1
|
Chen Y, Chen S, Xu C, Yu L, Chu S, Bao J, Wang J, Wang J. Identification of Diagnostic Biomarkers for Compensatory Liver Cirrhosis Based on Gut Microbiota and Urine Metabolomics Analyses. Mol Biotechnol 2024; 66:3164-3181. [PMID: 37875653 PMCID: PMC11549169 DOI: 10.1007/s12033-023-00922-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/26/2023] [Indexed: 10/26/2023]
Abstract
Liver cirrhosis is one of the most prevalent chronic liver disorders with high mortality. We aimed to explore changed gut microbiome and urine metabolome in compensatory liver cirrhosis (CLC) patients, thus providing novel diagnostic biomarkers for CLC. Forty fecal samples from healthy volunteers (control: 19) and CLC patients (patient: 21) were undertaken 16S rDNA sequencing. Chromatography-mass spectrometry was performed on 40 urine samples (20 controls and 20 patients). Microbiome and metabolome data were separately analyzed using corresponding bioinformatics approaches. The diagnostic model was constructed using the least absolute shrinkage and selection operator regression. The optimal diagnostic model was determined by five-fold cross-validation. Pearson correlation analysis was applied to clarify the relations among the diagnostic markers. 16S rDNA sequencing analyses showed changed overall alpha diversity and beta diversity in patient samples compared with those of controls. Similarly, we identified 841 changed metabolites. Pathway analysis revealed that the differential metabolites were mainly associated with pathways, such as tryptophan metabolism, purine metabolism, and steroid hormone biosynthesis. A 9-maker diagnostic model for CLC was determined, including 7 microorganisms and 2 metabolites. In this model, there were multiple correlations between microorganisms and metabolites. Subdoligranulum, Agathobacter, norank_f_Eubacterium_coprostanoligenes_group, Butyricicoccus, Lachnospiraceae_UCG_004, and L-2,3-Dihydrodipicolinate were elevated in CLC patients, whereas Blautia, Monoglobus, and 5-Acetamidovalerate were reduced. A novel diagnostic model for CLC was constructed and verified to be reliable, which provides new strategies for the diagnosis and treatment of CLC.
Collapse
Affiliation(s)
- Yingjun Chen
- Department of Infectious Diseases, Tiantai People's Hospital of Zhejiang Province, Taizhou, 317200, People's Republic of China
| | - Shaoxian Chen
- Department of Infectious Diseases, Tiantai People's Hospital of Zhejiang Province, Taizhou, 317200, People's Republic of China
| | - Chandi Xu
- Department of Infectious Diseases, Tiantai People's Hospital of Zhejiang Province, Taizhou, 317200, People's Republic of China
| | - Li Yu
- Department of Infectious Diseases, Tiantai People's Hospital of Zhejiang Province, Taizhou, 317200, People's Republic of China
| | - Shanshan Chu
- Department of Infectious Diseases, Tiantai People's Hospital of Zhejiang Province, Taizhou, 317200, People's Republic of China
| | - Jianzhi Bao
- Department of Infectious Diseases, Tiantai People's Hospital of Zhejiang Province, Taizhou, 317200, People's Republic of China
| | - Jinwei Wang
- Department of General Medicine, Tiantai People's Hospital of Zhejiang Province, Taizhou, 317200, People's Republic of China
| | - Junwei Wang
- Department of Infectious Diseases, Tiantai People's Hospital of Zhejiang Province, Taizhou, 317200, People's Republic of China.
| |
Collapse
|
2
|
Sharma A, Sharma A, Dheer D, Sharma RR, Puri V, Bibi S, Shamas A, Memon S, Goyal R, Priyanka, Chopra H. Stem cell transplantation therapy for advanced liver damage-associated neurodegenerative disorders. Int J Surg 2024; 110:6873-6882. [PMID: 39699862 DOI: 10.1097/js9.0000000000002001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 07/15/2024] [Indexed: 12/20/2024]
Abstract
Hepatic encephalopathy and other neurodegenerative disorders have profound implications for extensive liver impairment, calling for new ways of treating the condition. The application of stem cell transplantation to treat these severe disorders is a new and encouraging technique. This review article digs deep into the subject of stem cell transplantation therapy, neurodegenerative disorders associated with advanced liver damage, and liver transplantation. It comprehensively analyses the background, rationale, scope, and objectives of using stem cells to treat such challenging conditions. The topic of discussion includes the subtleties of neurodegenerative disorders, the function of liver transplantation, and the possible advantages and disadvantages associated with it. The relevance of patient selection, intraoperative concerns and post-transplant care is discussed. Further, the article explores how stem cell-based therapies can benefit from nanotechnology, specifically how it can improve stem cell distribution, survival, and integration for better therapeutic results. This review aims to offer a thorough analysis of regenerative medicine's present and future possibilities in dealing with the intricate relationship between neurodegeneration and liver damage. It does this by examining the efficacy, safety, and long-term impacts of stem cell transplantation in treating neurodegenerative disorders associated with advanced liver damage. This will incorporate insights from ongoing clinical trials, the patent landscape, and future directions. The goal is to pave the way for innovative and personalized treatment approaches in this evolving research and clinical practice field. Therefore, these efforts represent a promising frontier in medical research that can alleviate the burden of HE and associated neurological complications combined with liver cirrhosis.
Collapse
Affiliation(s)
- Anjna Sharma
- Chitkara University School of Pharmacy, Chitkara University, Himachal Pradesh
| | - Ameya Sharma
- Chitkara University School of Pharmacy, Chitkara University, Himachal Pradesh
| | - Divya Dheer
- Chitkara University School of Pharmacy, Chitkara University, Himachal Pradesh
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Punjab, India
| | - Raghu Rai Sharma
- Chitkara University School of Pharmacy, Chitkara University, Himachal Pradesh
| | - Vivek Puri
- Chitkara University School of Pharmacy, Chitkara University, Himachal Pradesh
| | - Shabana Bibi
- Department of Biosciences, Shifa Tameer-e-Millat University, Islamabad
| | - Amina Shamas
- Department of Bioinformatics and Biosciences. Capital University of Science and Technology, Islamabad, Pakistan
| | | | - Rajat Goyal
- MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana
| | - Priyanka
- Department of Veterinary Microbiology, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Rampura Phul, Bathinda, Punjab
| | - Hitesh Chopra
- Department of Biosciences, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| |
Collapse
|
3
|
Jin YX, Hu HQ, Zhang JC, Xin XY, Zhu YT, Ye Y, Li D. Mechanism of mesenchymal stem cells in liver regeneration: Insights and future directions. World J Stem Cells 2024; 16:842-845. [PMID: 39351263 PMCID: PMC11438733 DOI: 10.4252/wjsc.v16.i9.842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/08/2024] [Accepted: 08/26/2024] [Indexed: 09/24/2024] Open
Abstract
Mesenchymal stem cells (MSCs) are a prevalent source for stem cell therapy and play a crucial role in modulating both innate and adaptive immune responses. Non-alcoholic fatty liver disease (NAFLD) is characterized by the accumulation of triglycerides in liver cells and involves immune system activation, leading to histological changes, tissue damage, and clinical symptoms. A recent publication by Jiang et al, highlighted the potential of MSCs to mitigate in NAFLD progression by targeting various molecular pathways, including glycolipid metabolism, inflammation, oxidative stress, endoplasmic reticulum stress, and fibrosis. In this editorial, we comment on their research and discuss the efficacy of MSC therapy in treating NAFLD.
Collapse
Affiliation(s)
- Yu-Xin Jin
- Department of Traditional Chinese Medicine, Peking University Third Hospital, Beijing 100191, China
| | - Hang-Qi Hu
- Department of Traditional Chinese Medicine, Peking University Third Hospital, Beijing 100191, China
| | - Jia-Cheng Zhang
- Department of Traditional Chinese Medicine, Peking University Third Hospital, Beijing 100191, China
| | - Xi-Yan Xin
- Department of Traditional Chinese Medicine, Peking University Third Hospital, Beijing 100191, China
| | - Yu-Tian Zhu
- Department of Traditional Chinese Medicine, Peking University Third Hospital, Beijing 100191, China
| | - Yang Ye
- Department of Traditional Chinese Medicine, Peking University Third Hospital, Beijing 100191, China.
| | - Dong Li
- Department of Traditional Chinese Medicine, Peking University Third Hospital, Beijing 100191, China
| |
Collapse
|
4
|
Liam-Or R, Faruqu FN, Walters A, Han S, Xu L, Wang JTW, Oberlaender J, Sanchez-Fueyo A, Lombardi G, Dazzi F, Mailaender V, Al-Jamal KT. Cellular uptake and in vivo distribution of mesenchymal-stem-cell-derived extracellular vesicles are protein corona dependent. NATURE NANOTECHNOLOGY 2024; 19:846-855. [PMID: 38366223 PMCID: PMC11186763 DOI: 10.1038/s41565-023-01585-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 11/27/2023] [Indexed: 02/18/2024]
Abstract
Extracellular vesicles (EVs) derived from mesenchymal stem cells are promising nanotherapeutics in liver diseases due to their regenerative and immunomodulatory properties. Nevertheless, a concern has been raised regarding the rapid clearance of exogenous EVs by phagocytic cells. Here we explore the impact of protein corona on EVs derived from two culturing conditions in which specific proteins acquired from media were simultaneously adsorbed on the EV surface. Additionally, by incubating EVs with serum, simulating protein corona formation upon systemic delivery, further resolved protein corona-EV complex patterns were investigated. Our findings reveal the potential influences of corona composition on EVs under in vitro conditions and their in vivo kinetics. Our data suggest that bound albumin creates an EV signature that can retarget EVs from hepatic macrophages. This results in markedly improved cellular uptake by hepatocytes, liver sinusoidal endothelial cells and hepatic stellate cells. This phenomenon can be applied as a camouflage strategy by precoating EVs with albumin to fabricate the albumin-enriched protein corona-EV complex, enhancing non-phagocytic uptake in the liver. This work addresses a critical challenge facing intravenously administered EVs for liver therapy by tailoring the protein corona-EV complex for liver cell targeting and immune evasion.
Collapse
Affiliation(s)
- Revadee Liam-Or
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, London, UK
| | - Farid N Faruqu
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, London, UK
- Pharmacology Department, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Adam Walters
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, London, UK
| | - Shunping Han
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, London, UK
| | - Lizhou Xu
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, London, UK
| | - Julie Tzu-Wen Wang
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, London, UK
| | - Jennifer Oberlaender
- Max Planck Institute for Polymer Research, Mainz, Germany
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Alberto Sanchez-Fueyo
- Institute of Liver Studies, King's College London University and King's College Hospital, London, UK
| | - Giovanna Lombardi
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Francesco Dazzi
- Comprehensive Cancer Centre, King's College London, London, UK
| | - Volker Mailaender
- Max Planck Institute for Polymer Research, Mainz, Germany
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Khuloud T Al-Jamal
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, London, UK.
| |
Collapse
|
5
|
Rupareliya M, Shende P. Therapeutic Potential of Stem Cells in Natural Killer-Like B Cell-Associated Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1470:57-72. [PMID: 38418797 DOI: 10.1007/5584_2024_799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Stem cells are undifferentiated cells possessing a remarkable capacity to develop into multiple cell types. NKB cells, referred to "natural killer-like B cells," are recently identified subtype of B lymphocytes possessing characteristics that are similar to both natural killer (NK) cells and regular B lymphocytes. NK cells are lymphocyte-like in structure and cytotoxic in nature participating in the immediate immune response to the infected or malignant cells, whereas B lymphocytes produce antibodies and participate in adaptive immune response by binding to the specific antigen. The identification of NKB cells brings up new possibilities for studying and perhaps modulating immune responses in a variety of diseases, particularly those associated with microbial infections or inflammatory responses. Further, correlation of NKB cells with interleukins allows us to understand the molecular mechanism of diseases. Stem cell research offers a better understanding of NKB cell participation and provides new insights for novel treatment methods wherein mesenchymal stem cells (MSCs) have found to be the most promising stem cell showing positive outcomes in NKB cell-associated inflammatory diseases. Additionally, the perceptions acquired from researching NKB cells in diverse diseases leads to innovative treatment options, improving our capacity to control and cure immunological dysregulation-related ailments.
Collapse
Affiliation(s)
- Manali Rupareliya
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, Mumbai, India
| | - Pravin Shende
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, Mumbai, India.
| |
Collapse
|
6
|
Yadav P, Singh SK, Rajput S, Allawadhi P, Khurana A, Weiskirchen R, Navik U. Therapeutic potential of stem cells in regeneration of liver in chronic liver diseases: Current perspectives and future challenges. Pharmacol Ther 2024; 253:108563. [PMID: 38013053 DOI: 10.1016/j.pharmthera.2023.108563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/04/2023] [Accepted: 11/15/2023] [Indexed: 11/29/2023]
Abstract
The deposition of extracellular matrix and hyperplasia of connective tissue characterizes chronic liver disease called hepatic fibrosis. Progression of hepatic fibrosis may lead to hepatocellular carcinoma. At this stage, only liver transplantation is a viable option. However, the number of possible liver donors is less than the number of patients needing transplantation. Consequently, alternative cell therapies based on non-stem cells (e.g., fibroblasts, chondrocytes, keratinocytes, and hepatocytes) therapy may be able to postpone hepatic disease, but they are often ineffective. Thus, novel stem cell-based therapeutics might be potentially important cutting-edge approaches for treating liver diseases and reducing patient' suffering. Several signaling pathways provide targets for stem cell interventions. These include pathways such as TGF-β, STAT3/BCL-2, NADPH oxidase, Raf/MEK/ERK, Notch, and Wnt/β-catenin. Moreover, mesenchymal stem cells (MSCs) stimulate interleukin (IL)-10, which inhibits T-cells and converts M1 macrophages into M2 macrophages, producing an anti-inflammatory environment. Furthermore, it inhibits the action of CD4+ and CD8+ T cells and reduces the activity of TNF-α and interferon cytokines by enhancing IL-4 synthesis. Consequently, the immunomodulatory and anti-inflammatory capabilities of MSCs make them an attractive therapeutic approach. Importantly, MSCs can inhibit the activation of hepatic stellate cells, causing their apoptosis and subsequent promotion of hepatocyte proliferation, thereby replacing dead hepatocytes and reducing liver fibrosis. This review discusses the multidimensional therapeutic role of stem cells as cell-based therapeutics in liver fibrosis.
