1
|
Zhang W, Liu H, Ren C, Zhang K, Zhang S, Shi S, Li Z, Li J. Deciphering the IGF2BP3-mediated control of ferroptosis: mechanistic insights and therapeutic prospects. Discov Oncol 2024; 15:547. [PMID: 39392532 PMCID: PMC11469981 DOI: 10.1007/s12672-024-01432-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 10/07/2024] [Indexed: 10/12/2024] Open
Abstract
The rapid expansion of the oncology field has revealed new insights into cell death processes, with a particular emphasis on the role of ferroptosis. Characterized by iron dependency and the accumulation of lipid peroxides and iron within cells, ferroptosis stands out as a unique form of programmed cell demise. This in-depth analysis delves into the pivotal role of IGF2BP3, an RNA-binding protein, in the complex regulatory network of ferroptosis in cancerous cells. By exerting post-transcriptional control over genes associated with iron equilibrium, IGF2BP3 is demonstrated to manage cellular iron concentrations and reactive oxygen species (ROS) equilibrium, thus affecting the destiny of the cell. The correlation between aberrant IGF2BP3 expression and increased aggressiveness, metastatic capacity, and poor prognosis in various cancers is further clarified. The potential of IGF2BP3 as a biomarker for prognosis and a therapeutic agent to enhance cancer cells' vulnerability to ferroptosis is also examined, heralding new strategies in cancer treatment.
Collapse
Affiliation(s)
- Wenjuan Zhang
- Affiliated Hospital of Chengde Medical University, NO.36 NanYingZi Road, Chengde, 067000, HeBei, China
| | - Hui Liu
- Affiliated Hospital of Chengde Medical University, NO.36 NanYingZi Road, Chengde, 067000, HeBei, China
| | - Changrong Ren
- Affiliated Hospital of Chengde Medical University, NO.36 NanYingZi Road, Chengde, 067000, HeBei, China
| | - Kaiqian Zhang
- Affiliated Hospital of Chengde Medical University, NO.36 NanYingZi Road, Chengde, 067000, HeBei, China
| | - Shuhan Zhang
- Department of Hepatobiliary Surgery, Air Force Medical Center, PLA, Air Force Medical University, Beijing, China
| | - Shifan Shi
- Affiliated Hospital of Chengde Medical University, NO.36 NanYingZi Road, Chengde, 067000, HeBei, China
| | - Zhiyan Li
- Affiliated Hospital of Chengde Medical University, NO.36 NanYingZi Road, Chengde, 067000, HeBei, China
| | - Jian Li
- Department of Hepatobiliary Surgery, Hebei Key Laboratory of Panvascular Diseases, Affiliated Hospital of Chengde Medical University, NO.36 NanYingZi Road, Chengde, 067000, HeBei, China.
| |
Collapse
|
2
|
Chen Z, Zhong X, Xia M, Liu C, Tang W, Liu G, Yi Y, Guo Y, Jiang Q, Zu X, Zhong J. FTO/IGF2BP2-mediated N6 methyladenosine modification in invasion and metastasis of thyroid carcinoma via CDH12. Cell Death Dis 2024; 15:733. [PMID: 39379360 PMCID: PMC11461506 DOI: 10.1038/s41419-024-07097-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 10/10/2024]
Abstract
Epigenetic reprogramming plays a critical role in cancer progression of cancer, and N6-methyladenosine (m6A) is the most common RNA modification in eukaryotes. The purpose of this study was to explore the related modification mode of m6A regulator construction and evaluate the invasion and migration of thyroid cancer. Our results showed that m6A levels were significantly increased in papillary thyroid cancer (PTC) and anaplastic thyroid cancer (ATC) samples, which may have been induced by the down-regulation of demethylase fat mass and obesity-associated gene (FTO). Moreover, FTO inhibited PTC and ATC invasion and metastasis through the epithelial-to-mesenchymal transition (EMT) pathway in vivo and in vitro. Mechanistically, an m6A-mRNA epitranscriptomic microarray showed that Cadherin 12 (CDH12) is the key target gene mediated by FTO in an m6A-dependent manner. CDH12 promotes invasion and metastasis through the EMT pathway in thyroid cancer, both in vivo and in vitro. Furthermore, we found that insulin-like growth factor 2 mRNA-binding protein 2 (IGF2BP2) is an important m6A reading protein, that regulates the stability of CDH12 mRNA and mediates EMT progression, thereby promoting the invasion and metastasis of PTC and ATC. Thus, FTO, IGF2BP2 and CDH12 may be effective therapeutic targets for PTC and ATC with significant invasion or distant metastasis. Schematic summary of FTO-IGF2BP2 axis in modulation of CDH12 mRNA m6A and upregulation of CDH12 expression in the invasion and metastasis of thyroid carcinoma.
Collapse
Affiliation(s)
- Zuyao Chen
- Clinical Medical Research Center, The First Affiliated Hospital, Hengyang Medical School, University of South China, 421001, Hengyang, Hunan, China
- Department of Otorhinolaryngology, The First Affiliated Hospital, Hengyang Medical School, University of South China, 421001, Hengyang, Hunan, China
| | - Xiaolin Zhong
- Clinical Medical Research Center, The First Affiliated Hospital, Hengyang Medical School, University of South China, 421001, Hengyang, Hunan, China
- Department of Endocrinology and Metabolism, The First Affiliated Hospital, Hengyang Medical School, University of South China, 421001, Hengyang, Hunan, China
| | - Min Xia
- Clinical Medical Research Center, The First Affiliated Hospital, Hengyang Medical School, University of South China, 421001, Hengyang, Hunan, China
| | - Chang Liu
- Department of Endocrinology and Metabolism, The First People's Hospital of Chenzhou, The First School of Clinical Medicine, University of Southern Medical, Guang Zhou Shi, 510515, China
| | - Weiqiang Tang
- Clinical Medical Research Center, The First Affiliated Hospital, Hengyang Medical School, University of South China, 421001, Hengyang, Hunan, China
| | - Gaohua Liu
- Clinical Medical Research Center, The First Affiliated Hospital, Hengyang Medical School, University of South China, 421001, Hengyang, Hunan, China
| | - Yan Yi
- Clinical Medical Research Center, The First Affiliated Hospital, Hengyang Medical School, University of South China, 421001, Hengyang, Hunan, China
- Institute of Cancer Research, The First Affiliated Hospital, Hengyang Medical School, University of South China, 421001, Hengyang, Hunan, China
| | - Yinping Guo
- Clinical Medical Research Center, The First Affiliated Hospital, Hengyang Medical School, University of South China, 421001, Hengyang, Hunan, China
- Institute of Cancer Research, The First Affiliated Hospital, Hengyang Medical School, University of South China, 421001, Hengyang, Hunan, China
| | - Qingshan Jiang
- Department of Otorhinolaryngology, The First Affiliated Hospital, Hengyang Medical School, University of South China, 421001, Hengyang, Hunan, China
| | - Xuyu Zu
- Clinical Medical Research Center, The First Affiliated Hospital, Hengyang Medical School, University of South China, 421001, Hengyang, Hunan, China.
- Institute of Cancer Research, The First Affiliated Hospital, Hengyang Medical School, University of South China, 421001, Hengyang, Hunan, China.
| | - Jing Zhong
- Clinical Medical Research Center, The First Affiliated Hospital, Hengyang Medical School, University of South China, 421001, Hengyang, Hunan, China.
- Institute of Cancer Research, The First Affiliated Hospital, Hengyang Medical School, University of South China, 421001, Hengyang, Hunan, China.
| |
Collapse
|
3
|
Ma S, Hu Y, Xu W, Xiong W, Xu X, Hou Y, Wang Y, Chen P, Yang W, Lu H, Zhao Y. Insulin-like growth factor-2 mRNA-binding protein 2 facilitates post-ischemic angiogenesis by increasing the stability of fibroblast growth factor 2 mRNA and its protein expression. Heliyon 2024; 10:e37364. [PMID: 39296104 PMCID: PMC11409114 DOI: 10.1016/j.heliyon.2024.e37364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 09/01/2024] [Accepted: 09/02/2024] [Indexed: 09/21/2024] Open
Abstract
Background Post-ischemic angiogenesis is crucial for reestablishing blood flow in conditions such as peripheral artery disease (PAD). The role of insulin-like growth factor-2 mRNA-binding protein 2 (IGF2BP2) in post-transcriptional RNA metabolism and its involvement in post-ischemic angiogenesis remains unclear. Methods Using a human GEO database and a hind-limb ischemia (HLI) mouse model, the predominant isoform IGF2BP2 in ischemic gastrocnemius tissue was identified. Adeno-associated virus with the Tie1 promoter induced IGF2BP2 overexpression in the HLI model, evaluating the expression of vascular structural proteins (CD31 and α-SMA) and blood flow recovery after HLI. In vitro experiments with human umbilical vein endothelial cells (HUVECs) demonstrated that lentivirus-mediated IGF2BP2 overexpression upregulates cell proliferation, migration, and tube formation. GeneCards, RNAct databases, and subsequent reverse transcription quantitative polymerase chain reaction (RT-qPCR) predicted IGF2BP2 interactions with fibroblast growth factor 2 (FGF2) mRNA, and actinomycin D treatment, binding site predictions and CLIP-seq data further confirmed this interaction. Furthermore, western blotting, enzyme-linked immunosorbent assay, and RNA immunoprecipitation followed by RT-qPCR were performed to validate IGF2BP2's interaction with FGF2 mRNA and to assess its role in stabilizing FGF2 mRNA, as well as its impact on FGF2 protein expression. Results HLI reduced IGF2BP2 expression in the gastrocnemius tissue, which gradually increased during blood flow recovery. IGF2BP2 overexpression in HLI mice accelerated blood flow recovery and increased capillary and small artery densities. The overexpression of IGF2BP2 in HUVECs stimulated proliferation, migration, and tube formation by interacting with FGF2 mRNA to increase its stability. This interaction resulted in increased levels of FGF2 protein and secretion, ultimately promoting angiogenesis. Conclusions IGF2BP2 contributes to blood flow restoration post-ischemia in vivo and promotes angiogenesis in HUVECs by enhancing FGF2 mRNA stability and FGF2 protein expression and secretion. These findings underscore IGF2BP2's therapeutic potential in ischemic conditions, such as PAD.
Collapse
Affiliation(s)
- Shuai Ma
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, 563000, Zunyi, Guizhou, China
| | - Yiqing Hu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, 200032, Shanghai, China
| | - Wangguo Xu
- Department of Cardiology, Yongchuan Hospital of Chongqing Medical University, 402160, Chongqing, China
| | - Weidong Xiong
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, 563000, Zunyi, Guizhou, China
| | - Xinyu Xu
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, 563000, Zunyi, Guizhou, China
| | - Yajie Hou
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, 563000, Zunyi, Guizhou, China
| | - Ying Wang
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, 563000, Zunyi, Guizhou, China
| | - Panke Chen
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, 563000, Zunyi, Guizhou, China
| | - Wenbi Yang
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, 563000, Zunyi, Guizhou, China
| | - Hao Lu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, 200032, Shanghai, China
| | - Yongchao Zhao
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, 563000, Zunyi, Guizhou, China
| |
Collapse
|
4
|
Liu C, Dou X, Zhao Y, Zhang L, Zhang L, Dai Q, Liu J, Wu T, Xiao Y, He C. IGF2BP3 promotes mRNA degradation through internal m 7G modification. Nat Commun 2024; 15:7421. [PMID: 39198433 PMCID: PMC11358264 DOI: 10.1038/s41467-024-51634-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 08/11/2024] [Indexed: 09/01/2024] Open
Abstract
Recent studies have suggested that mRNA internal m7G and its writer protein METTL1 are closely related to cell metabolism and cancer regulation. Here, we identify that IGF2BP family proteins IGF2BP1-3 can preferentially bind internal mRNA m7G. Such interactions, especially IGF2BP3 with m7G, could promote the degradation of m7G target transcripts in cancer cells. IGF2BP3 is more responsive to changes of m7G modification, while IGF2BP1 prefers m6A to stabilize the bound transcripts. We also demonstrate that p53 transcript, TP53, is m7G-modified at its 3'UTR in cancer cells. In glioblastoma, the methylation level and the half lifetime of the modified transcript could be modulated by tuning IGF2BP3, or by site-specific targeting of m7G through a dCas13b-guided system, resulting in modulation of cancer progression and chemosensitivity.
Collapse
Affiliation(s)
- Chang Liu
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, 60637, USA
- Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, 60637, USA
- Department of Genetics, School of Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Xiaoyang Dou
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, 60637, USA
- Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, 60637, USA
| | - Yutao Zhao
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, 60637, USA
- Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, 60637, USA
| | - Linda Zhang
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, 60637, USA
- Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, 60637, USA
| | - Lisheng Zhang
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, 60637, USA
- Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, 60637, USA
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, China
- Department of Chemistry, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Qing Dai
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, 60637, USA
- Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, 60637, USA
| | - Jun Liu
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
- Beijing Advanced Center of RNA Biology (BEACON), Peking University, Beijing, 100871, China
| | - Tong Wu
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, 60637, USA
- Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, 60637, USA
| | - Yu Xiao
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, 60637, USA
- Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, 60637, USA
| | - Chuan He
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, 60637, USA.
- Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
5
|
Cook SR, Hugen S, Hayward JJ, Famula TR, Belanger JM, McNiel E, Fieten H, Oberbauer AM, Leegwater PA, Ostrander EA, Mandigers PJ, Evans JM. Genomic analyses identify 15 susceptibility loci and reveal HDAC2, SOX2-OT, and IGF2BP2 in a naturally-occurring canine model of gastric cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.14.604426. [PMID: 39372775 PMCID: PMC11451740 DOI: 10.1101/2024.08.14.604426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Gastric cancer (GC) is the fifth most common human cancer worldwide, but the genetic etiology is largely unknown. We performed a Bayesian genome-wide association study and selection analyses in a naturally-occurring canine model of GC, the Belgian Tervuren and Sheepdog breeds, to elucidate underlying genetic risk factors. We identified 15 loci with over 90% predictive accuracy for the GC phenotype. Variant filtering revealed germline putative regulatory variants for the EPAS1 (HIF2A) and PTEN genes and a coding variant in CD101. Although closely related to Tervuren and Sheepdogs, Belgian Malinois rarely develop GC. Across-breed analyses uncovered protective haplotypes under selection in Malinois at SOX2-OT and IGF2BP2. Among Tervuren and Sheepdogs, HDAC2 putative regulatory variants were present at comparatively high frequency and were associated with GC. Here, we describe a complex genetic architecture governing GC in a dog model, including genes such as PDZRN3, that have not been associated with human GC.
Collapse
Affiliation(s)
- Shawna R. Cook
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Sanne Hugen
- Expertisecentre of Genetics, Department of Clinical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Jessica J. Hayward
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Thomas R. Famula
- Department of Animal Science, University of California, Davis, CA, USA
| | | | - Elizabeth McNiel
- Cummings School of Veterinary Medicine, Tufts University, Grafton, Massachusetts, USA
| | - Hille Fieten
- Expertisecentre of Genetics, Department of Clinical Sciences, Utrecht University, Utrecht, The Netherlands
| | | | - Peter A.J. Leegwater
- Expertisecentre of Genetics, Department of Clinical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Elaine A. Ostrander
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Center, National Institutes of Health, Bethesda, MD, USA
| | - Paul J.J. Mandigers
- Expertisecentre of Genetics, Department of Clinical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Jacquelyn M. Evans
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| |
Collapse
|
6
|
Okholm TLH, Kamstrup AB, Nielsen MM, Hollensen AK, Graversgaard ML, Sørensen MH, Kristensen LS, Vang S, Park SS, Yeo E, Dyrskjøt L, Kjems J, Pedersen JS, Damgaard CK. circHIPK3 nucleates IGF2BP2 and functions as a competing endogenous RNA. eLife 2024; 13:RP91783. [PMID: 39041323 PMCID: PMC11265796 DOI: 10.7554/elife.91783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024] Open
Abstract
Circular RNAs represent a class of endogenous RNAs that regulate gene expression and influence cell biological decisions with implications for the pathogenesis of several diseases. Here, we disclose a novel gene-regulatory role of circHIPK3 by combining analyses of large genomics datasets and mechanistic cell biological follow-up experiments. Using time-course depletion of circHIPK3 and specific candidate RNA-binding proteins, we identify several perturbed genes by RNA sequencing analyses. Expression-coupled motif analyses identify an 11-mer motif within circHIPK3, which also becomes enriched in genes that are downregulated upon circHIPK3 depletion. By mining eCLIP datasets and combined with RNA immunoprecipitation assays, we demonstrate that the 11-mer motif constitutes a strong binding site for IGF2BP2 in bladder cancer cell lines. Our results suggest that circHIPK3 can sequester IGF2BP2 as a competing endogenous RNA (ceRNA), leading to target mRNA stabilization. As an example of a circHIPK3-regulated gene, we focus on the STAT3 mRNA as a specific substrate of IGF2BP2 and validate that manipulation of circHIPK3 regulates IGF2BP2-STAT3 mRNA binding and, thereby, STAT3 mRNA levels. Surprisingly, absolute copy number quantifications demonstrate that IGF2BP2 outnumbers circHIPK3 by orders of magnitude, which is inconsistent with a simple 1:1 ceRNA hypothesis. Instead, we show that circHIPK3 can nucleate multiple copies of IGF2BP2, potentially via phase separation, to produce IGF2BP2 condensates. Our results support a model where a few cellular circHIPK3 molecules can induce IGF2BP2 condensation, thereby regulating key factors for cell proliferation.
