1
|
Karuppan Perumal MK, Rajan Renuka R, Manickam Natarajan P. Evaluating the potency of laser-activated antimicrobial photodynamic therapy utilizing methylene blue as a treatment approach for chronic periodontitis. FRONTIERS IN ORAL HEALTH 2024; 5:1407201. [PMID: 38872983 PMCID: PMC11169725 DOI: 10.3389/froh.2024.1407201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/15/2024] [Indexed: 06/15/2024] Open
Abstract
Chronic periodontitis is a ubiquitous inflammatory disease in dental healthcare that is challenging to treat due to its impact on bone and tooth loss. Conventional mechanical debridement has been challenging in eliminating complex subgingival biofilms. Hence, adjunctive approaches like low-level laser antimicrobial photodynamic therapy (A-PDT) utilising methylene blue (MB) have been emerging approaches in recent times. This review evaluates the latest research on the use of MB-mediated A-PDT to decrease microbial count and enhance clinical results in chronic periodontitis. Studies have shown the interaction between laser light and MB generates a phototoxic effect thereby, eliminating pathogenic bacteria within periodontal pockets. Moreover, numerous clinical trials have shown that A-PDT using MB can reduce probing depths, improve clinical attachment levels, and decrease bleeding during probing in comparison to traditional treatment approaches. Notably, A-PDT shows superior antibiotic resistance compared to conventional antibiotic treatments. In conclusion, the A-PDT using MB shows promise as an adjunctive treatment for chronic periodontitis. Additional research is required to standardize treatment protocols and assess long-term outcomes of A-PDT with MB in the treatment of periodontitis.
Collapse
Affiliation(s)
- Manoj Kumar Karuppan Perumal
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Remya Rajan Renuka
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Prabhu Manickam Natarajan
- Department of Clinical Sciences, College of Dentistry, Centre of Medical and Bio-Allied Health Sciences and Research, Ajman University, Ajman, United Arab Emirates
| |
Collapse
|
2
|
Karrabi M, Baghani Z, Atarbashi-Moghadam F. Effect of adjunctive photodynamic therapy on gingival crevicular fluid interleukin-1β in Stage III and IV periodontitis: A systematic review and meta-analysis. J Indian Soc Periodontol 2024; 28:156-175. [PMID: 39411741 PMCID: PMC11472970 DOI: 10.4103/jisp.jisp_494_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 06/29/2024] [Accepted: 07/04/2024] [Indexed: 10/19/2024] Open
Abstract
Interleukin-1β (IL-1β) is a main pro-inflammatory cytokine that is used for the assessment of treatment efficacy in periodontitis. This meta-analysis aimed to assess the effect of antimicrobial photodynamic therapy (aPDT) on Stage III-IV (severe) periodontitis-induced local IL-1β. This review study was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analysis statement and registered in PROSPERO (CRD42024522546). Electronic and manual search of the literature was conducted in four databases for English articles from the first record up until June 30, 2022 comparing the effects of aPDT versus conventional scaling and root planing on IL-1β levels at different follow-up times. The mean gingival crevicular fluid level of IL-1β with 95% confidence interval (CI) was pooled using the random effect model. The I 2 statistics were applied to analyze the heterogeneity of the findings. The risk of bias (RoB) was analyzed using the revised Cochrane RoB. Analysis of 11 retrieved studies revealed that after the application of aPDT, a significant reduction in IL-1β level occurred at 1-2 (standardized mean difference [SMD]: 0.29, 95% CI: -0.57-1.15; P = 0.0002), 4-6 (SMD: 0.53; 95% CI: -0.36-1.42; P < 00001), and 12-13 (SMD: 1.04; 95% CI: -0.22-2.3; P < 0.00001) follow-up weeks. The application of aPDT can serve as an effective adjunctive therapy for the treatment of Stage III-IV periodontitis. Although the results of this meta-analysis showed that increasing the session frequency of aPDT had a higher effect size, further studies without the limitations of the existing studies are required to confirm the present results.
Collapse
Affiliation(s)
- Malihe Karrabi
- Department of Prosthodontics, Faculty of Dentistry, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Zahra Baghani
- Department of Periodontics, Faculty of Dentistry, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Fazele Atarbashi-Moghadam
- Department of Periodontics, Dental School of Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Songca SP. Combinations of Photodynamic Therapy with Other Minimally Invasive Therapeutic Technologies against Cancer and Microbial Infections. Int J Mol Sci 2023; 24:10875. [PMID: 37446050 DOI: 10.3390/ijms241310875] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/27/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
The rapid rise in research and development following the discovery of photodynamic therapy to establish novel photosensitizers and overcome the limitations of the technology soon after its clinical translation has given rise to a few significant milestones. These include several novel generations of photosensitizers, the widening of the scope of applications, leveraging of the offerings of nanotechnology for greater efficacy, selectivity for the disease over host tissue and cells, the advent of combination therapies with other similarly minimally invasive therapeutic technologies, the use of stimulus-responsive delivery and disease targeting, and greater penetration depth of the activation energy. Brought together, all these milestones have contributed to the significant enhancement of what is still arguably a novel technology. Yet the major applications of photodynamic therapy still remain firmly located in neoplasms, from where most of the new innovations appear to launch to other areas, such as microbial, fungal, viral, acne, wet age-related macular degeneration, atherosclerosis, psoriasis, environmental sanitization, pest control, and dermatology. Three main value propositions of combinations of photodynamic therapy include the synergistic and additive enhancement of efficacy, the relatively low emergence of resistance and its rapid development as a targeted and high-precision therapy. Combinations with established methods such as chemotherapy and radiotherapy and demonstrated applications in mop-up surgery promise to enhance these top three clinical tools. From published in vitro and preclinical studies, clinical trials and applications, and postclinical case studies, seven combinations with photodynamic therapy have become prominent research interests because they are potentially easily applied, showing enhanced efficacy, and are rapidly translating to the clinic. These include combinations with chemotherapy, photothermal therapy, magnetic hyperthermia, cold plasma therapy, sonodynamic therapy, immunotherapy, and radiotherapy. Photochemical internalization is a critical mechanism for some combinations.
