1
|
Deng Y, Wang F, Wang T, Zhang X, Chen D, Wang Y, Chen C, Pan G. Research progress in the mechanisms and functions of specialized pro-resolving mediators in neurological diseases. Prostaglandins Other Lipid Mediat 2024; 175:106905. [PMID: 39265777 DOI: 10.1016/j.prostaglandins.2024.106905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/30/2024] [Accepted: 09/09/2024] [Indexed: 09/14/2024]
Abstract
The nervous system interacts with the immune system through a variety of cellular regulators, signaling pathways, and molecular mechanisms. Disruptions in these interactions lead to the development of multiple neurological diseases. Recent studies have identified that specialized pro-resolving mediators (SPMs) play a regulatory role in the neuroimmune system. This study reviews recent research on the function of SPMs in the inflammatory process and their association with the nervous system. The review aims to provide new perspectives for studying the pathogenesis of neurological diseases and identify novel targets for clinical therapy.
Collapse
Affiliation(s)
- Yu Deng
- Guangzhou Hospital of Integrated Chinese and Western Medicine Affiliated to Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510800, China
| | - Fei Wang
- Yancheng TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Yancheng, Jiangsu 224000, China; Yancheng TCM Hospital, Yancheng, Jiangsu 224000, China
| | - Tianle Wang
- Guangzhou Hospital of Integrated Chinese and Western Medicine Affiliated to Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510800, China
| | - Xu Zhang
- Guangzhou Hospital of Integrated Chinese and Western Medicine Affiliated to Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510800, China
| | - Du Chen
- Guangzhou Hospital of Integrated Chinese and Western Medicine Affiliated to Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510800, China
| | - Yuhan Wang
- Hubei University of Chinese Medicine, Wuhan, Hubei 430065, China
| | - Chaojun Chen
- Guangzhou Hospital of Integrated Chinese and Western Medicine Affiliated to Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510800, China.
| | - Guangtao Pan
- Yancheng TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Yancheng, Jiangsu 224000, China; Yancheng TCM Hospital, Yancheng, Jiangsu 224000, China.
| |
Collapse
|
2
|
Li W, Xia Y, Yang J, Sanyal AJ, Shah VH, Chalasani NP, Yu Q. Disrupted balance between pro-inflammatory lipid mediators and anti-inflammatory specialized pro-resolving mediators is linked to hyperinflammation in patients with alcoholic hepatitis. Front Immunol 2024; 15:1377236. [PMID: 39640267 PMCID: PMC11617321 DOI: 10.3389/fimmu.2024.1377236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 10/31/2024] [Indexed: 12/07/2024] Open
Abstract
Background Alcoholic hepatitis (AH) is characterized by intense systemic and liver inflammation, posing significant risks of health complications and mortality. While inflammation is a crucial defense mechanism against injury and infection, its timely resolution is essential to prevent tissue damage and restore tissue homeostasis. The resolution of inflammation is primarily governed by specialized pro-resolving mediators (SPMs), lipid metabolites derived from w-6 and w-3 poly-unsaturated fatty acids (PUFAs). Currently, the balance between pro-inflammatory lipid mediators (PLMs) and SPMs in the w-6 and w-3 PUFA metabolic pathways and the impact of alcohol abstinence on profiles of PLMs and SPMs in AH patients are not well studied. Methods In this study, we used LC-MS/MS and ELISA to quantify levels of lipid mediators (LMs) and their precursors in the plasma samples from 58 AH patients, 29 heavy drinkers without overt liver diseases (HDCs), and 35 healthy controls (HCs). Subsequently, we assessed correlations of altered LMs with clinical parameters and inflammatory mediators. Furthermore, we conducted a longitudinal study to analyze the effects of alcohol abstinence on LMs over 6- and 12-month follow-ups. Results AH patients exhibited significantly higher plasma levels of w-6 PLMs (PGD2 and LTB4) and SPM RvE1 compared to HDCs or HCs. Conversely, the SPM LXA4 was significantly downregulated in AH patients. Some of these altered LMs were found to correlate with AH disease severity and various inflammatory cytokines. Particularly, the LTB4/LXA4 ratio was substantially elevated in AH patients relative to HDCs and HCs. This altered ratio displayed a positive correlation with the MELD score. Importantly, the majority of dysregulated LMs, particularly PLMs, were normalized following alcohol abstinence.
Collapse
Affiliation(s)
- Wei Li
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Ying Xia
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Jing Yang
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Arun J. Sanyal
- Division of Gastroenterology and Hepatology, Department of Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | - Vijay H. Shah
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, United States
| | - Naga P. Chalasani
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Qigui Yu
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
3
|
Cannataro R, Abrego-Guandique DM, Straface N, Cione E. Omega-3 and Sports: Focus on Inflammation. Life (Basel) 2024; 14:1315. [PMID: 39459615 PMCID: PMC11509128 DOI: 10.3390/life14101315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/03/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
Inflammation is expected in sports, especially when practiced at a high level. The human body is pushed toward its limit, and this is perceived as a "stressogenic agent". Athletes, especially elite ones, desire it because their bodies can react with super-compensation, i.e., improve muscle mass, strength, speed, resistance, and, therefore, athletic performance. Thus, the inflammatory stimuli should be there during training but also counteracted to have the body placed in the optimal conditions for reacting with super-compensation. In this sense, omega-3 fatty acids have been shown to have anti-inflammatory biochemical activity. In this review, we will present the biochemical mechanisms of action of omega-3 fatty acids through their mediators, specialized pro-resolving mediators, which have anti-inflammatory activity. A focus will be on studies on omega-3 fatty acid supplementation in sports, and we will provide indications for possible practical applications and future studies, which are undoubtedly necessary to clarify the omega-3 fatty acids used in sports practice.
Collapse
Affiliation(s)
- Roberto Cannataro
- Galascreen Laboratories, University of Calabria, 87036 Rende, Italy;
- Research Division, Dynamical Business & Science Society—DBSS International SAS, Bogotá 110311, Colombia
| | | | - Natascia Straface
- Galascreen Laboratories, University of Calabria, 87036 Rende, Italy;
| | - Erika Cione
- Galascreen Laboratories, University of Calabria, 87036 Rende, Italy;
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| |
Collapse
|
4
|
Hu X, Zhi S, Wu W, Tao Y, Zhang Y, Li L, Li X, Pan L, Fan H, Li W. The application of metagenomics, radiomics and machine learning for diagnosis of sepsis. Front Med (Lausanne) 2024; 11:1400166. [PMID: 39371337 PMCID: PMC11449737 DOI: 10.3389/fmed.2024.1400166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 09/09/2024] [Indexed: 10/08/2024] Open
Abstract
Introduction Sepsis poses a serious threat to individual life and health. Early and accessible diagnosis and targeted treatment are crucial. This study aims to explore the relationship between microbes, metabolic pathways, and blood test indicators in sepsis patients and develop a machine learning model for clinical diagnosis. Methods Blood samples from sepsis patients were sequenced. α-diversity and β-diversity analyses were performed to compare the microbial diversity between the sepsis group and the normal group. Correlation analysis was conducted on microbes, metabolic pathways, and blood test indicators. In addition, a model was developed based on medical records and radiomic features using machine learning algorithms. Results The results of α-diversity and β-diversity analyses showed that the microbial diversity of sepsis group was significantly higher than that of normal group (p < 0.05). The top 10 microbial abundances in the sepsis and normal groups were Vitis vinifera, Mycobacterium canettii, Solanum pennellii, Ralstonia insidiosa, Ananas comosus, Moraxella osloensis, Escherichia coli, Staphylococcus hominis, Camelina sativa, and Cutibacterium acnes. The enriched metabolic pathways mainly included Protein families: genetic information processing, Translation, Protein families: signaling and cellular processes, and Unclassified: genetic information processing. The correlation analysis revealed a significant positive correlation (p < 0.05) between IL-6 and Membrane transport. Metabolism of other amino acids showed a significant positive correlation (p < 0.05) with Cutibacterium acnes, Ralstonia insidiosa, Moraxella osloensis, and Staphylococcus hominis. Ananas comosus showed a significant positive correlation (p < 0.05) with Poorly characterized and Unclassified: metabolism. Blood test-related indicators showed a significant negative correlation (p < 0.05) with microorganisms. Logistic regression (LR) was used as the optimal model in six machine learning models based on medical records and radiomic features. The nomogram, calibration curves, and AUC values demonstrated that LR performed best for prediction. Discussion This study provides insights into the relationship between microbes, metabolic pathways, and blood test indicators in sepsis. The developed machine learning model shows potential for aiding in clinical diagnosis. However, further research is needed to validate and improve the model.
Collapse
Affiliation(s)
- Xiefei Hu
- Clinical Laboratory, Chongqing University Central Hospital, School of Medicine, Chongqing University, Chongqing, China
- Chongqing Key Laboratory of Emergency Medicine, Chongqing Emergency Medical Center, Chongqing, China
| | - Shenshen Zhi
- Chongqing Key Laboratory of Emergency Medicine, Chongqing Emergency Medical Center, Chongqing, China
- Department of Blood Transfusion, Chongqing University Central Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Wenyan Wu
- Clinical Laboratory, Chongqing University Central Hospital, School of Medicine, Chongqing University, Chongqing, China
- Chongqing Key Laboratory of Emergency Medicine, Chongqing Emergency Medical Center, Chongqing, China
| | - Yang Tao
- Clinical Laboratory, Chongqing University Central Hospital, School of Medicine, Chongqing University, Chongqing, China
- Intensive Care Unit, Chongqing University Central Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Yuanyuan Zhang
- Clinical Laboratory, Chongqing University Central Hospital, School of Medicine, Chongqing University, Chongqing, China
- Chongqing Key Laboratory of Emergency Medicine, Chongqing Emergency Medical Center, Chongqing, China
| | - Lijuan Li
- Clinical Laboratory, Chongqing University Central Hospital, School of Medicine, Chongqing University, Chongqing, China
- Chongqing Key Laboratory of Emergency Medicine, Chongqing Emergency Medical Center, Chongqing, China
| | - Xun Li
- Clinical Laboratory, Chongqing University Central Hospital, School of Medicine, Chongqing University, Chongqing, China
- Chongqing Key Laboratory of Emergency Medicine, Chongqing Emergency Medical Center, Chongqing, China
| | - Liyan Pan
- Clinical Laboratory, Chongqing University Central Hospital, School of Medicine, Chongqing University, Chongqing, China
- Chongqing Key Laboratory of Emergency Medicine, Chongqing Emergency Medical Center, Chongqing, China
| | - Haiping Fan
- Clinical Laboratory, Chongqing University Central Hospital, School of Medicine, Chongqing University, Chongqing, China
- Chongqing Key Laboratory of Emergency Medicine, Chongqing Emergency Medical Center, Chongqing, China
| | - Wei Li
- Clinical Laboratory, Chongqing University Central Hospital, School of Medicine, Chongqing University, Chongqing, China
- Chongqing Key Laboratory of Emergency Medicine, Chongqing Emergency Medical Center, Chongqing, China
| |
Collapse
|
5
|
Scott MA, Valeris-Chacin R, Thompson AC, Woolums AR, Karisch BB. Comprehensive time-course gene expression evaluation of high-risk beef cattle to establish immunological characteristics associated with undifferentiated bovine respiratory disease. Front Immunol 2024; 15:1412766. [PMID: 39346910 PMCID: PMC11427276 DOI: 10.3389/fimmu.2024.1412766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 08/20/2024] [Indexed: 10/01/2024] Open
Abstract
Bovine respiratory disease (BRD) remains the leading infectious disease in beef cattle production systems. Host gene expression upon facility arrival may indicate risk of BRD development and severity. However, a time-course approach would better define how BRD development influences immunological and inflammatory responses after disease occurrences. Here, we evaluated whole blood transcriptomes of high-risk beef cattle at three time points to elucidate BRD-associated host response. Sequenced jugular whole blood mRNA from 36 cattle (2015: n = 9; 2017: n = 27) across three time points (n = 100 samples; days [D]0, D28, and D63) were processed through ARS-UCD1.2 reference-guided assembly (HISAT2/Stringtie2). Samples were categorized into BRD-severity cohorts (Healthy, n = 14; Treated 1, n = 11; Treated 2+, n = 11) via frequency of antimicrobial clinical treatment. Assessment of gene expression patterns over time within each BRD cohort was modeled through an autoregressive hidden Markov model (EBSeq-HMM; posterior probability ≥ 0.5, FDR < 0.01). Mixed-effects negative binomial models (glmmSeq; FDR < 0.05) and edgeR (FDR < 0.10) identified differentially expressed genes between and across cohorts overtime. A total of 2,580, 2,216, and 2,381 genes were dynamically expressed across time in Healthy, Treated 1, and Treated 2+ cattle, respectively. Genes involved in the production of specialized resolving mediators (SPMs) decreased at D28 and then increased by D63 across all three cohorts. Accordingly, SPM production and alternative complement were differentially expressed between Healthy and Treated 2+ at D0, but not statistically different between the three groups by D63. Magnitude, but not directionality, of gene expression related to SPM production, alternative complement, and innate immune response signified Healthy and Treated 2+ cattle. Differences in gene expression at D63 across the three groups were related to oxygen binding and carrier activity, natural killer cell-mediated cytotoxicity, cathelicidin production, and neutrophil degranulation, possibly indicating prolonged airway pathology and inflammation weeks after clinical treatment for BRD. These findings indicate genomic mechanisms indicative of BRD development and severity over time.
Collapse
Affiliation(s)
- Matthew A Scott
- Veterinary Education, Research, and Outreach Program, Texas A&M University, Canyon, TX, United States
| | - Robert Valeris-Chacin
- Veterinary Education, Research, and Outreach Program, Texas A&M University, Canyon, TX, United States
| | - Alexis C Thompson
- Texas A&M Veterinary Medical Diagnostic Laboratory, Canyon, TX, United States
| | - Amelia R Woolums
- Department of Pathobiology and Population Medicine, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, United States
| | - Brandi B Karisch
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, MS, United States
| |
Collapse
|
6
|
Franks SJ, Gowler PRW, Dunster JL, Turnbull J, Gohir SA, Kelly A, Valdes AM, King JR, Barrett DA, Chapman V, Preston S. Modelling the role of enzymatic pathways in the metabolism of docosahexaenoic acid by monocytes and its association with osteoarthritic pain. Math Biosci 2024; 374:109228. [PMID: 38851528 DOI: 10.1016/j.mbs.2024.109228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 06/03/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024]
Abstract
Chronic pain is a major cause of disability and suffering in osteoarthritis (OA) patients. Endogenous specialised pro-resolving molecules (SPMs) curtail pro-inflammatory responses. One of the SPM intermediate oxylipins, 17-hydroxydocasahexaenoic acid (17-HDHA, a metabolite of docosahexaenoic acid (DHA)), is significantly associated with OA pain. The aim of this multidisciplinary work is to develop a mathematical model to describe the contributions of enzymatic pathways (and the genes that encode them) to the metabolism of DHA by monocytes and to the levels of the down-stream metabolites, 17-HDHA and 14-hydroxydocasahexaenoic acid (14-HDHA), motivated by novel clinical data from a study involving 30 participants with OA. The data include measurements of oxylipin levels, mRNA levels, measures of OA severity and self-reported pain scores. We propose a system of ordinary differential equations to characterise associations between the different datasets, in order to determine the homeostatic concentrations of DHA, 17-HDHA and 14-HDHA, dependent upon the gene expression of the associated metabolic enzymes. Using parameter-fitting methods, local sensitivity and uncertainty analysis, the model is shown to fit well qualitatively to experimental data. The model suggests that up-regulation of some ALOX genes may lead to the down-regulation of 17-HDHA and that dosing with 17-HDHA increases the production of resolvins, which helps to down-regulate the inflammatory response. More generally, we explore the challenges and limitations of modelling real data, in particular individual variability, and also discuss the value of gathering additional experimental data motivated by the modelling insights.