Collapse
Affiliation(s)
- Trine Line Hauge Okholm
- Department of Molecular Medicine (MOMA), Aarhus University HospitalAarhusDenmark
- Departments of Otolaryngology-Head and Neck Surgery and Microbiology & Immunology, University of California, San FranciscoSan FranciscoUnited States
- Department of Clinical Medicine, Aarhus UniversityAarhusDenmark
| | | | - Morten Muhlig Nielsen
- Department of Molecular Medicine (MOMA), Aarhus University HospitalAarhusDenmark
- Department of Clinical Medicine, Aarhus UniversityAarhusDenmark
| | | | | | | | | | - Søren Vang
- Department of Molecular Medicine (MOMA), Aarhus University HospitalAarhusDenmark
| | - Samuel S Park
- Department of Cellular and Molecular Medicine, University of California, San DiegoSan DiegoUnited States
| | - Eugene Yeo
- Department of Cellular and Molecular Medicine, University of California, San DiegoSan DiegoUnited States
| | - Lars Dyrskjøt
- Department of Molecular Medicine (MOMA), Aarhus University HospitalAarhusDenmark
- Department of Clinical Medicine, Aarhus UniversityAarhusDenmark
| | - Jørgen Kjems
- Department of Molecular Biology and Genetics, Aarhus UniversityAarhusDenmark
- Interdisciplinary Nanoscience Center (iNANO), Aarhus UniversityAarhusDenmark
| | - Jakob Skou Pedersen
- Department of Molecular Medicine (MOMA), Aarhus University HospitalAarhusDenmark
- Department of Clinical Medicine, Aarhus UniversityAarhusDenmark
- Bioinformatics Research Center (BiRC), Aarhus UniversityAarhusDenmark
| | | |
Collapse
|
7
|
Iyer K, Ivanov J, Tenchov R, Ralhan K, Rodriguez Y, Sasso JM, Scott S, Zhou QA. Emerging Targets and Therapeutics in Immuno-Oncology: Insights from Landscape Analysis. J Med Chem 2024; 67:8519-8544. [PMID: 38787632 PMCID: PMC11181335 DOI: 10.1021/acs.jmedchem.4c00568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/03/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024]
Abstract
In the ever-evolving landscape of cancer research, immuno-oncology stands as a beacon of hope, offering novel avenues for treatment. This study capitalizes on the vast repository of immuno-oncology-related scientific documents within the CAS Content Collection, totaling over 350,000, encompassing journals and patents. Through a pioneering approach melding natural language processing with the CAS indexing system, we unveil over 300 emerging concepts, depicted in a comprehensive "Trend Landscape Map". These concepts, spanning therapeutic targets, biomarkers, and types of cancers among others, are hierarchically organized into eight major categories. Delving deeper, our analysis furnishes detailed quantitative metrics showcasing growth trends over the past three years. Our findings not only provide valuable insights for guiding future research endeavors but also underscore the merit of tapping the vast and unparalleled breadth of existing scientific information to derive profound insights.
Collapse
Affiliation(s)
| | - Julian Ivanov
- CAS,
A Division of the American Chemical Society, Columbus, Ohio 43210, United States
| | - Rumiana Tenchov
- CAS,
A Division of the American Chemical Society, Columbus, Ohio 43210, United States
| | | | - Yacidzohara Rodriguez
- CAS,
A Division of the American Chemical Society, Columbus, Ohio 43210, United States
| | - Janet M. Sasso
- CAS,
A Division of the American Chemical Society, Columbus, Ohio 43210, United States
| | - Sabina Scott
- CAS,
A Division of the American Chemical Society, Columbus, Ohio 43210, United States
| | | |
Collapse
|
8
|
Okholm TLH, Kamstrup AB, Nielsen MM, Hollensen AK, Graversgaard ML, Sørensen MH, Kristensen LS, Vang S, Park SS, Yeo GW, Dyrskjøt L, Kjems J, Pedersen JS, Damgaard CK. circHIPK3 nucleates IGF2BP2 and functions as a competing endogenous RNA. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.14.557527. [PMID: 37745562 PMCID: PMC10515936 DOI: 10.1101/2023.09.14.557527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Circular RNAs (circRNAs) represent a class of widespread endogenous RNAs that regulate gene expression and thereby influence cell biological decisions with implications for the pathogenesis of several diseases. Here, we disclose a novel gene-regulatory role of circHIPK3 by combining analyses of large genomics datasets and mechanistic cell biological follow-up experiments. Specifically, we use temporal depletion of circHIPK3 or specific RNA binding proteins (RBPs) and identify several perturbed genes by RNA sequencing analyses. Using expression-coupled motif analyses of mRNA expression data from various knockdown experiments, we identify an 11-mer motif within circHIPK3, which is also enriched in genes that become downregulated upon circHIPK3 depletion. By mining eCLIP datasets, we find that the 11-mer motif constitutes a strong binding site for IGF2BP2 and validate this circHIPK3-IGF2BP2 interaction experimentally using RNA-immunoprecipitation and competition assays in bladder cancer cell lines. Our results suggest that circHIPK3 and IGF2BP2 mRNA targets compete for binding. Since the identified 11-mer motif found in circHIPK3 is enriched in upregulated genes following IGF2BP2 knockdown, and since IGF2BP2 depletion conversely globally antagonizes the effect of circHIPK3 knockdown on target genes, our results suggest that circHIPK3 can sequester IGF2BP2 as a competing endogenous RNA (ceRNA), leading to target mRNA stabilization. As an example of a circHIPK3-regulated gene, we focus on the STAT3 mRNA as a specific substrate of IGF2BP2 and validate that manipulation of circHIPK3 regulates IGF2BP2- STAT3 mRNA binding and thereby STAT3 mRNA levels. However, absolute copy number quantifications demonstrate that IGF2BP2 outnumbers circHIPK3 by orders of magnitude, which is inconsistent with a simple 1:1 ceRNA hypothesis. Instead, we show that circHIPK3 can nucleate multiple copies of IGF2BP2, potentially via phase separation, to produce IGF2BP2 condensates. Finally, we show that circHIPK3 expression correlates with overall survival of patients with bladder cancer. Our results are consistent with a model where relatively few cellular circHIPK3 molecules function as inducers of IGF2BP2 condensation thereby regulating STAT3 and other key factors for cell proliferation and potentially cancer progression.
Collapse
|
9
|
Cai H, Zhao J, Zhang Q, Wu H, Sun Y, Guo F, Zhou Y, Qin G, Xia W, Zhao Y, Liang X, Yin S, Qin Y, Li D, Wu H, Ren D. Ubiquitin ligase TRIM15 promotes the progression of pancreatic cancer via the upregulation of the IGF2BP2-TLR4 axis. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167183. [PMID: 38657551 DOI: 10.1016/j.bbadis.2024.167183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/17/2024] [Accepted: 04/15/2024] [Indexed: 04/26/2024]
Abstract
BACKGROUND The tripartite motif family, predominantly characterized by its E3 ubiquitin ligase activities, is involved in various cellular processes including signal transduction, apoptosis and autophagy, protein quality control, immune regulation, and carcinogenesis. Tripartite Motif Containing 15 (TRIM15) plays an important role in melanoma progression through extracellular signal-regulated kinase activation; however, data on its role in pancreatic tumors remain lacking. We previously demonstrated that TRIM15 targeted lipid synthesis and metabolism in pancreatic cancer; however, other specific regulatory mechanisms remain elusive. METHODS We used transcriptomics and proteomics, conducted a series of phenotypic experiments, and used a mouse orthotopic transplantation model to study the specific mechanism of TRIM15 in pancreatic cancer in vitro and in vivo. RESULTS TRIM15 overexpression promoted the progression of pancreatic cancer by upregulating the toll-like receptor 4. The TRIM15 binding protein, IGF2BP2, could combine with TLR4 to inhibit its mRNA degradation. Furthermore, the ubiquitin level of IGF2BP2 was positively correlated with TRIM15. CONCLUSIONS TRIM15 could ubiquitinate IGF2BP2 to enhance the function of phase separation and the maintenance of mRNA stability of TLR4. TRIM15 is a potential therapeutic target against pancreatic cancer.
Collapse
Affiliation(s)
- Hongkun Cai
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jingyuan Zhao
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Qiyue Zhang
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Heyu Wu
- Department of Operating Room, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yan Sun
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Feng Guo
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yingke Zhou
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Gengdu Qin
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Wentao Xia
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yuhan Zhao
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xueyi Liang
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shilin Yin
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yang Qin
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Dan Li
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Heshui Wu
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Dianyun Ren
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
10
|
Wu S, Dou T, Wang K, Yuan S, Yan S, Xu Z, Liu Y, Jian Z, Zhao J, Zhao R, Wu H, Gu D, Liu L, Li Q, Wu DD, Ge C, Su Z, Jia J. Artificial selection footprints in indigenous and commercial chicken genomes. BMC Genomics 2024; 25:428. [PMID: 38689225 PMCID: PMC11061962 DOI: 10.1186/s12864-024-10291-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/08/2024] [Indexed: 05/02/2024] Open
Abstract
BACKGROUND Although many studies have been done to reveal artificial selection signatures in commercial and indigenous chickens, a limited number of genes have been linked to specific traits. To identify more trait-related artificial selection signatures and genes, we re-sequenced a total of 85 individuals of five indigenous chicken breeds with distinct traits from Yunnan Province, China. RESULTS We found 30 million non-redundant single nucleotide variants and small indels (< 50 bp) in the indigenous chickens, of which 10 million were not seen in 60 broilers, 56 layers and 35 red jungle fowls (RJFs) that we compared with. The variants in each breed are enriched in non-coding regions, while those in coding regions are largely tolerant, suggesting that most variants might affect cis-regulatory sequences. Based on 27 million bi-allelic single nucleotide polymorphisms identified in the chickens, we found numerous selective sweeps and affected genes in each indigenous chicken breed and substantially larger numbers of selective sweeps and affected genes in the broilers and layers than previously reported using a rigorous statistical model. Consistent with the locations of the variants, the vast majority (~ 98.3%) of the identified selective sweeps overlap known quantitative trait loci (QTLs). Meanwhile, 74.2% known QTLs overlap our identified selective sweeps. We confirmed most of previously identified trait-related genes and identified many novel ones, some of which might be related to body size and high egg production traits. Using RT-qPCR, we validated differential expression of eight genes (GHR, GHRHR, IGF2BP1, OVALX, ELF2, MGARP, NOCT, SLC25A15) that might be related to body size and high egg production traits in relevant tissues of relevant breeds. CONCLUSION We identify 30 million single nucleotide variants and small indels in the five indigenous chicken breeds, 10 million of which are novel. We predict substantially more selective sweeps and affected genes than previously reported in both indigenous and commercial breeds. These variants and affected genes are good candidates for further experimental investigations of genotype-phenotype relationships and practical applications in chicken breeding programs.
Collapse
Affiliation(s)
- Siwen Wu
- Department of Bioinformatics and Genomics, The University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| | - Tengfei Dou
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Kun Wang
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Sisi Yuan
- Department of Bioinformatics and Genomics, The University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| | - Shixiong Yan
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Zhiqiang Xu
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Yong Liu
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Zonghui Jian
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Jingying Zhao
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Rouhan Zhao
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Hao Wu
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Dahai Gu
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Lixian Liu
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Qihua Li
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Dong-Dong Wu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| | - Changrong Ge
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China.
| | - Zhengchang Su
- Department of Bioinformatics and Genomics, The University of North Carolina at Charlotte, Charlotte, NC, 28223, USA.
| | - Junjing Jia
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China.
| |
Collapse
|
11
|
Jin M, Wang H, Liu G, Lu J, Yuan Z, Li T, Liu E, Lu Z, Du L, Wei C. Whole-genome resequencing of Chinese indigenous sheep provides insight into the genetic basis underlying climate adaptation. Genet Sel Evol 2024; 56:26. [PMID: 38565986 PMCID: PMC10988870 DOI: 10.1186/s12711-024-00880-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 01/31/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Chinese indigenous sheep are valuable resources with unique features and characteristics. They are distributed across regions with different climates in mainland China; however, few reports have analyzed the environmental adaptability of sheep based on their genome. We examined the variants and signatures of selection involved in adaptation to extreme humidity, altitude, and temperature conditions in 173 sheep genomes from 41 phenotypically and geographically representative Chinese indigenous sheep breeds to characterize the genetic basis underlying environmental adaptation in these populations. RESULTS Based on the analysis of population structure, we inferred that Chinese indigenous sheep are divided into four groups: Kazakh (KAZ), Mongolian (MON), Tibetan (TIB), and Yunnan (YUN). We also detected a set of candidate genes that are relevant to adaptation to extreme environmental conditions, such as drought-prone regions (TBXT, TG, and HOXA1), high-altitude regions (DYSF, EPAS1, JAZF1, PDGFD, and NF1) and warm-temperature regions (TSHR, ABCD4, and TEX11). Among all these candidate genes, eight ABCD4, CNTN4, DOCK10, LOC105608545, LOC121816479, SEM3A, SVIL, and TSHR overlap between extreme environmental conditions. The TSHR gene shows a strong signature for positive selection in the warm-temperature group and harbors a single nucleotide polymorphism (SNP) missense mutation located between positions 90,600,001 and 90,650,001 on chromosome 7, which leads to a change in the protein structure of TSHR and influences its stability. CONCLUSIONS Analysis of the signatures of selection uncovered genes that are likely related to environmental adaptation and a SNP missense mutation in the TSHR gene that affects the protein structure and stability. It also provides information on the evolution of the phylogeographic structure of Chinese indigenous sheep populations. These results provide important genetic resources for future breeding studies and new perspectives on how animals can adapt to climate change.
Collapse
Affiliation(s)
- Meilin Jin
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Huihua Wang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Gang Liu
- National Animal Husbandry Service, National Center of Preservation and Utilization of Animal Genetic Resources, Beijing, China
| | - Jian Lu
- National Animal Husbandry Service, National Center of Preservation and Utilization of Animal Genetic Resources, Beijing, China
| | - Zehu Yuan
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Taotao Li
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Engming Liu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zengkui Lu
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lan-Zhou, China
| | - Lixin Du
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.
| | - Caihong Wei
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
12
|
Lu F, Gao G, Zhang H, Zhang W. The relationship between polymorphism of IGF2BP2 gene rs4402960 and risk of pan-cancer: a meta-analysis and a bioinformatics analysis. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2024:1-17. [PMID: 38555596 DOI: 10.1080/15257770.2024.2333036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 03/14/2024] [Indexed: 04/02/2024]
Abstract
OBJECTIVE To conduct a meta-analysis and a bioinformatics analysis to assess the relationship between IGF2BP2 gene polymorphism and pan-cancer risk. METHODS PubMed, EMBASE, and Web of Science were conducted to literature searches. The heterogeneity test was used in five genetic models. Odds ratios (OR), 95% confidence intervals (CI), and p-values were used to evaluate the combined effects of various genetic models. Subgroup analysis and Meta-regression analysis were used to analyze the characteristics of heterogeneity. Sensitivity analysis and publication bias were also performed. Transcriptomic information on IGF2BP2 was downloaded and analyzed from the TCGA and GTEx databases. GEPIA (http://gepia.cancer-pku.cn/) was performed to analyze the relationship between IGF2BP2 expression and cancer tissue. RESULTS This meta-analysis contained 7 case-control studies, with 5,908 cases and 7,890 controls. There were significant differences in the heterozygous genetic model of IGF2BP2 gene rs4402960 polymorphism (OR = 1.080, 95% CI = 1.003-1.163, p = 0.041). In subgroup analysis based on ethnicity, There was a statistical significant association in Chinese (heterozygous: OR = 1.110, 95% CI = 1.010-1.220, p = 0.030). Bioinformatics analysis found that IGF2BP2 was over-expressed in pan-cancer (p < 0.01). In addition, the Kaplan-Meier estimate showed that there is statistical significance of OS between the low and high IGF2BP2 TPM groups in Lung adenocarcinoma (p <0.001). CONCLUSIONS To sum up, IGF2BP2 gene polymorphism may be related to cancer risk. IGF2BP2 has diagnostic value in the diagnosis and treatment of pan-cancer.
