1
|
Pan L, Yang N, Sui Y, Li Y, Zhao W, Zhang L, Mu L, Tang Z. Altitudinal Variation on Metabolites, Elements, and Antioxidant Activities of Medicinal Plant Asarum. Metabolites 2023; 13:1193. [PMID: 38132875 PMCID: PMC10745449 DOI: 10.3390/metabo13121193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/28/2023] [Accepted: 12/07/2023] [Indexed: 12/23/2023] Open
Abstract
Asarum (Asarum sieboldii Miq. f. seoulense (Nakai) C. Y. Cheng et C. S. Yang) is a medicinal plant that contains asarinin and sesamin, which possess extensive medicinal value. The adaptation and distribution of Asarum's plant growth are significantly affected by altitude. Although most studies on Asarum have concentrated on its pharmacological activities, little is known about its growth and metabolites with respect to altitude. In this study, the physiology, ionomics, and metabolomics were investigated and conducted on the leaves and roots of Asarum along an altitude gradient, and the content of its medicinal components was determined. The results showed that soil pH and temperature both decreased along the altitude, which restricts the growth of Asarum. The accumulation of TOC, Cu, Mg, and other mineral elements enhanced the photosynthetic capacity and leaf plasticity of Asarum in high-altitude areas. A metabolomics analysis revealed that, at high altitude, nitrogen metabolism in leaves was enhanced, while carbon metabolism in roots was enhanced. Furthermore, the metabolic pathways of some phenolic substances, including syringic acid, vanillic acid, and ferulic acid, were altered to enhance the metabolism of organic acids. The study uncovered the growth and metabolic responses of Asarum to varying altitudes, providing a theoretical foundation for the utilization and cultivation of Asarum.
Collapse
Affiliation(s)
- Liben Pan
- School of Forestry, Northeast Forestry University, Harbin 150040, China; (L.P.); (Y.L.); (W.Z.)
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China;
| | - Nan Yang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China;
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China;
| | - Yushu Sui
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China;
| | - Yi Li
- School of Forestry, Northeast Forestry University, Harbin 150040, China; (L.P.); (Y.L.); (W.Z.)
| | - Wen Zhao
- School of Forestry, Northeast Forestry University, Harbin 150040, China; (L.P.); (Y.L.); (W.Z.)
| | - Liqiu Zhang
- School of Medicine and Pharmacy, Tonghua Normal University, Tonghua 134002, China;
| | - Liqiang Mu
- School of Forestry, Northeast Forestry University, Harbin 150040, China; (L.P.); (Y.L.); (W.Z.)
| | - Zhonghua Tang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China;
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China;
| |
Collapse
|
2
|
Afifah DN, Ayustaningwarno F, Rahmawati A, Cantikatmaka DN, Wigati N, Noer ER, Widyastuti N, Wijayanti HS, Sugianto DN, Ningrum YPA, Hastuti VN. Characteristics of wood apple (Limonia acidissima L.) and soybean powder jelly for emergency food alternatives. Sci Rep 2023; 13:15161. [PMID: 37704836 PMCID: PMC10499880 DOI: 10.1038/s41598-023-42140-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 09/05/2023] [Indexed: 09/15/2023] Open
Abstract
The substitution of wood apple juice and soybean powder in the seaweed jelly product can be used as an alternative to emergency supplementary feeding (ESF) for children under five years of age, which contains high protein, fiber, and calories. This study aimed to determine the effect of adding wood apple juice and soybean powder to the nutrition content, vitamin C, zinc, magnesium, total phenol, antioxidant activity, acceptability, and shelf-life of seaweed jelly products. This study was an experimental study with a completely randomized design with two treatment factors, which consisted of making seaweed jelly products with three different ratios of wood apple juice and soybean powder, 60:40 (F1), 50:50 (F2), and 40:60 (F3), dried at 40 °C (T1) and 50 °C (T2). Macronutrients were determined using proximate analysis. The total phenol and vitamin C were measured using Folin-ciocalteu reagent and UV-Vis spectrophotometry. Antioxidant activity was analyzed by 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH). The contents of zinc and magnesium were evaluated through Atomic Absorption Spectrophotometry (AAS). Estimation of shelf life was determined with Accelerated Shelf-Life Test (ASLT) method and Arrhenius equation model. The best formula based on proximate analysis was F3, which contained 361.98 kcal of energy and 33.79 g of protein. The best formula (F1) dried at 40 °C; contains 56.28 mg/100 g vitamin C; zinc was 1.55 mg/100 g; magnesium was 79.25 mg/100 g; antioxidant activity (IC50) was 88.39 μg/mL; and total phenol was 8.59 mg GAE/g. The quality attributes of the best formula show the potential of the jelly as an emergency food despite its short shelf-life.
Collapse
Affiliation(s)
- Diana Nur Afifah
- Department of Nutrition Science, Faculty of Medicine, Diponegoro University, Semarang, Indonesia.
- Center of Nutrition Research (CENURE), Diponegoro University, Semarang, Indonesia.
- SDGs Center, Diponegoro University, Semarang, Indonesia.
| | - Fitriyono Ayustaningwarno
- Department of Nutrition Science, Faculty of Medicine, Diponegoro University, Semarang, Indonesia
- Center of Nutrition Research (CENURE), Diponegoro University, Semarang, Indonesia
| | - Anisa Rahmawati
- Department of Nutrition Science, Faculty of Medicine, Diponegoro University, Semarang, Indonesia
| | | | - Ningsih Wigati
- Department of Nutrition Science, Faculty of Medicine, Diponegoro University, Semarang, Indonesia
| | - Etika Ratna Noer
- Department of Nutrition Science, Faculty of Medicine, Diponegoro University, Semarang, Indonesia
- Center of Nutrition Research (CENURE), Diponegoro University, Semarang, Indonesia
| | - Nurmasari Widyastuti
- Department of Nutrition Science, Faculty of Medicine, Diponegoro University, Semarang, Indonesia
- Center of Nutrition Research (CENURE), Diponegoro University, Semarang, Indonesia
| | - Hartanti Sandi Wijayanti
- Department of Nutrition Science, Faculty of Medicine, Diponegoro University, Semarang, Indonesia
- Center of Nutrition Research (CENURE), Diponegoro University, Semarang, Indonesia
| | - Denny Nugroho Sugianto
- SDGs Center, Diponegoro University, Semarang, Indonesia
- Department of Oceanography, Faculty of Fisheries and Marine Sciences, Diponegoro University, Semarang, Indonesia
| | | | - Vivilia Niken Hastuti
- Department of Nutrition Science, Faculty of Medicine, Diponegoro University, Semarang, Indonesia
| |
Collapse
|
3
|
Wang SY, Pang YB, Tao Y, Shi XC, Zhang YJ, Wang YX, Jiang YH, Ji XY, Wang BL, Herrera-Balandrano DD, Laborda P. Dipicolinic acid enhances kiwifruit resistance to Botrytis cinerea by promoting phenolics accumulation. PEST MANAGEMENT SCIENCE 2023; 79:3177-3189. [PMID: 37024430 DOI: 10.1002/ps.7496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 01/25/2023] [Accepted: 04/07/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND Kiwifruit is highly susceptible to fungal pathogens, such as Botrytis cinerea, which reduce crop production and quality. In this study, dipicolinic acid (DPA), which is one of the main components of Bacillus spores, was evaluated as a new elicitor to enhance kiwifruit resistance to B. cinerea. RESULTS DPA enhances antioxidant capacity and induces the accumulation of phenolics in B. cinerea-infected 'Xuxiang' kiwifruit. The contents of the main antifungal phenolics in kiwifruit, including caffeic acid, chlorogenic acid and isoferulic acid, increased after DPA treatment. DPA enhanced H2 O2 levels after 0 and 1 days, which promoted catalase (CAT) and superoxide dismutase (SOD) activities, reducing long-term H2 O2 levels. DPA promoted the up-regulation of several kiwifruit defense genes, including CERK1, MPK3, PR1-1, PR1-2, PR5-1 and PR5-2. Furthermore, DPA at 5 mM inhibited B. cinerea symptoms in kiwifruit (95.1% lesion length inhibition) more effectively than the commercial fungicides carbendazim, difenoconazole, prochloraz and thiram. CONCLUSIONS The antioxidant properties of DPA and the main antifungal phenolics of kiwifruit were examined for the first time. This study uncovers new insights regarding the potential mechanisms used by Bacillus species to induce disease resistance. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Su-Yan Wang
- School of Life Sciences, Nantong University, Nantong, China
| | - Yi-Bo Pang
- School of Life Sciences, Nantong University, Nantong, China
| | - Yuan Tao
- School of Life Sciences, Nantong University, Nantong, China
| | - Xin-Chi Shi
- School of Life Sciences, Nantong University, Nantong, China
| | - Yun-Jiao Zhang
- School of Life Sciences, Nantong University, Nantong, China
| | - Yan-Xia Wang
- School of Life Sciences, Nantong University, Nantong, China
| | - Yong-Hui Jiang
- School of Life Sciences, Nantong University, Nantong, China
| | - Xin-Yu Ji
- School of Life Sciences, Nantong University, Nantong, China
| | - Bing-Lin Wang
- School of Life Sciences, Nantong University, Nantong, China
| | | | - Pedro Laborda
- School of Life Sciences, Nantong University, Nantong, China
| |
Collapse
|
4
|
Wu Z, Zuo G, Lee SK, Kang SM, Lee SY, Noreen S, Lim SS. Screening and Evaluation of Active Compounds in Polyphenol Mixtures by a Novel AAPH Offline HPLC Method and Its Application. Foods 2023; 12:foods12061258. [PMID: 36981186 PMCID: PMC10048677 DOI: 10.3390/foods12061258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 03/18/2023] Open
Abstract
In this study, we developed a novel offline high-performance liquid chromatography (HPLC) method based on 2,2′-azobis(2-amidinopropane) dihydrochloride (AAPH) radicals for antioxidant screening in 20 polyphenolic compounds and used the Trolox equivalent antioxidant capacity assay to evaluate their antioxidant activity. Compared to the existing offline HPLC methods based on 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS) and 2,2-diphenyl-1-picrylhydrazyl (DPPH), the offline HPLC method based on the AAPH radical is more sensitive. Additionally, we applied this method to Lepechinia meyenii (Walp.) Epling extract and screened out seven antioxidants, caffeic acid, hesperidin, rosmarinic acid, diosmin, methyl rosmarinate, diosmetin, and n-butyl rosmarinate, which are known antioxidants. Therefore, this study provides new insights into the screening of antioxidants in natural extracts.
