1
|
El-Gazzar N, Farouk R, Diab NS, Rabie G, Sitohy B. Antimicrobial and antiproliferative activity of biosynthesized manganese nanocomposite with amide derivative originated by endophytic Aspergillus terreus. Microb Cell Fact 2025; 24:37. [PMID: 39905406 DOI: 10.1186/s12934-025-02651-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 01/10/2025] [Indexed: 02/06/2025] Open
Abstract
BACKGROUND Scientists have faced difficulties in synthesizing natural substances with potent biological activity from cost-effective sources. Endophytic fungi metabolites with nanoparticles have been utilized to develop a friendly, suitable procedure to address this problem and ameliorate the average amount of antioxidant, antimicrobial, and anticancer materials. Therefore, this study utilized endophytic fungi as a source of the natural extract with biosynthesized manganese nanoparticles (MnNPs) in the form of nanocomposites. METHODS Thirty endophytic fungi were isolated and were assessed for their antioxidant activity by 1, 1-Diphenyl-2-picrylhydrazyl (DPPH) and antimicrobial activity. The most potent isolate was identified utilizing 18S rRNA and was applied to purify and separate their natural antimicrobial products by Flash column chromatography. In addition, the most potent product was identified based on instrumental analysis through Nuclear magnetic resonance (NMR), Fourier-transform infrared (FTIR), and Gas chromatography-mass spectrometry (GC.MS). The purified product was combined with biosynthsesized manganese nanoparticles (MnNPs) for the production of nanocomposite (MnNCs). Later on, the physicochemical features of MnNPs and its MnNCs were examined and then they were assessed for determination their biological activities. RESULTS The most potent isolate was identified as Aspergillus terreus with accession number OR243300. The antioxidant and antimicrobial product produced by the strain A. terreus was identified as an amide derivative consisting of 3-(2-Hydroxy-4,4-dimethyl-6-oxo-1-cyclohexen-1-yl)-4-oxopentanoic acid (HDOCOX) with the chemical formula C13H18O5. Furthermore, purified HDOCOX, MnNPs and Mn-HDOCOX-NPs nanocomposite (MnNCs) showed significant antimicrobial effectiveness. The minimum inhibitory concentrations (MICs) determined for MnNCs were 10 µg/mL against C. albicans and E.coli. Furthermore, MnNCs were reduced hepatocellular carcinoma viability. CONCLUSION The use of HDOCOX, either alone or in combination with MnNPs, is a potential candidate for inhibiting pathogenic microbes and the development of an anticancer drug pipeline.
Collapse
Affiliation(s)
- Nashwa El-Gazzar
- Department of Botany and Microbiology, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt.
| | - Reem Farouk
- Department of Botany and Microbiology, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| | - Nervana S Diab
- Department of Biochemistry, Children Hospital, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Gamal Rabie
- Department of Botany and Microbiology, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| | - Basel Sitohy
- Department of Clinical Microbiology, Infection and Immunology, Umeå University, 90185, Umeå, Sweden.
- Department of Diagnostics and Intervention, Oncology, Umeå University, 90185, Umeå, Sweden.
| |
Collapse
|
2
|
Yu M, Chen Y, Dong S, Chen Z, Jiang X, Wang Y, Zhang L. Sulforaphane as a promising anti-caries agents: inhibitory effects on Streptococcus mutans and caries control in a rat model. Front Microbiol 2025; 15:1427803. [PMID: 39831123 PMCID: PMC11738914 DOI: 10.3389/fmicb.2024.1427803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 12/10/2024] [Indexed: 01/22/2025] Open
Abstract
Dental caries has been one of the most prevalent diseases globally over the last few decades, threatening human oral and general health. The most critical aspect in caries control is to inhibit the dominant cariogenic bacteria Streptococcus mutans (S. mutans). Sulforaphane (SFN), a compound found in a wide range of cruciferous plants, has demonstrated bacteriostatic activities against various pathogenic bacteria. The objective of the present study was to investigate the effects of SFN on S. mutans though both in vitro and in vivo experiment. The minimum inhibitory concentration (MIC) against S. mutans was determined at 256 μg/mL. The growth of S. mutans and the biofilm formation were inhibited by SFN in a dose-dependent manner through suppressing the synthesis of extracellular polysaccharide (EPS) and acid production, as well as decreasing the acid tolerance. Meanwhile, SFN significantly weakened the cariogenic properties of S. mutans at sub-inhibitory concentrations, which were further illustrated by quantitative real-time PCR (qRT-PCR). Moreover, SFN were found to inhibit quorum sensing (QS) by downregulate comCDE system in S. mutans. Further investigation using a rat caries model displayed a prominent caries control in the SFN-treated group with no observed toxicity. The notable results demonstrated in this study highlight the potential of SFN as a natural substitute for current anti-caries agents, while also providing valuable insights into the potential applications of SFN in caries control.
Collapse
Affiliation(s)
- Meijiao Yu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yu Chen
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Sishi Dong
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Zhongxin Chen
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Xuelian Jiang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yufei Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Linglin Zhang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
3
|
Wang L, Liu P, Wu Y, Pei H, Cao X. Inhibitory effect of Lonicera japonica flos on Streptococcus mutans biofilm and mechanism exploration through metabolomic and transcriptomic analyses. Front Microbiol 2024; 15:1435503. [PMID: 39027105 PMCID: PMC11256199 DOI: 10.3389/fmicb.2024.1435503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 06/05/2024] [Indexed: 07/20/2024] Open
Abstract
Introduction Streptococcus mutans was the primary pathogenic organism responsible for dental caries. Lonicera japonica flos (LJF) is a traditional herb in Asia and Europe and consumed as a tea beverage for thousands of years. Methods The inhibitory effect and mechanism of LJF on biofilm formation by S. mutans was investigated. The active extracts of LJF were validated for their inhibitory activity by examining changes in surface properties such as adherence, hydrophobicity, auto-aggregation abilities, and exopolysaccharides (EPS) production, including water-soluble glucan and water-insoluble glucan. Results and discussion LJF primarily inhibited biofilm formation through the reduction of EPS production, resulting in alterations in cell surface characteristics and growth retardation in biofilm formation cycles. Integrated transcriptomic and untargeted metabolomics analyses revealed that EPS production was modulated through two-component systems (TCS), quorum sensing (QS), and phosphotransferase system (PTS) pathways under LJF stress conditions. The sensing histidine kinase VicK was identified as an important target protein, as LJF caused its dysregulated expression and blocked the sensing of autoinducer II (AI-2). This led to the inhibition of response regulator transcriptional factors, down-regulated glycosyltransferase (Gtf) activity, and decreased production of water-insoluble glucans (WIG) and water-soluble glucans (WSG). This is the first exploration of the inhibitory effect and mechanism of LJF on S. mutans, providing a theoretical basis for the application of LJF in functional food, oral health care, and related areas.
Collapse
Affiliation(s)
| | | | | | | | - Xueli Cao
- Beijing Technology and Business University, Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Beijing, China
| |
Collapse
|
4
|
Idrees M, Kujan O. Curcumin is effective in managing oral inflammation: An in vitro study. J Oral Pathol Med 2024; 53:376-385. [PMID: 38772856 DOI: 10.1111/jop.13547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/02/2024] [Accepted: 05/05/2024] [Indexed: 05/23/2024]
Abstract
BACKGROUND Oral inflammation is among the most prevalent oral pathologies with systemic health implications, necessitating safe and effective treatments. Given curcumin's documented anti-inflammatory and antioxidant properties, this study focuses on the potential of a curcumin-based oral gel in safely managing oral inflammatory conditions. METHODS This in vitro study utilized four human cell lines: oral keratinocytes (HOKs), immortalized oral keratinocytes (OKF6), periodontal ligament fibroblasts (HPdLF), and dysplastic oral keratinocytes (DOKs). The cells were treated with Lipopolysaccharides (LPS) and curcumin-based oral gel to simulate inflammatory conditions. A panel of cellular assays were performed along with antimicrobial efficacy tests targeting Candida albicans, Streptococcus mutans, and Porphyromonas gingivalis. RESULTS LPS significantly reduced proliferation and wound healing capacities of HOKs, OKF6, and HPdLF, but not DOKs. Treatment with curcumin-based oral gel mitigated inflammatory responses in HOKs and HPdLF by enhancing proliferation, colony formation, and wound healing, along with reducing apoptosis. However, its impact on OKF6 and DOKs was limited in some assays. Curcumin treatment did not affect the invasive capabilities of any cell line but did modulate cell adhesion in a cell line-specific manner. The curcumin-based oral gel showed significant antimicrobial efficacy against C. albicans and S. mutans, but was ineffective against P. gingivalis. CONCLUSION This study demonstrates the potential of the curcumin-based oral gel as a safe and effective alternative to conventional antimicrobial treatments for managing cases of oral inflammation. This was achieved by modulating cellular responses under simulated inflammatory conditions. Future clinical-based studies are recommended to exploit curcumin's therapeutic benefits in oral healthcare.
Collapse
Affiliation(s)
- Majdy Idrees
- UWA Dental School, The University of Western Australia, Nedlands, Western Australia, Australia
| | - Omar Kujan
- UWA Dental School, The University of Western Australia, Nedlands, Western Australia, Australia
| |
Collapse
|
5
|
Mo Z, Yuan J, Guan X, Peng J. Advancements in Dermatological Applications of Curcumin: Clinical Efficacy and Mechanistic Insights in the Management of Skin Disorders. Clin Cosmet Investig Dermatol 2024; 17:1083-1092. [PMID: 38765192 PMCID: PMC11100965 DOI: 10.2147/ccid.s467442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/04/2024] [Indexed: 05/21/2024]
Abstract
Curcumin, derived from Curcuma longa (turmeric), exhibits significant potential in dermatology, addressing conditions like atopic dermatitis, psoriasis, chronic wounds, skin cancer, and infections through its anti-inflammatory, antioxidant, anticancer, and antimicrobial properties. This review synthesizes evidence on curcumin's mechanisms, including modulation of immune responses and promotion of wound healing, showcasing its efficacy in reducing inflammation, cytokine levels, and enhancing skin barrier functions. Studies highlight curcumin's ability to selectively target tumor cells, suggesting a multifaceted approach to cancer therapy with minimal side effects. Despite promising therapeutic benefits, challenges remain in bioavailability, potency, and targeted delivery, underscoring the need for further research to optimize dosages, delivery methods, and assess long-term safety. The integration of curcumin into dermatological practice requires a balanced consideration of evidence-based efficacy and safety. Curcumin's comprehensive utility in dermatology, coupled with the necessity for advanced scientific exploration, emphasizes the importance of combining traditional knowledge with contemporary research to improve patient care in dermatology. This approach could significantly enhance outcomes for individuals with skin-related conditions, marking curcumin as a versatile and promising agent in the field.
Collapse
Affiliation(s)
- Zhiming Mo
- Department of Pharmaceutical Center, Dongguan Traditional Chinese Medicine Hospital, Dongguan, 523000, People’s Republic of China
| | - Jiayi Yuan
- Department of Pharmaceutical Center, Dongguan Traditional Chinese Medicine Hospital, Dongguan, 523000, People’s Republic of China
| | - Xuelian Guan
- Department of Pharmaceutical Center, Dongguan Traditional Chinese Medicine Hospital, Dongguan, 523000, People’s Republic of China
| | - Jianhong Peng
- Department of Internal Medicine, Dongguan Traditional Chinese Medicine Hospital, Dongguan, 523000, People’s Republic of China
| |
Collapse
|
6
|
Tayyeb JZ, Priya M, Guru A, Kishore Kumar MS, Giri J, Garg A, Agrawal R, Mat KB, Arockiaraj J. Multifunctional curcumin mediated zinc oxide nanoparticle enhancing biofilm inhibition and targeting apoptotic specific pathway in oral squamous carcinoma cells. Mol Biol Rep 2024; 51:423. [PMID: 38489102 DOI: 10.1007/s11033-024-09407-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 02/29/2024] [Indexed: 03/17/2024]
Abstract
BACKGROUND Oral health remains a significant global concern with the prevalence of oral pathogens and the increasing incidence of oral cancer posing formidable challenges. Additionally, the emergence of antibiotic-resistant strains has complicated treatment strategies, emphasizing the urgent need for alternative therapeutic approaches. Recent research has explored the application of plant compounds mediated with nanotechnology in oral health, focusing on the antimicrobial and anticancer properties. METHODS In this study, curcumin (Cu)-mediated zinc oxide nanoparticles (ZnO NPs) were synthesized and characterized using SEM, EDAX, UV spectroscopy, FTIR, and XRD to validate their composition and structural features. The antioxidant and antimicrobial activity of ZnO-CU NPs was investigated through DPPH, ABTS, and zone of inhibition assays. Apoptotic assays and gene expression analysis were performed in KB oral squamous carcinoma cells to identify their anticancer activity. RESULTS ZnO-CU NPs showcased formidable antioxidant prowess in both DPPH and ABTS assays, signifying their potential as robust scavengers of free radicals. The determined minimal inhibitory concentration of 40 µg/mL against dental pathogens underscored the compelling antimicrobial attributes of ZnO-CU NPs. Furthermore, the interaction analysis revealed the superior binding affinity and intricate amino acid interactions of ZnO-CU NPs with receptors on dental pathogens. Moreover, in the realm of anticancer activity, ZnO-CU NPs exhibited a dose-dependent response against Human Oral Epidermal Carcinoma KB cells at concentrations of 10 µg/mL, 20 µg/mL, 40 µg/mL, and 80 µg/mL. Unraveling the intricate mechanism of apoptotic activity, ZnO-CU NPs orchestrated the upregulation of pivotal genes, including BCL2, BAX, and P53, within the KB cells. CONCLUSIONS This multifaceted approach, addressing both antimicrobial and anticancer activity, positions ZnO-CU NPs as a compelling avenue for advancing oral health, offering a comprehensive strategy for tackling both oral infections and cancer.