Collapse
Affiliation(s)
- Poonam Yadav
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, Punjab 151401, India
| | - Sumeet Kumar Singh
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, Punjab 151401, India
| | - Sonu Rajput
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, Punjab 151401, India
| | - Prince Allawadhi
- Department of Pharmacy, Vaish Institute of Pharmaceutical Education and Research (VIPER), Pandit Bhagwat Dayal Sharma University of Health Sciences (Pt. B. D. S. UHS), Rohtak, Haryana 124001, India
| | - Amit Khurana
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, Punjab 151401, India; Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH Aachen University Hospital, Pauwelsstr. 30, D-52074 Aachen, Germany.
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH Aachen University Hospital, Pauwelsstr. 30, D-52074 Aachen, Germany.
| | - Umashanker Navik
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, Punjab 151401, India; Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH Aachen University Hospital, Pauwelsstr. 30, D-52074 Aachen, Germany.
| |
Collapse
|
7
|
Sani F, Sani M, Moayedfard Z, Darayee M, Tayebi L, Azarpira N. Potential advantages of genetically modified mesenchymal stem cells in the treatment of acute and chronic liver diseases. Stem Cell Res Ther 2023; 14:138. [PMID: 37226279 DOI: 10.1186/s13287-023-03364-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 05/04/2023] [Indexed: 05/26/2023] Open
Abstract
Liver damage caused by toxicity can lead to various severe conditions, such as acute liver failure (ALF), fibrogenesis, and cirrhosis. Among these, liver cirrhosis (LC) is recognized as the leading cause of liver-related deaths globally. Unfortunately, patients with progressive cirrhosis are often on a waiting list, with limited donor organs, postoperative complications, immune system side effects, and high financial costs being some of the factors restricting transplantation. Although the liver has some capacity for self-renewal due to the presence of stem cells, it is usually insufficient to prevent the progression of LC and ALF. One potential therapeutic approach to improving liver function is the transplantation of gene-engineered stem cells. Several types of mesenchymal stem cells from various sources have been suggested for stem cell therapy for liver disease. Genetic engineering is an effective strategy that enhances the regenerative potential of stem cells by releasing growth factors and cytokines. In this review, we primarily focus on the genetic engineering of stem cells to improve their ability to treat damaged liver function. We also recommend further research into accurate treatment methods that involve safe gene modification and long-term follow-up of patients to increase the effectiveness and reliability of these therapeutic strategies.
Collapse
Affiliation(s)
- Farnaz Sani
- Hematology and Cell Therapy Department, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mahsa Sani
- Department of Tissue Engineering and Cell Therapy, School of Advanced Technologies in Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Moayedfard
- Department of Tissue Engineering and Cell Therapy, School of Advanced Technologies in Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Darayee
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Lobat Tayebi
- Marquette University School of Dentistry, Milwaukee, WI, 53233, USA
| | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Khalili Street, P.O. Box: 7193711351, Shiraz, Iran.
| |
Collapse
|
8
|
Vyas K, Patel MM. Insights on drug and gene delivery systems in liver fibrosis. Asian J Pharm Sci 2023; 18:100779. [PMID: 36845840 PMCID: PMC9950450 DOI: 10.1016/j.ajps.2023.100779] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 01/12/2023] [Accepted: 01/12/2023] [Indexed: 01/30/2023] Open
Abstract
Complications of the liver are amongst the world's worst diseases. Liver fibrosis is the first stage of liver problems, while cirrhosis is the last stage, which can lead to death. The creation of effective anti-fibrotic drug delivery methods appears critical due to the liver's metabolic capacity for drugs and the presence of insurmountable physiological impediments in the way of targeting. Recent breakthroughs in anti-fibrotic agents have substantially assisted in fibrosis; nevertheless, the working mechanism of anti-fibrotic medications is not fully understood, and there is a need to design delivery systems that are well-understood and can aid in cirrhosis. Nanotechnology-based delivery systems are regarded to be effective but they have not been adequately researched for liver delivery. As a result, the capability of nanoparticles in hepatic delivery was explored. Another approach is targeted drug delivery, which can considerably improve efficacy if delivery systems are designed to target hepatic stellate cells (HSCs). We have addressed numerous delivery strategies that target HSCs, which can eventually aid in fibrosis. Recently genetics have proved to be useful, and methods for delivering genetic material to the target place have also been investigated where different techniques are depicted. To summarize, this review paper sheds light on the most recent breakthroughs in drug and gene-based nano and targeted delivery systems that have lately shown useful for the treatment of liver fibrosis and cirrhosis.
Collapse
Affiliation(s)
- Kunj Vyas
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University SG Highway, Gujarat 382481, India
| | - Mayur M Patel
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University SG Highway, Gujarat 382481, India
| |
Collapse
|
9
|
Iqbal M, Shams S, Rafiq H, Khan M, Khan S, Sadique Khattak U, Afridi SG, Bibi F, Abdulkareem AA, Naseer MI. Combinatorial Therapeutic Potential of Stem Cells and Benzimidazol Derivatives for the Reduction of Liver Fibrosis. Pharmaceuticals (Basel) 2023; 16:306. [PMID: 37259449 PMCID: PMC9965641 DOI: 10.3390/ph16020306] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/07/2023] [Accepted: 02/09/2023] [Indexed: 12/31/2023] Open
Abstract
(1) Background: Liver fibrosis is currently one of the top ten causes of death worldwide. Stem cells transplantation using mesenchymal stem cells (MSCs) is an alternative therapy which is used in the place of organ transplant, due to the incapacity of stem cells to endure oxidative stress in the damage site, thus affecting the healing process. The present study aimed to enhance the therapeutic potential of MSCs using combined therapy, along with the novel synthetic compounds of benzimidazol derivatives. (2) Methods: Eighteen compound series (benzimidazol derivatives) were screened against liver fibrosis using an in vitro CCl4-induced injury model on cultured hepatocytes. IC50 values were calculated on the bases of LDH assay and cell viability assay. (3) Results: Among the eighteen compounds, compounds (10), (14) and (18) were selected on the basis of IC50 value, and compound (10) was the most potent and had the lowest IC50 value in the LDH assay (8.399 ± 0.23 uM) and cell viability assay (4.73 ± 0.37 uM). Next, these compounds were combined with MSCs using an in vitro hepatocytes injury culture and in vivo rat fibrotic model. The effect of the MSCs + compounds treatment on injured hepatocytes was evaluated using LDH assay, cell viability assay, GSH assay and real-time PCR analysis and immuno-staining for caspase-3. Significant reductions in LDH level, caspase-3 and apoptotic marker genes were noted in MSCs + compounds-treated injured hepatocytes. In vivo data also showed the increased homing of the MSCs, along with compounds after transplantation. Real-time PCR analysis and TUNEL assay results also support our study. (4) Conclusions: It was concluded that compounds (10), (14) and (18) can be used in combination with MSCs to reduce liver fibrosis.
Collapse
Affiliation(s)
- Maryam Iqbal
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan 23200, Khyber Pakhtunkhwa, Pakistan
| | - Sulaiman Shams
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan 23200, Khyber Pakhtunkhwa, Pakistan
| | - Huma Rafiq
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan 23200, Khyber Pakhtunkhwa, Pakistan
| | - Momin Khan
- Department of Chemistry, Abdul Wali Khan University Mardan, Mardan 23200, Khyber Pakhtunkhwa, Pakistan
| | - Shahid Khan
- Department of Chemistry, Abdul Wali Khan University Mardan, Mardan 23200, Khyber Pakhtunkhwa, Pakistan
| | - Umer Sadique Khattak
- College of Veterinary Sciences, The University of Agriculture, Peshawar 25130, Khyber Pakhtunkhwa, Pakistan
| | - Sahib Gul Afridi
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan 23200, Khyber Pakhtunkhwa, Pakistan
| | - Fehmida Bibi
- Special Infectious Agents Unit, King Fahd Medical Research Centre, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Angham Abdulrhman Abdulkareem
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Muhammad Imran Naseer
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
10
|
Tripura C, Gunda S, Vishwakarma SK, Thatipalli AR, Jose J, Jerald MK, Khan AA, Pande G. Long-term and non-invasive in vivo tracking of DiD dye-labeled human hepatic progenitors in chronic liver disease models. World J Hepatol 2022; 14:1884-1898. [PMID: 36340748 PMCID: PMC9627437 DOI: 10.4254/wjh.v14.i10.1884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/02/2022] [Accepted: 10/04/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Chronic liver diseases (CLD) are the major public health burden due to the continuous increasing rate of global morbidity and mortality. The inherent limitations of organ transplantation have led to the development of stem cell-based therapy as a supportive and promising therapeutic option. However, identifying the fate of transplanted cells in vivo represents a crucial obstacle.
AIM To evaluate the potential applicability of DiD dye as a cell labeling agent for long-term, and non-invasive in vivo tracking of transplanted cells in the liver.
METHODS Magnetically sorted, epithelial cell adhesion molecule positive (1 × 106 cells/mL) fetal hepatic progenitor cells were labeled with DiD dye and transplanted into the livers of CLD-severe combined immunodeficiency (SCID) mice. Near-infrared (NIR) imaging was performed for in vivo tracking of the DiD-labeled transplanted cells along with colocalization of hepatic markers for up to 80 d. The existence of human cells within mouse livers was identified using Alu polymerase chain reaction and sequencing.
RESULTS NIR fluorescence imaging of CLD-SCID mice showed a positive fluorescence signal of DiD at days 7, 15, 30, 45, 60, and 80 post-transplantation. Furthermore, positive staining of cytokeratin, c-Met, and albumin colocalizing with DiD fluorescence clearly demonstrated that the fluorescent signal of hepatic markers emerged from the DiD-labeled transplanted cells. Recovery of liver function was also observed with serum levels of glutamic-oxaloacetic transaminase, glutamate-pyruvate transaminase, and bilirubin. The detection of human-specific Alu sequence from the transplanted mouse livers provided evidence for the survival of transplanted cells at day 80.
CONCLUSION DiD-labeling is promising for long-term and non-invasive in vivo cell tracking, and understanding the regenerative mechanisms incurred by the transplanted cells.
Collapse
Affiliation(s)
- Chaturvedula Tripura
- Cell and Stem Cell Biology, CSIR-Centre for Cellular and Molecular Biology, Hyderabad 500007, Telangana, India
| | - Srinivas Gunda
- Cell and Stem Cell Biology, CSIR-Centre for Cellular and Molecular Biology, Hyderabad 500007, Telangana, India
| | - Sandeep Kumar Vishwakarma
- Central Laboratory for Stem Cell Research and Translational Medicine, Centre for Liver Research and Diagnostics, Deccan College of Medical Sciences, Hyderabad 500058, Telangana, India
| | - Avinash Raj Thatipalli
- Cell and Stem Cell Biology, CSIR-Centre for Cellular and Molecular Biology, Hyderabad 500007, Telangana, India
| | - Jedy Jose
- Cell and Stem Cell Biology, CSIR-Centre for Cellular and Molecular Biology, Hyderabad 500007, Telangana, India
| | - Mahesh Kumar Jerald
- Cell and Stem Cell Biology, CSIR-Centre for Cellular and Molecular Biology, Hyderabad 500007, Telangana, India
| | - Aleem Ahmed Khan
- Central Laboratory for Stem Cell Research and Translational Medicine, Centre for Liver Research and Diagnostics, Deccan College of Medical Sciences, Hyderabad 500058, Telangana, India
| | - Gopal Pande
- Cell and Stem Cell Biology, CSIR-Centre for Cellular and Molecular Biology, Hyderabad 500007, Telangana, India
| |
Collapse
|
11
|
Luo L, Lai C, Feng T, Yao Y, Xue H, Xiang G, Luo L, Huang X. Umbilical cord blood-derived mesenchymal stem cells transplantation decreases incidence of liver cancer in end-stage liver disease patients: a retrospective analysis over 5 years. Am J Transl Res 2022; 14:5848-5858. [PMID: 36105061 PMCID: PMC9452340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
OBJECTIVE To investigate effects of umbilical cord blood-derived mesenchymal stem cells (UC-MSCs) transplantation on the risks of liver cancers in end-stage liver disease (ESLD) patients. METHODS Data of 45 ESLD patients received UC-MSCs transplantation (UC-MSCs group) and 50 ESLD patients received non-UC-MSCs transplantation (non-UC-MSCs group) were retrospectively analyzed, and they were followed up for 5 years. RESULTS The incidence of liver cancer was much lower in UC-MSCs group than that in the non-UC-MSCs group (12% vs 2.2%, P=0.008). The survival rate of patients was significantly higher in the UC-MSCs group than that in the non-UC-MSCs group during the five years follow-up (P=0.043). The inflammation and fibrosis scores were lower in the UC-MSCs group than those in the non-UC-MSCs group (P<0.036). Compared with the non-UC-MSCs group, the UC-MSCs group showed largely improved liver cirrhosis degree and lower Child-Pugh scores (P<0.05). CONCLUSIONS UC-MSCs transplantation is able to decrease the risks of liver cancers in ESLD patients, which might work by inhibiting inflammation.