Collapse
Affiliation(s)
- S J Franks
- School of Mathematical Sciences, University of Nottingham, Nottingham, NG7 2RD, UK.
| | - P R W Gowler
- Pain Centre Versus Arthritis, University of Nottingham Medical School, Queen's Medical Centre, Nottingham, UK; School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, UK
| | - J L Dunster
- Institute for Cardiovascular and Metabolic Research, University of Reading, UK
| | - J Turnbull
- School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, UK; NIHR Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK; Centre for Analytical Bioscience, Advanced Materials and Healthcare Technologies Division, School of Pharmacy, University of Nottingham, Nottingham, UK
| | - S A Gohir
- NIHR Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK
| | - A Kelly
- NIHR Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK
| | - A M Valdes
- Pain Centre Versus Arthritis, University of Nottingham Medical School, Queen's Medical Centre, Nottingham, UK; NIHR Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK
| | - J R King
- School of Mathematical Sciences, University of Nottingham, Nottingham, NG7 2RD, UK
| | - D A Barrett
- NIHR Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK; Centre for Analytical Bioscience, Advanced Materials and Healthcare Technologies Division, School of Pharmacy, University of Nottingham, Nottingham, UK
| | - V Chapman
- Pain Centre Versus Arthritis, University of Nottingham Medical School, Queen's Medical Centre, Nottingham, UK; School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, UK; NIHR Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK
| | - S Preston
- School of Mathematical Sciences, University of Nottingham, Nottingham, NG7 2RD, UK
| |
Collapse
|
7
|
Fang Y, Li Z, Yang L, Li W, Wang Y, Kong Z, Miao J, Chen Y, Bian Y, Zeng L. Emerging roles of lactate in acute and chronic inflammation. Cell Commun Signal 2024; 22:276. [PMID: 38755659 PMCID: PMC11097486 DOI: 10.1186/s12964-024-01624-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 04/20/2024] [Indexed: 05/18/2024] Open
Abstract
Traditionally, lactate has been considered a 'waste product' of cellular metabolism. Recent findings have shown that lactate is a substance that plays an indispensable role in various physiological cellular functions and contributes to energy metabolism and signal transduction during immune and inflammatory responses. The discovery of lactylation further revealed the role of lactate in regulating inflammatory processes. In this review, we comprehensively summarize the paradoxical characteristics of lactate metabolism in the inflammatory microenvironment and highlight the pivotal roles of lactate homeostasis, the lactate shuttle, and lactylation ('lactate clock') in acute and chronic inflammatory responses from a molecular perspective. We especially focused on lactate and lactate receptors with either proinflammatory or anti-inflammatory effects on complex molecular biological signalling pathways and investigated the dynamic changes in inflammatory immune cells in the lactate-related inflammatory microenvironment. Moreover, we reviewed progress on the use of lactate as a therapeutic target for regulating the inflammatory response, which may provide a new perspective for treating inflammation-related diseases.
Collapse
Affiliation(s)
- Yunda Fang
- School of First Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Jiangsu Provincial Engineering Research Center of TCM External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zhengjun Li
- Jiangsu Provincial Engineering Research Center of TCM External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- College of Health Economics Management, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Lili Yang
- Jiangsu Provincial Engineering Research Center of TCM External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Jingwen Library, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Wen Li
- Jiangsu Provincial Engineering Research Center of TCM External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- School of Acupuncture-Moxibustion and Tuina, ·School of Health Preservation and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yutong Wang
- School of Acupuncture-Moxibustion and Tuina, ·School of Health Preservation and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Ziyang Kong
- Jiangsu Provincial Engineering Research Center of TCM External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- School of Acupuncture-Moxibustion and Tuina, ·School of Health Preservation and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jia Miao
- School of First Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Jiangsu Provincial Engineering Research Center of TCM External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yanqi Chen
- School of First Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Jiangsu Provincial Engineering Research Center of TCM External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yaoyao Bian
- Jiangsu Provincial Engineering Research Center of TCM External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
- School of Acupuncture-Moxibustion and Tuina, ·School of Health Preservation and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
- TCM Rehabilitation Center, Jiangsu Second Chinese Medicine Hospital, Nanjing, 210023, China.
| | - Li Zeng
- Jiangsu Provincial Engineering Research Center of TCM External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
- Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macau, 999078, China.
| |
Collapse
|
8
|
Sharma AK, Khandelwal R, Wolfrum C. Futile lipid cycling: from biochemistry to physiology. Nat Metab 2024; 6:808-824. [PMID: 38459186 DOI: 10.1038/s42255-024-01003-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 02/02/2024] [Indexed: 03/10/2024]
Abstract
In the healthy state, the fat stored in our body isn't just inert. Rather, it is dynamically mobilized to maintain an adequate concentration of fatty acids (FAs) in our bloodstream. Our body tends to produce excess FAs to ensure that the FA availability is not limiting. The surplus FAs are actively re-esterified into glycerides, initiating a cycle of breakdown and resynthesis of glycerides. This cycle consumes energy without generating a new product and is commonly referred to as the 'futile lipid cycle' or the glyceride/FA cycle. Contrary to the notion that it's a wasteful process, it turns out this cycle is crucial for systemic metabolic homeostasis. It acts as a control point in intra-adipocyte and inter-organ cross-talk, a metabolic rheostat, an energy sensor and a lipid diversifying mechanism. In this Review, we discuss the metabolic regulation and physiological implications of the glyceride/FA cycle and its mechanistic underpinnings.
Collapse
Affiliation(s)
- Anand Kumar Sharma
- Laboratory of Translational Nutrition Biology, Institute of Food, Nutrition and Health, ETH Zurich, Schwerzenbach, Switzerland.
| | - Radhika Khandelwal
- Laboratory of Translational Nutrition Biology, Institute of Food, Nutrition and Health, ETH Zurich, Schwerzenbach, Switzerland
| | - Christian Wolfrum
- Laboratory of Translational Nutrition Biology, Institute of Food, Nutrition and Health, ETH Zurich, Schwerzenbach, Switzerland.
| |
Collapse
|
9
|
Sun Y, Sun S, Chen P, Dai Y, Yang D, Lin Y, Yi L. Maresins as novel anti-inflammatory actors and putative therapeutic targets in sepsis. Pharmacol Res 2024; 202:107113. [PMID: 38387744 DOI: 10.1016/j.phrs.2024.107113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/19/2024] [Accepted: 02/19/2024] [Indexed: 02/24/2024]
Abstract
Sepsis, a complex clinical syndrome characterized by an exaggerated host response to infection, often necessitates hospitalization and intensive care unit admission. Delayed or inaccurate diagnosis of sepsis, coupled with suboptimal treatment strategies, can result in unfavorable outcomes, including mortality. Maresins, a newly discovered family of lipid mediators synthesized from docosahexaenoic acid by macrophages, have emerged as key players in promoting inflammation resolution and the termination of inflammatory processes. Extensive evidence has unequivocally demonstrated the beneficial effects of maresins in modulating the inflammatory response associated with sepsis; however, their bioactivity and functions exhibit remarkable diversity and complexity. This article presents a comprehensive review of recent research on the role of maresins in sepsis, aiming to enhance our understanding of their effectiveness and elucidate the specific mechanisms underlying their actions in sepsis treatment. Furthermore, emerging insights into the management of patients with sepsis are also highlighted.
Collapse
Affiliation(s)
- Yan Sun
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China
| | - Shujun Sun
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China; Department of Pain, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Pu Chen
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China
| | - Yan Dai
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China
| | - Dong Yang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China; Department of Pain, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yun Lin
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China
| | - Lisha Yi
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China.
| |
Collapse
|
10
|
Li W, Xia Y, Yang J, Sanyal AJ, Shah VH, Chalasani NP, Yu Q. Disrupted balance between pro-inflammatory lipid mediators and anti-inflammatory specialized pro-resolving mediators is linked to hyperinflammation in patients with alcoholic hepatitis. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.12.15.23300034. [PMID: 38168393 PMCID: PMC10760266 DOI: 10.1101/2023.12.15.23300034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Background Chronic excessive alcohol consumption leads to a spectrum of alcohol-associated liver diseases (ALD), including alcoholic hepatitis (AH). AH is characterized by intense systemic and liver inflammation, posing significant risks of health complications and mortality. While inflammation is a crucial defense mechanism against injury and infection, its timely resolution is essential to prevent tissue damage and restore tissue homeostasis. The resolution of inflammation is an actively regulated process, primarily governed by specialized pro-resolving mediators (SPMs), lipid metabolites derived from ω-6 and ω-3 poly-unsaturated fatty acids (PUFAs). We investigated the balance between pro-inflammatory lipid mediators (PLMs) and SPMs in the ω-6 and ω-3 PUFA metabolic pathways and examined the impact of alcohol abstinence on rectifying the dysregulated biosynthesis of PLMs and SPMs in AH patients. Methods LC-MS/MS and ELISA were used to quantify levels of bioactive lipid mediators (LMs) and their precursors in the plasma samples from 58 AH patients, 29 heavy drinkers without overt liver diseases (HDCs), and 35 healthy controls (HCs). Subsequently, we assessed correlations of altered LMs with clinical parameters and various markers of inflammatory cascade andmicrobial translocation. Furthermore, we conducted a longitudinal study to track changes in levels of LMs over 6- and 12-month follow-ups in AH patients who underwent alcohol abstinence. Results AH patients exhibited significantly higher plasma levels of ω-6 PLMs (PGD 2 and LTB 4 ) and SPM RvE1 compared to HDCs and/or HCs. Conversely, key SPMs such as LXA4, RvD1, and several precursors in the ω-3 pathway were significantly downregulated in AH patients. Some of these altered LMs were found to correlate with AH disease severity, clinical parameters, and various inflammatory cytokines. In particular, the LTB4/LXA4 ratio was substantially elevated in AH patients relative to HDCs and HCs. This altered ratio displayed a positive correlation with the MELD score, suggesting its potential utility as an indicator of disease severity in AH patients. Importantly, the majority of dysregulated LMs, particularly PLMs, were normalized following alcohol abstinence. Conclusion Our study reveals significant dysregulation in the levels of PLM metabolites and anti-inflammatory SPMs in both ω-6 and ω-3 PUFA pathways in AH patients. This disrupted biosynthesis, characterized by an overabundance of PLMs and a deficiency in SPMs, is linked to the heightened inflammation observed in AH patients. Importantly, our findings suggest an important role of alcohol abstinence in restoring the balance of these LMs and the potential therapeutic benefits of SPM supplements in alleviating the inflammatory cascade in AH patients.
Collapse
|
11
|
Pathak Z, Jadav T, Roy A, Chopra M, Singh N, Sengupta P, Kumar H. Maresin-1 prevents blood-spinal cord barrier disruption associated with TRPV4 elevation in the experimental model of spinal cord injury. Biochim Biophys Acta Mol Cell Biol Lipids 2023; 1868:159395. [PMID: 37729963 DOI: 10.1016/j.bbalip.2023.159395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/05/2023] [Accepted: 09/08/2023] [Indexed: 09/22/2023]
Abstract
Recently, we reported the TRPV4 ion channel activation and its association with secondary damage after spinal cord injury (SCI). TRPV4 activation is linked with blood-spinal cord barrier (BSCB) disruption, endothelial damage, and inflammation after SCI. Specialized pro-resolving mediators (SPM) are endogenous lipid mediators released for inflammation resolution. Studies suggest that SPM could act as an endogenous antagonist of ion channels directly or indirectly at the plasma membrane. Herein, we studied the effect of maresin-1, a docosahexaenoic acid (DHA)-derived SPM, in SCI-induced TRPV4 expression and subsequent associated damage. First, employing a particular agonist (4αPDD) in endothelial and neuronal cell lines, we examined the potential of maresin-1 to block TRPV4 activation. Then we quantify the DHA levels in plasma and epicenter of the spinal cord in sham and at 1, 3, 7, 14, 21, and 28-days post-injury (DPI) using LC-MS. Then, we exogenously administered maresin-1 using two dosing regimens i.e., single-dose (1 μg) and multiple-dose (1 μg/day for seven days), to confirm its role in the TRPV4 inhibition and its linked damage. After SCI, DHA levels decrease in the spinal cord epicenter area as well as in the plasma. Treatment with maresin-1 attenuates TRPV4 expression, inflammatory cytokines, and chemokines and impedes neutrophil infiltration. Furthermore, treatment with maresin-1 prevents BSCB disruption, alleviates glial scar formation, and improves functional recovery. Thus, our results suggest that maresin-1 could modulate TRPV4 expression and could be a safe and promising approach to target inflammation and BSCB damage after SCI.
Collapse
Affiliation(s)
- Zarna Pathak
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Tarang Jadav
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Abhishek Roy
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Manjeet Chopra
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Nidhi Singh
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Pinaki Sengupta
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Hemant Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat 382355, India.
| |
Collapse
|
12
|
Ali O, Szabó A. Review of Eukaryote Cellular Membrane Lipid Composition, with Special Attention to the Fatty Acids. Int J Mol Sci 2023; 24:15693. [PMID: 37958678 PMCID: PMC10649022 DOI: 10.3390/ijms242115693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
Biological membranes, primarily composed of lipids, envelop each living cell. The intricate composition and organization of membrane lipids, including the variety of fatty acids they encompass, serve a dynamic role in sustaining cellular structural integrity and functionality. Typically, modifications in lipid composition coincide with consequential alterations in universally significant signaling pathways. Exploring the various fatty acids, which serve as the foundational building blocks of membrane lipids, provides crucial insights into the underlying mechanisms governing a myriad of cellular processes, such as membrane fluidity, protein trafficking, signal transduction, intercellular communication, and the etiology of certain metabolic disorders. Furthermore, comprehending how alterations in the lipid composition, especially concerning the fatty acid profile, either contribute to or prevent the onset of pathological conditions stands as a compelling area of research. Hence, this review aims to meticulously introduce the intricacies of membrane lipids and their constituent fatty acids in a healthy organism, thereby illuminating their remarkable diversity and profound influence on cellular function. Furthermore, this review aspires to highlight some potential therapeutic targets for various pathological conditions that may be ameliorated through dietary fatty acid supplements. The initial section of this review expounds on the eukaryotic biomembranes and their complex lipids. Subsequent sections provide insights into the synthesis, membrane incorporation, and distribution of fatty acids across various fractions of membrane lipids. The last section highlights the functional significance of membrane-associated fatty acids and their innate capacity to shape the various cellular physiological responses.
