine, Center for Metabolism and Mitochondrial Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology and Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, PA (Q.Y., Y.-Y.T., Y.T., J.Z., V.N., M.K.C., J.P., W.S., J.S., M.R., M.S., N.K., T.S., M.Z., N.F., S.S., S.Y.C.)
| |
Collapse
|
26
|
Strowitzki MJ, Ritter AS, Kimmer G, Schneider M. Hypoxia-adaptive pathways: A pharmacological target in fibrotic disease? Pharmacol Res 2019; 147:104364. [PMID: 31376431 DOI: 10.1016/j.phrs.2019.104364] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 07/19/2019] [Accepted: 07/19/2019] [Indexed: 02/07/2023]
Abstract
Wound healing responses are physiological reactions to injuries and share common characteristics and phases independently of the injured organ or tissue. A major hallmark of wound healing responses is the formation of extra-cellular matrix (ECM), mainly consisting of collagen fibers, to restore the initial organ architecture and function. Overshooting wound healing responses result in unphysiological accumulation of ECM and collagen deposition, a process called fibrosis. Importantly, hypoxia (oxygen demand exceeds supply) plays a significant role during wound healing responses and fibrotic diseases. Under hypoxic conditions, cells activate a gene program, including the stabilization of hypoxia-inducible factors (HIFs), which induces the expression of HIF target genes counteracting hypoxia. In contrast, in normoxia, so-called HIF-prolyl hydroxylases (PHDs) oxygen-dependently hydroxylate HIF-α, which marks it for proteasomal degradation. Importantly, PHDs can be pharmacologically inhibited (PHI) by so-called PHD inhibitors. There is mounting evidence that the HIF-pathway is continuously up-regulated during the development of tissue fibrosis, and that pharmacological (HIFI) or genetic inhibition of HIF can prevent organ fibrosis. By contrast, initial (short-term) activation of the HIF pathway via PHI during wound healing seems to be beneficial in several models of inflammation or acute organ injury. Thus, timing and duration of PHI and HIFI treatment seem to be crucial. In this review, we will highlight the role of hypoxia-adaptive pathways during wound healing responses and development of fibrotic disease. Moreover, we will discuss whether PHI and HIFI might be a promising treatment option in fibrotic disease, and consider putative pitfalls that might result from this approach.
Collapse
Affiliation(s)
- Moritz J Strowitzki
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Alina S Ritter
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Gwendolyn Kimmer
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Martin Schneider
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany.
| |
Collapse
|
27
|
Troy LK, Young IH, Lau EM, Wong KK, Yee BJ, Torzillo PJ, Corte TJ. Nocturnal hypoxaemia is associated with adverse outcomes in interstitial lung disease. Respirology 2019; 24:996-1004. [DOI: 10.1111/resp.13549] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 02/28/2019] [Accepted: 03/12/2019] [Indexed: 12/22/2022]
Affiliation(s)
- Lauren K. Troy
- Department of Respiratory and Sleep MedicineRoyal Prince Alfred Hospital Sydney NSW Australia
- Sydney Medical SchoolUniversity of Sydney Sydney NSW Australia
| | - Iven H. Young
- Department of Respiratory and Sleep MedicineRoyal Prince Alfred Hospital Sydney NSW Australia
- Sydney Medical SchoolUniversity of Sydney Sydney NSW Australia
| | - Edmund M.T. Lau
- Department of Respiratory and Sleep MedicineRoyal Prince Alfred Hospital Sydney NSW Australia
- Sydney Medical SchoolUniversity of Sydney Sydney NSW Australia
| | - Keith K.H. Wong