Collapse
Affiliation(s)
- Le Luo
- Department of Hepatobiliary and Pancreatic Surgery Center & Cell Transplantation Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China Chengdu 610072, Sichuan Province, China
| | - Chunyou Lai
- Department of Hepatobiliary and Pancreatic Surgery Center & Cell Transplantation Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China Chengdu 610072, Sichuan Province, China
| | - Tianhang Feng
- Department of Hepatobiliary and Pancreatic Surgery Center & Cell Transplantation Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China Chengdu 610072, Sichuan Province, China
| | - Yutong Yao
- Department of Hepatobiliary and Pancreatic Surgery Center & Cell Transplantation Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China Chengdu 610072, Sichuan Province, China
| | - Hua Xue
- Department of Hepatobiliary and Pancreatic Surgery Center & Cell Transplantation Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China Chengdu 610072, Sichuan Province, China
| | - Guangming Xiang
- Department of Hepatobiliary and Pancreatic Surgery Center & Cell Transplantation Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China Chengdu 610072, Sichuan Province, China
| | - Lanyun Luo
- Department of Hepatobiliary and Pancreatic Surgery Center & Cell Transplantation Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China Chengdu 610072, Sichuan Province, China
| | - Xiaolun Huang
- Department of Hepatobiliary and Pancreatic Surgery Center & Cell Transplantation Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China Chengdu 610072, Sichuan Province, China
| |
Collapse
|
12
|
Yao L, Hu X, Dai K, Yuan M, Liu P, Zhang Q, Jiang Y. Mesenchymal stromal cells: promising treatment for liver cirrhosis. Stem Cell Res Ther 2022; 13:308. [PMID: 35841079 PMCID: PMC9284869 DOI: 10.1186/s13287-022-03001-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 05/13/2022] [Indexed: 11/11/2022] Open
Abstract
Liver fibrosis is a wound-healing process that occurs in response to severe injuries and is hallmarked by the excessive accumulation of extracellular matrix or scar tissues within the liver. Liver fibrosis can be either acute or chronic and is induced by a variety of hepatotoxic causes, including lipid deposition, drugs, viruses, and autoimmune reactions. In advanced fibrosis, liver cirrhosis develops, a condition for which there is no successful therapy other than liver transplantation. Although liver transplantation is still a viable option, numerous limitations limit its application, including a lack of donor organs, immune rejection, and postoperative complications. As a result, there is an immediate need for a different kind of therapeutic approach. Recent research has shown that the administration of mesenchymal stromal cells (MSCs) is an attractive treatment modality for repairing liver injury and enhancing liver regeneration. This is accomplished through the cell migration into liver sites, immunoregulation, hepatogenic differentiation, as well as paracrine mechanisms. MSCs can also release a huge variety of molecules into the extracellular environment. These molecules, which include extracellular vesicles, lipids, free nucleic acids, and soluble proteins, exert crucial roles in repairing damaged tissue. In this review, we summarize the characteristics of MSCs, representative clinical study data, and the potential mechanisms of MSCs-based strategies for attenuating liver cirrhosis. Additionally, we examine the processes that are involved in the MSCs-dependent modulation of the immune milieu in liver cirrhosis. As a result, our findings lend credence to the concept of developing a cell therapy treatment for liver cirrhosis that is premised on MSCs. MSCs can be used as a candidate therapeutic agent to lengthen the survival duration of patients with liver cirrhosis or possibly reverse the condition in the near future.
Collapse
Affiliation(s)
- Lichao Yao
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China
| | - Xue Hu
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China
| | - Kai Dai
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China
| | - Mengqin Yuan
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China
| | - Pingji Liu
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China
| | - Qiuling Zhang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China
| | - Yingan Jiang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China.
| |
Collapse
|
13
|
Sun X, Guo S. Effectiveness of cell- and colony stimulating factor-based therapy for liver cirrhosis: a network meta-analysis of randomized controlled trials. Cytotherapy 2022; 24:516-525. [PMID: 35227600 DOI: 10.1016/j.jcyt.2021.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 11/01/2021] [Accepted: 11/15/2021] [Indexed: 12/30/2022]
Abstract
BACKGROUND AIMS Cirrhosis is the 11th leading cause of death worldwide. Because of the limitations of liver transplantation, cell- and granulocyte colony-stimulating factor (G-CSF)-based therapies are considered potential treatment methods. This work analyzes the effectiveness of cell- and G-CSF-based therapies by network meta-analysis. METHODS A literature search was performed in four databases from inception to September 10, 2021. Registered randomized controlled trials (RCTs) evaluating cell-based therapies and/or G-CSF-based therapies for cirrhosis patients were included. Traditional and network meta-analyses were analyzed in terms of survival, model for end-stage liver disease (MELD) score, Child-Turcotte-Pugh (CTP) score, alanine aminotransferase levels and aspartate aminotransferase levels. RESULTS Twenty-four studies were included in this analysis. The results showed that G-CSF-based therapies (odds ratio [OR], 2.38, 95% confidence interval [CI], 1.49-3.79, P < 0.01) and cell-based therapies (OR, 1.54, 95% CI, 1.00-2.40, P = 0.048) improved the transplantation-free survival rate compared with standard medical treatment. Network analysis results showed that G-CSF combined with erythropoietin (EPO) and growth hormone (GH) had a therapeutic advantage, and cell-based therapy with mononuclear cell (MNC) hepatic artery injection and intravenous mesenchymal stem cells (MSCs) combined with G-CSF also had a relative advantage in terms of survival outcome. For the MELD score, G-CSF plus GH and MSC portal vein injection had relative advantages. G-CSF plus GH and G-CSF plus EPO had advantages in terms of CTP scores. The included strategies demonstrated no obvious improvement in liver injury indicators. CONCLUSIONS Cell-based therapy has potential therapeutic effects for liver cirrhosis. Among cell-based therapies, intravenous MSCs and hepatic artery injection of MNCs have advantageous therapeutic effects. The use of G-CSF was also noted in regimens that improved survival outcomes. However, more well-designed, large-scale RCTs are needed to confirm this conclusion.
Collapse
Affiliation(s)
- Xiaojun Sun
- Inpatients Department, Nanjing Qi-xia Xi-gang Community Health Service Centers, Nanjing, China
| | - Shilei Guo
- Research and Development Department, Nanjing Regenerative Medicine Engineering and Technology Research Center, Nanjing, China.
| |
Collapse
|
14
|
Qin J, Chen F, Wu P, Sun G. Recent Advances in Bioengineered Scaffolds for Cutaneous Wound Healing. Front Bioeng Biotechnol 2022; 10:841583. [PMID: 35299645 PMCID: PMC8921732 DOI: 10.3389/fbioe.2022.841583] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/04/2022] [Indexed: 12/14/2022] Open
Abstract
Wound healing is an evolved dynamic biological process. Though many research and clinical approaches have been explored to restore damaged or diseased skin, the current treatment for deep cutaneous injuries is far from being perfect, and the ideal regenerative therapy remains a significant challenge. Of all treatments, bioengineered scaffolds play a key role and represent great progress in wound repair and skin regeneration. In this review, we focus on the latest advancement in biomaterial scaffolds for wound healing. We discuss the emerging philosophy of designing biomaterial scaffolds, followed by precursor development. We pay particular attention to the therapeutic interventions of bioengineered scaffolds for cutaneous wound healing, and their dual effects while conjugating with bioactive molecules, stem cells, and even immunomodulation. As we review the advancement and the challenges of the current strategies, we also discuss the prospects of scaffold development for wound healing.
Collapse
Affiliation(s)
- Jianghui Qin
- College of Chemistry and Environmental Science, Institute of Life Science and Green Development, Hebei University, Baoding, China
| | - Fang Chen
- Affiliated Hospital of Hebei University, College of Clinical Medicine, Institute of Life Science and Green Development, Hebei University, Baoding, China
| | - Pingli Wu
- College of Chemistry and Environmental Science, Institute of Life Science and Green Development, Hebei University, Baoding, China
| | - Guoming Sun
- Affiliated Hospital of Hebei University, College of Clinical Medicine, Institute of Life Science and Green Development, Hebei University, Baoding, China
| |
Collapse
|
15
|
Role of the Microenvironment in Mesenchymal Stem Cell-Based Strategies for Treating Human Liver Diseases. Stem Cells Int 2021; 2021:5513309. [PMID: 34824587 PMCID: PMC8610645 DOI: 10.1155/2021/5513309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/23/2021] [Accepted: 10/30/2021] [Indexed: 11/17/2022] Open
Abstract
Liver disease is a severe health problem that endangers human health worldwide. Mesenchymal stem cell (MSC) therapy is a novel treatment for patients with different liver diseases due to its vast expansion potential and distinctive immunomodulatory properties. Despite several preclinical trials having confirmed the considerable efficacy of MSC therapy in liver diseases, the questionable safety and efficacy still limit its application. As a precursor cell, MSCs can adjust their characteristics in response to the surrounding microenvironment. The microenvironment provides physical and chemical factors essential for stem cell survival, proliferation, and differentiation. However, the mechanisms are still not completely understood. We, therefore, summarized the mechanisms underlying the MSC immune response, especially the interaction between MSCs and the liver microenvironment, discussing how to achieve better therapeutic effects.
Collapse
|
16
|
Zhu CH, Zhang DH, Zhu CW, Xu J, Guo CL, Wu XG, Cao QL, Di GH. Adult stem cell transplantation combined with conventional therapy for the treatment of end-stage liver disease: a systematic review and meta-analysis. Stem Cell Res Ther 2021; 12:558. [PMID: 34717737 PMCID: PMC8557537 DOI: 10.1186/s13287-021-02625-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 10/11/2021] [Indexed: 01/11/2023] Open
Abstract
End-stage liver disease (ESLD) is characterized by the deterioration of liver function and a subsequent high mortality rate. Studies have investigated the use of adult stem cells to treat ESLD. Here, a systematic review and meta-analysis was conducted to determine the efficacy of a combination therapy with adult stem cell transplantation and traditional medicine for treating ESLD. Four databases-including PubMed, Web of Science, Embase, and Cochrane Library-were investigated for studies published before January 31, 2021. The main outcome indicators were liver function index, model for end-stage liver disease (MELD) scores, and Child‒Turcotte‒Pugh (CTP) scores. Altogether, 1604 articles were retrieved, of which eight met the eligibility criteria; these studies included data for 579 patients with ESLD. Combination of adult stem cell transplantation with conventional medicine significantly improved its efficacy with respect to liver function index, CTP and MELD scores, but this effect gradually decreased over time. Moreover, a single injection of stem cells was more effective than two injections with respect to MELD and CTP scores and total bilirubin (TBIL) and albumin (ALB) levels, with no significant difference in aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels. With respect to the TBIL levels, patients receiving mononuclear cells (MNCs) experienced a significantly greater therapeutic effect-starting from twenty-four weeks after the treatment-whereas with respect to ALB levels, CD34+ autologous peripheral blood stem cells (CD34+ APBSCs) and MNCs had similar therapeutic effects. Severe complications associated with adult stem cell treatment were not observed. Although the benefits of combination therapy with respect to improving liver function were slightly better than those of the traditional treatment alone, they gradually decreased over time.Systematic review registration: PROSPERO registration number: CRD42021238576.
Collapse
Affiliation(s)
- Chen-Hui Zhu
- School of Basic Medicine, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China
| | - Dian-Han Zhang
- School of Basic Medicine, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China
| | - Chen-Wei Zhu
- School of Basic Medicine, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China
| | - Jing Xu
- School of Basic Medicine, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China
| | - Chuan-Long Guo
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Xiang-Gen Wu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Qi-Long Cao
- Qingdao Haier Biotech Co. Ltd, Qingdao, China
| | - Guo-Hu Di
- School of Basic Medicine, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China.
| |
Collapse
|
17
|
Kawakatsu-Hatada Y, Murata S, Mori A, Kimura K, Taniguchi H. Serous Membrane Detachment with Ultrasonic Homogenizer Improves Engraftment of Fetal Liver to Liver Surface in a Rat Model of Cirrhosis. Int J Mol Sci 2021; 22:11589. [PMID: 34769019 PMCID: PMC8584093 DOI: 10.3390/ijms222111589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/23/2021] [Accepted: 10/24/2021] [Indexed: 11/16/2022] Open
Abstract
Liver transplantation is the most effective treatment for end-stage cirrhosis. However, due to serious donor shortages, new treatments to replace liver transplantation are sorely needed. Recent studies have focused on novel therapeutic methods using hepatocytes and induced pluripotent stem cells, we try hard to develop methods for transplanting these cells to the liver surface. In the present study, we evaluated several methods for their efficiency in the detachment of serous membrane covering the liver surface for transplantation to the liver surface. The liver surface of dipeptidyl peptidase IV (DPPIV)-deficient rats in a cirrhosis model was detached by various methods, and then fetal livers from DPPIV-positive rats were transplanted. We found that the engraftment rate and area as well as the liver function were improved in rats undergoing transplantation following serous membrane detachment with an ultrasonic homogenizer, which mimics the Cavitron Ultrasonic Surgical Aspirator® (CUSA), compared with no detachment. Furthermore, the bleeding amount was lower with the ultrasonic homogenizer method than with the needle and electric scalpel methods. These findings provide evidence that transplantation to the liver surface with serous membrane detachment using CUSA might contribute to the development of new treatments for cirrhosis using cells or tissues.
Collapse
Affiliation(s)
- Yumi Kawakatsu-Hatada
- Department of Regenerative Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan; (Y.K.-H.); (A.M.); (K.K.); (H.T.)
| | - Soichiro Murata
- Department of Regenerative Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan; (Y.K.-H.); (A.M.); (K.K.); (H.T.)