Collapse
Affiliation(s)
- Fengke Lu
- Department of Blood Transfusion, Liuzhou Hospital, Guangzhou Women and Children's Medical Center, Liuzhou, Guangxi, China
| | - Gan Gao
- Department of Clinical Laboratory, Liuzhou Hospital, Guangzhou Women and Children's Medical Center, Liuzhou, Guangxi, China
| | - Hongyu Zhang
- Department of Clinical Laboratory, The Third Affiliated Hospital of Guangxi University of Chinese Medicine, Liuzhou Traditional Chinese Medical Hospital, The Third Clinical Faculty of Guangxi University of Chinese Medicine, Liuzhou, Guangxi, China
| | - Wei Zhang
- Department of Clinical Laboratory, Guilin TCM Hospital Affiliated to Guangxi University of Chinese Medicine, Guilin, Guangxi, China
| |
Collapse
|
13
|
Yan L, Sun J, Wang Y, Liu X, Hu J, Sun M, Suo X, Duan R, Yuan C. Lin28 affects the proliferation and osteogenic differentiation of human dental pulp stem cells by directly inhibiting let-7b maturation. BDJ Open 2024; 10:17. [PMID: 38443392 PMCID: PMC10914815 DOI: 10.1038/s41405-024-00194-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/23/2024] [Accepted: 01/27/2024] [Indexed: 03/07/2024] Open
Abstract
OBJECTIVE Activation of Lin28 gene under certain conditions promotes tissue damage repair. However, it remains unknown whether conditional expression of Lin28 facilitates the recovery of damaged pulp tissue. In the study, we focus on exploring the effects and possible regulatory mechanisms of Lin28 on the proliferation and differentiation of human dental pulp stem cells (hDPSCs). MATERIALS AND METHODS We adopted techniques such as the ethynyl-2'-deoxyuridine (EdU) incorporation assay, RNA-protein immunoprecipitation (RIP) analysis, and luciferase assays to study the regulation of hDPSCs by Lin28. Furthermore, gain-of-function and loss-of-function analyses were also used in explored factors regulating hDPSCs activation. RESULTS The results show that Lin28 inhibited osteogenic differentiation by directly targets pre-let-7b. Through bioinformatics sequencing and dual luciferase experiments we learned that let-7b directly targets the IGF2BP2 3'UTR. Silencing of IGF2BP2 showed a similar biological effect as overexpression of let-7b. Overexpression of IGF2BP2 counteracted the differentiation-promoting effects produced by let-7b overexpression. DISCUSSION/CONCLUSIONS In conclusion, the RNA-binding protein Lin28 regulates osteogenic differentiation of hDPSCs by inhibiting let-7 miRNA maturation. And mature let-7b directly regulated the expression of IGF2BP2 by targeting the 3'UTR region of IGF2BP2 mRNA thus further inhibiting the differentiation of hDPSCs.
Collapse
Affiliation(s)
- Liu Yan
- School of Stomatology, Xuzhou Medical University, No.209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
- Affiliated Stomatological Hospital of Xuzhou Medical University, No.130 Huaihai West Road, Xuzhou, 221000, Jiangsu, China
| | - Jing Sun
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Yushan Wang
- School of Stomatology, Xuzhou Medical University, No.209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Xinxin Liu
- School of Stomatology, Xuzhou Medical University, No.209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Jiayi Hu
- School of Stomatology, Xuzhou Medical University, No.209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Mengxin Sun
- School of Stomatology, Xuzhou Medical University, No.209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Xi Suo
- School of Stomatology, Xuzhou Medical University, No.209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Rongquan Duan
- School of Stomatology, Xuzhou Medical University, No.209 Tongshan Road, Xuzhou, 221004, Jiangsu, China.
| | - Changyong Yuan
- School of Stomatology, Xuzhou Medical University, No.209 Tongshan Road, Xuzhou, 221004, Jiangsu, China.
- Affiliated Stomatological Hospital of Xuzhou Medical University, No.130 Huaihai West Road, Xuzhou, 221000, Jiangsu, China.
| |
Collapse
|
14
|
Luo G, Gong R, Ai Y, Zhu T, Ren Z. Identification of N6-Methyladenosine-Related Factors and the Prediction of the Regulatory Mechanism of Hair Follicle Development in Rex and Hycole Rabbits. BIOLOGY 2023; 12:1448. [PMID: 37998047 PMCID: PMC10669094 DOI: 10.3390/biology12111448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 11/25/2023]
Abstract
Hair follicle development directly affects the development of the rabbit fur industry. The growth and development of a hair follicle is modified and regulated by many genes and mechanisms. M6A is an important RNA modification. However, there are few studies on the effects of the regulation of m6A on hair follicle growth and development. In this study, hematoxylin-eosin (HE) staining was used to explore the difference in hair follicle development between Rex rabbits and Hycole rabbits, and we performed m6A sequencing to identify the key genes with m6A modification in hair follicle growth. The results showed that the hair length, coarse hair percentage, primary hair follicle ratio, and skin thickness of Hycole rabbits were significantly higher than those of Rex rabbits. However, the proportion of secondary hair follicles in Hycole rabbits was significantly lower than that in Rex rabbits. In addition, we found five differential methylases, 20 differential genes, and 24 differential signaling pathways related to hair growth and development. The results of the Sankey diagram showed that 12 genes were related to 13 signal pathways. Finally, we found that five methylases regulated the development of hair follicles through differential genes/signal pathways. These findings laid a molecular foundation for the function of m6A modification in hair development.
Collapse
Affiliation(s)
- Gang Luo
- College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China; (G.L.); (R.G.); (Y.A.); (T.Z.)
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350000, China
| | - Ruiguang Gong
- College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China; (G.L.); (R.G.); (Y.A.); (T.Z.)
| | - Yaotian Ai
- College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China; (G.L.); (R.G.); (Y.A.); (T.Z.)
| | - Tongyan Zhu
- College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China; (G.L.); (R.G.); (Y.A.); (T.Z.)
| | - Zhanjun Ren
- College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China; (G.L.); (R.G.); (Y.A.); (T.Z.)
| |
Collapse
|
15
|
Zhao X, Chen J, Zhang C, Xie G, Othmane B, Kuang X, Liu B. LncRNA AGAP2-AS1 interacts with IGF2BP2 to promote bladder cancer progression via regulating LRG1 mRNA stability. Cell Signal 2023; 111:110839. [PMID: 37541640 DOI: 10.1016/j.cellsig.2023.110839] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/28/2023] [Accepted: 08/01/2023] [Indexed: 08/06/2023]
Abstract
BACKGROUND The long non-coding RNA (lncRNA) AGAP2-AS1 was implicated in tumorigenesis, yet with unclear mechanism in the development of Bladder Cancer (BCa). METHODS We collected the clinicopathological features and tissue samples of 45 patients with BCa in Xiangya Hospital. Expressions of AGAP2-AS1 and LRG1 were detected by RT-qPCR in BCa tissues and normal tissues as well as in BCa cells. The roles of AGAP2-AS1 and LRG1 were investigated by CCK-8, colony formation assay, transwell assays and tube formation assay. The subcellular localization of AGAP2-AS1 was detected by Fluorescence in situ hybridization. Bioinformatics method, RNA immunoprecipitation, RNA pull-down assay and Actinomycin D test were used to predict and identify the relationships between AGAP2-AS1, LRG1 and IGF2BP2. Xenografted tumors were produced to explore the function of AGAP2-AS1 in BCa in vivo. RESULTS AGAP2-AS1 and LRG1 were highly upregulated in BCa. AGAP2-AS1 positively correlated with T stage, grade and vascular invasion, but negatively correlated with the survival of patients. Overexpressions of AGAP2-AS1 promoted proliferation, migration, invasion, tumor angiogenesis in vitro and tumor growth, metastasis in vivo, knockdown of AGAP2-AS1 exhibited the opposite effects. AGAP2-AS1 localized mainly in the cytoplasm. AGAP2-AS1 directly bound to IGF2BP2 protein to enhance LRG1 mRNA stability. Inhibition of BCa progression by AGAP2-AS1 knockdown may be reversed by LRG1 overexpression. CONCLUSION AGAP2-AS1 can promote BCa progression and metastasis by recruiting IGF2BP2 to stabilize LRG1.
Collapse
Affiliation(s)
- Xu Zhao
- Department of Urology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, PR China; Department of Urology, Guizhou Provincial People's Hospital, Guiyang 550001, Guizhou, PR China
| | - Jinbo Chen
- Department of Urology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, PR China
| | - Chunyu Zhang
- Department of Urology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, PR China
| | - Guoou Xie
- Department of Urology, Hunan Aerospace Hospital, Changsha 410008, Hunan, PR China
| | - Belaydi Othmane
- Department of Urology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, PR China
| | - Xiaogen Kuang
- Department of Urology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, PR China; Department of Urology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China.
| | - Bolong Liu
- Department of Urology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, PR China; Department of Andrology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China.
| |
Collapse
|
16
|
Zhang Z, Ren P, Cao Y, Wang T, Huang G, Li Y, Zhou S, Yang W, Yang L, Liu G, Xiang Y, Pei Y, Chen Q, Chen J, Lv S. HOXD-AS2-STAT3 feedback loop attenuates sensitivity to temozolomide in glioblastoma. CNS Neurosci Ther 2023; 29:3430-3445. [PMID: 37308741 PMCID: PMC10580348 DOI: 10.1111/cns.14277] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/11/2023] [Accepted: 05/13/2023] [Indexed: 06/14/2023] Open
Abstract
AIMS Glioblastoma multiforme (GBM) is the deadliest glioma and its resistance to temozolomide (TMZ) remains intractable. Long non-coding RNAs (lncRNAs) play crucial roles in that and this study aimed to investigate underlying mechanism of HOXD-AS2-affected temozolomide sensitivity in glioblastoma. METHODS We analyzed and validated the aberrant HOXD-AS2 expression in glioma specimens. Then we explored the function of HOXD-AS2 in vivo and in vitro and a clinical case was also reviewed to examine our findings. We further performed mechanistic experiments to investigate the mechanism of HOXD-AS2 in regulating TMZ sensitivity. RESULTS Elevated HOXD-AS2 expression promoted progression and negatively correlated with prognosis of glioma; HOXD-AS2 attenuated temozolomide sensitivity in vitro and in vivo; The clinical case also showed that lower HOXD-AS2 sensitized glioblastoma to temozolomide; STAT3-induced HOXD-AS2 could interact with IGF2BP2 protein to form a complex and sequentially upregulate STAT3 signaling, thus forming a positive feedback loop regulating TMZ sensitivity in glioblastoma. CONCLUSION Our study elucidated the crucial role of the HOXD-AS2-STAT3 positive feedback loop in regulating TMZ sensitivity, suggesting that this could be provided as a potential therapeutic candidate of glioblastoma.
Collapse
Affiliation(s)
- Zuo‐Xin Zhang
- Department of Neurosurgery, Xinqiao HospitalThird Military Medical University (Army Medical University)ChongqingChina
| | - Peng Ren
- Department of Neurosurgery, Xinqiao HospitalThird Military Medical University (Army Medical University)ChongqingChina
| | - Yong‐Yong Cao
- School of MedicineChongqing UniversityChongqingChina
| | - Ting‐Ting Wang
- Department of Neurosurgery, Xinqiao HospitalThird Military Medical University (Army Medical University)ChongqingChina
| | - Guo‐Hao Huang
- Department of Neurosurgery, Xinqiao HospitalThird Military Medical University (Army Medical University)ChongqingChina
| | - Yao Li
- Department of Neurosurgery, Xinqiao HospitalThird Military Medical University (Army Medical University)ChongqingChina
| | - Shuo Zhou
- School of MedicineChongqing UniversityChongqingChina
| | - Wei Yang
- Department of Neurosurgery, Xinqiao HospitalThird Military Medical University (Army Medical University)ChongqingChina
| | - Lin Yang
- Department of Neurosurgery, Xinqiao HospitalThird Military Medical University (Army Medical University)ChongqingChina
| | - Guo‐Long Liu
- Department of Neurosurgery, Xinqiao HospitalThird Military Medical University (Army Medical University)ChongqingChina
| | - Yan Xiang
- Department of Neurosurgery, Xinqiao HospitalThird Military Medical University (Army Medical University)ChongqingChina
| | - Yu‐Chun Pei
- Department of Neurosurgery, Xinqiao HospitalThird Military Medical University (Army Medical University)ChongqingChina
| | - Qiu‐Zi Chen
- Department of Neurosurgery, Xinqiao HospitalThird Military Medical University (Army Medical University)ChongqingChina
| | - Ju‐Xiang Chen
- Department of NeurosurgeryChanghai Hospital, Second Military Medical UniversityShanghaiChina
| | - Sheng‐Qing Lv
- Department of Neurosurgery, Xinqiao HospitalThird Military Medical University (Army Medical University)ChongqingChina
| |
Collapse
|
17
|
Yi J, Peng F, Zhao J, Gong X. METTL3/IGF2BP2 axis affects the progression of colorectal cancer by regulating m6A modification of STAG3. Sci Rep 2023; 13:17292. [PMID: 37828232 PMCID: PMC10570365 DOI: 10.1038/s41598-023-44379-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 10/07/2023] [Indexed: 10/14/2023] Open
Abstract
Colorectal cancer (CRC) is among the commonest malignant tumors of humans. Existing evidence has linked the poor prognosis of CRC with high expression of stromal antigen 3 (STAG3), but, the exact biological effect of STAG3 in CRC is still unclear. The aim of this research is to reveal the biological function and molecular mechanism of STAG3 in CRC. To investigate the differential expression of STAG3 in CRC tissues and cell lines compared to normal colon tissues and cell lines, Western blot (WB) and quantitative real-time PCR (qRT-PCR) techniques were utilized. STAG3 N6-methyladenosine (m6A) modification level were identified using m6A RNA immunoprecipitation (MeRIP). Additionally, the functional roles of methyltransferase-like protein 3 (METTL3) and insulin-like growth factor 2 mRNA binding protein 2 (IGF2BP2) in CRC were explored by manipulating their levels via knockdown or overexpression. Cell proliferation was evaluated through Cell Counting Kit 8 (CCK-8) and clone formation experiments, while cell migration was assessed through wound healing experiments. Furthermore, cell apoptosis was detected using flow cytometry, and the protein expressions associated with proliferation and apoptosis were detected using WB. To identify the specific binding of target genes, RIP and pull-down assays were employed. Finally, the biological function of STAG3 in vivo was investigated through a xenotransplantation mouse tumor model. In CRC tissues and cell lines, STAG3 was up-regulated and accompanied by m6A methylation. Additionally, the expression of METTL3 was found to be upregulated in CRC tissues. Knocking down METTL3 resulted in a decrease in both the m6A level and protein expression of STAG3, inhibited cell proliferation and migration while promoting apoptosis, which were restored through STAG3 overexpression. Furthermore, online prediction indicated the interaction between STAG3 mRNA and IGF2BP2 protein, which was further verified by RIP experiments. IGF2BP2 downregulation led to decreased STAG3 protein expression, cell proliferation, and migration, but increased apoptosis. However, these impacts were reversed by STAG3 overexpression. Finally, subcutaneous tumor experiments conducted in nude mice also confirmed that METTL3 regulated CRC progression through STAG3 in vivo. The METTL3/IGF2BP2/STAG3 axis affects CRC progression in an m6A modification-dependent manner. This may guide targeted therapy in CRC patients.
Collapse
Affiliation(s)
- Jianmei Yi
- The Department of General Surgery 2, Zhuzhou Central Hospital (Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University), 116 Changjiang South Road, Tianyuan District, Zhuzhou, 412007, Hunan, China
| | - Feng Peng
- The Department of General Surgery 2, Zhuzhou Central Hospital (Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University), 116 Changjiang South Road, Tianyuan District, Zhuzhou, 412007, Hunan, China
| | - Jingli Zhao
- The Department of Operating Room, Zhuzhou Central Hospital (Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University), Zhuzhou, 412007, China
| | - Xiaosong Gong
- The Department of General Surgery 2, Zhuzhou Central Hospital (Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University), 116 Changjiang South Road, Tianyuan District, Zhuzhou, 412007, Hunan, China.
| |
Collapse
|
18
|
Zhou W, Gao Q, He C, Wang L, Wang Y, Feng L, Li W, Liu W, Ma R, Liu L. Association Between Polymorphism in Diabetes Susceptibility Gene Insulin-Like Growth Factor 2mRNA-Binding Protein 2 and Risk of Diffuse Large B-Cell Lymphoma. Clin Med Insights Oncol 2023; 17:11795549231201128. [PMID: 37823009 PMCID: PMC10563465 DOI: 10.1177/11795549231201128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/28/2023] [Indexed: 10/13/2023] Open
Abstract
Background Numerous studies have shown that polymorphisms in the diabetes susceptibility gene, insulin-like growth factor 2mRNA-binding protein 2 (IGF2BP2), are associated with the occurrence and development of various malignant tumors; however, their correlation with the onset of diffuse large B-cell lymphoma (DLBCL) is still unknown. Therefore, this study aimed to explore whether IGF2BP2 polymorphisms increase the risk of developing DLBCL. Methods This study included 295 DLBCL patients and 331 healthy individuals. Peripheral blood was collected, and polymerase chain reaction-ligase detection reaction (PCR-LDR) was used to detect IGF2BP2 gene polymorphisms. Logistic regression was used to assess the association between IGF2BP2 polymorphism and the risk of DLBCL, adjusted for age, sex, and body mass index (BMI). P < .05 indicated statistical significance. Results The rs4402960 polymorphism in the IGF2BP2 gene was associated with the occurrence and development of DLBCL. After adjusting for age, sex, and BMI, GT (odd ratio [OR] = 1.54; 95% confidence interval [CI] = 1.08-2.19; P = .016), TT (OR = 2.00; 95% CI = 1.09-3.68; P = .026), and T genotype carrying (GT + TT) (OR = 1.62; 95% CI = 1.17-2.25; P = .004) significantly increased the risk of DLBCL. This study also found that the polymorphism rs1470579 was related to the development of DLBCL. After adjusting for age, sex, and BMI, AC (OR = 1.55; 95% CI = 1.11-2.17; P = .010), CC (OR = 2.18; 95% CI = 1.17-4.06; P = .014), and C genotype carrying (AC + CC) (OR = 1.64; 95% CI = 1.19-2.26; P = .002) significantly increased the risk of DLBCL. Conclusions Our study found that polymorphism in the IGF2BP2 gene was associated with an increased risk of developing DLBCL.