Collapse
Affiliation(s)
- Sandile Phinda Songca
- School of Chemistry and Physics, College of Agriculture Engineering and Science, Pietermaritzburg Campus, University of KwaZulu-Natal, Pietermaritzburg 3209, South Africa
| |
Collapse
|
4
|
Gholami L, Shahabi S, Jazaeri M, Hadilou M, Fekrazad R. Clinical applications of antimicrobial photodynamic therapy in dentistry. Front Microbiol 2023; 13:1020995. [PMID: 36687594 PMCID: PMC9850114 DOI: 10.3389/fmicb.2022.1020995] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 11/30/2022] [Indexed: 01/07/2023] Open
Abstract
Given the emergence of resistant bacterial strains and novel microorganisms that globally threaten human life, moving toward new treatment modalities for microbial infections has become a priority more than ever. Antimicrobial photodynamic therapy (aPDT) has been introduced as a promising and non-invasive local and adjuvant treatment in several oral infectious diseases. Its efficacy for elimination of bacterial, fungal, and viral infections and key pathogens such as Streptococcus mutans, Porphyromonas gingivalis, Candida albicans, and Enterococcus faecalis have been investigated by many invitro and clinical studies. Researchers have also investigated methods of increasing the efficacy of such treatment modalities by amazing developments in the production of natural, nano based, and targeted photosensitizers. As clinical studies have an important role in paving the way towards evidence-based applications in oral infection treatment by this method, the current review aimed to provide an overall view of potential clinical applications in this field and summarize the data of available randomized controlled clinical studies conducted on the applications of aPDT in dentistry and investigate its future horizons in the dental practice. Four databases including PubMed (Medline), Web of Science, Scopus and Embase were searched up to September 2022 to retrieve related clinical studies. There are several clinical studies reporting aPDT as an effective adjunctive treatment modality capable of reducing pathogenic bacterial loads in periodontal and peri-implant, and persistent endodontic infections. Clinical evidence also reveals a therapeutic potential for aPDT in prevention and reduction of cariogenic organisms and treatment of infections with fungal or viral origins, however, the number of randomized clinical studies in these groups are much less. Altogether, various photosensitizers have been used and it is still not possible to recommend specific irradiation parameters due to heterogenicity among studies. Reaching effective clinical protocols and parameters of this treatment is difficult and requires further high quality randomized controlled trials focusing on specific PS and irradiation parameters that have shown to have clinical efficacy and are able to reduce pathogenic bacterial loads with sufficient follow-up periods.
Collapse
Affiliation(s)
- Leila Gholami
- Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, BC, Canada
| | - Shiva Shahabi
- Dental Implants Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Marzieh Jazaeri
- Dental Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mahdi Hadilou
- Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Fekrazad
- Radiation Sciences Research Center, Laser Research Center in Medical Sciences, AJA University of Medical Sciences, Tehran, Iran,International Network for Photo Medicine and Photo Dynamic Therapy (INPMPDT), Universal Scientific Education and Research Network (USERN), Tehran, Iran,*Correspondence: Reza Fekrazad,
| |
Collapse
|
5
|
Morozumi T, Nakayama Y, Shirakawa S, Imamura K, Nohno K, Nagano T, Miyazawa H, Hokari T, Takuma R, Sugihara S, Gomi K, Saito A, Ogata Y, Komaki M. Effect of Locally Delivered Minocycline on the Profile of Subgingival Bacterial Genera in Patients with Periodontitis: A Prospective Pilot Study. Biomolecules 2022; 12:biom12050719. [PMID: 35625646 PMCID: PMC9138390 DOI: 10.3390/biom12050719] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 02/04/2023] Open
Abstract
This prospective pilot study aimed to evaluate the effect of minocycline-HCl ointment (MO), locally delivered as an adjunct to scaling and root planing (SRP), on subgingival microflora. A total of 59 periodontitis patients received SRP as an initial periodontal therapy. In the selected periodontal pockets with probing depths (PD) of 6−9 mm, the sites that exhibited a positive reaction following a bacterial test using an immunochromatographic device were subsequently treated with MO (SRP + MO group, n = 25). No additional treatment was performed at sites showing a negative reaction (SRP group, n = 34). In addition to subgingival plaque sampling, measurement of clinical parameters including PD, clinical attachment level (CAL), bleeding on probing (BOP), plaque index and gingival index (GI) were performed at baseline and 4 weeks after the initial periodontal therapy. The subgingival microflora were assessed by terminal restriction fragment-length polymorphism analysis. Relative to baseline values, the mean scores for PD-, CAL-, BOP-, and GI-sampled sites were significantly decreased post treatment in both groups (p < 0.01). The intra-comparisons showed a significant decrease in the counts of the genera Eubacterium, Parvimonas, Filifactor, Veillonella, Fusobacterium, Porphyromonas, Prevotella, and unknown species in the SRP + MO group (p < 0.05). Inter-comparisons indicated a significant decrease in the genera Veillonella in the SRP + MO group (p = 0.01). Combination therapy of SRP and local MO induced a change in the subgingival microbial community: particularly, the number of Veillonella spp. was markedly reduced.
Collapse
Affiliation(s)
- Toshiya Morozumi
- Department of Periodontology, Faculty of Dentistry, Kanagawa Dental University, 82 Inaoka-cho, Yokosuka 238-8580, Japan; (R.T.); (S.S.); (M.K.)