- Department of Respiratory and Sleep MedicineRoyal Prince Alfred Hospital Sydney NSW Australia
- Sydney Medical SchoolUniversity of Sydney Sydney NSW Australia
| | - Brendon J. Yee
- Department of Respiratory and Sleep MedicineRoyal Prince Alfred Hospital Sydney NSW Australia
- Sydney Medical SchoolUniversity of Sydney Sydney NSW Australia
| | - Paul J. Torzillo
- Department of Respiratory and Sleep MedicineRoyal Prince Alfred Hospital Sydney NSW Australia
- Sydney Medical SchoolUniversity of Sydney Sydney NSW Australia
| | - Tamera J. Corte
- Department of Respiratory and Sleep MedicineRoyal Prince Alfred Hospital Sydney NSW Australia
- Sydney Medical SchoolUniversity of Sydney Sydney NSW Australia
| |
Collapse
|
28
|
Delbrel E, Soumare A, Naguez A, Label R, Bernard O, Bruhat A, Fafournoux P, Tremblais G, Marchant D, Gille T, Bernaudin JF, Callard P, Kambouchner M, Martinod E, Valeyre D, Uzunhan Y, Planès C, Boncoeur E. HIF-1α triggers ER stress and CHOP-mediated apoptosis in alveolar epithelial cells, a key event in pulmonary fibrosis. Sci Rep 2018; 8:17939. [PMID: 30560874 PMCID: PMC6299072 DOI: 10.1038/s41598-018-36063-2] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 11/09/2018] [Indexed: 12/28/2022] Open
Abstract
Endoplasmic Reticulum (ER) stress of alveolar epithelial cells (AECs) is recognized as a key event of cell dysfunction in pulmonary fibrosis (PF). However, the mechanisms leading to AECs ER stress and ensuing unfolded protein response (UPR) pathways in idiopathic PF (IPF) remain unclear. We hypothesized that alveolar hypoxic microenvironment would generate ER stress and AECs apoptosis through the hypoxia-inducible factor-1α (HIF-1α). Combining ex vivo, in vivo and in vitro experiments, we investigated the effects of hypoxia on the UPR pathways and ER stress-mediated apoptosis, and consecutively the mechanisms linking hypoxia, HIF-1α, UPR and apoptosis. HIF-1α and the pro-apoptotic ER stress marker C/EBP homologous protein (CHOP) were co-expressed in hyperplastic AECs from bleomycin-treated mice and IPF lungs, not in controls. Hypoxic exposure of rat lungs or primary rat AECs induced HIF-1α, CHOP and apoptosis markers expression. In primary AECs, hypoxia activated UPR pathways. Pharmacological ER stress inhibitors and pharmacological inhibition or silencing of HIF-1α both prevented hypoxia-induced upregulation of CHOP and apoptosis. Interestingly, overexpression of HIF-1α in normoxic AECs increased UPR pathways transcription factors activities, and CHOP expression. These results indicate that hypoxia and HIF-1α can trigger ER stress and CHOP-mediated apoptosis in AECs, suggesting their potential contribution to the development of IPF.
Collapse
Affiliation(s)
- Eva Delbrel
- Université Paris 13, Sorbonne Paris Cité, Laboratoire 'Hypoxie & Poumon' (EA 2363), F-93017, Bobigny, France
| | - Abdoulaye Soumare
- Université Paris 13, Sorbonne Paris Cité, Laboratoire 'Hypoxie & Poumon' (EA 2363), F-93017, Bobigny, France
| | - Adnan Naguez
- Université Paris 13, Sorbonne Paris Cité, Laboratoire 'Hypoxie & Poumon' (EA 2363), F-93017, Bobigny, France
| | - Rabab Label
- Université Paris 13, Sorbonne Paris Cité, Laboratoire 'Hypoxie & Poumon' (EA 2363), F-93017, Bobigny, France
| | - Olivier Bernard
- Université Paris 13, Sorbonne Paris Cité, Laboratoire 'Hypoxie & Poumon' (EA 2363), F-93017, Bobigny, France
| | - Alain Bruhat
- Institut National de la Recherche Agronomique (INRA), UMR-1019 Nutrition Humaine, Centre INRA Auvergne Rhône-Alpes, Clermont Auvergne Université, 63122, Saint Genès Champanelle, France
| | - Pierre Fafournoux
- Institut National de la Recherche Agronomique (INRA), UMR-1019 Nutrition Humaine, Centre INRA Auvergne Rhône-Alpes, Clermont Auvergne Université, 63122, Saint Genès Champanelle, France