Collapse
Affiliation(s)
- Jehad Zuhair Tayyeb
- Department of Clinical Biochemistry, College of Medicine, University of Jeddah, Jeddah, 23890, Saudi Arabia
| | - Madhu Priya
- Department of Cariology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Ajay Guru
- Department of Cariology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
| | - Meenakshi Sundaram Kishore Kumar
- Biomedical Research Unit and Laboratory Animal Centre (BRULAC), Department of Anatomy, Saveetha Dental College, Chennai, 600 077, Tamil Nadu, India
| | - Jayant Giri
- Department of Mechanical Engineering, Yeshwantrao Chavan College of Engineering, Nagpur, India
| | - Akash Garg
- Rajiv Academy for Pharmacy, Mathura, 281001, Uttar Pradesh, India
| | - Rutvi Agrawal
- Rajiv Academy for Pharmacy, Mathura, 281001, Uttar Pradesh, India
| | - Khairiyah Binti Mat
- Department of Agricultural Sciences, Faculty of Agro‑Based Industry, Universiti Malaysia Kelantan, Jeli Campus, Jeli, 17600, Malaysia.
- Advanced Livestock and Aquaculture Research Group, Faculty of Agro‑Based Industry, Universiti Malaysia Kelantan, Jeli Campus, Jeli, 17600, Malaysia.
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, 603203, Chengalpattu District, Tamil Nadu, India.
| |
Collapse
|
7
|
Comeau P, Manso A. A Systematic Evaluation of Curcumin Concentrations and Blue Light Parameters towards Antimicrobial Photodynamic Therapy against Cariogenic Microorganisms. Pharmaceutics 2023; 15:2707. [PMID: 38140048 PMCID: PMC10747634 DOI: 10.3390/pharmaceutics15122707] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
Dental caries is a highly preventable and costly disease. Unfortunately, the current management strategies are inadequate at reducing the incidence and new minimally invasive strategies are needed. In this study, a systematic evaluation of specific light parameters and aqueous curcumin concentrations for antimicrobial photodynamic therapy (aPDT) was conducted. Aqueous solutions of curcumin were first prepared and evaluated for their light absorbance after applying different ~56 mW/cm2 blue light treatments in a continuous application mode. Next, these same light treatments as well as different application modes were applied to the curcumin solutions and the molar absorptivity coefficient, reactive oxygen species (ROS) release, minimum inhibitory concentration (MIC), and minimum bactericidal concentration (MBC) for Streptococcus mutans and the MIC and minimum fungicidal concentration (MFC) for Candida albicans were measured. After up to 1 min of light treatment, the molar absorptivity of curcumin when added to culture media was lower than that for water only; however, at higher energy levels, this difference was not apparent. There was a noted dependence on both ROS type and cariogenic microorganism species on the sensitivity to both blue light treatment and application mode. In conclusion, this study provides new information towards improving the agonistic potential of aPDT associated with curcumin against cariogenic microorganisms.
Collapse
Affiliation(s)
- Patricia Comeau
- Department of Oral Health Science, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada;
- Department of Chemical and Materials Engineering, Concordia University, Montreal, QC H3G 2W1, Canada
| | - Adriana Manso
- Department of Oral Health Science, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada;
| |
Collapse
|
8
|
Liu C, Dong S, Wang X, Xu H, Liu C, Yang X, Wu S, Jiang X, Kan M, Xu C. Research progress of polyphenols in nanoformulations for antibacterial application. Mater Today Bio 2023; 21:100729. [PMID: 37529216 PMCID: PMC10387615 DOI: 10.1016/j.mtbio.2023.100729] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 07/08/2023] [Accepted: 07/09/2023] [Indexed: 08/03/2023] Open
Abstract
Infectious disease is one of the top 10 causes of death worldwide, especially in low-income countries. The extensive use of antibiotics has led to an increase in antibiotic resistance, which poses a critical threat to human health globally. Natural products such as polyphenolic compounds and their derivatives have been shown the positive therapeutic effects in antibacterial therapy. However, the inherent physicochemical properties of polyphenolic compounds and their derivatives limit their pharmaceutical effects, such as short half-lives, chemical instability, low bioavailability, and poor water solubility. Nanoformulations have shown promising advantages in improving antibacterial activity by controlling the release of drugs and enhancing the bioavailability of polyphenols. In this review, we listed the classification and antibacterial mechanisms of the polyphenolic compounds. More importantly, the nanoformulations for the delivery of polyphenols as the antibacterial agent were summarized, including different types of nanoparticles (NPs) such as polymer-based NPs, metal-based NPs, lipid-based NPs, and nanoscaffolds such as nanogels, nanofibers, and nanoemulsions. At the same time, we also presented the potential biological applications of the nano-system to enhance the antibacterial ability of polyphenols, aiming to provide a new therapeutic perspective for the antibiotic-free treatment of infectious diseases.
Collapse
Affiliation(s)
- Chang Liu
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
- Department of Neurology and Neuroscience Center, First Hospital of Jilin University, Changchun, 130021, China
| | - Shuhan Dong
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
- Department of Preventive Medicine, School of Public Health, Jilin University, Changchun, 130021, China
| | - Xue Wang
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Huiqing Xu
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Chang Liu
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Xi Yang
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Shanli Wu
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Xin Jiang
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Mujie Kan
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Caina Xu
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| |
Collapse
|
9
|
Abou Elez RMM, Elsohaby I, Al-Mohammadi AR, Seliem M, Tahoun ABMB, Abousaty AI, Algendy RM, Mohamed EAA, El-Gazzar N. Antibacterial and anti-biofilm activities of probiotic Lactobacillus plantarum against Listeria monocytogenes isolated from milk, chicken and pregnant women. Front Microbiol 2023; 14:1201201. [PMID: 37538844 PMCID: PMC10394229 DOI: 10.3389/fmicb.2023.1201201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 07/07/2023] [Indexed: 08/05/2023] Open
Abstract
Listeria monocytogenes (L. monocytogenes) is a foodborne pathogen that poses significant risks to public health and food safety. The present study aimed to identify the presence of Listeria spp. in various samples, including pasteurized milk, chicken fillets, and stool samples from pregnant women in Sharkia Governorate, Egypt. Additionally, the study identified the serotypes, virulence-associated genes, antimicrobial resistance patterns, and biofilm formation in L. monocytogenes isolates. Moreover, the antibacterial and anti-biofilm activity of Lactobacillus plantarum ATCC 14917 (L. plantarum) against L. monocytogenes isolates was investigated. A cross-sectional study was conducted from August 2021 to January 2022 to collect 300 samples of pasteurized milk, chicken fillets, and stool from pregnant women admitted to outpatient clinics of hospitals. The results showed that 32.7% of the samples were positive for Listeria spp., including L. innocua (48.9%), L. monocytogenes (26.5%), L. ivanovii (14.3%), L. grayi (5.1%), and L. welshimeri (5.1%). Among all L. monocytogenes isolates, hlyA, actA, inlC, and inlJ virulence-associated genes were detected. However, the virulence genes plcB, iap, and inlA were found in 10 (38.5%), 8 (30.8%), and 25 (96.2%) isolates, respectively. The L. monocytogenes isolates classified into four serotypes (1/2a, 1/2b, 1/2c, and 4b), with 1/2a and 4b each identified in 30.8% of the isolates, while 1/2b and 1/2c were identified in 19.2% of the isolates. All L. monocytogenes isolates showed 100% resistance to streptomycin, kanamycin, and nalidix acid, and 92.3% of isolates showed gentamicin resistance. However, all isolates were susceptible to ampicillin and ampicillin/sulbactam. Multidrug resistance (MDR) was observed in 20 (76.9%) L. monocytogenes isolates. The biofilm formation ability of 26 L. monocytogenes isolates was evaluated at different incubation temperatures. At 4°C, 25°C, and 37°C, 53.8, 69.2, and 80.8% of the isolates, respectively, were biofilm producers. Furthermore, 23.1% were strong biofilm producers at both 4°C and 25°C, while 34.6% were strong biofilm formers at 37°C. Treating L. monocytogenes isolates with L. plantarum cell-free supernatant (CFS) reduced the number of biofilm-producing isolates to 15.4, 42.3, and 53.8% at 4°C, 25°C, and 37°C, respectively. L. plantarum's CFS antibacterial activity was tested against six virulent, MDR, and biofilm-forming L. monocytogenes isolates. At a concentration of 5 μg/mL of L. plantarum CFS, none of the L. monocytogenes isolates exhibited an inhibition zone. However, an inhibition zone was observed against L. monocytogenes strains isolated from pasteurized milk and pregnant women's stools when using a concentration of 10 μg/mL. Transmission electron microscopy (TEM) revealed that L. plantarum CFS induced morphological and intracellular structural changes in L. monocytogenes. In conclusion, this study identified virulent MDR L. monocytogenes isolates with strong biofilm-forming abilities in food products in Egypt, posing significant risks to food safety. Monitoring the prevalence and antimicrobial resistance profile of L. monocytogenes in dairy and meat products is crucial to enhance their safety. Although L. plantarum CFS showed potential antibacterial and anti-biofilm effects against L. monocytogenes isolates, further research is needed to explore its full probiotic potential.
Collapse
Affiliation(s)
- Rasha M. M. Abou Elez
- Department of Zoonoses, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Ibrahim Elsohaby
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China
- Centre for Applied One Health Research and Policy Advice (OHRP), City University of Hong Kong, Kowloon, Hong Kong SAR, China
- Department of Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | | | - Marwa Seliem
- Department of Zoonoses, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Asmaa B. M. B. Tahoun
- Department of Food Hygiene, Safety and Technology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Amira I. Abousaty
- Department of Botany and Microbiology, Faculty of Science, Zagazig University, Zagazig, Egypt
| | - Reem M. Algendy
- Department of Food Hygiene, Safety and Technology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Eman A. A. Mohamed
- Department of Microbiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Nashwa El-Gazzar
- Department of Botany and Microbiology, Faculty of Science, Zagazig University, Zagazig, Egypt
| |
Collapse
|
10
|
Fernandes S, Borges A, Gomes IB, Sousa SF, Simões M. Curcumin and 10-undecenoic acid as natural quorum sensing inhibitors of LuxS/AI-2 of Bacillus subtilis and LasI/LasR of Pseudomonas aeruginosa. Food Res Int 2023; 165:112519. [PMID: 36869520 DOI: 10.1016/j.foodres.2023.112519] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/06/2023] [Accepted: 01/21/2023] [Indexed: 01/26/2023]
Abstract
The quorum sensing (QS) system is related to cell-to-cell communication as a function of population density, which regulates several physiological functions including biofilm formation and virulence gene expression. QS inhibitors have emerged as a promising strategy to tackle virulence and biofilm development. Among a wide variety of phytochemicals, many of them have been described as QS inhibitors. Driven by their promising clues, this study aimed to identify active phytochemicals against LuxS/autoinducer-2 (AI-2) (as the universal QS system) from Bacillus subtilis and LasI/LasR (as a specific QS system) of Pseudomonas aeruginosa, through in silico analysis followed by in vitro validation. The optimized virtual screening protocols were applied to screen a phytochemical database containing 3479 drug-like compounds. The most promising phytochemicals were curcumin, pioglitazone hydrochloride, and 10-undecenoic acid. In vitro analysis corroborated the QS inhibitory activity of curcumin and 10-undecenoic acid, however, pioglitazone hydrochloride showed no relevant effect. Inhibitory effects on LuxS/AI-2 QS system triggered reduction of 33-77% by curcumin (at 1.25-5 µg/mL) and 36-64% by 10-undecenoic acid (at 12.5-50 µg/mL). Inhibition of LasI/LasR QS system was 21% by curcumin (at 200 µg/mL) and 10-54% by 10-undecenoic acid (at 15.625-250 µg/mL). In conclusion, in silico analysis allowed the identification of curcumin and, for the first time, 10-undecenoic acid (showing low cost, high availability, and low toxicity) as alternatives to counteract bacterial pathogenicity and virulence, avoiding the imposition of selective pressure usually related to classic industrial disinfection and antibiotics therapy.