Collapse
Affiliation(s)
- Zhaoyang Wu
- Department of Food Science and Nutrition, Hallym University, 1 Hallymdeahak-gil, Chuncheon 24252, Republic of Korea
| | - Guanglei Zuo
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Innovation Center of Translational Pharmacy, Jinhua Institute, Zhejiang University, Jinhua 321016, China
| | - Soo-Kyeong Lee
- Department of Food Science and Nutrition, Hallym University, 1 Hallymdeahak-gil, Chuncheon 24252, Republic of Korea
- Institute of Korean Nutrition, Hallym University, 1 Hallymdeahak-gil, Chuncheon 24252, Republic of Korea
| | - Sung-Mo Kang
- Department of Food Science and Nutrition, Hallym University, 1 Hallymdeahak-gil, Chuncheon 24252, Republic of Korea
| | - Sang-Youn Lee
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon 24252, Republic of Korea
| | - Saba Noreen
- Department of Food Science and Nutrition, Hallym University, 1 Hallymdeahak-gil, Chuncheon 24252, Republic of Korea
| | - Soon-Sung Lim
- Department of Food Science and Nutrition, Hallym University, 1 Hallymdeahak-gil, Chuncheon 24252, Republic of Korea
- Institute of Korean Nutrition, Hallym University, 1 Hallymdeahak-gil, Chuncheon 24252, Republic of Korea
- Correspondence:
| |
Collapse
|
5
|
Ma Y, Li J, Huang Y, Liu X, Dou N, Zhang X, Hou J, Ma J. Physicochemical stability and in vitro digestibility of goat milk affected by freeze-thaw cycles. Food Chem 2023; 404:134646. [DOI: 10.1016/j.foodchem.2022.134646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/11/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022]
|
6
|
Giraldo-Silva L, Ferreira B, Rosa E, Dias ACP. Opuntia ficus-indica Fruit: A Systematic Review of Its Phytochemicals and Pharmacological Activities. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12030543. [PMID: 36771630 PMCID: PMC9919935 DOI: 10.3390/plants12030543] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 06/12/2023]
Abstract
The use of Opuntia ficus-indica fruits in the agro-food sector is increasing for a multiplicity of players. This renewed interest is, in part, due to its organoleptic characteristics, nutritional value and health benefits. Furthermore, industries from different sectors intend to make use of its vast array of metabolites to be used in different fields. This trend represents an economic growth opportunity for several partners who could find new opportunities exploring non-conventional fruits, and such is the case for Opuntia ficus-indica. O. ficus-indica originates from Mexico, belongs to the Cactaceae family and is commonly known as opuntia, prickly pear or cactus pear. The species produces flowers, cladodes and fruits that are consumed either in raw or in processed products. Recent publications described that consumption of the fruit improves human health, exhibiting antioxidant activity and other relevant pharmacological activities through enzymatic and non-enzymatic mechanisms. Thus, we provide a systematic, scientific and rational review for researchers, consumers and other relevant stakeholders regarding the chemical composition and biological activities of O. ficus-indica fruits.
Collapse
Affiliation(s)
- Luis Giraldo-Silva
- Centre of Molecular and Environmental Biology (CBMA), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
| | - Bárbara Ferreira
- Centre of Molecular and Environmental Biology (CBMA), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
| | - Eduardo Rosa
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
| | - Alberto C. P. Dias
- Centre of Molecular and Environmental Biology (CBMA), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| |
Collapse
|
7
|
Gueboudji Z, Kadi K, Mahmoudi M, Hannachi H, Nagaz K, Addad D, Yahya LB, Lachehib B, Hessini K. Maceration and liquid-liquid extractions of phenolic compounds and antioxidants from Algerian olive oil mill wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:3432-3439. [PMID: 35948794 DOI: 10.1007/s11356-022-22482-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 08/07/2022] [Indexed: 06/15/2023]
Abstract
Olive oil mill wastewater (OMW) is a major waste stream generated in olive oil industry. It is highly polluted due to phenolic compounds. The present study focused on the physicochemical properties of OMW as well as the quantitative and qualitative effects of two extraction methods of phenolic compounds which were liquid-liquid and maceration methods. Spectrophotometry and high-performance liquid chromatography-electrospray ionization-mass spectrometry (HPLC-ESI-MS) were adopted to quantify the phytochemical contents and the phenolic compounds. The extract obtained by the maceration method showed the highest yields of total polyphenol, flavonoid, and tannin contents. The LC-MS results revealed the presence of 16 phenolic compounds in the macerated, and only 12 phenolic compounds were found in the extract of the second method. Quinic acid was identified as the most abundant compound. Moreover, the macerated extracts possessed the highest antioxidant potential as evidenced by their strong ferric reducing antioxidant power (FRAP) and their 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonate) (ABTS) radical scavenging activities. The phytochemical contents, as well as the antioxidant potentials of OMW after extraction using maceration, were significantly greater than using liquid-liquid method. Therefore, maceration seemed to be the most effective method for extracting phenolic compounds from OMW. The OMW constitute a rich source of natural phenolic compounds that could be used as a potential source of natural antioxidants.
Collapse
Affiliation(s)
- Zakia Gueboudji
- Biotechnology, Water, Environment and Health Laboratory, Abbes Laghrour University of Khenchela, Khenchela, Algeria
- Faculty of Nature and Life Sciences, Abbes Laghrour University of Khenchela, Khenchela, Algeria
| | - Kenza Kadi
- Biotechnology, Water, Environment and Health Laboratory, Abbes Laghrour University of Khenchela, Khenchela, Algeria
- Faculty of Nature and Life Sciences, Abbes Laghrour University of Khenchela, Khenchela, Algeria
| | - Maher Mahmoudi
- Faculty of Sciences of Gabes, University of Gabes, Gabes, Tunisia.
- Laboratory of Plant, Soil and Environment Interactions (LIPSE), LR21LS01, University of Tunis El Manar, 1068, Tunis, Tunisia.
- Laboratory of Rangeland Ecosystems and Valorization of Spontaneous Plants and Associated Microorganisms, Arid Regions Institute, Street Djerba km 22.5, Medenine, Tunisia.
| | - Hédia Hannachi
- Laboratory of Vegetable Productivity And Environmental Constraint LR18ES04, Department of Biology, Faculty of Sciences of Tunis, University Tunis El Manar, 2092, Tunis, Tunisia
| | - Kamel Nagaz
- Drylands and Oases Cropping Laboratory, IRA, Medenine, Tunisia
| | - Dalila Addad
- Faculty of Nature and Life Sciences, Abbes Laghrour University of Khenchela, Khenchela, Algeria
| | - Leila Ben Yahya
- Drylands and Oases Cropping Laboratory, IRA, Medenine, Tunisia
| | | | - Kamel Hessini
- Department of Biology, College of Sciences, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| |
Collapse
|
8
|
Somwongin S, Sirilun S, Chantawannakul P, Anuchapreeda S, Yawootti A, Chaiyana W. Ultrasound-assisted green extraction methods: An approach for cosmeceutical compounds isolation from Macadamia integrifolia pericarp. ULTRASONICS SONOCHEMISTRY 2023; 92:106266. [PMID: 36527764 PMCID: PMC9791925 DOI: 10.1016/j.ultsonch.2022.106266] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/02/2022] [Accepted: 12/11/2022] [Indexed: 06/17/2023]
Abstract
This study aimed was to examine the potential of several green extraction methods to extract cosmetic/cosmeceutical components from Macadamia integrifolia pericarps, which were a by-product of the macadamia nut industry. M. integrifolia pericarps were extracted by conventional solvent extraction process using 95% v/v ethanol and various green extraction methods, including infusion, ultrasound, micellar, microwave, and pulsed electric field extraction using water as a clean and green solvent. The extracts were evaluated for total phenolic content using Folin-Ciocalteu method.The antioxidant activities were evaluated by 1,1-diphenyl-2-picrylhydrazyl (DPPH), 2,2'-azinobis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), ferric reducing/antioxidant power, and ferric-thiocyanate method. The anti-skin ageing activities were investigated by means of collagenase, elastase, and hyaluronidase inhibition using enzyme-substrate reaction assay. The irritation profile of the extracts was evaluated by the hen's egg test-chorioallantoic membrane (HET-CAM) test. The results noted that ultrasound-assisted extraction yielded the significantly highest extract amount with the significantly highest total phenolic content (p < 0.05), especially when the extraction time was 10 min. The aqueous extract from ultrasound-assisted extraction possessed the most potent antioxidant and anti-skin ageing activities (p < 0.05). Its antioxidant activities were comparable to ascorbic acid and Trolox, whereas the anti-skin ageing activities were equivalent to epigallocatechin-3-gallate and oleanolic acid. Besides, the extract was safe since it induced no irritation in the HET-CAM test. Therefore, ultrasound-assisted extraction was suggested as an environmentally friendly extraction method for M. integrifolia pericarp extraction and further application in the cosmetic/cosmeceutical industries.
Collapse
Affiliation(s)
- Suvimol Somwongin
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sasithorn Sirilun
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Panuwan Chantawannakul
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200 Thailand
| | - Songyot Anuchapreeda
- Research Center of Pharmaceutical Nanotechnology, Chiang Mai University, Chiang Mai 50200, Thailand; Division of Clinical Microscopy, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Artit Yawootti
- Department of Electrical Engineering, Faculty of Engineering, Rajamangala University of Technology Lanna, Chiang Mai 50300, Thailand
| | - Wantida Chaiyana
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; Research Center of Pharmaceutical Nanotechnology, Chiang Mai University, Chiang Mai 50200, Thailand.