Collapse
Affiliation(s)
- Omeralfaroug Ali
- Agrobiotechnology and Precision Breeding for Food Security National Laboratory, Institute of Physiology and Animal Nutrition, Department of Animal Physiology and Health, Hungarian University of Agriculture and Life Sciences, Guba Sándor Str. 40, 7400 Kaposvár, Hungary;
| | - András Szabó
- Agrobiotechnology and Precision Breeding for Food Security National Laboratory, Institute of Physiology and Animal Nutrition, Department of Animal Physiology and Health, Hungarian University of Agriculture and Life Sciences, Guba Sándor Str. 40, 7400 Kaposvár, Hungary;
- HUN-REN-MATE Mycotoxins in the Food Chain Research Group, Hungarian University of Agriculture and Life Sciences, Guba Sándor Str. 40, 7400 Kaposvár, Hungary
| |
Collapse
|
13
|
Hanbeyoglu O, Aydin S. Subfatin, Asprosin, Alamandine and Maresin-1 Inflammation Molecules in Cardiopulmonary Bypass. J Inflamm Res 2023; 16:3469-3477. [PMID: 37605784 PMCID: PMC10440107 DOI: 10.2147/jir.s422998] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 08/11/2023] [Indexed: 08/23/2023] Open
Abstract
Purpose Cardiopulmonary bypass (CPB) is a nonphysiological procedure in which inflammatory reactions and oxidative stress are induced, hormones and hemodynamic parameters are affected, and circulation is maintained outside the body. This study aimed to examine the effects of CPB on blood subfatin (SUB), asprossin (ASP), alamandine (ALA) and maresin-1 (MaR-1) levels. Materials and Methods Controls and patients who underwent open-heart surgery with CPB and whose age and body mass indices were compatible with each other were included in the study. Venous blood samples were collected from CPB patients (n =19) before anesthesia induction (T1), before CPB (T2), 5 min before cross-clamp removal (T3), 5 min after cross-clamp removal (T4), when taken to the intensive care unit (T5), postoperative 24th hour (T6) and 72nd hour (T7) postoperatively. Venous blood was collected from the healthy controls (n =19). The amounts of SUB, ASP, ALA, and MaR-1 in the blood samples were measured using an Enzyme-Linked Immunosorbent Assay (ELISA). Results The amounts of SUB and MaR-1 in the control group were significantly higher than those in CPB patients, while these parameters in T1-T3 blood gradually decreased in CPB patients (p<0.01). It was also reported that the amounts of ASP and ALA in the control group were significantly lower than those in CPB patients, whereas those parameters in the T1-T3 blood samples increased gradually in CPB patients, but started to decrease in T4-T7 blood samples. Conclusion These hormonal changes in the organism due to CPB demonstrate that "hormonal metabolic adaptation" mechanisms may be activated to eliminate the negative consequences of surgery. According to these data, SUB, MaR-1, anti-alamandine, and anti-asprosin could be used in CPB surgeries may come to the fore in the future to increase the safety of CPB surgeries.
Collapse
Affiliation(s)
- Onur Hanbeyoglu
- Department of Anesthesiology, Fethi Sekin City Hospital, Elazig, Turkiye
| | - Suna Aydin
- Department of Cardiovascular Surgery, Fethi Sekin City Hospital, Elazig, Turkiye
- Department of Anatomy, School of Medicine, Firat University, Elazig, Turkiye
- Department of Histology and Embryology, School of Veterinary Medicine, Firat University, Elazig, Turkiye
| |
Collapse
|
14
|
Torres W, Pérez JL, Díaz MP, D’Marco L, Checa-Ros A, Carrasquero R, Angarita L, Gómez Y, Chacín M, Ramírez P, Villasmil N, Durán-Agüero S, Cano C, Bermúdez V. The Role of Specialized Pro-Resolving Lipid Mediators in Inflammation-Induced Carcinogenesis. Int J Mol Sci 2023; 24:12623. [PMID: 37628804 PMCID: PMC10454572 DOI: 10.3390/ijms241612623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/10/2023] [Accepted: 04/15/2023] [Indexed: 08/27/2023] Open
Abstract
Cancer is a process involving cell mutation, increased proliferation, invasion, and metastasis. Over the years, this condition has represented one of the most concerning health problems worldwide due to its significant morbidity and mortality. At present, the incidence of cancer continues to grow exponentially. Thus, it is imperative to open new avenues in cancer research to understand the molecular changes driving DNA transformation, cell-to-cell interaction derangements, and immune system surveillance decay. In this regard, evidence supports the relationship between chronic inflammation and cancer. In light of this, a group of bioactive lipids derived from polyunsaturated fatty acids (PUFAs) may have a position as novel anti-inflammatory molecules known as the specialized pro-resolving mediators (SPMs), a group of pro-resolutive inflammation agents that could improve the anti-tumor immunity. These molecules have the potential role of chemopreventive and therapeutic agents for various cancer types, and their effects have been documented in the scientific literature. Thus, this review objective centers around understanding the effect of SPMs on carcinogenesis and their potential therapeutic effect.
Collapse
Affiliation(s)
- Wheeler Torres
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4004, Venezuela
| | - José Luis Pérez
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4004, Venezuela
| | - María P. Díaz
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4004, Venezuela
| | - Luis D’Marco
- Grupo de Investigación en Enfermedades Cardiorrenales y Metabólicas, Departamento de Medicina y Cirugía, Facultad de Ciencias de la Salud, Universidad Cardenal Herrera-CEU, CEU Universities, 46115 Valencia, Spain
| | - Ana Checa-Ros
- Grupo de Investigación en Enfermedades Cardiorrenales y Metabólicas, Departamento de Medicina y Cirugía, Facultad de Ciencias de la Salud, Universidad Cardenal Herrera-CEU, CEU Universities, 46115 Valencia, Spain
| | - Rubén Carrasquero
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4004, Venezuela
| | - Lissé Angarita
- Escuela de Nutrición y Dietética, Facultad de Medicina, Universidad Andres Bello, Concepción 4260000, Chile
| | - Yosselin Gómez
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4004, Venezuela
| | - Maricarmen Chacín
- Facultad de Ciencias de la Salud, Universidad Simón Bolívar, Barranquilla 080022, Colombia
| | - Paola Ramírez
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4004, Venezuela
| | - Nelson Villasmil
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4004, Venezuela
| | - Samuel Durán-Agüero
- Facultad de Ciencias Para el Cuidado de la Salud, Universidad San Sebastián, Los Leones 8420524, Chile
| | - Clímaco Cano
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4004, Venezuela
| | - Valmore Bermúdez
- Facultad de Ciencias de la Salud, Universidad Simón Bolívar, Barranquilla 080022, Colombia
| |
Collapse
|
15
|
Burgess V, Maya JD. Statin and aspirin use in parasitic infections as a potential therapeutic strategy: A narrative review. Rev Argent Microbiol 2023; 55:278-288. [PMID: 37019801 DOI: 10.1016/j.ram.2023.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 12/13/2022] [Accepted: 01/26/2023] [Indexed: 04/05/2023] Open
Abstract
Infections, including zoonoses, constitute a threat to human health due to the spread of resistant pathogens. These diseases generate an inflammatory response controlled by a resolving mechanism involving specialized membrane lipid-derived molecules called lipoxins, resolvins, maresins, and protectins. The production of some of these molecules can be triggered by aspirin or statins. Thus, it is proposed that modulation of the host response could be a useful therapeutic strategy, contributing to the management of resistance to antiparasitic agents or preventing drift to chronic, host-damaging courses. Therefore, the present work presents the state of the art on the use of statins or aspirin for the experimental management of parasitic infections such as Chagas disease, leishmaniasis, toxoplasmosis or malaria. The methodology used was a narrative review covering original articles from the last seven years, 38 of which met the inclusion criteria. Based on the publications consulted, modulation of the resolution of inflammation using statins may be feasible as an adjuvant in the therapy of parasitic diseases. However, there was no strong experimental evidence on the use of aspirin; therefore, further studies are needed to evaluate its role inflammation resolution process in infectious diseases.
Collapse
Affiliation(s)
- Valentina Burgess
- Escuela de Medicina, Facultad de Medicina, Universidad de Chile, Independencia, Santiago, Chile
| | - Juan D Maya
- Programa de Farmacología Molecular y Clínica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Independencia, Santiago, Chile.
| |
Collapse
|
16
|
Canyelles-Niño M, González-Lafont À, Lluch JM. Hydroperoxidation of Docosahexaenoic Acid by Human ALOX12 and pigALOX15-mini-LOX. Int J Mol Sci 2023; 24:ijms24076064. [PMID: 37047037 PMCID: PMC10094721 DOI: 10.3390/ijms24076064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/15/2023] [Accepted: 03/17/2023] [Indexed: 04/14/2023] Open
Abstract
Human lipoxygenase 12 (hALOX12) catalyzes the conversion of docosahexaenoic acid (DHA) into mainly 14S-hydroperoxy-4Z,7Z,10Z,12E,16Z,19Z-docosahexaenoic acid (14S-H(p)DHA). This hydroperoxidation reaction is followed by an epoxidation and hydrolysis process that finally leads to maresin 1 (MaR1), a potent bioactive specialized pro-resolving mediator (SPM) in chronic inflammation resolution. By combining docking, molecular dynamics simulations, and quantum mechanics/molecular mechanics calculations, we have computed the potential energy profile of DHA hydroperoxidation in the active site of hALOX12. Our results describe the structural evolution of the molecular system at each step of this catalytic reaction pathway. Noteworthy, the required stereospecificity of the reaction leading to MaR1 is explained by the configurations adopted by DHA bound to hALOX12, along with the stereochemistry of the pentadienyl radical formed after the first step of the mechanism. In pig lipoxygenase 15 (pigALOX15-mini-LOX), our calculations suggest that 14S-H(p)DHA can be formed, but with a stereochemistry that is inadequate for MaR1 biosynthesis.
Collapse
Affiliation(s)
- Miquel Canyelles-Niño
- Departament de Química, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
- Arquebio SL, Carrer de Álava 51, 08005 Barcelona, Spain
| | - Àngels González-Lafont
- Departament de Química, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
- Institut de Biotecnologia i Biomedicina (IBB), Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - José M Lluch
- Departament de Química, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
- Institut de Biotecnologia i Biomedicina (IBB), Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| |
Collapse
|
17
|
Yasmeen N, Selvaraj H, Lakhawat SS, Datta M, Sharma PK, Jain A, Khanna R, Srinivasan J, Kumar V. Possibility of averting cytokine storm in SARS-COV 2 patients using specialized pro-resolving lipid mediators. Biochem Pharmacol 2023; 209:115437. [PMID: 36731803 PMCID: PMC9884647 DOI: 10.1016/j.bcp.2023.115437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023]
Abstract
Fatal "cytokine storms (CS)" observed in critically ill COVID-19 patients are consequences of dysregulated host immune system and over-exuberant inflammatory response. Acute respiratory distress syndrome (ARDS), multi-system organ failure, and eventual death are distinctive symptoms, attributed to higher morbidity and mortality rates among these patients. Consequent efforts to save critical COVID-19 patients via the usage of several novel therapeutic options are put in force. Strategically, drugs being used in such patients are dexamethasone, remdesivir, hydroxychloroquine, etc. along with the approved vaccines. Moreover, it is certain that activation of the resolution process is important for the prevention of chronic diseases. Until recently Inflammation resolution was considered a passive process, rather it's an active biochemical process that can be achieved by the use of specialized pro-resolving mediators (SPMs). These endogenous mediators are an array of atypical lipid metabolites that include Resolvins, lipoxins, maresins, protectins, considered as immunoresolvents, but their role in COVID-19 is ambiguous. Recent evidence from studies such as the randomized clinical trial, in which omega 3 fatty acid was used as supplement to resolve inflammation in COVID-19, suggests that direct supplementation of SPMs or the use of synthetic SPM mimetics (which are still being explored) could enhance the process of resolution by regulating the aberrant inflammatory process and can be useful in pain relief and tissue remodeling. Here we discussed the biosynthesis of SPMs, & their mechanistic pathways contributing to inflammation resolution along with sequence of events leading to CS in COVID-19, with a focus on therapeutic potential of SPMs.
Collapse
Affiliation(s)
- Nusrath Yasmeen
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, Rajasthan, India
| | - Harikrishnan Selvaraj
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, Rajasthan, India
| | - Sudarshan S Lakhawat
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, Rajasthan, India
| | - Manali Datta
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, Rajasthan, India
| | - Pushpender K Sharma
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, Rajasthan, India
| | - Ajay Jain
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, Rajasthan, India
| | - Rakhi Khanna
- Rajasthan State Regional Forensic Science Laboratory, Kota, Rajasthan, India
| | | | - Vikram Kumar
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, Rajasthan, India.
| |
Collapse
|
18
|
Rangarajan S, Orujyan D, Rangchaikul P, Radwan MM. Critical Role of Inflammation and Specialized Pro-Resolving Mediators in the Pathogenesis of Atherosclerosis. Biomedicines 2022; 10:2829. [PMID: 36359349 PMCID: PMC9687471 DOI: 10.3390/biomedicines10112829] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 11/01/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2023] Open
Abstract
Recent research on how the body resolves this inflammation is gaining traction and has shed light on new avenues for future management of cardiovascular diseases. In this narrative review, we discuss the pathophysiological mechanisms of atherosclerosis, the recent development in the understanding of a new class of molecules called Specialized Pro-resolving Mediators (SPMs), and the impact of such findings in the realm of cardiovascular treatment options. We searched the MEDLINE database restricting ourselves to original research articles as much as possible on the complex pathophysiology of atherosclerosis and the role of SPMs. We expect to see further research in translating these findings to bedside clinical trials in treating conditions with a pathophysiological basis of inflammation, such as coronary artery disease, asthma, and periodontal disease.