- Correspondence: ; Tel.: +81-46-822-8855
| | - Yohei Nakayama
- Departments of Periodontology and Research Institute of Oral Science, Nihon University School of Dentistry at Matsudo, 2-870-1 Sakaecho-nishi, Matsudo 271-8587, Japan; (Y.N.); (Y.O.)
| | - Satoshi Shirakawa
- Department of Dental Hygiene, Tsurumi Junior College, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan;
| | - Kentaro Imamura
- Department of Periodontology, Tokyo Dental College, 2-9-18 Kanda-Misakicho, Chiyoda-ku, Tokyo 101-0061, Japan; (K.I.); (A.S.)
| | - Kaname Nohno
- Division of Oral Science for Health Promotion, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, 2-5274 Gakkocho-dori, Chuo-ku, Niigata 951-8514, Japan;
| | - Takatoshi Nagano
- Department of Periodontology, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan; (T.N.); (K.G.)
| | - Haruna Miyazawa
- Clinical and Translational Research Center, Niigata University Medical and Dental Hospital, 2-5274 Gakkocho-dori, Chuo-ku, Niigata 951-8514, Japan;
| | - Takahiro Hokari
- Division of Periodontology, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, 2-5274 Gakkocho-dori, Chuo-ku, Niigata 951-8514, Japan;
| | - Ryo Takuma
- Department of Periodontology, Faculty of Dentistry, Kanagawa Dental University, 82 Inaoka-cho, Yokosuka 238-8580, Japan; (R.T.); (S.S.); (M.K.)
| | - Shuntaro Sugihara
- Department of Periodontology, Faculty of Dentistry, Kanagawa Dental University, 82 Inaoka-cho, Yokosuka 238-8580, Japan; (R.T.); (S.S.); (M.K.)
| | - Kazuhiro Gomi
- Department of Periodontology, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan; (T.N.); (K.G.)
| | - Atsushi Saito
- Department of Periodontology, Tokyo Dental College, 2-9-18 Kanda-Misakicho, Chiyoda-ku, Tokyo 101-0061, Japan; (K.I.); (A.S.)
| | - Yorimasa Ogata
- Departments of Periodontology and Research Institute of Oral Science, Nihon University School of Dentistry at Matsudo, 2-870-1 Sakaecho-nishi, Matsudo 271-8587, Japan; (Y.N.); (Y.O.)
| | - Motohiro Komaki
- Department of Periodontology, Faculty of Dentistry, Kanagawa Dental University, 82 Inaoka-cho, Yokosuka 238-8580, Japan; (R.T.); (S.S.); (M.K.)
| |
Collapse
|
6
|
Applications of Antimicrobial Photodynamic Therapy against Bacterial Biofilms. Int J Mol Sci 2022; 23:ijms23063209. [PMID: 35328629 PMCID: PMC8953781 DOI: 10.3390/ijms23063209] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 03/07/2022] [Accepted: 03/10/2022] [Indexed: 12/14/2022] Open
Abstract
Antimicrobial photodynamic therapy and allied photodynamic antimicrobial chemotherapy have shown remarkable activity against bacterial pathogens in both planktonic and biofilm forms. There has been little or no resistance development against antimicrobial photodynamic therapy. Furthermore, recent developments in therapies that involve antimicrobial photodynamic therapy in combination with photothermal hyperthermia therapy, magnetic hyperthermia therapy, antibiotic chemotherapy and cold atmospheric pressure plasma therapy have shown additive and synergistic enhancement of its efficacy. This paper reviews applications of antimicrobial photodynamic therapy and non-invasive combination therapies often used with it, including sonodynamic therapy and nanozyme enhanced photodynamic therapy. The antimicrobial and antibiofilm mechanisms are discussed. This review proposes that these technologies have a great potential to overcome the bacterial resistance associated with bacterial biofilm formation.
Collapse
|
7
|
Moon KS, Park YB, Bae JM, Choi EJ, Oh SH. Visible Light-Mediated Sustainable Antibacterial Activity and Osteogenic Functionality of Au and Pt Multi-Coated TiO 2 Nanotubes. MATERIALS 2021; 14:ma14205976. [PMID: 34683564 PMCID: PMC8537070 DOI: 10.3390/ma14205976] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/29/2021] [Accepted: 10/07/2021] [Indexed: 01/15/2023]
Abstract
The visible light reactions of noble metal-based photocatalysts have been increasingly utilized to investigate their antibacterial activities. Furthermore, the photoreactions at various visible light wavelengths for specific combinations of titania nanotubes and noble metal nanoparticles have been found to promote osteogenic functionality. In this investigation, a novel multi-coating combination of noble metals (gold and platinum) on titania nanotubes was assessed using plasmonic photocatalysis and low-level laser therapy at 470 and 600 nm. The results showed that this coating on the nanotubes promoted antibacterial activity and osteogenic functionality. The order in which the gold and platinum coatings were layered onto the titania nanotubes strongly affected the osteogenic performance of the human mesenchymal stem cells. These results have identified a new approach for the development of efficient novel combinations of noble metal nanoparticles and titania nanotubes with visible light responses, sustainable antimicrobial activity, and osteogenic functionality.
Collapse
Affiliation(s)
- Kyoung-Suk Moon
- Department of Dental Biomaterials, The Institute of Biomaterial and Implant, School of Dentistry, Wonkwang University, Iksan 54538, Korea; (K.-S.M.); (J.-M.B.)
| | - Young-Bum Park
- Department of Prosthodontics, School of Dentistry, Yonsei University, Seoul 03722, Korea;
| | - Ji-Myung Bae
- Department of Dental Biomaterials, The Institute of Biomaterial and Implant, School of Dentistry, Wonkwang University, Iksan 54538, Korea; (K.-S.M.); (J.-M.B.)
| | - Eun-Joo Choi
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Wonkwang University, Iksan 54538, Korea
- Correspondence: (E.-J.C.); (S.-H.O.); Tel.: +82-63-850-6931 (E.-J.C.); +82-63-850-6982 (S.-H.O.)
| | - Seung-Han Oh
- Department of Dental Biomaterials, The Institute of Biomaterial and Implant, School of Dentistry, Wonkwang University, Iksan 54538, Korea; (K.-S.M.); (J.-M.B.)