- Division of Regenerative Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Akihiro Mori
- Department of Regenerative Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan; (Y.K.-H.); (A.M.); (K.K.); (H.T.)
| | - Kodai Kimura
- Department of Regenerative Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan; (Y.K.-H.); (A.M.); (K.K.); (H.T.)
| | - Hideki Taniguchi
- Department of Regenerative Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan; (Y.K.-H.); (A.M.); (K.K.); (H.T.)
- Division of Regenerative Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| |
Collapse
|
18
|
Ali S, Haque N, Azhar Z, Saeinasab M, Sefat F. Regenerative Medicine of Liver: Promises, Advances and Challenges. Biomimetics (Basel) 2021; 6:biomimetics6040062. [PMID: 34698078 PMCID: PMC8544204 DOI: 10.3390/biomimetics6040062] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 10/06/2021] [Accepted: 10/14/2021] [Indexed: 12/16/2022] Open
Abstract
Liver tissue engineering is a rapidly developing field which combines the novel use of liver cells, appropriate biochemical factors, and engineering principles, in order to replace or regenerate damaged liver tissue or the organ. The aim of this review paper is to critically investigate different possible methods to tackle issues related with liver diseases/disorders mainly using regenerative medicine. In this work the various regenerative treatment options are discussed, for improving the prognosis of chronic liver disorders. By reviewing existing literature, it is apparent that the current popular treatment option is liver transplantation, although the breakthroughs of stem cell-based therapy and bioartificial liver technology make them a promising alternative.
Collapse
Affiliation(s)
- Saiful Ali
- Department of Biomedical and Electronics Engineering, School of Engineering, University of Bradford, Bradford BD7 1DP, UK; (S.A.); (N.H.); (Z.A.)
| | - Nasira Haque
- Department of Biomedical and Electronics Engineering, School of Engineering, University of Bradford, Bradford BD7 1DP, UK; (S.A.); (N.H.); (Z.A.)
| | - Zohya Azhar
- Department of Biomedical and Electronics Engineering, School of Engineering, University of Bradford, Bradford BD7 1DP, UK; (S.A.); (N.H.); (Z.A.)
| | - Morvarid Saeinasab
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran;
| | - Farshid Sefat
- Department of Biomedical and Electronics Engineering, School of Engineering, University of Bradford, Bradford BD7 1DP, UK; (S.A.); (N.H.); (Z.A.)
- Interdisciplinary Research Centre in Polymer Science & Technology (Polymer IRC), University of Bradford, Bradford BD7 1DP, UK
- Correspondence: ; Tel.: +44-(0)-1274-233679 or +44-(0)-781-381-7460
| |
Collapse
|
19
|
Buscail E, Le Cosquer G, Gross F, Lebrin M, Bugarel L, Deraison C, Vergnolle N, Bournet B, Gilletta C, Buscail L. Adipose-Derived Stem Cells in the Treatment of Perianal Fistulas in Crohn's Disease: Rationale, Clinical Results and Perspectives. Int J Mol Sci 2021; 22:ijms22189967. [PMID: 34576129 PMCID: PMC8470328 DOI: 10.3390/ijms22189967] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/07/2021] [Accepted: 09/12/2021] [Indexed: 12/16/2022] Open
Abstract
Between 20 to 25% of Crohn’s disease (CD) patients suffer from perianal fistulas, a marker of disease severity. Seton drainage combined with anti-TNFα can result in closure of the fistula in 70 to 75% of patients. For the remaining 25% of patients there is room for in situ injection of autologous or allogenic mesenchymal stem cells such as adipose-derived stem/stromal cells (ADSCs). ADSCs exert their effects on tissues and effector cells through paracrine phenomena, including the secretome and extracellular vesicles. They display anti-inflammatory, anti-apoptotic, pro-angiogenic, proliferative, and immunomodulatory properties, and a homing within the damaged tissue. They also have immuno-evasive properties allowing a clinical allogeneic approach. Numerous clinical trials have been conducted that demonstrate a complete cure rate of anoperineal fistulas in CD ranging from 46 to 90% of cases after in situ injection of autologous or allogenic ADSCs. A pivotal phase III-controlled trial using allogenic ADSCs (Alofisel®) demonstrated that prolonged clinical and radiological remission can be obtained in nearly 60% of cases with a good safety profile. Future studies should be conducted for a better knowledge of the local effect of ADSCs as well as for a standardization in terms of the number of injections and associated procedures.
Collapse
Affiliation(s)
- Etienne Buscail
- Department of Surgery, CHU Toulouse-Rangueil and Toulouse University, UPS, 31059 Toulouse, France;
- IRSD, University of Toulouse, INSERM 1022, INRAe, ENVT, UPS, 31300 Toulouse, France; (C.D.); (N.V.)
| | - Guillaume Le Cosquer
- Department of Gastroenterology and Pancreatology, CHU Toulouse-Rangueil and Toulouse University, UPS, 31059 Toulouse, France; (G.L.C.); (B.B.); (C.G.)
| | - Fabian Gross
- Centre for Clinical Investigation in Biotherapy, CHU Toulouse-Rangueil and INSERM U1436, 31059 Toulouse, France; (F.G.); (M.L.); (L.B.)
| | - Marine Lebrin
- Centre for Clinical Investigation in Biotherapy, CHU Toulouse-Rangueil and INSERM U1436, 31059 Toulouse, France; (F.G.); (M.L.); (L.B.)
| | - Laetitia Bugarel
- Centre for Clinical Investigation in Biotherapy, CHU Toulouse-Rangueil and INSERM U1436, 31059 Toulouse, France; (F.G.); (M.L.); (L.B.)
| | - Céline Deraison
- IRSD, University of Toulouse, INSERM 1022, INRAe, ENVT, UPS, 31300 Toulouse, France; (C.D.); (N.V.)
| | - Nathalie Vergnolle
- IRSD, University of Toulouse, INSERM 1022, INRAe, ENVT, UPS, 31300 Toulouse, France; (C.D.); (N.V.)
| | - Barbara Bournet
- Department of Gastroenterology and Pancreatology, CHU Toulouse-Rangueil and Toulouse University, UPS, 31059 Toulouse, France; (G.L.C.); (B.B.); (C.G.)
| | - Cyrielle Gilletta
- Department of Gastroenterology and Pancreatology, CHU Toulouse-Rangueil and Toulouse University, UPS, 31059 Toulouse, France; (G.L.C.); (B.B.); (C.G.)
| | - Louis Buscail
- Department of Gastroenterology and Pancreatology, CHU Toulouse-Rangueil and Toulouse University, UPS, 31059 Toulouse, France; (G.L.C.); (B.B.); (C.G.)
- Centre for Clinical Investigation in Biotherapy, CHU Toulouse-Rangueil and INSERM U1436, 31059 Toulouse, France; (F.G.); (M.L.); (L.B.)
- Correspondence: ; Tel.: +33-561323055
| |
Collapse
|
20
|
Abdolahi S, Aligholi H, Khodakaram-Tafti A, Khaleghi Ghadiri M, Stummer W, Gorji A. Improvement of Rat Spinal Cord Injury Following Lentiviral Vector-Transduced Neural Stem/Progenitor Cells Derived from Human Epileptic Brain Tissue Transplantation with a Self-assembling Peptide Scaffold. Mol Neurobiol 2021; 58:2481-2493. [PMID: 33443682 PMCID: PMC8128971 DOI: 10.1007/s12035-020-02279-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 12/30/2020] [Indexed: 12/29/2022]
Abstract
Spinal cord injury (SCI) is a disabling neurological disorder that causes neural circuit dysfunction. Although various therapies have been applied to improve the neurological outcomes of SCI, little clinical progress has been achieved. Stem cell-based therapy aimed at restoring the lost cells and supporting micromilieu at the site of the injury has become a conceptually attractive option for tissue repair following SCI. Adult human neural stem/progenitor cells (hNS/PCs) were obtained from the epileptic human brain specimens. Induction of SCI was followed by the application of lentiviral vector-mediated green fluorescent protein-labeled hNS/PCs seeded in PuraMatrix peptide hydrogel (PM). The co-application of hNS/PCs and PM at the SCI injury site significantly enhanced cell survival and differentiation, reduced the lesion volume, and improved neurological functions compared to the control groups. Besides, the transplanted hNS/PCs seeded in PM revealed significantly higher migration abilities into the lesion site and the healthy host tissue as well as a greater differentiation into astrocytes and neurons in the vicinity of the lesion as well as in the host tissue. Our data suggest that the transplantation of hNS/PCs seeded in PM could be a promising approach to restore the damaged tissues and improve neurological functions after SCI.
Collapse
Affiliation(s)
- Sara Abdolahi
- Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran
| | - Hadi Aligholi
- Department of Neuroscience, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Epilepsy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | | | - Walter Stummer
- Department of Neurosurgery, Westfälische Wilhelms-Universität, Münster, Germany
| | - Ali Gorji
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran.
- Epilepsy Research Center, Department of Neurology and Institute for Translational Neurology, Westfälische Wilhelms-Universität Münster, 48149, Münster, Germany.
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
21
|
Cell Therapy and Bioengineering in Experimental Liver Regenerative Medicine: In Vivo Injury Models and Grafting Strategies. CURRENT TRANSPLANTATION REPORTS 2021. [DOI: 10.1007/s40472-021-00325-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Abstract
Purpose of Review
To describe experimental liver injury models used in regenerative medicine, cell therapy strategies to repopulate damaged livers and the efficacy of liver bioengineering.
Recent Findings
Several animal models have been developed to study different liver conditions. Multiple strategies and modified protocols of cell delivery have been also reported. Furthermore, using bioengineered liver scaffolds has shown promising results that could help in generating a highly functional cell delivery system and/or a whole transplantable liver.
Summary
To optimize the most effective strategies for liver cell therapy, further studies are required to compare among the performed strategies in the literature and/or innovate a novel modifying technique to overcome the potential limitations. Coating of cells with polymers, decellularized scaffolds, or microbeads could be the most appropriate solution to improve cellular efficacy. Besides, overcoming the problems of liver bioengineering may offer a radical treatment for end-stage liver diseases.
Collapse
|
22
|
Al-Ghadban S, Bunnell BA. Adipose Tissue-Derived Stem Cells: Immunomodulatory Effects and Therapeutic Potential. Physiology (Bethesda) 2021; 35:125-133. [PMID: 32027561 DOI: 10.1152/physiol.00021.2019] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Adipose-derived stem cells (ASCs) can self-renew and differentiate along multiple cell lineages. ASCs are also potently anti-inflammatory due to their inherent ability to regulate the immune system by secreting anti-inflammatory cytokines and growth factors that play a crucial role in the pathology of many diseases, including multiple sclerosis, diabetes mellitus, Crohn's, SLE, and graft-versus-host disease. The immunomodulatory effects and mechanisms of action of ASCs on pathological conditions are reviewed here.
Collapse
Affiliation(s)
- Sara Al-Ghadban
- Center for Stem Cell Research & Regenerative Medicine, Tulane University School of Medicine, New Orleans, Louisiana
| | - Bruce A Bunnell
- Center for Stem Cell Research & Regenerative Medicine, Tulane University School of Medicine, New Orleans, Louisiana.,Department of Pharmacology, School of Medicine, Tulane University, New Orleans, Louisiana
| |
Collapse
|
23
|
Mahmood A, Seetharaman R, Kshatriya P, Patel D, Srivastava AS. Stem Cell Transplant for Advanced Stage Liver Disorders: Current Scenario and Future Prospects. Curr Med Chem 2021; 27:6276-6293. [PMID: 31584360 DOI: 10.2174/0929867326666191004161802] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 09/11/2019] [Accepted: 09/22/2019] [Indexed: 01/10/2023]
Abstract
BACKGROUND Chronic Liver Disorders (CLD), caused by the lifestyle patterns like alcoholism or by non-alcoholic fatty liver disease or because of virus-mediated hepatitis, affect a large population fraction across the world. CLD progresses into end-stage diseases with a high mortality rate. Liver transplant is the only approved treatment available for such end-stage disease patients. However, the number of liver transplants is limited due to the limited availability of suitable donors and the extremely high cost of performing the procedure. Under such circumstances, Stem Cell (SC) mediated liver regeneration has emerged as a potential therapeutic alternative approach. OBJECTIVE This review aims to critically analyze the current status and future prospects of stem cellbased interventions for end-stage liver diseases. The clinical studies undertaken, the mechanism underlying therapeutic effects and future directions have been examined. METHOD The clinical trial databases were searched at https://clinicaltrials.gov.in and http://www.isrctn.com to identify randomized, non-randomized and controlled studies undertaken with keywords such as "liver disorder and Mesenchymal Stem Cells (MSCs)", "liver cirrhosis and MSCs" and "liver disorder and SCs". Furthermore, https://www.ncbi.nlm.nih.gov/pubmed/ database was also explored with similar keywords for finding the available reports and their critical analyses. RESULTS The search results yielded a significant number of studies that used bone marrow-derived stem cells, MSCs and hepatocytes. The studies clearly indicated that SCs play a key role in the hepatoprotection process by some mechanisms involving anti-inflammation, auto-immune-suppression, angiogenesis and anti-apoptosis. Further, studies indicated that SCs derived paracrine factors promote angiogenesis, reduce inflammation and inhibit hepatocyte apoptosis. CONCLUSION The SC-based interventions provide a significant improvement in patients with CLD; however, there is a need for randomized, controlled studies with the analysis of a long-term follow-up.