Collapse
Affiliation(s)
- Susana Fernandes
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Anabela Borges
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Inês B Gomes
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Sérgio F Sousa
- UCIBIO/REQUIMTE, BioSIM, Departamento de Biomedicina, Faculdade de Medicina da Universidade do Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Manuel Simões
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal.
| |
Collapse
|
11
|
Flavonoid Baicalein Suppresses Oral Biofilms and Protects Enamel Hardness to Combat Dental Caries. Int J Mol Sci 2022; 23:ijms231810593. [PMID: 36142516 PMCID: PMC9504913 DOI: 10.3390/ijms231810593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/05/2022] [Accepted: 09/08/2022] [Indexed: 11/23/2022] Open
Abstract
The objectives of this study were to investigate the effects of a novel method using flavonoids to inhibit Streptococcus mutans (S. mutans), Candida albicans (C. albicans) and dual-species biofilms and to protect enamel hardness in a biofilm-based caries model for the first time. Several flavonoids, including baicalein, naringenin and catechin, were tested. Gold-standard chlorhexidine (CHX) and untreated (UC) groups served as controls. Optimal concentrations were determined by cytotoxicity assay. Biofilm MTT, colony-forming-units (CFUs), biofilm biomass, lactic acid and polysaccharide production were evaluated. Real-time-polymerase-chain reaction (qRT-PCR) was used to determine gene expressions in biofilms. Demineralization of human enamel was induced via S. mutans-C. albicans biofilms, and enamel hardness was measured. Compared to CHX and UC groups, the baicalein group achieved the greatest reduction in S. mutans, C. albicans and S. mutans-C. albicans biofilms, yielding the least metabolic activity, polysaccharide synthesis and lactic acid production (p < 0.05). The biofilm CFU was decreased in baicalein group by 5 logs, 4 logs, 5 logs, for S. mutans, C. albicans and S. mutans-C. albicans biofilms, respectively, compared to UC group. When tested in a S. mutans-C. albicans in vitro caries model, the baicalein group substantially reduced enamel demineralization under biofilms, yielding an enamel hardness that was 2.75 times greater than that of UC group. Hence, the novel baicalein method is promising to inhibit dental caries by reducing biofilm formation and protecting enamel hardness.
Collapse
|
12
|
Chen R, Du M, Liu C. Strategies for dispersion of cariogenic biofilms: applications and mechanisms. Front Microbiol 2022; 13:981203. [PMID: 36134140 PMCID: PMC9484479 DOI: 10.3389/fmicb.2022.981203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/11/2022] [Indexed: 11/05/2022] Open
Abstract
Bacteria residing within biofilms are more resistant to drugs than planktonic bacteria. They can thus play a significant role in the onset of chronic infections. Dispersion of biofilms is a promising avenue for the treatment of biofilm-associated diseases, such as dental caries. In this review, we summarize strategies for dispersion of cariogenic biofilms, including biofilm environment, signaling pathways, biological therapies, and nanovehicle-based adjuvant strategies. The mechanisms behind these strategies have been discussed from the components of oral biofilm. In the future, these strategies may provide great opportunities for the clinical treatment of dental diseases. Graphical Abstract.
Collapse
|
13
|
Chi Y, Wang Y, Ji M, Li Y, Zhu H, Yan Y, Fu D, Zou L, Ren B. Natural products from traditional medicine as promising agents targeting at different stages of oral biofilm development. Front Microbiol 2022; 13:955459. [PMID: 36033896 PMCID: PMC9411938 DOI: 10.3389/fmicb.2022.955459] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 07/25/2022] [Indexed: 11/23/2022] Open
Abstract
Oral cavity is an ideal habitat for more than 1,000 species of microorganisms. The diverse oral microbes form biofilms over the hard and soft tissues in the oral cavity, affecting the oral ecological balance and the development of oral diseases, such as caries, apical periodontitis, and periodontitis. Currently, antibiotics are the primary agents against infectious diseases; however, the emergence of drug resistance and the disruption of oral microecology have challenged their applications. The discovery of new antibiotic-independent agents is a promising strategy against biofilm-induced infections. Natural products from traditional medicine have shown potential antibiofilm activities in the oral cavity with high safety, cost-effectiveness, and minimal adverse drug reactions. Aiming to highlight the importance and functions of natural products from traditional medicine against oral biofilms, here we summarized and discussed the antibiofilm effects of natural products targeting at different stages of the biofilm formation process, including adhesion, proliferation, maturation, and dispersion, and their effects on multi-species biofilms. The perspective of antibiofilm agents for oral infectious diseases to restore the balance of oral microecology is also discussed.
Collapse
Affiliation(s)
- Yaqi Chi
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ye Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Mengzhen Ji
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yanyao Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Hualing Zhu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yujia Yan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Di Fu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ling Zou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- *Correspondence: Ling Zou,
| | - Biao Ren
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Biao Ren,
| |
Collapse
|
14
|
Sterniczuk B, Rossouw PE, Michelogiannakis D, Javed F. Effectiveness of Curcumin in Reducing Self-Rated Pain-Levels in the Orofacial Region: A Systematic Review of Randomized-Controlled Trials. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19116443. [PMID: 35682028 PMCID: PMC9180889 DOI: 10.3390/ijerph19116443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 05/14/2022] [Accepted: 05/24/2022] [Indexed: 11/24/2022]
Abstract
The aim was to systematically review randomized controlled trials (RCTs) that assessed the effectiveness of curcumin in reducing self-rated pain levels in the orofacial region (OFR). The addressed focused question was “Is curcumin effective in reducing self-rated pain levels in the OFR?”. Indexed databases (PubMed (National Library of Medicine), Scopus, EMBASE, MEDLINE (OVID), and Web of Science) were searched up to and including February 2022 using different keywords. The inclusion criteria were (a) original studies (RCTs) in indexed databases; and (b) studies assessing the role of curcumin in the management of pain in the OFR. The risk of bias was assessed using the Cochrane risk of bias tool. The pattern of the present systematic review was customized to primarily summarize the pertinent information. Nineteen RCTs were included. Results from 79% of the studies reported that curcumin exhibits analgesic properties and is effective in reducing self-rated pain associated with the OFR. Three studies had a low risk of bias, while nine and seven studies had a moderate and high risk of bias, respectively. Curcumin can be used as an alternative to conventional therapies in alleviating pain in the OFR. However, due to the limitations and risk of bias in the aforementioned studies, more high-quality RCTs are needed.
Collapse
|
15
|
Luteolin Inhibits the Biofilm Formation and Cytotoxicity of Methicillin-Resistant Staphylococcus aureus via Decreasing Bacterial Toxin Synthesis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:4476339. [PMID: 35586693 PMCID: PMC9110164 DOI: 10.1155/2022/4476339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 03/31/2022] [Accepted: 04/19/2022] [Indexed: 12/02/2022]
Abstract
Owing to the fact that luteolin has antibacterial activity against Staphylococcus aureus (S. aureus) and methicillin-resistant S. aureus (MRSA), its specific mechanism in MRSA is worthy of investigation, which is the focus of this study. Initially, the collected S. aureus strains were treated with luteolin. Then, the minimum inhibitory concentration (MIC) of luteolin against the S. aureus strains was measured by the broth microdilution. The growth curves, biofilm formation, and cytotoxicity of treated S. aureus were detected using a microplate reader. The live and dead bacteria were evaluated using confocal laser scanning microscopy, the bacterial morphology was observed using scanning electron microscopy, and the S. aureus colony-forming unit (CFU) numbers were assessed. The levels of alpha hemolysin (α-hemolysin), delta hemolysin (δ-hemolysin), and hlaA were detected via western blot and RT-PCR. The mortality of mouse model with S. aureus systemic infection was analyzed, and the levels of IL-6, IL-8, IL-10, and TNF-α were quantitated using ELISA. Concretely, the MIC of luteolin against MRSA N315 was 64 μg/mL. Luteolin at 16 μg/mL did not affect the growth of MRSA N315, but inhibited the biofilm formation and CFU, and promoted the morphological changes and death of MRSA N315. Luteolin decreased the cytotoxicity and the levels of α-hemolysin, δ-hemolysin, and hlaA in MRSA N315, elevated MRSA-reduced mice survival rate, and differentially modulated the inflammatory cytokine levels in MRSA-infected mice. Collectively, luteolin inhibits biofilm formation and cytotoxicity of MRSA via blocking the bacterial toxin synthesis.
Collapse
|
16
|
Dai C, Lin J, Li H, Shen Z, Wang Y, Velkov T, Shen J. The Natural Product Curcumin as an Antibacterial Agent: Current Achievements and Problems. Antioxidants (Basel) 2022; 11:459. [PMID: 35326110 PMCID: PMC8944601 DOI: 10.3390/antiox11030459] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 02/04/2023] Open
Abstract
The rapid spread of antibiotic resistance and lack of effective drugs for treating infections caused by multi-drug resistant bacteria in animal and human medicine have forced us to find new antibacterial strategies. Natural products have served as powerful therapeutics against bacterial infection and are still an important source for the discovery of novel antibacterial drugs. Curcumin, an important constituent of turmeric, is considered safe for oral consumption to treat bacterial infections. Many studies showed that curcumin exhibited antibacterial activities against Gram-negative and Gram-positive bacteria. The antibacterial action of curcumin involves the disruption of the bacterial membrane, inhibition of the production of bacterial virulence factors and biofilm formation, and the induction of oxidative stress. These characteristics also contribute to explain how curcumin acts a broad-spectrum antibacterial adjuvant, which was evidenced by the markedly additive or synergistical effects with various types of conventional antibiotics or non-antibiotic compounds. In this review, we summarize the antibacterial properties, underlying molecular mechanism of curcumin, and discuss its combination use, nano-formulations, safety, and current challenges towards development as an antibacterial agent. We hope that this review provides valuable insight, stimulates broader discussions, and spurs further developments around this promising natural product.
Collapse
Affiliation(s)
- Chongshan Dai
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China; (J.L.); (Z.S.); (Y.W.)
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Jiahao Lin
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China; (J.L.); (Z.S.); (Y.W.)
| | - Hui Li
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100193, China;
| | - Zhangqi Shen
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China; (J.L.); (Z.S.); (Y.W.)
| | - Yang Wang
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China; (J.L.); (Z.S.); (Y.W.)
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Tony Velkov
- Department of Pharmacology & Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Jianzhong Shen
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China; (J.L.); (Z.S.); (Y.W.)
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| |
Collapse
|
17
|
Ghosh S, Nandi S, Basu T. Nano-Antibacterials Using Medicinal Plant Components: An Overview. Front Microbiol 2022; 12:768739. [PMID: 35273578 PMCID: PMC8902597 DOI: 10.3389/fmicb.2021.768739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 12/13/2021] [Indexed: 11/13/2022] Open
Abstract
Gradual emergence of new bacterial strains, resistant to one or more antibiotics, necessitates development of new antibacterials to prevent us from newly evolved disease-causing, drug-resistant, pathogenic bacteria. Different inorganic and organic compounds have been synthesized as antibacterials, but with the problem of toxicity. Other alternatives of using green products, i.e., the medicinal plant extracts with biocompatible and potent antibacterial characteristics, also had limitation because of their low aqueous solubility and therefore less bioavailability. Use of nanotechnological strategy appears to be a savior, where phytochemicals are nanonized through encapsulation or entrapment within inorganic or organic hydrophilic capping agents. Nanonization of such products not only makes them water soluble but also helps to attain high surface to volume ratio and therefore high reaction area of the nanonized products with better therapeutic potential, over that of the equivalent amount of raw bulk products. Medicinal plant extracts, whose prime components are flavonoids, alkaloids, terpenoids, polyphenolic compounds, and essential oils, are in one hand nanonized (capped and stabilized) by polymers, lipids, or clay materials for developing nanodrugs; on the other hand, high antioxidant activity of those plant extracts is also used to reduce various metal salts to produce metallic nanoparticles. In this review, five medicinal plants, viz., tulsi (Ocimum sanctum), turmeric (Curcuma longa), aloe vera (Aloe vera), oregano (Oregano vulgare), and eucalyptus (Eucalyptus globulus), with promising antibacterial potential and the nanoformulations associated with the plants' crude extracts and their respective major components (eugenol, curcumin, anthraquinone, carvacrol, eucalyptus oil) have been discussed with respect to their antibacterial potency.
