1
|
Biswas A, Borse BB, Chaudhari SR. Quantitative NMR analysis of sugars in natural sweeteners: Profiling in honey, jaggery, date syrup, and coconut sugar. Food Res Int 2025; 199:115358. [PMID: 39658160 DOI: 10.1016/j.foodres.2024.115358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/28/2024] [Accepted: 11/13/2024] [Indexed: 12/12/2024]
Abstract
Due to the high demand for natural sweeteners and their perceived health benefits, it is crucial to use analytical techniques for accurately profiling natural sweeteners. The present study describes a simple and fast approach for the analysis of sweeteners using 1D - 1H NMR spectroscopy. This method is based on the direct detection of protons in sugar molecules with an internal standard, without the need for complex derivatization steps. The presented approach offers a faster and more convenient way of quantifying mono-saccharides mainly glucose and fructose and di-saccharides like sucrose in various selected sweeteners. These includes honey, jaggery, coconut sugar, and date syrup. The direct 1D - 1H NMR method with an internal standard yields accurate and precise quantification results with good reproducibility and minute analysis times. This information is of increasing importance to both consumers and the food industry, as it provides a reliable and accurate method for characterizing and verifying natural sweeteners. Overall, 1D - 1H NMR spectroscopy can be a valuable tool for the rapid and easy analysis of sugar content in food products, and it may have potential applications in the food industry.
Collapse
Affiliation(s)
- Anisha Biswas
- Department of Plantation Products, Spices and Flavour Technology, CSIR-Central Food Technological Research Institute, Mysuru, Karnataka 570020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Babasaheb Bhaskarrao Borse
- Department of Plantation Products, Spices and Flavour Technology, CSIR-Central Food Technological Research Institute, Mysuru, Karnataka 570020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sachin R Chaudhari
- Department of Plantation Products, Spices and Flavour Technology, CSIR-Central Food Technological Research Institute, Mysuru, Karnataka 570020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
2
|
Bangash AA, Alvi SS, Bangash MA, Ahsan H, Khan S, Shareef R, Villanueva G, Bansal D, Ahmad M, Kim DJ, Chauhan SC, Hafeez BB. Honey Targets Ribosome Biogenesis Components to Suppress the Growth of Human Pancreatic Cancer Cells. Cancers (Basel) 2024; 16:3431. [PMID: 39410048 PMCID: PMC11475701 DOI: 10.3390/cancers16193431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/02/2024] [Accepted: 10/08/2024] [Indexed: 10/20/2024] Open
Abstract
Pancreatic cancer (PanCa) is one of the deadliest cancers, with limited therapeutic response. Various molecular oncogenic events, including dysregulation of ribosome biogenesis, are linked to the induction, progression, and metastasis of PanCa. Thus, the discovery of new therapies suppressing these oncogenic events and ribosome biogenesis could be a novel therapeutic approach for the prevention and treatment of PanCa. The current study was designed to investigate the anti-cancer effect of honey against PanCa. Our results indicated that honey markedly inhibited the growth and invasive characteristics of pancreatic cancer cells by suppressing the mRNA expression and protein levels of key components of ribosome biogenesis, including RNA Pol-I subunits (RPA194 and RPA135) along with its transcriptional regulators, i.e., UBTF and c-Myc. Honey also induced nucleolar stress in PanCa cells by reducing the expression of various nucleolar proteins (NCL, FBL, and NPM). Honey-mediated regulation on ribosome biogenesis components and nucleolar organization-associated proteins significantly arrested the cell cycle in the G2M phase and induced apoptosis in PanCa cells. These results, for the first time, demonstrated that honey, being a natural remedy, has the potential to induce apoptosis and inhibit the growth and metastatic phenotypes of PanCa by targeting ribosome biogenesis.
Collapse
Affiliation(s)
- Aun Ali Bangash
- South Texas Center of Excellence for Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; (A.A.B.); (M.A.B.); (H.A.); (S.K.); (R.S.); (G.V.); (M.A.); (D.J.K.); (S.C.C.)
- Department of Medicine and Oncology ISU, Division of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Sahir Sultan Alvi
- South Texas Center of Excellence for Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; (A.A.B.); (M.A.B.); (H.A.); (S.K.); (R.S.); (G.V.); (M.A.); (D.J.K.); (S.C.C.)
- Department of Medicine and Oncology ISU, Division of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Muhammad Ali Bangash
- South Texas Center of Excellence for Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; (A.A.B.); (M.A.B.); (H.A.); (S.K.); (R.S.); (G.V.); (M.A.); (D.J.K.); (S.C.C.)
- Department of Medicine and Oncology ISU, Division of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Haider Ahsan
- South Texas Center of Excellence for Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; (A.A.B.); (M.A.B.); (H.A.); (S.K.); (R.S.); (G.V.); (M.A.); (D.J.K.); (S.C.C.)
- Department of Medicine and Oncology ISU, Division of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Shiza Khan
- South Texas Center of Excellence for Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; (A.A.B.); (M.A.B.); (H.A.); (S.K.); (R.S.); (G.V.); (M.A.); (D.J.K.); (S.C.C.)
- Department of Medicine and Oncology ISU, Division of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Rida Shareef
- South Texas Center of Excellence for Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; (A.A.B.); (M.A.B.); (H.A.); (S.K.); (R.S.); (G.V.); (M.A.); (D.J.K.); (S.C.C.)
- Department of Medicine and Oncology ISU, Division of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Georgina Villanueva
- South Texas Center of Excellence for Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; (A.A.B.); (M.A.B.); (H.A.); (S.K.); (R.S.); (G.V.); (M.A.); (D.J.K.); (S.C.C.)
- Department of Medicine and Oncology ISU, Division of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Divyam Bansal
- Department of Kinesiology, Rice University, Houston, TX 77251, USA;
| | - Mudassier Ahmad
- South Texas Center of Excellence for Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; (A.A.B.); (M.A.B.); (H.A.); (S.K.); (R.S.); (G.V.); (M.A.); (D.J.K.); (S.C.C.)
- Department of Medicine and Oncology ISU, Division of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Dae Joon Kim
- South Texas Center of Excellence for Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; (A.A.B.); (M.A.B.); (H.A.); (S.K.); (R.S.); (G.V.); (M.A.); (D.J.K.); (S.C.C.)
- Department of Medicine and Oncology ISU, Division of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Subhash C. Chauhan
- South Texas Center of Excellence for Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; (A.A.B.); (M.A.B.); (H.A.); (S.K.); (R.S.); (G.V.); (M.A.); (D.J.K.); (S.C.C.)
- Department of Medicine and Oncology ISU, Division of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Bilal Bin Hafeez
- South Texas Center of Excellence for Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; (A.A.B.); (M.A.B.); (H.A.); (S.K.); (R.S.); (G.V.); (M.A.); (D.J.K.); (S.C.C.)
- Department of Medicine and Oncology ISU, Division of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| |
Collapse
|
3
|
Wilczyńska A, Żak N. Polyphenols as the Main Compounds Influencing the Antioxidant Effect of Honey-A Review. Int J Mol Sci 2024; 25:10606. [PMID: 39408935 PMCID: PMC11477350 DOI: 10.3390/ijms251910606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/22/2024] [Accepted: 09/30/2024] [Indexed: 10/20/2024] Open
Abstract
Honey is one of the most valuable components of the human diet. It is considered to be a functional food with health-promoting properties. Honey has bactericidal and bacteriostatic effects; is used to treat wounds and ulcers; relieves stress; supports the treatment of diseases of the digestive and respiratory systems; improves kidney function; and aids in convalescence. The healing and prophylactic effects of honey are closely related to its chemical composition. According to the literature, honey contains over 300 substances belonging to various groups of chemical compounds, some with antioxidant activity, including vitamins and phenolic compounds, mainly flavonoids and phenolic acids. This article provides insight into honey's chemical composition and its pro-health activities. The antioxidant properties of honey were prioritized.
Collapse
Affiliation(s)
- Aleksandra Wilczyńska
- Department of Quality Management, Gdynia Maritime University, ul. Morska 81-87, 81-225 Gdynia, Poland;
| | | |
Collapse
|
4
|
Zulkifli MF, Masimen MAA, Ridzuan PM, Wan Ismail WI. Exploring honey's potential as a functional food for natural sleep aid. Food Funct 2024; 15:9678-9689. [PMID: 39248637 DOI: 10.1039/d4fo02013h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
Sleep disorders present significant challenges to public health, necessitating effective and sustainable solutions beyond conventional pharmacological interventions. This study aims to investigate the potential of honey and its compositions as a functional food for addressing sleep disorders. A comprehensive review of existing literature explores honey's intrinsic properties and impact on sleep quality. The findings suggest that honey, with its unique composition and soothing effects, offers a promising avenue for enhancing sleep patterns without relying on pharmaceutical drugs. This study also discusses the possible mechanism of action and the challenges of using honey in this field. While further research is needed to elucidate specific mechanisms and optimal utilisation, integrating honey into holistic sleep management strategies holds promise for improving overall well-being and quality of life.
Collapse
Affiliation(s)
- Muhammad Faiz Zulkifli
- Department of Research and Development, BioInnovSphere Labs, 21030 Kuala Nerus, Terengganu, Malaysia.
- Cell Signalling and Biotechnology Research Group (CeSBTech), Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Mohammad Asyraf Adhwa Masimen
- Department of Research and Development, BioInnovSphere Labs, 21030 Kuala Nerus, Terengganu, Malaysia.
- Cell Signalling and Biotechnology Research Group (CeSBTech), Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - P M Ridzuan
- Department of Research and Development, Dr. Ridz Research Centre, 21030, Kuala Nerus, Terengganu, Malaysia
| | - Wan Iryani Wan Ismail
- Department of Research and Development, BioInnovSphere Labs, 21030 Kuala Nerus, Terengganu, Malaysia.