Collapse
Affiliation(s)
| | | | | | | | - Anand S Srivastava
- Global Institute of Stem Cell Therapy and Research, 4660 La Jolla Village Drive, San Diego, CA 92122, United States
| |
Collapse
|
24
|
Immuno-comparative screening of adult-derived human liver stem/progenitor cells for immune-inflammatory-associated molecules. Inflamm Res 2021; 70:229-239. [PMID: 33404674 DOI: 10.1007/s00011-020-01428-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 11/04/2020] [Accepted: 11/27/2020] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVE One of the main challenges in liver cell therapy is the replacement of damaged cells and the induction of a tolerogenic microenvironment to promote graft acceptance by the recipient. Adult-derived human liver stem/progenitor cells (ADHLSCs) are currently evaluated at the clinical levels as a promising pro-regenerative and immune-modulatory tool. The expression profile of several immunological molecules may influence the local immune-inflammatory response and, therefore, modulate the tissue healing process. To increase the quality and safety of ADHLSCs before transplantation requires an appropriate analysis and characterization of their pattern expression of immune-inflammatory-associated molecules. METHODS The expression of 27 molecules belonging to T-cell co-stimulatory pathway, CD47 partners, Ikaros family, CD300 family and TNF family were analyzed using flow cytometry. We compared their expression profiles to PBMCs, hepatocytes and ADHLSCs in both expansion and after hepatogenic differentiation culture conditions. RESULTS This original immuno-comparative screening revealed that liver cell populations do not constitutively present significant immunological pattern compared to PBMCs. Moreover, our findings highlight that neither the expansion nor the hepatogenic differentiation induces the expression of immune-inflammatory molecules. The detailed expression characteristics (percentage of positive cells and median fluorescence intensity) of each molecule were analyzed and presented. CONCLUSION By analyzing 27 relevant molecules, our immuno-comparative screening demonstrates that ADHLSCs keep a non-immunogenic profile independent of their expansion or hepatogenic differentiation state. Accordingly, the immunological profile of ADHLSCs seems to support their safe and efficient use in liver tissue therapeutic repair strategy.
Collapse
|
25
|
Kim K, Bou-Ghannam S, Kameishi S, Oka M, Grainger DW, Okano T. Allogeneic mesenchymal stem cell sheet therapy: A new frontier in drug delivery systems. J Control Release 2020; 330:696-704. [PMID: 33347942 DOI: 10.1016/j.jconrel.2020.12.028] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 12/13/2022]
Abstract
The evolution of drug discovery exploded in the early 20th century with the advent of critical scientific advancements in organic chemistry, chemical analysis, and purification. Early drug generations focused largely on symptom control and pain management, effective targets for small-molecule drugs. Recently, the attention in drug discovery has shifted to pursuit of radical cures. Cell therapy presents the ideal attributes of a promising new drug, targeting specific tissues based on chemotactic cues and modulating secretion of instructive regenerative molecules in response to dynamic signaling from disease environments. To actuate the therapeutic potential of cell therapy toward worldwide clinical use, cell delivery methods that can effectively localize and engraft mesenchymal stem cells (MSCs) with high disease-site fidelity and enable dynamic MSC bioactive function are paramount. In this review, we discuss the evolution of cell therapies with a focus on stem cell advantages, as well as the limitations to these therapies. This review aims to introduce cell sheet technology as a breakthrough cell therapy with demonstrated therapeutic success across indications for heart, liver, and kidney tissue regeneration. Opportunities and anticipated clinical impacts of cell sheet technology using MSCs are discussed.
Collapse
Affiliation(s)
- Kyungsook Kim
- Cell Sheet Tissue Engineering Center (CSTEC), Department of Pharmaceutics and Pharmaceutical Chemistry, Health Sciences, University of Utah, 30 South 2000 East, Salt Lake City, UT 84112, USA.
| | - Sophia Bou-Ghannam
- Cell Sheet Tissue Engineering Center (CSTEC), Department of Pharmaceutics and Pharmaceutical Chemistry, Health Sciences, University of Utah, 30 South 2000 East, Salt Lake City, UT 84112, USA; Department of Biomedical Engineering, University of Utah, 36 South, Wasatch Drive, Salt Lake City, UT 84112, USA
| | - Sumako Kameishi
- Cell Sheet Tissue Engineering Center (CSTEC), Department of Pharmaceutics and Pharmaceutical Chemistry, Health Sciences, University of Utah, 30 South 2000 East, Salt Lake City, UT 84112, USA
| | - Masatoshi Oka
- Cell Sheet Tissue Engineering Center (CSTEC), Department of Pharmaceutics and Pharmaceutical Chemistry, Health Sciences, University of Utah, 30 South 2000 East, Salt Lake City, UT 84112, USA
| | - David W Grainger
- Cell Sheet Tissue Engineering Center (CSTEC), Department of Pharmaceutics and Pharmaceutical Chemistry, Health Sciences, University of Utah, 30 South 2000 East, Salt Lake City, UT 84112, USA; Department of Biomedical Engineering, University of Utah, 36 South, Wasatch Drive, Salt Lake City, UT 84112, USA
| | - Teruo Okano
- Cell Sheet Tissue Engineering Center (CSTEC), Department of Pharmaceutics and Pharmaceutical Chemistry, Health Sciences, University of Utah, 30 South 2000 East, Salt Lake City, UT 84112, USA; Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan
| |
Collapse
|
26
|
Khan S, Khan RS, Newsome PN. Cellular therapies for the treatment of immune-mediated GI and liver disease. Br Med Bull 2020; 136:127-141. [PMID: 33290518 DOI: 10.1093/bmb/ldaa035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 09/22/2020] [Accepted: 09/24/2020] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Immune-mediated liver and gastrointestinal diseases are chronic conditions that lack curative treatments. Despite advances in the understanding and treatment of these conditions, they frequently remain refractory to treatment and represent a significant unmet need. Cellular therapies are an emerging option and hold the potential to have a major impact. DATA SOURCES A literature review was carried out using Pubmed. Keywords used for search were 'ATMP', 'immune mediated', 'autoimmune liver disease' and 'immune mediated gastrointestinal conditions', 'cell therapy', 'MSC', 'HSCT', 'Regulatory T cells', 'GVHD', 'Coeliac disease' 'IBD', 'PSC', 'AIH', 'PBC'. No new data were generated or analysed in support of this review. AREAS OF AGREEMENT There is substantial evidence from clinical trials to support the use of cell therapies as a treatment for immune-mediated liver and gastrointestinal conditions. Cellular therapy products have the ability to 'reset' the dysregulated immune system and this in turn can offer a longer term remission. There are ongoing clinical trials with mesenchymal stromal cells (MSCs) and other cells to evidence their efficacy profile and fill the gaps in current knowledge. Insights gained will inform future trial designs and subsequent therapeutic applications. AREAS OF CONTROVERSY There remains some uncertainty around the extrapolation of results from animal studies to clinical trials. Longevity of the therapeutic effects seen after the use of cell therapy needs to be scrutinized further. Heterogeneity in the selection of cells, source, methods of productions and cell administration pose challenges to the interpretation of the data. GROWING POINTS MSCs are emerging as a key therapeutic cells in immune-mediated liver and gastrointestinal conditions. Ongoing trials with these cells will provide new insights and a better understanding thus informing future larger scale studies. AREAS TIMELY FOR DEVELOPING RESEARCH Larger scale clinical trials to build on the evidence from small studies regarding safety and efficacy of cellular therapy are still needed before cellular therapies can become off the shelf treatments. Alignment of academia and industry to standardize the processes involved in cell selection, manipulation and expansion and subsequent use in clinical trials is an important avenue to explore further.
Collapse
Affiliation(s)
- Sheeba Khan
- National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust and the University of Birmingham, Birmingham, UK.,Centre for Liver Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK.,Liver Unit, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Reenam S Khan
- National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust and the University of Birmingham, Birmingham, UK.,Centre for Liver Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK.,Liver Unit, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Philip N Newsome
- National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust and the University of Birmingham, Birmingham, UK.,Centre for Liver Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK.,Liver Unit, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| |
Collapse
|
27
|
Philips CA, Augustine P. Still 'dwelling in the possibility' - critical update on stem cell therapy for acute on chronic liver failure. World J Stem Cells 2020; 12:1124-1132. [PMID: 33178396 PMCID: PMC7596449 DOI: 10.4252/wjsc.v12.i10.1124] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 08/29/2020] [Accepted: 09/22/2020] [Indexed: 02/06/2023] Open
Abstract
Stem cells therapy could improve survival in patients with liver failure. Studies on stem cell therapy and related growth factors in decompensated cirrhosis has been on the forefront but has shown heterogenous results. Recent high-quality studies have shown a lack of efficacy and safety. Patients with acute-on-chronic liver failure (ACLF) are a unique group with high mortality in the short-term associated with rapid onset extrahepatic organ failures. In these patients, there is an urgent need to identify treatments that can improve liver cell function and mass, prevent sepsis/organ failure, ameliorate systemic inflammation, and increase transplant-free survival. Stem cells are a novel treatment in ACLF but with unclear efficacy and safety. In this narrative review, we discuss the basics of liver regeneration in patients with ACLF and update current clinical status of stem cell use in patients with ACLF for improving our understanding of future directions.
Collapse
Affiliation(s)
- Cyriac Abby Philips
- The Liver Unit and Monarch Liver Lab, Cochin Gastroenterology Group, Ernakulam Medical Center, Kochi 682025, Kerala, India
| | - Philip Augustine
- Department of Gastroenterology and Advanced GI Endoscopy, Cochin Gastroenterology Group, Ernakulam Medical Center, Kochi 682025, Kerala, India
| |
Collapse
|
28
|
Nazhvani FD, Haghani I, Nazhvani SD, Namazi F, Ghaderi A. Regenerative effect of mesenteric fat stem cells on ccl4-induced liver cirrhosis, an experimental study. Ann Med Surg (Lond) 2020; 60:135-139. [PMID: 33145022 PMCID: PMC7593263 DOI: 10.1016/j.amsu.2020.10.045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 10/19/2020] [Indexed: 02/07/2023] Open
Abstract
Background Liver cirrhosis is a chronic disease in which normal liver tissue is replaced by fibrous tissue, leads to liver malfunction. Although transplantation is the most certain cure, stem cell therapies are shedding light on efforts to regenerate cirrhotic liver. The purpose of this study was to evaluate the regenerative potential of mesenteric fat stem cells in CCL4-induced liver cirrhosis in an animal model. Methods Thirty rats were treated with the mixture of CCL4 and olive oil intraperitoneally by a dose of 0.2 ml (0.1 ml CCL4 and 0.1 ml olive oil) every other day for 16 weeks till cirrhosis signs appeared. Fifteen rats were randomly selected as control group. Others treated by mesenteric fat derived mesenchymal stem cells transferred into the liver parenchyma. Results After 5 weeks, rats received stem cells had improved clinically by increased movements, appetite, improvement in overall behavior and decreased abdomen size. Histopathologically, liver cells showed state of regeneration and forming new colonies. Conclusion Liver cirrhosis was induced. The mesenchymal stem cells derived from mesenteric adipose tissue could improve hepatic status of the rats, as cirrhotic livers were regenerated back into normal appearing parenchyma. Rats' clinical behavior also reached healthy status.
Collapse
Key Words
- ADSCs, Multipotent adipose-derived stem cells
- ALT, Alanine transaminase
- AST, Aspartate transaminase
- Adipose-derived mesenchymal stem cells
- Animal model
- CCL4, Carbon tetracholoride
- CNS, Central nervous system
- EDTA, Ethylenediaminetetraacetic acid
- FBS, Fetal bovine serum
- HGF, Hepatocyte growth factor
- Hepatic cirrhosis
- IM, Intramuscular
- IP, Intraperitoneal
- Liver fibrosis
- MSCs, Mesenchymal stem cells
- PBS, Phosphate buffered saline
- VEGF, Vascular endothelial growth factor
- α-MEM, Minimum essential medium α
Collapse
Affiliation(s)
| | - Iman Haghani
- Department of Veterinary Surgery, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | | | - Fatemeh Namazi
- Department of Pathology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Abbas Ghaderi
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
29
|
Stem Cells and Hydrogels for Liver Tissue Engineering: Synergistic Cure for Liver Regeneration. Stem Cell Rev Rep 2020; 16:1092-1104. [DOI: 10.1007/s12015-020-10060-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/12/2020] [Indexed: 02/06/2023]
|
30
|
Zhu B, You S, Rong Y, Yu Q, Lv S, Song F, Liu H, Wang H, Zhao J, Li D, Liu W, Xin S. A novel stem cell therapy for hepatitis B virus-related acute-on-chronic liver failure. ACTA ACUST UNITED AC 2020; 53:e9728. [PMID: 33053116 PMCID: PMC7552894 DOI: 10.1590/1414-431x20209728] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 08/07/2020] [Indexed: 12/20/2022]
Abstract
The aim of this study was to propose a stem cell therapy for hepatitis B virus (HBV)-related acute-on-chronic liver failure (ACLF) based on plasma exchange (PE) for peripheral blood stem cell (PBSC) collection and examine its safety and efficacy. Sixty patients (n=20 in each group) were randomized to PE (PE alone), granulocyte colony-stimulating factor (G-CSF) (PE after G-CSF treatment), and PBSC transplantation (PBSCT) (G-CSF, PE, PBSC collection and hepatic artery injection) groups. Patients were followed-up for 24 weeks. Liver function and adverse events were recorded. Survival analysis was performed. PBSCT improved blood ammonia levels at 1 week (P<0.05). The level of total bilirubin, international normalized ratio, and creatinine showed significant differences in the 4th week of treatment (P<0.05). The survival rates of the PE, G-CSF, and PBSCT groups were 50, 65, and 85% at 90 days (P=0.034). There was a significant difference in 90-day survival between the PE and PBSCT groups (P=0.021). The preliminary results suggested that PBSCT was safe, with a possibility of improved 90-day survival in patients with HBV-ACLF.