Collapse
Affiliation(s)
- Weiling Zhou
- Department of Endocrine and Metabolic Diseases, The Fourth Hospital of Hebei Medical University, Shijiazhuang, P.R. China
| | - Qian Gao
- Department of Endocrine and Metabolic Diseases, The Fourth Hospital of Hebei Medical University, Shijiazhuang, P.R. China
| | - Cuiying He
- Department of Hematology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, P.R. China
| | - Lianjing Wang
- Department of Hematology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, P.R. China
| | - Yuan Wang
- Department of Endocrine and Metabolic Diseases, The Fourth Hospital of Hebei Medical University, Shijiazhuang, P.R. China
| | - Lei Feng
- Department of Endocrine and Metabolic Diseases, The Fourth Hospital of Hebei Medical University, Shijiazhuang, P.R. China
| | - Weijing Li
- Department of Hematology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, P.R. China
| | - Wei Liu
- Department of Hematology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, P.R. China
| | - Ruijuan Ma
- Department of Hematology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, P.R. China
| | - Lihong Liu
- Department of Hematology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, P.R. China
| |
Collapse
|
19
|
Chen LJ, Liu HY, Xiao ZY, Qiu T, Zhang D, Zhang LJ, Han FY, Chen GJ, Xu XM, Zhu JH, Ding YQ, Wang SY, Ye YP, Jiao HL. IGF2BP3 promotes the progression of colorectal cancer and mediates cetuximab resistance by stabilizing EGFR mRNA in an m 6A-dependent manner. Cell Death Dis 2023; 14:581. [PMID: 37658049 PMCID: PMC10474290 DOI: 10.1038/s41419-023-06099-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 08/13/2023] [Accepted: 08/21/2023] [Indexed: 09/03/2023]
Abstract
Insulin-like growth factor 2 mRNA-binding protein 3 (IGF2BP3), an RNA-binding protein, is associated with tumorigenesis and progression. However, the exact molecular mechanisms of IGF2BP3 in colorectal cancer (CRC) oncogenesis, progression, and drug resistance remain unclear. This study found that IGF2BP3 was upregulated in CRC tissues. Clinically, the elevated IGF2BP3 level is predictive of a poor prognosis. Functionally, IGF2BP3 enhances CRC tumorigenesis and progression both in vitro and in vivo. Mechanistically, IGF2BP3 promotes epidermal growth factor receptor (EGFR) mRNA stability and translation and further activates the EGFR pathway by serving as a reader in an N6-methyladenosine (m6A)-dependent manner by cooperating with METTL14. Furthermore, IGF2BP3 increases the drug resistance of CRC cells to the EGFR-targeted antibody cetuximab. Taken together, our results demonstrated that IGF2BP3 was a functional and clinical oncogene of CRC. Targeting IGF2BP3 and m6A modification may therefore offer rational therapeutic targets for patients with CRC.
Collapse
Affiliation(s)
- Li-Jie Chen
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| | - Hui-Ye Liu
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| | - Zhi-Yuan Xiao
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
- Department of Pathology, Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, Shenzhen, Guangdong, China
| | - Ting Qiu
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| | - Dan Zhang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| | - Ling-Jie Zhang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| | - Fang-Yi Han
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| | - Guo-Jun Chen
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| | - Xue-Mei Xu
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| | - Jiong-Hua Zhu
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| | - Yan-Qing Ding
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| | - Shu-Yang Wang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| | - Ya-Ping Ye
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, China.
| | - Hong-Li Jiao
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, China.
| |
Collapse
|
20
|
Xu Z, Pei C, Cheng H, Song K, Yang J, Li Y, He Y, Liang W, Liu B, Tan W, Li X, Pan X, Meng L. Comprehensive analysis of FOXM1 immune infiltrates, m6a, glycolysis and ceRNA network in human hepatocellular carcinoma. Front Immunol 2023; 14:1138524. [PMID: 37234166 PMCID: PMC10208224 DOI: 10.3389/fimmu.2023.1138524] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 04/26/2023] [Indexed: 05/27/2023] Open
Abstract
Background Forkhead box M1 (FOXM1) is a member of the Forkhead box (Fox) transcription factor family. It regulates cell mitosis, cell proliferation, and genome stability. However, the relationship between the expression of FOXM1 and the levels of m6a modification, immune infiltration, glycolysis, and ketone body metabolism in HCC has yet to be fully elucidated. Methods Transcriptome and somatic mutation profiles of HCC were downloaded from the TCGA database. Somatic mutations were analyzed by maftools R package and visualized in oncoplots. GO, KEGG and GSEA function enrichment was performed on FOXM1 co-expression using R. We used Cox regression and machine learning algorithms (CIBERSORT, LASSO, random forest, and SVM-RFE) to study the prognostic value of FOXM1 and immune infiltrating characteristic immune cells in HCC. The relationship between FOXM1 and m6A modification, glycolysis, and ketone body metabolism were analyzed by RNA-seq and CHIP-seq. The competing endogenous RNA (ceRNA) network construction relies on the multiMiR R package, ENCORI, and miRNET platforms. Results FOXM1 is highly expressed in HCC and is associated with a poorer prognosis. At the same time, the expression level of FOXM1 is significantly related to the T, N, and stage. Subsequently, based on the machine learning strategies, we found that the infiltration level of T follicular helper cells (Tfh) was a risk factor affecting the prognosis of HCC patients. The high infiltration of Tfh was significantly related to the poor overall survival rate of HCC. Besides, the CHIP-seq demonstrated that FOXM1 regulates m6a modification by binding to the promoter of IGF2BP3 and affects the glycolytic process by initiating the transcription of HK2 and PKM in HCC. A ceRNA network was successfully obtained, including FOXM1 - has-miR-125-5p - DANCR/MIR4435-2HG ceRNA network related to the prognosis of HCC. Conclusion Our study implicates that the aberrant infiltration of Tfh associated with FOXM1 is a crucial prognostic factor for HCC patients. FOXM1 regulates genes related to m6a modification and glycolysis at the transcriptional level. Furthermore, the specific ceRNA network can be used as a potential therapeutic target for HCC.
Collapse
Affiliation(s)
- Ziwu Xu
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
- College of Biology, Hunan University, Changsha, China
| | - Chaozhu Pei
- College of Biology, Hunan University, Changsha, China
| | - Haojie Cheng
- College of Biology, Hunan University, Changsha, China
| | - Kaixin Song
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Junting Yang
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Yuhang Li
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Yue He
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Wenxuan Liang
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Biyuan Liu
- School of Medical, Hunan University of Chinese Medicine, Changsha, China
| | - Wen Tan
- Department of Pathology, Changsha Hospital of Traditional Chinese Medicine, Changsha Eighth Hospital, Changsha, China
| | - Xia Li
- Department of General Surgery, People's Hospital of Hunan Province, Changsha, China
| | - Xue Pan
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Lei Meng
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
21
|
Liu TY, Hu CC, Han CY, Mao SY, Zhang WX, Xu YM, Sun YJ, Jiang DB, Zhang XY, Zhang JX, Wang J, Qiao XP, Pan JY, Yang SY, Yang K. IGF2BP2 promotes colorectal cancer progression by upregulating the expression of TFRC and enhancing iron metabolism. Biol Direct 2023; 18:19. [PMID: 37088822 PMCID: PMC10122817 DOI: 10.1186/s13062-023-00373-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 04/11/2023] [Indexed: 04/25/2023] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is one of the most common malignant tumors of the digestive system, ranking third for morbidity and mortality worldwide. At present, no effective control method is available for this cancer type. In tumor cells, especially iron metabolization, is necessary for its growth and proliferation. High levels of iron are an important feature to maintain tumor growth; however, the overall mechanism remains unclear. METHODS We used western blotting, immunohistochemistry (IHC) and real-time quantitative PCR to analyze the expression of IGF2BP2 in cell lines and tissues. Further, RNA-sequencing, RNA immunoprecipitation and methylated RNA immunoprecipitation experiments explored the specific binding of target genes. Moreover, the RNA stability assay was performed to determine the half-life of genes downstream of IGF2BP2. In addition, the Cell Counting Kit-8, colony formation assay, 5-ethynyl-2'-deoxyuridine assay and flow cytometry were used to evaluate the effects of IGF2BP2 on proliferation and iron metabolism. Lastly, the role of IGF2BP2 in promoting CRC growth was demonstrated in animal models. RESULTS We observed that IGF2BP2 is associated with iron homeostasis and that TFRC is a downstream target of IGF2BP2. Further, overexpression of TFRC can rescue the growth of IGF2BP2-knockdown CRC cells. Mechanistically, we determined that IGF2BP2 regulates TFRC methylation via METTL4, thereby regulating iron metabolism and promoting CRC growth. Furthermore, using animal models, we observed that IGF2BP2 promotes CRC growth. CONCLUSION IGF2BP2 regulates TFRC mRNA methylation via METTL4, thereby regulating iron metabolism and promoting CRC growth. Our study highlights the key roles of IGF2BP2 in CRC carcinogenesis and the iron transport pathways.
Collapse
Affiliation(s)
- Tian-Yue Liu
- Department of Immunology, the Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Chen-Chen Hu
- Department of Immunology, the Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Chen-Ying Han
- Department of Immunology, the Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Si-Yi Mao
- School of Basic Medicine, the Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Wen-Xin Zhang
- School of Basic Medicine, the Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Yi-Ming Xu
- School of Basic Medicine, the Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Yuan-Jie Sun
- Department of Immunology, the Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Dong-Bo Jiang
- Department of Immunology, the Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Xi-Yang Zhang
- Military Medical Innovation Center, the Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Jia-Xing Zhang
- Department of Immunology, the Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Jing Wang
- Department of Immunology, the Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Xu-Peng Qiao
- College of medical technology, Shaanxi University of traditional Chinese Medicine, Xianyang, Shaanxi, 712046, China
| | - Jing-Yu Pan
- Department of Immunology, the Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Shu-Ya Yang
- Department of Immunology, the Fourth Military Medical University, Xi'an, Shaanxi, 710032, China.
| | - Kun Yang
- Department of Immunology, the Fourth Military Medical University, Xi'an, Shaanxi, 710032, China.
- Department of Rheumatology and Immunology, Tangdu Hospital of the Air Force Medical University, Xi'an, Shaanxi, 710038, China.
| |
Collapse
|
22
|
The Emerging Role of m6A Modification in Endocrine Cancer. Cancers (Basel) 2023; 15:cancers15041033. [PMID: 36831377 PMCID: PMC9954123 DOI: 10.3390/cancers15041033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/29/2023] [Accepted: 02/02/2023] [Indexed: 02/10/2023] Open
Abstract
With the development of RNA modification research, N6-methyladenosine (m6A) is regarded as one of the most important internal epigenetic modifications of eukaryotic mRNA. It is also regulated by methylase, demethylase, and protein preferentially recognizing the m6A modification. This dynamic and reversible post-transcriptional RNA alteration has steadily become the focus of cancer research. It can increase tumor stem cell self-renewal and cell proliferation. The m6A-modified genes may be the primary focus for cancer breakthroughs. Although some endocrine cancers are rare, they may have a high mortality rate. As a result, it is critical to recognize the significance of endocrine cancers and identify new therapeutic targets that will aid in improving disease treatment and prognosis. We summarized the latest experimental progress in the m6A modification in endocrine cancers and proposed the m6A alteration as a potential diagnostic marker for endocrine malignancies.
Collapse
|
23
|
Song D, Shang J, Long Y, Zhong M, Li L, Chen J, Xiang Y, Tan H, Zhu H, Hong X, Hou FF, Fu H, Liu Y. Insulin-like growth factor 2 mRNA-binding protein 3 promotes kidney injury by regulating β-catenin signaling. JCI Insight 2023; 8:162060. [PMID: 36520532 PMCID: PMC9977311 DOI: 10.1172/jci.insight.162060] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
Wnt/β-catenin is a developmental signaling pathway that plays a crucial role in driving kidney fibrosis after injury. Activation of β-catenin is presumed to be regulated through the posttranslational protein modification. Little is known about whether β-catenin is also subjected to regulation at the posttranscriptional mRNA level. Here, we report that insulin-like growth factor 2 mRNA-binding protein 3 (IGF2BP3) plays a pivotal role in regulating β-catenin. IGF2BP3 was upregulated in renal tubular epithelium of various animal models and patients with chronic kidney disease. IGF2BP3 not only was a direct downstream target of Wnt/β-catenin but also was obligatory for transducing Wnt signal. In vitro, overexpression of IGF2BP3 in kidney tubular cells induced fibrotic responses, whereas knockdown of endogenous IGF2BP3 prevented the expression of injury and fibrosis markers in tubular cells after Wnt3a stimulation. In vivo, exogenous IGF2BP3 promoted β-catenin activation and aggravated kidney fibrosis, while knockdown of IGF2BP3 ameliorated renal fibrotic lesions after obstructive injury. RNA immunoprecipitation and mRNA stability assays revealed that IGF2BP3 directly bound to β-catenin mRNA and stabilized it against degradation. Furthermore, knockdown of IGF2BP3 in tubular cells accelerated β-catenin mRNA degradation in vitro. These studies demonstrate that IGF2BP3 promotes β-catenin signaling and drives kidney fibrosis, which may be mediated through stabilizing β-catenin mRNA. Our findings uncover a previously underappreciated dimension of the complex regulation of Wnt/β-catenin signaling and suggest a potential target for therapeutic intervention of fibrotic kidney diseases.
Collapse
Affiliation(s)
- Dongyan Song
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, and Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jingyue Shang
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, and Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yinyi Long
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, and Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Menghua Zhong
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, and Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Li Li
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, and Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jiongcheng Chen
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, and Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yadie Xiang
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, and Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Huishi Tan
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, and Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Haili Zhu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, and Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xue Hong
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, and Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Fan Fan Hou
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, and Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Haiyan Fu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, and Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Youhua Liu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, and Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
24
|
Regué L, Wang W, Ji F, Avruch J, Wang H, Dai N. Human T2D-Associated Gene IMP2/IGF2BP2 Promotes the Commitment of Mesenchymal Stem Cells Into Adipogenic Lineage. Diabetes 2023; 72:33-44. [PMID: 36219823 PMCID: PMC9797317 DOI: 10.2337/db21-1087] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 10/06/2022] [Indexed: 01/19/2023]
Abstract
Excessive adiposity is the main cause of obesity and type two diabetes (T2D). Variants in human IMP2/IGF2BP2 gene are associated with increased risk of T2D. However, little is known about its role in adipogenesis and in insulin resistance. Here, we investigate the function of IMP2 during adipocyte development. Mice with Imp2 deletion in mesenchymal stem cells (MSC) are resistant to diet-induced obesity without glucose and insulin tolerance affected. Imp2 is essential for the early commitment of adipocyte-derived stem cells (ADSC) into preadipocytes, but the deletion of Imp2 in MSC is not required for the proliferation and terminal differentiation of committed preadipocytes. Mechanistically, Imp2 binds Wnt receptor Fzd8 mRNA and promotes its degradation by recruiting CCR4-NOT deadenylase complex in an mTOR-dependent manner. Our data demonstrate that Imp2 is required for maintaining white adipose tissue homeostasis through controlling mRNA stability in ADSC. However, the contribution of IMP2 to insulin resistance, a main risk of T2D, is not evident.