| |
Collapse
|
9
|
Mencin M, Jamnik P, Mikulič Petkovšek M, Veberič R, Terpinc P. Enzymatic treatments of raw, germinated and fermented spelt (Triticum spelta L.) seeds improve the accessibility and antioxidant activity of their phenolics. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
10
|
Molina GA, González-Reyna MA, Loske AM, Fernández F, Torres-Ortiz DA, Estevez M. Weak shock wave-mediated fucoxanthin extraction from Sargassum spp. and its electrochemical quantification. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
11
|
Krobthong S, Yingchutrakul Y, Sittisaree W, Tulyananda T, Samutrtai P, Choowongkomon K, Lao-On U. Evaluation of potential anti-metastatic and antioxidative abilities of natural peptides derived from Tecoma stans (L.) Juss. ex Kunth in A549 cells. PeerJ 2022; 10:e13693. [PMID: 35818360 PMCID: PMC9270879 DOI: 10.7717/peerj.13693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 06/16/2022] [Indexed: 01/17/2023] Open
Abstract
Background Tecoma stans (L.) Juss. ex Kunth is a well-known medicinal plant found in tropical and subtropical regions. It contains a broad range of bioactive compounds that exhibit many biological effects, including antidiabetic, antibacterial, and antioxidative activities. However, the effect of natural peptides from T. stans against cancer progression and free radical production is unknown. This study aims to evaluate the cytotoxic, anti-metastatic, and antioxidative activities of natural peptides from T. stans on A549 cells. Methods The natural peptides were extracted from the flower of T. stans using the pressurized hot water extraction (PHWE) method, followed by size exclusion chromatography and solid-phase extraction-C18. The cytotoxic and anti-metastatic effects of natural peptides were evaluated using MTT and transwell chamber assays, respectively. The free radical scavenging activity of natural peptides was determined using ABTS, DPPH, and FRAP assays. The cells were pretreated with the IC50 dosage of natural peptides and stimulated with LPS before analyzing intracellular reactive oxygen species (ROS) and proteomics. Results Natural peptides induced cell toxicity at a concentration of less than 1 ng/ml and markedly reduced cell motility of A549 cells. The cells had a migration rate of less than 10% and lost their invasion ability in the treatment condition. In addition, natural peptides showed free radical scavenging activity similar to standard antioxidants and significantly decreased intracellular ROS in the LPS-induced cells. Proteomic analysis revealed 1,604 differentially expressed proteins. The self-organizing tree algorithm (SOTA) clustered the protein abundances into eleven groups. The volcano plot revealed that the cancer-promoting proteins (NCBP2, AMD, MER34, ENC1, and COA4) were down-regulated, while the secretory glycoprotein (A1BG) and ROS-reducing protein (ASB6) were up-regulated in the treatment group. Conclusion The anti-proliferative and anti-metastatic activities of natural peptides may be attributed to the suppression of several cancer-promoting proteins. In contrast, their antioxidative activity may result from the up-regulation of ROS-reducing protein. This finding suggests that natural peptides from T. stans are viable for being the new potential anti-cancer and antioxidative agents.
Collapse
Affiliation(s)
- Sucheewin Krobthong
- Center for Neuroscience, Faculty of Science, Mahidol University, Bangkok, Thailand,Interdisciplinary Graduate Program in Genetic Engineering, Kasetsart University, Bangkok, Thailand
| | - Yodying Yingchutrakul
- National Omics Center, National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | | | - Tatpong Tulyananda
- School of Bioinnovation and Bio-Based Product Intelligence, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Pawitrabhorn Samutrtai
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, Thailand
| | | | - Udom Lao-On
- Department of Medical Technology, School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, Thailand,Hematology and Transfusion Science Research Center (HTSRC), Walailak University, Nakhon Si Thammarat, Thailand
| |
Collapse
|
12
|
Mendonça JDS, Guimarães RDCA, Zorgetto-Pinheiro VA, Fernandes CDP, Marcelino G, Bogo D, Freitas KDC, Hiane PA, de Pádua Melo ES, Vilela MLB, do Nascimento VA. Natural Antioxidant Evaluation: A Review of Detection Methods. Molecules 2022; 27:3563. [PMID: 35684500 PMCID: PMC9182375 DOI: 10.3390/molecules27113563] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/19/2021] [Accepted: 11/24/2021] [Indexed: 02/04/2023] Open
Abstract
Antioxidants have drawn the attention of the scientific community due to being related to the prevention of various degenerative diseases. The antioxidant capacity has been extensively studied in vitro, and different methods have been used to assess its activity. However, the main issues related to studying natural antioxidants are evaluating whether these antioxidants demonstrate a key role in the biological system and assessing their bioavailability in the organism. The majority of outcomes in the literature are controversial due to a lack of method standardization and their proper application. Therefore, this study aims to compile the main issues concerning the natural antioxidant field of study, comparing the most common in vitro methods to evaluate the antioxidant activity of natural compounds, demonstrating the antioxidant activity in biological systems and the role of the main antioxidant enzymes of redox cellular signaling and explaining how the bioavailability of bioactive compounds is evaluated in animal models and human clinical trials.
Collapse
Affiliation(s)
- Jenifer da Silva Mendonça
- Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil; (J.d.S.M.); (R.d.C.A.G.); (V.A.Z.-P.); (G.M.); (D.B.); (K.d.C.F.); (P.A.H.); (E.S.d.P.M.)
| | - Rita de Cássia Avellaneda Guimarães
- Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil; (J.d.S.M.); (R.d.C.A.G.); (V.A.Z.-P.); (G.M.); (D.B.); (K.d.C.F.); (P.A.H.); (E.S.d.P.M.)
| | - Verônica Assalin Zorgetto-Pinheiro
- Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil; (J.d.S.M.); (R.d.C.A.G.); (V.A.Z.-P.); (G.M.); (D.B.); (K.d.C.F.); (P.A.H.); (E.S.d.P.M.)
| | - Carolina Di Pietro Fernandes
- Group of Spectroscopy and Bioinformatics Applied Biodiversity and Health (GEBABS), Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil;
| | - Gabriela Marcelino
- Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil; (J.d.S.M.); (R.d.C.A.G.); (V.A.Z.-P.); (G.M.); (D.B.); (K.d.C.F.); (P.A.H.); (E.S.d.P.M.)
| | - Danielle Bogo
- Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil; (J.d.S.M.); (R.d.C.A.G.); (V.A.Z.-P.); (G.M.); (D.B.); (K.d.C.F.); (P.A.H.); (E.S.d.P.M.)
| | - Karine de Cássia Freitas
- Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil; (J.d.S.M.); (R.d.C.A.G.); (V.A.Z.-P.); (G.M.); (D.B.); (K.d.C.F.); (P.A.H.); (E.S.d.P.M.)
| | - Priscila Aiko Hiane
- Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil; (J.d.S.M.); (R.d.C.A.G.); (V.A.Z.-P.); (G.M.); (D.B.); (K.d.C.F.); (P.A.H.); (E.S.d.P.M.)
| | - Elaine Silva de Pádua Melo
- Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil; (J.d.S.M.); (R.d.C.A.G.); (V.A.Z.-P.); (G.M.); (D.B.); (K.d.C.F.); (P.A.H.); (E.S.d.P.M.)
- Group of Spectroscopy and Bioinformatics Applied Biodiversity and Health (GEBABS), Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil;
- School of Medicine, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil;
| | | | - Valter Aragão do Nascimento
- Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil; (J.d.S.M.); (R.d.C.A.G.); (V.A.Z.-P.); (G.M.); (D.B.); (K.d.C.F.); (P.A.H.); (E.S.d.P.M.)
- Group of Spectroscopy and Bioinformatics Applied Biodiversity and Health (GEBABS), Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil;
- School of Medicine, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil;
| |
Collapse
|
13
|
Paul S, Majumdar M. Comparative study of six antidiabetic polyherbal formulation for its multimodal approaches in diabetes management. 3 Biotech 2022; 12:114. [PMID: 35547015 PMCID: PMC9013732 DOI: 10.1007/s13205-022-03166-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 03/19/2022] [Indexed: 11/01/2022] Open
Abstract
Commercial antidiabetic polyherbal formulations (APH) are available with claimed hypoglycemic activities; yet they lack systematic scientific studies leading to their limited global acceptance. In the present study, six selected APH from the Indian market were evaluated for their phytochemical contents, anti-hyperglycemic, anti-hyperlipidemic, antioxidant activities and further identifying the major antidiabetic bioactive compound of "MA" by HPLC-ESI-MS/MS. Our results revealed highest TPC (136.97 ± 0.6 µg GAE/mg) and TFC (128.85 ± 0.74 µg QE/mg) in APH-DB and APH-SN, respectively. APH-MA has exhibited highest α-amylase 72.5% (IC50-579.65 μg/ml), α-glucosidase 88.02% (IC50-261.03 μg/ml) and moderate lipase inhibition 57.7% (IC50 159.57 μg/ml). A variable free radical scavenging activity was observed by all the tested APH. Further significant linear positive correlations were observed between TPC-Lipase (r 2-0.985****), TFC-α-amylase (r 2-0.868**) and DPPH-α-amylase inhibition (r 2-0.8098*). HPLC-ESI-MS/MS of MA showed the presence of anti-hyperglycemic compounds, Pheophorbide a and Pyropheophorbide a, as the major peaks. Among the tested extracts, MA exhibited better activities while BG, MH, SN, DB, and DT have showed comparable/mild anti-hyperglycemic, anti-hyperlipidemic and antioxidant potential. Hence the tested APH may be considered effective for DM management which can further be assessed for their other targets of inhibition.
Collapse
|
14
|
Marchi RC, Campos IA, Santana VT, Carlos RM. Chemical implications and considerations on techniques used to assess the in vitro antioxidant activity of coordination compounds. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214275] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
15
|
Polak T, Mejaš R, Jamnik P, Kralj Cigić I, Poklar Ulrih N, Cigić B. Accumulation and Transformation of Biogenic Amines and Gamma-Aminobutyric Acid (GABA) in Chickpea Sourdough. Foods 2021; 10:foods10112840. [PMID: 34829121 PMCID: PMC8618307 DOI: 10.3390/foods10112840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/08/2021] [Accepted: 11/13/2021] [Indexed: 11/16/2022] Open
Abstract
In general, sourdough fermentation leads to an improvement in the technological, nutritional, and sensory properties of bakery products. The use of non-conventional flours with a specific autochthonous microbiota may lead to the formation of secondary metabolites, which may even have undesirable physiological and toxicological effects. Chickpea flours from different suppliers have been used to produce sourdoughs by spontaneous and inoculated fermentations. The content of nutritionally undesirable biogenic amines (BA) and beneficial gamma-aminobutyric acid (GABA) was determined by chromatography. Fenugreek sprouts, which are a rich source of amine oxidases, were used to reduce the BA content in the sourdoughs. Spontaneous fermentation resulted in a high accumulation of cadaverine, putrescine, and tyramine for certain flours. The use of commercial starter cultures was not effective in reducing the accumulation of BA in all sourdoughs. The addition of fenugreek sprouts to the suspension of sourdough with pH raised to 6.5 resulted in a significant reduction in BA contents. Enzymatic oxidation was less efficient during kneading. Baking resulted in only a partial degradation of BA and GABA in the crust and not in the crumb. Therefore, it could be suggested to give more importance to the control of sourdough fermentation with regard to the formation of nutritionally undesirable BA and to exploit the possibilities of their degradation.
Collapse
Affiliation(s)
- Tomaž Polak
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia; (T.P.); (R.M.); (P.J.); (N.P.U.)
| | - Rok Mejaš
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia; (T.P.); (R.M.); (P.J.); (N.P.U.)
| | - Polona Jamnik
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia; (T.P.); (R.M.); (P.J.); (N.P.U.)
| | - Irena Kralj Cigić
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, SI-1000 Ljubljana, Slovenia;
| | - Nataša Poklar Ulrih
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia; (T.P.); (R.M.); (P.J.); (N.P.U.)
| | - Blaž Cigić
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia; (T.P.); (R.M.); (P.J.); (N.P.U.)