- Correspondence: (E.-J.C.); (S.-H.O.); Tel.: +82-63-850-6931 (E.-J.C.); +82-63-850-6982 (S.-H.O.)
| |
Collapse
|
8
|
Tan OL, Safii SH, Razali M. Clinical Efficacy of Repeated Applications of Local Drug Delivery and Adjunctive Agents in Nonsurgical Periodontal Therapy: A Systematic Review. Antibiotics (Basel) 2021; 10:1178. [PMID: 34680759 PMCID: PMC8532920 DOI: 10.3390/antibiotics10101178] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/20/2021] [Accepted: 09/24/2021] [Indexed: 01/19/2023] Open
Abstract
The aim of this systematic review is to compare the clinical efficacy of repeated applications of local drug delivery and adjunctive agents (LDAs) in nonsurgical periodontal therapy (NSPT) compared to subgingival mechanical debridement (SMD) alone. The Cochrane Central Register of Controlled Trials, MEDLINE, PubMed, EMBASE, Web of Science, hand-searched literature and grey literature databases were searched for randomized controlled clinical trials (RCTs) with a minimum of 6-month follow-up. The outcomes of interest were changes in probing pocket depth and clinical attachment level as well as patient-centred outcomes. Of 1094 studies identified, 16 RCTs were included in the qualitative analysis. Across 11 different adjuncts analysed, only two studies utilizing minocycline gel/ointment and antimicrobial photodynamic therapy (aPDT) with indocyanine green photosensitizer had statistically significant differences in primary outcomes when compared to their control groups. Only one study on aPDT methylene blue 0.005% had compared single versus multiple applications against its control group. A mean range of 0.27-3.82 mm PD reduction and -0.09-2.82 mm CAL gain were observed with repeated LDA application. Considerable clinical heterogeneity and methodological flaws in the included studies preclude any definitive conclusions regarding the clinical efficacy of repeated LDA applications. Future RCTs with a direct comparison between single and repeated applications should be conducted to confirm or refute the clinical advantages of repeated LDA application in the nonsurgical management of periodontitis.
Collapse
Affiliation(s)
- Oi Leng Tan
- Department of Restorative Dentistry, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia;
- Oral Health Division, Ministry of Health Malaysia, Putrajaya 62590, Malaysia
| | - Syarida Hasnur Safii
- Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya, Kuala Lumpur 50603, Malaysia;
| | - Masfueh Razali
- Department of Restorative Dentistry, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia;
| |
Collapse
|
9
|
Luchian I, Goriuc A, Martu MA, Covasa M. Clindamycin as an Alternative Option in Optimizing Periodontal Therapy. Antibiotics (Basel) 2021; 10:antibiotics10070814. [PMID: 34356735 PMCID: PMC8300806 DOI: 10.3390/antibiotics10070814] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/24/2021] [Accepted: 07/02/2021] [Indexed: 11/29/2022] Open
Abstract
Periodontal disease is an oral infectious and inflammatory disease caused by microorganisms that determine the host-mediated destruction of soft and hard periodontal tissues, which ultimately leads to tooth loss. Periodontitis affects a large part of the population, with various degrees of severity. Treatment consists of etiologic therapy: the removal of biofilm through mechanical debridement plus microbial elimination by supplementary measures. Antibiotic administration, either systemically or through local delivery, has been shown to improve clinical outcomes after mechanical periodontal treatment. Clindamycin is a lincosamide with a broad spectrum, being active against aerobic, anaerobic, and β-lactamase-producing bacteria. This antibiotic offers several advantages and some disadvantages and has been used in periodontal treatment both systemically and locally with various degrees of success. Among the properties that recommend it for periodontal treatment is the bacteriostatic effect, the inhibition of bacterial proteins synthesis, the enhancement of neutrophil chemotaxis, phagocytosis and the oxidative burst–oxidative stress storm. Furthermore, it is easily absorbed at the level of oral tissues in a considerable amount. This substantial tissue penetration, especially inside the bone, is synergistic with a stimulating effect on the host immune system. The aim of this review is to explore the applicability of this antibiotic agent and to evaluate its antimicrobial potential and limitations at the level of the oral biofilm associated with periodontal disease.
Collapse
Affiliation(s)
- Ionut Luchian
- Department of Periodontology, Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universității Street, 700115 Iași, Romania;
| | - Ancuta Goriuc
- Department of Biochemistry, Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universității Street, 700115 Iași, Romania
- Correspondence: (A.G.); (M.A.M.); Tel.: +40-723-438-089 (A.G.); +40-742-189-178 (M.A.M.)
| | - Maria Alexandra Martu
- Department of Periodontology, Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universității Street, 700115 Iași, Romania;
- Correspondence: (A.G.); (M.A.M.); Tel.: +40-723-438-089 (A.G.); +40-742-189-178 (M.A.M.)