Collapse
Affiliation(s)
- Subhapradha Rangarajan
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Davit Orujyan
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Patrida Rangchaikul
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Mohamed M. Radwan
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| |
Collapse
|
19
|
Kotlyarov S, Kotlyarova A. Clinical significance of polyunsaturated fatty acids in the prevention of cardiovascular diseases. Front Nutr 2022; 9:998291. [PMID: 36276836 PMCID: PMC9582942 DOI: 10.3389/fnut.2022.998291] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Cardiovascular diseases are one of the most important problems of modern medicine. They are associated with a large number of health care visits, hospitalizations and mortality. Prevention of atherosclerosis is one of the most effective strategies and should start as early as possible. Correction of lipid metabolism disorders is associated with definite clinical successes, both in primary prevention and in the prevention of complications of many cardiovascular diseases. A growing body of evidence suggests a multifaceted role for polyunsaturated fatty acids. They demonstrate a variety of functions in inflammation, both participating directly in a number of cellular processes and acting as a precursor for subsequent biosynthesis of lipid mediators. Extensive clinical data also support the importance of polyunsaturated fatty acids, but all questions have not been answered to date, indicating the need for further research.
Collapse
Affiliation(s)
| | - Anna Kotlyarova
- Department of Pharmacy Management and Economics, Ryazan State Medical University, Ryazan, Russia
| |
Collapse
|
20
|
Sufaru IG, Teslaru S, Pasarin L, Iovan G, Stoleriu S, Solomon SM. Host Response Modulation Therapy in the Diabetes Mellitus—Periodontitis Conjuncture: A Narrative Review. Pharmaceutics 2022; 14:pharmaceutics14081728. [PMID: 36015357 PMCID: PMC9414216 DOI: 10.3390/pharmaceutics14081728] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/12/2022] [Accepted: 08/17/2022] [Indexed: 11/30/2022] Open
Abstract
The inflammatory response of the host in periodontitis is the phenomenon that underlies the onset and evolution of periodontal destructive phenomena. A number of systemic factors, such as diabetes mellitus (DM), can negatively affect the patient with periodontitis, just as the periodontal disease can aggravate the status of the DM patient. Host response modulation therapy involves the use of anti-inflammatory and anti-oxidant products aimed at resolving inflammation, stopping destructive processes, and promoting periodontal healing, all important aspects in patients with high tissue loss rates, such as diabetic patients. This paper reviews the data available in the literature on the relationship between DM and periodontitis, the main substances modulating the inflammatory response (nonsteroidal anti-inflammatory drugs, sub-antimicrobial doses of doxycycline, or omega-3 fatty acids and their products, specialized pro-resolving mediators), as well as their application in diabetic patients.
Collapse
Affiliation(s)
- Irina-Georgeta Sufaru
- Department of Periodontology, Grigore T. Popa University of Medicine and Pharmacy, Universitatii Street 16, 700115 Iasi, Romania
| | - Silvia Teslaru
- Department of Periodontology, Grigore T. Popa University of Medicine and Pharmacy, Universitatii Street 16, 700115 Iasi, Romania
- Correspondence: (S.T.); (L.P.)
| | - Liliana Pasarin
- Department of Periodontology, Grigore T. Popa University of Medicine and Pharmacy, Universitatii Street 16, 700115 Iasi, Romania
- Correspondence: (S.T.); (L.P.)
| | - Gianina Iovan
- Department of Cariology and Restorative Dental Therapy, Grigore T. Popa University of Medicine and Pharmacy, Universitatii Street 16, 700115 Iasi, Romania
| | - Simona Stoleriu
- Department of Cariology and Restorative Dental Therapy, Grigore T. Popa University of Medicine and Pharmacy, Universitatii Street 16, 700115 Iasi, Romania
| | - Sorina Mihaela Solomon
- Department of Periodontology, Grigore T. Popa University of Medicine and Pharmacy, Universitatii Street 16, 700115 Iasi, Romania
| |
Collapse
|
21
|
Liu M, He H, Chen L. Protective Potential of Maresins in Cardiovascular Diseases. Front Cardiovasc Med 2022; 9:923413. [PMID: 35859590 PMCID: PMC9289265 DOI: 10.3389/fcvm.2022.923413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/02/2022] [Indexed: 11/16/2022] Open
Abstract
Cardiovascular diseases are the leading causes of global mortality. Growing evidence suggests that unresolved inflammation contributes to the chronicity, progression and morbidity of many cardiovascular diseases, thus emphasizing the urgent need to illuminate the mechanisms controlling inflammation and its resolution, for the sake of new effective therapeutic options. Macrophage mediators in resolving inflammation (Maresins) are a family of specialized pro-resolving lipid mediators (SPMs) derived from the ω-3 fatty acid docosahexaenoic acid (DHA). Studies have indicated that Maresins play critical role in initiating the pro-resolving functions of phagocytes, decreasing the magnitude of the overall inflammatory response, and thereby protecting against inflammation-related disorders. In this review, we summarize the detailed actions and the therapeutic potential of Maresins, with a particular emphasis on Maresin-1 (MaR1), in cardiovascular diseases. We hope this review will lead to new avenues to Maresins-based therapies for inflammation-associated cardiovascular diseases.
Collapse
|
22
|
Kotlyarov S, Kotlyarova A. Molecular Pharmacology of Inflammation Resolution in Atherosclerosis. Int J Mol Sci 2022; 23:ijms23094808. [PMID: 35563200 PMCID: PMC9104781 DOI: 10.3390/ijms23094808] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/18/2022] [Accepted: 04/25/2022] [Indexed: 02/01/2023] Open
Abstract
Atherosclerosis is one of the most important problems of modern medicine as it is the leading cause of hospitalizations, disability, and mortality. The key role in the development and progression of atherosclerosis is the imbalance between the activation of inflammation in the vascular wall and the mechanisms of its control. The resolution of inflammation is the most important physiological mechanism that is impaired in atherosclerosis. The resolution of inflammation has complex, not fully known mechanisms, in which lipid mediators derived from polyunsaturated fatty acids (PUFAs) play an important role. Specialized pro-resolving mediators (SPMs) represent a group of substances that carry out inflammation resolution and may play an important role in the pathogenesis of atherosclerosis. SPMs include lipoxins, resolvins, maresins, and protectins, which are formed from PUFAs and regulate many processes related to the active resolution of inflammation. Given the physiological importance of these substances, studies examining the possibility of pharmacological effects on inflammation resolution are of interest.
Collapse
Affiliation(s)
- Stanislav Kotlyarov
- Department of Nursing, Ryazan State Medical University, 390026 Ryazan, Russia
- Correspondence:
| | - Anna Kotlyarova
- Department of Pharmacology and Pharmacy, Ryazan State Medical University, 390026 Ryazan, Russia;
| |
Collapse
|
23
|
Kikut J, Drozd A, Mokrzycka M, Grzybowska-Chlebowczyk U, Ziętek M, Szczuko M. Are EPA and DHA Derivatives Involved in IBD Remission? J Clin Med 2022; 11:jcm11092388. [PMID: 35566515 PMCID: PMC9104684 DOI: 10.3390/jcm11092388] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/10/2022] [Accepted: 04/22/2022] [Indexed: 12/10/2022] Open
Abstract
Recently, an increase in the incidence of inflammatory bowel disease (IBD) has been observed among children and adolescents. Although the pathogenesis of IBD is not fully elucidated currently, actual research focuses on the occurrence of imbalance between pro- and anti-inflammatory molecules and future identification of the role of cytokines in IBD therapy. The purpose of this study was to compare the concentrations of eicosapentaenoic and docosahexaenoic acid derivatives during both phases of Crohn’s disease (CD) and ulcerative colitis (UC). The study included 64 adolescent patients with CD (n = 34) and UC (n = 30) aged 13.76 ± 2.69 and 14.15 ± 3.31, respectively. Biochemical analysis was performed on a liquid chromatography apparatus. A statistically significant lower concentration of resolvin E1 (RvE1) was observed in the CD group relative to UC. In the active phase of CD, a statistically significantly higher concentration of protectin DX (PDX) was observed relative to remission CD. Comparing the active phase of both diseases, a statistically significantly higher concentration of resolvin E1 (RvE1) was observed in UC relative to CD. Comparing the remission phase of both diseases showed statistically significantly higher PDX levels in CD relative to UC. Our study adds to the knowledge on the involvement of anti-inflammatory lipid mediators in both IBD entities. In conclusion, it seems that the marker differentiating both disease entities in the active phase may be RvE1, while in the remission phase, PDX. In CD remission, the greatest involvement was observed towards PDX, whereas in UC, MaR1, RvE1 and 18RS-HEPE seem to be the most involved in remission.
Collapse
Affiliation(s)
- Justyna Kikut
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, 71-460 Szczecin, Poland; (J.K.); (A.D.)
- Department of Pediatrics, Hemato-Oncology and Pediatric Gastroenterology, Independent Public Clinical Hospital No.1, Pomeranian Medical University in Szczecin, 71-252 Szczecin, Poland;
| | - Arleta Drozd
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, 71-460 Szczecin, Poland; (J.K.); (A.D.)
| | - Małgorzata Mokrzycka
- Department of Pediatrics, Hemato-Oncology and Pediatric Gastroenterology, Independent Public Clinical Hospital No.1, Pomeranian Medical University in Szczecin, 71-252 Szczecin, Poland;
| | - Urszula Grzybowska-Chlebowczyk
- Department of Pediatrics, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, 40-752 Katowice, Poland;
| | - Maciej Ziętek
- Department of Perinatology, Obstetrics and Gynecology, Pomeranian Medical University in Szczecin, 72-010 Police, Poland;
| | - Małgorzata Szczuko
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, 71-460 Szczecin, Poland; (J.K.); (A.D.)
- Correspondence:
| |
Collapse
|
24
|
Artru F, McPhail MJW, Triantafyllou E, Trovato FM. Lipids in Liver Failure Syndromes: A Focus on Eicosanoids, Specialized Pro-Resolving Lipid Mediators and Lysophospholipids. Front Immunol 2022; 13:867261. [PMID: 35432367 PMCID: PMC9008479 DOI: 10.3389/fimmu.2022.867261] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/08/2022] [Indexed: 12/30/2022] Open
Abstract
Lipids are organic compounds insoluble in water with a variety of metabolic and non-metabolic functions. They not only represent an efficient energy substrate but can also act as key inflammatory and anti-inflammatory molecules as part of a network of soluble mediators at the interface of metabolism and the immune system. The role of endogenous bioactive lipid mediators has been demonstrated in several inflammatory diseases (rheumatoid arthritis, inflammatory bowel disease, atherosclerosis, cancer). The liver is unique in providing balanced immunotolerance to the exposure of bacterial components from the gut transiting through the portal vein and the lymphatic system. This balance is abruptly deranged in liver failure syndromes such as acute liver failure and acute-on-chronic liver failure. In these syndromes, researchers have recently focused on bioactive lipid mediators by global metabonomic profiling and uncovered the pivotal role of these mediators in the immune dysfunction observed in liver failure syndromes explaining the high occurrence of sepsis and subsequent organ failure. Among endogenous bioactive lipids, the mechanistic actions of three classes (eicosanoids, pro-resolving lipid mediators and lysophospholipids) in the pathophysiological modulation of liver failure syndromes will be the topic of this narrative review. Furthermore, the therapeutic potential of lipid-immune pathways will be described.
Collapse
Affiliation(s)
- Florent Artru
- Institute of Liver Studies, King's College Hospital, London, United Kingdom
| | - Mark J W McPhail
- Institute of Liver Studies, King's College Hospital, London, United Kingdom
| | - Evangelos Triantafyllou
- Section of Hepatology and Gastroenterology, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | | |
Collapse
|
25
|
Trotta MC, Gesualdo C, Petrillo F, Lepre CC, Della Corte A, Cavasso G, Maggiore G, Hermenean A, Simonelli F, D’Amico M, Rossi S. Resolution of Inflammation in Retinal Disorders: Briefly the State. Int J Mol Sci 2022; 23:4501. [PMID: 35562891 PMCID: PMC9100636 DOI: 10.3390/ijms23094501] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/13/2022] [Accepted: 04/16/2022] [Indexed: 12/24/2022] Open
Abstract
The most frequent retinal diseases, such as diabetic retinopathy, age-related macular degeneration and posterior uveitis, are underlined by oxidative stress or aging-induced retinal inflammation, which contributes to vision impairing or loss. Resolution of inflammation is emerging as a critical phase able to counteract the inflammatory process leading to the progression of retinal damage. Particularly, pro-resolving mediators (PMs) play a key role in the modulation of inflammatory exudates and could be considered a new target to be investigated in different inflammatory-autoimmune pathologies. Here, we highlight the most recent studies concerning the role of the main PMs (lipoxins, resolvins, prtectins, maresins and annexins) in retinal inflammation, in order to collect the best evidence in the field of inflammatory retinal damage resolution and to propose novel pharmacological approaches in the management of the most common retinal diseases.
Collapse
Affiliation(s)
- Maria Consiglia Trotta
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Via Santa Maria di Costantinopoli 16, 80138 Naples, Italy; (M.C.T.); (F.P.); (C.C.L.); (M.D.)
| | - Carlo Gesualdo
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania “Luigi Vanvitelli”, Via Luigi De Crecchio 6, 80131 Naples, Italy; (C.G.); (A.D.C.); (G.C.); (F.S.)
| | - Francesco Petrillo
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Via Santa Maria di Costantinopoli 16, 80138 Naples, Italy; (M.C.T.); (F.P.); (C.C.L.); (M.D.)
| | - Caterina Claudia Lepre
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Via Santa Maria di Costantinopoli 16, 80138 Naples, Italy; (M.C.T.); (F.P.); (C.C.L.); (M.D.)
| | - Alberto Della Corte
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania “Luigi Vanvitelli”, Via Luigi De Crecchio 6, 80131 Naples, Italy; (C.G.); (A.D.C.); (G.C.); (F.S.)
| | - Giancuomo Cavasso
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania “Luigi Vanvitelli”, Via Luigi De Crecchio 6, 80131 Naples, Italy; (C.G.); (A.D.C.); (G.C.); (F.S.)
| | - Giulia Maggiore
- Department of Ophthalmology, University of Foggia, Viale Luigi Pinto 1, 71122 Foggia, Italy;
| | - Anca Hermenean
- “Aurel Ardelean” Institute of Life Sciences, Vasile Goldis Western University of Arad, 86 Revolutiei Av., 310414 Arad, Romania;
| | - Francesca Simonelli
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania “Luigi Vanvitelli”, Via Luigi De Crecchio 6, 80131 Naples, Italy; (C.G.); (A.D.C.); (G.C.); (F.S.)
| | - Michele D’Amico
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Via Santa Maria di Costantinopoli 16, 80138 Naples, Italy; (M.C.T.); (F.P.); (C.C.L.); (M.D.)
| | - Settimio Rossi
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania “Luigi Vanvitelli”, Via Luigi De Crecchio 6, 80131 Naples, Italy; (C.G.); (A.D.C.); (G.C.); (F.S.)
| |
Collapse
|
26
|
Vasconcelos DP, Jabangwe C, Lamghari M, Alves CJ. The Neuroimmune Interplay in Joint Pain: The Role of Macrophages. Front Immunol 2022; 13:812962. [PMID: 35355986 PMCID: PMC8959978 DOI: 10.3389/fimmu.2022.812962] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 02/15/2022] [Indexed: 12/29/2022] Open
Abstract
Chronic pain associated with joint disorders, such as rheumatoid arthritis (RA), osteoarthritis (OA) and implant aseptic loosening (AL), is a highly debilitating symptom that impacts mobility and quality of life in affected patients. The neuroimmune crosstalk has been demonstrated to play a critical role in the onset and establishment of chronic pain conditions. Immune cells release cytokines and immune mediators that can activate and sensitize nociceptors evoking pain, through interaction with receptors in the sensory nerve terminals. On the other hand, sensory and sympathetic nerve fibers release neurotransmitters that bind to their specific receptor expressed on surface of immune cells, initiating an immunomodulatory role. Macrophages have been shown to be key players in the neuroimmune crosstalk. Moreover, macrophages constitute the dominant immune cell population in RA, OA and AL. Importantly, the targeting of macrophages can result in anti-nociceptive effects in chronic pain conditions. Therefore, the aim of this review is to discuss the nature and impact of the interaction between the inflammatory response and nerve fibers in these joint disorders regarding the genesis and maintenance of pain. The role of macrophages is highlighted. The alteration in the joint innervation pattern and the inflammatory response are also described. Additionally, the immunomodulatory role of sensory and sympathetic neurotransmitters is revised.