Collapse
Affiliation(s)
- Bing Zhu
- Medical School of Chinese PLA, Beijing, China.,Liver Failure Treatment and Research Center, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Shaoli You
- Liver Failure Treatment and Research Center, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yihui Rong
- Department of Infection and Liver Diseases, Peking University International Hospital, Beijing, China
| | - Qiang Yu
- Department of Interventional Therapy, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Sa Lv
- Liver Failure Treatment and Research Center, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Fangjiao Song
- Liver Failure Treatment and Research Center, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Hongling Liu
- Liver Transplantation Center, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Huaming Wang
- Department of Interventional Therapy, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jun Zhao
- Liver Failure Treatment and Research Center, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Dongze Li
- Liver Failure Treatment and Research Center, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Wanshu Liu
- Liver Failure Treatment and Research Center, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Shaojie Xin
- Medical School of Chinese PLA, Beijing, China.,Liver Failure Treatment and Research Center, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
31
|
Nonalcoholic fatty liver disease and colorectal cancer: Correlation and missing links. Life Sci 2020; 262:118507. [PMID: 33017572 DOI: 10.1016/j.lfs.2020.118507] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 02/07/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is one of the major metabolic diseases that occur in almost one in every four global population, while colorectal cancer (CRC) is one of the leading causes of cancer related deaths in the world. Individuals with pre-existing NAFLD show a higher rate of developing CRC and liver metastasis, suggesting a causal relationship. Interestingly, both of these diseases are strongly associated with obesity, which is also a growing global health concern. In this current review, we will explore scientific findings that demonstrate the relationship between NAFLD, CRC and obesity, as well as the underlying mechanisms. We will also indicate the missing links and knowledge gaps that require more in-depth investigation.
Collapse
|
32
|
Three Cases of Alcohol-Induced Acute-On-Chronic Liver Failure With Successful Support by Adipose-Derived Stem Cells. Clin Transl Gastroenterol 2020; 10:e00095. [PMID: 31789934 PMCID: PMC6970561 DOI: 10.14309/ctg.0000000000000095] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVES: Acute liver failure (ALF) and acute-on-chronic liver failure (AOCLF) are critical medical conditions with urgent therapy requirements. When ALF or AOCLF are due to alcohol intoxication or based on chronic alcohol abuse, virtually, no therapeutic options are available as liver transplantation is prohibited. In this case series, treatment of alcohol-induced ALF/AOCLF with adipose--derived stem cells (ASC) was tested under compassionate use. METHODS: ASC from 2 donors were isolated, cultured, and expanded by established protocols. ASC were administered to 3 individuals with either ALF or AOCLF due to alcohol abuse under compassionate use. Clinical presentation, serum measurements, and other diagnostic methods were compiled before ASC treatment and during the disease course after ASC administration. RESULTS: Three patients were admitted to the Department of Gastroenterology, Hepatology, and Infectious Diseases (University Hospital Magdeburg) with acute or AOCLF due to alcohol abuse. All 3 patients presented in impaired general condition and with elevated, in 1 case drastically elevated, serum liver enzyme concentrations. Treatment with ASC led to improvements in general condition and reduction of serum transaminases. In 2 cases, reduction of liver stiffness and increase of liver function by the C13 methacetin breath test were observed after ASC treatment. Recovery to a normal condition was achieved between 1 and 2 months after ASC treatment. No adverse effects associated to ASC treatment were observed. DISCUSSION: ASC treatment may be a feasible option to enhance recovery from alcohol-induced ALF or AOCLF. ASC treatment seems safe in the presented cases.
Collapse
|
33
|
Rogers CJ, Harman RJ, Bunnell BA, Schreiber MA, Xiang C, Wang FS, Santidrian AF, Minev BR. Rationale for the clinical use of adipose-derived mesenchymal stem cells for COVID-19 patients. J Transl Med 2020; 18:203. [PMID: 32423449 PMCID: PMC7232924 DOI: 10.1186/s12967-020-02380-2] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 05/14/2020] [Indexed: 02/08/2023] Open
Abstract
In late 2019, a novel coronavirus (SARS-CoV-2) emerged in Wuhan, capital city of Hubei province in China. Cases of SARS-CoV-2 infection quickly grew by several thousand per day. Less than 100 days later, the World Health Organization declared that the rapidly spreading viral outbreak had become a global pandemic. Coronavirus disease 2019 (COVID-19) is typically associated with fever and respiratory symptoms. It often progresses to severe respiratory distress and multi-organ failure which carry a high mortality rate. Older patients or those with medical comorbidities are at greater risk for severe disease. Inflammation, pulmonary edema and an over-reactive immune response can lead to hypoxia, respiratory distress and lung damage. Mesenchymal stromal/stem cells (MSCs) possess potent and broad-ranging immunomodulatory activities. Multiple in vivo studies in animal models and ex vivo human lung models have demonstrated the MSC's impressive capacity to inhibit lung damage, reduce inflammation, dampen immune responses and aid with alveolar fluid clearance. Additionally, MSCs produce molecules that are antimicrobial and reduce pain. Upon administration by the intravenous route, the cells travel directly to the lungs where the majority are sequestered, a great benefit for the treatment of pulmonary disease. The in vivo safety of local and intravenous administration of MSCs has been demonstrated in multiple human clinical trials, including studies of acute respiratory distress syndrome (ARDS). Recently, the application of MSCs in the context of ongoing COVID-19 disease and other viral respiratory illnesses has demonstrated reduced patient mortality and, in some cases, improved long-term pulmonary function. Adipose-derived stem cells (ASC), an abundant type of MSC, are proposed as a therapeutic option for the treatment of COVID-19 in order to reduce morbidity and mortality. Additionally, when proven to be safe and effective, ASC treatments may reduce the demand on critical hospital resources. The ongoing COVID-19 outbreak has resulted in significant healthcare and socioeconomic burdens across the globe. There is a desperate need for safe and effective treatments. Cellular based therapies hold great promise for the treatment of COVID-19. This literature summary reviews the scientific rationale and need for clinical studies of adipose-derived stem cells and other types of mesenchymal stem cells in the treatment of patients who suffer with COVID-19.
Collapse
Affiliation(s)
| | | | - Bruce A. Bunnell
- Center for Stem Cell Research and Regenerative Medicine, Tulane University School of Medicine, New Orleans, LA USA
| | - Martin A. Schreiber
- Department of Surgery, Oregon Health and Science University, Portland, OR USA
| | - Charlie Xiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003 China
| | - Fu-Sheng Wang
- Treatment and Research Center for Infectious Diseases, The Fifth Medical Center, Beijing, 100039 China
| | | | - Boris R. Minev
- Calidi Biotherapeutics, Inc., San Diego, CA USA
- Department of Radiation Medicine and Applied Sciences, Moores UCSD Cancer Center, San Diego, CA USA
| |
Collapse
|
34
|
Sato K, Meng F, Francis H, Wu N, Chen L, Kennedy L, Zhou T, Franchitto A, Onori P, Gaudio E, Glaser S, Alpini G. Melatonin and circadian rhythms in liver diseases: Functional roles and potential therapies. J Pineal Res 2020; 68:e12639. [PMID: 32061110 PMCID: PMC8682809 DOI: 10.1111/jpi.12639] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 02/09/2020] [Accepted: 02/11/2020] [Indexed: 02/06/2023]
Abstract
Circadian rhythms and clock gene expressions are regulated by the suprachiasmatic nucleus in the hypothalamus, and melatonin is produced in the pineal gland. Although the brain detects the light through retinas and regulates rhythms and melatonin secretion throughout the body, the liver has independent circadian rhythms and expressions as well as melatonin production. Previous studies indicate the association between circadian rhythms with various liver diseases, and disruption of rhythms or clock gene expression may promote liver steatosis, inflammation, or cancer development. It is well known that melatonin has strong antioxidant effects. Alcohol drinking or excess fatty acid accumulation produces reactive oxygen species and oxidative stress in the liver leading to liver injuries. Melatonin administration protects these oxidative stress-induced liver damage and improves liver conditions. Recent studies have demonstrated that melatonin administration is not limited to antioxidant effects and it has various other effects contributing to the management of liver conditions. Accumulating evidence suggests that restoring circadian rhythms or expressions as well as melatonin supplementation may be promising therapeutic strategies for liver diseases. This review summarizes recent findings for the functional roles and therapeutic potentials of circadian rhythms and melatonin in liver diseases.
Collapse
Affiliation(s)
- Keisaku Sato
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Fanyin Meng
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
- Richard L. Roudebush VA Medical Center, Indianapolis, IN
| | - Heather Francis
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
- Richard L. Roudebush VA Medical Center, Indianapolis, IN
| | - Nan Wu
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Lixian Chen
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Lindsey Kennedy
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Tianhao Zhou
- Department of Medical Physiology, Texas A&M University, Bryan, TX
| | | | - Paolo Onori
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| | - Eugenio Gaudio
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| | - Shannon Glaser
- Department of Medical Physiology, Texas A&M University, Bryan, TX
| | - Gianfranco Alpini
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
- Richard L. Roudebush VA Medical Center, Indianapolis, IN
| |
Collapse
|
35
|
Owusu-Akyaw A, Krishnamoorthy K, Goldsmith LT, Morelli SS. The role of mesenchymal-epithelial transition in endometrial function. Hum Reprod Update 2020; 25:114-133. [PMID: 30407544 DOI: 10.1093/humupd/dmy035] [Citation(s) in RCA: 144] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 10/13/2018] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The human uterine endometrium undergoes significant remodeling and regeneration on a rapid and repeated basis, after parturition, menstruation, and in some cases, injury. The ability of the adult endometrium to undergo cyclic regeneration and differentiation/decidualization is essential for successful human reproduction. Multiple key physiologic functions of the endometrium require the cells of this tissue to transition between mesenchymal and epithelial phenotypes, processes known as mesenchymal-epithelial transition (MET) and epithelial-mesenchymal transition (EMT). Although MET/EMT processes have been widely characterized in embryonic development and in the context of malignancy, mounting evidence demonstrates the importance of MET/EMT in allowing the endometrium the phenotypic and functional flexibility necessary for successful decidualization, regeneration/re-epithelialization and embryo implantation. OBJECTIVE AND RATIONALE The objective of this review is to provide a comprehensive summary of the observations concerning MET and EMT and their regulation in physiologic uterine functions, specifically in the context of endometrial regeneration, decidualization and embryo implantation. SEARCH METHODS Using variations of the search terms 'mesenchymal-epithelial transition', 'mesenchymal-epithelial transformation', 'epithelial-mesenchymal transition', 'epithelial-mesenchymal transformation', 'uterus', 'endometrial regeneration', 'endometrial decidualization', 'embryo implantation', a search of the published literature between 1970 and 2018 was conducted using the PubMed database. In addition, we searched the reference lists of all publications included in this review for additional relevant original studies. OUTCOMES Multiple studies demonstrate that endometrial stromal cells contribute to the regeneration of both the stromal and epithelial cell compartments of the uterus, implicating a role for MET in mechanisms responsible for endometrial regeneration and re-epithelialization. During decidualization, endometrial stromal cells undergo morphologic and functional changes consistent with MET in order to accommodate embryo implantation. Under the influence of estradiol, progesterone and multiple other factors, endometrial stromal fibroblasts acquire epithelioid characteristics, such as expanded cytoplasm and rough endoplasmic reticulum required for greater secretory capacity, rounded nuclei, increased expression of junctional proteins which allow for increased cell-cell communication, and a reorganized actin cytoskeleton. During embryo implantation, in response to both maternal and embryonic-derived signals, the maternal luminal epithelium as well as the decidualized stromal cells acquire the mesenchymal characteristics of increased migration/motility, thus undergoing EMT in order to accommodate the invading trophoblast. WIDER IMPLICATIONS Overall, the findings support important roles for MET/EMT in multiple endometrial functions required for successful reproduction. The endometrium may be considered a unique wound healing model, given its ability to repeatedly undergo repair without scarring or loss of function. Future studies to elucidate how MET/EMT mechanisms may contribute to scar-free endometrial repair will have considerable potential to advance studies of wound healing mechanisms in other tissues.
Collapse
Affiliation(s)
- Amma Owusu-Akyaw
- Department of Obstetrics, Gynecology, and Women's Health, Rutgers-New Jersey Medical School, Newark, NJ, USA
| | - Kavitha Krishnamoorthy
- Department of Obstetrics, Gynecology, and Women's Health, Rutgers-New Jersey Medical School, Newark, NJ, USA
| | - Laura T Goldsmith
- Department of Obstetrics, Gynecology, and Women's Health, Rutgers-New Jersey Medical School, Newark, NJ, USA
| | - Sara S Morelli
- Department of Obstetrics, Gynecology, and Women's Health, Rutgers-New Jersey Medical School, Newark, NJ, USA
| |
Collapse
|
36
|
Cernigliaro V, Peluso R, Zedda B, Silengo L, Tolosano E, Pellicano R, Altruda F, Fagoonee S. Evolving Cell-Based and Cell-Free Clinical Strategies for Treating Severe Human Liver Diseases. Cells 2020; 9:E386. [PMID: 32046114 PMCID: PMC7072646 DOI: 10.3390/cells9020386] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/21/2020] [Accepted: 02/06/2020] [Indexed: 02/07/2023] Open
Abstract
Liver diseases represent a major global health issue, and currently, liver transplantation is the only viable alternative to reduce mortality rates in patients with end-stage liver diseases. However, scarcity of donor organs and risk of recidivism requiring a re-transplantation remain major obstacles. Hence, much hope has turned towards cell-based therapy. Hepatocyte-like cells obtained from embryonic stem cells or adult stem cells bearing multipotent or pluripotent characteristics, as well as cell-based systems, such as organoids, bio-artificial liver devices, bioscaffolds and organ printing are indeed promising. New approaches based on extracellular vesicles are also being investigated as cell substitutes. Extracellular vesicles, through the transfer of bioactive molecules, can modulate liver regeneration and restore hepatic function. This review provides an update on the current state-of-art cell-based and cell-free strategies as alternatives to liver transplantation for patients with end-stage liver diseases.