| | - Mihai Covasa
- Department of Health and Human Development, University “Stefan cel Mare” Suceava, 13 Universității Street, 720229 Suceava, Romania;
- Department of Basic Medical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, 309E Second Street, Pomona, CA 91766, USA
| |
Collapse
|
10
|
Dalvi S, Benedicenti S, Sălăgean T, Bordea IR, Hanna R. Effectiveness of Antimicrobial Photodynamic Therapy in the Treatment of Periodontitis: A Systematic Review and Meta-Analysis of In Vivo Human Randomized Controlled Clinical Trials. Pharmaceutics 2021; 13:pharmaceutics13060836. [PMID: 34200078 PMCID: PMC8228221 DOI: 10.3390/pharmaceutics13060836] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/25/2021] [Accepted: 06/02/2021] [Indexed: 02/06/2023] Open
Abstract
This systematic review and meta-analysis evaluated antimicrobial photodynamic therapy (aPDT) efficacy in periodontitis. The review protocol was conducted in accordance with PRISMA statements, Cochrane Collaboration recommendations and is registered in PROSPERO (CRD 42020161516). Electronic and hand search strategies were undertaken to gather data on in vivo human RCTs followed by qualitative analysis. Differences in probing pocket depth (PPD) and clinical attachment level (CAL) were calculated with 95% confidence intervals and pooled in random effects model at three and six months. Heterogeneity was analyzed, using Q and I2 tests. Publication bias was assessed by visual examination of the funnel plot symmetry. Sixty percent of 31 eligible studies showed a high risk of bias. Meta-analysis on 18 studies showed no additional benefit in split mouth studies in terms of PPD reduction (SMD 0.166; 95% CI −0.278 to 0.611; P = 0.463) and CAL gain (SMD 0.092; 95% CI −0.013 to 0.198; P = 0.088). Similar findings noted for parallel group studies; PPD reduction (SMD 0.076; 95% CI −0.420 to 0.573; P = 0.763) and CAL gain (SMD 0.056; 95% CI −0.408 to 0.552; P = 0.745). Sensitivity analysis minimized heterogeneity for both outcome variables; however, intergroup differences were not statistically significant. Future research should aim for well-designed RCTs in order to determine the effectiveness of aPDT.
Collapse
Affiliation(s)
- Snehal Dalvi
- Department of Surgical Sciences and Integrated Diagnostics, Laser Therapy Centre, University of Genoa, Viale Benedetto XV, 6, 16132 Genoa, Italy; (S.B.); (R.H.)
- Department of Periodontology, Swargiya Dadasaheb Kalmegh Smruti Dental College and Hospital, Nagpur 441110, India
- Correspondence: (S.D.); (T.S.); Tel.: +39-0-103-537-446 (S.D.); +40-744-707-371 (T.S.)
| | - Stefano Benedicenti
- Department of Surgical Sciences and Integrated Diagnostics, Laser Therapy Centre, University of Genoa, Viale Benedetto XV, 6, 16132 Genoa, Italy; (S.B.); (R.H.)
| | - Tudor Sălăgean
- Department of Land Measurements and Exact Sciences, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania
- Correspondence: (S.D.); (T.S.); Tel.: +39-0-103-537-446 (S.D.); +40-744-707-371 (T.S.)
| | - Ioana Roxana Bordea
- Department of Oral Rehabilitation, “Iuliu Hațieganu” University of Medicine and Pharmacy Cluj-Napoca, 400012 Cluj-Napoca, Romania;
| | - Reem Hanna
- Department of Surgical Sciences and Integrated Diagnostics, Laser Therapy Centre, University of Genoa, Viale Benedetto XV, 6, 16132 Genoa, Italy; (S.B.); (R.H.)
- Department of Oral Surgery, Dental Institute, King’s College Hospital NHS Foundation Trust, London SE5 9RS, UK
| |
Collapse
|
11
|
Zhao Y, Pu R, Qian Y, Shi J, Si M. Antimicrobial photodynamic therapy versus antibiotics as an adjunct in the treatment of periodontitis and peri-implantitis: A systematic review and meta-analysis. Photodiagnosis Photodyn Ther 2021; 34:102231. [PMID: 33621702 DOI: 10.1016/j.pdpdt.2021.102231] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 01/29/2021] [Accepted: 02/16/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Clinical efficacy of antimicrobial photodynamic therapy (aPDT) as compared to antibiotics in periodontitis and peri-implantitis has been tested in several clinical trials. Yet controversial results were reported. The aim of the present study was to answer the question: "Will adjunctive antimicrobial photodynamic therapy be more effective than antibiotics agent in the treatment of periodontitis and peri-implantitis?". METHODS Publications compared outcomes between aPDT and antibiotics in adult patients with periodontitis or peri-implantitis, containing more than 3-month follow-up duration, were involved in the systematic review and meta-analysis. PubMed, EMBASE and Cochrane Central were searched until December of 2020. Clinical parameters including pocket probing depth (PPD), clinical attachment level (CAL), and bleeding on probing (BOP) were evaluated. The risk of bias was assessed by Cochrane Collaboration Tool. Weighted mean differences (WMD), 95 % confidence interval(CI) and heterogeneity were estimated by Review Manager software. RESULTS 10 trials in periodontitis and 5 trials in peri-implantitis were included. Meta-analysis outcomes revealed equal clinical evidence for aPDT and antibiotics in periodontitis and peri-implantitis. In addition, aPDT significantly reduced the red complex in both diseases. However, owing to the heterogeneity of protocols in articles and the limited number of studies, the comparative conclusion remained unconfirmed. CONCLUSION aPDT can be considered as an alternative to antibiotics in the treatment of peri-implantitis and periodontitis. Given that high heterogeneity in outcome was found in this review, future long-term clinical trials with standard aPDT and antibiotic treatment should be tested to arrive at a firm conclusion.