- Biological Security and Sustainability Research Group (BIOSES), Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| |
Collapse
|
5
|
Ohno R, Auditore A, Gensberger-Reigl S, Saller J, Stützer J, Weigel I, Pischetsrieder M. Qualitative and Quantitative Profiling of Fructose Degradation Products Revealed the Formation of Thirteen Reactive Carbonyl Compounds and Higher Reactivity Compared to Glucose. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:19131-19142. [PMID: 39145730 DOI: 10.1021/acs.jafc.4c04314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Fructose occurs in foods and as a metabolite in vivo. It can be degraded, leading to the formation of reactive carbonyl compounds, which may influence food properties and have an impact on health. The present study performed an in-depth qualitative and quantitative profiling of fructose degradation products. Thus, the α-dicarbonyl compounds 3-deoxyglucosone, glucosone, methylglyoxal, glyoxal, hydroxypyruvaldehyde, threosone, 3-deoxythreosone, and 1-desoxypentosone and the monocarbonyl compounds formaldehyde, acetaldehyde, glycolaldehyde, glyceraldehyde, and dihydroxyacetone were detected in fructose solutions incubated at 37 °C. Quantitative profiling after 7 days revealed 4.6-271.6-fold higher yields of all degradation products from fructose compared to glucose. Except for 3-deoxyglucosone, the product formation appeared to be metal dependent, indicating oxidative pathways. CaCl2 and MgCl2 partially reduced fructose degradation. Due to its high reactivity compared to glucose, particularly toward metal-catalyzed pathways, fructose may be a strong contributor to sugar degradation and Maillard reaction in foods and in vivo.
Collapse
Affiliation(s)
- Reiichi Ohno
- Food Chemistry, Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Nikolaus-Fiebiger-Str. 10, Erlangen 91058, Germany
| | - Andrea Auditore
- Food Chemistry, Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Nikolaus-Fiebiger-Str. 10, Erlangen 91058, Germany
| | - Sabrina Gensberger-Reigl
- Food Chemistry, Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Nikolaus-Fiebiger-Str. 10, Erlangen 91058, Germany
- FAU NeW - Research Center New Bioactive Compounds, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Nikolaus-Fiebiger-Str. 10, Erlangen 91058, Germany
| | - Julia Saller
- Food Chemistry, Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Nikolaus-Fiebiger-Str. 10, Erlangen 91058, Germany
| | - Joachim Stützer
- Food Chemistry, Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Nikolaus-Fiebiger-Str. 10, Erlangen 91058, Germany
| | - Ingrid Weigel
- Food Chemistry, Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Nikolaus-Fiebiger-Str. 10, Erlangen 91058, Germany
| | - Monika Pischetsrieder
- Food Chemistry, Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Nikolaus-Fiebiger-Str. 10, Erlangen 91058, Germany
- FAU NeW - Research Center New Bioactive Compounds, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Nikolaus-Fiebiger-Str. 10, Erlangen 91058, Germany
| |
Collapse
|
6
|
Sultana S, Foster K, Bates T, Hossain ML, Lim LY, Hammer K, Locher C. Determination of Physicochemical Characteristics, Phytochemical Profile and Antioxidant Activity of Various Clover Honeys. Chem Biodivers 2024; 21:e202301880. [PMID: 38494456 DOI: 10.1002/cbdv.202301880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 03/03/2024] [Accepted: 03/13/2024] [Indexed: 03/19/2024]
Abstract
This paper reports on some physicochemical and phytochemical characteristics (i. e. pH, electrical conductivity, colour, moisture content, total phenolic content, sugar profile) and in vitro antioxidant activity of honeys harvested from five legume species, red clover (Trifolium pratense), balansa clover (T. michelianum), Persian clover (T. resupinatum), purple clover (T. purpureum) and sanfoin, also known as holy clover (Onobrychis viciifolia), that were grown in enclosed shade houses to ensure that the honeys' characteristics are reflective of a truly monofloral honey. Glucose and fructose, determined via High-Performance Thin-Layer Chromatography (HPTLC) analysis, were found as the main sugars in all investigated honeys with the ratio of fructose to glucose ranging from 1 : 1.2 to 1 : 1.6. The honeys' pH values ranged from 3.9 to 4.6 which met Codes Alimentarius (CA) requirements. The moisture content was found to be between 17.6 and 22.2 % which in some cases was slightly higher than CA requirements (≤20 %). The honeys' colour values, prior and after filtration, were between 825.5-1149.5 mAU and 532.4-824.8 mAU respectively, illustrating golden yellow to deep yellow hues. The total phenolic content (TPC) of the honeys was determined using a modified Folin-Ciocalteu assay. Their antioxidant activity was captured by the Ferric Reducing-Antioxidant Power (FRAP) assay as well as HPTLC analysis coupled with 2,2-diphenyl-1-picrylhydrazyl (DPPH) derivatisation. The highest total phenolic content was found in red clover honey (45.4 mg GAE/100 g) whereas purple clover honey showed the highest level of activity in the FRAP assay (7.3 mmol Fe2+/kg). HPTLC-DPPH analysis of the honeys' organic extracts demonstrated the presence of various bioactive compounds that contribute to their overall antioxidant activity. This study developed a methodology for producing monofloral clover honeys in a space limited, enclosed production system, which allowed to collate important baseline data for these honeys that can serve as the foundation for their potential future development into commercial honeys, including honeys that can be used for medicinal purposes.
Collapse
Affiliation(s)
- Sharmin Sultana
- Division of Pharmacy, School of Allied Health, University of Western Australia, Perth, 6009, Australia
| | - Kevin Foster
- School of Agriculture and Environment, University of Western Australia, Crawley, 6009, Australia
| | - Tiffane Bates
- School of Agriculture and Environment, University of Western Australia, Crawley, 6009, Australia
| | - Md Lokman Hossain
- Division of Pharmacy, School of Allied Health, University of Western Australia, Perth, 6009, Australia
| | - Lee Yong Lim
- Division of Pharmacy, School of Allied Health, University of Western Australia, Perth, 6009, Australia
| | - Katherine Hammer
- School of Biomedical Sciences, University of Western Australia, Perth, 6009, Australia
| | - Cornelia Locher
- Division of Pharmacy, School of Allied Health, University of Western Australia, Perth, 6009, Australia
| |
Collapse
|
7
|
Alaerjani WMA, Mohammed MEA. Impact of floral and geographical origins on honey quality parameters in Saudi Arabian regions. Sci Rep 2024; 14:8720. [PMID: 38622258 PMCID: PMC11018611 DOI: 10.1038/s41598-024-59359-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 04/09/2024] [Indexed: 04/17/2024] Open
Abstract
This article examined the effect of geographical (different climate conditions) and floral origins on some quality parameters of honey including the activity of diastase enzyme. Moreover, some non-quality parameters were investigated such as the pH, fructose, glucose, ratio of fructose/glucose and invertase. The honey samples were collected from Asir (cold climate) and Jazan (hot climate) regions at the southwestern part of Saudi Arabia. The geographical origin significantly affected the mean value moisture of the Acacia honey (p-value = 0.02), conductivity of the polyfloral honey (p-value = 0.03), sucrose of the Acacia honey (p-value = 0.02), diastase activity of the Acacia (p-value = 0.001), Ziziphus (p-value = 0.046) and polyfloral honey (p-value ≤ 0.001), fructose of the Acacia honey (p-value = 0.01), glucose of the Ziziphus honey (p-value = 0.03), fructose/ glucose ratio of the Ziziphus honey (p-value = 0.035), and invertase activity of the polyfloral honey (p-value ≤ 0.001). Regarding the effect of the floral origin of the honey from Asir region, the sucrose percentage of the Acacia honey was significantly more than that of the polyfloral honey (p- value = 0.003), the diastase activity of the Acacia honey was significantly more than its activity in the Ziziphus honey (p- value = 0.044), glucose percentage of the Ziziphus honey was significantly more the glucose percentage of the Acacia honey (p-value = 0.009) and the fructose/ glucose ratio of the Ziziphus honey was significantly more than that of the Acacia and polyforal honeys (p-value = 0.011 and p-value = 0.045, respectively). Concerning the significant effects of the floral origin on the quality parameters of the honey samples from Jazan region, the moisture of the Ziziphus honey was significantly increased when compared to the moisture of the Acacia honey (p-value = 0.038), the acidity of the polfloral honey was significantly more than the acidity of the Acacia honey (p-value = 0.049), the sum of fructose and glucose of the polyfloral honey was significantly increased compared to that of the Acacia honey (p-value = 0.015), the pH of the Ziziphus hiney was significantly more than the pH of the polyfloral honey (0.011) and the fructose of the polfloral honey was significantly more than that of the Acacia honey (p-value = 0.031). The effect of the geographical origin of the honey samples on their quality parameters depends on their floral origin and the effect of their floral origin differs according to their geographical origin. This article suggests considering collectively the geographical and floral origins effect when developing honey standards. However, the Codex standards for honey started considering this issue when it changed the standard concentration of HMF in honey from not more than 80-40 mg/Kg for honeys from cold climate and 80 mg/Kg for honeys from hot climates.