- Correspondence: ; Tel.: +386-1-320-37-84; Fax: +386-1-256-57-82
| |
Collapse
|
16
|
Limnaios A, Pathak N, Grossi Bovi G, Fröhling A, Valdramidis VP, Taoukis PS, Schlüter O. Effect of cold atmospheric pressure plasma processing on quality and shelf life of red currants. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112213] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
17
|
Development and Validation of a 96-Well Microplate Assay for the Measurement of Total Phenolic Content in Ginger Extracts. FOOD ANAL METHOD 2021. [DOI: 10.1007/s12161-021-02127-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
18
|
Hong-in P, Neimkhum W, Punyoyai C, Sriyab S, Chaiyana W. Enhancement of phenolics content and biological activities of longan (Dimocarpus longan Lour.) treated with thermal and ageing process. Sci Rep 2021; 11:15977. [PMID: 34354192 PMCID: PMC8342457 DOI: 10.1038/s41598-021-95605-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 07/28/2021] [Indexed: 02/07/2023] Open
Abstract
This study is the first to compare the chemical compositions and biological activities of a conventional dried Dimocarpus longan with a novel black D. longan that underwent a thermal ageing process. Pericarp, aril, and seed of both D. longan were macerated in 95% v/v ethanol. Their chemical compositions were investigated using a Folin-Ciocalteu assay, aluminum chloride assay, and high-performance liquid chromatography. Antioxidant activities were evaluated in terms of radical scavenging and iron (III) reduction capacity. An enzyme inhibition assay was used to evaluate the hyaluronidase inhibition. Inflammatory cytokine secretion was evaluated with an enzyme-linked immunosorbent assay. After being exposed to a heating and ageing procedure, gallic acid and ellagic acid content were increased tenfold, while the corilagin content was doubled. Black D. longan seed extract was the most potent anti-hyaluronidase and antioxidant with the strongest free radical scavenging and reduction power, while black D. longan aril extract resulted in the highest inhibition of inflammatory cytokine secretion. Black D. longan contained more biologically active compounds and possessed more potent biological activities than conventional dried D. longan. Therefore, thermal ageing treatment is suggested for producing black D. longan, for which seed extract is suggested as a cosmeceutical active ingredient and aril extract for anti-inflammation.
Collapse
Affiliation(s)
- Preaploy Hong-in
- grid.7132.70000 0000 9039 7662Master’s Degree Program in Cosmetic Science, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, 50200 Thailand ,grid.7132.70000 0000 9039 7662Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Waranya Neimkhum
- grid.444151.10000 0001 0048 9553Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Huachiew Chalermprakiet University, Samutprakarn, 10250 Thailand
| | - Chanun Punyoyai
- grid.7132.70000 0000 9039 7662Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Suwannee Sriyab
- grid.7132.70000 0000 9039 7662Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Wantida Chaiyana
- grid.7132.70000 0000 9039 7662Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, 50200 Thailand ,grid.7132.70000 0000 9039 7662Research Center of Pharmaceutical Nanotechnology, Chiang Mai University, Chiang Mai, 50200 Thailand ,grid.7132.70000 0000 9039 7662Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, 50200 Thailand
| |
Collapse
|
19
|
Olszowy-Tomczyk M. How to express the antioxidant properties of substances properly? CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-021-01799-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
AbstractOxidative stress, associated with an imbalance between the oxidants (reactive oxygen species) and the antioxidants in the body, contributes to the development of many diseases. The body’s fight against reactive oxygen species is supported by antioxidants. Nowadays, there are too many analytical methods, but there is no one universal technique for assessing antioxidant properties. Moreover, the applied different ways of expressing the results lead to their incompatibility and unreasonable interpretation. The paper is a literature review concerning the most frequent ways of antioxidant activities expression and for an easy and universal method of the obtained results discussion. This paper is an attempt to point out their disadvantages and advantages. The manuscript can support the searching interpretation of the obtained results which will be a good tool for the development of a number of fields, especially medicine what can help in the future detection and treatment of many serious diseases.
Graphic abstract
Collapse
|
20
|
Comparison of Phenolic Contents and Scavenging Activities of Miang Extracts Derived from Filamentous and Non-Filamentous Fungi-Based Fermentation Processes. Antioxidants (Basel) 2021; 10:antiox10071144. [PMID: 34356376 PMCID: PMC8301141 DOI: 10.3390/antiox10071144] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 11/17/2022] Open
Abstract
The study investigated the impact of the fermentation process on the phenolic contents and antioxidant and anti-inflammatory activities in extracts of Miang, an ethnic fermented tea product of northern Thailand. The acetone (80%) extraction of Miang samples fermented by a non-filamentous fungi-based process (NFP) and filamentous fungi-based process (FFP) had elevated levels of total polyphenols, total tannins, and condensed tannins compared to young and mature tea leaves. The antioxidant studies also showed better the half-maximal inhibitory concentration (IC50) values for fermented leaves in both 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical scavenging activity assays as well as improved ferric reducing antioxidant power (FRAP) compared to young and mature tea leaves. Extracts of NFP and FFP samples at concentrations of 50 and 100 ppm showed better protective effects against hydrogen peroxide (H2O2)-induced intracellular reactive oxygen species (ROS) production in HT-29 colorectal cells without exerting cytotoxicity. Additionally, lipopolysaccharide (LPS)-induced production of nitric oxide (a proinflammatory mediator as well as a reactive nitrogen species) was also inhibited by these fermented Miang extracts with an IC50 values of 17.15 μg/mL (NFP), 20.17 μg/mL (FFP), 33.96 μg/mL (young tea leaves), and 31.33 μg/mL (mature tea leaves). Therefore, both NFP-Miang and FFP-Miang showed the potential to be targeted as natural bioactive functional ingredients with preventive properties against free radical and inflammatory-mediated diseases.
Collapse
|
21
|
Mencin M, Mikulic-Petkovsek M, Veberič R, Terpinc P. Development and Optimisation of Solid-Phase Extraction of Extractable and Bound Phenolic Acids in Spelt ( Triticum spelta L.) Seeds. Antioxidants (Basel) 2021; 10:antiox10071085. [PMID: 34356318 PMCID: PMC8301066 DOI: 10.3390/antiox10071085] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/23/2021] [Accepted: 07/01/2021] [Indexed: 11/24/2022] Open
Abstract
A solid-phase extraction (SPE) technique was developed and optimised for isolation and concentration of extractable and bound phenolic acids from germinated spelt seeds, for analysis by liquid chromatography–mass spectrometry. Samples initially underwent solvent extraction under different conditions to maximise the yield of phenolic antioxidants. Optimal extraction conditions for extractable phenolics were absolute methanol as solvent, sample-to-methanol ratio 1:9, and reconstitution in non-acidified water. The bound phenolics were extracted from sample pellets using hydrolysis with 2 M NaOH, acidification of the hydrolysate with formic acid, and simultaneous isolation and purification using Strata X polymeric RP tubes. Compared to liquid-liquid extraction, this direct SPE protocol has significant advantages in terms of higher extraction efficiencies of total and individual phenolics and their antioxidant activities. These data suggest that direct SPE represents a rapid and reliable method for quantitative analysis of both the extractable and the commonly overlooked bound phenolics in Triticum spelta seeds.
Collapse
Affiliation(s)
- Marjeta Mencin
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1111 Ljubljana, Slovenia;
| | - Maja Mikulic-Petkovsek
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1111 Ljubljana, Slovenia; (M.M.-P.); (R.V.)
| | - Robert Veberič
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1111 Ljubljana, Slovenia; (M.M.-P.); (R.V.)
| | - Petra Terpinc
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1111 Ljubljana, Slovenia;
- Correspondence:
| |
Collapse
|
22
|
Sava A, Buron F, Routier S, Panainte A, Bibire N, Constantin SM, Lupașcu FG, Focșa AV, Profire L. Design, Synthesis, In Silico and In Vitro Studies for New Nitric Oxide-Releasing Indomethacin Derivatives with 1,3,4-oxadiazole-2-thiol Scaffold. Int J Mol Sci 2021; 22:7079. [PMID: 34209248 PMCID: PMC8267937 DOI: 10.3390/ijms22137079] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/25/2021] [Accepted: 06/25/2021] [Indexed: 12/15/2022] Open
Abstract
Starting from indomethacin (IND), one of the most prescribed non-steroidal anti-inflammatory drugs (NSAIDs), new nitric oxide-releasing indomethacin derivatives with 1,3,4-oxadiazole-2-thiol scaffold (NO-IND-OXDs, 8a-p) have been developed as a safer and more efficient multitarget therapeutic strategy. The successful synthesis of designed compounds (intermediaries and finals) was proved by complete spectroscopic analyses. In order to study the in silico interaction of NO-IND-OXDs with cyclooxygenase isoenzymes, a molecular docking study, using AutoDock 4.2.6 software, was performed. Moreover, their biological characterization, based on in vitro assays, in terms of thermal denaturation of serum proteins, antioxidant effects and the NO releasing capacity, was also performed. Based on docking results, 8k, 8l and 8m proved to be the best interaction for the COX-2 (cyclooxygense-2) target site, with an improved docking score compared with celecoxib. Referring to the thermal denaturation of serum proteins and antioxidant effects, all the tested compounds were more active than IND and aspirin, used as references. In addition, the compounds 8c, 8h, 8i, 8m, 8n and 8o showed increased capacity to release NO, which means they are safer in terms of gastrointestinal side effects.
Collapse
Affiliation(s)
- Alexandru Sava
- Department of Analytical Chemistry, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy of Iași, 16 University Street, 700115 Iasi, Romania; (A.S.); (A.P.); (N.B.)