Collapse
Affiliation(s)
- Viviana Cernigliaro
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Via Nizza 52, 10126 Turin, Italy; (V.C.); (R.P.); (B.Z.)
- Maria Pia Hospital, 10126 Turin, Italy
| | - Rossella Peluso
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Via Nizza 52, 10126 Turin, Italy; (V.C.); (R.P.); (B.Z.)
- Maria Pia Hospital, 10126 Turin, Italy
| | - Beatrice Zedda
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Via Nizza 52, 10126 Turin, Italy; (V.C.); (R.P.); (B.Z.)
- Maria Pia Hospital, 10126 Turin, Italy
| | - Lorenzo Silengo
- Molecular Biotechnology Center, Departmet of Molecular Biotechnology and Health Sciences, University of Turin, Via Nizza 52, 10126 Turin, Italy; (L.S.); (E.T.)
| | - Emanuela Tolosano
- Molecular Biotechnology Center, Departmet of Molecular Biotechnology and Health Sciences, University of Turin, Via Nizza 52, 10126 Turin, Italy; (L.S.); (E.T.)
| | | | - Fiorella Altruda
- Molecular Biotechnology Center, Departmet of Molecular Biotechnology and Health Sciences, University of Turin, Via Nizza 52, 10126 Turin, Italy; (L.S.); (E.T.)
| | - Sharmila Fagoonee
- Institute of Biostructure and Bioimaging, National Research Council, Molecular Biotechnology Center, Via Nizza 52, 10126 Turin, Italy
| |
Collapse
|
37
|
Kuse Y, Taniguchi H. Present and Future Perspectives of Using Human-Induced Pluripotent Stem Cells and Organoid Against Liver Failure. Cell Transplant 2019; 28:160S-165S. [PMID: 31838891 PMCID: PMC7016460 DOI: 10.1177/0963689719888459] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Organ failure manifests severe symptoms affecting the whole body that may cause death. However, the number of organ donors is not enough for patients requiring transplantation worldwide. Illegal transplantation is also sometimes conducted. To help address this concern, primary hepatocytes are clinically transplanted in the liver. However, donor shortage and host rejection via instant blood-mediated inflammatory reactions are worrisome. Induced pluripotent stem cell-derived hepatocyte-like cells have been developed as an alternative treatment. Recently, organoid technology has been developed to investigate the pathology and mechanism of organoids in cultures. Organoids can be transplanted with vascularization and connected to host blood vessels, and functionally mature better in vivo than in vitro. Hepatic organoids improve pathology in liver disease models. In this review, we introduce induced pluripotent stem cell- and organoid-based therapies against liver diseases considering present and future perspectives.
Collapse
Affiliation(s)
- Yoshiki Kuse
- Department of Regenerative Medicine, Yokohama City University School of Medicine, Japan
| | - Hideki Taniguchi
- Department of Regenerative Medicine, Yokohama City University School of Medicine, Japan.,Division of Regenerative Medicine, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, University of Tokyo, Japan
| |
Collapse
|
38
|
Bone Marrow-Derived Mesenchymal Stem Cell Potential Regression of Dysplasia Associating Experimental Liver Fibrosis in Albino Rats. BIOMED RESEARCH INTERNATIONAL 2019; 2019:5376165. [PMID: 31781620 PMCID: PMC6874956 DOI: 10.1155/2019/5376165] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 09/25/2019] [Accepted: 10/08/2019] [Indexed: 02/07/2023]
Abstract
Objectives Assessing the therapeutic efficacy of superparamagnetic iron oxide nanoparticles (SPIO) labeled bone marrow-derived mesenchymal stem cells (BM-MSCs) on experimental liver fibrosis and associated dysplasia. Materials and Methods MSCs were obtained from 10 male Sprague-Dawley rats while 50 female rats were divided into control (CG), liver fibrosis (CCL4, intraperitoneal injection of CCl4 for 8 weeks), and CCL4 rats treated with SPIO-labeled MSCs (MSCs/CCl4) with and without continuing CCL4 injection for another 8 weeks. Assessment included liver histopathology, liver function tests, transmission electron microscopic tracing for homing of SPIO-MSCs, immunofluorescence histochemistry for fibrosis and dysplasia markers (transforming growth factor-beta (TGF-β1), proliferation nuclear antigen (PCNA), glypican 3)), and quantitative gene expression analysis for matrix metalloproteinase-1 (MMP-1) and tissue inhibitor of metalloproteinase-1 (TIMP-1). Results SPIO-labeled MSCs were engrafted in the fibrotic liver and the BM/MSCs demonstrated regression for fibrous tissue deposition and inhibition progression of dysplastic changes in the liver of CCl4-treated rats on both the histological and molecular levels. Conclusion BM-MSCs possess regenerative and antidysplastic potentials.
Collapse
|
39
|
Autologous stem cell transplantation for patients with viral hepatitis-induced liver cirrhosis: a systematic review and meta-analysis. Eur J Gastroenterol Hepatol 2019; 31:1283-1291. [PMID: 31206409 DOI: 10.1097/meg.0000000000001455] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Recently, stem cells have been used in the treatment of viral hepatitis-induced liver cirrhosis (LC), and stem cell therapy is showing potential therapeutic effects on liver function improvement. The consensus on effects and safety of stem cell therapy has not been reached, thus it is essential for us to conduct a systematic review and meat-analysis to investigate the efficacy and safety of stem cell therapy for viral hepatitis-induced LC. MATERIALS AND METHODS Medline, Embase, SinoMed and Cochrane Library databases were searched with appropriate keywords through 5 August 2018. We included eight trials involving 467 patients. The pooled weight mean difference (WMD) and 95% confidence interval (CI) were calculated using a fixed or random effects model. Quality assessment and publication bias were also performed. The selected studies were considered for meta-analysis using RevMan V5.3. RESULTS Compared with traditional therapy group, autologous stem cell transplantation increased the level of albumin (WMD: 2.47, 95% CI: 1.05-3.90, P < 0.001), but decreased the level of total bilirubin (WMD: -2.26, 95% CI: -3.61 to -0.90, P = 0.001), alanine aminotransferase (WMD: -9.16, 95% CI: -16.47 to -1.85, P = 0.01) and prothrombin time (WMD: -3.02, 95% CI: -4.83 to -1.22, P = 0.001). Clinical symptoms such as edema, fatigue, anorexia and abdominal distention were alleviated. Model for End-Stage Liver Disease and Child-Pugh scores were decreased after stem cell therapy. Whereas, there was no statistically significant difference between two groups regarding aspartate aminotransferase, prothrombin time activity, ascites and pleural fluid. No procedure-related complications were found. CONCLUSION Autologous stem cell transplantation might have beneficial effects on patients with viral hepatitis-induced LC and is relatively safe for these patients. Further high-quality randomized controlled trials are needed.
Collapse
|
40
|
Wu CX, Wang D, Cai Y, Luo AR, Sun H. Effect of Autologous Bone Marrow Stem Cell Therapy in Patients with Liver Cirrhosis: A Meta-analysis. J Clin Transl Hepatol 2019; 7:238-248. [PMID: 31608216 PMCID: PMC6783678 DOI: 10.14218/jcth.2019.00008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 07/14/2019] [Accepted: 08/04/2019] [Indexed: 12/14/2022] Open
Abstract
Background and Aims: Although autologous bone marrow stem cell (BMSC) transplantation is an effective treatment for liver cirrhosis, there are few reports describing the optimal delivery route and number of injected BMSCs. Methods: A literature search was conducted using PubMed, ISI Web of Science, Cochrane Central Register of Controlled Trials, and EBSCO. A meta-analysis was performed to assess the effect of BMSCs on liver and coagulation function indices. Subgroup analysis was performed based on number of injected BMSCs, delivery route, and length of follow-up. Results: A total of 15 studies were selected from among 1903 potential studies for analysis. Autologous BMSC transplantation significantly improved aspartate aminotransferase, total bilirubin, albumin, prothrombin time, prothrombin activity, prothrombin concentration, Child-Pugh score, and model for end-stage liver disease. In the subgroup analysis of cell numbers, all four of the indices were significantly improved when the number of BMSCs was >4 × 108. The subgroup analysis referring to the delivery route showed that arterial infusion increased the therapeutic effect over venous infusion. Finally, in the subgroup analysis of follow-up length, the results showed that BMSC therapy significantly improved liver function at 2 weeks after transplantation. In addition, this therapy improved coagulation 4 weeks after the transplant, with a maintenance of efficacy for up to 24 weeks. Conclusions: Autologous BMSC therapy is beneficial for liver improvement and coagulation in patients with liver cirrhosis. The therapeutic effect was generated at 2-4 weeks after transplantation. The effect lasted for 24 weeks but no more than 48 weeks. The greatest benefit to patients was observed with a 4 × 108 autologous BMSC transplant via the hepatic artery.
Collapse
Affiliation(s)
- Chuan-Xin Wu
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Deng Wang
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Ying Cai
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Ao-Ran Luo
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Hang Sun
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
- Correspondence to: Hang Sun, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, No. 76 Linjiang Road, Yuzhong District, Chongqing 400010, China. Tel: +86-13527599558, Fax: +86-23-63829191, E-mail:
| |
Collapse
|
41
|
Huang X, Lee F, Teng Y, Lingam CB, Chen Z, Sun M, Song Z, Balachander GM, Leo HL, Guo Q, Shah I, Yu H. Sequential drug delivery for liver diseases. Adv Drug Deliv Rev 2019; 149-150:72-84. [PMID: 31734169 DOI: 10.1016/j.addr.2019.11.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 11/03/2019] [Accepted: 11/04/2019] [Indexed: 12/12/2022]
Abstract
The liver performs critical physiological functions such as metabolism/detoxification and blood homeostasis/biliary excretion. A high degree of blood access means that a drug's resident time in any cell is relatively short. This short drug exposure to cells requires local sequential delivery of multiple drugs for optimal efficacy, potency, and safety. The high metabolism and excretion of drugs also impose both technical challenges and opportunities to sequential drug delivery. This review provides an overview of the sequential events in liver regeneration and the related liver diseases. Using selected examples of liver cancer, hepatitis B viral infection, fatty liver diseases, and drug-induced liver injury, we highlight efforts made for the sequential delivery of small and macromolecular drugs through different biomaterials, cells, and microdevice-based delivery platforms that allow fast delivery kinetics and rapid drug switching. As this is a nascent area of development, we extrapolate and compare the results with other sequential drug delivery studies to suggest possible application in liver diseases, wherever appropriate.
Collapse
Affiliation(s)
- Xiaozhong Huang
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, MD9-04-11, 2 Medical Drive, Singapore 117593, Singapore; Institute of Bioengineering and Nanotechnology, A*STAR, The Nanos, #06-01, 31 Biopolis Way, Singapore 138669, Singapore
| | - Fan Lee
- Institute of Bioengineering and Nanotechnology, A*STAR, The Nanos, #06-01, 31 Biopolis Way, Singapore 138669, Singapore
| | - Yao Teng
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, MD9-04-11, 2 Medical Drive, Singapore 117593, Singapore; Institute of Bioengineering and Nanotechnology, A*STAR, The Nanos, #06-01, 31 Biopolis Way, Singapore 138669, Singapore
| | - Corey Bryen Lingam
- Department of Biomedical Engineering, National University of Singapore, Engineering Drive 3, Engineering Block 4, #04-08, Singapore 117583, Singapore
| | - Zijian Chen
- Department of Biomedical Engineering, National University of Singapore, Engineering Drive 3, Engineering Block 4, #04-08, Singapore 117583, Singapore; Department of Biomedical Engineering, Southern University of Science and Technology, 1088 Xueyuan Avenue, Shenzhen 518055, China
| | - Min Sun
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, MD9-04-11, 2 Medical Drive, Singapore 117593, Singapore
| | - Ziwei Song
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, MD9-04-11, 2 Medical Drive, Singapore 117593, Singapore; Institute of Bioengineering and Nanotechnology, A*STAR, The Nanos, #06-01, 31 Biopolis Way, Singapore 138669, Singapore
| | - Gowri M Balachander
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, MD9-04-11, 2 Medical Drive, Singapore 117593, Singapore
| | - Hwa Liang Leo
- Department of Biomedical Engineering, National University of Singapore, Engineering Drive 3, Engineering Block 4, #04-08, Singapore 117583, Singapore
| | - Qiongyu Guo
- Department of Biomedical Engineering, Southern University of Science and Technology, 1088 Xueyuan Avenue, Shenzhen 518055, China
| | - Imran Shah
- National Center for Computational Toxicology, United States Environmental Protection Agency, 4930 Old Page Rd., Durham, NC 27703, USA
| | - Hanry Yu
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, MD9-04-11, 2 Medical Drive, Singapore 117593, Singapore; Institute of Bioengineering and Nanotechnology, A*STAR, The Nanos, #06-01, 31 Biopolis Way, Singapore 138669, Singapore; Mechanobiology Institute, National University of Singapore, T-Lab, #05-01, 5A Engineering Drive 1, Singapore 117411, Singapore; CAMP, Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, Level 4 Enterprise Wing, Singapore 138602, Singapore; Gastroenterology Department, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
42
|
Yin F, Wang WY, Jiang WH. Human umbilical cord mesenchymal stem cells ameliorate liver fibrosis in vitro and in vivo: From biological characteristics to therapeutic mechanisms. World J Stem Cells 2019; 11:548-564. [PMID: 31523373 PMCID: PMC6716089 DOI: 10.4252/wjsc.v11.i8.548] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 06/26/2019] [Accepted: 07/17/2019] [Indexed: 02/06/2023] Open
Abstract
Liver fibrosis is a wound-healing response to chronic injuries, characterized by the excessive accumulation of extracellular matrix or scar tissue within the liver; in addition, its formation is associated with multiple cytokines as well as several cell types and a variety of signaling pathways. When liver fibrosis is not well controlled, it can progress to liver cirrhosis, but it is reversible in principle. Thus far, no efficient therapy is available for treatment of liver fibrosis. Although liver transplantation is the preferred strategy, there are many challenges remaining in this approach, such as shortage of donor organs, immunological rejection, and surgical complications. Hence, there is a great need for an alternative therapeutic strategy. Currently, mesenchymal stem cell (MSC) therapy is considered a promising therapeutic strategy for the treatment of liver fibrosis; advantageously, the characteristics of MSCs are continuous self-renewal, proliferation, multipotent differentiation, and immunomodulatory activities. The human umbilical cord-derived (hUC)-MSCs possess not only the common attributes of MSCs but also more stable biological characteristics, relatively easy accessibility, abundant source, and no ethical issues (e.g., bone marrow being the adult source), making hUC-MSCs a good choice for treatment of liver fibrosis. In this review, we summarize the biological characteristics of hUC-MSCs and their paracrine effects, exerted by secretion of various cytokines, which ultimately promote liver repair through several signaling pathways. Additionally, we discuss the capacity of hUC-MSCs to differentiate into hepatocyte-like cells for compensating the function of existing hepatocytes, which may aid in amelioration of liver fibrosis. Finally, we discuss the current status of the research field and its future prospects.