Collapse
|
8
|
Khan AM, Altaf M, Hussain T, Hamed MH, Safdar U, Ayub A, Memon ZN, Hafiz A, Ashraf S, Amjad MS, Majeed M, Hassan M, Bussmann RW, Abbasi AM, Al-Yafrsi M, Elansary HO, Mahmoud EA. Ethnopharmacological uses of fauna among the people of central Punjab, Pakistan. Front Vet Sci 2024; 11:1351693. [PMID: 38681848 PMCID: PMC11045910 DOI: 10.3389/fvets.2024.1351693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 03/18/2024] [Indexed: 05/01/2024] Open
Abstract
Introduction The utilization of fauna and fauna-based byproducts in ethnomedicinal usages has been a longstanding human activity, practiced across various cultures worldwide. This study focuses on investigating the utilization of animal-based traditional medicine by the people of Pakistan, specifically in the Gujranwala area. Methods Data collection took place from January to September 2019 through interviews with local communities. Ethnomedicinal applications of animal products were analyzed using several indices, including Relative Frequency of Citation (RFC), Relative Popularity Level (RPL), Folk Use Value (FL), and Relative Occurrence Percentage (ROP). Results The study identified the use of different body parts of 54 species of animals in treating various diseases and health issues. These include but are not limited to skin infections, sexual problems, pain management (e.g., in the backbone and joints), eyesight issues, immunity enhancement, cold, weakness, burns, smallpox, wounds, poisoning, muscular pain, arthritis, diabetes, fever, epilepsy, allergies, asthma, herpes, ear pain, paralysis, cough, swelling, cancer, bronchitis, girls' maturity, and stomach-related problems. Certain species of fauna were noted by informers with high "frequency of citation" (FC), ranging from 1 to 77. For instance, the black cobra was the most frequently cited animal for eyesight issues (FC = 77), followed by the domestic rabbit for burn treatment (FC = 67), and the Indus Valley spiny-tailed ground lizard for sexual problems (FC = 66). Passer domesticus and Gallus gallus were noted to have the highest ROP value of 99. Discussion The findings of this study provide valuable preliminary insights for the conservation of fauna in the Gujranwala region of Punjab, Pakistan. Additionally, screening these animals for medicinally active compounds could potentially lead to the development of novel animal-based medications, contributing to both traditional medicine preservation and modern pharmaceutical advancements.
Collapse
Affiliation(s)
- Abdul Majid Khan
- Institute of Zoology, University of the Punjab, Lahore, Pakistan
| | - Muhammad Altaf
- Institute of Forest Sciences, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Tanveer Hussain
- Institute of Forest Sciences, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - M. Haroon Hamed
- Department of Zoology Wildlife and Fisheries, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Umaira Safdar
- Institute of Zoology, University of the Punjab, Lahore, Pakistan
| | - Amina Ayub
- Department of Zoology, Wildlife and Fisheries, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Zaibun-nisa Memon
- Department of Zoology, Shah Abdul Latif University, Khairpur, Sindh, Pakistan
| | - Adnan Hafiz
- Department of Zoology, University of Sialkot, Sialkot, Punjab, Pakistan
| | - Sana Ashraf
- Department of Zoology, University of Lahore, Sargodha, Pakistan
| | - Muhammad Shoaib Amjad
- Department of Botany, Women University of Azad Jammu and Kashmir Bagh, Bagh, Pakistan
| | - Muhammad Majeed
- Department of Botany, University of Gujrat, Gujrat, Punjab, Pakistan
| | - Musheerul Hassan
- Department of Ethnobotany, Institute of Botany, Ilia State University, Tbilisi, Georgia
- Alpine Institute of Management and Technology, Dehradun, Uttarakhand, India
| | - Rainer W. Bussmann
- Department of Ethnobotany, Institute of Botany, Ilia State University, Tbilisi, Georgia
- Staatliches Museum Für Naturkunde, Karlsruhe, Germany
| | - Arshad Mahmood Abbasi
- Department of Environment Sciences, COMSATS University Islamabad, Abbottabad, Pakistan
| | - Mohamed Al-Yafrsi
- Department of Plant Production, College of Food & Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Hosam O. Elansary
- Department of Plant Production, College of Food & Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Eman A. Mahmoud
- Department of Food Science, Faculty of Agriculture, Damietta University, Damietta, Egypt
| |
Collapse
|
9
|
ullah S, Huyop F, Huda N, Ab Wahab R, Hamid AAA, Mohamad MAN, Ahmad HF, Shariff AHM, Nasir MHM. Green honey of Banggi Island: A preliminary anti-diabetic study on zebrafish model. Heliyon 2024; 10:e26469. [PMID: 38404777 PMCID: PMC10884957 DOI: 10.1016/j.heliyon.2024.e26469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 02/27/2024] Open
Abstract
Zebrafish is a developing vertebrate model with several advantages, including its small size, and high experimental efficiency. Malaysia exhibit one of the highest diabetes rates in the Western Pacific and incurring an annual cost of 600 million US dollars. The objective of the study is to determine the antidiabetic properties of green honey (GH) using a zebrafish model. Adult zebrafish, aged 3-4 months, were subjected to overfeeding and treated with streptozotocin (STZ) through intraperitoneal injection (IP) on days 7 and 9. The study assessed the oral sucrose tolerance test (OSTT) and the anti-diabetic effects of green honey. The evaluation was conducted at three time points: 30, 60, and 120 min after treatment and sucrose administration. The study utilised a model with a sample size of 5. The study was performed in six groups. These groups are (1) Normal control (non-diabetic, no intervention), (2) Normal control + GH (non-diabetic, supplemented with GH 3 μl), (3) DM control (diabetic, no intervention), (4) DM Gp1 (diabetic, 3 μL GH), (5) DM Gp2 (diabetic, 6 μ L GH), (6) DM Acarbose (diabetic, treated with acarbose). Fasting blood glucose levels for non-diabetic (non-DM) and diabetic (DM) groups were evaluated before and after the 10 days of diabetic induction. DM groups (excess of food and two injections of STZ) have caused a significant increment in the fasting blood glucose to 11.55 mmol/l (p < 0.0001). Both GH treatments effectively decreased postprandial blood glucose levels and the area under the curve in the oral glucose tolerance test (OSTT). Based on these results, it is concluded that green honey could play a role in hyperglycemia management and show potential as a natural alternative to conventional diabetes therapy. The underlying mechanisms need to be clarified, and their potential use in human diabetes therapy needs to be investigated.
Collapse
Affiliation(s)
- Saeed ullah
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, 81310, Johor Bahru, Malaysia
| | - Fahrul Huyop
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, 81310, Johor Bahru, Malaysia
| | - Nurul Huda
- Faculty of Sustainable Agriculture, Universiti Malaysia Sabah, 90509, Sandakan, Sabah, Malaysia
| | - Roswanira Ab Wahab
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310, Johor Bahru, Malaysia
| | - Azzmer Azzar Abdul Hamid
- Department of Biotechnology, Kulliyyah of Science, International Islamic University Malaysia, Bandar Indera Mahkota, 25200, Kuantan, Pahang, Malaysia
| | - Mohd Azrul Naim Mohamad
- Department of Biotechnology, Kulliyyah of Science, International Islamic University Malaysia, Bandar Indera Mahkota, 25200, Kuantan, Pahang, Malaysia
| | - Hajar Fauzan Ahmad
- Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang Al Sultan Abdullah, 26300, Gambang, Pahang, Malaysia
| | | | - Mohd Hamzah Mohd Nasir
- Department of Biotechnology, Kulliyyah of Science, International Islamic University Malaysia, Bandar Indera Mahkota, 25200, Kuantan, Pahang, Malaysia
| |
Collapse
|
10
|
Priani SE, Rahma H, Suwendar S, Mulyanti D, Dewi ML, Putri SJ. Diabetes mellitus support therapy training through a non-pharmacological and Islamic approach at Taman Sari, Bandung city. AIP CONFERENCE PROCEEDINGS 2024; 3065:020027. [DOI: 10.1063/5.0225225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
11
|
Fleifel M, Fleifel B, El Alam A. Diabetes Mellitus across the Arabo-Islamic World: A Revolution. Int J Endocrinol 2023; 2023:5541808. [PMID: 38021083 PMCID: PMC10656201 DOI: 10.1155/2023/5541808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 10/29/2023] [Accepted: 11/02/2023] [Indexed: 12/01/2023] Open
Abstract
Background Mankind continues to suffer from the ever-growing diabetes epidemic and the rapid rise of type 2 diabetes mellitus (T2DM). This metabolic disease has been studied since ancient civilizations. The Arabo-Islamic civilization excelled in establishing some of the most notable discoveries and teachings that remained the blueprint for years to come in the field of diabetology. Aim This article aimed to review the ancient history of diabetes mellitus, with its main focus on the Arabo-Islamic civilization, and to report our subjective views and analysis of some of the past recommendations based on modern-day findings. Discussion. It is natural to have the teachings of medicine dynamically inspired by one civilization to another, as various fields continue to expand and evolve. This also applies to diabetology as the Arabo-Islamic world used the outlines of prior civilizations to revolutionize the understanding of the disease. Al-Razi and Ibn Sina are probably two of the most renowned polymaths in history, and their contributions to diabetology are well documented. Ibn Maymun's postulation about the higher prevalence of diabetes in Egypt as compared to Andalusia is something to be carefully studied. It could be that diabetes mellitus' underdiagnosis and late-stage detection are some of the major reasons for the disparity between the two mentioned regions. Modern-day Arabo-Islamic scholars continue to excel in revolutionizing diabetology. Conclusion The Arabo-Islamic world houses an impressive bout of scholars who have contributed since the ancient times to diabetology. This scientific locomotion shows no signs of stopping, as it continues to shine during the present day, and likely in the future.