- Institut de Chimie Organique et Analytique ICOA, CNRS UMR 7311, Université d’Orléans, 45067 Orléans, France;
| | - Frederic Buron
- Institut de Chimie Organique et Analytique ICOA, CNRS UMR 7311, Université d’Orléans, 45067 Orléans, France;
| | - Sylvain Routier
- Institut de Chimie Organique et Analytique ICOA, CNRS UMR 7311, Université d’Orléans, 45067 Orléans, France;
| | - Alina Panainte
- Department of Analytical Chemistry, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy of Iași, 16 University Street, 700115 Iasi, Romania; (A.S.); (A.P.); (N.B.)
| | - Nela Bibire
- Department of Analytical Chemistry, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy of Iași, 16 University Street, 700115 Iasi, Romania; (A.S.); (A.P.); (N.B.)
| | - Sandra Mădălina Constantin
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy of Iași, 16 University Street, 700115 Iasi, Romania; (S.M.C.); (F.G.L.); (A.V.F.)
| | - Florentina Geanina Lupașcu
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy of Iași, 16 University Street, 700115 Iasi, Romania; (S.M.C.); (F.G.L.); (A.V.F.)
| | - Alin Viorel Focșa
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy of Iași, 16 University Street, 700115 Iasi, Romania; (S.M.C.); (F.G.L.); (A.V.F.)
| | - Lenuţa Profire
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy of Iași, 16 University Street, 700115 Iasi, Romania; (S.M.C.); (F.G.L.); (A.V.F.)
| |
Collapse
|
23
|
New nitric oxide-releasing indomethacin derivatives with 1,3-thiazolidine-4-one scaffold: Design, synthesis, in silico and in vitro studies. Biomed Pharmacother 2021; 139:111678. [PMID: 33964802 DOI: 10.1016/j.biopha.2021.111678] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/22/2021] [Accepted: 04/27/2021] [Indexed: 12/15/2022] Open
Abstract
In this study we present design and synthesis of nineteen new nitric oxide-releasing indomethacin derivatives with 1,3-thiazolidine-4-one scaffold (NO-IND-TZDs) (6a-s), as a new safer and efficient multi-targets strategy for inflammatory diseases. The chemical structure of all synthesized derivatives (intermediaries and finals) was proved by NMR and mass spectroscopic analysis. In order to study the selectivity of NO-IND-TZDs for COX isoenzymes (COX-1 and COX-2) a molecular docking study was performed using AutoDock 4.2.6 software. Based on docking results, COX-2 inhibitors were designed and 6o appears as the most selective derivative which showed an improved selective index compared with indomethacin (IND) and diclofenac (DCF), used as reference drugs. The biological evaluation of 6a-s, using in vitro assays has included the anti-inflammatory and antioxidant effects as well as the nitric oxide (NO) release. Referring to the anti-inflammatory effects, the most active compound was 6i, which was more active than IND and aspirin (ASP) in term of denaturation effect, on bovine serum albumin (BSA), as indirect assay to predict the anti-inflammatory effect. An appreciable anti-inflammatory effect, in reference with IND and ASP, was also showed by 6k, 6c, 6q, 6o, 6j, 6d. The antioxidant assay revealed the compound 6n as the most active, being 100 times more active than IND. The compound 6n showed also the most increase capacity to release NO, which means is safer in terms of gastro-intestinal side effects. The ADME-Tox study revealed also that the NO-IND-TZDs are generally proper for oral administration, having optimal physico-chemical and ADME properties. We can conclude that the compounds 6i and 6n are promising agents and could be included in further investigations to study in more detail their pharmaco-toxicological profile.
Collapse
|
24
|
Krobthong S, Yingchutrakul Y. Identification and enhancement of antioxidant P1-peptide isolated from Ganoderma lucidum hydrolysate. FOOD BIOTECHNOL 2020. [DOI: 10.1080/08905436.2020.1844228] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Sucheewin Krobthong
- Interdisciplinary Graduate Program in Genetic Engineering, Kasetsart University, Bangkok, Thailand
| | | |
Collapse
|
25
|
Nguyen TMH, Le HL, Ha TT, Bui BH, Le NT, Nguyen VH, Nguyen TVA. Inhibitory effect on human platelet aggregation and coagulation and antioxidant activity of C. edulis Ker Gawl rhizome and its secondary metabolites. JOURNAL OF ETHNOPHARMACOLOGY 2020; 263:113136. [PMID: 32758576 DOI: 10.1016/j.jep.2020.113136] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 06/24/2020] [Accepted: 06/25/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Although Canna edulis Ker Gawl rhizome has been used in Traditional Vietnamese Medicine to prevent and treat heart diseases without thorough scientific evidence, limited intensive search for the bioactivities and useful substances has been done. AIM OF THE STUDY This study aims to investigate the antiplatelet aggregation, anticoagulant and antioxidant activity of extracts from C. edulis rhizome, separate and purify its compounds from the most active fraction and evaluate the antiplatelet aggregation, anticoagulant and antioxidant activity of isolated compounds. MATERIALS AND METHODS C. edulis rhizome was extracted with ethanol, then fractionated with n-hexane, ethyl acetate and water. The inhibitory effect on adenosine diphosphate- and collagen-induced human platelet aggregation was evaluated. Prothrombin time, activated partial thromboplastine time and thrombine time were measured to examine the anticoagulant activity. The free radical scavenging ability was assessed with DPPH and ABTS assays. The fraction that showed the most active was used to separate and purify compounds. The structures of compounds were elucidated by NMR and MS spectroscopic methods. Isolated compounds were also tested for antiplatelet, anticoagulant and antioxidant activity. RESULTS The ethyl acetate fraction showed the most potent antiplatelet aggregation, anticoagulant and antioxidant activity. Subsequent fractionation of this active fraction resulted in the isolation of seven known compounds: 5-hydroxy-6-methyl-2H-pyran-2-one (1), epimedokoreanone A (2), nepetoidin B (3), ferulic acid (4), caffeic acid (5), hydroxytyrosol (6), and 1H-indole-3-carboxaldehyde (7). Previous studies reported the antiplatelet, anticoagulant and antioxidant activity of ferulic acid (4), caffeic acid (5) and hydroxytyrosol (6) and the antioxidant activity of nepetoidin B (3). This study demonstrated that both epimedokoreanone A (2) and nepetoidine B (3) also exhibited good antiplatelet effect and epimedokoreanone A (2) also had effective anticoagulant and antioxidant activity, while 5-hydroxy-6-methyl-2H-pyran-2-one (1) showed weaker antiplatelet and antioxidant activity but no anticoagulant effect. CONCLUSIONS This is the first experimental study to demonstrate the potent dose-dependent antiplatelet aggregation, anticoagulant and antioxidant activity of C. edulis rhizome and its pure compounds, supporting the traditional use of this plant for the treatment of heart diseases. The C. edulis rhizome is a potential source of bioactive compounds or functional food for treatment and/or prevention of heart- and oxidative stress-related diseases and its bioactive compounds are good candidates for drug development of anti-thrombosis and antioxidant agents.
Collapse
Affiliation(s)
- Thi Minh Hang Nguyen
- Center of Drug Research and Development, Institute of Marine Biochemistry, Viet Nam
| | - Hong Luyen Le
- Department of Life Sciences, University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology, Hoang Quoc Viet, Cau Giay, Hanoi, Viet Nam
| | - Thi Thoa Ha
- Center of Drug Research and Development, Institute of Marine Biochemistry, Viet Nam
| | - Bich Hau Bui
- Department of Life Sciences, University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology, Hoang Quoc Viet, Cau Giay, Hanoi, Viet Nam
| | - Nguyen Thanh Le
- Center of Drug Research and Development, Institute of Marine Biochemistry, Viet Nam
| | - Van Hung Nguyen
- Center of Drug Research and Development, Institute of Marine Biochemistry, Viet Nam
| | - Thi Van Anh Nguyen
- Department of Life Sciences, University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology, Hoang Quoc Viet, Cau Giay, Hanoi, Viet Nam.
| |
Collapse
|
26
|
Ramli NZ, Yahaya MF, Tooyama I, Damanhuri HA. A Mechanistic Evaluation of Antioxidant Nutraceuticals on Their Potential against Age-Associated Neurodegenerative Diseases. Antioxidants (Basel) 2020; 9:E1019. [PMID: 33092139 PMCID: PMC7588884 DOI: 10.3390/antiox9101019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 09/28/2020] [Accepted: 10/14/2020] [Indexed: 02/06/2023] Open
Abstract
Nutraceuticals have been extensively studied worldwide due to its neuroprotective effects in in vivo and in vitro studies, attributed by the antioxidative properties. Alzheimer (AD) and Parkinson disease (PD) are the two main neurodegenerative disorders that are discussed in this review. Both AD and PD share the similar involvement of oxidative stress in their pathophysiology. Nutraceuticals exert their antioxidative effects via direct scavenging of free radicals, prevent damage to biomolecules, indirectly stimulate the endogenous antioxidative enzymes and gene expressions, inhibit activation of pro-oxidant enzymes, and chelate metals. In addition, nutraceuticals can act as modulators of pro-survival, pro-apoptotic, and inflammatory signaling pathways. They have been shown to be effective particularly in preclinical stages, due to their multiple mechanisms of action in attenuating oxidative stress underlying AD and PD. Natural antioxidants from food sources and natural products such as resveratrol, curcumin, green tea polyphenols, and vitamin E are promising therapeutic agents in oxidative stress-mediated neurodegenerative disease as they have fewer adverse effects, more tolerable, cheaper, and sustainable for long term consumption.
Collapse
Affiliation(s)
- Nur Zuliani Ramli
- Department of Biochemistry, Faculty of Medicine, UKM Medical Centre, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia;
- Department of Biomedical Sciences and Therapeutics, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia
| | - Mohamad Fairuz Yahaya
- Department of Anatomy, Faculty of Medicine, UKM Medical Centre, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia;
| | - Ikuo Tooyama
- Molecular Neuroscience Research Centre, Shiga University of Medical Sciences, Seta Tsukinowacho, Otsu 520-2192, Shiga, Japan;
| | - Hanafi Ahmad Damanhuri
- Department of Biochemistry, Faculty of Medicine, UKM Medical Centre, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia;
| |
Collapse
|
27
|
Al Zahrani NA, El-Shishtawy RM, Elaasser MM, Asiri AM. Synthesis of Novel Chalcone-Based Phenothiazine Derivatives as Antioxidant and Anticancer Agents. Molecules 2020; 25:molecules25194566. [PMID: 33036301 PMCID: PMC7583060 DOI: 10.3390/molecules25194566] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/22/2020] [Accepted: 10/05/2020] [Indexed: 12/18/2022] Open
Abstract
Based on reported results for the potential medicinal impact of phenothiazine core, as well as the chalcone skeleton that is widely present in many natural products, together with their reported bioactivities, the present work was aimed at combining both moieties in one molecular skeleton and to synthesize and characterize a novel series of chalone-based phenothiazine derivatives. For this purpose, 2-acetylphenothiazine was N-alkylated, followed by the Claisen-Schmidt reaction to produce the chalcones with good yield. Antioxidant activity, as evaluated by 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging, was assessed to determine if their antioxidant potential was comparable with ascorbic acid, and attributable to the phenothiazine core. Screening anticancer activities of the synthesized chalone-based phenothiazine derivatives against human breast cancer cell line MCF-7 cells, and human hepatocellular carcinoma HepG-2 cells, compared with standard drugs cisplatin and doxorubicin, was evaluated. The results revealed that compounds 4a, 4b, 4d, 4h, 4j, 4k, 4m, 4o, and 4p were good against human hepatocellular carcinoma HepG-2 cells, and among these compounds 4b and 4k were the most effective compounds, with IC50 values of 7.14 μg/mL and 7.6 1 μg/mL, respectively. On the other hand, compounds 4a, 4b, 4k, and 4m were good against human breast cancer cell line MCF-7 cells and, among these compounds, 4k and 4b were the most effective compounds, with IC50 values of 12 μg/mL and 13. 8 μg/mL, respectively. The overall results suggest that these compounds could, potentially, be further modified for the formation of more potent antioxidant and anticancer agents.