Collapse
Affiliation(s)
- Fei Yin
- Department of Histology and Embryology, Basic Medical College of Jilin University, Changchun 130021, Jilin Province, China
| | - Wen-Ying Wang
- Department of Histology and Embryology, Basic Medical College of Jilin University, Changchun 130021, Jilin Province, China
| | - Wen-Hua Jiang
- Department of Histology and Embryology, Basic Medical College of Jilin University, Changchun 130021, Jilin Province, China
| |
Collapse
|
43
|
Sato K, Kennedy L, Liangpunsakul S, Kusumanchi P, Yang Z, Meng F, Glaser S, Francis H, Alpini G. Intercellular Communication between Hepatic Cells in Liver Diseases. Int J Mol Sci 2019; 20:ijms20092180. [PMID: 31052525 PMCID: PMC6540342 DOI: 10.3390/ijms20092180] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/23/2019] [Accepted: 04/29/2019] [Indexed: 02/06/2023] Open
Abstract
Liver diseases are perpetuated by the orchestration of hepatocytes and other hepatic non-parenchymal cells. These cells communicate and regulate with each other by secreting mediators such as peptides, hormones, and cytokines. Extracellular vesicles (EVs), small particles secreted from cells, contain proteins, DNAs, and RNAs as cargos. EVs have attracted recent research interests since they can communicate information from donor cells to recipient cells thereby regulating physiological events via delivering of specific cargo mediators. Previous studies have demonstrated that liver cells secrete elevated numbers of EVs during diseased conditions, and those EVs are internalized into other liver cells inducing disease-related reactions such as inflammation, angiogenesis, and fibrogenesis. Reactions in recipient cells are caused by proteins and RNAs carried in disease-derived EVs. This review summarizes cell-to-cell communication especially via EVs in the pathogenesis of liver diseases and their potential as a novel therapeutic target.
Collapse
Grants
- R01 DK110035 NIDDK NIH HHS
- I01 BX000574 BLRD VA
- IK6 BX004601 BLRD VA
- R01 DK108959 NIDDK NIH HHS
- K01 AA026385 NIAAA NIH HHS
- I01 BX001724 BLRD VA
- DK054811, DK076898, DK107310, DK110035, DK062975, AA025997, DK108959, AA025208, DK107682, AA026917, AA026903, AA025157, and AA026385 NIH HHS
Collapse
Affiliation(s)
- Keisaku Sato
- Richard L. Roudebush VA Medical Center, Indianapolis, IN 46202, USA.
- Indiana Center for Liver Research, Division of Gastroenterology & Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Lindsey Kennedy
- Richard L. Roudebush VA Medical Center, Indianapolis, IN 46202, USA.
- Indiana Center for Liver Research, Division of Gastroenterology & Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Suthat Liangpunsakul
- Richard L. Roudebush VA Medical Center, Indianapolis, IN 46202, USA.
- Indiana Center for Liver Research, Division of Gastroenterology & Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Praveen Kusumanchi
- Richard L. Roudebush VA Medical Center, Indianapolis, IN 46202, USA.
- Indiana Center for Liver Research, Division of Gastroenterology & Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Zhihong Yang
- Richard L. Roudebush VA Medical Center, Indianapolis, IN 46202, USA.
- Indiana Center for Liver Research, Division of Gastroenterology & Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Fanyin Meng
- Richard L. Roudebush VA Medical Center, Indianapolis, IN 46202, USA.
- Indiana Center for Liver Research, Division of Gastroenterology & Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Shannon Glaser
- Department of Medical Physiology, Texas A&M University, Temple, TX 76504, USA.
| | - Heather Francis
- Richard L. Roudebush VA Medical Center, Indianapolis, IN 46202, USA.
- Indiana Center for Liver Research, Division of Gastroenterology & Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Gianfranco Alpini
- Richard L. Roudebush VA Medical Center, Indianapolis, IN 46202, USA.
- Indiana Center for Liver Research, Division of Gastroenterology & Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| |
Collapse
|
44
|
Sato K, Glaser S, Kennedy L, Liangpunsakul S, Meng F, Francis H, Alpini G. Preclinical insights into cholangiopathies: disease modeling and emerging therapeutic targets. Expert Opin Ther Targets 2019; 23:461-472. [PMID: 30990740 DOI: 10.1080/14728222.2019.1608950] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION The common predominant clinical features of cholangiopathies such as primary sclerosing cholangitis (PSC), primary biliary cholangitis (PBC), and biliary atresia (BA) are biliary damage/senescence and liver fibrosis. Curative therapies are lacking, and liver transplantation is the only option. An understanding of the mechanisms and pathogenesis is needed to develop novel therapies. Previous studies have developed various disease-based research models and have identified candidate therapeutic targets. Areas covered: This review summarizes recent studies performed in preclinical models of cholangiopathies and the current understanding of the pathophysiology representing potential targets for novel therapies. A literature search was conducted in PubMed using the combination of the searched term 'cholangiopathies' with one or two keywords including 'model', 'cholangiocyte', 'animal', or 'fibrosis'. Papers published within five years were obtained. Expert opinion: Access to appropriate research models is a key challenge in cholangiopathy research; establishing more appropriate models for PBC is an important goal. Several preclinical studies have demonstrated promising results and have led to novel therapeutic approaches, especially for PSC. Further studies on the pathophysiology of PBC and BA are necessary to identify candidate targets. Innovative therapeutic approaches such as stem cell transplantation have been introduced, and those therapies could be applied to PSC, PBC, and BA.
Collapse
Affiliation(s)
- Keisaku Sato
- a Indiana Center for Liver Research, Division of Gastroenterology & Hepatology, Department of Medicine , Indiana University School of Medicine , Indianapolis , IN , USA.,b Richard L. Roudebush VA Medical Center , Indianapolis , IN , USA
| | - Shannon Glaser
- c Department of Medical Physiology , Texas A&M University Collage of Medicine , Temple , TX , USA
| | - Lindsey Kennedy
- a Indiana Center for Liver Research, Division of Gastroenterology & Hepatology, Department of Medicine , Indiana University School of Medicine , Indianapolis , IN , USA.,b Richard L. Roudebush VA Medical Center , Indianapolis , IN , USA
| | - Suthat Liangpunsakul
- a Indiana Center for Liver Research, Division of Gastroenterology & Hepatology, Department of Medicine , Indiana University School of Medicine , Indianapolis , IN , USA.,b Richard L. Roudebush VA Medical Center , Indianapolis , IN , USA
| | - Fanyin Meng
- a Indiana Center for Liver Research, Division of Gastroenterology & Hepatology, Department of Medicine , Indiana University School of Medicine , Indianapolis , IN , USA.,b Richard L. Roudebush VA Medical Center , Indianapolis , IN , USA
| | - Heather Francis
- a Indiana Center for Liver Research, Division of Gastroenterology & Hepatology, Department of Medicine , Indiana University School of Medicine , Indianapolis , IN , USA.,b Richard L. Roudebush VA Medical Center , Indianapolis , IN , USA
| | - Gianfranco Alpini
- a Indiana Center for Liver Research, Division of Gastroenterology & Hepatology, Department of Medicine , Indiana University School of Medicine , Indianapolis , IN , USA.,b Richard L. Roudebush VA Medical Center , Indianapolis , IN , USA
| |
Collapse
|
45
|
Hydrogen Sulfide as a Novel Regulatory Factor in Liver Health and Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:3831713. [PMID: 30805080 PMCID: PMC6360590 DOI: 10.1155/2019/3831713] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 11/29/2018] [Indexed: 02/08/2023]
Abstract
Hydrogen sulfide (H2S), a colorless gas smelling of rotten egg, has long been recognized as a toxic gas and environment pollutant. However, increasing evidence suggests that H2S acts as a novel gasotransmitter and plays important roles in a variety of physiological and pathological processes in mammals. H2S is involved in many hepatic functions, including the regulation of oxidative stress, glucose and lipid metabolism, vasculature, mitochondrial function, differentiation, and circadian rhythm. In addition, H2S contributes to the pathogenesis and treatment of a number of liver diseases, such as hepatic fibrosis, liver cirrhosis, liver cancer, hepatic ischemia/reperfusion injury, nonalcoholic fatty liver disease/nonalcoholic steatohepatitis, hepatotoxicity, and acute liver failure. In this review, the biosynthesis and metabolism of H2S in the liver are summarized and the role and mechanism of H2S in liver health and disease are further discussed.
Collapse
|
46
|
Jargin SV. Scientific Papers and Patents on Substances with Unproven Effects. Part 2. RECENT PATENTS ON DRUG DELIVERY & FORMULATION 2019; 13:160-173. [PMID: 31424374 PMCID: PMC7011683 DOI: 10.2174/1872211313666190819124752] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 07/19/2019] [Accepted: 08/01/2019] [Indexed: 12/03/2022]
Abstract
Several examples are discussed in this review, where substances without proven effects were proposed for practical use within the scope of evidence-based medicines. The following is discussed here: generalizations of the hormesis concept and its use in support of homeopathy; phytoestrogens and soy products potentially having feminizing effects; glycosaminoglycans for the treatment of osteoarthritis and possibilities of their replacement by diet modifications; flavonoids recommended for the treatment of chronic venous insufficiency and varicose veins; acetylcysteine as a mucolytic agent and its questionable efficiency especially by an oral intake; stem cells and cell therapies. In conclusion, placebo therapies can be beneficial and ethically justifiable but it is not a sufficient reason to publish biased information. Importantly, placebo must be devoid of adverse effects, otherwise, it is named pseudo-placebo. Therapeutic methods with unproven effects should be tested in high-quality research shielded from the funding bias. Some issues discussed in this review are not entirely clear, and the arguments provided here can initiate a constructive discussion.
Collapse
Affiliation(s)
- Sergei V. Jargin
- Peoples’ Friendship University of Russia, Clementovski per 6-82, Moscow115184, Russia
| |
Collapse
|
47
|
Wang MF, Li YB, Gao XJ, Zhang HY, Lin S, Zhu YY. Efficacy and safety of autologous stem cell transplantation for decompensated liver cirrhosis: A retrospective cohort study. World J Stem Cells 2018; 10:138-145. [PMID: 30397424 PMCID: PMC6212545 DOI: 10.4252/wjsc.v10.i10.138] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 07/29/2018] [Accepted: 08/26/2018] [Indexed: 02/06/2023] Open
Abstract
AIM To evaluate the long-term efficacy and safety of autologous stem cell transplantation (SCT) for decompensated liver cirrhosis.
METHODS Consecutive patients with decompensated liver cirrhosis were included and assigned into the SCT group and non-transplantation (non-SCT) group according to whether they received SCT treatment. Patients were followed up for ten years. The long-term survival rate and incidence of hepatocellular carcinoma (HCC) were compared between groups.
RESULTS A total of 159 patients were enrolled, including 27 cases in the SCT group and 132 cases in the non-SCT group. The baseline characteristics were significantly different between the two groups. Propensity score matching (PSM) was used to match SCT and non-SCT patients. After PSM, 92 subjects were enrolled in the final analysis, including 23 cases in the SCT group and 69 cases in the non-SCT group. The overall mortality was 73.9% and 55.1%, and the median survival period was 48 and 64 mo, respectively. However, no significant difference was found in the long-term survival rate between the two groups (P > 0.05). In addition, the incidence of HCC was higher in the SCT group than in the non-SCT group (47.8% vs 21.7%, P < 0.05). After adjusting for other covariates, SCT (OR = 3.065, 95%CI: 1.378-6.814) and age (OR = 1.061, 95%CI: 1.021-1.102) were independently correlated with the development of HCC in this decompensated liver cirrhosis cohort.
CONCLUSION Autologous SCT may fail to improve the long-term efficacy and increase the incidence of HCC for decompensated liver cirrhosis. Close monitoring of HCC is strongly recommended in patients undergoing autologous SCT.
Collapse
Affiliation(s)
- Ming-Fang Wang
- Liver Center, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, Fujian Province, China
| | - You-Bing Li
- Liver Center, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, Fujian Province, China
| | - Xiao-Juan Gao
- Fujian Provincial Governmental Hospital, Fuzhou 350001, Fujian Province, China
| | - Hao-Yang Zhang
- School of Biological Sciences, the University of Hong Kong, Hong Kong, China
| | - Su Lin
- Liver Center, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, Fujian Province, China
| | - Yue-Yong Zhu
- Liver Center, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, Fujian Province, China
| |
Collapse
|