Collapse
Affiliation(s)
- Laura Regué
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA
- Diabetes Unit of the Medical Services, Massachusetts General Hospital, Boston, MA
- Department of Medicine, Harvard Medical School, Boston, MA
| | - William Wang
- The Lundquist Institute, Torrance, CA
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Fei Ji
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA
- Department of Medicine, Harvard Medical School, Boston, MA
| | - Joseph Avruch
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA
- Diabetes Unit of the Medical Services, Massachusetts General Hospital, Boston, MA
- Department of Medicine, Harvard Medical School, Boston, MA
| | - Hua Wang
- The Lundquist Institute, Torrance, CA
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Ning Dai
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA
- Diabetes Unit of the Medical Services, Massachusetts General Hospital, Boston, MA
- Department of Medicine, Harvard Medical School, Boston, MA
| |
Collapse
|
25
|
Wu EY, Huang LP, Bao JH. miR-96-5p regulates cervical cancer cell resistance to cisplatin by inhibiting lncRNA TRIM52-AS1 and promoting IGF2BP2. Kaohsiung J Med Sci 2022; 38:1178-1189. [PMID: 36354205 DOI: 10.1002/kjm2.12593] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/02/2022] [Accepted: 08/16/2022] [Indexed: 11/11/2022] Open
Abstract
MicroRNA (miRNA) and long noncoding RNA (lncRNA) are both regulators of cancer progression. This study sought to discuss the functional mechanism of miR-96-5p/lncRNA TRIM52 antisense RNA 1 (head-to-head; TRIM52-AS1) in cervical cancer (CC) cell resistance to cisplatin (DDP). DDP-resistant CC cell line was established using increasing concentrations of DDP, followed by transfection with miR-96-5p inhibitor, or si-TRIM52-AS1, or insulin-like growth factor 2 mRNA binding protein 2 (IGF2BP2) overexpression vector. Expression levels of miR-96-5p, TRIM52-AS1, and IGF2BP2 were determined. Changes in IC50 value to DDP, cell proliferation, and apoptosis rate were evaluated by cell-counting kit-8 assay, colony formation, and flow cytometry. The bindings of miR-96-5p to IGF2BP2 and TRIM52-AS1 to IGF2BP2 were verified by dual-luciferase or RNA pull-down assays. These experiments revealed an up-expression of miR-96-5p and IGF2BP2 while an under-expression of TRIM52-AS1 in CC cells. After DDP treatment, miR-96-5p inhibition increased apoptosis and decreased proliferation and DDP resistance. miR-96-5p bound to TRIM52-AS1 and downregulated TRIM52-AS1 expression, and TRIM52-AS1 bound to IGF2BP2 to inhibit IGF2BP2 expression. TRIM52-AS1 inhibition or IGF2BP2 overexpression neutralized the inhibition of silencing miR-96-5p on CC cell resistance to DDP. Overall, miR-96-5p improved CC cell resistance to DDP by inhibiting TRIM52-AS1 and promoting IGF2BP2.
Collapse
Affiliation(s)
- En Yuesu Wu
- Department of Gynecology II, Affiliated Hospital of Inner Mongolia Minzu University, Tongliao, Inner Mongolia, China
| | - Li-Ping Huang
- Department of Gynecology II, Affiliated Hospital of Inner Mongolia Minzu University, Tongliao, Inner Mongolia, China
| | - Jin-Hua Bao
- Department of Gynecology II, Affiliated Hospital of Inner Mongolia Minzu University, Tongliao, Inner Mongolia, China
| |
Collapse
|
26
|
IGF2BP2 promotes cancer progression by degrading the RNA transcript encoding a v-ATPase subunit. Proc Natl Acad Sci U S A 2022; 119:e2200477119. [PMID: 36322753 PMCID: PMC9659396 DOI: 10.1073/pnas.2200477119] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
IGF2BP2 binds to a number of RNA transcripts and has been suggested to function as a tumor promoter, although little is known regarding the mechanisms that regulate its roles in RNA metabolism. Here we demonstrate that IGF2BP2 binds to the 3' untranslated region of the transcript encoding ATP6V1A, a catalytic subunit of the vacuolar ATPase (v-ATPase), and serves as a substrate for the NAD+-dependent deacetylase SIRT1, which regulates how IGF2BP2 affects the stability of the ATP6V1A transcript. When sufficient levels of SIRT1 are expressed, it catalyzes the deacetylation of IGF2BP2, which can bind to the ATP6V1A transcript but does not mediate its degradation. However, when SIRT1 expression is low, the acetylated form of IGF2BP2 accumulates, and upon binding to the ATP6V1A transcript recruits the XRN2 nuclease, which catalyzes transcript degradation. Thus, the stability of the ATP6V1A transcript is significantly compromised in breast cancer cells when SIRT1 expression is low or knocked-down. This leads to a reduction in the expression of functional v-ATPase complexes in cancer cells and to an impairment in their lysosomal activity, resulting in the production of a cellular secretome consisting of increased numbers of exosomes enriched in ubiquitinated protein cargo and soluble hydrolases, including cathepsins, that together combine to promote tumor cell survival and invasiveness. These findings describe a previously unrecognized role for IGF2BP2 in mediating the degradation of a messenger RNA transcript essential for lysosomal function and highlight how its sirtuin-regulated acetylation state can have significant biological and disease consequences.
Collapse
|
27
|
Mo M, Ma X, Luo Y, Tan C, Liu B, Tang P, Liao Q, Liu S, Yu H, Huang D, Zeng X, Qiu X. Liver-specific lncRNA FAM99A may be a tumor suppressor and promising prognostic biomarker in hepatocellular carcinoma. BMC Cancer 2022; 22:1098. [PMID: 36289466 PMCID: PMC9609286 DOI: 10.1186/s12885-022-10186-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 10/13/2022] [Indexed: 12/17/2022] Open
Abstract
Background Increasing evidence shows that liver-specific long non-coding RNAs (lncRNAs) play important roles in the development of hepatocellular carcinoma (HCC). We identified a novel liver-specific lncRNA, FAM99A, and examined its clinical significance and biological functions in HCC. Methods The expression level and clinical value of FAM99A in HCC were examined using The Cancer Genome Atlas (TCGA), International Cancer Genome Consortium (ICGC), and Gene Expression Omnibus (GEO) databases, and were further verified using quantitative real-time polymerase chain reaction (qRT–PCR) in our HCC cohort. Univariate and multivariate Cox proportional hazards regression models were also applied to identify independent prognostic indicators for HCC patients. Cell counting kit-8, colony formation, and Transwell assays were performed to evaluate the effects of FAM99A on the proliferation, migration, and invasion abilities of HCC cells in vitro. A subcutaneous xenograft tumor model was implemented to determine the effect of FAM99A on the tumor growth of HCC cells in vivo. RNA pull-down and mass spectrometry assays were performed to reveal the potential molecular mechanisms of FAM99A in HCC. Results The three public online databases and qRT–PCR data showed that FAM99A was frequently downregulated in HCC tissues and inversely correlated with microvascular invasion and advanced histological grade of HCC patients. Kaplan–Meier survival analysis indicated that decreased FAM99A was significantly associated with poor overall survival of HCC patients based on TCGA database (P = 0.040), ICGC data portal (P < 0.001), and our HCC cohort (P = 0.010). A multivariate Cox proportional hazards regression model based on our HCC cohort suggested that FAM99A was an independent prognostic factor of overall survival for HCC patients (hazard ratio: 0.425, P = 0.039). Upregulation of FAM99A suppressed the proliferation, colony formation, migration, and invasion capacities of HCC cells in vitro, and knockdown of FAM99A had the opposite effects. A subcutaneous xenograft tumor model demonstrated that overexpression of FAM99A significantly inhibited the tumor growth of HCC cells in vivo. Seven tumor-related proteins (PCBP1, SRSF5, SRSF6, YBX1, IGF2BP2, HNRNPK, and HNRNPL) were recognized as possible FAM99A-binding proteins by the RNA pull-down and mass spectrometry assays. Conclusion Our results suggest that FAM99A exerts cancer-inhibiting effects on HCC progression, and it may be a promising prognostic indicator for HCC patients. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-10186-2.
Collapse
Affiliation(s)
- Meile Mo
- grid.256607.00000 0004 1798 2653Department of Epidemiology, School of Public Health, Guangxi Medical University, Nanning, Guangxi 530021 P.R. China
| | - Xiaoyun Ma
- grid.27255.370000 0004 1761 1174Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012 P.R. China
| | - Yihuan Luo
- grid.412594.f0000 0004 1757 2961Department of Acute Care Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021 P.R. China
| | - Chao Tan
- grid.443385.d0000 0004 1798 9548Department of Epidemiology and Statistics, School of Public Health, Guilin Medical University, Guilin, Guangxi 541004 P.R. China
| | - Bihu Liu
- grid.256607.00000 0004 1798 2653Department of Epidemiology, School of Public Health, Guangxi Medical University, Nanning, Guangxi 530021 P.R. China
| | - Peng Tang
- grid.256607.00000 0004 1798 2653Department of Epidemiology, School of Public Health, Guangxi Medical University, Nanning, Guangxi 530021 P.R. China
| | - Qian Liao
- grid.256607.00000 0004 1798 2653Department of Epidemiology, School of Public Health, Guangxi Medical University, Nanning, Guangxi 530021 P.R. China
| | - Shun Liu
- grid.256607.00000 0004 1798 2653Department of Maternal, Child and Adolescent Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi 530021 P.R. China
| | - Hongping Yu
- grid.256607.00000 0004 1798 2653Guangxi Medical University Cancer Hospital, Nanning, Guangxi 530021 P.R. China
| | - Dongping Huang
- grid.256607.00000 0004 1798 2653Department of Sanitary Chemistry, School of Public Health, Guangxi Medical University, Nanning, Guangxi 530021 P.R. China
| | - Xiaoyun Zeng
- grid.256607.00000 0004 1798 2653Department of Epidemiology, School of Public Health, Guangxi Medical University, Nanning, Guangxi 530021 P.R. China
| | - Xiaoqiang Qiu
- grid.256607.00000 0004 1798 2653Department of Epidemiology, School of Public Health, Guangxi Medical University, Nanning, Guangxi 530021 P.R. China
| |
Collapse
|
28
|
Yang J, Qian X, Qiu Q, Xu L, Pan M, Li J, Ren J, Lu B, Qiu T, Chen E, Ying K, Zhang H, Lu Y, Liu P. LCAT1 is an oncogenic LncRNA by stabilizing the IGF2BP2-CDC6 axis. Cell Death Dis 2022; 13:877. [PMID: 36257938 PMCID: PMC9579176 DOI: 10.1038/s41419-022-05316-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/27/2022] [Accepted: 09/30/2022] [Indexed: 12/02/2022]
Abstract
Long non-coding RNAs (lncRNAs) is known to play vital roles in modulating tumorigenesis. We previously reported that LCAT1, a novel lncRNA, promotes the growth and metastasis of lung cancer cells both in vitro and in vivo. However, the underlying mechanism(s) of LCAT1 as an oncogenic regulator remains elusive. Here, we showed that LCAT1 physically interacts with and stabilizes IGF2BP2, an m6A reader protein, by preventing its degradation via autolysosomes. IGF2BP2 is overexpressed in lung cancer tissues, which is associated with poor survival of non-small cell lung cancer patients, suggesting its oncogenic role. Biologically, IGF2BP2 depletion inhibits growth and survival as well as the migration of lung cancer cells. Mechanistically, the LCAT1/IGF2BP2 complex increased the levels of CDC6, a key cell cycle regulator, by stabilizing its mRNA in an m6A-dependent manner. Like IGF2BP2, CDC6 is also overexpressed in lung cancer tissues with poor patient survival, and CDC6 knockdown has oncogenic inhibitory activity. Taken together, the LCAT1-IGF2BP2-CDC6 axis appears to play a vital role in promoting the growth and migration of lung cancer cells, and is a potential therapeutic target for lung cancer. Importantly, our finding also highlights a previously unknown critical role of LCAT1 in m6A-dependent gene regulation by preventing autolytic degradation of IGF2BP2.
Collapse
Affiliation(s)
- Juze Yang
- grid.13402.340000 0004 1759 700XDepartment of Respiratory Medicine, Sir Run Run Shaw Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016 China
| | - Xinyi Qian
- grid.13402.340000 0004 1759 700XDepartment of Respiratory Medicine, Sir Run Run Shaw Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016 China
| | - Qiongzi Qiu
- grid.13402.340000 0004 1759 700XZhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Center for Uterine Cancer Diagnosis & Therapy Research of Zhejiang Province, Department of Gynecologic Oncology, Women’s Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006 China
| | - Lingling Xu
- grid.13402.340000 0004 1759 700XDepartment of Respiratory Medicine, Sir Run Run Shaw Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016 China
| | - Meidie Pan
- grid.13402.340000 0004 1759 700XDepartment of Respiratory Medicine, Sir Run Run Shaw Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016 China
| | - Jia Li
- grid.13402.340000 0004 1759 700XDepartment of Respiratory Medicine, Sir Run Run Shaw Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016 China
| | - Jiayi Ren
- grid.13402.340000 0004 1759 700XDepartment of Respiratory Medicine, Sir Run Run Shaw Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016 China
| | - Bingjian Lu
- grid.13402.340000 0004 1759 700XZhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Center for Uterine Cancer Diagnosis & Therapy Research of Zhejiang Province, Department of Gynecologic Oncology, Women’s Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006 China
| | - Ting Qiu
- grid.13402.340000 0004 1759 700XDepartment of Respiratory Medicine, Sir Run Run Shaw Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016 China
| | - Enguo Chen
- grid.13402.340000 0004 1759 700XDepartment of Respiratory Medicine, Sir Run Run Shaw Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016 China
| | - Kejing Ying
- grid.13402.340000 0004 1759 700XDepartment of Respiratory Medicine, Sir Run Run Shaw Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016 China
| | - Honghe Zhang
- grid.13402.340000 0004 1759 700XDepartment of Pathology, Research Unit of Intelligence Classification of Tumor Pathology and Precision Therapy, Chinese Academy of Medical Sciences, Zhejiang University School of Medicine, Hangzhou, 310058 Zhejiang China ,grid.13402.340000 0004 1759 700XCancer center, Zhejiang University, Hangzhou, Zhejiang 310013 China
| | - Yan Lu
- grid.13402.340000 0004 1759 700XZhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Center for Uterine Cancer Diagnosis & Therapy Research of Zhejiang Province, Department of Gynecologic Oncology, Women’s Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006 China ,grid.13402.340000 0004 1759 700XCancer center, Zhejiang University, Hangzhou, Zhejiang 310013 China
| | - Pengyuan Liu
- grid.13402.340000 0004 1759 700XDepartment of Respiratory Medicine, Sir Run Run Shaw Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016 China ,grid.13402.340000 0004 1759 700XCancer center, Zhejiang University, Hangzhou, Zhejiang 310013 China ,grid.30760.320000 0001 2111 8460Department of Physiology and Center of Systems Molecular Medicine, Medical College of Wisconsin, Milwaukee, WI USA
| |
Collapse
|
29
|
A novel lncRNA MTAR1 promotes cancer development through IGF2BPs mediated post-transcriptional regulation of c-MYC. Oncogene 2022; 41:4736-4753. [DOI: 10.1038/s41388-022-02464-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 08/24/2022] [Accepted: 08/31/2022] [Indexed: 11/09/2022]
|
30
|
The Insulin-like Growth Factor System and Colorectal Cancer. LIFE (BASEL, SWITZERLAND) 2022; 12:life12081274. [PMID: 36013453 PMCID: PMC9410426 DOI: 10.3390/life12081274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/10/2022] [Accepted: 08/12/2022] [Indexed: 11/29/2022]
Abstract
Insulin-like growth factors (IGFs) are peptides which exert mitogenic, endocrine and cytokine activities. Together with their receptors, binding proteins and associated molecules, they participate in numerous pathophysiological processes, including cancer development. Colorectal cancer (CRC) is a disease with high incidence and mortality rates worldwide, whose etiology usually represents a combination of the environmental and genetic factors. IGFs are most often increased in CRC, enabling excessive autocrine/paracrine stimulation of the cell growth. Overexpression or increased activation/accessibility of IGF receptors is a coinciding step which transmits IGF-related signals. A number of molecules and biochemical mechanisms exert modulatory effects shaping the final outcome of the IGF-stimulated processes, frequently leading to neoplastic transformation in the case of irreparable disbalance. The IGF system and related molecules and pathways which participate in the development of CRC are the focus of this review.
Collapse
|
31
|
Xiao Y, Tang J, Yang D, Zhang B, Wu J, Wu Z, Liao Q, Wang H, Wang W, Su M. Long noncoding RNA LIPH-4 promotes esophageal squamous cell carcinoma progression by regulating the miR-216b/IGF2BP2 axis. Biomark Res 2022; 10:60. [PMID: 35971159 PMCID: PMC9380392 DOI: 10.1186/s40364-022-00408-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 08/02/2022] [Indexed: 11/10/2022] Open
Abstract
Introduction Esophageal squamous cell carcinoma (ESCC) represents a major malignancy with poor clinical outcomes. Long noncoding RNAs (lncRNAs) are known to regulate the development and progression of multiple cancers. However, how lncRNAs are involved in ESCC is currently undefined. Methods LIPH-4 levels in ESCC tissue specimens and cells were assessed by qRT-PCR. The biological function of LIPH-4 was examined in cell and animal studies, applying CCK-8, EdU, colony formation and flow cytometry assays as well as xenograft model experiments. The underlying mechanisms of action of LIPH-4 were explored through bioinformatics, luciferase reporter assay, RNA-immunoprecipitation assay and immunoblot. Results We identified a novel lncRNA, LIPH-4, which showed elevated amounts in ESCC tissues and positive correlations with increased tumor size and poor prognosis in ESCC patients. Functional studies showed that LIPH-4 promoted the growth, mediated cell cycle progression and inhibited apoptosis in ESCC cells in vitro, and promoted tumor growth in mice. In terms of mechanism, LIPH-4 could bind to miR-216b and act as a competing endogenous RNA (ceRNA) to induce the expression of miR-216’s target gene IGF2BP2. LIPH-4 played an oncogenic role in ESCC through the miR-216b/IGF2BP2 axis. Conclusions This study suggested that LIPH-4 functions as a novel oncogenic lncRNA by acting as a ceRNA for miR-216b to regulate IGF2BP2, indicating LIPH-4 likely constitutes a prognostic biomarker and therapeutic target in ESCC. Supplementary Information The online version contains supplementary material available at 10.1186/s40364-022-00408-x.