| | - Geoffrey Tremblais
- Université Paris 13, Sorbonne Paris Cité, Laboratoire 'Hypoxie & Poumon' (EA 2363), F-93017, Bobigny, France
| | - Dominique Marchant
- Université Paris 13, Sorbonne Paris Cité, Laboratoire 'Hypoxie & Poumon' (EA 2363), F-93017, Bobigny, France
| | - Thomas Gille
- Université Paris 13, Sorbonne Paris Cité, Laboratoire 'Hypoxie & Poumon' (EA 2363), F-93017, Bobigny, France.,APHP, Hôpital Avicenne, F-93017, Bobigny, France
| | - Jean-François Bernaudin
- Université Paris 13, Sorbonne Paris Cité, Laboratoire 'Hypoxie & Poumon' (EA 2363), F-93017, Bobigny, France.,APHP, Hôpital Avicenne, F-93017, Bobigny, France.,Sorbonne Université, Faculté de Médecine, 75013, Paris, France
| | - Patrice Callard
- Sorbonne Université, Faculté de Médecine, 75013, Paris, France
| | | | - Emmanuel Martinod
- Université Paris 13, Sorbonne Paris Cité, Laboratoire 'Hypoxie & Poumon' (EA 2363), F-93017, Bobigny, France.,APHP, Hôpital Avicenne, F-93017, Bobigny, France
| | - Dominique Valeyre
- Université Paris 13, Sorbonne Paris Cité, Laboratoire 'Hypoxie & Poumon' (EA 2363), F-93017, Bobigny, France.,APHP, Hôpital Avicenne, F-93017, Bobigny, France
| | - Yurdagül Uzunhan
- Université Paris 13, Sorbonne Paris Cité, Laboratoire 'Hypoxie & Poumon' (EA 2363), F-93017, Bobigny, France.,APHP, Hôpital Avicenne, F-93017, Bobigny, France
| | - Carole Planès
- Université Paris 13, Sorbonne Paris Cité, Laboratoire 'Hypoxie & Poumon' (EA 2363), F-93017, Bobigny, France.,APHP, Hôpital Avicenne, F-93017, Bobigny, France
| | - Emilie Boncoeur
- Université Paris 13, Sorbonne Paris Cité, Laboratoire 'Hypoxie & Poumon' (EA 2363), F-93017, Bobigny, France.
| |
Collapse
|
29
|
Wohlrab P, Soto-Gonzales L, Benesch T, Winter MP, Lang IM, Markstaller K, Tretter V, Klein KU. Intermittent Hypoxia Activates Duration-Dependent Protective and Injurious Mechanisms in Mouse Lung Endothelial Cells. Front Physiol 2018; 9:1754. [PMID: 30574096 PMCID: PMC6291480 DOI: 10.3389/fphys.2018.01754] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 11/20/2018] [Indexed: 12/31/2022] Open
Abstract
Intermittent hypoxia is a major factor in clinical conditions like the obstructive sleep apnea syndrome or the cyclic recruitment and derecruitment of atelectasis in acute respiratory distress syndrome and positive pressure mechanical ventilation. In vivo investigations of the direct impact of intermittent hypoxia are frequently hampered by multiple co-morbidities of patients. Therefore, cell culture experiments are important model systems to elucidate molecular mechanisms that are involved in the cellular response to alternating oxygen conditions and could represent future targets for tailored therapies. In this study, we focused on mouse lung endothelial cells as a first frontier to encounter altered oxygen due to disturbances in airway or lung function, that play an important role in the development of secondary diseases like vascular disease and pulmonary hypertension. We analyzed key markers for endothelial function including cell adhesion molecules, molecules involved in regulation of fibrinolysis, hemostasis, redox balance, and regulators of gene expression like miRNAs. Results show that short-time exposure to intermittent hypoxia has little impact on vitality and health of cells. At early timepoints and up to 24 h, many endothelial markers are unchanged in their expression and some indicators of injury are even downregulated. However, in the long-term, multiple signaling pathways are activated, that ultimately result in cellular inflammation, oxidative stress, and apoptosis.