Collapse
Affiliation(s)
| | | | - Tarakdas Basu
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, India
| |
Collapse
|
18
|
Khamooshi P, Pourhajibagher M, Sodagar A, Bahador A, Ahmadi B, Arab S. Antibacterial properties of an acrylic resin containing curcumin nanoparticles: An in vitro study. J Dent Res Dent Clin Dent Prospects 2022; 16:190-195. [PMID: 36704184 PMCID: PMC9871173 DOI: 10.34172/joddd.2022.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 08/08/2022] [Indexed: 01/20/2023] Open
Abstract
Background. Microbial accumulation is still a significant problem with removable acrylic appliances. This study aimed to assess the antimicrobial properties of a self-cured acrylic resin containing curcumin nanoparticles (CNPs). Methods. This in vitro study used 48 acrylic discs containing 0.5%, 1%, and 2% CNPs. The antimicrobial properties of the discs against Streptococcus mutans, Streptococcus sanguinis, Lactobacillus acidophilus, and Candida albicans were evaluated using disc agar diffusion (DAD), eluted component, and biofilm inhibition tests. The growth inhibition zones were measured, and the colonies were counted after 1, 3, and 7 days. Results. DAD test showed that none of the curcumin nanoparticle concentrations caused growth inhibition zones for any microorganisms. All the concentrations were effective against all four microorganisms in the biofilm inhibition test except 0.5% for L. acidophilus. In the eluted component test, solutions containing 2% concentration had maximum growth inhibition of all the groups at all time intervals. An increase in curcumin nanoparticle concentration from 0.5% to 1% was effective only against C. albicans. Conclusion. Generally, CNPs in all concentrations were effective against the biofilms of all four microorganisms assessed in this study. Therefore, incorporating 2% CNPs into acrylic resin seems suitable for clinical use.
Collapse
Affiliation(s)
- Pegah Khamooshi
- Department of Orthodontics, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Pourhajibagher
- Medical Bacteriology and Dental Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Sodagar
- Department of Orthodontics, Tehran University of Medical Sciences, Tehran, Iran
| | - Abbas Bahador
- Oral Microbiology Laboratory, Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Badreddin Ahmadi
- Faculty of Art and Architecture, Tarbiat Modares University, Tehran, Iran
| | - Sepideh Arab
- Department of Orthodontics, Tehran University of Medical Sciences, Tehran, Iran,Corresponding author: Sepideh Arab,
| |
Collapse
|
19
|
Shavakhi M, Sahebkar A, Shirban F, Bagherniya M. The efficacy of herbal medicine in the treatment of recurrent aphthous stomatitis: A systematic review of randomized clinical trials. Phytother Res 2021; 36:672-685. [PMID: 34816511 DOI: 10.1002/ptr.7332] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 09/09/2021] [Accepted: 10/23/2021] [Indexed: 01/08/2023]
Abstract
This systematic review was undertaken with the main aim of assessing the therapeutic effects of herbal medicines in recurrent aphthous stomatitis (RAS). A comprehensive search was performed in PubMed, Scopus, ISI Web of Science, and Google Scholar up to July 2021 to identify randomized clinical trials investigated the effects of herbal medicines on RAS. Thirty-three papers comprising 2,113 patients met the eligibility criteria, of which 30 studies had a high quality based on the Jadad scale. Totally, 22 out of 30 studies which assessed the pain showed that herbal agents significantly decreased the pain compared with the control group or placebo. In 17 out of 25 studies that evaluated ulcer size, herbal agents significantly reduced the size of ulcers compared with the control or placebo groups. In 15 out of 18 studies that assessed the healing time, herbal agents significantly reduced healing time in the intervention groups compared with the placebo or control groups. Few adverse events were reported only in four studies. Findings of the current review indicated medicinal plants and phytochemicals as effective and safe agents that for the treatment of RAS.
Collapse
Affiliation(s)
- Mojgan Shavakhi
- Department of Orthodontics, Dental Research Center, Dental Research Institute, School of Dentistry, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Medicine, The University of Western Australia, Perth, Australia.,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farinaz Shirban
- Department of Orthodontics, Dental Research Center, Dental Research Institute, School of Dentistry, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Bagherniya
- Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.,Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran.,Anesthesia and Critical Care Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
20
|
Ghazanfar A, Abbas M, Salih L, Popoola J, Wadoodi A, Heap S, Phanish M. Safety and Efficacy of Kidney Transplants From Older Adult Living Donors: A Comparative Analysis of Donor and Recipient Outcomes. EXP CLIN TRANSPLANT 2021; 19:1257-1262. [PMID: 34775934 DOI: 10.6002/ect.2021.0246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
OBJECTIVES We investigated the safety of donor nephrectomy from older adult donors (age ≥60 years), as well as long-term donor, recipient, and graft outcomes. MATERIALS AND METHODS We retrospectively analyzed data from 307 living donor kidney transplants from 1996 to 2016 and defined 2 cohorts based on donor age. Cohort A comprised donors aged 60 years and older, and cohort B comprised donors from 18 to 59 years old. We recorded donor and recipient perioperative complications, outcomes, and survival rates and used SPSS and MedCalc statistical software programs for data analyses. RESULTS The mean follow-up period for donor-recipient pairs in cohort A was 97 months (SD, 25.1 months) with median 108 months (IQR, 92-108 months) and in cohort B was 100.57 months (SD, 25.45 months) with median 120 months (IQR, 84-120 months). Mean donor age in cohort A was 64.13 years (SD, 3.78 years) with median 63 years (IQR, 61-66.5 years) and in cohort B was 41.08 years (SD, 9.15 years) with median 41 years (IQR, 34.5-48 years) (P < .001, cohort A vs B). Mean recipient age in cohort A was 47.65 years (SD, 14.26 years) with median 48.5 years (IQR, 35.5-61 years) and in cohort B was 43.55 years (SD, 13.15 years) with median 40.5 years (IQR, 33.5-54 years) (P < .001, cohort A vs B). Both cohorts showed no significant differences in perioperative donor and recipient complications. Renal function (measured as estimated glomerular filtration rate) in remaining native kidneys of cohort A showed no significant decline during median 8-year follow-up (P = .089 and P < .414, respectively). There were no significant differences in survival rates for donors, recipients, and grafts. CONCLUSIONS Living donor kidney transplant from older adult donors is safe and effective with good long-term patient and allograft survival.
Collapse
Affiliation(s)
- Abbas Ghazanfar
- From the St. George's University Hospitals NHS Foundation Trust, London, United Kingdom.,From the St. George's University of London, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
21
|
Dos Santos DDL, Besegato JF, de Melo PBG, Junior JAO, Chorilli M, Deng D, Bagnato VS, de Souza Rastelli AN. Effect of curcumin-encapsulated Pluronic ® F-127 over duo-species biofilm of Streptococcus mutans and Candida albicans. Lasers Med Sci 2021; 37:1775-1786. [PMID: 34664132 DOI: 10.1007/s10103-021-03432-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 09/24/2021] [Indexed: 10/20/2022]
Abstract
To assess the effect of curcumin-encapsulated Pluronic® F-127 (Cur-Plu) during antimicrobial photodynamic therapy (aPDT) over duo-species biofilm of Streptococcus mutans and Candida albicans. Thermal analysis, optical absorption, and fluorescence spectroscopy were evaluated. Minimum inhibitory concentration (MIC) and minimum bactericidal/fungal concentration were obtained. The biofilms were cultured for 48 h at 37 °C and treated according to the groups: P + M + L + (photosensitizer encapsulated with Pluronic® F-127 + light); P + D + L + (photosensitizer incorporated in 1% DMSO + light); P - M + L + (no Pluronic® F-127 + light); P - D + L + (1% DMSO + light); P - L + (Milli-Q water + light); P + M + L - (photosensitizer encapsulated with Pluronic® F-127 no light); P + D + L - (photosensitizer in 1% DMSO, no light); P - M + L - (Pluronic® F-127 no light); P - D + L - (1% DMSO, no light); P - L - (Milli-Q water, no light; negative control group); CHX (0.2% chlorhexidine, positive control group); and NYS (Nystatin). Dark incubation of 5 min was used. The groups that received aPDT were irradiated by blue LED (460 nm, 15 J/cm2). Cell viability of the biofilms was performed by colony-forming units (CFU/mL) and confocal microscopy. Two-way ANOVA followed by Tukey's post hoc test was used at a significance level of 5%. P + D + L + and P + M + L + groups exhibited better log-reduction for both Candida albicans and Streptococcus mutans biofilms than P - M + L + , P - L + , and P - D + L + experimental groups. Furthermore, P + M + L + and P + D + L + showed greater reduction for Candida albicans than for Streptococcus mutans. aPDT mediated by Cur-Plu can be a potential strategy for biofilm control against duo-species biofilm of Streptococcus mutans and Candida albicans.
Collapse
Affiliation(s)
- Diego Dantas Lopes Dos Santos
- Department of Dental Materials and Prosthodontics, School of Dentistry, Araraquara, São Paulo State University - UNESP, Araraquara, São Paulo, 14801-903, Brazil
| | - João Felipe Besegato
- Department of Restorative Dentistry, School of Dentistry, Araraquara, São Paulo State University - UNESP, 1680 Humaitá St., MailBox: 331, Araraquara, São Paulo, 14.801-903, Brazil
| | - Priscila Borges Gobbo de Melo
- Department of Restorative Dentistry, School of Dentistry, Araraquara, São Paulo State University - UNESP, 1680 Humaitá St., MailBox: 331, Araraquara, São Paulo, 14.801-903, Brazil
| | - João Augusto Oshiro Junior
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, Araraquara, São Paulo State University - UNESP, Araraquara, São Paulo, 14800-903, Brazil.,Graduate Program in Pharceutical Sciences, State University of Paraíba-UEPB, Paraíba, 58429-500, Brazil
| | - Marlus Chorilli
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, Araraquara, São Paulo State University - UNESP, Araraquara, São Paulo, 14800-903, Brazil
| | - Dongmei Deng
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam - ACTA, University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Vanderlei Salvador Bagnato
- Department of Physics and Materials Science, Physics Institute of São Carlos - IFSC, University of São Paulo - USP, São Carlos, São Paulo, 13566-590, Brazil
| | - Alessandra Nara de Souza Rastelli
- Department of Restorative Dentistry, School of Dentistry, Araraquara, São Paulo State University - UNESP, 1680 Humaitá St., MailBox: 331, Araraquara, São Paulo, 14.801-903, Brazil.
| |
Collapse
|
22
|
Martins Antunes de Melo WDC, Celiešiūtė-Germanienė R, Šimonis P, Stirkė A. Antimicrobial photodynamic therapy (aPDT) for biofilm treatments. Possible synergy between aPDT and pulsed electric fields. Virulence 2021; 12:2247-2272. [PMID: 34496717 PMCID: PMC8437467 DOI: 10.1080/21505594.2021.1960105] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Currently, microbial biofilms have been the cause of a wide variety of infections in the human body, reaching 80% of all bacterial and fungal infections. The biofilms present specific properties that increase the resistance to antimicrobial treatments. Thus, the development of new approaches is urgent, and antimicrobial photodynamic therapy (aPDT) has been shown as a promising candidate. aPDT involves a synergic association of a photosensitizer (PS), molecular oxygen and visible light, producing highly reactive oxygen species (ROS) that cause the oxidation of several cellular components. This therapy attacks many components of the biofilm, including proteins, lipids, and nucleic acids present within the biofilm matrix; causing inhibition even in the cells that are inside the extracellular polymeric substance (EPS). Recent advances in designing new PSs to increase the production of ROS and the combination of aPDT with other therapies, especially pulsed electric fields (PEF), have contributed to enhanced biofilm inhibition. The PEF has proven to have antimicrobial effect once it is known that extensive chemical reactions occur when electric fields are applied. This type of treatment kills microorganisms not only due to membrane rupture but also due to the formation of reactive compounds including free oxygen, hydrogen, hydroxyl and hydroperoxyl radicals. So, this review aims to show the progress of aPDT and PEF against the biofilms, suggesting that the association of both methods can potentiate their effects and overcome biofilm infections.