Collapse
Affiliation(s)
- Yuhang Xiao
- Hunan Clinical Medical Research Center of Accurate Diagnosis and Treatment for Esophageal Carcinoma, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Department of Pharmacy, Xiangya Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Jinming Tang
- Hunan Clinical Medical Research Center of Accurate Diagnosis and Treatment for Esophageal Carcinoma, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Thoracic Surgery Department 2, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Desong Yang
- Hunan Clinical Medical Research Center of Accurate Diagnosis and Treatment for Esophageal Carcinoma, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Thoracic Surgery Department 2, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Baihua Zhang
- Hunan Clinical Medical Research Center of Accurate Diagnosis and Treatment for Esophageal Carcinoma, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Thoracic Surgery Department 2, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Jie Wu
- Hunan Clinical Medical Research Center of Accurate Diagnosis and Treatment for Esophageal Carcinoma, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Thoracic Surgery Department 2, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Zhining Wu
- Hunan Clinical Medical Research Center of Accurate Diagnosis and Treatment for Esophageal Carcinoma, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Thoracic Surgery Department 2, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Qianjin Liao
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Hui Wang
- Key Laboratory of Translational Radiation Oncology, Department of Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Wenxiang Wang
- Hunan Clinical Medical Research Center of Accurate Diagnosis and Treatment for Esophageal Carcinoma, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Thoracic Surgery Department 2, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Min Su
- Hunan Clinical Medical Research Center of Accurate Diagnosis and Treatment for Esophageal Carcinoma, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China. .,Thoracic Surgery Department 2, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China. .,Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.
| |
Collapse
|
32
|
Circular RNA circPBX3 promotes cisplatin resistance of ovarian cancer cells via interacting with IGF2BP2 to stabilize ATP7A mRNA expression. Hum Cell 2022; 35:1560-1576. [PMID: 35907138 DOI: 10.1007/s13577-022-00748-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 07/06/2022] [Indexed: 12/24/2022]
Abstract
Circular RNAs (circRNAs) are a class of non-coding RNAs with a unique covalently closed loop structure. Recent studies indicate that dysregulation of circRNAs acts a role in cancer progression and chemotherapy resistance via interacting with RNA-binding proteins (RBPs). Herein, we identified circPBX3 to be involved in cisplatin resistance of ovarian cancer. In our study, two cisplatin-resistant ovarian cancer cell lines were established, and transcriptome RNA-sequencing was performed and circPBX3 was identified as significantly upregulated circRNA in these cells. The characteristics of circPBX3 and potential function of circPBX3 were evaluated. We found that circPBX3 was upregulated in ovarian tumor tissues and cisplatin-resistant ovarian cancer cells. CircPBX3 overexpression increased the half maximal inhibitory rate (IC50) of cisplatin, promoted colony formation and tumor xenografts growth, and reduced cell apoptosis of ovarian cancer cells under cisplatin treatment, while silencing circPBX3 showed opposite effects. Furthermore, circPBX3 could interact with the RNA-binding protein IGF2BP2, thus increased the stability of ATP7A mRNA and elevated ATP7A protein level. In addition, silencing ATP7A in ovarian cancer cells abrogated the effect of circPBX3 overexpression on cisplatin tolerance. Our findings provided a novel role of circPBX3 in cisplatin resistance of ovarian cancer.
Collapse
|
33
|
Pan X, Huang B, Ma Q, Ren J, Liu Y, Wang C, Zhang D, Fu J, Ran L, Yu T, Li H, Wang X, Yang F, Liang C, Zhang Y, Wang S, Ren J, Li W, Wang Y, Xiao B. Circular RNA circ-TNPO3 inhibits clear cell renal cell carcinoma metastasis by binding to IGF2BP2 and destabilizing SERPINH1 mRNA. Clin Transl Med 2022; 12:e994. [PMID: 35876041 PMCID: PMC9309750 DOI: 10.1002/ctm2.994] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 07/05/2022] [Accepted: 07/11/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Clear cell renal cell carcinoma (ccRCC) is a common malignant tumour of the urinary tract. The major causes of poor prognosis are the lack of early diagnosis and metastasis. Accumulating research reveals that circular RNAs (circRNAs) can play key roles in the development and the progression of cancer. However, the role of circRNAs in ccRCC is still uncertain. METHODS The circRNAs microarray (n = 4) was performed to investigate the circRNAs with differential expression in ccRCC tissues. The candidate circRNA was selected based on the cut-off criteria, such as circRNA expression abundance, circRNA size and the design of divergent primers. The circ-transportin-3 (TNPO3) levels in ccRCC tissues were tested by quantitative real-time (qRT)-PCR (n = 110). The characteristics and subcellular localization of circ-TNPO3 were identified via RNase R assay, qRT-PCR and fluorescence in situ hybridization (FISH). Then, we explored the biological roles of circ-TNPO3 in ccRCC via the function experiments in vitro and in vivo. RNA pull-down, RNA immunoprecipitation, bioinformatic analysis, RNA-FISH assays and rescue assays were applied to validate the interactions between circ-TNPO3, insulin-like growth factor 2 mRNA-binding protein 2 (IGF2BP2) and serpin family H member 1 (SERPINH1) to uncover the underlying molecular mechanisms of circ-TNPO3. RESULTS We detected the obvious downregulation of circ-TNPO3 in ccRCC compared to matched adjacent normal tissues (n = 110). The lower circ-TNPO3 expression was found in ccRCC patients with distant metastasis, higher World Health Organization/International Society of Urologic Pathologists (WHO/ISUP) grade and more advanced tumour T stage. In vitro and in vivo, circ-TNPO3 significantly suppressed the proliferation and migration of ccRCC cells. Mechanistically, we elucidated that circ-TNPO3 directly bound to IGF2BP2 protein and then destabilized SERPINH1 mRNA. Moreover, IGF2BP2/SERPINH1 axis was responsible for circ-TNPO3's function of inhibiting ccRCC metastasis. Epithelial splicing regulatory protein 1 (ESRP1) was probably involved in the biogenesis of circ-TNPO3. CONCLUSIONS Circ-TNPO3 can suppress ccRCC progression and metastasis via directly binding to IGF2BP2 protein and destabilizing SERPINH1 mRNA. Circ-TNPO3 may act as a potential target for ccRCC treatment.
Collapse
Affiliation(s)
- Xiaojuan Pan
- College of PharmacyChongqing Medical UniversityChongqingP. R. China
| | - Bo Huang
- College of PharmacyChongqing Medical UniversityChongqingP. R. China
| | - Qiang Ma
- College of PharmacyChongqing Medical UniversityChongqingP. R. China
| | - Junwu Ren
- College of PharmacyChongqing Medical UniversityChongqingP. R. China
| | - Yuying Liu
- College of PharmacyChongqing Medical UniversityChongqingP. R. China
| | - Cong Wang
- Department of UrologySouthwest HospitalArmy Medical UniversityChongqingP. R. China
| | - Dawei Zhang
- Department of UrologySouthwest HospitalArmy Medical UniversityChongqingP. R. China
| | - Jian Fu
- Department of UrologySouthwest HospitalArmy Medical UniversityChongqingP. R. China
| | - Lingyu Ran
- Department of KidneySouthwest HospitalArmy Medical UniversityChongqingP. R. China
| | - Ting Yu
- Department of Clinical LaboratoryThe 89th Hospital of The People's Liberation ArmyWeifangP. R. China
| | - Haiping Li
- College of PharmacyChongqing Medical UniversityChongqingP. R. China
| | - Xiaolin Wang
- College of PharmacyChongqing Medical UniversityChongqingP. R. China
| | - Feifei Yang
- College of PharmacyChongqing Medical UniversityChongqingP. R. China
| | - Ce Liang
- College of PharmacyChongqing Medical UniversityChongqingP. R. China
| | - Yuying Zhang
- College of PharmacyChongqing Medical UniversityChongqingP. R. China
| | - Shimin Wang
- College of PharmacyChongqing Medical UniversityChongqingP. R. China
| | - Jingjing Ren
- Department of Clinical LaboratoryThe 89th Hospital of The People's Liberation ArmyWeifangP. R. China
| | - Wei Li
- Department of PharmacySouthwest HospitalArmy Medical UniversityChongqingP. R. China
| | - Yongquan Wang
- Department of UrologySouthwest HospitalArmy Medical UniversityChongqingP. R. China
| | - Bin Xiao
- College of PharmacyChongqing Medical UniversityChongqingP. R. China
| |
Collapse
|
34
|
Yang Y, Xu P, Liu J, Zhao M, Cong W, Han W, Wang D, Zhao R. Constant light exposure in early life induces m 6A-mediated inhibition of IGF gene family in the chicken. J Anim Sci 2022; 100:6596166. [PMID: 35641104 DOI: 10.1093/jas/skac199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/26/2022] [Indexed: 11/13/2022] Open
Abstract
Insulin-like growth factor (IGF) family plays important roles in regulating the development of various organ systems through stimulating cell proliferation and differentiation. Photoperiod is an important factor affecting growth and development in the chicken, yet the effect of constant light exposure in early life on IGF1 and IGF2 expression in the chicken remains unclear. In this study, one-day-old chickens were kept in either constant light (24L:0D, LL) or natural photoperiod (12L:12D, LD) for the first week of life and then maintained in constant light from 8 d to 21 d of age. Constant light exposure in early life reduced mRNA expression of IGF gene family, including mRNA expression of IGF1, IGF2 and IGF2 binding proteins (IGF2BPs), in the hippocampus, hypothalamus and liver of chickens at both 7 d and 21 d of age. Moreover, constant light exposure increased mRNA expression of genes involved in RNA methylation N6-methyladenosine (m 6A) in a tissue-specific manner. Interestingly, higher m 6A on 3'UTR of IGF2 mRNA coincides with lower IGF2 mRNA, indicating a possible role of m 6A in the post-transcriptional regulation of IGF2 expression in the hippocampus, hypothalamus, and liver of chickens. These findings suggest a m 6A-mediated gene regulation of IGF gene family in different organs of chicken and expand our knowledge on mechanism of gene regulation in response to early life experience.
Collapse
Affiliation(s)
- Yang Yang
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Institute of Immunology, Nanjing Agricultural University, Nanjing 210095, P. R. China.,Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Peirong Xu
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Institute of Immunology, Nanjing Agricultural University, Nanjing 210095, P. R. China.,Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Jie Liu
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Institute of Immunology, Nanjing Agricultural University, Nanjing 210095, P. R. China.,Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Mindie Zhao
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Institute of Immunology, Nanjing Agricultural University, Nanjing 210095, P. R. China.,Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Wei Cong
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Institute of Immunology, Nanjing Agricultural University, Nanjing 210095, P. R. China.,Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Wanwan Han
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Institute of Immunology, Nanjing Agricultural University, Nanjing 210095, P. R. China.,Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Deyun Wang
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Institute of Immunology, Nanjing Agricultural University, Nanjing 210095, P. R. China.,Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Ruqian Zhao
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Institute of Immunology, Nanjing Agricultural University, Nanjing 210095, P. R. China.,Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P. R. China
| |
Collapse
|
35
|
Falih Z, Khodair BAW, Mohammed NI, Mohammed TK. Insulin-like Growth Factor-2 Binding Protein-2 Gene Polymorphisms in Iraqi Patients with Type 2 Diabetes Mellitus. Open Access Maced J Med Sci 2022. [DOI: 10.3889/oamjms.2022.9754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Background: Diabetes mellitus type2 (T2DM) represent a hyperglycemia causing metabolic disease which exists in the peripheral tissues due to incomplete pancreatic insulin secretion or insulin resistance. IGF2BP2 is a protein that is involved in embryogenesis and pancreatic development. Genetic association researches had suggested that the single nucleotide polymorphisms (SNP) spanning IGF2BP2 gene are associated with the progression as well as development of the T2DM.
Aim: This study aims to evaluate the association of IGF2BP2 gene polymorphisms (rs4402960 & rs1470579) with T2DM in a sample of Iraqi individuals.
Methods: A case-control study has been conducted on 800 participants, they were divided to two equal groups, which are a healthy control group (400) and type 2 diabetic patients (400). Fast blood sugar (FBS), total cholesterol (TC), triglyceride (TG), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), and HbA1c] measured suitable for both participant groups. IGF2BP2 gene has been genotyped for polymorphisms; rs4402960 and rs1470579 by using the PCR-RFLP technique.
Results: There is significant changes in the biochemical parameters in patients group when compared to the control group.The SNP rs4402960 show minor allele frequency of T allele considerably different between the two participating groups (p 0.0013) with 33.6 % in T2DM group. Homo-variant TT shows a significant p <0.0001) odd ratio (4.5) as codominant type. Similarly, dominant and recessive models exert significant (0.02 & <0.0001 respectively) adjusted odd ratio (1.45 & 4.14 respectively). The rs1470579 SNP show a significant (0.024) risk (1.28) of C allele in the patients group than in A allele. The CC genotype in codominant and recessive models show significant (0.03) odd ratio differences (2.03 & 1.96 respectively. The rs1470579 SNP exerts significant differences as codominant model in biochemical features of BMI, FBG, Tgs, VLDL-C, insulin and HOMA-IR. The study power of rs4402960 is 69.5% and rs1470579 is 34.1%.
Conclusion: This study confirmed the association of rs4402960 as codominant, dominant and recessive with T2DM significantly. However, rs1470579 is associate as recessive model with T2DM in Iraqi population.
Collapse
|
36
|
Suo M, Rommelfanger MK, Chen Y, Amro EM, Han B, Chen Z, Szafranski K, Chakkarappan SR, Boehm BO, MacLean AL, Rudolph KL. Age-dependent effects of Igf2bp2 on gene regulation, function, and aging of hematopoietic stem cells in mice. Blood 2022; 139:2653-2665. [PMID: 35231105 PMCID: PMC11022928 DOI: 10.1182/blood.2021012197] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 02/10/2022] [Indexed: 11/20/2022] Open
Abstract
Increasing evidence links metabolism, protein synthesis, and growth signaling to impairments in the function of hematopoietic stem and progenitor cells (HSPCs) during aging. The Lin28b/Hmga2 pathway controls tissue development, and the postnatal downregulation of this pathway limits the self-renewal of adult vs fetal hematopoietic stem cells (HSCs). Igf2bp2 is an RNA binding protein downstream of Lin28b/Hmga2, which regulates messenger RNA stability and translation. The role of Igf2bp2 in HSC aging is unknown. In this study, an analysis of wild-type and Igf2bp2 knockout mice showed that Igf2bp2 regulates oxidative metabolism in HSPCs and the expression of metabolism, protein synthesis, and stemness-related genes in HSCs of young mice. Interestingly, Igf2bp2 expression and function strongly declined in aging HSCs. In young mice, Igf2bp2 deletion mimicked aging-related changes in HSCs, including changes in Igf2bp2 target gene expression and impairment of colony formation and repopulation capacity. In aged mice, Igf2bp2 gene status had no effect on these parameters in HSCs. Unexpectedly, Igf2bp2-deficient mice exhibited an amelioration of the aging-associated increase in HSCs and myeloid-skewed differentiation. The results suggest that Igf2bp2 controls mitochondrial metabolism, protein synthesis, growth, and stemness of young HSCs, which is necessary for full HSC function during young adult age. However, Igf2bp2 gene function is lost during aging, and it appears to contribute to HSC aging in 2 ways: the aging-related loss of Igf2bp2 gene function impairs the growth and repopulation capacity of aging HSCs, and the activity of Igf2bp2 at a young age contributes to aging-associated HSC expansion and myeloid skewing.
Collapse
Affiliation(s)
- Miaomiao Suo
- Leibniz Institute on Aging, Fritz Lipmann Institute (FLI), Jena, Germany
| | - Megan K. Rommelfanger
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA
| | - Yulin Chen
- Leibniz Institute on Aging, Fritz Lipmann Institute (FLI), Jena, Germany
| | - Elias Moris Amro
- Leibniz Institute on Aging, Fritz Lipmann Institute (FLI), Jena, Germany
| | - Bing Han
- Leibniz Institute on Aging, Fritz Lipmann Institute (FLI), Jena, Germany
| | - Zhiyang Chen
- Leibniz Institute on Aging, Fritz Lipmann Institute (FLI), Jena, Germany
| | - Karol Szafranski
- Leibniz Institute on Aging, Fritz Lipmann Institute (FLI), Jena, Germany
| | | | - Bernhard O. Boehm
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore
| | - Adam L. MacLean
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA
| | - K. Lenhard Rudolph
- Leibniz Institute on Aging, Fritz Lipmann Institute (FLI), Jena, Germany
- Medical Faculty, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| |
Collapse
|
37
|
RNA-binding proteins and cancer metastasis. Semin Cancer Biol 2022; 86:748-768. [PMID: 35339667 DOI: 10.1016/j.semcancer.2022.03.018] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 12/13/2022]
Abstract
RNA-binding proteins (RBPs) can regulate gene expression through post-transcriptionally influencing all manner of RNA biology, including alternative splicing (AS), polyadenylation, stability, and translation of mRNAs, as well as microRNAs (miRNAs) and circular RNAs (circRNAs) processing. There is accumulating evidence reinforcing the perception that dysregulation or dysfunction of RBPs can lead to various human diseases, including cancers. RBPs influence diverse cancer-associated cellular phenotypes, such as proliferation, apoptosis, senescence, migration, invasion, and angiogenesis, contributing to the initiation and development of tumors, as well as clinical prognosis. Metastasis is the leading cause of cancer-related recurrence and death. Therefore, it is necessary to elucidate the molecular mechanisms behind tumor metastasis. In fact, a growing body of published research has proved that RBPs play pivotal roles in cancer metastasis. In this review, we will summarize the recent advances for helping us understand the role of RBPs in tumor metastasis, and discuss dysfunctions and dysregulations of RBPs affecting metastasis-associated processes including epithelial-mesenchymal transition (EMT), migration, and invasion of cancer cells. Furthermore, we will discuss emerging RBP-based strategy for the treatment of cancer metastasis.