Collapse
Affiliation(s)
- Mohamad Fleifel
- Endocrinology and Metabolism Division, American University of Beirut Medical Center, Beirut, Lebanon
| | | | - Andrew El Alam
- Endocrinology Division, Centre Hospitalier de Chartres, Louis Pasteur Hospital, Chartres, France
| |
Collapse
|
12
|
Palomo-de León BA, Castro H, Sánchez-Murillo ME, de la Garza AL, Rodríguez-Romero BA, Alonzo-Macías M, Ramírez-Jiménez AK, Cardador-Martínez A, Hernández-Salazar M. Glycemic and Satiety Response to Three Mexican Honey Varieties. Foods 2023; 12:3670. [PMID: 37835323 PMCID: PMC10572678 DOI: 10.3390/foods12193670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/21/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
Honey is considered one of the last untreated natural food substances, with a complex composition. It is produced by bees (Apis mellifera) from nectar. The glycemic index (GI) is a physiological assessment of a food's carbohydrate content via its effect on postprandial blood glucose concentrations. This study evaluated the GI and the satiety response to three Mexican types of honey administered to 26 healthy volunteers. The fructose values ranged from 272.40 g/kg to 395.10 g/kg, while the glucose value ranged from 232.20 g/kg to 355.50 g/kg. The fructose/glucose (F/G) ratio of honey was 1.45, 1.00, and 1.17 for highland, multifloral, and avocado honey, respectively. Highland and avocado honey were classified as medium-GI (69.20 ± 4.07 and 66.36 ± 5.74, respectively), while multifloral honey was classified as high-GI (74.24 ± 5.98). Highland honey presented a higher satiety values response than glucose. The difference in GI values and the satiety response effect of highland honey could be explained by its different carbohydrate composition and the possible presence of other honey components such as phytochemicals. Honey, especially avocado, could therefore be used as a sweetener without altering significantly the blood glucose concentration.
Collapse
Affiliation(s)
- Brenda A. Palomo-de León
- Centro de Investigación en Nutrición y Salud Pública, Facultad de Salud Pública y Nutrición, Autonomous University of Nuevo León, San Nicolás de los Garza 66455, Mexico; (B.A.P.-d.L.); (H.C.); (M.E.S.-M.); (A.L.d.l.G.)
| | - Heriberto Castro
- Centro de Investigación en Nutrición y Salud Pública, Facultad de Salud Pública y Nutrición, Autonomous University of Nuevo León, San Nicolás de los Garza 66455, Mexico; (B.A.P.-d.L.); (H.C.); (M.E.S.-M.); (A.L.d.l.G.)
| | - Mayra E. Sánchez-Murillo
- Centro de Investigación en Nutrición y Salud Pública, Facultad de Salud Pública y Nutrición, Autonomous University of Nuevo León, San Nicolás de los Garza 66455, Mexico; (B.A.P.-d.L.); (H.C.); (M.E.S.-M.); (A.L.d.l.G.)
| | - Ana Laura de la Garza
- Centro de Investigación en Nutrición y Salud Pública, Facultad de Salud Pública y Nutrición, Autonomous University of Nuevo León, San Nicolás de los Garza 66455, Mexico; (B.A.P.-d.L.); (H.C.); (M.E.S.-M.); (A.L.d.l.G.)
| | - Beatriz A. Rodríguez-Romero
- Laboratorio de Evaluación Sensorial y Desarrollo de Nuevos Productos, Autonomous University of Nuevo León, San Nicolás de los Garza 66455, Mexico;
| | - Maritza Alonzo-Macías
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Queretaro 76130, Mexico; (M.A.-M.); (A.K.R.-J.); (A.C.-M.)
| | - Aurea K. Ramírez-Jiménez
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Queretaro 76130, Mexico; (M.A.-M.); (A.K.R.-J.); (A.C.-M.)
| | - Anaberta Cardador-Martínez
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Queretaro 76130, Mexico; (M.A.-M.); (A.K.R.-J.); (A.C.-M.)
| | - Marcelo Hernández-Salazar
- Centro de Investigación en Nutrición y Salud Pública, Facultad de Salud Pública y Nutrición, Autonomous University of Nuevo León, San Nicolás de los Garza 66455, Mexico; (B.A.P.-d.L.); (H.C.); (M.E.S.-M.); (A.L.d.l.G.)
| |
Collapse
|
13
|
Nomura K, Nakayama M, Okizaki A. Effects of apitherapy against salivary gland disorder after radioactive iodine therapy for differentiated thyroid cancer. Ann Nucl Med 2023:10.1007/s12149-023-01845-w. [PMID: 37149836 DOI: 10.1007/s12149-023-01845-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 04/27/2023] [Indexed: 05/08/2023]
Abstract
OBJECTIVE Sialadenitis and salivary gland disorders are complications of radioactive iodine therapy (RAIT) that affect the quality of life of patients with differentiated thyroid cancer (DTC). The current study aimed to provide evidence on the protective effect of apitherapy on salivary gland function during RAIT in patients with DTC. METHODS In total, 120 patients with DTC who underwent total thyroidectomy were divided into the apitherapy group (group A, n = 60) and the control group (group B, n = 60). Group A received 2.5 g of acacia honey three times daily after each meal during admission for RAIT. Statistical analyses were performed using the Saxon test (which is used to evaluate saliva volume) and salivary gland scintigraphy (which is applied to assess maximum uptake ratio and washout ratio). RESULTS Compared with group B, group A presented with a more significantly positive change in the rate of amount of saliva before and after treatment (P < 0.01). Group B presented a significant decrease in the maximum uptake ratio of the bilateral parotid and submandibular glands on salivary gland scintigraphy (P < 0.05) and washout ratio of all salivary glands (P < 0.05). Group A did not present significant differences in the maximum uptake ratio and washout ratio. CONCLUSIONS Apitherapy can have protective effects against salivary gland disorder associated with RAIT in patients with DTC.
Collapse
Affiliation(s)
- Kenta Nomura
- Department of Radiology, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1-1, Asahikawa, Hokkaido, 078-8510, Japan.
| | - Michihiro Nakayama
- Department of Radiology, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1-1, Asahikawa, Hokkaido, 078-8510, Japan
| | - Atsutaka Okizaki
- Department of Radiology, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1-1, Asahikawa, Hokkaido, 078-8510, Japan
| |
Collapse
|
14
|
Miraj SS, Kurian SJ, Rodrigues GS, Saravu K, Rao M, Raychaudhuri SP, Downs BW, Bagchi D. Phytotherapy in Diabetic Foot Ulcers: A Promising Strategy for Effective Wound Healing. JOURNAL OF THE AMERICAN NUTRITION ASSOCIATION 2023; 42:295-310. [PMID: 35512780 DOI: 10.1080/07315724.2022.2034069] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 06/14/2023]
Abstract
Despite the advancement in wound care, the effective therapy of chronic diabetic ulcers continues to be a challenge. Wound healing is a highly controlled process, which involves a sequence of complex overlapping steps. This healing pathway comprises of hemostasis, inflammation, proliferative, and remodeling phases. Recent evidence suggests that phytomedicines can prevent or repair different kinds of destructive cellular damage, including chronic wounds. Several phytochemicals such as polyphenols, alkaloids, flavonoids, terpenoids, and glycosides have pleiotropic effects, including stimulation of fibroblast proliferation, the main step in wound healing. Besides, the mechanism involves induction of collagen synthesis, migration, and reepithelization and their antimicrobial, antioxidant, anti-inflammatory, and immunomodulatory actions. Similarly, the use of phytochemicals alone or as an adjuvant with standard therapy has demonstrated promising results in managing complications in the diabetic foot. For instance, the extract of Carica papaya has been shown antioxidant, antimicrobial, and anti-inflammatory, and immunomodulatory effects, which, together with proteolytic enzymatic activity, contributes to its wound healing property. It is generally believed that phytotherapy has no or minimal toxicity than synthetic therapeutic agents, favoring its use in diabetic foot ulcer management. The current review highlights the selected phytochemicals and their sources; and potential application in diabetic foot ulcer management.Key teaching points and nutritional relevanceCurrently, phytochemicals have been shown wide potential in disease. management including alleviating clinical manifestations, preventing degenerative disease, and curing illness.Increased evidence of phytochemical as anti-infective and anti-inflammatory suggests its role in the management of diabetic foot ulcer(DFU).Potential benefit along with minimal adverse effect favors its application as adjuvant therapy.Further research is needed to standardize its dose and formulation to enhance its clinical application in DFU management.
Collapse
Affiliation(s)
- Sonal Sekhar Miraj
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of High Education, Manipal, Karnataka, India
- Manipal Center for Infectious Diseases, Prasanna School of Public Health, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Shilia Jacob Kurian
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of High Education, Manipal, Karnataka, India
- Manipal Center for Infectious Diseases, Prasanna School of Public Health, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Gabriel Sunil Rodrigues
- Department of Surgery, Kasturba Medical College and Hospital, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Kavitha Saravu
- Manipal Center for Infectious Diseases, Prasanna School of Public Health, Manipal Academy of Higher Education, Manipal, Karnataka, India
- Department of Infectious Diseases, Kasturba Medical College and Hospital, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Mahadev Rao
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of High Education, Manipal, Karnataka, India
| | - Siba Prasad Raychaudhuri
- Department of Internal Medicine, Division of Rheumatology, Allergy and Clinical Immunology, University of California Davis, Davis, California, USA
- VA Medical Centre, Sacramento, California, USA
| | | | - Debasis Bagchi
- Department of R&D, VNI Inc, Bonita Springs, Florida, USA
- Department of Pharmaceutical Sciences, Texas Southern University, Houston, Texas, USA
- Department of Biology, Adelphi University, Garden City, New York, USA
| |
Collapse
|
15
|
Malicia honey (Mimosa quadrivalvis L.) produced by the jandaíra bee (Melipona subnitida D.) improves depressive-like behaviour, somatic, biochemical and inflammatory parameters of obese rats. Food Res Int 2023; 164:112391. [PMID: 36737975 DOI: 10.1016/j.foodres.2022.112391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 12/11/2022] [Accepted: 12/24/2022] [Indexed: 01/01/2023]
Abstract
Malícia honey produced by the jandaíra bee has hypoglycaemic and hypolipidemic effects and antioxidant activity in vitro and in vivo, which makes it potential adjuvant treatment for obesity. This study aimed to evaluate the effects of malícia honey on somatic and biochemical parameters, depressive-like behaviour and anti-inflammatory activity in obese rats. A total of 40 adult male Wistar rats were initially randomized into a healthy group (HG, n = 20) that consumed a control diet, and an obese group (OG, n = 20) which consumed a cafeteria diet for eight weeks. Then, they were subdivided into four groups: healthy (HG, n = 10); healthy treated with malícia honey (HGH, n = 10); obese (OG, n = 10); and obese treated with malícia honey (OGH, n = 10), maintaining their diets for another eight weeks. The HGH and OGH groups received malícia honey (1000 mg/kg body weight) via gavage. Food intake was monitored daily and body weight was monitored weekly. Biochemical tests related to obesity and glucose and insulin tolerance test, somatic parameters, histological parameters and quantification of NF-κB in the brain were performed. Treatment with malícia honey improved depressive-like behaviour, reduced weight (14 %), body mass index (6 %), and improved lipid profile, leptin, insulin, HOMA-β, and glucose and insulin tolerance in obese rats. It also decreased NF-κB (58.08 %) in the brain. Malícia honey demonstrated anti-obesity and anti-inflammatory effects, and reversed changes in obesity-induced depressive-like behaviour.