Collapse
Affiliation(s)
- Wanessa de Cassia Martins Antunes de Melo
- Department of Functional Materials and Electronics, Laboratory of Bioelectric, State Research Institute, Department of Functional Materials and Electronics, Center for Physical Sciences and Technology, Vilnius, Lithuania
| | - Raimonda Celiešiūtė-Germanienė
- Department of Functional Materials and Electronics, Laboratory of Bioelectric, State Research Institute, Department of Functional Materials and Electronics, Center for Physical Sciences and Technology, Vilnius, Lithuania
| | - Povilas Šimonis
- Department of Functional Materials and Electronics, Laboratory of Bioelectric, State Research Institute, Department of Functional Materials and Electronics, Center for Physical Sciences and Technology, Vilnius, Lithuania
| | - Arūnas Stirkė
- Department of Functional Materials and Electronics, Laboratory of Bioelectric, State Research Institute, Department of Functional Materials and Electronics, Center for Physical Sciences and Technology, Vilnius, Lithuania
| |
Collapse
|
23
|
Di Salle A, Viscusi G, Di Cristo F, Valentino A, Gorrasi G, Lamberti E, Vittoria V, Calarco A, Peluso G. Antimicrobial and Antibiofilm Activity of Curcumin-Loaded Electrospun Nanofibers for the Prevention of the Biofilm-Associated Infections. Molecules 2021; 26:molecules26164866. [PMID: 34443457 PMCID: PMC8400440 DOI: 10.3390/molecules26164866] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/28/2021] [Accepted: 08/08/2021] [Indexed: 12/22/2022] Open
Abstract
Curcumin extracted from the rhizome of Curcuma Longa has been used in therapeutic preparations for centuries in different parts of the world. However, its bioactivity is limited by chemical instability, water insolubility, low bioavailability, and extensive metabolism. In this study, the coaxial electrospinning technique was used to produce both poly (ε-caprolactone) (PCL)-curcumin and core-shell nanofibers composed of PCL and curcumin in the core and poly (lactic acid) (PLA) in the shell. Morphology and physical properties, as well as the release of curcumin were studied and compared with neat PCL, showing the formation of randomly oriented, defect-free cylindrical fibers with a narrow distribution of the dimensions. The antibacterial and antibiofilm potential, including the capacity to interfere with the quorum-sensing mechanism, was evaluated on Pseudomonas aeruginosa PAO1, and Streptococcus mutans, two opportunistic pathogenic bacteria frequently associated with infections. The reported results demonstrated the ability of the Curcumin-loading membranes to inhibit both PAO1 and S. mutans biofilm growth and activity, thus representing a promising solution for the prevention of biofilm-associated infections. Moreover, the high biocompatibility and the ability to control the oxidative stress of damaged tissue, make the synthesized membranes useful as scaffolds in tissue engineering regeneration, helping to accelerate the healing process.
Collapse
Affiliation(s)
- Anna Di Salle
- Research Institute of Terrestrial Ecosystems (IRET)—CNR, Via Castellino, 111, 80131 Naples, Italy; (A.D.S.); (A.V.); (G.P.)
| | - Gianluca Viscusi
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy;
| | | | - Anna Valentino
- Research Institute of Terrestrial Ecosystems (IRET)—CNR, Via Castellino, 111, 80131 Naples, Italy; (A.D.S.); (A.V.); (G.P.)
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale “A. Avogadro”, Largo Donegani, 2, 28100 Novara, Italy
| | - Giuliana Gorrasi
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy;
- Correspondence: (G.G.); (A.C.)
| | - Elena Lamberti
- Nice Filler s.r.l., Via Loggia dei Pisani, 25, 80133 Naples, Italy; (E.L.); (V.V.)
| | - Vittoria Vittoria
- Nice Filler s.r.l., Via Loggia dei Pisani, 25, 80133 Naples, Italy; (E.L.); (V.V.)
| | - Anna Calarco
- Research Institute of Terrestrial Ecosystems (IRET)—CNR, Via Castellino, 111, 80131 Naples, Italy; (A.D.S.); (A.V.); (G.P.)
- Correspondence: (G.G.); (A.C.)
| | - Gianfranco Peluso
- Research Institute of Terrestrial Ecosystems (IRET)—CNR, Via Castellino, 111, 80131 Naples, Italy; (A.D.S.); (A.V.); (G.P.)
| |
Collapse
|
24
|
Jabczyk M, Nowak J, Hudzik B, Zubelewicz-Szkodzińska B. Curcumin and Its Potential Impact on Microbiota. Nutrients 2021; 13:2004. [PMID: 34200819 PMCID: PMC8230423 DOI: 10.3390/nu13062004] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/07/2021] [Accepted: 06/08/2021] [Indexed: 12/19/2022] Open
Abstract
Curcumin is one of the most frequently researched herbal substances; however, it has been reported to have a poor bioavailability and fast metabolism, which has led to doubts about its effectiveness. Curcumin has antioxidant and anti-inflammatory effects, and has demonstrated favorable health effects. Nevertheless, well-reported in vivo pharmacological activities of curcumin are limited by its poor solubility, bioavailability, and pharmacokinetic profile. The bidirectional interactions between curcumin and gut microbiota play key roles in understanding the ambiguity between the bioavailability and biological activity of curcumin, including its wider health impact.
Collapse
Affiliation(s)
- Marzena Jabczyk
- Department of Nutrition-Related Disease Prevention, Faculty of Health Sciences in Bytom, Medical University of Silesia, 41-900 Bytom, Poland; (M.J.); (B.Z.-S.)
| | - Justyna Nowak
- Department of Cardiovascular Disease Prevention, Faculty of Health Sciences in Bytom, Medical University of Silesia, 41-900 Bytom, Poland;
| | - Bartosz Hudzik
- Department of Cardiovascular Disease Prevention, Faculty of Health Sciences in Bytom, Medical University of Silesia, 41-900 Bytom, Poland;
- Silesian Center for Heart Diseases, Third Department of Cardiology, Faculty of Medical Science in Zabrze, Medical University of Silesia, 41-800 Zabrze, Poland
| | - Barbara Zubelewicz-Szkodzińska
- Department of Nutrition-Related Disease Prevention, Faculty of Health Sciences in Bytom, Medical University of Silesia, 41-900 Bytom, Poland; (M.J.); (B.Z.-S.)
| |
Collapse
|
25
|
Abstract
The recent development of several methods for extracting curcumin from the root of the plant Curcuma longa has led to intensified research on the properties of curcumin and its fields of application. Following the studies and the accreditation of curcumin as a natural compound with antifungal, antiviral, and antibacterial properties, new fields of application have been developed in two main directions—food and medical, respectively. This review paper aims to synthesize the fields of application of curcumin as an additive for the prevention of spoilage, safety, and quality of food. Simultaneously, it aims to present curcumin as an additive in products for the prevention of bacterial infections and health care. In both cases, the types of curcumin formulations in the form of (nano)emulsions, (nano)particles, or (nano)composites are presented, depending on the field and conditions of exploitation or their properties to be used. The diversity of composite materials that can be designed, depending on the purpose of use, leaves open the field of research on the conditioning of curcumin. Various biomaterials active from the antibacterial and antibiofilm point of view can be intuited in which curcumin acts as an additive that potentiates the activities of other compounds or has a synergistic activity with them.
Collapse
|
26
|
Girisa S, Kumar A, Rana V, Parama D, Daimary UD, Warnakulasuriya S, Kumar AP, Kunnumakkara AB. From Simple Mouth Cavities to Complex Oral Mucosal Disorders-Curcuminoids as a Promising Therapeutic Approach. ACS Pharmacol Transl Sci 2021; 4:647-665. [PMID: 33860191 PMCID: PMC8033761 DOI: 10.1021/acsptsci.1c00017] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Indexed: 02/08/2023]
Abstract
Oral diseases are among the most common encountered health issues worldwide, which are usually associated with anomalies of the oral cavity, jaws, and salivary glands. Despite the availability of numerous treatment modalities for oral disorders, a limited clinical response has been observed because of the inefficacy of the drugs and countless adverse side effects. Therefore, the development of safe, efficacious, and wide-spectrum therapeutics is imperative in the battle against oral diseases. Curcumin, extracted from the golden spice turmeric, is a well-known natural polyphenol that has been extensively studied for its broad pleiotropic attributes and its ability to modulate multiple biological processes. It is well-documented to target pro-inflammatory mediators like NF-κB, ROS, COX-2, IL-1, IL-2, TGF-β, growth factors, apoptotic proteins, receptors, and various kinases. These properties make curcumin a promising nutraceutical in the treatment of many oral diseases like oral submucous fibrosis, oral mucositis, oral leukoplakia, oral erythroplakia, oral candidiasis, aphthous stomatitis, oral lichen planus, dental caries, periodontitis, and gingivitis. Numerous in vitro and in vivo studies have shown that curcumin alleviates the symptoms of most of the oral complications, including the inhibition of the progression of oral cancer. In this regard, many clinical trials have been completed, and many are ongoing to investigate the "curcumin effect" in oral maladies. Therefore, the current review delineates the mechanistic framework of curcumin's propensity in curbing oral diseases and present outcomes of the clinical trials of curcumin-based therapeutics that can provide a breakthrough in the clinical management of these diseases.
Collapse
Affiliation(s)
- Sosmitha Girisa
- Cancer
Biology Laboratory and DBT-AIST International Center for Translational
and Environmental Research (DAICENTER), Department of Biosciences
and Bioengineering, Indian Institute of
Technology (IIT) Guwahati, Guwahati, Assam 781039, India
| | - Aviral Kumar
- Cancer
Biology Laboratory and DBT-AIST International Center for Translational
and Environmental Research (DAICENTER), Department of Biosciences
and Bioengineering, Indian Institute of
Technology (IIT) Guwahati, Guwahati, Assam 781039, India
| | - Varsha Rana
- Cancer
Biology Laboratory and DBT-AIST International Center for Translational
and Environmental Research (DAICENTER), Department of Biosciences
and Bioengineering, Indian Institute of
Technology (IIT) Guwahati, Guwahati, Assam 781039, India
| | - Dey Parama
- Cancer
Biology Laboratory and DBT-AIST International Center for Translational
and Environmental Research (DAICENTER), Department of Biosciences
and Bioengineering, Indian Institute of
Technology (IIT) Guwahati, Guwahati, Assam 781039, India
| | - Uzini Devi Daimary
- Cancer
Biology Laboratory and DBT-AIST International Center for Translational
and Environmental Research (DAICENTER), Department of Biosciences
and Bioengineering, Indian Institute of
Technology (IIT) Guwahati, Guwahati, Assam 781039, India
| | - Saman Warnakulasuriya
- Department
of Oral Medicine, King’s College
London and WHO Collaborating Centre for Oral Cancer and Precancer, London WC2R 2LS, United Kingdom
| | - Alan Prem Kumar
- Medical
Science Cluster, Cancer Translational Research Programme, Yong Loo
Lin School of Medicine, National University
of Singapore, Singapore 117600, Singapore
- Cancer
Science Institute of Singapore, National
University of Singapore, Singapore 117600, Singapore
- National
University Cancer Institute, National University
Health Systems, Singapore 117600, Singapore
| | - Ajaikumar B. Kunnumakkara
- Cancer
Biology Laboratory and DBT-AIST International Center for Translational
and Environmental Research (DAICENTER), Department of Biosciences
and Bioengineering, Indian Institute of
Technology (IIT) Guwahati, Guwahati, Assam 781039, India
| |
Collapse
|
27
|
Direct interactions between cationic liposomes and bacterial cells ameliorate the systemic treatment of invasive multidrug-resistant Staphylococcus aureus infections. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2021; 34:102382. [PMID: 33771706 DOI: 10.1016/j.nano.2021.102382] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 01/14/2021] [Accepted: 03/03/2021] [Indexed: 12/19/2022]
Abstract
Invasive infections caused by antibiotic-resistant Staphylococcus aureus have posed a great threat to human health. To tackle this problem, a cationic liposomal Curcumin (C-LS/Cur) was developed and its effect against antibiotic-resistant S. aureus was investigated in this study. As expected, C-LS/Cur exhibited greater bactericidal capacity compared with its counterparts, probably because the negatively charged S. aureus favors electrostatic interactions rather than intercalation with cationic liposomal vesicles at the beginning of endocytic process, thereby effectively delivering Cur to its targets. We confirmed this hypothesis by monitoring zeta potential variation, collecting visual evidences through CLSM, FCM and TEM, and determining binding kinetics by BLI. Moreover, an excellent therapeutic efficacy of C-LS/Cur against invasive murine infection was also observed, which was due to the enhanced accumulation and retention in the targets. Therefore, cationic liposomes have great potential for the clinical application in the treatment of invasive antibiotic-resistant S. aureus infections.