Collapse
Affiliation(s)
- Yuxin Zhao
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, and Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, Zhejiang, 310006, China
| | - Rui Pu
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, and Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, Zhejiang, 310006, China
| | - Yinjie Qian
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, and Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, Zhejiang, 310006, China
| | - Jue Shi
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, and Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, Zhejiang, 310006, China
| | - Misi Si
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, and Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, Zhejiang, 310006, China.
| |
Collapse
|
12
|
Ai R, Nie M, Yang J, Deng D. Effects of Antibiotics Versus Repeated Applications of Photodynamic Therapy as an Adjunctive Treatment for Periodontitis: A Systematic Review and Meta-Analysis. PHOTOBIOMODULATION PHOTOMEDICINE AND LASER SURGERY 2021; 39:211-220. [PMID: 33601959 DOI: 10.1089/photob.2020.4917] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Objective: Although multiple applications of antimicrobial photodynamic therapy (aPDT) and antibiotics (AB) have been proved to have a biomodulatory effect, no systematic review has exclusively compared the effectiveness as an adjunct to scaling and root planning (SRP). This study sought to systematically compare the clinical efficacy of repeated antimicrobial photodynamic therapy (RaPDT) with that of the systemic administered AB as an alternative approach to SRP in treating periodontitis. Methods: In this systematic review, two independent reviewers searched PubMed, Embase, and CENTRAL databases. The primary outcomes assessed were bleeding on probing (BOP), probing pocket depth (PPD), and clinical attachment level (CAL). Results: Five randomized clinical trials were included after screening 457 records. Results revealed that when patients from all studies were categorized based on their baseline CAL, AB demonstrated significant benefits over RaPDT in the improvement of PPD [weighted mean differences (WMD) = -0.36, 95% confidence interval (CI) = -0.71 to -0.02, p < 0.05] in the patients with severe periodontitis (CAL baseline ≥5 mm) 3-month postoperatively, and CAL (WMD = -0.57, 95% CI = -1.11 to -0.04, p < 0.05) at 6-month observation. Nevertheless, AB failed to show significant benefits over RaPDT, when CAL baseline <5 mm in terms of clinical parameters. Conclusions: RaPDT may represent an alternative approach to SRP in treating slight-to-moderate periodontitis cases (CAL <5 mm), whereas AB remain a main therapy for treating severe periodontitis (CAL ≥5 mm).
Collapse
Affiliation(s)
- Ruixue Ai
- Department of Preventive Dentistry, Academic Center for Dentistry Amsterdam, University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Min Nie
- Department of Preventive Dentistry, Academic Center for Dentistry Amsterdam, University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, the Netherlands.,State Key Laboratory of Oral Disease and National Clinical Research Center for Oral Diseases, Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Periodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Jingmei Yang
- State Key Laboratory of Oral Disease and National Clinical Research Center for Oral Diseases, Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Dongmei Deng
- Department of Preventive Dentistry, Academic Center for Dentistry Amsterdam, University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
13
|
Mustfa SA, Maurizi E, McGrath J, Chiappini C. Nanomedicine Approaches to Negotiate Local Biobarriers for Topical Drug Delivery. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202000160] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Salman Ahmad Mustfa
- Centre for Craniofacial and Regenerative Biology King's College London London SE1 9RT UK
| | - Eleonora Maurizi
- Dipartimento di Medicina e Chirurgia Università di Parma Parma 43121 Italy
| | - John McGrath
- St John's Institute of Dermatology King's College London London SE1 9RT UK
| | - Ciro Chiappini
- Centre for Craniofacial and Regenerative Biology King's College London London SE1 9RT UK
- London Centre for Nanotechnology King's College London London WC2R 2LS UK
| |
Collapse
|
14
|
Rahman S, GV G, Mehta D. A clinico-microbiological and biochemical study evaluating the adjunctive use of antimicrobial photodynamic therapy and local drug delivery of 1.2 % simvastatin gel compared to scaling and root planing alone. Photodiagnosis Photodyn Ther 2020; 32:102017. [DOI: 10.1016/j.pdpdt.2020.102017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 08/03/2020] [Accepted: 09/11/2020] [Indexed: 12/14/2022]
|
15
|
Tan OL, Safii SH, Razali M. Clinical Efficacy of Single Application Local Drug Delivery and Adjunctive Agents in Nonsurgical Periodontal Therapy: A Systematic Review and Network Meta-Analysis. Pharmaceutics 2020; 12:E1086. [PMID: 33198248 PMCID: PMC7698182 DOI: 10.3390/pharmaceutics12111086] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 12/29/2022] Open
Abstract
This review aimed to rank the clinical efficacy of commercially available single-application local drug delivery and adjunctive agents (LDAs) compared with subgingival mechanical debridement (SMD) in nonsurgical periodontal therapy (NSPT). Randomized controlled clinical trials that compared LDAs against SMD alone or with placebo in adults (aged at least 18 years) diagnosed with periodontitis with a minimum of 6 months follow-up were included. A frequentist approach to random-effects network meta-analysis was implemented. The efficacies of the LDAs measured by probing pocket depth (PPD) reduction and clinical attachment level (CAL) gain were reported as mean difference (MD) with 95% confidence intervals (CIs). The treatments were ranked according to their P-score. Four network meta-analyses suggested that sulfonic/sulfuric acid gel (PPD MD -1.13 mm, 95% CI -1.74 to -0.53, P-score 0.91; CAL MD -1.09 mm, 95% CI -1.58 to -0.61, P-score 0.95) and doxycycline hyclate gel (PPD MD -0.90 mm, 95% CI -1.50 to -0.30, P-score 0.93; CAL MD -0.84 mm, 95% CI -1.40 to -0.28, P-score 0.92) were the most effective in reducing PPD and gaining CAL in split-mouth and parallel studies, respectively (moderate certainty of evidence). LDAs have differing efficacies, but they present with possible clinical significance over SMD alone in NSPT.