Collapse
|
16
|
Cárdenas-Escudero J, Mármol-Rojas C, Escribano Pintor S, Galán-Madruga D, Cáceres JO. Honey polyphenols: regulators of human microbiota and health. Food Funct 2023; 14:602-620. [PMID: 36541681 DOI: 10.1039/d2fo02715a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A comprehensive review of research over the last decade was conducted to carry out this work. The main objective of this work is to present relevant evidence of the effect of honey intake on the human intestinal microbiota and its relationship with the improvement of various chronic diseases, such as cirrhosis, metabolic syndrome, diabetes, and obesity, among others. Therefore, this work focuses on the health-improving honey dietary supplementation implications associated with specific changes in the human microbiota and their biochemical mechanisms to enhance the proliferation of beneficial microorganisms and the inhibition of pathogenic microorganisms. Consumption of honey polyphenols significantly improves people's health conditions, especially in patients with chronic disease. Hence, honey intake unequivocally constitutes an alternative way to enhance health and could be used to prevent some relevant chronic diseases.
Collapse
Affiliation(s)
- J Cárdenas-Escudero
- Laser Chemistry Research Group, Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, Plaza de Ciencias 1, 28040 Madrid, Spain. .,Analytical Chemistry Department, FCNET, Universidad de Panamá, Bella Vista, Manuel E. Batista and José De Fábrega av., Ciudad Universitaria, Estafeta Universitaria, 3366, Panamá 4, Panamá
| | - C Mármol-Rojas
- Laser Chemistry Research Group, Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, Plaza de Ciencias 1, 28040 Madrid, Spain.
| | - S Escribano Pintor
- Laser Chemistry Research Group, Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, Plaza de Ciencias 1, 28040 Madrid, Spain.
| | - D Galán-Madruga
- National Centre for Environmental Health. Carlos III Health Institute, Ctra. Majadahonda-Pozuelo km 2.2, 28220 Majadahonda, Madrid, Spain
| | - J O Cáceres
- Laser Chemistry Research Group, Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, Plaza de Ciencias 1, 28040 Madrid, Spain.
| |
Collapse
|
17
|
Fatima MT, Bhat AA, Nisar S, Fakhro KA, Al-Shabeeb Akil AS. The role of dietary antioxidants in type 2 diabetes and neurodegenerative disorders: An assessment of the benefit profile. Heliyon 2022; 9:e12698. [PMID: 36632095 PMCID: PMC9826852 DOI: 10.1016/j.heliyon.2022.e12698] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 11/29/2022] [Accepted: 12/26/2022] [Indexed: 01/01/2023] Open
Abstract
Healthy diet is vital to cellular health. The human body succumbs to numerous diseases which afflict severe economic and psychological burdens on the patient and family. Oxidative stress is a possible crucial regulator of various pathologies, including type 2 diabetes and neurodegenerative diseases. It generates reactive oxygen species (ROS) that trigger the dysregulation of essential cellular functions, ultimately affecting cellular health and homeostasis. However, lower levels of ROS can be advantageous and are implicated in a variety of signaling pathways. Due to this dichotomy, the terms oxidative "eustress," which refers to a good oxidative event, and "distress," which can be hazardous, have developed. ROS affects multiple signaling pathways, leading to compromised insulin secretion, insulin resistance, and β-cell dysfunction in diabetes. ROS is also associated with increased mitochondrial dysfunction and neuroinflammation, aggravating neurodegenerative conditions in the body, particularly with age. Treatment includes drugs/therapies often associated with dependence, side effects including non-selectivity, and possible toxicity, particularly in the long run. It is imperative to explore alternative medicines as an adjunct therapy, utilizing natural remedies/resources to avoid all the possible harms. Antioxidants are vital components of our body that fight disease by reducing oxidative stress or nullifying the excess toxic free radicals produced under various pathological conditions. In this review, we focus on the antioxidant effects of components of dietary foods such as tea, coffee, wine, oils, and honey and the role and mechanism of action of these antioxidants in alleviating type 2 diabetes and neurodegenerative disorders. We aim to provide information about possible alternatives to drug treatments used alone or combined to reduce drug intake and encourage the consumption of natural ingredients at doses adequate to promote health and combat pathologies while reducing unwanted risks and side effects.
Collapse
Affiliation(s)
- Munazza Tamkeen Fatima
- Department of Human Genetics-Precision Medicine in Diabetes Prevention Program, Sidra Medicine, P.O. Box 26999, Doha, Qatar
| | - Ajaz Ahmed Bhat
- Department of Human Genetics-Precision Medicine in Diabetes Prevention Program, Sidra Medicine, P.O. Box 26999, Doha, Qatar
| | - Sabah Nisar
- Department of Human Genetics-Precision Medicine in Diabetes Prevention Program, Sidra Medicine, P.O. Box 26999, Doha, Qatar
| | - Khalid Adnan Fakhro
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, P.O. Box 34110, Doha, Qatar,Department of Genetic Medicine, Weill Cornell Medical College, Doha, P.O. Box 24144, Doha, Qatar,Department of Human Genetics, Laboratory of Genomic Medicine-Precision Medicine Program, Sidra Medicine, P.O. Box 26999, Doha, Qatar
| | - Ammira Sarah Al-Shabeeb Akil
- Department of Human Genetics-Precision Medicine in Diabetes Prevention Program, Sidra Medicine, P.O. Box 26999, Doha, Qatar,Corresponding author.
| |
Collapse
|
18
|
Peláez-Acero A, Garrido-Islas DB, Campos-Montiel RG, González-Montiel L, Medina-Pérez G, Luna-Rodríguez L, González-Lemus U, Cenobio-Galindo ADJ. The Application of Ultrasound in Honey: Antioxidant Activity, Inhibitory Effect on α-amylase and α-glucosidase, and In Vitro Digestibility Assessment. Molecules 2022; 27:molecules27185825. [PMID: 36144558 PMCID: PMC9504444 DOI: 10.3390/molecules27185825] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/28/2022] [Accepted: 09/01/2022] [Indexed: 01/22/2023] Open
Abstract
In the present study, the effects of ultrasound (10, 20, and 30 min) on the bioactive compounds, antioxidant capacity, enzymatic inhibition, and in vitro digestion of six honey extracts from the Oaxaca state, Mexico, were analyzed. Significant differences were found in each honey extract with respect to the ultrasonic treatment applied (p < 0.05). In the honey extract P-A1 treated with 20 min of ultrasound, the phenols reached a maximum concentration of 29.91 ± 1.56 mg EQ/100 g, and the flavonoids of 1.92 ± 0.01 mg EQ/100 g; in addition, an inhibition of α-amylase of 37.14 ± 0.09% was noted. There were also differences in the phases of intestinal and gastric digestion, presenting a decrease in phenols (3.92 ± 0.042 mg EQ/100 g), flavonoids (0.61 ± 0.17 mg EAG/100 mg), antioxidant capacity (8.89 ± 0.56 mg EAG/100 mg), and amylase inhibition (9.59 ± 1.38%). The results obtained from this study indicate that, in some honeys, the processing method could increase the concentration of bioactive compounds, the antioxidant capacity, and the enzymatic inhibition; however, when subjected to in vitro digestion, the properties of honey are modified. The results obtained could aid in the development of these compounds for use in traditional medicine as a natural source of bioactive compounds.
Collapse
Affiliation(s)
- Armando Peláez-Acero
- Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Av. Rancho Universitario s/n Km. 1., Tulancingo Hidalgo 43600, Mexico
| | - Diana Belem Garrido-Islas
- Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Av. Rancho Universitario s/n Km. 1., Tulancingo Hidalgo 43600, Mexico
| | - Rafael Germán Campos-Montiel
- Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Av. Rancho Universitario s/n Km. 1., Tulancingo Hidalgo 43600, Mexico
- Correspondence: (R.G.C.-M.); (A.d.J.C.-G.)
| | - Lucio González-Montiel
- Instituto de Tecnología de los Alimentos, Universidad de la Cañada, Teotitlán de Flores Magón, Oaxaca 68540, Mexico
| | - Gabriela Medina-Pérez
- Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Av. Rancho Universitario s/n Km. 1., Tulancingo Hidalgo 43600, Mexico
| | - Lorena Luna-Rodríguez
- José Carlos Rodríguez-Figueroa’s Laboratory, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Avenida San Rafael Atlixco 186, Colonia Vicentina, Mexico City 09340, Mexico
| | - Uriel González-Lemus
- Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Av. Rancho Universitario s/n Km. 1., Tulancingo Hidalgo 43600, Mexico
| | - Antonio de Jesús Cenobio-Galindo
- Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Av. Rancho Universitario s/n Km. 1., Tulancingo Hidalgo 43600, Mexico
- Correspondence: (R.G.C.-M.); (A.d.J.C.-G.)