Collapse
|
28
|
Antibiofilm peptides as a promising strategy: comparative research. Appl Microbiol Biotechnol 2021; 105:1647-1656. [PMID: 33475795 DOI: 10.1007/s00253-021-11103-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 12/04/2020] [Accepted: 01/05/2021] [Indexed: 10/22/2022]
Abstract
Biofilms lead to approximately 65% of infections, and these infections are hard to treat. Thus, it is crucial to identify effective antibiofilm agents with low cytotoxicity. Peptides with antibiofilm activity have been regarded as promising solutions, and peptides with MBICs (minimal biofilm inhibitory concentrations) that are lower than their minimal inhibitory concentration (MICs) (minimal inhibitory concentrations) are appealing. Therefore, we systematically summarized and classified previously reported peptides with antibiofilm activity. A total of 51 peptides with antibiofilm activity were classified into 14 categories. The MICs and MBICs of these fourteen representative peptides, one selected from each category, were compared against the Gram-positive bacterium Streptococcus mutans, the Gram-negative bacterium Pseudomonas aeruginosa, and the fungus Candida albicans. Six representative peptides (C5-pleurocidin, C6-Pac-525, C9-protegrin-1, C11-TetraF2W-RR, C13-WLBU2, and C14-melittin) showed antibiofilm activity against both bacteria and fungi, and among these 6 representative peptides, 4 peptides (C9-protegrin-1, C11-TetraF2W-RR, C13-WLBU2, and C14-melittin) could prevent biofilm formation with lower MBIC values than their MICs. CLSM (confocal laser scanning microscopy), SEM (scanning electron microscopy), and TEM (transmission electron microscopy) were further used to observe the morphologies of the biofilms after treatment with the peptides. Among the above 4 peptides, WLBU2 and melittin sparsely scattered the biofilms without destroying the bacteria. In conclusion, the currently reported peptides with antibiofilm activity are limited in number, but peptides with lower MBICs than MICs exist as promising candidates against biofilm-related infections and need further study. KEY POINTS: • Antibiofilm peptides could inhibit biofilm formation with MBICs that are lower than MICs. • The mechanism of antibiofilm peptides is not only due to antimicrobial activity.
Collapse
|
29
|
Does Curcumin Have an Anticaries Effect? A Systematic Review of In Vitro Studies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1291:213-227. [PMID: 34331692 DOI: 10.1007/978-3-030-56153-6_12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
BACKGROUND Dental caries is one of the most important oral health problems and a common infectious microbial disease. Streptococcus mutans (S. mutans) has been regarded as the primary etiologic factor in the formation of dental caries. Curcumin (CUR) has an antibacterial action and could be used in the eradication of S. mutans to control dental caries. This systematic review was undertaken with the aim of evaluating the anticaries effect of CUR. METHODS A comprehensive search was conducted in the PubMed/Medline, Cochrane - CENTRAL, and Scopus databases. Based on the PICO model, studies which evaluated the anticaries effects of CUR up until 24 February 2020 with language restrictions were selected for this systematic review. RESULTS From 753 papers found, 13 met the eligibility criteria and were included. In 12 out of 13 included studies, CUR had significant antibacterial and anticaries effects. CUR had inhibitory effects on S. mutans growth, acid production, ATPase and sortase A activity, biomass, viability and metabolism reduction of biofilm, reduced exopolysaccharide production of biofilms, changes in biofilm structure, and had anti-adhesion effects against S. mutans. CONCLUSION This systematic review suggests promising antibacterial and anticaries effects of CUR including inhibition of S. mutans growth, acid production, ATPase and sortase A activity. This review provides unique information regarding the potential role of CUR in the prevention and treatment of dental carries as a natural, accessible, safe, and inexpensive agent to increase oral and dental health. However, clinical randomized controlled trials are needed to confirm these results.
Collapse
|
30
|
Fakheran O, Khademi A, Bagherniya M, Dehghannejad M, Sathyapalan T, Sahebkar A. Antibacterial Activity of Curcumin Against Periodontal Pathogens: A Systematic Review. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1291:239-249. [PMID: 34331694 DOI: 10.1007/978-3-030-56153-6_14] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Periodontitis is a chronic inflammatory disease characterized by destruction of the supporting structures of teeth caused by development of dental plaques and accumulation of microorganism around the gingival tissue. Curcumin has been shown to improve clinical parameters in periodontal diseases. However, the efficacy of curcumin in the elimination of periodontal pathogens is not clearly defined. The purpose of this study was to carry out a systematic review of the antibacterial activity of curcumin against periodontal pathogens. An electronic literature search in Medline, Scopus, Science Direct, Web of Science, Cochrane library, and Google scholar was performed up to February 29, 2020, to identify studies assessing the antibacterial activity of curcumin against periodontal pathogens. From 1238 publications, three clinical trials and five in vitro studies met the eligibility criteria. All three clinical studies reported improvement in restoring gingival health in clinical and microbiological parameters, following adjunctive use of curcumin for treatment of periodontitis. All five in vitro studies showed that curcumin could inhibit the growth of bacterial strains. Three of the five in vitro studies evaluated the effect of curcumin on mixed biofilm of periopathogens, which showed a significant inhibitory effect of curcumin on periodontal biofilms. This systematic review found that curcumin has antibacterial activity against periopathogens. The anti-biofilm activity of curcumin is reported as one of the mechanisms for this phenomenon. Curcumin could improve the clinical parameters of periodontal tissue not only by inhibition of the pathogens but also by modulating the host response.
Collapse
Affiliation(s)
- Omid Fakheran
- Dental Research Center, Department of Periodontics, Dental Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Abbasali Khademi
- Dental Research Center, Department of Endodontics, Dental Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Bagherniya
- Food Security Research Center, Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mandana Dehghannejad
- Dental Research Center, Dental Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Thozhukat Sathyapalan
- Department of Academic Diabetes, Endocrinology and Metabolism, Hull York Medical School, University of Hull, Hull, UK
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran. .,Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran. .,Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland. .,Halal Research Center of IRI, FDA, Tehran, Iran.
| |
Collapse
|
31
|
Proteomic and metabolic characterization of membrane vesicles derived from Streptococcus mutans at different pH values. Appl Microbiol Biotechnol 2020; 104:9733-9748. [DOI: 10.1007/s00253-020-10563-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/12/2020] [Accepted: 03/20/2020] [Indexed: 12/14/2022]
|
32
|
Li B, Pan T, Lin H, Zhou Y. The enhancing antibiofilm activity of curcumin on Streptococcus mutans strains from severe early childhood caries. BMC Microbiol 2020; 20:286. [PMID: 32938379 PMCID: PMC7493841 DOI: 10.1186/s12866-020-01975-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 09/10/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Streptococcus mutans (S. mutans) is one of the main cariogenic bacteria for caries. It was found that the clinical strains of S. mutans isolated from caries active population have stronger cariogenic ability than the isolates from caries-free (CF) people. Previous studies have found that curcumin can inhibit biofilm formation of S. mutans UA159. The objective of this study is to explore the antibiofilm effect of curcumin on the clinical isolates of S. mutans from severe early childhood caries(SECC). RESULTS The isolates from SECC group had more biomass than CF group (t = 4.296, P < 0.001). The acidogenicity and aciduricity of the strains from two groups showed no significant difference. After treatment with curcumin, the viability of biofilm was reduced to 61.865% ± 7.108% in SECC and to 84.059% ± 10.227% in CF group at 24 h (P < 0.05). The net reduction of live bacteria and total bacteria in the SECC group was significantly higher than that of the CF group (live bacteria t = 3.305, P = 0.016; total bacteria t = 2.378, P = 0.045) at 5 min. For 24 h, the net reduction of live bacteria and total bacteria in the SECC group was significantly higher than that of the CF group (live bacteria t = 3.305, P = 0.016; total bacteria t = 2.378, P = 0.045). The reduction of biofilm thickness reduced significantly in 5 min (t = 4.110, P = 0.015) and in 24 h (t = 3.453, P = 0.014). Long-term (24 h) curcumin treatment inhibited the amount of EPS in SECC group from (25.980 ± 1.156) μm3/μm2 to (20.136 ± 1.042) μm3/μm2, the difference was statistically significant (t = 7.510, P < 0.001). The gene of gtfC, gtfD, ftf, gbpB, fruA and srtA in the CF group and the gtfB, gtfC, gtfD, ftf, gbpB, srtA in SECC group were respectively reduced after 5 min curcumin treatment. After 24 h treatment, the gtfB, gtfC, gtfD, ftf, gbpB, fruA and srtA in both two groups were downregulation, all the differences were statistically significant. CONCLUSIONS Curcumin has antibiofilm activity on clinical strains of S. mutans, especially for those isolated from SECC.
Collapse
Affiliation(s)
- Bingchun Li
- Department of Preventive Dentistry, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, 56 Ling Yuan Road West, Guangzhou, 510055, China.,Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Ting Pan
- Department of Preventive Dentistry, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, 56 Ling Yuan Road West, Guangzhou, 510055, China.,Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Huancai Lin
- Department of Preventive Dentistry, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, 56 Ling Yuan Road West, Guangzhou, 510055, China. .,Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, China.
| | - Yan Zhou
- Department of Preventive Dentistry, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, 56 Ling Yuan Road West, Guangzhou, 510055, China. .,Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
33
|
Sharifian P, Yaslianifard S, Fallah P, Aynesazi S, Bakhtiyari M, Mohammadzadeh M. Investigating the Effect of Nano-Curcumin on the Expression of Biofilm Regulatory Genes of Pseudomonas aeruginosa. Infect Drug Resist 2020; 13:2477-2484. [PMID: 32765020 PMCID: PMC7382584 DOI: 10.2147/idr.s263387] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 07/09/2020] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Pseudomonas aeruginosa is an opportunistic pathogen that causes serious nosocomial infections, especially in immunodeficient patients and cystic fibrosis, cancer, and burned individuals. The biofilm that plays an important role in the virulence of P. aeruginosa is under the regulation of quorum sensing and two-component regulatory systems of bacteria. Curcumin, an active phenolic extract of turmeric has shown an inhibitory effect on the biofilm formation of some pathogenic bacteria. Thus, the present study aims to evaluate the effect of Nano-Curcumin on the expression of major regulatory genes involved in biofilm formation of P. aeruginosa. MATERIALS AND METHODS The biofilm formation of P. aeruginosa ATCC 10145 was assessed in the presence of 15, 20, and 25 µg/mL concentrations of Nano-Curcumin using the microplate titer method. The effect of Nano-Curcumin on the expression level of regulatory genes were determined by relative reverse transcriptase-realtime PCR. RESULTS In the absence of Nano-Curcumin, P. aeruginosa strain ATCC 10145 strongly produced biofilm (3+) and in the presence of 15 and 20 µg/mL, biofilm formation was reduced to moderate (2+) and weak biofilm producer (1+), respectively. Nano-Curcumin at a concentration of 25µg/mL inhibited biofilm formation in P. aeruginosa. The expression of regulatory genes was not affected by biofilm inhibitory concentrations of Nano-Curcumin. CONCLUSION The antibiofilm mechanism of Curcumin is not related to the downregulation of regulatory systems of P. aeruginosa and probably it prevents the formation of a complete biofilm structure.