Collapse
Affiliation(s)
- Daniela P Vasconcelos
- Instituto de Investigação e Inovação em Saúde da Universidade do Porto- Associação, Porto, Portugal.,Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| | - Clive Jabangwe
- Instituto de Investigação e Inovação em Saúde da Universidade do Porto- Associação, Porto, Portugal.,Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal.,Faculdade de Engenharia, Universidade do Porto, Porto, Portugal
| | - Meriem Lamghari
- Instituto de Investigação e Inovação em Saúde da Universidade do Porto- Associação, Porto, Portugal.,Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal.,Instituto Ciências Biomédicas Abel Salazar, Universidade de Porto, Porto, Portugal
| | - Cecília J Alves
- Instituto de Investigação e Inovação em Saúde da Universidade do Porto- Associação, Porto, Portugal.,Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| |
Collapse
|
27
|
Pellicano C, Romaggioli L, Miglionico M, Colalillo A, Ramaccini C, Gigante A, Muscaritoli M, Rosato E. Maresin1 is a predictive marker of new digital ulcers in systemic sclerosis patients. Microvasc Res 2022; 142:104366. [PMID: 35346718 DOI: 10.1016/j.mvr.2022.104366] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/14/2022] [Accepted: 03/22/2022] [Indexed: 12/31/2022]
Abstract
BACKGROUND Digital ulcers (DUs) are one of the main causes of disability among systemic sclerosis (SSc) patients. The inflammation plays a crucial role in mediating the pathophysiological process underlying SSc. Objective of this study was to evaluate Maresin1 (MaR1) serum levels in SSc patients and in healthy controls (HC). Secondary aims were to evaluate the relationship between MaR and diseases variables and to assess the predictive role of MaR1 in the development of new digital ulcers (DUs) during 18 weeks follow-up. METHODS MaR1 serum level was evaluated in 55 SSc patients and 24 HC. In SSc patients, clinical assessment was performed at baseline and after 18 week follow-up by the same-blinded observer on serum MaR1 levels. RESULTS MaR1 was significantly lower in SSc patients than in HC [367 pg/ml (IQR 304-468.3 pg/ml) vs 467.7 pg/ml (IQR 422-522 pg/ml), p < 0.001]. During follow-up, six patients (10.9%) developed DUs. MaR1 was higher in SSc patients with new DUs than in patients without new DUs [518.2 pg/ml (IQR 468.2-596.5 pg/ml) vs 355 pg/ml (IQR 299.8-444.7 pg/ml), p < 0.01]. Free survival from new DUs is significantly lower in SSc patients with increased MaR1 serum level than in SSc patient with normal MaR1 serum level. In multivariate analysis, serum level of MaR1 > 393.2 pg/ml is a predictive marker for new DUs. CONCLUSION In SSc patients, MaR1 is reduced compared to HC and it is a predictive marker of new DUs.
Collapse
Affiliation(s)
- Chiara Pellicano
- Department of Translational and Precision Medicine, Sapienza University, Rome, Italy
| | - Laura Romaggioli
- Department of Translational and Precision Medicine, Sapienza University, Rome, Italy
| | - Marzia Miglionico
- Department of Translational and Precision Medicine, Sapienza University, Rome, Italy
| | - Amalia Colalillo
- Department of Translational and Precision Medicine, Sapienza University, Rome, Italy
| | - Cesarina Ramaccini
- Department of Translational and Precision Medicine, Sapienza University, Rome, Italy
| | - Antonietta Gigante
- Department of Translational and Precision Medicine, Sapienza University, Rome, Italy
| | - Maurizio Muscaritoli
- Department of Translational and Precision Medicine, Sapienza University, Rome, Italy
| | - Edoardo Rosato
- Department of Translational and Precision Medicine, Sapienza University, Rome, Italy.
| |
Collapse
|
28
|
Sharma M, Singh V, Sharma R, Koul A, McCarthy ET, Savin VJ, Joshi T, Srivastava T. Glomerular Biomechanical Stress and Lipid Mediators during Cellular Changes Leading to Chronic Kidney Disease. Biomedicines 2022; 10:407. [PMID: 35203616 PMCID: PMC8962328 DOI: 10.3390/biomedicines10020407] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 01/31/2022] [Accepted: 02/04/2022] [Indexed: 02/04/2023] Open
Abstract
Hyperfiltration is an important underlying cause of glomerular dysfunction associated with several systemic and intrinsic glomerular conditions leading to chronic kidney disease (CKD). These include obesity, diabetes, hypertension, focal segmental glomerulosclerosis (FSGS), congenital abnormalities and reduced renal mass (low nephron number). Hyperfiltration-associated biomechanical forces directly impact the cell membrane, generating tensile and fluid flow shear stresses in multiple segments of the nephron. Ongoing research suggests these biomechanical forces as the initial mediators of hyperfiltration-induced deterioration of podocyte structure and function leading to their detachment and irreplaceable loss from the glomerular filtration barrier. Membrane lipid-derived polyunsaturated fatty acids (PUFA) and their metabolites are potent transducers of biomechanical stress from the cell surface to intracellular compartments. Omega-6 and ω-3 long-chain PUFA from membrane phospholipids generate many versatile and autacoid oxylipins that modulate pro-inflammatory as well as anti-inflammatory autocrine and paracrine signaling. We advance the idea that lipid signaling molecules, related enzymes, metabolites and receptors are not just mediators of cellular stress but also potential targets for developing novel interventions. With the growing emphasis on lifestyle changes for wellness, dietary fatty acids are potential adjunct-therapeutics to minimize/treat hyperfiltration-induced progressive glomerular damage and CKD.
Collapse
Affiliation(s)
- Mukut Sharma
- Research and Development Service, Kansas City VA Medical Center, Kansas City, MO 64128, USA;
- Midwest Veterans’ Biomedical Research Foundation, Kansas City, MO 64128, USA; (A.K.); (V.J.S.); (T.S.)
- Department of Internal Medicine, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, MO 66160, USA;
| | - Vikas Singh
- Neurology, Kansas City VA Medical Center, Kansas City, MO 64128, USA;
| | - Ram Sharma
- Research and Development Service, Kansas City VA Medical Center, Kansas City, MO 64128, USA;
| | - Arnav Koul
- Midwest Veterans’ Biomedical Research Foundation, Kansas City, MO 64128, USA; (A.K.); (V.J.S.); (T.S.)
| | - Ellen T. McCarthy
- Department of Internal Medicine, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, MO 66160, USA;
| | - Virginia J. Savin
- Midwest Veterans’ Biomedical Research Foundation, Kansas City, MO 64128, USA; (A.K.); (V.J.S.); (T.S.)
| | - Trupti Joshi
- Department of Health Management and Informatics, University of Missouri, Columbia, MO 65201, USA;
| | - Tarak Srivastava
- Midwest Veterans’ Biomedical Research Foundation, Kansas City, MO 64128, USA; (A.K.); (V.J.S.); (T.S.)
- Section of Nephrology, Children’s Mercy Hospital and University of Missouri, Kansas City, MO 64108, USA
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri, Kansas City, MO 64108, USA
| |
Collapse
|
29
|
Pascoal LB, Palma BB, Chaim FHM, de Castro MM, Damázio TA, Franceschini APMDF, Milanski M, Velloso LA, Leal RF. New translational and experimental insights into the role of pro-resolving lipid mediators in inflammatory bowel disease. World J Exp Med 2022; 12:1-15. [PMID: 35096550 PMCID: PMC8771592 DOI: 10.5493/wjem.v12.i1.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 10/21/2021] [Accepted: 01/08/2022] [Indexed: 02/06/2023] Open
Abstract
The resolution of inflammation is an active process, guided by specialized pro-resolution lipid mediators (SPMs). These mediators originate from polyunsaturated fatty acids, such as omega-3. Sufficient evidence suggests that the beneficial effects attributed to omega-3 are, at least in part, the result of the immunomodulatory action of the SPMs, which act systemically by overcoming inflammation and repairing tissue damage, without suppressing the immune response. Recent studies suggest that an imbalance in the synthesis and/or activity of these compounds may be associated with the pathogenesis of several inflammatory conditions, such as inflammatory bowel disease (IBD). Thus, this review highlights the advances made in recent years with regard to the endo-genous synthesis and the biological role of lipoxins, resolvins, protectins, and maresins, as well as their precursors, in the regulation of inflammation; and provides an update on the participation of these mediators in the development and evolution of IBD and the therapeutic approaches that these immunomodulating substances are involved in this context.
Collapse
Affiliation(s)
- Lívia Bitencourt Pascoal
- Inflammatory Bowel Disease Research Laboratory, Colorectal Surgery Unit, Department of Surgery, School of Medical Sciences, University of Campinas, Campinas 13083-878, São Paulo, Brazil
| | - Bruna Biazon Palma
- Inflammatory Bowel Disease Research Laboratory, Colorectal Surgery Unit, Department of Surgery, School of Medical Sciences, University of Campinas, Campinas 13083-878, São Paulo, Brazil
| | - Fabio Henrique Mendonça Chaim
- Inflammatory Bowel Disease Research Laboratory, Colorectal Surgery Unit, Department of Surgery, School of Medical Sciences, University of Campinas, Campinas 13083-878, São Paulo, Brazil
| | - Marina Moreira de Castro
- Inflammatory Bowel Disease Research Laboratory, Colorectal Surgery Unit, Department of Surgery, School of Medical Sciences, University of Campinas, Campinas 13083-878, São Paulo, Brazil
- Laboratory of Metabolic Disorders, School of Applied Sciences, University of Campinas, Campinas 13083-878, São Paulo, Brazil
| | - Tiago Andrade Damázio
- Inflammatory Bowel Disease Research Laboratory, Colorectal Surgery Unit, Department of Surgery, School of Medical Sciences, University of Campinas, Campinas 13083-878, São Paulo, Brazil
| | - Ana Paula Menezes de Freitas Franceschini
- Inflammatory Bowel Disease Research Laboratory, Colorectal Surgery Unit, Department of Surgery, School of Medical Sciences, University of Campinas, Campinas 13083-878, São Paulo, Brazil
| | - Marciane Milanski
- Inflammatory Bowel Disease Research Laboratory, Colorectal Surgery Unit, Department of Surgery, School of Medical Sciences, University of Campinas, Campinas 13083-878, São Paulo, Brazil
- Laboratory of Metabolic Disorders, School of Applied Sciences, University of Campinas, Campinas 13083-878, São Paulo, Brazil
| | - Lício Augusto Velloso
- Laboratory of Cell Signaling, School of Medical Sciences, University of Campinas, Campinas 13083-864, São Paulo, Brazil
| | - Raquel Franco Leal
- Inflammatory Bowel Disease Research Laboratory, Colorectal Surgery Unit, Department of Surgery, School of Medical Sciences, University of Campinas, Campinas 13083-878, São Paulo, Brazil
| |
Collapse
|
30
|
Gireddy HB, Rajaram H, Koduganti RR, Ambati M, R A, Harika TSL. Maresins: The Mainstay in Periodontal Resolution. Cureus 2022; 14:e21742. [PMID: 35251814 PMCID: PMC8888070 DOI: 10.7759/cureus.21742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/30/2022] [Indexed: 12/16/2022] Open
Abstract
Not much was known about the resolution of inflammation until the recent past when significant breakthroughs led to the unveiling of the exact mechanism of this. It is now known that the resolution of inflammation involves specific mediators of resolution such as lipoxins, protectins, resolvins, and maresins, making it an active process. Of these mediators, maresins are the latest discovery. Maresins are macrophage-derived mediators that are involved in the resolution of inflammation. Various studies on what maresins do to resolve periodontitis are ongoing. Reportedly, maresins help in periodontal regeneration and wound healing. Having known the numerous roles of these mediators, our current focus is shifting from anti-inflammatory pharmacotherapy to resolution pharmacotherapy.
Collapse
Affiliation(s)
- Hima Bindu Gireddy
- Department of Periodontics, Panineeya Mahavidyalaya Institute of Dental Sciences and Research Centre, Hyderabad, IND
| | - Haripriya Rajaram
- Department of Periodontics, Panineeya Mahavidyalaya Institute of Dental Sciences and Research Centre, Hyderabad, IND
| | - Rekha R Koduganti
- Department of Periodontics, Panineeya Mahavidyalaya Institute of Dental Sciences and Research Centre, Hyderabad, IND
| | - Manasa Ambati
- Department of Periodontics, Panineeya Mahavidyalaya Institute of Dental Sciences and Research Centre, Hyderabad, IND
| | - Anilkumar R
- Department of Periodontics, Panineeya Mahavidyalaya Institute of Dental Sciences and Research Centre, Hyderabad, IND
| | - Tata Sai Lakshmi Harika
- Department of Periodontics, Panineeya Mahavidyalaya Institute of Dental Sciences and Research Centre, Hyderabad, IND
| |
Collapse
|
31
|
Julliard WA, Myo YPA, Perelas A, Jackson PD, Thatcher TH, Sime PJ. Specialized pro-resolving mediators as modulators of immune responses. Semin Immunol 2022; 59:101605. [PMID: 35660338 PMCID: PMC9962762 DOI: 10.1016/j.smim.2022.101605] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 05/04/2022] [Accepted: 05/25/2022] [Indexed: 01/15/2023]
Abstract
Specialized pro-resolving mediators (SPMs) are endogenous small molecules produced mainly from dietary omega-3 polyunsaturated fatty acids by both structural cells and cells of the active and innate immune systems. Specialized pro-resolving mediators have been shown to both limit acute inflammation and promote resolution and return to homeostasis following infection or injury. There is growing evidence that chronic immune disorders are characterized by deficiencies in resolution and SPMs have significant potential as novel therapeutics to prevent and treat chronic inflammation and immune system disorders. This review focuses on important breakthroughs in understanding how SPMs are produced by, and act on, cells of the adaptive immune system, specifically macrophages, B cells and T cells. We also highlight recent evidence demonstrating the potential of SPMs as novel therapeutic agents in topics including immunization, autoimmune disease and transplantation.