| |
Collapse
|
19
|
Traditional Medicine Use among Type 2 Diabetes Patients in KZN. ADVANCES IN PUBLIC HEALTH 2022. [DOI: 10.1155/2022/7334080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Background. Traditional medicine (TM) is widely used in both developing and developed countries to assist in the attempt to curtail the prevalence and increase in diabetes mellitus. Approximately 53% of South Africans use TM to prevent and treat their diseases. There is no conclusive evidence regarding the safety and effectiveness of TM versus prescribed medicine. The most common therapies used by diabetics in Africa include herbal treatments, nutritional products, spiritual healing, and relaxation techniques. Therefore, this study aimed to evaluate the use of TM in patients with T2DM who are on chronic therapy and living in KwaZulu-Natal. Method. This cross-sectional study was conducted at a district hospital, in which purposive sampling was used to recruit participants and data were collected using a structured questionnaire. Information collected included demographic data, information pertaining to home remedies/TM, and self-care practices employed by participants while using TM. Data were analyzed using Pearson’s chi-squared test, t-test, and multivariate logistic regressions to determine predictors of TM usage. Results. Only 92 (27%) of 340 participants reported using TM, with Indians being the most frequent users (58.24%). Approximately, 83.72% (n = 72) used TM in conjunction with prescribed medication. Most participants (56.32%) acquired TM knowledge from family. The most frequently used TM was lemon and honey, Aloe vera, bitter gourd, green tea, and cinnamon. Traditional medicine use among African participants was 0.56 times (OR = 0.56, 95% CI = 0.34, 0.93) lower than Indian participants. There were no significant predictors for TM usage among the variables tested. Conclusion. A low prevalence rate of TM usage in T2DM patients was found. A significant correlation was noted between ethnicity and TM use. Large-scale studies are required to determine the additive and synergistic effects of TM in health care. Consideration should also be given to integrating TM into mainstream health care.
Collapse
|
20
|
Sagili VS, Chakrabarti P, Jayanty S, Kardile H, Sathuvalli V. The Glycemic Index and Human Health with an Emphasis on Potatoes. Foods 2022; 11:foods11152302. [PMID: 35954067 PMCID: PMC9368276 DOI: 10.3390/foods11152302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/07/2022] [Accepted: 07/25/2022] [Indexed: 11/16/2022] Open
Abstract
Diabetes and obesity are associated with the excessive intake of high-glycemic index (GI) carbohydrates, increased glycemic load (GL) foods, and inactive lifestyles. Carbohydrate-rich diets affect blood glucose levels. GI is an indicator of the impact of a specific food on blood glucose, while GL represents the quantity and quality of carbohydrates in the overall diet and their interactions. There are in vitro and in vivo methods for estimating GI and GL. These values are useful human health markers for conditions such as diabetes, obesity, and pregnancy. Potato is a major starchy vegetable, which is consumed widely and is the fourth most important crop globally. However, the GI of diets rich in starchy vegetables such as potatoes has not been studied in detail. The GI values in potatoes are affected by external and internal factors, such as methods of cooking, methods of processing, resistant starches, cultivation methods, mixed meals and food additions, and hormone levels. This review summarizes how these factors affect the GI and GL associated with diets containing potatoes. Understanding the impacts of these factors will contribute to the development of new and improved potato varieties with low GI values. The consumption of low-GI foods will help to combat obesity. The development of low-GI potatoes may contribute to the development of meal plans for individuals living with diabetes and obesity.
Collapse
Affiliation(s)
- Venkata Sai Sagili
- Department of Integrative Biology, 3029 Cordley Hall, Oregon State University, Corvallis, OR 97331, USA;
| | - Priyadarshini Chakrabarti
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, 100 Old Highway 12, Mississippi, MS 39762, USA;
| | - Sastry Jayanty
- San Luis Valley Research Center, Department of Horticulture and Landscape Architecture, Colorado State University, 0249 East Road 9 North Center, Fort Collins, CO 81125, USA;
| | - Hemant Kardile
- Department of Crop and Soil Science, 109 Crop Science Building, Oregon State University, Corvallis, OR 97331, USA;
| | - Vidyasagar Sathuvalli
- Department of Crop and Soil Science, 109 Crop Science Building, Oregon State University, Corvallis, OR 97331, USA;
- Hermiston Agricultural Research, and Extension Center, Oregon State University, 2121 South 1st Street, Hermiston, OR 97838, USA
- Correspondence:
| |
Collapse
|
21
|
Hernández Salazar M, Flores A, Ramírez E, Llaca Díaz J, Rodríguez B, Castro H. Effect of avocado honey on anthropometric and biochemical parameters in healthy subjects: a pilot randomised controlled trial. CYTA - JOURNAL OF FOOD 2022. [DOI: 10.1080/19476337.2022.2085329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Marcelo Hernández Salazar
- Nutrición, Centro de Investigación en Nutrición y Salud PúblicaUniversidad Autonoma de Nuevo Leon, Facultad de Salud Pública y , Monterrey, México
| | - Adriana Flores
- Nutrición, Centro de Investigación en Nutrición y Salud PúblicaUniversidad Autonoma de Nuevo Leon, Facultad de Salud Pública y , Monterrey, México
| | - Erik Ramírez
- Nutrición, Centro de Investigación en Nutrición y Salud PúblicaUniversidad Autonoma de Nuevo Leon, Facultad de Salud Pública y , Monterrey, México
| | - Jorge Llaca Díaz
- Universidad Autonoma de Nuevo Leon, Departamento de Patología Clínica, Hospital Universitario Dr. José Eleuterio González, Monterrey, México
| | - Beatríz Rodríguez
- Universidad Autonoma de Nuevo Leon, Facultad de Agronomía, Centro de Investigación y Desarrollo en Industrias Alimentarias, Monterrey, México
| | - Heriberto Castro
- Nutrición, Centro de Investigación en Nutrición y Salud PúblicaUniversidad Autonoma de Nuevo Leon, Facultad de Salud Pública y , Monterrey, México
| |
Collapse
|
22
|
Functional Yogurt Fortified with Honey Produced by Feeding Bees Natural Plant Extracts for Controlling Human Blood Sugar Level. PLANTS 2022; 11:plants11111391. [PMID: 35684164 PMCID: PMC9182764 DOI: 10.3390/plants11111391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 11/21/2022]
Abstract
The human blood sugar level is important and should be controlled to avoid any damage to nerves and blood vessels which could lead to heart disease and many other problems. Several market-available treatments for diabetes could be used, such as insulin therapy, synthetic drugs, herbal drugs, and transdermal patches, to help control blood sugar. In a double-blind human study, four kinds of honey from bees fed on acacia, sea buckthorn, chlorella alga, and green walnut extracts were used in fortifying yogurt for controlling human blood sugar. The impact of a previously fortified honey was investigated on blood levels and other parameters of healthy individuals in a human study with 60 participants. The participants received 150 mL of yogurt mixed with 30 g of honey every morning for 21 days. Before and after the study period, the basic blood parameters were tested, and the participants filled out standardized self-report questionnaires. Acacia honey was the traditional honey used as a control; the special honey products were produced by the patented technology. The consumption of green walnut honey had a significant effect on the morning blood sugar level, which decreased for every participant in the group (15 people). The average blood sugar level at the beginning in the walnut group was 4.81 mmol L−1, whereas the value after 21 days was 3.73 mmol L−1. The total decrease level of the individuals was about 22.45% (1.08 mmol L−1). Concerning the sea buckthorn and chlorella alga-based honey product groups, there was no significant change in the blood sugar level, which were recorded at 4.91 and 5.28 mmol L−1 before treatment and 5.28 and 5.07 mmol L−1 after, respectively. In the case of the acacia honey group, there was a slight significant decrease as well, it was 4.77 mmol L−1 at the beginning and 4.27 mmol L−1 at the end with a total decrease rate of 10.48%. It could thus be concluded that the active ingredients of green walnut can significantly decrease the blood sugar level in humans. This study, as a first report, is not only a new innovative process to add herbs or healthy active ingredients to honey but also shows how these beneficial ingredients aid the honey in controlling the human blood sugar level.
Collapse
|
23
|
Al Nohair SF, Ahmed SS, Ismail MS, El Maadawy AA, Albatanony MA, Rasheed Z. Potential of honey against the onset of autoimmune diabetes and its associated nephropathy, pancreatitis, and retinopathy in type 1 diabetic animal model. Open Life Sci 2022; 17:351-361. [PMID: 35480484 PMCID: PMC8989157 DOI: 10.1515/biol-2022-0039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 11/23/2021] [Accepted: 01/03/2022] [Indexed: 11/15/2022] Open
Abstract
Honey has been used as a traditional remedy for various health benefits. This study investigated the potential of honey against the onset of autoimmune diabetes and its associated secondary complications in type 1 diabetic (T1D) experimental animals. Autoimmune diabetes was induced in Sprague Dawley rats, and at the same time, the rats were treated with honey or metformin. Sandwich ELISAs were used to estimate blood glucose, hemoglobin A1C (HbA1c), total cholesterol, and triglycerides. Histopathological examinations determined the T1D-induced lesions on kidneys, pancreas, cornea, and retina. Treatment of rats with honey during the course of T1D induction showed a significant reduction in fasting-blood-glucose and HbA1c (p < 0.01), and total lipid profile was also improved (p < 0.05). Not only these, but honey also reduced the T1D-induced lesions in the kidney, pancreas, and cornea/retina (p < 0.05). Metformin showed similar effects and was used as a positive control. In conclusion, honey showed therapeutic potential against the onset of autoimmune diabetes, as it reduces blood glucose/HbA1c and improves the lipid profile by reducing the plasma levels of total cholesterol, low-density lipoproteins (LDL), very low-density lipoprotein (VLDL), and triglycerides. Moreover, it also showed protective potential against the development of diabetic nephropathy, pancreatitis, and retinopathy.