Collapse
Affiliation(s)
- Parastoo Sharifian
- Department of Microbiology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Somayeh Yaslianifard
- Department of Microbiology, School of Medicine, Dietary Supplements and Probiotic Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Parviz Fallah
- Department of Laboratory Science, Faculty of Allied Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Siavash Aynesazi
- Department of Microbiology, Faculty of Science, North Branch, Islamic Azad, Tehran, Iran
| | - Mahmood Bakhtiyari
- Department of Community Medicine and Epidemiology, School of Medicine, Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Mohammad Mohammadzadeh
- Department of Microbiology, School of Medicine, Dietary Supplements and Probiotic Research Center, Alborz University of Medical Sciences, Karaj, Iran
| |
Collapse
|
34
|
Wang X, Liu L, Zhou X, Huo Y, Gao J, Gu H. Casein phosphopeptide combined with fluoride enhances the inhibitory effect on initial adhesion of Streptococcus mutans to the saliva-coated hydroxyapatite disc. BMC Oral Health 2020; 20:169. [PMID: 32532263 PMCID: PMC7291725 DOI: 10.1186/s12903-020-01158-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 06/03/2020] [Indexed: 12/16/2022] Open
Abstract
Background Recent preventive strategies for dental caries focus on targeting the mechanisms underlying biofilm formation, including the inhibition of bacterial adhesion. A promising approach to prevent bacterial adhesion is to modify the composition of acquired salivary pellicle. This in vitro study investigated the effect and possible underlying mechanism of pellicle modification by casein phosphopeptide (CPP) on Streptococcus mutans (S. mutans) initial adhesion, and the impact of fluoride on the efficacy of CPP. Methods The salivary pellicle-coated hydroxyapatite (s-HA) discs were treated with phosphate buffered saline (negative control), heat-inactivated 2.5% CPP (heat-inactivated CPP), 2.5% CPP (CPP) or 2.5% CPP supplemented with 900 ppm fluoride (CPP + F). After cultivation of S. mutans for 30 min and 2 h, the adherent bacteria were visualized by scanning electron microscopy (SEM) and quantitatively evaluated using the plate count method. Confocal laser scanning microscopy (CLSM) was used to evaluate the proportions of total and dead S. mutans. The concentrations of total, free, and bound calcium and fluoride in the CPP and fluoride-doped CPP solutions were determined. The water contact angle and zeta potential of s-HA with and without modification were measured. The data were statistically analyzed using one-way ANOVA followed by a Turkey post hoc multiple comparison test. Results Compared to the negative control group, the amount of adherent S. mutans significantly reduced in the CPP and CPP + F groups, and was lowest in the CPP + F group. CLSM analysis showed that there was no statistically significant difference in the proportion of dead S. mutans between the four groups. Water contact angle and zeta potential of s-HA surface significantly decreased in the CPP and CPP + F groups as compared to the negative control group, and both were lowest in the CPP + F group. Conclusions Pellicle modification by CPP inhibited S. mutans initial adhesion to s-HA, possibly by reducing hydrophobicity and negative charge of the s-HA surface, and incorporating fluoride into CPP further enhanced the anti-adhesion effect.
Collapse
Affiliation(s)
- Xiaodie Wang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, 56 Ling Yuan Xi Road, Guangzhou, 510055, Guangdong, China.,Guangdong Provincial Key Laboratory of Oral Diseases, Sun Yat-sen University, 56 Ling Yuan Xi Road, Guangzhou, 510055, Guangdong, China
| | - Limin Liu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, 56 Ling Yuan Xi Road, Guangzhou, 510055, Guangdong, China.,Guangdong Provincial Key Laboratory of Oral Diseases, Sun Yat-sen University, 56 Ling Yuan Xi Road, Guangzhou, 510055, Guangdong, China
| | - Xiaoyan Zhou
- School of Dentistry, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
| | - Yongbiao Huo
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, 56 Ling Yuan Xi Road, Guangzhou, 510055, Guangdong, China.,Guangdong Provincial Key Laboratory of Oral Diseases, Sun Yat-sen University, 56 Ling Yuan Xi Road, Guangzhou, 510055, Guangdong, China
| | - Jinlong Gao
- School of Dentistry, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia. .,Institute of Dental Research, Westmead Centre for Oral Health, Westmead, NSW, Australia.
| | - Haijing Gu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, 56 Ling Yuan Xi Road, Guangzhou, 510055, Guangdong, China. .,Guangdong Provincial Key Laboratory of Oral Diseases, Sun Yat-sen University, 56 Ling Yuan Xi Road, Guangzhou, 510055, Guangdong, China.
| |
Collapse
|
35
|
Kumbar VM, Peram MR, Kugaji MS, Shah T, Patil SP, Muddapur UM, Bhat KG. Effect of curcumin on growth, biofilm formation and virulence factor gene expression of Porphyromonas gingivalis. Odontology 2020; 109:18-28. [PMID: 32279229 DOI: 10.1007/s10266-020-00514-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 03/29/2020] [Indexed: 02/06/2023]
Abstract
Porphyromonas gingivalis is a keystone pathogen and major colonizer in host tissue which plays a pivotal role in periodontitis among the other polymicrobial infections. Increasing facts demonstrate that curcumin has antibacterial activity and anti-biofilm effect against the periodontopathogens through diverse mechanisms that have a positive impact on periodontal health. The present study was aimed to elucidate the effect of curcumin on biofilm formation and virulence factor gene expression of P. gingivalis. By using gene expression studies, we exploited the mechanism of anti-biofilm effects of curcumin on P. gingivalis. The minimum inhibitory concentration and minimum bactericidal concentration of curcumin for both ATCC and clinical strains of P. gingivalis were found to be 62.5 and 125 µg ml-1 respectively. Curcumin prevented bacterial adhesion and biofilm formation in a dose-dependent manner. Further, curcumin attenuated the virulence of P. gingivalis by reducing the expression of genes coding for major virulence factors, including adhesions (fimA, hagA, and hagB) and proteinases (rgpA, rgpB, and kgp). The results indicated that curcumin has shown anti-biofilm as well as antibacterial activity against P. gingivalis. Further, curcumin because of its pleiotropic actions could be a simple and inexpensive therapeutic strategy in the treatment of periodontal disease.
Collapse
Affiliation(s)
- Vijay M Kumbar
- Central Research Laboratory, Maratha Mandal's Nathajirao G. Halgekar Institute of Dental Sciences and Research Centre, Near KSRP Ground, Bauxite road, Belgaum, Karnataka, 590 010, India
| | - Malleswara Rao Peram
- Central Research Laboratory, Maratha Mandal's Nathajirao G. Halgekar Institute of Dental Sciences and Research Centre, Near KSRP Ground, Bauxite road, Belgaum, Karnataka, 590 010, India
- Department of Pharmaceutics, Maratha Mandal's College of Pharmacy, Belgaum, Karnataka, 590 010, India
| | - Manohar S Kugaji
- Central Research Laboratory, Maratha Mandal's Nathajirao G. Halgekar Institute of Dental Sciences and Research Centre, Near KSRP Ground, Bauxite road, Belgaum, Karnataka, 590 010, India
| | - Tejas Shah
- Department of Biotechnology, Sinhgad College of Engineering, Affiliated to Savitribai Phule Pune University, Vadgaon Budruk, Sinhagad Road, Pune, Maharashtra, 411 0 41, India
| | - Sanjivani P Patil
- Central Research Laboratory, Maratha Mandal's Nathajirao G. Halgekar Institute of Dental Sciences and Research Centre, Near KSRP Ground, Bauxite road, Belgaum, Karnataka, 590 010, India
| | - Uday M Muddapur
- Department of Biotechnology, KLE Technological University (Formerly Known as B.V.Bhoomaraddi College of Engineering and Technology), BVB Campus, Hubli, Karnataka, 580031, India
| | - Kishore G Bhat
- Central Research Laboratory, Maratha Mandal's Nathajirao G. Halgekar Institute of Dental Sciences and Research Centre, Near KSRP Ground, Bauxite road, Belgaum, Karnataka, 590 010, India.
| |
Collapse
|
36
|
Antimicrobial Effect of a Peptide Containing Novel Oral Spray on Streptococcus mutans. BIOMED RESEARCH INTERNATIONAL 2020; 2020:6853652. [PMID: 32258136 PMCID: PMC7086434 DOI: 10.1155/2020/6853652] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 01/17/2020] [Accepted: 02/04/2020] [Indexed: 02/05/2023]
Abstract
Objective To investigate the antibacterial effect of a novel antimicrobial peptide containing oral spray GERM CLEAN on Streptococcus mutans (S. mutans) in vitro and further explore the related mechanisms at phenotypic and transcriptional levels. Methods The disk diffusion method was used to preliminarily appraise the antimicrobial effect of GERM CLEAN. The minimal inhibitory concentration (MIC) of GREM CLEAN towards S. mutans was determined by the broth dilution method. S. mutans was determined by the broth dilution method. Results The diameter (10.18 ± 1.744 mm) of inhibition zones formed by GERM CLEAN preliminarily indicated its inhibitory effect on the major cariogenic bacteria S. mutans was determined by the broth dilution method. S. mutans was determined by the broth dilution method. S. mutans was determined by the broth dilution method. S. mutans was determined by the broth dilution method. gtfB, gtfC, gtfD, and ldh were significantly repressed by treating with GERM CLEAN, and this was consistent with our phenotypic results. Conclusion The novel antimicrobial peptide containing oral spray GERM CLEAN has an anti-Streptococcus mutans effect and the inhibitory property may be due to suppression of the virulence factors of S. mutans including adhesive, acidogenicity, EPS, and biofilm formation.Streptococcus mutans effect and the inhibitory property may be due to suppression of the virulence factors of S. mutans including adhesive, acidogenicity, EPS, and biofilm formation.S. mutans was determined by the broth dilution method.
Collapse
|
37
|
Li X, Yin L, Ramage G, Li B, Tao Y, Zhi Q, Lin H, Zhou Y. Assessing the impact of curcumin on dual-species biofilms formed by Streptococcus mutans and Candida albicans. Microbiologyopen 2019; 8:e937. [PMID: 31560838 PMCID: PMC6925172 DOI: 10.1002/mbo3.937] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 09/03/2019] [Accepted: 09/04/2019] [Indexed: 01/27/2023] Open
Abstract
Streptococcus mutans and Candida albicans are often isolated from plaques associated with early childhood caries. However, there are limited studies examining how these microorganisms interact with one another and how best to manage them. Recent studies have shown that curcumin (CUR), a natural compound, has the potential to independently control both of these microorganisms. The purpose of this study was to investigate how S. mutans and C. albicans respond in mono‐ and dual‐species biofilms challenged with CUR. Quantitative biofilm biomass and viability were first evaluated and supported by live–dead PCR to assess biofilm composition. Confocal laser scanning microscopy (CLSM) was used to evaluate the exopolysaccharide (EPS) content and thickness of the biofilms, and the structure of the biofilms and morphology of the cells were observed by scanning electron microscopy (SEM). Quantitative real‐time PCR (qRT‐PCR) was applied to assess relative gene expression. The 50% minimum biofilm eradication concentration (MBEC50) of CUR against S. mutans and C. albicans was 0.5 mM. The biomass and viability decreased after treatment with CUR both in dual‐species biofilms and in mono‐species biofilm. CUR inhibited S. mutans and C. albicans in both mono‐ and dual‐species biofilms. Streptococcus mutans was more sensitive to CUR in dual‐species biofilm than in mono‐species biofilms, whereas C. albicans was less sensitive in dual‐species biofilms. EPS production was decreased by CUR in both mono‐ and dual‐species biofilms, which coincided with the downregulation of glucosyltransferase and quorum sensing‐related gene expression of S. mutans. In C. albicans, the agglutinin‐like sequence family of C. albicans was also downregulated in dual‐species biofilms. Collectively, these data show the potential benefit of using a natural antimicrobial, CUR, to control caries‐related dual‐species plaque biofilms.
Collapse
Affiliation(s)
- Xinlong Li
- Department of Preventive Dentistry, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Luoping Yin
- Department of Preventive Dentistry, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Gordon Ramage
- Oral Sciences Research Group, Glasgow Dental School, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Bingchun Li
- Department of Preventive Dentistry, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Ye Tao
- Department of Preventive Dentistry, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Qinghui Zhi
- Department of Preventive Dentistry, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Huancai Lin
- Department of Preventive Dentistry, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Yan Zhou
- Department of Preventive Dentistry, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
38
|
Sanchez-Villamil JI, Navarro-Garcia F, Castillo-Romero A, Gutierrez-Gutierrez F, Tapia D, Tapia-Pastrana G. Curcumin Blocks Cytotoxicity of Enteroaggregative and Enteropathogenic Escherichia coli by Blocking Pet and EspC Proteolytic Release From Bacterial Outer Membrane. Front Cell Infect Microbiol 2019; 9:334. [PMID: 31681620 PMCID: PMC6798032 DOI: 10.3389/fcimb.2019.00334] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 09/11/2019] [Indexed: 01/14/2023] Open
Abstract
Pet and EspC are toxins secreted by enteroaggregative (EAEC) and enteropathogenic (EPEC) diarrheagenic Escherichia coli pathotypes, respectively. Both toxins are members of the Serine Protease Autotransporters of Enterobacteriaceae (SPATEs) family. Pet and EspC are important virulence factors that produce cytotoxic and enterotoxic effects on enterocytes. Here, we evaluated the effect of curcumin, a polyphenolic compound obtained from the rhizomes of Curcuma longa L. (Zingiberaceae) on the secretion and cytotoxic effects of Pet and EspC proteins. We found that curcumin prevents Pet and EspC secretion without affecting bacterial growth or the expression of pet and espC. Our results show that curcumin affects the release of these SPATEs from the translocation domain, thereby affecting the pathogenesis of EAEC and EPEC. Curcumin-treated EAEC and EPEC did not induce significant cell damage like the ability to disrupt the actin cytoskeleton, without affecting their characteristic adherence patterns on epithelial cells. A molecular model of docking predicted that curcumin interacts with the determinant residues Asp1018-Asp1019 and Asp1029-Asp1030 of the translocation domain required for the release of Pet and EspC, respectively. Consequently, curcumin blocks Pet and EspC cytotoxicity on epithelial cells by preventing their release from the outer membrane.