Collapse
Affiliation(s)
- Walker A Julliard
- Department of Surgery, Virginia Commonwealth University, Richmond VA, USA
| | - Yu Par Aung Myo
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond VA, USA
| | - Apostolos Perelas
- Division of Pulmonary Diseases and Critical Care Medicine, Department of Internal Medicine, Virginia Commonwealth University, Richmond VA, USA
| | - Peter D. Jackson
- Division of Pulmonary Diseases and Critical Care Medicine, Department of Internal Medicine, Virginia Commonwealth University, Richmond VA, USA
| | - Thomas H. Thatcher
- Division of Pulmonary Diseases and Critical Care Medicine, Department of Internal Medicine, Virginia Commonwealth University, Richmond VA, USA
| | - Patricia J Sime
- Division of Pulmonary Diseases and Critical Care Medicine, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
32
|
Menon D, Lewis EJH, Perkins BA, Bril V. Omega-3 Nutrition Therapy for the Treatment of Diabetic Sensorimotor Polyneuropathy. Curr Diabetes Rev 2022; 18:e010921196028. [PMID: 34488588 DOI: 10.2174/1573399817666210901121111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 04/06/2021] [Accepted: 05/06/2021] [Indexed: 11/22/2022]
Abstract
Despite advances in clinical and translational research, an effective therapeutic option for diabetic sensorimotor polyneuropathy (DSP) has remained elusive. The pathomechanisms of DSP are diverse, and along with hyperglycemia, the roles of inflammatory mediators and lipotoxicity in the development of microangiopathy have been well elucidated. Omega-3 (n-3) polyunsaturated fatty acids (PUFA) are essential fatty acids with a vital role in a number of physiological processes, including neural health, membrane structure integrity, anti-inflammatory processes, and lipid metabolism. Identification of n-3 PUFA derived specialised proresolving mediators (SPM), namely resolvins, neuroprotectin, and maresins which also favour nerve regeneration, have positioned n-3 PUFA as potential treatment options in DSP. Studies in n-3 PUFA treated animal models of DSP showed positive nerve benefits in functional, electrophysiological, and pathological indices. Clinical trials in humans are limited, but recent proof-of-concept evidence suggests n-3 PUFA has a positive effect on small nerve fibre regeneration with an increase in the small nerve fiber measure of corneal nerve fibre length (CNFL). Further randomized control trials with a longer duration of treatment, higher n-3 PUFA doses, and more rigorous neuropathy measures are needed to provide a definitive understanding of the benefits of n-3 PUFA supplementation in DSP.
Collapse
Affiliation(s)
- Deepak Menon
- Ellen and Martin Prosserman Centre for Neuromuscular Disorders. Division of Neurology, University Health Network, University of Toronto, Toronto, Canada
| | - Evan J H Lewis
- Lunenfeld-Tanenbaum Research Institute, Leadership Sinai Centre for Diabetes, Mount Sinai Hospital, Toronto, Canada
| | - Bruce A Perkins
- Lunenfeld-Tanenbaum Research Institute, Leadership Sinai Centre for Diabetes, Mount Sinai Hospital, Toronto, Canada
| | - Vera Bril
- Ellen and Martin Prosserman Centre for Neuromuscular Disorders. Division of Neurology, University Health Network, University of Toronto, Toronto, Canada
| |
Collapse
|
33
|
Assessment of Polyunsaturated Fatty Acids on COVID-19-Associated Risk Reduction. REVISTA BRASILEIRA DE FARMACOGNOSIA : ORGAO OFICIAL DA SOCIEDADE BRASILEIRA DE FARMACOGNOSIA 2021; 32:50-64. [PMID: 34876760 PMCID: PMC8638948 DOI: 10.1007/s43450-021-00213-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 10/29/2021] [Indexed: 02/06/2023]
Abstract
Pooled evidence conveys the association between polyunsaturated fatty acids and infectious disease. SARS-CoV-2, an enveloped mRNA virus, was also reported to interact with polyunsaturated fatty acids. The present review explores the possible mode of action, immunology, and consequences of these polyunsaturated fatty acids during the viral infection. Polyunsaturated fatty acids control protein complex formation in lipid rafts associated with the function of two SARS-CoV-2 entry gateways: angiotensin-converting enzyme-2 and cellular protease transmembrane protease serine-2. Therefore, the viral entry can be mitigated by modulating polyunsaturated fatty acids contents in the body. α-Linolenic acid is the precursor of two clinically important eicosanoids eicosapentaenoic acid and docosahexaenoic acid, the members of ω-3 fats. Resolvins, protectins, and maresins derived from docosahexaenoic acid suppress inflammation and augment phagocytosis that lessens microbial loads. Prostaglandins of 3 series, leukotrienes of 5 series, and thromboxane A3 from eicosapentaenoic acid exhibit anti-inflammatory, vasodilatory, and platelet anti-aggregatory effects that may also contribute to the control of pre-existing pulmonary and cardiac diseases. In contrast, ω-6 linoleic acid-derived arachidonic acid increases the prostaglandin G2, lipoxins A4 and B4, and thromboxane A2. These cytokines are pro-inflammatory and enhance the immune response but aggravate the COVID-19 severity. Therefore, the rational intake of ω-3-enriched foods or supplements might lessen the complications in COVID-19 and might be a preventive measure. Graphic Abstract
Collapse
|
34
|
Kotlyarov S, Kotlyarova A. Anti-Inflammatory Function of Fatty Acids and Involvement of Their Metabolites in the Resolution of Inflammation in Chronic Obstructive Pulmonary Disease. Int J Mol Sci 2021; 22:ijms222312803. [PMID: 34884621 PMCID: PMC8657960 DOI: 10.3390/ijms222312803] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/24/2021] [Accepted: 11/24/2021] [Indexed: 12/13/2022] Open
Abstract
Lipid metabolism plays an important role in many lung functions. Disorders of lipid metabolism are part of the pathogenesis of chronic obstructive pulmonary disease (COPD). Lipids are involved in numerous cross-linkages with inflammation. Recent studies strongly support the involvement of fatty acids as participants in inflammation. They are involved in the initiation and resolution of inflammation, including acting as a substrate for the formation of lipid mediators of inflammation resolution. Specialized pro-inflammatory mediators (SPMs) belonging to the classes of lipoxins, resolvins, maresins, and protectins, which are formed enzymatically from unsaturated fatty acids, are now described. Disorders of their production and function are part of the pathogenesis of COPD. SPMs are currently the subject of active research in order to find new drugs. Short-chain fatty acids are another important participant in metabolic and immune processes, and their role in the pathogenesis of COPD is of great clinical interest.
Collapse
Affiliation(s)
- Stanislav Kotlyarov
- Department of Nursing, Ryazan State Medical University, 390026 Ryazan, Russia
- Correspondence:
| | - Anna Kotlyarova
- Department of Pharmacology and Pharmacy, Ryazan State Medical University, 390026 Ryazan, Russia;
| |
Collapse
|
35
|
Apoptotic cell-derived metabolites in efferocytosis-mediated resolution of inflammation. Cytokine Growth Factor Rev 2021; 62:42-53. [PMID: 34742632 DOI: 10.1016/j.cytogfr.2021.10.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 10/13/2021] [Indexed: 12/21/2022]
Abstract
The resolution of inflammation, as part of standard host defense mechanism, is the process to guarantee timely termination of inflammatory responses and eventual restoration of tissue homeostasis . It is mainly achieved via efferocytosis, during which pro-resolving macrophages clear apoptotic neutrophils at the inflammatory site. Unfortunately, impaired resolution can be the leading cause of chronic inflammatory disorders and some autoimmune diseases. Existing studies have provided relatively comprehensive understandings about the recognition and uptake of apoptotic neutrophils by macrophages during early phases of efferocytosis. However, lack of information concerns macrophage metabolism of apoptotic cell-derived metabolites after being released from phagolysosomes or the relationship between such metabolism and efferocytosis. Notwithstanding, three recent studies have revealed macrophage metabolism of cholesterol, fatty acids and arginine, as well as their respective functions in the context of inflammation-resolution. This review provides an overview of the resolution of inflammation, efferocytosis and the key players involved, followed by a focus on the metabolism of apoptotic cell-derived metabolites within efferocytes. Hypotheses of more potential apoptotic cell-derived metabolites and their possible roles in the resolution are also formulated. Understanding the effect of these metabolites further advances the concept that apoptotic cells act as active players to regulate resolution, and also suggests novel therapeutic strategies for diseases driven by defective resolution and even cancer that may be treated through enhanced efferocytosis.
Collapse
|
36
|
Liakh I, Janczy A, Pakiet A, Korczynska J, Proczko-Stepaniak M, Kaska L, Sledzinski T, Mika A. One-anastomosis gastric bypass modulates the serum levels of pro- and anti-inflammatory oxylipins, which may contribute to the resolution of inflammation. Int J Obes (Lond) 2021; 46:408-416. [PMID: 34732836 DOI: 10.1038/s41366-021-01013-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 10/19/2021] [Accepted: 10/22/2021] [Indexed: 11/09/2022]
Abstract
BACKGROUND/OBJECTIVES Oxylipins are polyunsaturated fatty acid derivatives involved in the regulation of various processes, including chronic inflammation, insulin resistance and hepatic steatosis. They can be synthesized in various tissues, including adipose tissue. There is some evidence that obesity is associated with the deregulation of serum oxylipin levels. The aim of this study was to evaluate the effect of bariatric surgery (one-anastomosis gastric bypass) on the serum levels of selected oxylipins and their fatty acid precursors and to verify the hypothesis that their changes after surgery can contribute to the resolution of inflammation. Moreover, we compared the oxylipin levels (prostaglandin E2, 13-HODE, maresin 1 and resolvin E1), fatty acids and the expression of enzymes that synthesize oxylipins in adipose tissue of lean controls and subjects with severe obesity. SUBJECTS/METHODS The study included 50 patients with severe obesity that underwent bariatric surgery and 41 subjects in lean, control group. Fatty acid content was analyzed by GC-MS, oxylipin concentrations were measured with immunoenzymatic assay kits and real-time PCR analysis was used to assess mRNA levels in adipose tissue. RESULTS Our results show increased expression of some enzymes that synthesize oxylipins in adipose tissue and alterations in the levels of oxylipins in both adipose tissue and serum of subjects with obesity. After bariatric surgery, the levels of anti-inflammatory oxylipins increased, whereas pro-inflammatory oxylipins decreased. CONCLUSIONS In patients with obesity, the metabolism of oxylipins is deregulated in adipose tissue, and their concentrations in serum are altered. Bariatric surgery modulates the serum levels of pro- and anti-inflammatory oxylipins, which may contribute to the resolution of inflammation.
Collapse
Affiliation(s)
- Ivan Liakh
- Department of Toxicology, Medical University of Gdansk, Gdansk, Poland
| | - Agata Janczy
- Department of Clinical Nutrition, Medical University of Gdansk, Gdansk, Poland
| | - Alicja Pakiet
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdansk, Gdansk, Poland
| | - Justyna Korczynska
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Medical University of Gdansk, Gdansk, Poland
| | - Monika Proczko-Stepaniak
- Department of General, Endocrine and Transplant Surgery, Faculty of Medicine, Medical University of Gdansk, Gdansk, Poland
| | - Lukasz Kaska
- Department of General, Endocrine and Transplant Surgery, Faculty of Medicine, Medical University of Gdansk, Gdansk, Poland
| | - Tomasz Sledzinski
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Medical University of Gdansk, Gdansk, Poland
| | - Adriana Mika
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Medical University of Gdansk, Gdansk, Poland.
| |
Collapse
|
37
|
Chávez-Castillo M, Ortega Á, Cudris-Torres L, Duran P, Rojas M, Manzano A, Garrido B, Salazar J, Silva A, Rojas-Gomez DM, De Sanctis JB, Bermúdez V. Specialized Pro-Resolving Lipid Mediators: The Future of Chronic Pain Therapy? Int J Mol Sci 2021; 22:ijms221910370. [PMID: 34638711 PMCID: PMC8509014 DOI: 10.3390/ijms221910370] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/21/2021] [Accepted: 09/23/2021] [Indexed: 12/15/2022] Open
Abstract
Chronic pain (CP) is a severe clinical entity with devastating physical and emotional consequences for patients, which can occur in a myriad of diseases. Often, conventional treatment approaches appear to be insufficient for its management. Moreover, considering the adverse effects of traditional analgesic treatments, specialized pro-resolving lipid mediators (SPMs) have emerged as a promising alternative for CP. These include various bioactive molecules such as resolvins, maresins, and protectins, derived from ω-3 polyunsaturated fatty acids (PUFAs); and lipoxins, produced from ω-6 PUFAs. Indeed, SPMs have been demonstrated to play a central role in the regulation and resolution of the inflammation associated with CP. Furthermore, these molecules can modulate neuroinflammation and thus inhibit central and peripheral sensitizations, as well as long-term potentiation, via immunomodulation and regulation of nociceptor activity and neuronal pathways. In this context, preclinical and clinical studies have evidenced that the use of SPMs is beneficial in CP-related disorders, including rheumatic diseases, migraine, neuropathies, and others. This review integrates current preclinical and clinical knowledge on the role of SPMs as a potential therapeutic tool for the management of patients with CP.