Collapse
Affiliation(s)
- Oi Leng Tan
- Centre for Restorative Dentistry, Unit of Periodontology, Faculty of Dentistry, National University of Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia;
| | - Syarida Hasnur Safii
- Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya, Kuala Lumpur 50603, Malaysia;
| | - Masfueh Razali
- Centre for Restorative Dentistry, Unit of Periodontology, Faculty of Dentistry, National University of Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia;
| |
Collapse
|
16
|
Antimicrobial Capacity and Surface Alterations Using Photodynamic Therapy and Light Activated Disinfection on Polymer-Infiltrated Ceramic Material Contaminated with Periodontal Bacteria. Pharmaceuticals (Basel) 2020; 13:ph13110350. [PMID: 33137995 PMCID: PMC7693966 DOI: 10.3390/ph13110350] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 10/26/2020] [Accepted: 10/26/2020] [Indexed: 12/15/2022] Open
Abstract
This study determined the antimicrobial efficiency of light-activated disinfection (LAD) and photodynamic therapy (PDT) on polymer-infiltrated ceramic network (PICN) material contaminated with three periodontal bacteria and explored if PDT and LAD cause PICN surface alterations. Sixty PICN discs were contaminated with Tannerella forsythia, Porphyromonas gingivalis, and Treponema denticola and randomly divided into five groups (n = 12 samples/each) according to the treatment groups: Group PDT-PDT (630 ± 10 nm diode laser) with methylene blue; Group DL-808 nm diode laser in contact mode without photosensitizer; Group MB-methylene blue without light application; Group CHX-0.12% chlorhexidine digluconate solution and; Group NT-no treatment. Each disc was then placed in tubes containing phosphate buffered saline (PBS) and vortexed for 30 s to remove the remaining bacteria from the discs. A total of 10× serial dilutions were performed followed by plating of 30 μL of suspension on Brucella agar plates. The colony forming units (CFU) were calculated after 72 h. PICN discs with the attached biofilms were used for confocal microscopy investigation for live/dead bacterial viability. A random single sample from each group was selected to study the bacterial adherence and topographical alterations on PICN discs under scanning electron microscope (SEM). The PDT group showed higher reduction for each bacterial species and total counts of bacteria assessed followed by the DL group (p < 0.05). When compared with MB group, the two laser groups were significantly superior (p < 0.05). The MB group did not show significant differences for any bacteria when compared to NT. The bacteria with the CHX group and DL groups appeared dead with few areas of surviving green stained bacteria. The PDT group showed the highest dead cell count (p < 0.05). PDT and DL groups indicate no significant changes on the surface compared to the sterile PICN discs on visual assessment. Photodynamic therapy produced superior periodontal bacteria reduction over the surface of PICN surface. PDT group showed higher reduction for each bacterial species and total counts of bacteria assessed followed by the DL group. Both PDT and DL treatment strategies are effective without producing surface alterations on PICN.
Collapse
|
17
|
Asadi A, Abdi M, Kouhsari E, Panahi P, Sholeh M, Sadeghifard N, Amiriani T, Ahmadi A, Maleki A, Gholami M. Minocycline, focus on mechanisms of resistance, antibacterial activity, and clinical effectiveness: Back to the future. J Glob Antimicrob Resist 2020; 22:161-174. [PMID: 32061815 DOI: 10.1016/j.jgar.2020.01.022] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/17/2020] [Accepted: 01/28/2020] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVES The increasing crisis regarding multidrug-resistant (MDR) and extensively drug-resistant microorganisms leads to appealing therapeutic options. METHODS During the last 30 years, minocycline, a wide-spectrum antimicrobial agent, has been effective against MDR Gram-positive and Gram-negative bacterial infections. As with other tetracyclines, the mechanism of action of minocycline involves attaching to the bacterial 30S ribosomal subunit and preventing protein synthesis. RESULTS This antimicrobial agent has been approved for the treatment of acne vulgaris, some sexually transmitted diseases and rheumatoid arthritis. Although many reports have been published, there remains limited information regarding the prevalence, mechanism of resistance and clinical effectiveness of minocycline. CONCLUSION Thus, we summarize here the currently available data concerning pharmacokinetics and pharmacodynamics, mechanism of action and resistance, antibacterial activity and clinical effectiveness of minocycline.
Collapse
Affiliation(s)
- Arezoo Asadi
- Department of Microbiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Milad Abdi
- Department of Microbiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ebrahim Kouhsari
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran; Laboratory Sciences Research Center, Golestan University of Medical Sciences, Gorgan, Iran.
| | - Pegah Panahi
- Department of Microbiology, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Sholeh
- Department of Microbiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Nourkhoda Sadeghifard
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Taghi Amiriani
- Golestan Research Center of Gastroenterology and Hepatology, Golestan University of Medical Sciences, Gorgan, Iran
| | - Alireza Ahmadi
- Laboratory Sciences Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Abbas Maleki
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Mehrdad Gholami
- Department of Microbiology and Virology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
18
|
The Capacity of Periodontal Gel to Occupy the Spaces Inside the Periodontal Pockets Using Computational Fluid Dynamic. Dent J (Basel) 2019; 8:dj8010001. [PMID: 31878278 PMCID: PMC7148525 DOI: 10.3390/dj8010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/08/2019] [Accepted: 12/11/2019] [Indexed: 12/03/2022] Open
Abstract
The aim of the current work is to demonstrate the capacity of a new periodontal gel to occupy the spaces inside the periodontal pockets through Computational Fluid Dynamic (CFD). The test gel consists of two resorbable medical grade polymers (PEO, Poly Ethylen Oxide and HPMC, Hydroxy Propyl Metyl Cellulose), Type I Collagen, SAP (Vitamin C), and PBS (Saline Solution), while the control gel is 14% doxyclin controlled release gel, which is used for treating periodontal pockets with probing ≥5 mm after scaling and root plaining. The study examined the fluid dynamic analysis (Computational Fluid Dynamic—CFD) of two different gels, used in dentistry to treat periodontitis, in relation to both the geometry of the periodontal pocket and the function of two different types of needles that are used to distribute the preparation. The periodontal pocket was determined by reading DICOM images taken from the patient’s CAT scan. The results show that the H42® gel comes out uniformly compared to the other gel. Moreover, it is possible to observe how the rheological properties of the gel allow the fluid to spread evenly within the periodontal pocket in relation to the geometry of the needle. In particular, H42® gel exits in a constant way both from the first and the second exit. In fact, it was observed that by changing the geometry of the needle or the type of periodontal gel, the distribution of the gel inside the pocket was no longer homogeneous. Thus, having the correct rheological properties and correct needle geometries both speeds up the gel and optimizes the pressure distribution. Currently, the literature is still lacking, therefore further studies will be needed to confirm these results.