Collapse
Affiliation(s)
- Nourah A. Al Zahrani
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (N.A.A.Z.); (A.M.A.)
- Chemistry Department, Faculty of Science, University of Jeddah, Jeddah 21959, Saudi Arabia
| | - Reda M. El-Shishtawy
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (N.A.A.Z.); (A.M.A.)
- Dyeing, Printing and Textile Auxiliaries Department, Textile Research Division, National Research Centre, Dokki, Cairo 12611, Egypt
- Correspondence:
| | - Mahmoud M. Elaasser
- The Regional Center for Mycology and Biotechnology, Al-Azhar University, Cairo 11759, Egypt;
| | - Abdullah M. Asiri
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (N.A.A.Z.); (A.M.A.)
- Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
28
|
Boddapati S, Rai R, Gummadi SN. Structural analysis and antioxidative properties of mutan (water-insoluble glucan) and carboxymethyl mutan from Streptococcus mutans. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.07.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
29
|
Ivanova A, Gerasimova E, Gazizullina E. Study of Antioxidant Properties of Agents from the Perspective of Their Action Mechanisms. Molecules 2020; 25:E4251. [PMID: 32947948 PMCID: PMC7570667 DOI: 10.3390/molecules25184251] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/13/2020] [Accepted: 09/15/2020] [Indexed: 11/16/2022] Open
Abstract
The creation and analysis of a large variety of existing methods for the evaluation of integrated antioxidant properties are quite relevant in connection with a range of biological mechanisms of the antioxidants (AO) action. In this work, the existing methods are correlated with mechanisms of antioxidant action. It is shown that the results obtained by various methods are mainly incomparable. This can be connected with the implementation of various mechanisms of antioxidant action in methods. The analysis of the literature data presented in this review indicates the difficulty of creating a universal method and the feasibility of using integrated approaches based on the use of several methods that implement and combine various mechanisms of the chemical conversion of antioxidants. This review describes methods for studying the chelating ability of antioxidants, except for methods based on electron and hydrogen atom transfer reactions, which are currently not widely covered in modern literature. With the description of each mechanism, special attention is paid to electrochemical methods, as the interaction of active oxygen metabolites of radical and non-radical nature with antioxidants has an electron/proton/donor-acceptor nature, which corresponds to the nature of electrochemical methods and suggests that they can be used to study the interaction.
Collapse
Affiliation(s)
- Alla Ivanova
- Chemical Technological Institute, Ural Federal University Named after the First President of Russia B. N. Yeltsin, 620002 Ekaterinburg, Russia; (E.G.); (E.G.)
| | | | | |
Collapse
|
30
|
Alonzo-Macías M, Cardador-Martínez A, Besombes C, Allaf K, Tejada-Ortigoza V, Soria-Mejía MC, Vázquez-García R, Téllez-Pérez C. Instant Controlled Pressure Drop as Blanching and Texturing Pre-Treatment to Preserve the Antioxidant Compounds of Red Dried Beetroot ( Beta vulgaris L.). Molecules 2020; 25:molecules25184132. [PMID: 32927600 PMCID: PMC7570538 DOI: 10.3390/molecules25184132] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/26/2020] [Accepted: 09/03/2020] [Indexed: 11/18/2022] Open
Abstract
Red beetroot is rich in bioactive compounds such as polyphenols, flavonoids, betaxanthins, betacyanins, among others. According to selected processing methods, the bioaccessibility of these compounds could be either enhanced or decreased. This study evaluated the effect of four different drying conditions: (1) Traditional Drying (TD), (2) Swell Drying (SD), (3) DIC Blanching + Traditional Drying (BTD), and (4) DIC Blanching + Swell Drying (BSD) on the antioxidant content and the antioxidant activity of red beetroots. Obtained results showed that in all the cases, by comparing to Traditional Drying (TD), the coupling of a DIC Blanching pre-treatment to a Swell Drying treatment (BSD) maintained or enhanced the preservation of the Total Phenolic Compounds (TPC), the Total Flavonoids Compounds (TFC), the Betanin Concentration (BC), the Trolox Equivalent Antioxidant Capacity (TEAC), and the Free Radical Scavenging Activity by DPPH (IC50) of red beetroots. Various studies have shown that thanks to the expanded and porous structure triggered by the Swell Drying process, it has been possible to achieve better antioxidants extraction and better whole quality. Hence, by coupling DIC as a blanching–steaming pre-treatment, it was possible to preserve better the antioxidant content and the antioxidant activity of red dried beetroots.
Collapse
Affiliation(s)
- Maritza Alonzo-Macías
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Epigmenio González 500, Fracc. San Pablo, 76130 Querétaro, Mexico; (M.A.-M.); (A.C.-M.); (V.T.-O.); (M.C.S.-M.); (R.V.-G.)
| | - Anaberta Cardador-Martínez
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Epigmenio González 500, Fracc. San Pablo, 76130 Querétaro, Mexico; (M.A.-M.); (A.C.-M.); (V.T.-O.); (M.C.S.-M.); (R.V.-G.)
| | - Colette Besombes
- Intensification of Transfer Phenomena on Industrial Eco-Processes, Laboratory of Engineering Science for Environment LaSIE-UMR-CNRS 7356, University of La Rochelle, 17042 La Rochelle, France; (C.B.); (K.A.)
| | - Karim Allaf
- Intensification of Transfer Phenomena on Industrial Eco-Processes, Laboratory of Engineering Science for Environment LaSIE-UMR-CNRS 7356, University of La Rochelle, 17042 La Rochelle, France; (C.B.); (K.A.)
| | - Viridiana Tejada-Ortigoza
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Epigmenio González 500, Fracc. San Pablo, 76130 Querétaro, Mexico; (M.A.-M.); (A.C.-M.); (V.T.-O.); (M.C.S.-M.); (R.V.-G.)
| | - Marla C. Soria-Mejía
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Epigmenio González 500, Fracc. San Pablo, 76130 Querétaro, Mexico; (M.A.-M.); (A.C.-M.); (V.T.-O.); (M.C.S.-M.); (R.V.-G.)
| | - Rosa Vázquez-García
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Epigmenio González 500, Fracc. San Pablo, 76130 Querétaro, Mexico; (M.A.-M.); (A.C.-M.); (V.T.-O.); (M.C.S.-M.); (R.V.-G.)
| | - Carmen Téllez-Pérez
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Epigmenio González 500, Fracc. San Pablo, 76130 Querétaro, Mexico; (M.A.-M.); (A.C.-M.); (V.T.-O.); (M.C.S.-M.); (R.V.-G.)
- Intensification of Transfer Phenomena on Industrial Eco-Processes, Laboratory of Engineering Science for Environment LaSIE-UMR-CNRS 7356, University of La Rochelle, 17042 La Rochelle, France; (C.B.); (K.A.)
- Correspondence:
| |
Collapse
|
31
|
Saha SK, Chakraborty R. Effect of deep eutectic solvent’s characteristics on extraction and bioactivity of polyphenols from Sapodilla pulp. CHEMICAL PAPERS 2020. [DOI: 10.1007/s11696-020-01330-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
32
|
Marsup P, Yeerong K, Neimkhum W, Sirithunyalug J, Anuchapreeda S, To-anun C, Chaiyana W. Enhancement of Chemical Stability and Dermal Delivery of Cordyceps militaris Extracts by Nanoemulsion. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1565. [PMID: 32784892 PMCID: PMC7466510 DOI: 10.3390/nano10081565] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/25/2020] [Accepted: 08/06/2020] [Indexed: 11/18/2022]
Abstract
This study aimed to develop nanoemulsions for enhancing chemical stability and dermal delivery of Cordyceps militaris extracts. C. militaris was extracted by maceration and infusion. The extracts were investigated for cordycepin, phenolic, and flavonoid content. The antioxidant activity was investigated by in vitro spectrophotometric methods. The irritation profile was investigated by hen's egg-chorioallantoic membrane test. Nanoemulsions were developed using high-pressure homogenizer. C. militaris extract was incorporated into the nanoemulsion and investigated for safety, release profile, permeation, and skin retention. The results demonstrated that water extract (CW) contained the significantly highest content of cordycepin, phenolics, and flavonoids, which were responsible for antioxidant activity. CW was the most potent antioxidant. CW possessed comparable 2,2'-diphenyl-1-picrylhydrazyl radical scavenging activity and lipid peroxidation inhibition to l-ascorbic acid (96.9 ± 3.1%) and alpha-tocopherol (87.2 ± 1.0%). Consequently, ten mg/mL of CW was incorporated into nanoemulsions composing of sugar squalene, Tween® 85, and deionized water. Nanoemulsion, which had the smallest internal droplet size (157.1 ± 2.6 nm), enhanced the stability of CW, had no cytotoxicity effect and no skin irritation, released the most CW (0.9 ± 0.0% w/w after 24 h), and delivered the highest CW into the skin layer (33.5 ± 0.7% w/w). Therefore, nanoemulsion was suggested for enhancing the stability and dermal delivery of CW.
Collapse
Affiliation(s)
- Pachabadee Marsup
- Master’s Degree Program in Cosmetic Science, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand;
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (K.Y.); (J.S.)
| | - Kankanit Yeerong
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (K.Y.); (J.S.)
| | - Waranya Neimkhum
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Huachiew Chalermprakiet University, Samutprakarn 10250, Thailand;
| | - Jakkapan Sirithunyalug
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (K.Y.); (J.S.)
- Research Center of Pharmaceutical Nanotechnology, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Songyot Anuchapreeda
- Research Center of Pharmaceutical Nanotechnology, Chiang Mai University, Chiang Mai 50200, Thailand;
- Division of Clinical Microscopy, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Chaiwat To-anun
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Wantida Chaiyana
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (K.Y.); (J.S.)