Collapse
|
38
|
Zhao F, Wu L, Wang Q, Zhao X, Chen T, Yin C, Yan L, Yang X. Insulin-like growth factor 2 mRNA-binding protein 2-regulated alternative splicing of nuclear factor 1 C-type causes excessive granulosa cell proliferation in polycystic ovary syndrome. Cell Prolif 2022; 55:e13216. [PMID: 35293050 PMCID: PMC9055906 DOI: 10.1111/cpr.13216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 02/12/2022] [Indexed: 12/02/2022] Open
Abstract
Objectives Polycystic ovary syndrome (PCOS) is a common reproductive endocrine disorder. Insulin‐like growth factor 2 mRNA‐binding protein 2 (IGF2BP2) serves as an HMGA2 target gene to promote the proliferation of granulosa cells (GCs). However, it is still unclear whether IGF2BP2 participates in the pathogenesis of PCOS as RNA binding protein (RBP). In this study, we aimed to elucidate IGF2BP2‐interacting transcripts, global transcriptome together with alternative splicing in GCs to eventually uncover potential mechanisms of PCOS pathogenesis. Materials and Methods The expression of IGF2BP2 in GCs from PCOS patients was detected using quantitative reverse transcription PCR (RT‐qPCR) and western blot. We captured IGF2BP2‐interacting transcripts, global transcriptome together with alternative splicing by RNA immunoprecipitation sequencing (RIP‐seq) and RNA sequencing (RNA‐seq). KGN cells transfected with IGF2BP2 overexpressing plasmids and nuclear factor 1 C‐type (NFIC) siRNAs, were applied to CCK‐8, EdU and TUNEL assays. Results IGF2BP2 was highly expressed in GCs from PCOS patients. As an RBP, it preferentially bound to the 3′and 5′UTRs of mRNAs with GGAC motif and a newly found GAAG motif. The overexpression of IGF2BP2 changed the transcriptome profile of KGN cells. IGF2BP2 functioned to regulate alternative splicing events and promote cell proliferation through inhibiting exon skipping events of NFIC. Conclusion In conclusion, we demonstrated that IGF2BP2 promotes GC proliferation via regulating alternative splicing of NFIC in PCOS. The findings help to better understand the roles of IGF2BP2 in the pathogenesis of PCOS.
Collapse
Affiliation(s)
- Feiyan Zhao
- Department of Human Reproductive Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, People's Republic of China.,Department of Human Reproductive Medicine, Beijing Maternal and Child Health Care Hospital, Beijing, People's Republic of China.,State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Liang Wu
- Reproductive Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China.,Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Qin Wang
- Department of Human Reproductive Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, People's Republic of China.,Department of Human Reproductive Medicine, Beijing Maternal and Child Health Care Hospital, Beijing, People's Republic of China
| | - Xuehan Zhao
- Department of Human Reproductive Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, People's Republic of China.,Department of Human Reproductive Medicine, Beijing Maternal and Child Health Care Hospital, Beijing, People's Republic of China.,State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Tong Chen
- Department of Human Reproductive Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, People's Republic of China.,Department of Human Reproductive Medicine, Beijing Maternal and Child Health Care Hospital, Beijing, People's Republic of China
| | - Chenghong Yin
- Department of Human Reproductive Medicine, Beijing Maternal and Child Health Care Hospital, Beijing, People's Republic of China.,Department of Internal Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Long Yan
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, People's Republic of China.,Department for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, People's Republic of China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, People's Republic of China
| | - Xiaokui Yang
- Department of Human Reproductive Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, People's Republic of China.,Department of Human Reproductive Medicine, Beijing Maternal and Child Health Care Hospital, Beijing, People's Republic of China
| |
Collapse
|
39
|
Sa R, Liang R, Qiu X, He Z, Liu Z, Chen L. Targeting IGF2BP2 Promotes Differentiation of Radioiodine Refractory Papillary Thyroid Cancer via Destabilizing RUNX2 mRNA. Cancers (Basel) 2022; 14:cancers14051268. [PMID: 35267576 PMCID: PMC8909796 DOI: 10.3390/cancers14051268] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/16/2022] [Accepted: 02/19/2022] [Indexed: 02/05/2023] Open
Abstract
Simple Summary Differentiation therapy is one of the most promising treatment approaches for radioiodine refractory papillary thyroid cancer (RR-PTC). In this study, we found that insulin-like growth factor 2 mRNA-binding protein 2 promoted dedifferentiation of PTC via integrating to 3′-untranslated regions of runt-related transcription factor 2, which bound to the promoter region of sodium/iodide symporter, downregulating its expression. Abstract N6-methyladenosine (m6A) regulators play an important role in multiple biological and pathological processes of radioiodine refractory papillary thyroid cancer (RR-PTC). However, the function of m6A regulators in differentiation of RR-PTC remains unclear. In this study, online data, clinical samples, and RR-PTC cell lines (K1 and TPC1) were used to identify the m6A regulators that contributed to the differentiation of RR-PTC. Insulin-like growth factor 2 mRNA-binding protein 2 (IGF2BP2) was found to be associated with thyroid-specific genes in online data analyses, and metastatic PTCs with high expression of IGF2BP2 were prone to be 131I-nonavid in clinical analyses. Furthermore, targeting IGF2BP2 increased 125I uptake in RR-PTC cell lines and enhanced the sodium/iodide symporter (NIS) expression. Mechanistically, IGF2BP2 bound to the m6A modification site of runt-related transcription factor 2 (RUNX2) 3′-UTR and enhanced the RUNX2 mRNA stability. Moreover, RUNX2 could bind to the promoter region of NIS to block the differentiation of RR-PTC. Together, these results demonstrated that IGF2BP2 represents a diagnostic marker for RR-PTC, suggesting a novel differentiation therapeutic strategy of targeting IGF2BP2.
Collapse
Affiliation(s)
- Ri Sa
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, 600# Yishan Road, Shanghai 200233, China; (R.S.); (X.Q.); (Z.H.)
- Department of Nuclear Medicine, The First Hospital of Jilin University, 1# Xinmin Street, Changchun 130021, China
| | - Rui Liang
- Department of Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, 37# Guo Xue Xiang, Chengdu 610041, China;
| | - Xian Qiu
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, 600# Yishan Road, Shanghai 200233, China; (R.S.); (X.Q.); (Z.H.)
| | - Ziyan He
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, 600# Yishan Road, Shanghai 200233, China; (R.S.); (X.Q.); (Z.H.)
| | - Zhiyan Liu
- Department of Pathology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, 600# Yishan Road, Shanghai 200233, China
- Correspondence: (Z.L.); (L.C.); Tel.: +86-189-3017-2295 (Z.L.); +86-216-436-9181(L.C.)
| | - Libo Chen
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, 600# Yishan Road, Shanghai 200233, China; (R.S.); (X.Q.); (Z.H.)
- Correspondence: (Z.L.); (L.C.); Tel.: +86-189-3017-2295 (Z.L.); +86-216-436-9181(L.C.)
| |
Collapse
|
40
|
Dahlem C, Abuhaliema A, Kessler SM, Kröhler T, Zoller BGE, Chanda S, Wu Y, Both S, Müller F, Lepikhov K, Kirsch SH, Laggai S, Müller R, Empting M, Kiemer AK. First Small-Molecule Inhibitors Targeting the RNA-Binding Protein IGF2BP2/IMP2 for Cancer Therapy. ACS Chem Biol 2022; 17:361-375. [PMID: 35023719 DOI: 10.1021/acschembio.1c00833] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The RNA-binding protein IGF2BP2/IMP2/VICKZ2/p62 is overexpressed in several tumor entities, promotes tumorigenesis and tumor progression, and has been suggested to worsen the disease outcome. The aim of this study is to (I) validate IMP2 as a potential target for colorectal cancer, (II) set up a screening assay for small-molecule inhibitors of IMP2, and (III) test the biological activity of the obtained hit compounds. Analyses of colorectal and liver cancer gene expression data showed reduced survival in patients with a high IMP2 expression and in patients with a higher IMP2 expression in advanced tumors. In vitro target validation in 2D and 3D cell cultures demonstrated a reduction in cell viability, migration, and proliferation in IMP2 knockout cells. Also, xenotransplant tumor cell growth in vivo was significantly reduced in IMP2 knockouts. Different compound libraries were screened for IMP2 inhibitors using a fluorescence polarization assay, and the results were confirmed by the thermal shift assay and saturation-transfer difference NMR. Ten compounds, which belong to two classes, that is, benzamidobenzoic acid class and ureidothiophene class, were validated in vitro and showed a biological target specificity. The three most active compounds were also tested in vivo and exhibited reduced tumor xenograft growth in zebrafish embryos. In conclusion, our findings support that IMP2 represents a druggable target to reduce tumor cell proliferation.
Collapse
Affiliation(s)
- Charlotte Dahlem
- Department of Pharmacy, Pharmaceutical Biology, Saarland University, Saarbrücken 66123, Germany
| | - Ali Abuhaliema
- Department of Pharmacy, Pharmaceutical Biology, Saarland University, Saarbrücken 66123, Germany
| | - Sonja M. Kessler
- Department of Pharmacy, Pharmaceutical Biology, Saarland University, Saarbrücken 66123, Germany
- Institute of Pharmacy, Experimental Pharmacology for Natural Sciences, Martin Luther University Halle-Wittenberg, Halle 06108, Germany
| | - Tarek Kröhler
- Department of Pharmacy, Pharmaceutical Biology, Saarland University, Saarbrücken 66123, Germany
| | - Ben G. E. Zoller
- Department of Drug Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University, Saarbrücken 66123, Germany
| | - Shilpee Chanda
- Department of Pharmacy, Pharmaceutical Biology, Saarland University, Saarbrücken 66123, Germany
| | - Yingwen Wu
- Department of Drug Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University, Saarbrücken 66123, Germany
| | - Simon Both
- Department of Pharmacy, Pharmaceutical Biology, Saarland University, Saarbrücken 66123, Germany
| | - Fabian Müller
- Center for Bioinformatics, Saarland University, Saarbrücken 66123, Germany
| | | | - Susanne H. Kirsch
- Department of Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, Saarland University, Saarbrücken 66123, Germany
| | - Stephan Laggai
- Department of Pharmacy, Pharmaceutical Biology, Saarland University, Saarbrücken 66123, Germany
| | - Rolf Müller
- Department of Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, Saarland University, Saarbrücken 66123, Germany
- Department of Pharmacy, Saarland University, Saarbrücken 66123, Germany
| | - Martin Empting
- Department of Drug Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University, Saarbrücken 66123, Germany
- Department of Pharmacy, Saarland University, Saarbrücken 66123, Germany
| | - Alexandra K. Kiemer
- Department of Pharmacy, Pharmaceutical Biology, Saarland University, Saarbrücken 66123, Germany
| |
Collapse
|
41
|
Carrabotta M, Laginestra MA, Durante G, Mancarella C, Landuzzi L, Parra A, Ruzzi F, Toracchio L, De Feo A, Giusti V, Pasello M, Righi A, Lollini PL, Palmerini E, Donati DM, Manara MC, Scotlandi K. Integrated Molecular Characterization of Patient-Derived Models Reveals Therapeutic Strategies for Treating CIC-DUX4 Sarcoma. Cancer Res 2022; 82:708-720. [PMID: 34903601 PMCID: PMC9359717 DOI: 10.1158/0008-5472.can-21-1222] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 08/18/2021] [Accepted: 11/30/2021] [Indexed: 01/07/2023]
Abstract
Capicua-double homeobox 4 (CIC-DUX4)-rearranged sarcomas (CDS) are extremely rare, highly aggressive primary sarcomas that represent a major therapeutic challenge. Patients are treated according to Ewing sarcoma protocols, but CDS-specific therapies are strongly needed. In this study, RNA sequencing was performed on patient samples to identify a selective signature that differentiates CDS from Ewing sarcoma and other fusion-driven sarcomas. This signature was used to validate the representativeness of newly generated CDS experimental models-patient-derived xenografts (PDX) and PDX-derived cell lines-and to identify specific therapeutic vulnerabilities. Annotation analysis of differentially expressed genes and molecular gene validation highlighted an HMGA2/IGF2BP/IGF2/IGF1R/AKT/mTOR axis that characterizes CDS and renders the tumors particularly sensitive to combined treatments with trabectedin and PI3K/mTOR inhibitors. Trabectedin inhibited IGF2BP/IGF2/IGF1R activity, but dual inhibition of the PI3K and mTOR pathways was required to completely dampen downstream signaling mediators. Proof-of-principle efficacy for the combination of the dual AKT/mTOR inhibitor NVP-BEZ235 (dactolisib) with trabectedin was obtained in vitro and in vivo using CDS PDX-derived cell lines, demonstrating a strong inhibition of local tumor growth and multiorgan metastasis. Overall, the development of representative experimental models (PDXs and PDX-derived cell lines) has helped to identify the unique sensitivity of the CDS to AKT/mTOR inhibitors and trabectedin, revealing a mechanism-based therapeutic strategy to fight this lethal cancer. SIGNIFICANCE This study identifies altered HMGA2/IGF2BP/IGF2 signaling in CIC-DUX4 sarcomas and provides proof of principle for combination therapy with trabectedin and AKT/mTOR dual inhibitors to specifically combat the disease.
Collapse
Affiliation(s)
- Marianna Carrabotta
- Experimental Oncology Laboratory, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | | | - Giorgio Durante
- Experimental Oncology Laboratory, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Caterina Mancarella
- Experimental Oncology Laboratory, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Lorena Landuzzi
- Experimental Oncology Laboratory, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Alessandro Parra
- Experimental Oncology Laboratory, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Francesca Ruzzi
- Laboratory of Immunology and Biology of Metastasis, Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Lisa Toracchio
- Experimental Oncology Laboratory, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Alessandra De Feo
- Experimental Oncology Laboratory, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Veronica Giusti
- Experimental Oncology Laboratory, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Michela Pasello
- Experimental Oncology Laboratory, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Alberto Righi
- Department of Pathology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Pier-Luigi Lollini
- Laboratory of Immunology and Biology of Metastasis, Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Emanuela Palmerini
- Osteoncology, Bone and Soft Tissue Sarcoma and Novel Therapy Unit, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Davide Maria Donati
- Third Orthopaedic Clinic and Traumatology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | | | - Katia Scotlandi
- Experimental Oncology Laboratory, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| |
Collapse
|
42
|
IGF2BP2 maybe a novel prognostic biomarker in oral squamous cell carcinoma. Biosci Rep 2022; 42:230746. [PMID: 35129592 PMCID: PMC8859425 DOI: 10.1042/bsr20212119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 02/02/2022] [Accepted: 02/04/2022] [Indexed: 11/25/2022] Open
Abstract
Aim: The main of the present study was to investigate the role of insulin-like growth factor 2 mRNA-binding protein 2 (IGF2BP2) in oral squamous cell carcinoma (OSCC) with the overarching of providing new biomarkers or potential therapeutic targets for OSCC. Methods: We combined datasets downloaded from Gene Expression Omnibus (GEO), The Cancer Genome Atlas (TCGA), and samples collected from the clinic to evaluate the expression of IGF2BP2 in OSCC. IGF2BP2 survival analysis was respectively performed based on TCGA, GEO, and clinical samples. Correlations between IGF2BP2 expression and clinicopathological parameters were then analyzed, and signaling pathways associated with IGF2BP2 expression were identified using gene set enrichment analysis (GSEA 4.1.0). Moreover, an IGF2BP2 co-expressed gene network was constructed, followed by gene ontology (GO) functional enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis on IGF2BP2 co-expressed genes. Finally, TIMER and CIBERSORT were used to analyze the correlations among IGF2BP2, IGF2BP2-coexpressed genes, and tumor-infiltrating immune cells (TICs). Results: IGF2BP2 was highly expressed in OSCC and significantly correlated with overall survival of OSCC patients (P<0.01). High IGF2BP2 expression correlated with poor overall survival. The GSEA results showed that cell apoptosis-, tumor-, and immune-related pathways were significantly enriched in samples with high IGF2BP2 expression. Furthermore, GO and KEGG enrichment analyses results of IGF2BP2 co-expressed genes indicated that these genes are mainly associated with immunity/inflammation and tumorigenesis. In addition, IGF2BP2 and its co-expressed genes are associated with TICs (P<0.01). Conclusion: IGF2BP2 may be a potential prognostic biomarker in OSCC and correlates with immune infiltrates.