Collapse
Affiliation(s)
- Sultan Fahad Al Nohair
- Department of Family and Community Medicine, College of Medicine, Qassim University, Buraidah, Saudi Arabia
| | - Syed Suhail Ahmed
- Department of Medical Microbiology, College of Medicine, Qassim University, Buraidah, Qassim, Saudi Arabia
| | - Mohamed Saleh Ismail
- Department of Nutrition and Food Sciences, Menoufia University, Shebin El-Kom, Egypt
| | - Ahdab Abdo El Maadawy
- Home Economics Dept, Faculty of Specific Education, Zagazig University, Zagazig, Egypt
| | - Manal A. Albatanony
- Department of Family Medicine, College of Medicine, Qassim University, Unaizah, Saudi Arabia
| | - Zafar Rasheed
- Department of Medical Biochemistry, College of Medicine, Qassim University, P.O. Box 6655, Buraidah-51452, Saudi Arabia
| |
Collapse
|
24
|
Trinh NTN, Tuan NN, Thang TD, Kuo PC, Thanh NB, Tam LN, Tuoi LH, Nguyen THD, Vu DC, Ho TL, Anh LN, Thuy NTT. Chemical Composition Analysis and Antioxidant Activity of Coffea robusta Monofloral Honeys from Vietnam. Foods 2022; 11:foods11030388. [PMID: 35159538 PMCID: PMC8834255 DOI: 10.3390/foods11030388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 01/17/2022] [Accepted: 01/23/2022] [Indexed: 12/21/2022] Open
Abstract
Monofloral honey samples (Coffea robusta) from Vietnam were determined for their chemical compositions. This is the first report on the chemical composition and antioxidant activity of coffee honey from Vietnam. These samples were characterized by their high contents of total and reducing sugars, total phenolic contents, and total flavonoid contents. The contents of seven phenolic acids (PAs) were quantified by high performance liquid chromatography (HPLC) and analyzed with the assistance of principle component analysis (PCA) to differentiate the honey samples into groups. The hydroxymethylfurfural (HMF) (0.048–2.933 mg/kg) and free acid contents (20.326–31.163 meq/kg) of coffee honey were lower in Nepal, which reflected the freshness of the honey when conducting this survey. The coffee honey had total sugar and reducing sugar contents 831.711 g/kg and 697.903 g/kg, respectively. The high level of total phenolic (0.642 mg GAE/g) and flavonoid (0.0341 mg GE/g) contents of coffee honey contributed to their antioxidant activity of this honey sample. Among the coffee honey tested, the IC50 of DPPH radical-scavenging activities value was 1.134–17.031 mg/mL, while the IC50 of ABTS radical-scavenging activities value was 115.381–213.769 mg/mL. The phenolic acids composition analysis displayed that gallic acid appeared in high concentrations in all studied honey samples, ranging from 0.037–1.015 mg/kg, and ferulic acid content ranged from 0.193 to 0.276 mg/kg. The content of trigonelline and caffeine in coffee honey samples ranged from 0.314–2.399 mg/kg and 8.946–37.977 mg/kg. The data in this article highlight the relevance of coffee honey as a healthy substance.
Collapse
Affiliation(s)
- Nguyen Thi Nu Trinh
- Institute of Biotechnology and Food Technology, Industrial University of Ho Chi Minh City, Ho Chi Minh 700000, Vietnam; (N.T.N.T.); (N.N.T.); (N.B.T.); (L.N.T.); (L.H.T.); (T.H.D.N.)
| | - Nguyen Ngoc Tuan
- Institute of Biotechnology and Food Technology, Industrial University of Ho Chi Minh City, Ho Chi Minh 700000, Vietnam; (N.T.N.T.); (N.N.T.); (N.B.T.); (L.N.T.); (L.H.T.); (T.H.D.N.)
| | - Tran Dinh Thang
- Institute of Biotechnology and Food Technology, Industrial University of Ho Chi Minh City, Ho Chi Minh 700000, Vietnam; (N.T.N.T.); (N.N.T.); (N.B.T.); (L.N.T.); (L.H.T.); (T.H.D.N.)
- Correspondence:
| | - Ping-Chung Kuo
- School of Pharmacy, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan;
| | - Nguyen Ba Thanh
- Institute of Biotechnology and Food Technology, Industrial University of Ho Chi Minh City, Ho Chi Minh 700000, Vietnam; (N.T.N.T.); (N.N.T.); (N.B.T.); (L.N.T.); (L.H.T.); (T.H.D.N.)
| | - Le Nhat Tam
- Institute of Biotechnology and Food Technology, Industrial University of Ho Chi Minh City, Ho Chi Minh 700000, Vietnam; (N.T.N.T.); (N.N.T.); (N.B.T.); (L.N.T.); (L.H.T.); (T.H.D.N.)
| | - Le Hong Tuoi
- Institute of Biotechnology and Food Technology, Industrial University of Ho Chi Minh City, Ho Chi Minh 700000, Vietnam; (N.T.N.T.); (N.N.T.); (N.B.T.); (L.N.T.); (L.H.T.); (T.H.D.N.)
| | - Trang H. D. Nguyen
- Institute of Biotechnology and Food Technology, Industrial University of Ho Chi Minh City, Ho Chi Minh 700000, Vietnam; (N.T.N.T.); (N.N.T.); (N.B.T.); (L.N.T.); (L.H.T.); (T.H.D.N.)
| | - Danh C. Vu
- Institute of Applied Technology, Thu Dau Mot University, Thu Dau Mot 820000, Vietnam;
| | - Thi L. Ho
- College of Agriculture and Applied Biosciences, Can Tho University, Can Tho 94000, Vietnam;
| | - Le Ngoc Anh
- Department of Food Technology, Ho Chi Minh City University of Technology, Vietnam National University-Ho Chi Minh City, Ho Chi Minh 700000, Vietnam;
| | - Nguyen Thi Thu Thuy
- R&D Department, Vietnam Dairy Products J.S Company, Ho Chi Minh 700000, Vietnam;
| |
Collapse
|
25
|
Effects of honey-rich energy drink intake on glucose, insulin, triglycerides and total protein in healthy young people. NUTR HOSP 2022; 39:1093-1100. [DOI: 10.20960/nh.04001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
26
|
Sadeghi F, Amanat S, Bakhtiari M, Asadimehr H, Okhovat MA, Hosseinzadeh M, Mazloomi SM, Gholamalizadeh M, Doaei S. The effects of high fructose fruits and honey on the serum level of metabolic factors and nonalcoholic fatty liver disease. J Diabetes Metab Disord 2021; 20:1647-1654. [PMID: 34900816 DOI: 10.1007/s40200-021-00916-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 10/09/2021] [Indexed: 12/31/2022]
Abstract
Introduction The effect of the natural sources of fructose such as high fructose fruits and honey on the risk of fatty liver is still challenging. This study aimed to compare the effect of fructose, high fructose fruits, and honey on the metabolic factors and non-alcoholic fatty liver disease (NAFLD). Methods Forty-four rats were divided into four groups including normal diet group, high fructose group (HF), high fructose fruits group (HFF), and honey group (HO). After 120 days of intervention, the levels of insulin resistance, hepatic enzyme, and lipid profile were measured. Also, the expression levels of the acetyl-coA carboxylase (ACC), sterol regulatory element-binding protein 1c (SREBP-1c), Interleukin 6 (IL-6), and transforming growth factor-beta (TGF-β) genes were assessed. In addition, a histopathologic assessment was performed on liver tissues. Results Insulin resistance (IR) increased significantly in the HF, HFF, and HO groups (All P < 0.05). The levels of liver enzymes was significantly increased only in the group receiving the HF regimen (P < 0.01). A significant decrease in total cholesterol and HDL-C (high density lipoprotein cholesterol) levels was found in HO group compared to the control group (P < 0.05). The expression levels of ACC and SREBP-1c genes in HF, HFF, and HO groups were significantly higher than the control group (All P < 0.05). The HF group had a greater increase in the level of gene expression of IL-6 and TGF-β (All P < 0.05). Histopathological assessment did not find any changes in fatty liver formation and inflammatory damage. Conclusion Consumption of fructose-rich honey and fruits improved the status of inflammatory markers and liver enzymes compared with the industrial fructose-rich products.
Collapse
Affiliation(s)
- Fatemeh Sadeghi
- Discipline of Physiotherapy, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Sasan Amanat
- Student Research Committee, Larestan University of Medical Sciences, Larestan, Iran
| | - Mohammad Bakhtiari
- Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Mohammad Ali Okhovat
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Masood Hosseinzadeh
- Department of Pathology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Mohammad Mazloomi
- Nutrition Research Center, Department of Food Hygiene and Quality Control, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Gholamalizadeh
- Student Research Committee, Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeid Doaei
- Reproductive Health Research Center, Department of Obstetrics & Gynecology, Al-Zahra Hospital, School of Health, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
27
|
The Synergistic Beneficial Effect of Thyme Honey and Olive Oil against Diabetes and Its Complications Induced by Alloxan in Wistar Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:9949056. [PMID: 34594393 PMCID: PMC8478563 DOI: 10.1155/2021/9949056] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 08/08/2021] [Accepted: 09/08/2021] [Indexed: 12/25/2022]
Abstract
Diabetes is a metabolic disorder characterized by a chronic increase in blood glucose. Owing to the limitations observed with antidiabetics in modern medicine, medicinal plants and bee products are known as good matrices for the search for new antidiabetic molecules. The present study focused on the evaluation of the hypoglycemic and the protective properties of two natural products widely used in complementary and alternative medicine (thyme honey and olive oil). To achieve this, the study was carried out on Wistar rats rendered diabetic by the injection of a single dose of alloxan monohydrate (65 mg/kg body weight (BW)). First, the physicochemical characterization and the phytochemical analysis of thyme honey and olive oil were carried out, and then in vivo study was conducted on 42 Wistar rats divided into seven groups: three groups were normal, one group was untreated diabetic, and three groups were diabetic rats treated with thyme honey (2 g/kg BW) or olive oil (10 mL/kg BW) or their combination ((1 g/kg BW of thyme honey) and (5 mL/kg BW of olive oil)). During the experiment, the glycemia was measured regularly every 10 days. After 30 days of treatment, the rats were sacrificed. The serum and urine were analyzed to determine hepatic enzymes levels (AST, ALT, ALP, and LDH), lipidic profile (total cholesterol, triglycerides, high-density lipoprotein, low-density lipoprotein), and kidney parameters (urea, uric acid, creatinine, total protein, sodium, potassium, and chloride). The liver, pancreas, and kidneys were analyzed to evaluate their histological changes and to determine their enzymatic antioxidant content (catalase, GSH, and GPx) and the levels of MDA. The results obtained showed that thyme honey or olive oil, and especially their combination, improved significantly the blood glucose levels and they protect against metabolic changes and the complications induced by diabetes.