- Research Center of Pharmaceutical Nanotechnology, Chiang Mai University, Chiang Mai 50200, Thailand;
| |
Collapse
|
33
|
Mousavi T, Hadizadeh N, Nikfar S, Abdollahi M. Drug discovery strategies for modulating oxidative stress in gastrointestinal disorders. Expert Opin Drug Discov 2020; 15:1309-1341. [DOI: 10.1080/17460441.2020.1791077] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Taraneh Mousavi
- Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
- School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Nastaran Hadizadeh
- Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
- School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Personalized Medicine Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Shekoufeh Nikfar
- Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
- School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Personalized Medicine Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Abdollahi
- Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
- School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Personalized Medicine Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
34
|
Comparison of Antioxidants: The Limited Correlation between Various Assays of Antioxidant Activity. Molecules 2020; 25:molecules25143244. [PMID: 32708839 PMCID: PMC7397315 DOI: 10.3390/molecules25143244] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/14/2020] [Accepted: 07/14/2020] [Indexed: 01/18/2023] Open
Abstract
The inhibitory effects a range of synthetic and natural antioxidants on lipid peroxidation of egg yolk and erythrocyte membranes induced by a free radical generator 2,2′-azobis(2-amidinopropane) dihydrochloride (AAPH) was compared, with significant differences being found between both systems. When the protection by selected antioxidants against the effects of AAPH on erythrocytes (hemolysis, oxidation of hemoglobin and glutathione (GSH) and generation of reactive oxygen species (ROS)) was studied, most antioxidants were protective, but in some tests (oxidation of hemoglobin and GSH) some acted as prooxidants, inducing oxidation in the absence of AAPH and enhancing the AAPH-induced oxidation. These results demonstrate a diversified action of antioxidants in different systems and point to a need for careful extrapolation of any conclusions drawn from one parameter or experimental system to another.
Collapse
|
35
|
Impact of Stability of Enriched Oil with Phenolic Extract from Olive Mill Wastewaters. Foods 2020; 9:foods9070856. [PMID: 32630100 PMCID: PMC7404700 DOI: 10.3390/foods9070856] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 06/24/2020] [Accepted: 06/26/2020] [Indexed: 11/20/2022] Open
Abstract
The disposal of olive mill wastewaters is a considerable subject for the development of a sustainable olive oil industry considering their high content of pollutants. Nevertheless, the selective extraction of phenolic compounds from olive mill wastewaters represents a promising approach to obtain phenolics suitable for food enrichment. This work aimed to evaluate the efficiency of phenolic extract addition (50 mg L−1), used as natural antioxidant, in sunflower oil against oxidative deterioration; to this aim, XAD-7-HP resin was tested in the recovery of phenolic compounds from olive mill wastewaters. Ultra-high performance liquid chromatography was used to evaluate the single phenols contained in the extract; the most consistent amount was detected for hydroxytyrosol (834 mg 100 mL−1). The change in the oxidation state of fortified sunflower oil was studied by measuring physicochemical (refractive index, peroxide value and oxidative resistance to degradation) and antioxidant parameters (DPPH, ABTS and ORAC assays) during 90 days of storage. Results showed an enhancement of oxidative stability of 50% in the fortified oil compared to control.
Collapse
|
36
|
Wang L, Li Y, Xiang D, Zhang W, Bai X. Stability of lutein in O/W emulsion prepared using xanthan and propylene glycol alginate. Int J Biol Macromol 2020; 152:371-379. [PMID: 32084481 DOI: 10.1016/j.ijbiomac.2020.02.162] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 02/12/2020] [Accepted: 02/15/2020] [Indexed: 12/08/2022]
Abstract
Lutein is a hydrophobic carotenoid with diverse bioactivities. For encapsulating the molecule in a novel method, we prepared two emulsions from xanthan and propylene glycol alginate at the ratios of 3:7 and 4:6. The instability index and particle size of the emulsions were determined using a stability analyzer and laser particle size analyzer. The influence of crystallization on the emulsions was observed under a polarizing microscope. The effects of centrifugal force and storage on the lutein emulsions were analyzed by measuring the changes in absorbance. The results showed that the emulsion fabricated by xanthan and propylene glycol alginate at the ratio of 4:6 was highly stable, and crystals were dispersed when xanthan and propylene glycol alginate existed. These results revealed that the hydrophobicity and absorption kinetics of emulsifiers would determine the stability of emulsion when the viscosity of emulsifiers reached a certain value, and the stability of emulsions would affect the stability of lutein in the emulsions.
Collapse
Affiliation(s)
- Lei Wang
- College of Food Science, Hainan University, No.58 Renmin Avenue, Haikou 570228, China
| | - Yujie Li
- College of Food Science, Hainan University, No.58 Renmin Avenue, Haikou 570228, China
| | - Dong Xiang
- College of Food Science, Hainan University, No.58 Renmin Avenue, Haikou 570228, China; Engineering Research Center of Utilization of Tropical Polysaccharide Resources, Ministry of Education, No.58 Renmin Avenue, Haikou 570228, China.
| | - Weimin Zhang
- College of Food Science, Hainan University, No.58 Renmin Avenue, Haikou 570228, China
| | - Xinpeng Bai
- College of Food Science, Hainan University, No.58 Renmin Avenue, Haikou 570228, China; Engineering Research Center of Utilization of Tropical Polysaccharide Resources, Ministry of Education, No.58 Renmin Avenue, Haikou 570228, China
| |
Collapse
|
37
|
Value-Added Lager Beer Enriched with Eggplant ( Solanum melongena L.) Peel Extract. Molecules 2020; 25:molecules25030731. [PMID: 32046151 PMCID: PMC7038128 DOI: 10.3390/molecules25030731] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 01/31/2020] [Accepted: 02/04/2020] [Indexed: 01/21/2023] Open
Abstract
Manufacturing beer with a high biological value requires identifying new methods for increasing the health-enhancing compounds level. The aim of this study was to increase the biological value of beer by adding antioxidant-rich eggplant (Solanum melongena L.) peel extract (EPE). The total phenolic content (TPC), total flavonoid content (TFC), and total monomeric anthocyanin content (TMA) were determined. Moreover, the antioxidant activity was evaluated by different radical scavenging assays. The addition of different levels of EPE resulted in a significant increase of TPC and TFC of beer samples from 0.426 to 0.631 mg GAE/mL, and from 0.065 to 0.171 mg CE/mL, respectively. The EPE-supplemented beer samples developed a reddish color because of the presence of anthocyanin pigments. The TMA content of beer varied from 0.011 to 0.083 mg D3G/mL with the level of added EPE. The HPLC analysis indicated that the anthocyanins prevailing in the eggplant peels were delphinidin-3-rutinoside, delphininidin-3-glucoside and delphinidin-3-rutinoside-5-glucoside. The radical scavenging assays indicated a linear increase of the antioxidant activity following EPE addition, without altering the physicochemical parameters of the beer. These results are promising for using the EPE as a functional ingredient for beer production.
Collapse
|
38
|
Selected in vitro methods to determine antioxidant activity of hydrophilic/lipophilic substances. ACTA CHIMICA SLOVACA 2020. [DOI: 10.2478/acs-2019-0028] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Abstract
The topic of free radicals and related antioxidants is greatly discussed nowadays. Antioxidants help to neutralize free radicals before damaging cells. In the absence of antioxidants, a phenomenon called oxidative stress occurs. Oxidative stress can cause many diseases e.g. Alzheimer’s disease and cardiovascular diseases. Therefore, antioxidant activity of various compounds and the mechanism of their action have to be studied. Antioxidant activity and capacity are measured by in vitro and in vivo methods; in vitro methods are divided into two groups according to chemical reactions between free radicals and antioxidants. The first group is based on the transfer of hydrogen atoms (HAT), the second one on the transfer of electrons (ET). The most frequently used methods in the field of antioxidant power measurement are discussed in this work in terms of their principle, mechanism, methodology, the way of results evaluation and possible pitfalls.