Collapse
|
43
|
Liu Y, Khan S, Li L, ten Hagen TL, Falahati M. Molecular mechanisms of thyroid cancer: A competing endogenous RNA (ceRNA) point of view. Biomed Pharmacother 2022; 146:112251. [DOI: 10.1016/j.biopha.2021.112251] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/23/2021] [Accepted: 09/26/2021] [Indexed: 12/25/2022] Open
|
44
|
Lu F, Chen W, Jiang T, Cheng C, Wang B, Lu Z, Huang G, Qiu J, Wei W, Yang M, Huang X. Expression profile, clinical significance and biological functions of IGF2BP2 in esophageal squamous cell carcinoma. Exp Ther Med 2022; 23:252. [PMID: 35261624 DOI: 10.3892/etm.2022.11177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 09/17/2021] [Indexed: 11/05/2022] Open
Affiliation(s)
- Fenying Lu
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Weichang Chen
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Tingwang Jiang
- Department of Science and Technology Division, The Second People's Hospital of Changshu, Suzhou, Jiangsu 215500, P.R. China
| | - Cuie Cheng
- Department of Gastroenterology, The Second People's Hospital of Changshu, Suzhou, Jiangsu 215500, P.R. China
| | - Bin Wang
- Department of Gastroenterology, The Second People's Hospital of Changshu, Suzhou, Jiangsu 215500, P.R. China
| | - Zhiping Lu
- Department of Gastroenterology, The Second People's Hospital of Changshu, Suzhou, Jiangsu 215500, P.R. China
| | - Guojin Huang
- Department of Gastroenterology, The Second People's Hospital of Changshu, Suzhou, Jiangsu 215500, P.R. China
| | - Jiaming Qiu
- Department of Pathology, The Second People's Hospital of Changshu, Suzhou, Jiangsu 215500, P.R. China
| | - Wei Wei
- Department of Pathology, The Second People's Hospital of Changshu, Suzhou, Jiangsu 215500, P.R. China
| | - Ming Yang
- Department of Thoracic Surgery, The Second People's Hospital of Changshu, Suzhou, Jiangsu 215500, P.R. China
| | - Xia Huang
- Department of Gastroenterology, The Second People's Hospital of Changshu, Suzhou, Jiangsu 215500, P.R. China
| |
Collapse
|
45
|
Wang Z, Wang X, Rong Z, Dai L, Qin C, Wang S, Geng W. LncRNA LINC01134 Contributes to Radioresistance in Hepatocellular Carcinoma by Regulating DNA Damage Response via MAPK Signaling Pathway. Front Pharmacol 2022; 12:791889. [PMID: 35173610 PMCID: PMC8841450 DOI: 10.3389/fphar.2021.791889] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 12/28/2021] [Indexed: 01/27/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a highly mortal cancer that could be treated by radiotherapy. DNA damage response (DDR) is a vital factor affecting cancer development after radiotherapy. Long non-coding RNAs (lncRNAs) have been revealed to regulate DNA damage response and repair in cancer cells. Nevertheless, the function of long intergenic non-protein coding RNA 1134 (LINC01134) has not been explored in DDR. In this study, we targeted digging into the function of LINC01134 in DDR and exploring the underlying mechanism in HCC cells. RT-qPCR was employed to measure LINC01134 expression, and we found LINC01134 was significantly upregulated in HCC cells. Functional analysis suggested that LINC01134 depletion attenuated radioresistance of HCC cells by facilitating DNA damage. In vivo assays demonstrated LINC01134 depletion hindered HCC tumor growth. Mechanism assays unveiled LINC01134 sequestered microRNA-342-3p (miR-342-3p) and recruited insulin-like growth factor 2 mRNA binding protein 2 (IGF2BP2) protein to modulate mitogen-activated protein kinase 1 (MAPK1) expression, consequently activating MAPK signaling pathway. Rescue assays validated the LINC01134/miR-342-3p/MAPK1 axis in the radio-resistant HCC cells. In conclusion, LINC01134 might be identified to be a useful biomarker for the therapy of HCC.
Collapse
|
46
|
The analysis of N6-methyladenosine regulators impacting the immune infiltration in clear cell renal cell carcinoma. Med Oncol 2022; 39:41. [PMID: 35092501 DOI: 10.1007/s12032-021-01645-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 12/30/2021] [Indexed: 12/09/2022]
Abstract
The tumor immune microenvironment (TIME) and N6-methyladenosine (m6A) are related to the progression of several types of cancer. Nevertheless, the impact of m6A on the TIME of clear cell renal cell carcinoma (ccRCC) remains unclear. This study used an unsupervised clustering algorithm to divide the samples into distinct subgroups. The single sample gene set enrichment analysis (ssGSEA) algorithm to estimate the TIME. The correlation between m6A regulators and immune cells in different subgroups was calculated using Spearman analysis. At last, the relationship between IGF2BP2 and HMGA2 was validated in several datasets, including TCGA-KIRC, GEO, and HPA datasets. We found that m6A regulators were differently expressed in several clinical groups. Based on the expression of m6A regulators, we divided the samples into three subgroups. Then, the survival analysis for these three subgroups showed that the cluster 2 subgroup had poor overall survival (OS). Further, we found that IGF2BP2 and IGF2BP3 were essential components in the cluster 2 subgroup using the principal component analysis (PCA) algorithm. In addition, the expression of these two genes was significantly correlated with survival time. At last, we found that HMGA2 was significantly correlated with IGF2BP2 in several datasets, which indicated that HMGA2 is an essential role in affecting IGF2BP2 regulating the TIME. There is a close correlation between m6A regulators and TIME. Moreover, IGF2BP2 is related to the progression of ccRCC and plays an essential role in affecting the TIME.
Collapse
|
47
|
Bailetti D, Sentinelli F, Prudente S, Cimini FA, Barchetta I, Totaro M, Di Costanzo A, Barbonetti A, Leonetti F, Cavallo MG, Baroni MG. Deep Resequencing of 9 Candidate Genes Identifies a Role for ARAP1 and IGF2BP2 in Modulating Insulin Secretion Adjusted for Insulin Resistance in Obese Southern Europeans. Int J Mol Sci 2022; 23:ijms23031221. [PMID: 35163144 PMCID: PMC8835579 DOI: 10.3390/ijms23031221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 02/07/2023] Open
Abstract
Type 2 diabetes is characterized by impairment in insulin secretion, with an established genetic contribution. We aimed to evaluate common and low-frequency (1–5%) variants in nine genes strongly associated with insulin secretion by targeted sequencing in subjects selected from the extremes of insulin release measured by the disposition index. Collapsing data by gene and/or function, the association between disposition index and nonsense variants were significant, also after adjustment for confounding factors (OR = 0.25, 95% CI = 0.11–0.59, p = 0.001). Evaluating variants individually, three novel variants in ARAP1, IGF2BP2 and GCK, out of eight reaching significance singularly, remained associated after adjustment. Constructing a genetic risk model combining the effects of the three variants, only carriers of the ARAP1 and IGF2BP2 variants were significantly associated with a reduced probability to be in the lower, worst, extreme of insulin secretion (OR = 0.223, 95% CI = 0.105–0.473, p < 0.001). Observing a high number of normal glucose tolerance between carriers, a regression posthoc analysis was performed. Carriers of genetic risk model variants had higher probability to be normoglycemic, also after adjustment (OR = 2.411, 95% CI = 1.136–5.116, p = 0.022). Thus, in our southern European cohort, nonsense variants in all nine candidate genes showed association with better insulin secretion adjusted for insulin resistance, and we established the role of ARAP1 and IGF2BP2 in modulating insulin secretion.
Collapse
Affiliation(s)
- Diego Bailetti
- Department of Clinical Medicine, Public Health, Life and Environmental Sciences (MeSVA), University of L’Aquila, 67100 L’Aquila, Italy; (F.S.); (M.T.); (A.B.)
- Correspondence: (D.B.); (M.G.B.); Tel.: +39-862-433327 (M.G.B.)
| | - Federica Sentinelli
- Department of Clinical Medicine, Public Health, Life and Environmental Sciences (MeSVA), University of L’Aquila, 67100 L’Aquila, Italy; (F.S.); (M.T.); (A.B.)
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Rome, Italy; (F.A.C.); (I.B.); (M.G.C.)
| | - Sabrina Prudente
- Research Unit of Metabolic and Cardiovascular Diseases, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy;
| | - Flavia Agata Cimini
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Rome, Italy; (F.A.C.); (I.B.); (M.G.C.)
| | - Ilaria Barchetta
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Rome, Italy; (F.A.C.); (I.B.); (M.G.C.)
| | - Maria Totaro
- Department of Clinical Medicine, Public Health, Life and Environmental Sciences (MeSVA), University of L’Aquila, 67100 L’Aquila, Italy; (F.S.); (M.T.); (A.B.)
| | - Alessia Di Costanzo
- Department of Translational and Precision Medicine, Sapienza University of Rome, 00185 Rome, Italy;
| | - Arcangelo Barbonetti
- Department of Clinical Medicine, Public Health, Life and Environmental Sciences (MeSVA), University of L’Aquila, 67100 L’Aquila, Italy; (F.S.); (M.T.); (A.B.)
| | - Frida Leonetti
- Diabetes Unit, Department of Medical-Surgical Sciences and Biotechnologies, Santa Maria Goretti Hospital, Sapienza University of Rome, 04100 Latina, Italy;
| | - Maria Gisella Cavallo
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Rome, Italy; (F.A.C.); (I.B.); (M.G.C.)
| | - Marco Giorgio Baroni
- Department of Clinical Medicine, Public Health, Life and Environmental Sciences (MeSVA), University of L’Aquila, 67100 L’Aquila, Italy; (F.S.); (M.T.); (A.B.)
- Neuroendocrinology and Metabolic Diseases, IRCCS Neuromed, 86077 Pozzilli, Italy
- Correspondence: (D.B.); (M.G.B.); Tel.: +39-862-433327 (M.G.B.)
| |
Collapse
|
48
|
Sa R, Guo M, Liu D, Guan F. AhR Antagonist Promotes Differentiation of Papillary Thyroid Cancer via Regulating circSH2B3/miR-4640-5P/IGF2BP2 Axis. Front Pharmacol 2022; 12:795386. [PMID: 35002727 PMCID: PMC8733664 DOI: 10.3389/fphar.2021.795386] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 11/23/2021] [Indexed: 12/24/2022] Open
Abstract
Abnormally high expression of aryl hydrocarbon receptor (AhR) has been implicated in dedifferentiation of radioiodine-refractory papillary thyroid cancer (RR-PTC). This study aimed to evaluate the differentiation effect of AhR antagonist in PTC, and to explore the potential mechanism of it. Results showed that AhR antagonists promoted differentiation of PTC, as shown as increase in 125I uptake and Na/I symporter (NIS) expression level. CircRNA microarray in K1 cells treated with StemRegenin 1(SR1) revealed that hsa_circ_0006741 (circSH2B3) was down-regulated in SR1 treated K1 cells. Downregulation of circSH2B3 increased 125I uptake and NIS expression levels. CircSH2B3 acted as an endogenous sponge of hsa-miR-4640-5p and modulated IGF2BP2 expression. IGF2BP2 overexpression induced dedifferentiation of PTC, while silencing IGF2BP2 accelerated differentiation of PTC cells. Rescue studies showed that the dedifferentiation activity of AhR was modulated by the circSH2B3/miR-4640-5p/IGF2BP2 axis. Our findings confirmed for the first time that AhR antagonists promote differentiation of PTC via inhibiting the circSH2B3/miR-4640-5p/IGF2BP2 axis, offering a novel therapeutic approach and a potential marker for differentiation of PTC.
Collapse
Affiliation(s)
- Ri Sa
- Department of Nuclear Medicine, The First Hospital of Jilin University, Changchun, China
| | - Meiliang Guo
- Department of Dermatology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Danyan Liu
- Department of Radiology, The First Hospital of Jilin University, Changchun, China
| | - Feng Guan
- Department of Nuclear Medicine, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
49
|
Yu D, Pan M, Li Y, Lu T, Wang Z, Liu C, Hu G. RNA N6-methyladenosine reader IGF2BP2 promotes lymphatic metastasis and epithelial-mesenchymal transition of head and neck squamous carcinoma cells via stabilizing slug mRNA in an m6A-dependent manner. J Exp Clin Cancer Res 2022; 41:6. [PMID: 34980207 PMCID: PMC8722037 DOI: 10.1186/s13046-021-02212-1] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/05/2021] [Indexed: 12/20/2022] Open
Abstract
Background Lymph node metastasis is the main cause of poor prognosis of head and neck squamous carcinoma (HNSCC) patients. N6-methyladenosine (m6A) RNA modification is an emerging epigenetic regulatory mechanism for gene expression, and as a novel m6A reader protein, IGF2BP2 has been implicated in tumor progression and metastasis. However, not much is currently known about the functional roles of IGF2BP2 in HNSCC, and whether IGF2BP2 regulates lymphatic metastasis through m6A modification in HNSCC remains to be determined. Methods The expression and overall survival (OS) probability of m6A-related regulators in HNSCC were analyzed with The Cancer Genome Atlas (TCGA) dataset and GEPIA website tool, respectively. The expression levels of IGF2BP2 were measured in HNSCC tissues and normal adjacent tissues. To study the effects of IGF2BP2 on HNSCC cell metastasis in vitro and in vivo, gain- and loss- of function methods were employed. RIP, MeRIP, luciferase reporter and mRNA stability assays were performed to explore the epigenetic mechanism of IGF2BP2 in HNSCC. Results We investigated 20 m6A-related regulators in HNSCC and discovered that only the overexpression of IGF2BP2 was associated with a poor OS probability and an independent prognostic factor for HNSCC patients. Additionally, we demonstrated that IGF2BP2 was overexpressed in HNSCC tissues, and significantly correlated to lymphatic metastasis and poor prognosis. Functional studies have shown that IGF2BP2 promotes both HNSCC cell migration as well as invasion via the epithelial-mesenchymal transition (EMT) process in vitro, and IGF2BP2 knockdown significantly inhibited lymphatic metastasis and lymphangiogenesis in vivo. Mechanistic investigations revealed that Slug, a key EMT-related transcriptional factor, is the direct target of IGF2BP2, and essential for IGF2BP2-regulated EMT and metastasis in HNSCC. Furthermore, we demonstrated that IGF2BP2 recognizes and binds the m6A site in the coding sequence (CDS) region of Slug and promotes its mRNA stability. Conclusions Collectively, our study uncovers the oncogenic role and potential mechanism of IGF2BP2, which serves as a m6A reader, in controlling lymphatic metastasis and EMT in HNSCC, suggesting that IGF2BP2 may act as a therapeutic target and prognostic biomarker for HNSCC patients with metastasis. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-021-02212-1.
Collapse
Affiliation(s)
- Dan Yu
- Department of Otorhinolaryngology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Min Pan
- Department of Otorhinolaryngology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Yanshi Li
- Department of Otorhinolaryngology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Tao Lu
- Department of Otorhinolaryngology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Zhihai Wang
- Department of Otorhinolaryngology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Chuan Liu
- Department of Otorhinolaryngology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Guohua Hu
- Department of Otorhinolaryngology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China.
| |
Collapse
|
50
|
van Noorden CJ, Breznik B, Novak M, van Dijck AJ, Tanan S, Vittori M, Bogataj U, Bakker N, Khoury JD, Molenaar RJ, Hira VV. Cell Biology Meets Cell Metabolism: Energy Production Is Similar in Stem Cells and in Cancer Stem Cells in Brain and Bone Marrow. J Histochem Cytochem 2022; 70:29-51. [PMID: 34714696 PMCID: PMC8721571 DOI: 10.1369/00221554211054585] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Energy production by means of ATP synthesis in cancer cells has been investigated frequently as a potential therapeutic target in this century. Both (an)aerobic glycolysis and oxidative phosphorylation (OXPHOS) have been studied. Here, we review recent literature on energy production in glioblastoma stem cells (GSCs) and leukemic stem cells (LSCs) versus their normal counterparts, neural stem cells (NSCs) and hematopoietic stem cells (HSCs), respectively. These two cancer stem cell types were compared because their niches in glioblastoma tumors and in bone marrow are similar. In this study, it became apparent that (1) ATP is produced in NSCs and HSCs by anaerobic glycolysis, whereas fatty acid oxidation (FAO) is essential for their stem cell fate and (2) ATP is produced in GSCs and LSCs by OXPHOS despite the hypoxic conditions in their niches with FAO and amino acids providing its substrate. These metabolic processes appeared to be under tight control of cellular regulation mechanisms which are discussed in depth. However, our conclusion is that systemic therapeutic targeting of ATP production via glycolysis or OXPHOS is not an attractive option because of its unwanted side effects in cancer patients.
Collapse
Affiliation(s)
| | - Barbara Breznik
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Metka Novak
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia
| | | | | | - Miloš Vittori
- Amsterdam UMC Location Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Urban Bogataj
- Amsterdam UMC Location Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | | | - Joseph D. Khoury
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Remco J. Molenaar
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia,Department of Medical Oncology
| | - Vashendriya V.V. Hira
- Vashendriya V.V. Hira, Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Večna Pot 111, 1000 Ljubljana, Slovenia. E-mail:
| |
Collapse
|