Collapse
Affiliation(s)
- Peter Wohlrab
- Department of Anaesthesia, General Intensive Care and Pain Management, Medical University of Vienna, Vienna, Austria
| | - Lourdes Soto-Gonzales
- Department of Anaesthesia, General Intensive Care and Pain Management, Medical University of Vienna, Vienna, Austria
| | - Thomas Benesch
- Institute for International Development, University of Vienna, Vienna, Austria
| | - Max Paul Winter
- Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Irene Marthe Lang
- Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Klaus Markstaller
- Department of Anaesthesia, General Intensive Care and Pain Management, Medical University of Vienna, Vienna, Austria
| | - Verena Tretter
- Department of Anaesthesia, General Intensive Care and Pain Management, Medical University of Vienna, Vienna, Austria
| | - Klaus Ulrich Klein
- Department of Anaesthesia, General Intensive Care and Pain Management, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
30
|
Baum DM, Saussereau M, Jeton F, Planes C, Voituron N, Cardot P, Fiamma MN, Bodineau L. Effect of Gender on Chronic Intermittent Hypoxic Fosb Expression in Cardiorespiratory-Related Brain Structures in Mice. Front Physiol 2018; 9:788. [PMID: 29988603 PMCID: PMC6026892 DOI: 10.3389/fphys.2018.00788] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 06/06/2018] [Indexed: 12/19/2022] Open
Abstract
We aimed to delineate sex-based differences in neuroplasticity that may be associated with previously reported sex-based differences in physiological alterations caused by repetitive succession of hypoxemia-reoxygenation encountered during obstructive sleep apnea (OSA). We examined long-term changes in the activity of brainstem and diencephalic cardiorespiratory neuronal populations induced by chronic intermittent hypoxia (CIH) in male and female mice by analyzing Fosb expression. Whereas the overall baseline and CIH-induced Fosb expression in females was higher than in males, possibly reflecting different neuroplastic dynamics, in contrast, structures responded to CIH by Fosb upregulation in males only. There was a sex-based difference at the level of the rostral ventrolateral reticular nucleus of the medulla, with an increase in the number of FOSB/ΔFOSB-positive cells induced by CIH in males but not females. This structure contains neurons that generate the sympathetic tone and which are involved in CIH-induced sustained hypertension during waking hours. We suggest that the sex-based difference in neuroplasticity of this structure contributes to the reported sex-based difference in CIH-induced hypertension. Moreover, we highlighted a sex-based dimorphic phenomenon in serotoninergic systems induced by CIH, with increased serotoninergic immunoreactivity in the hypoglossal nucleus and a decreased number of serotoninergic cells in the dorsal raphe nucleus in male but not female mice. We suggest that this dimorphism in the neuroplasticity of serotoninergic systems predisposes males to a greater alteration of neuronal control of the upper respiratory tract associated with the greater collapsibility of upper airways described in male OSA subjects.
Collapse
Affiliation(s)
- David M Baum
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, UMR-S1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Paris, France
| | - Maud Saussereau
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, UMR-S1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Paris, France
| | - Florine Jeton
- Sorbonne Paris Cité, Université Paris 13, EA2363 Hypoxie et Poumon, Bobigny, France
| | - Carole Planes
- Sorbonne Paris Cité, Université Paris 13, EA2363 Hypoxie et Poumon, Bobigny, France
| | - Nicolas Voituron
- Sorbonne Paris Cité, Université Paris 13, EA2363 Hypoxie et Poumon, Bobigny, France
| | - Philippe Cardot
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, UMR-S1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Paris, France
| | - Marie-Noëlle Fiamma
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, UMR-S1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Paris, France
| | - Laurence Bodineau
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, UMR-S1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Paris, France
| |
Collapse
|