Collapse
Affiliation(s)
- Mervin Chávez-Castillo
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4004, Venezuela; (M.C.-C.); (Á.O.); (P.D.); (M.R.); (A.M.); (B.G.); (J.S.); (A.S.)
| | - Ángel Ortega
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4004, Venezuela; (M.C.-C.); (Á.O.); (P.D.); (M.R.); (A.M.); (B.G.); (J.S.); (A.S.)
| | - Lorena Cudris-Torres
- Programa de Psicología, Fundación Universitaria del Área Andina sede Valledupar, Valledupar 200001, Colombia;
| | - Pablo Duran
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4004, Venezuela; (M.C.-C.); (Á.O.); (P.D.); (M.R.); (A.M.); (B.G.); (J.S.); (A.S.)
| | - Milagros Rojas
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4004, Venezuela; (M.C.-C.); (Á.O.); (P.D.); (M.R.); (A.M.); (B.G.); (J.S.); (A.S.)
| | - Alexander Manzano
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4004, Venezuela; (M.C.-C.); (Á.O.); (P.D.); (M.R.); (A.M.); (B.G.); (J.S.); (A.S.)
| | - Bermary Garrido
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4004, Venezuela; (M.C.-C.); (Á.O.); (P.D.); (M.R.); (A.M.); (B.G.); (J.S.); (A.S.)
| | - Juan Salazar
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4004, Venezuela; (M.C.-C.); (Á.O.); (P.D.); (M.R.); (A.M.); (B.G.); (J.S.); (A.S.)
| | - Aljadis Silva
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4004, Venezuela; (M.C.-C.); (Á.O.); (P.D.); (M.R.); (A.M.); (B.G.); (J.S.); (A.S.)
| | - Diana Marcela Rojas-Gomez
- Escuela de Nutrición y Dietética, Facultad de Medicina, Universidad Andres Bello, Santiago 8370035, Chile;
| | - Juan B. De Sanctis
- Institute of Molecular and Translational Medicine, Palacký University Olomouc, 77900 Olomouc, Czech Republic;
| | - Valmore Bermúdez
- Facultad de Ciencias de la Salud, Universidad Simón Bolívar, Barranquilla 080002, Colombia
- Correspondence:
| |
Collapse
|
38
|
Newman H, Shih YV, Varghese S. Resolution of inflammation in bone regeneration: From understandings to therapeutic applications. Biomaterials 2021; 277:121114. [PMID: 34488119 DOI: 10.1016/j.biomaterials.2021.121114] [Citation(s) in RCA: 126] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 07/10/2021] [Accepted: 08/28/2021] [Indexed: 12/12/2022]
Abstract
Impaired bone healing occurs in 5-10% of cases following injury, leading to a significant economic and clinical impact. While an inflammatory response upon injury is necessary to facilitate healing, its resolution is critical for bone tissue repair as elevated acute or chronic inflammation is associated with impaired healing in patients and animal models. This process is governed by important crosstalk between immune cells through mediators that contribute to resolution of inflammation in the local healing environment. Approaches modulating the initial inflammatory phase followed by its resolution leads to a pro-regenerative environment for bone regeneration. In this review, we discuss the role of inflammation in bone repair, the negative impact of dysregulated inflammation on bone tissue regeneration, and how timely resolution of inflammation is necessary to achieve normal healing. We will discuss applications of biomaterials to treat large bone defects with a specific focus on resolution of inflammation to modulate the immune environment following bone injury, and their observed functional benefits. We conclude the review by discussing future strategies that could lead to the realization of anti-inflammatory therapeutics for bone tissue repair.
Collapse
Affiliation(s)
- Hunter Newman
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27710, USA
| | - Yuru Vernon Shih
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Shyni Varghese
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27710, USA; Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC, 27710, USA; Department of Biomedical Engineering, Duke University, Durham, NC, 27710, USA.
| |
Collapse
|
39
|
Luo Y, Li L, Chen X, Gou H, Yan K, Xu Y. Effects of lactate in immunosuppression and inflammation: Progress and prospects. Int Rev Immunol 2021; 41:19-29. [PMID: 34486916 DOI: 10.1080/08830185.2021.1974856] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Lactate used to be considered as a waste product of glucose metabolism. However, accumulating evidence has revealed its crucial role in regulating various biological and pathological processes. Hypoxia, inflammation, viral infection, and tumor promote the production of lactate. Then lactate activates G protein-coupled receptor 81 (GPR81) or shuttles across membranes by monocarboxylate-transporters (MCTs) to execute its intricate effects. Many studies highlighted the function of lactate in regulating dendritic cells, monocytes, natural killer cells, mast cells, T cells, tumor cells, fibroblasts, macrophages polarization, and the differentiation of Th1, Th17, MDSCs, Tregs; all of which play a role in maintaining the immune homeostasis of the host when challenged with the noxious stimuli. In this review, we summarized the influence of lactate in diverse tissue-specific cells, and discuss their effects on viral infection, acute inflammation, chronic inflammation, sepsis, and tumor immunosuppression. The goal of this review is to expose that lactate has a double-edged effect on host immunity and accompanying inflammatory reactions, which could be a potentially effective target for treating the tumor and multiple infectious diseases.
Collapse
Affiliation(s)
- Ying Luo
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
| | - Lu Li
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Periodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Xu Chen
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
| | - Huiqing Gou
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
| | - Ke Yan
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
| | - Yan Xu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Periodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| |
Collapse
|
40
|
Fang X, Wang H, Ye T, Fu X, Tan X, Zeng Y, Fan J, Xu Y. Low serum Maresin-1 levels are associated with non-alcoholic fatty liver disease: a cross-sectional study. Lipids Health Dis 2021; 20:96. [PMID: 34461919 PMCID: PMC8406751 DOI: 10.1186/s12944-021-01518-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 08/06/2021] [Indexed: 02/06/2023] Open
Abstract
Background Maresin-1 (MaR1) is an anti-inflammatory pro-resolving mediator and is considered a potential regulator of metabolic diseases. Non-alcoholic fatty liver disease (NAFLD) is a very common metabolic liver disease. However, little information is available on the relationship between MaR1 and NAFLD in humans. Therefore, the study explored the association between serum MaR1 levels and NAFLD. Methods A cross-sectional study was conducted in 240 Chinese people, including 116 non-NAFLD subjects and 124 NAFLD patients. Serum MaR1 levels were determined by enzyme-linked immunosorbent assay (ELISA). The association between MaR1 and NAFLD was assessed. Results Circulating MaR1 levels in NAFLD patients were markedly lower than those in non-NAFLD subjects (63.63 [59.87–73.93] vs 73.11 [65.12–84.50] pg/mL, P = 0.000). The percentages of patients with NAFLD gradually decreased with the increase of MaR1 quartiles (P < 0.001). Furthermore, serum MaR1 levels were positively associated with aspartate aminotransferase/alanine aminotransferase (AST/ALT), albumin, the albumin-globulin-ratio, and high-density lipoprotein cholesterol (HDL-C) (all P < 0.05) and negatively associated with body mass index (BMI), waist circumference, hip circumference, the waist-to-hip ratio, ALT, gamma-glutamyl transpeptidase (GGT), uric acid, triglyceride (TG), and fasting blood glucose (FBG) (all P < 0.05) after adjusting for sex and age. Binary logistic regression analysis revealed that serum MaR1 levels were significantly associated with NAFLD. Conclusions Circulating MaR1 levels were decreased in patients with NAFLD, and a negative correlation was identified between NAFLD and serum MaR1 concentrations. Decreased MaR1 might be involved in the development of NAFLD.
Collapse
Affiliation(s)
- Xia Fang
- Department of Endocrinology and Metabolism, the Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Jiangyang District, Luzhou, 646000, Sichuan, China.,Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, Luzhou, 646000, Sichuan, China.,Sichuan Clinical Research Center for Nephropathy, Luzhou, 646000, Sichuan, China
| | - Hongya Wang
- Department of Endocrinology and Metabolism, the Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Jiangyang District, Luzhou, 646000, Sichuan, China.,Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, Luzhou, 646000, Sichuan, China.,Sichuan Clinical Research Center for Nephropathy, Luzhou, 646000, Sichuan, China
| | - Ting Ye
- Department of Laboratory Medicine, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Xiaolan Fu
- Department of Respiratory Medicine, Yongchuan Hospital of Traditional Chinese Medicine Affiliated to Chongqing Medical University, Chongqing, 402160, China
| | - Xiaozhen Tan
- Department of Endocrinology and Metabolism, the Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Jiangyang District, Luzhou, 646000, Sichuan, China.,Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, Luzhou, 646000, Sichuan, China.,Sichuan Clinical Research Center for Nephropathy, Luzhou, 646000, Sichuan, China
| | - Yan Zeng
- Department of Endocrinology and Metabolism, the Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Jiangyang District, Luzhou, 646000, Sichuan, China.,Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, Luzhou, 646000, Sichuan, China.,Sichuan Clinical Research Center for Nephropathy, Luzhou, 646000, Sichuan, China
| | - Jiahao Fan
- Department of Gastroenterology, the Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Jiangyang District, Luzhou, 646000, Sichuan, China.
| | - Yong Xu
- Department of Endocrinology and Metabolism, the Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Jiangyang District, Luzhou, 646000, Sichuan, China. .,Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, Luzhou, 646000, Sichuan, China. .,Sichuan Clinical Research Center for Nephropathy, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
41
|
Novelty of Sphingolipids in the Central Nervous System Physiology and Disease: Focusing on the Sphingolipid Hypothesis of Neuroinflammation and Neurodegeneration. Int J Mol Sci 2021; 22:ijms22147353. [PMID: 34298977 PMCID: PMC8303517 DOI: 10.3390/ijms22147353] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 12/30/2022] Open
Abstract
For decades, lipids were confined to the field of structural biology and energetics as they were considered only structural constituents of cellular membranes and efficient sources of energy production. However, with advances in our understanding in lipidomics and improvements in the technological approaches, astounding discoveries have been made in exploring the role of lipids as signaling molecules, termed bioactive lipids. Among these bioactive lipids, sphingolipids have emerged as distinctive mediators of various cellular processes, ranging from cell growth and proliferation to cellular apoptosis, executing immune responses to regulating inflammation. Recent studies have made it clear that sphingolipids, their metabolic intermediates (ceramide, sphingosine-1-phosphate, and N-acetyl sphingosine), and enzyme systems (cyclooxygenases, sphingosine kinases, and sphingomyelinase) harbor diverse yet interconnected signaling pathways in the central nervous system (CNS), orchestrate CNS physiological processes, and participate in a plethora of neuroinflammatory and neurodegenerative disorders. Considering the unequivocal importance of sphingolipids in CNS, we review the recent discoveries detailing the major enzymes involved in sphingolipid metabolism (particularly sphingosine kinase 1), novel metabolic intermediates (N-acetyl sphingosine), and their complex interactions in CNS physiology, disruption of their functionality in neurodegenerative disorders, and therapeutic strategies targeting sphingolipids for improved drug approaches.
Collapse
|
42
|
Torres W, Chávez-Castillo M, Peréz-Vicuña JL, Carrasquero R, Díaz MP, Gomez Y, Ramírez P, Cano C, Rojas-Quintero J, Chacín M, Velasco M, de Sanctis JB, Bermudez V. Potential role of bioactive lipids in rheumatoid arthritis. Curr Pharm Des 2021; 27:4434-4451. [PMID: 34036919 DOI: 10.2174/1381612827666210525164734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 04/08/2021] [Indexed: 11/22/2022]
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease, which involves a pathological inflammatory response against articular cartilage in multiple joints throughout the body. It is a complex disorder associated with comorbidities such as depression, lymphoma, osteoporosis and cardiovascular disease (CVD), which significantly deteriorate patients' quality of life and prognosis. This has ignited a large initiative to elucidate the physiopathology of RA, aiming to identify new therapeutic targets and approaches in its multidisciplinary management. Recently, various lipid bioactive products have been proposed to have an essential role in this process; including eicosanoids, specialized pro-resolving mediators, phospholipids/sphingolipids, and endocannabinoids. Dietary interventions using omega-3 polyunsaturated fatty acids or treatment with synthetic endocannabinoids agonists have been shown to significantly ameliorate RA symptoms. Indeed, the modulation of lipid metabolism may be crucial in the pathophysiology and treatment of autoimmune diseases.
Collapse
Affiliation(s)
- Wheeler Torres
- Endocrine and Metabolic Diseases Research Center. School of Medicine. University of Zulia. Maracaibo. Venezuela
| | - Mervin Chávez-Castillo
- Endocrine and Metabolic Diseases Research Center. School of Medicine. University of Zulia. Maracaibo. Venezuela
| | - José L Peréz-Vicuña
- Endocrine and Metabolic Diseases Research Center. School of Medicine. University of Zulia. Maracaibo. Venezuela
| | - Rubén Carrasquero
- Endocrine and Metabolic Diseases Research Center. School of Medicine. University of Zulia. Maracaibo. Venezuela
| | - María P Díaz
- Endocrine and Metabolic Diseases Research Center. School of Medicine. University of Zulia. Maracaibo. Venezuela
| | - Yosselin Gomez
- Endocrine and Metabolic Diseases Research Center. School of Medicine. University of Zulia. Maracaibo. Venezuela
| | - Paola Ramírez
- Endocrine and Metabolic Diseases Research Center. School of Medicine. University of Zulia. Maracaibo. Venezuela
| | - Clímaco Cano
- Endocrine and Metabolic Diseases Research Center. School of Medicine. University of Zulia. Maracaibo. Venezuela
| | - Joselyn Rojas-Quintero
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston. 0
| | - Maricarmen Chacín
- Universidad Simón Bolívar, Facultad de Ciencias de la Salud, Barranquilla. Colombia
| | - Manuel Velasco
- Universidad Central de Venezuela, Escuela de Medicina José María Vargas, Caracas. Venezuela
| | - Juan Bautista de Sanctis
- Institute of Molecular and Translational Medicine. Faculty of Medicine and Dentistry. Palacky University. Czech Republic
| | - Valmore Bermudez
- Universidad Simón Bolívar, Facultad de Ciencias de la Salud, Barranquilla. Colombia
| |
Collapse
|
43
|
Vago JP, Amaral FA, van de Loo FAJ. Resolving inflammation by TAM receptor activation. Pharmacol Ther 2021; 227:107893. [PMID: 33992683 DOI: 10.1016/j.pharmthera.2021.107893] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/06/2021] [Accepted: 05/10/2021] [Indexed: 12/12/2022]
Abstract
The control of inflammation is strictly regulated to ensure the adequate intensity and duration of an inflammatory response, enabling the removal of the trigger factors and the restoration of the integrity of the tissues and their functions. This process is coordinated by anti-inflammatory and pro-resolving mediators that regulate the cellular and molecular events necessary to restore homeostasis, and defects in this control are associated with the development of chronic and autoimmune diseases. The TAM family of receptor tyrosine kinases-Tyro3, Axl, and MerTK-plays an essential role in efferocytosis, a key process for the resolution of inflammation. However, new studies have demonstrated that TAM receptor activation not only reduces the synthesis of pro-inflammatory mediators by different cell types in response to some stimuli but also stimulates the production of anti-inflammatory and pro-resolving molecules that control the inflammation. This review provides a comprehensive view of TAM receptor family members as important players in controlling inflammatory responses through anti-inflammatory and pro-resolving actions.