Collapse
|
19
|
Ortega SM, Gonçalves MLL, da Silva T, Horliana ACRT, Motta LJ, Altavista OM, Olivan SR, dos Santos AECG, Martimbianco ALC, Mesquita-Ferrari RA, Fernandes KPS, Bussadori SK. Evaluation of the use of photobiomodulation following the placement of elastomeric separators: Protocol for a randomized controlled clinical trial. Medicine (Baltimore) 2019; 98:e17325. [PMID: 31651838 PMCID: PMC6824799 DOI: 10.1097/md.0000000000017325] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Pain stemming from the placement of elastomeric separators and the exchanging of wires and accessories is the greatest reason for abandoning orthodontic treatment. Indeed, discomfort related to treatment exerts a negative impact on quality of life due to the difficulty chewing and biting. This paper proposes a study to evaluate the analgesic effects of photomiobodulation (PBM) on individuals undergoing orthodontic treatment. METHODS The sample will be composed of 72 individuals who receiving elastomeric separators on the mesial and distal faces of the maxillary first molars. The patients will be randomly allocated to 2 groups: an experimental group irradiated with low-level laser and a sham group submitted to simulated laser irradiation. Upon the placement of the separators, the experimental group will receive a single application of PBM on the mesial and distal cervical portion and apical third of the molars. Perceived pain will be analyzed after one hour using the visual analog scale in both groups. Samples will be taken of the gingival crevice with absorbent paper for 30 seconds for the analysis of cytokines using ELISA and the results of the 2 groups will be compared. The patients will sign a statement of informed consent. Statistical analysis will be performed with the Student's t test and analysis of variance (ANOVA). DISCUSSION The expectation is that the patients in the irradiated group will have a lower perception of pain and lower quantity of cytokines compared to those in the sham group. The purpose of the study is to establish an effective method for PBM with the use of low-level infrared laser (Ga-Al-As with a wavelength of 808 nm and output power of 100 mW) for reductions in pain and inflammatory cytokines related to orthodontic treatment. TRIAL REGISTRATION This protocol was registered in ClinicalTrial.gov, under number NCT03939988. It was first posted and last updated in May 6, 2019.
Collapse
Affiliation(s)
| | | | - Tamiris da Silva
- Postgraduate Program in Rehabilitation Sciences, Universidade Nove de Julho, UNINOVE
| | | | | | | | | | | | | | | | | | - Sandra Kalil Bussadori
- Postgraduate Program in Biophotonics Applied to Health Sciences
- Postgraduate Program in Rehabilitation Sciences, Universidade Nove de Julho, UNINOVE
| |
Collapse
|
20
|
Li N, Jiang L, Jin H, Wu Y, Liu Y, Huang W, Wei L, Zhou Q, Chen F, Gao Y, Zhu B, Zhang X. An enzyme-responsive membrane for antibiotic drug release and local periodontal treatment. Colloids Surf B Biointerfaces 2019; 183:110454. [PMID: 31473407 DOI: 10.1016/j.colsurfb.2019.110454] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 08/19/2019] [Accepted: 08/21/2019] [Indexed: 10/26/2022]
Abstract
Periodontitis is a chronic, destructive inflammatory disease that injures tooth- supporting tissues, eventually leading to tooth loss. Complete eradication of periodontal pathogenic microorganisms is fundamental to allow periodontal healing and commonly precedes periodontal tissue regeneration. To address this challenge, we report a strategy for developing an enzyme-mediated periodontal membrane for targeted antibiotic delivery into infectious periodontal pockets; the unique components of the membrane will also benefit periodontal alveolar bone repair. In this approach, a chitosan membrane containing polyphosphoester and minocycline hydrochloride (PPEM) was prepared. Physical, morphological, and ultrastructural analyses were carried out in order to assess cellular compatibility, drug release and antibacterial activity in vitro. Additionally, the functionality of the PPEM membrane was evaluated in vivo with a periodontal defect model in rats. The results confirm that the PPEM membrane exhibits good physical properties with excellent antibacterial activity and successfully promotes periodontal tissue repair, making it promising for periodontal treatment.
Collapse
Affiliation(s)
- Ning Li
- Department of Prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, 200011, Shanghai, China; Department of Stomatology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Liting Jiang
- Department of Prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, 200011, Shanghai, China; Department of Stomatology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Hua Jin
- Instrumental Analysis Center, School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yan Wu
- Instrumental Analysis Center, School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yongjia Liu
- Instrumental Analysis Center, School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wei Huang
- Instrumental Analysis Center, School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Li Wei
- Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, 200025, Shanghai, China
| | - Qi Zhou
- Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, 200025, Shanghai, China
| | - Feng Chen
- Department of Orthopaedics, Shanghai Fengxian Central Hospital, South Campus of Shanghai Sixth People's Hospital, Shanghai Jiaotong University, 201499, Shanghai, China
| | - Yiming Gao
- Department of Stomatology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Bangshang Zhu
- Instrumental Analysis Center, School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Xiuyin Zhang
- Department of Prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, 200011, Shanghai, China.
| |
Collapse
|