Collapse
Affiliation(s)
- Javier I Sanchez-Villamil
- Department of Cell Biology, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN), Mexico City, Mexico
| | - Fernando Navarro-Garcia
- Department of Cell Biology, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN), Mexico City, Mexico
| | - Araceli Castillo-Romero
- Department of Microbiology and Pathology, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Filiberto Gutierrez-Gutierrez
- Department of Chemistry, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Guadalajara, Mexico
| | - Daniel Tapia
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
| | - Gabriela Tapia-Pastrana
- Laboratory of Biomedical Investigation, Hospital Regional de Alta Especialidad de Oaxaca, San Bartolo Coyotepec, Mexico
| |
Collapse
|
39
|
Rangel-Castañeda IA, Carranza-Rosales P, Guzmán-Delgado NE, Hernández-Hernández JM, González-Pozos S, Pérez-Rangel A, Castillo-Romero A. Curcumin Attenuates the Pathogenicity of Entamoeba histolytica by Regulating the Expression of Virulence Factors in an Ex-Vivo Model Infection. Pathogens 2019; 8:pathogens8030127. [PMID: 31443160 PMCID: PMC6789811 DOI: 10.3390/pathogens8030127] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 08/08/2019] [Accepted: 08/10/2019] [Indexed: 12/12/2022] Open
Abstract
Infection with the enteric protozoan Entamoeba histolytica is still a serious public health problem, especially in developing countries. Amoebic liver abscess (ALA) is the most common extraintestinal manifestation of the amoebiasis, and it can lead to serious and potentially life-threatening complications in some people. ALA can be cured by metronidazole (MTZ); however, because it has poor activity against luminal trophozoites, 40–60% of treated patients get repeated episodes of invasive disease and require repeated treatments that can induce resistance to MTZ, this may emerge as an important public health problem. Anti-virulence strategies that impair the virulence of pathogens are one of the novel approaches to solving the problem. In this study, we found that low doses of curcumin (10 and 50 μM) attenuate the virulence of E. histolytica without affecting trophozoites growth or triggering liver injury. Curcumin (CUR) decreases the expression of genes associated with E. histolytica virulence (gal/galnac lectin, ehcp1, ehcp5, and amoebapore), and is correlated with significantly lower amoebic invasion. In addition, oxidative stress is critically involved in the etiopathology of amoebic liver abscess; our results show no changes in mRNA expression levels of superoxide dismutase (SOD) and catalase (CAT) after E. histolytica infection, with or without CUR. This study provides clear evidence that curcumin could be an anti-virulence agent against E. histolytica, and makes it an attractive potential starting point for effective treatments that reduce downstream amoebic liver abscess.
Collapse
Affiliation(s)
- Itzia Azucena Rangel-Castañeda
- Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico
| | - Pilar Carranza-Rosales
- Centro de Investigación Biomédica del Noreste, Instituto Mexicano del Seguro Social, Monterrey 64720, Mexico
| | | | - José Manuel Hernández-Hernández
- Departamento de Biología Celular, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México 07360, Mexico
| | - Sirenia González-Pozos
- Unidad de Microscopía Electrónica LaNSE, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México 07360, Mexico
| | - Armando Pérez-Rangel
- Departamento de Biología Celular, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México 07360, Mexico
| | - Araceli Castillo-Romero
- Departamento de Microbiología y Patología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico.
| |
Collapse
|
40
|
Wang S, Wang Y, Wang Y, Duan Z, Ling Z, Wu W, Tong S, Wang H, Deng S. Theaflavin-3,3'-Digallate Suppresses Biofilm Formation, Acid Production, and Acid Tolerance in Streptococcus mutans by Targeting Virulence Factors. Front Microbiol 2019; 10:1705. [PMID: 31404326 PMCID: PMC6676744 DOI: 10.3389/fmicb.2019.01705] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 07/10/2019] [Indexed: 12/24/2022] Open
Abstract
As one of the most important cariogenic pathogens, Streptococcus mutans has strong abilities to form biofilms, produce acid and tolerate acid. In present study, we found that theaflavin-3,3′-digallate (TF3) had an inhibitory effect on S. mutans UA159 in vitro. Visualized by field emission-scanning electron microscopy, the suppressed formation of S. mutans biofilms grown with TF3 at sub-inhibitory concentrations could be attributed to the reduced biofilm matrix, which was proven to contain glucans and extracellular DNA (eDNA). Glucan-reduced effect of TF3 was achieved by down-regulating expression levels of gtfB, gtfC, and gtfD encoding glucosyltransferases. Besides, TF3 reduced eDNA formation of S. mutans by negatively regulating lrgA, lrgB, and srtA, which govern cell autolysis and membrane vesicle components. Furthermore, TF3 also played vital roles in antagonizing preformed biofilms of S. mutans. Bactericidal effects of TF3 became significant when its concentrations increased more than twofold of minimum inhibitory concentration (MIC). Moreover, the capacities of S. mutans biofilms to produce acid and tolerate acid were significantly weakened by TF3 at MIC. Based on real-time PCR (RT-PCR) analysis, the mechanistic effects of TF3 were speculated to comprise the inhibition of enolase, lactate dehydrogenase, F-type ATPase and the agmatine deiminase system. Moreover, TF3 has been found to downregulate LytST, VicRK, and ComDE two component systems in S. mutans, which play critical roles in the regulatory network of virulence factors. Our present study found that TF3 could suppress the formation and cariogenic capacities of S. mutans biofilms, which will provide new strategies for anti-caries in the future.
Collapse
Affiliation(s)
- Sa Wang
- Affiliated Hospital of Stomatology, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yuan Wang
- Affiliated Hospital of Stomatology, College of Medicine, Zhejiang University, Hangzhou, China
| | - Ying Wang
- Affiliated Hospital of Stomatology, College of Medicine, Zhejiang University, Hangzhou, China
| | - Zhuhui Duan
- Affiliated Hospital of Stomatology, College of Medicine, Zhejiang University, Hangzhou, China
| | - Zongxin Ling
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Wenzhi Wu
- Affiliated Hospital of Stomatology, College of Medicine, Zhejiang University, Hangzhou, China
| | - Suman Tong
- Affiliated Hospital of Stomatology, College of Medicine, Zhejiang University, Hangzhou, China
| | - Huiming Wang
- Affiliated Hospital of Stomatology, College of Medicine, Zhejiang University, Hangzhou, China
| | - Shuli Deng
- Affiliated Hospital of Stomatology, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
41
|
Praditya D, Kirchhoff L, Brüning J, Rachmawati H, Steinmann J, Steinmann E. Anti-infective Properties of the Golden Spice Curcumin. Front Microbiol 2019; 10:912. [PMID: 31130924 PMCID: PMC6509173 DOI: 10.3389/fmicb.2019.00912] [Citation(s) in RCA: 164] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 04/10/2019] [Indexed: 01/02/2023] Open
Abstract
The search for novel anti-infectives is one of the most important challenges in natural product research, as diseases caused by bacteria, viruses, and fungi are influencing the human society all over the world. Natural compounds are a continuing source of novel anti-infectives. Accordingly, curcumin, has been used for centuries in Asian traditional medicine to treat various disorders. Numerous studies have shown that curcumin possesses a wide spectrum of biological and pharmacological properties, acting, for example, as anti-inflammatory, anti-angiogenic and anti-neoplastic, while no toxicity is associated with the compound. Recently, curcumin’s antiviral and antibacterial activity was investigated, and it was shown to act against various important human pathogens like the influenza virus, hepatitis C virus, HIV and strains of Staphylococcus, Streptococcus, and Pseudomonas. Despite the potency, curcumin has not yet been approved as a therapeutic antiviral agent. This review summarizes the current knowledge and future perspectives of the antiviral, antibacterial, and antifungal effects of curcumin.
Collapse
Affiliation(s)
- Dimas Praditya
- Department of Molecular and Medical Virology, Ruhr-University Bochum, Bochum, Germany.,Institute of Experimental Virology, Twincore - Centre for Experimental and Clinical Infection Research, A Joint Venture Between the Medical School Hannover and The Helmholtz Centre for Infection Research, Hanover, Germany.,Research Center for Biotechnology, Indonesian Institute of Science, Cibinong, Indonesia
| | - Lisa Kirchhoff
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Janina Brüning
- Department of Molecular and Medical Virology, Ruhr-University Bochum, Bochum, Germany
| | - Heni Rachmawati
- School of Pharmacy, Bandung Institute of Technology, Bandung, Indonesia.,Research Center for Nanosciences and Nanotechnology, Bandung Institute of Technology, Bandung, Indonesia
| | - Joerg Steinmann
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.,Institute of Clinical Hygiene, Medical Microbiology and Infectiology, Klinikum Nürnberg, Paracelsus Medical University, Nuremberg, Germany
| | - Eike Steinmann
- Department of Molecular and Medical Virology, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
42
|
Peng KT, Chiang YC, Huang TY, Chen PC, Chang PJ, Lee CW. Curcumin nanoparticles are a promising anti-bacterial and anti-inflammatory agent for treating periprosthetic joint infections. Int J Nanomedicine 2019; 14:469-481. [PMID: 30666108 PMCID: PMC6333393 DOI: 10.2147/ijn.s191504] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background Periprosthetic joint infections (PJIs) have a high incidence of recurrence after total joint replacement and are difficult to treat by debridement or antibiotic treatment. Curcumin is a natural product with anti-inflammatory and anti-bacterial properties. The low bioactivity of curcumin in water restricts its clinical application. Curcumin nanoparticles (CURN) were developed to overcome this limitation. Methods In this study, the therapeutic effects of CURN and their anti-inflammatory functions were investigated in a Staphylococcus aureus biofilm-induced PJIs model. Results CURN first attenuated the biofilm-induced expansion of myeloid-derived suppressor cells (MDSCs) and then regulated M1- and M2-phenotypic MDSC expression. Down-regulation of cytokines and reactive oxygen species was considered as the mechanism of CURN in reversing the suppression of T cell proliferation. The recovery of bone permeative destruction demonstrated that CURN enhanced therapeutic potency of vancomycin in vivo. Conclusion This is the first study to demonstrate that CURN may be useful for treating PJIs.
Collapse
Affiliation(s)
- Kuo-Ti Peng
- Department of Orthopaedic Surgery, Chang Gung Memorial Hospital, Puzi City, Chiayi County 61363, Taiwan, .,College of Medicine, Chang Gung University, Guishan District, Taoyuan City 33303, Taiwan,
| | - Yao-Chang Chiang
- Department of Nursing, Chang Gung University of Science and Technology, Puzi City, Chiayi County 61363, Taiwan, .,Division of Basic Medical Sciences, and Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Puzi City, Chiayi County 61363, Taiwan,
| | - Tsung-Yu Huang
- Division of Infectious Diseases, Department of Internal Medicine, Chang Gung Memorial Hospital, Chiayi, Taiwan.,Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang-Gung University, Taoyuan, Taiwan
| | - Pei-Chun Chen
- Department of Orthopaedic Surgery, Chang Gung Memorial Hospital, Puzi City, Chiayi County 61363, Taiwan,
| | - Pey-Jium Chang
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang-Gung University, Taoyuan, Taiwan.,Department of Nephrology, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Chiang-Wen Lee
- Department of Nursing, Chang Gung University of Science and Technology, Puzi City, Chiayi County 61363, Taiwan, .,Division of Basic Medical Sciences, and Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Puzi City, Chiayi County 61363, Taiwan, .,Research Center for Industry of Human Ecology and Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Guishan District, Taoyuan City 33303, Taiwan, .,Department of Rehabilitation, Chang Gung Memorial Hospital, Puzi City, Chiayi County 61363, Taiwan,
| |
Collapse
|