Collapse
Affiliation(s)
- Juliana P Vago
- Experimental Rheumatology, Department of Rheumatology, Radboud Institute for Molecular Life Sciences, Radboud university medical center, Nijmegen, the Netherlands
| | - Flávio A Amaral
- Experimental Rheumatology, Department of Rheumatology, Radboud Institute for Molecular Life Sciences, Radboud university medical center, Nijmegen, the Netherlands; Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Fons A J van de Loo
- Experimental Rheumatology, Department of Rheumatology, Radboud Institute for Molecular Life Sciences, Radboud university medical center, Nijmegen, the Netherlands.
| |
Collapse
|
44
|
Li D, Wang M, Ye J, Zhang J, Xu Y, Wang Z, Zhao M, Ye D, Wan J. Maresin 1 alleviates the inflammatory response, reduces oxidative stress and protects against cardiac injury in LPS-induced mice. Life Sci 2021; 277:119467. [PMID: 33811894 DOI: 10.1016/j.lfs.2021.119467] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 03/17/2021] [Accepted: 03/28/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND Maresin 1 (MaR1) is a pro-resolving lipid mediator that has been reported to have strong regulatory effects on oxidative stress and inflammation. This study aimed to determine the effect of MaR1 on lipopolysaccharide (LPS)-induced sepsis-related cardiac injury and explore its possible mechanisms. METHODS Mice were administered MaR1 or PBS and then treated with LPS or saline for 6 h. Then, cardiac function, cardiac injury markers, cardiac macrophage differentiation, oxidative stress and myocardial cell apoptosis in each group were measured. RESULTS MaR1 treatment significantly decreased the serum levels of lactate dehydrogenase (LDH) and kinase isoenzyme (CK-MB) and improved cardiac function in LPS-induced mice. Treatment with MaR1 also inhibited LPS-induced M1 macrophage differentiation and reduced M1 macrophage-related cytokine secretion while promoting M2 macrophage differentiation and increasing M2 macrophage-related inflammatory mediator expression. In addition, MaR1 decreased serum malondialdehyde (MDA) levels and increased serum levels of superoxide dismutase (SOD) and glutathione (GSH), as well as cardiac expression of nuclear factor erythroid-2 related factor 2 (Nrf-2) and heme oxygenase 1 (HO-1), in LPS-induced mice. Furthermore, fewer TUNEL-positive cells were observed in the LPS + MaR1 group than in the LPS group. CONCLUSIONS Our experimental results show that MaR1 alleviates cardiac injury and protects against cardiac dysfunction and may be beneficial in reducing sepsis-induced cardiac injury.
Collapse
Affiliation(s)
- Dan Li
- Department of Pediatric, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Menglong Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Hubei Key Laboratory of Cardiology, Wuhan 430060, China.
| | - Jing Ye
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Jishou Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Yao Xu
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Zhen Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Mengmeng Zhao
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Di Ye
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Jun Wan
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Hubei Key Laboratory of Cardiology, Wuhan 430060, China.
| |
Collapse
|
45
|
Sile I, Videja M, Makrecka-Kuka M, Tirzite D, Pajuste K, Shubin K, Krizhanovska V, Grinberga S, Pugovics O, Dambrova M. Chemical composition of Prunus padus L. flower extract and its anti-inflammatory activities in primary bone marrow-derived macrophages. JOURNAL OF ETHNOPHARMACOLOGY 2021; 268:113678. [PMID: 33307057 DOI: 10.1016/j.jep.2020.113678] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/02/2020] [Accepted: 12/04/2020] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Prunus padus L. has been traditionally used in European ethnomedicine as a treatment for internal and external purposes and is mainly used to reduce inflammation, pain and fever. The activities of P. padus flower extracts are not well characterized, and additional experimental studies at the molecular level are needed to confirm the ethnobotanical findings. AIM OF THE STUDY To assess the potential of P. padus flower extract (PPFE) as a source of bioactive compounds through the characterization of its chemical composition and antioxidant, anti-collagenase, and anti-inflammatory activities. MATERIALS AND METHODS The ethanolic extract (1:10 w/v in ethanol solution) from P. padus flowers was subjected to phytochemical analysis and evaluation of the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity. Anti-collagenase activity was determined using a spectrophotometric method in vitro. The effect of PPFE on inflammation was evaluated by measuring specific markers using flow cytometry and assessing pro-inflammatory cytokine (IL-6) release by bone marrow-derived macrophages (BMDMs) ex vivo. RESULTS The major components of the ethanolic extract of P. padus flowers were quercetin diglycosides, chlorogenic acid and N',N″-dicaffeoyl,N‴-coumaroyl spermidine. The total phenolic content of PPFE was 85.19 mg GAE/g extract, and the EC50 value in the DPPH assay was 0.55 mg/ml. PPFE exhibited the ability to inhibit collagenase activity in a dose-dependent manner. Preincubation of BMDMs with PPFE reduced the population of M1 (pro-inflammatory) and increased the population of M2 (anti-inflammatory) macrophages. Furthermore, PPFE decreased pro-inflammatory cytokine IL-6 release from BMDMs. CONCLUSIONS PPFE is a rich source of bioactive compounds and possesses considerable anti-inflammatory properties, supporting its use in ethnomedicine for the reduction of inflammatory processes.
Collapse
Affiliation(s)
- Inga Sile
- Latvian Institute of Organic Synthesis, 21 Aizkraukles Str., LV-1006, Riga, Latvia; Department of Dosage Form Technology, Riga Stradins University, 16 Dzirciema Str, Riga, LV-1007, Latvia.
| | - Melita Videja
- Latvian Institute of Organic Synthesis, 21 Aizkraukles Str., LV-1006, Riga, Latvia; Department of Pharmaceutical Chemistry, Riga Stradins University, 16 Dzirciema Str, Riga, LV-1007, Latvia.
| | - Marina Makrecka-Kuka
- Latvian Institute of Organic Synthesis, 21 Aizkraukles Str., LV-1006, Riga, Latvia.
| | - Dace Tirzite
- Latvian Institute of Organic Synthesis, 21 Aizkraukles Str., LV-1006, Riga, Latvia.
| | - Karlis Pajuste
- Latvian Institute of Organic Synthesis, 21 Aizkraukles Str., LV-1006, Riga, Latvia.
| | - Kirill Shubin
- Latvian Institute of Organic Synthesis, 21 Aizkraukles Str., LV-1006, Riga, Latvia.
| | | | - Solveiga Grinberga
- Latvian Institute of Organic Synthesis, 21 Aizkraukles Str., LV-1006, Riga, Latvia.
| | - Osvalds Pugovics
- Latvian Institute of Organic Synthesis, 21 Aizkraukles Str., LV-1006, Riga, Latvia.
| | - Maija Dambrova
- Latvian Institute of Organic Synthesis, 21 Aizkraukles Str., LV-1006, Riga, Latvia; Department of Pharmaceutical Chemistry, Riga Stradins University, 16 Dzirciema Str, Riga, LV-1007, Latvia.
| |
Collapse
|
46
|
The Protective Effects of Maresin 1 in the OVA-Induced Asthma Mouse Model. Mediators Inflamm 2021; 2021:4131420. [PMID: 33628113 PMCID: PMC7889371 DOI: 10.1155/2021/4131420] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 12/11/2020] [Accepted: 01/29/2021] [Indexed: 12/18/2022] Open
Abstract
Asthma is a chronic inflammatory disease that cannot be cured. Maresin 1 (MaR1) is a specific lipid synthesized by macrophages that exhibits powerful anti-inflammatory effects in various inflammatory diseases. The goal of this study was to evaluate the effect of MaR1 on allergic asthma using an ovalbumin- (OVA-) induced asthma model. Thirty BALB/c mice were randomly allocated to control, OVA, and MaR1 + OVA groups. Mice were sacrificed 24 hours after the end of the last challenge, and serum, bronchoalveolar lavage fluid (BALF), and lung tissue were collected for further analysis. Western blotting was used to measure the protein level of IκBα, the activation of the NF-κB signaling pathway, and the expression of NF-κB downstream inflammatory cytokines. Quantitative real-time polymerase chain reactions (qRT-PCRs) were used to evaluate the expression levels of COX-2 and ICAM-1 in lung tissues. We found that high doses of MaR1 were most effective in preventing OVA-induced inflammatory cell infiltration and excessive mucus production in lung tissue, reducing the number of inflammatory cells in the BALF and inhibiting the expression of serum or BALF-associated inflammatory factors. Furthermore, high-dose MaR1 treatment markedly suppressed the activation of the NF-κB signaling pathway, the degradation of IκBα, and the expression of inflammatory genes downstream of NF-κB, such as COX-2 and ICAM-1, in the OVA-induced asthma mouse model. Our findings indicate that MaR1 may play a critical role in OVA-induced asthma and may be therapeutically useful for the management of asthma.
Collapse
|
47
|
Oxidation of polyunsaturated fatty acids to produce lipid mediators. Essays Biochem 2021; 64:401-421. [PMID: 32618335 PMCID: PMC7517362 DOI: 10.1042/ebc20190082] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/19/2020] [Accepted: 06/22/2020] [Indexed: 12/12/2022]
Abstract
The chemistry, biochemistry, pharmacology and molecular biology of oxylipins (defined as a family of oxygenated natural products that are formed from unsaturated fatty acids by pathways involving at least one step of dioxygen-dependent oxidation) are complex and occasionally contradictory subjects that continue to develop at an extraordinarily rapid rate. The term includes docosanoids (e.g. protectins, resolvins and maresins, or specialized pro-resolving mediators), eicosanoids and octadecanoids and plant oxylipins, which are derived from either the omega-6 (n-6) or the omega-3 (n-3) families of polyunsaturated fatty acids. For example, the term eicosanoid is used to embrace those biologically active lipid mediators that are derived from C20 fatty acids, and include prostaglandins, thromboxanes, leukotrienes, hydroxyeicosatetraenoic acids and related oxygenated derivatives. The key enzymes for the production of prostanoids are prostaglandin endoperoxide H synthases (cyclo-oxygenases), while lipoxygenases and oxidases of the cytochrome P450 family produce numerous other metabolites. In plants, the lipoxygenase pathway from C18 polyunsaturated fatty acids yields a variety of important products, especially the jasmonates, which have some comparable structural features and functions. Related oxylipins are produced by non-enzymic means (isoprostanes), while fatty acid esters of hydroxy fatty acids (FAHFA) are now being considered together with the oxylipins from a functional perspective. In all kingdoms of life, oxylipins usually act as lipid mediators through specific receptors, have short half-lives and have functions in innumerable biological contexts.
Collapse
|
48
|
Suzumura A, Terao R, Kaneko H. Protective Effects and Molecular Signaling of n-3 Fatty Acids on Oxidative Stress and Inflammation in Retinal Diseases. Antioxidants (Basel) 2020; 9:E920. [PMID: 32993153 PMCID: PMC7600094 DOI: 10.3390/antiox9100920] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/23/2020] [Accepted: 09/24/2020] [Indexed: 02/06/2023] Open
Abstract
Oxidative stress and inflammation play crucial roles in the development and progression of retinal diseases. Retinal damage by various etiologies can result in retinopathy of prematurity (ROP), diabetic retinopathy (DR), and age-related macular degeneration (AMD). n-3 fatty acids are essential fatty acids and are necessary for homeostasis. They are important retinal membrane components and are involved in energy storage. n-3 fatty acids also have antioxidant and anti-inflammatory properties, and their suppressive effects against ROP, DR, and AMD have been previously evaluated. α-linolenic acid (ALA), eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), and their metabolites have been shown to alleviate retinal oxidative stress and inflammation involving various biological signaling pathways. In this review, we summarize the current understanding of the n-3 fatty acids effects on the mechanisms of these retinal diseases and how they exert their therapeutic effects, focusing on ALA, EPA, DHA, and their metabolites. This knowledge may provide new remedial strategies for n-3 fatty acids in the prevention and treatment of retinal diseases associated with oxidative stress and inflammation.
Collapse
Affiliation(s)
- Ayana Suzumura
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan;
| | - Ryo Terao
- Department of Ophthalmology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan;
| | - Hiroki Kaneko
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan;
| |
Collapse
|
49
|
Ungaro F, D’Alessio S, Danese S. The Role of Pro-Resolving Lipid Mediators in Colorectal Cancer-Associated Inflammation: Implications for Therapeutic Strategies. Cancers (Basel) 2020; 12:cancers12082060. [PMID: 32722560 PMCID: PMC7463689 DOI: 10.3390/cancers12082060] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/23/2020] [Accepted: 07/24/2020] [Indexed: 02/06/2023] Open
Abstract
Inflammation is a recognized hallmark of cancer that contributes to the development and progression of colorectal cancer (CRC). Anti-inflammatory drugs currently used for the treatment of CRC show many adverse side effects that prompted researchers to propose the polyunsaturated fatty acids-derived specialized pro-resolving mediators (SPMs) as promoters of resolution of cancer-associated inflammation. SPMs were found to inhibit the CRC-associated pro-inflammatory milieu via specific G-coupled protein receptors, although clinical data are still lacking. This review aims to summarize the state-of-the-art in this field, ultimately providing insights for the development of innovative anti-CRC therapies that promote the endogenous lipid-mediated resolution of CRC-associated inflammation.
Collapse
Affiliation(s)
- Federica Ungaro
- IBD Center, Laboratory of Gastrointestinal Immunopathology, Humanitas Clinical and Research Center, Rozzano, 20089 Milan, Italy; (S.D.); (S.D.)
- Department of Biomedical Sciences, Humanitas University, Rozzano, 20089 Milan, Italy
- Correspondence:
| | - Silvia D’Alessio
- IBD Center, Laboratory of Gastrointestinal Immunopathology, Humanitas Clinical and Research Center, Rozzano, 20089 Milan, Italy; (S.D.); (S.D.)
- Department of Biomedical Sciences, Humanitas University, Rozzano, 20089 Milan, Italy
| | - Silvio Danese
- IBD Center, Laboratory of Gastrointestinal Immunopathology, Humanitas Clinical and Research Center, Rozzano, 20089 Milan, Italy; (S.D.); (S.D.)
- Department of Biomedical Sciences, Humanitas University, Rozzano, 20089 Milan, Italy
| |
Collapse
|
50
|
Offenbacher AR, Holman TR. Fatty Acid Allosteric Regulation of C-H Activation in Plant and Animal Lipoxygenases. Molecules 2020; 25:molecules25153374. [PMID: 32722330 PMCID: PMC7436259 DOI: 10.3390/molecules25153374] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/18/2020] [Accepted: 07/21/2020] [Indexed: 12/18/2022] Open
Abstract
Lipoxygenases (LOXs) catalyze the (per) oxidation of fatty acids that serve as important mediators for cell signaling and inflammation. These reactions are initiated by a C-H activation step that is allosterically regulated in plant and animal enzymes. LOXs from higher eukaryotes are equipped with an N-terminal PLAT (Polycystin-1, Lipoxygenase, Alpha-Toxin) domain that has been implicated to bind to small molecule allosteric effectors, which in turn modulate substrate specificity and the rate-limiting steps of catalysis. Herein, the kinetic and structural evidence that describes the allosteric regulation of plant and animal lipoxygenase chemistry by fatty acids and their derivatives are summarized.
Collapse
Affiliation(s)
- Adam R. Offenbacher
- Department of Chemistry, East Carolina University, Greenville, NC 27858, USA
- Correspondence:
| | - Theodore R. Holman
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, CA 95064, USA;
| |
Collapse
|