Collapse
|
39
|
Souza LDSD, Carrero Horta IP, de Souza Rosa L, Barbosa Lima LG, Santos da Rosa J, Montenegro J, da Silva Santos L, Nana de Castro RB, Freitas-Silva O, Teodoro AJ. Effect of the roasting levels of Coffea arabica L. extracts on their potential antioxidant capacity and antiproliferative activity in human prostate cancer cells. RSC Adv 2020; 10:30115-30126. [PMID: 35518253 PMCID: PMC9056273 DOI: 10.1039/d0ra01179g] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 07/24/2020] [Indexed: 12/11/2022] Open
Abstract
Coffee, besides being one of the most consumed stimulating beverages in the world, has important bioactive activities, which have been attracting increasing attention from researchers. However, the standard process of roasting causes changes in its chemical composition. In the present study, extracts obtained from green and roasted beans (light, medium and dark) of Coffea arabica Linnaeus were submitted to high-power ultrasonic extraction and atomization by spray drying. Colorimetric analysis was used to classify the roasting levels of the dried extract samples. The effects of the roasting process on the bioactivity of the dried extracts were verified through the following assays: caffeine, chlorogenic acid and caffeic acid, by HPLC-PDA; total phenolics by Folin–Ciocalteu; antioxidant activity by DPPH, FRAP, ABTS and ORAC; antiproliferative activity, using the MTT assay; and cell cycle and apoptosis by flow cytometry in metastatic prostate cancer cell lines from bone (PC-3) and brain (DU-145). The results showed that the lowest levels of caffeine, chlorogenic and caffeic acids were observed in dark roasted coffee. In comparison to medium and dark extracts in PC-3 cells, the green and light coffee extracts had higher antioxidant activities and promoted cytotoxicity followed by cell cycle arrest in phase S and apoptosis induction. Thus, the roasting level of the coffee extracts may be related to the potential chemoprotective effects of Coffea arabica L. in prostate cancer cells. Coffee, besides being one of the most consumed stimulating beverages in the world, has important bioactive activities, which have been attracting increasing attention from researchers.![]()
Collapse
Affiliation(s)
| | | | - Lana de Souza Rosa
- Laboratory of Functional Foods
- Universidade Federal do Estado do Rio de Janeiro
- Rio de Janeiro
- Brazil
| | | | - Jeane Santos da Rosa
- Empresa Brasileira de Pesquisa Agropecuária
- Embrapa Agroindústria de Alimentos
- Rio de Janeiro
- Brazil
| | - Julia Montenegro
- Laboratory of Functional Foods
- Universidade Federal do Estado do Rio de Janeiro
- Rio de Janeiro
- Brazil
| | - Lauriza da Silva Santos
- Laboratory of Functional Foods
- Universidade Federal do Estado do Rio de Janeiro
- Rio de Janeiro
- Brazil
| | | | - Otniel Freitas-Silva
- Laboratory of Functional Foods
- Universidade Federal do Estado do Rio de Janeiro
- Rio de Janeiro
- Brazil
- Empresa Brasileira de Pesquisa Agropecuária
| | - Anderson Junger Teodoro
- Laboratory of Functional Foods
- Universidade Federal do Estado do Rio de Janeiro
- Rio de Janeiro
- Brazil
| |
Collapse
|
40
|
Cajzek F, Bertoncelj J, Kreft I, Poklar Ulrih N, Polak T, Požrl T, Pravst I, Polišenská I, Vaculová K, Cigić B. Preparation of β‐glucan and antioxidant‐rich fractions by stone milling of hull‐less barley. Int J Food Sci Technol 2019. [DOI: 10.1111/ijfs.14322] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Florijan Cajzek
- Biotechnical Faculty University of Ljubljana Jamnikarjeva 101 SI‐1000 Ljubljana Slovenia
| | - Jasna Bertoncelj
- Biotechnical Faculty University of Ljubljana Jamnikarjeva 101 SI‐1000 Ljubljana Slovenia
| | - Ivan Kreft
- Nutrition Institute Tržaška cesta 40 SI‐1000 Ljubljana Slovenia
| | - Nataša Poklar Ulrih
- Biotechnical Faculty University of Ljubljana Jamnikarjeva 101 SI‐1000 Ljubljana Slovenia
| | - Tomaž Polak
- Biotechnical Faculty University of Ljubljana Jamnikarjeva 101 SI‐1000 Ljubljana Slovenia
| | - Tomaž Požrl
- Biotechnical Faculty University of Ljubljana Jamnikarjeva 101 SI‐1000 Ljubljana Slovenia
| | - Igor Pravst
- Nutrition Institute Tržaška cesta 40 SI‐1000 Ljubljana Slovenia
| | - Ivana Polišenská
- Agrotest Fyto, Ltd. Havlíčkova 2787 767 01 Kroměříž Czech Republic
| | | | - Blaž Cigić
- Biotechnical Faculty University of Ljubljana Jamnikarjeva 101 SI‐1000 Ljubljana Slovenia
| |
Collapse
|
41
|
El-Kayal M, Nasr M, Elkheshen S, Mortada N. Colloidal (-)-epigallocatechin-3-gallate vesicular systems for prevention and treatment of skin cancer: A comprehensive experimental study with preclinical investigation. Eur J Pharm Sci 2019; 137:104972. [PMID: 31252049 DOI: 10.1016/j.ejps.2019.104972] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 06/02/2019] [Accepted: 06/24/2019] [Indexed: 01/01/2023]
Abstract
Skin carcinogenesis is a common malignancy affecting humans worldwide, which could benefit from nutraceuticals as a solution to the drawbacks of conventional skin cancer treatment. (-)-epigallocatechin-3-gallate (EGCG) is a promising nutraceutical in this regard; however, it suffers chemical instability and low bioavailability resulting in inefficient delivery. Therefore, EGCG encapsulation in ultradeformable colloidal vesicular systems, namely: penetration enhancer-containing vesicles (PEVs), ethosomes and transethosomes (TEs) for topical administration has been attempted in this study to overcome the problems associated with the use of free EGCG. The prepared vesicles were characterized for their entrapment efficiency, TEM visualization, chemical compatibility, antioxidant properties, ex-vivo skin deposition, photodegradation and physical stability after storage. Most of the prepared vesicles exhibited reasonable skin deposition and preservation of the inherent antioxidant properties of EGCG with good physical stability. EGCG-loaded PEVs and TEs exhibited an inhibitory effect on epidermoid carcinoma cell line (A431) in addition to reduced tumor sizes in mice, confirmed with histopathological analysis and biochemical quantification of skin oxidative stress biomarkers; glutathione, superoxide dismutase and catalase, as well as lipid peroxidation. EGCG PEVs succeeded in offering an effective delivery system targeting skin cancer, which is worthy of further experimentation.
Collapse
Affiliation(s)
- Maha El-Kayal
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmaceutical Sciences and Pharmaceutical Industries, Future University in Egypt, Cairo, Egypt
| | - Maha Nasr
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Egypt
| | - Seham Elkheshen
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmaceutical Sciences and Pharmaceutical Industries, Future University in Egypt, Cairo, Egypt.
| | - Nahed Mortada
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Egypt
| |
Collapse
|
42
|
Bohn T. Carotenoids and Markers of Oxidative Stress in Human Observational Studies and Intervention Trials: Implications for Chronic Diseases. Antioxidants (Basel) 2019; 8:E179. [PMID: 31213029 PMCID: PMC6616644 DOI: 10.3390/antiox8060179] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 06/12/2019] [Accepted: 06/14/2019] [Indexed: 01/08/2023] Open
Abstract
Carotenoids include C30, C40 and C50 terpenoid-based molecules, many of which constitute coloured pigments. However, >1100 of these are known to occur in nature and only about a dozen are known to play a role in our daily diet. Carotenoids have received much attention due to their proposed health benefits, including reducing the incidence of chronic diseases, such as cardiovascular disease and diabetes. Many of these diseases are characterized by chronic inflammation co-occurring with oxidative stress, characterized by, for example, enhanced plasma F2-isoprostane concentrations, malondialdehyde, and 8-hydroxyguanosine. Though carotenoids can act as direct antioxidants, quenching, for example, singlet oxygen and peroxide radicals, an important biological function appears to rest also in the activation of the body's own antioxidant defence system, related to superoxide-dismutase, catalase, and glutathione-peroxidase expression, likely due to the interaction with transcription factors, such as nuclear-factor erythroid 2-related factor 2 (Nrf-2). Though mostly based on small-scale and observational studies which do not allow for drawing conclusions regarding causality, several supplementation trials with isolated carotenoids or food items suggest positive health effects. However, negative effects have also been reported, especially regarding beta-carotene for smokers. This review is aimed at summarizing the results from human observational studies/intervention trials targeting carotenoids in relation to chronic diseases characterized by oxidative stress and markers thereof.
Collapse
Affiliation(s)
- Torsten Bohn
- Department of Population Health, Luxembourg Institute of Health, L-1445 Strassen, Luxembourg.
| |
Collapse
|
43
|
Trofin AE, Trincă LC, Ungureanu E, Ariton AM. CUPRAC Voltammetric Determination of Antioxidant Capacity in Tea Samples by Using Screen-Printed Microelectrodes. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2019; 2019:8012758. [PMID: 31218091 PMCID: PMC6536952 DOI: 10.1155/2019/8012758] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 04/09/2019] [Accepted: 04/16/2019] [Indexed: 06/09/2023]
Abstract
Measurement of antioxidant capacity represents an analytical major challenge in terms of accuracy, efficiency, rapid response, or low cost of detection methods. Quantification of antioxidant capacity of food samples using disposable screen-printed microelectrodes (SPMEs) was based on cyclic voltammetry versus open-circuit potential (CV vs OCP) and differential pulse voltammetry (DPV) as compared with spectrophotometric measurement of the CUPRAC reaction with 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid (trolox). The SPMEs are organic-resistant electrodes and thus compatible with food samples and organic solvents used to dissolve trolox. A micropipette was used to release a drop of 50 μL sample on the spotted surface of the SPME sensor/working electrode that was time programmed to function according to the working protocol. The SPME response was linearly correlated with trolox content. This preliminary demonstration was focused on the analysis of tea infusions, due to the simplicity and reproducibility of the samples' preparations involved. Analytical results of the antioxidant capacity (expressed as mol·L-1 trolox equivalents) of the tea samples showed a good agreement in the case of spectrophotometry and differential pulse voltammetry (R 2 > 0.998). DPV with SPME based on CUPRAC reactions was proven to be a promising approach for the characterization of antioxidant capacity of tea samples with rapid response, cost-effectiveness, and simplicity of operation.
Collapse
Affiliation(s)
- Alina Elena Trofin
- Department of Exact Sciences, University of Agricultural Sciences and Veterinary Medicine “Ion Ionescu de la Brad”, Iasi 700490, Romania
| | - Lucia Carmen Trincă
- Department of Exact Sciences, University of Agricultural Sciences and Veterinary Medicine “Ion Ionescu de la Brad”, Iasi 700490, Romania
| | - Elena Ungureanu
- Department of Exact Sciences, University of Agricultural Sciences and Veterinary Medicine “Ion Ionescu de la Brad”, Iasi 700490, Romania
| | - Adina Mirela Ariton
- Research and Development Center for Cattle Breeding Dancu, Iasi 707252, Romania
| |
Collapse
|
44
|
Peyrat LA, Tsafantakis N, Georgousaki K, Ouazzani J, Genilloud O, Trougakos IP, Fokialakis N. Terrestrial Microorganisms: Cell Factories of Bioactive Molecules with Skin Protecting Applications. Molecules 2019; 24:E1836. [PMID: 31086077 PMCID: PMC6539289 DOI: 10.3390/molecules24091836] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 04/18/2019] [Accepted: 04/23/2019] [Indexed: 11/23/2022] Open
Abstract
It is well known that terrestrial environments host an immense microbial biodiversity. Exposed to different types of stress, such as UV radiation, temperature fluctuations, water availability and the inter- / intra-specific competition for resources, terrestrial microorganisms have been evolved to produce a large spectrum of bioactive molecules. Bacteria, archaea, protists, fungi and algae have shown a high potential of producing biomolecules for pharmaceutical or other industrial purposes as they combine a sustainable, relatively low-cost and fast-production process. Herein, we provide an overview of the different bioactive molecules produced by terrestrial microorganisms with skin protecting applications. The high content in polyphenolic and carotenoid compounds produced by several strains, as well as the presence of exopolysaccharides, melanins, indole and pyrrole derivatives, mycosporines, carboxylic acids and other molecules, are discussed in the context of their antioxidant, photo-protective and skin-whitening activity. Relevant biotechnological tools developed for the enhanced production of high added value natural products, as well as the protecting effect of some antioxidant, hydrolytic and degrading enzymes are also discussed. Furthermore, we describe classes of microbial compounds that are used or have the potential to be used as antimicrobials, moisturizers, biosurfactants, pigments, flavorings and fragrances.
Collapse
Affiliation(s)
- Laure-Anne Peyrat
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, 15771 Athens, Greece.
| | - Nikolaos Tsafantakis
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, 15771 Athens, Greece.
| | - Katerina Georgousaki
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, 15771 Athens, Greece.
| | - Jamal Ouazzani
- Institut de Chimie des Substances Naturelles (ICSN), Centre National de la Recherche Scientifique, 91198 Gif-sur-Yvette, France.
| | | | - Ioannis P Trougakos
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, 15784 Athens, Greece.
| | - Nikolas Fokialakis
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, 15771 Athens, Greece.
| |
Collapse
|