Collapse
|
28
|
Blahova J, Martiniakova M, Babikova M, Kovacova V, Mondockova V, Omelka R. Pharmaceutical Drugs and Natural Therapeutic Products for the Treatment of Type 2 Diabetes Mellitus. Pharmaceuticals (Basel) 2021; 14:806. [PMID: 34451903 PMCID: PMC8398612 DOI: 10.3390/ph14080806] [Citation(s) in RCA: 120] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 08/12/2021] [Accepted: 08/14/2021] [Indexed: 12/13/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is the most widespread form of diabetes, characterized by chronic hyperglycaemia, insulin resistance, and inefficient insulin secretion and action. Primary care in T2DM is pharmacological, using drugs of several groups that include insulin sensitisers (e.g., biguanides, thiazolidinediones), insulin secretagogues (e.g., sulphonylureas, meglinides), alpha-glucosidase inhibitors, and the newest incretin-based therapies and sodium-glucose co-transporter 2 inhibitors. However, their long-term application can cause many harmful side effects, emphasising the importance of the using natural therapeutic products. Natural health substances including non-flavonoid polyphenols (e.g., resveratrol, curcumin, tannins, and lignans), flavonoids (e.g., anthocyanins, epigallocatechin gallate, quercetin, naringin, rutin, and kaempferol), plant fruits, vegetables and other products (e.g., garlic, green tea, blackcurrant, rowanberry, bilberry, strawberry, cornelian cherry, olive oil, sesame oil, and carrot) may be a safer alternative to primary pharmacological therapy. They are recommended as food supplements to prevent and/or ameliorate T2DM-related complications. In the advanced stage of T2DM, the combination therapy of synthetic agents and natural compounds with synergistic interactions makes the treatment more efficient. In this review, both pharmaceutical drugs and selected natural products, as well as combination therapies, are characterized. Mechanisms of their action and possible negative side effects are also provided.
Collapse
Affiliation(s)
- Jana Blahova
- Department of Botany and Genetics, Faculty of Natural Sciences, Constantine the Philosopher University in Nitra, 949 74 Nitra, Slovakia; (J.B.); (M.B.); (V.M.)
| | - Monika Martiniakova
- Department of Zoology and Anthropology, Faculty of Natural Sciences, Constantine the Philosopher University in Nitra, 949 74 Nitra, Slovakia;
| | - Martina Babikova
- Department of Botany and Genetics, Faculty of Natural Sciences, Constantine the Philosopher University in Nitra, 949 74 Nitra, Slovakia; (J.B.); (M.B.); (V.M.)
| | - Veronika Kovacova
- Department of Zoology and Anthropology, Faculty of Natural Sciences, Constantine the Philosopher University in Nitra, 949 74 Nitra, Slovakia;
| | - Vladimira Mondockova
- Department of Botany and Genetics, Faculty of Natural Sciences, Constantine the Philosopher University in Nitra, 949 74 Nitra, Slovakia; (J.B.); (M.B.); (V.M.)
| | - Radoslav Omelka
- Department of Botany and Genetics, Faculty of Natural Sciences, Constantine the Philosopher University in Nitra, 949 74 Nitra, Slovakia; (J.B.); (M.B.); (V.M.)
| |
Collapse
|
29
|
Fratianni F, Ombra MN, d’Acierno A, Caputo L, Amato G, De Feo V, Coppola R, Nazzaro F. Polyphenols Content and In Vitro α-Glycosidase Activity of Different Italian Monofloral Honeys, and Their Effect on Selected Pathogenic and Probiotic Bacteria. Microorganisms 2021; 9:1694. [PMID: 34442773 PMCID: PMC8398212 DOI: 10.3390/microorganisms9081694] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 08/05/2021] [Accepted: 08/07/2021] [Indexed: 11/16/2022] Open
Abstract
We evaluated the polyphenol content and the α-glucosidase activity exhibited by different monofloral honeys of Italian origin. Their capacity to act on different pathogenic (Acinetobacter baumannii, Escherichia coli, Listeria monocytogenes, Pseudomonas aeruginosa, and Staphylococcus aureus) as well as probiotic bacteria (Lacticaseibacillus casei, Lactobacillus acidophilus, Lactiplantibacillus plantarum, Lactobacillus gasseri, and Lacticaseibacillus rhamnosus) was also assessed. Total polyphenols varied between 110.46 μg/g of fresh product (rhododendron honey) and 552.29 μg/g of fresh product (strawberry tree honey). Such result did not correspond to a parallel inhibitory α-glycosidase activity that, in each case was never higher than 33 μg/mL. Honeys were differently capable to fight the biofilm formation of the pathogens (inhibition up to 93.27%); they inhibited the in vitro adhesive process (inhibition up to 84.27%), and acted on mature biofilm (with values up to 76.64%). Their effect on bacterial metabolism was different too. Honeys were ineffective to inhibit E. coli mature biofilm nor to act on its metabolism. The action of the honey on probiotic strains seemed almost always stimulate their growth. Thus, these monofloral honeys might exhibit effects on human health and act positively as prebiotics.
Collapse
Affiliation(s)
- Florinda Fratianni
- Institute of Food Science, CNR-ISA, Via Roma 64, 83100 Avellino, Italy; (F.F.); (M.N.O.); (A.d.)
| | - Maria Neve Ombra
- Institute of Food Science, CNR-ISA, Via Roma 64, 83100 Avellino, Italy; (F.F.); (M.N.O.); (A.d.)
| | - Antonio d’Acierno
- Institute of Food Science, CNR-ISA, Via Roma 64, 83100 Avellino, Italy; (F.F.); (M.N.O.); (A.d.)
| | - Lucia Caputo
- Department of Pharmacy, University of Salerno, via Giovanni Paolo II, 84084 Fisciano, Italy; (L.C.); (G.A.)
| | - Giuseppe Amato
- Department of Pharmacy, University of Salerno, via Giovanni Paolo II, 84084 Fisciano, Italy; (L.C.); (G.A.)
| | - Vincenzo De Feo
- Department of Pharmacy, University of Salerno, via Giovanni Paolo II, 84084 Fisciano, Italy; (L.C.); (G.A.)
| | - Raffaele Coppola
- Department of Agricultural, Environmental and Food Sciences, University of Molise, Via de Sanctis snc, 86100 Campobasso, Italy;
| | - Filomena Nazzaro
- Institute of Food Science, CNR-ISA, Via Roma 64, 83100 Avellino, Italy; (F.F.); (M.N.O.); (A.d.)
| |
Collapse
|
30
|
Bobiş O, Bonta V, Cornea-Cipcigan M, Nayik GA, Dezmirean DS. Bioactive Molecules for Discriminating Robinia and Helianthus Honey: High-Performance Liquid Chromatography-Electron Spray Ionization-Mass Spectrometry Polyphenolic Profile and Physicochemical Determinations. Molecules 2021; 26:molecules26154433. [PMID: 34361585 PMCID: PMC8347174 DOI: 10.3390/molecules26154433] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 07/18/2021] [Accepted: 07/20/2021] [Indexed: 01/22/2023] Open
Abstract
Bioactive molecules from the class of polyphenols are secondary metabolites from plants. They are present in honey from nectar and pollen of flowers from where honeybees collect the “raw material” to produce honey. Robinia pseudoacacia and Helianthus annuus are important sources of nectar for production of two monofloral honeys with specific characteristics and important biological activity. A high-performance liquid chromatography–electro spray ionization–mass spectrometry (HPLC–ESI–MS) separation method was used to determine polyphenolic profile from the two types of Romanian unifloral honeys. Robinia and Helianthus honey showed a common flavonoid profile, where pinobanksin (1.61 and 1.94 mg/kg), pinocembrin (0.97 and 1.78 mg/kg) and chrysin (0.96 and 1.08 mg/kg) were identified in both honey types; a characteristic flavonoid profile in which acacetin (1.20 mg/kg), specific only for Robinia honey, was shown; and quercetin (1.85 mg/kg), luteolin (21.03 mg/kg), kaempferol (0.96 mg/kg) and galangin (1.89 mg/kg), specific for Helianthus honey, were shown. In addition, different phenolic acids were found in Robinia and Helianthus honey, while abscisic acid was found only in Robinia honey. Abscisic acid was correlated with geographical location; the samples collected from the south part of Romania had higher amounts, due to climatic conditions. Acacetin was proposed as a biochemical marker for Romanian Robinia honey and quercetin for Helianthus honey.
Collapse
Affiliation(s)
- Otilia Bobiş
- Department of Beekeeping and Sericulture, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 400372 Cluj-Napoca, Romania;
- Correspondence: (O.B.); (D.S.D.)
| | - Victoriţa Bonta
- Department of Beekeeping and Sericulture, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 400372 Cluj-Napoca, Romania;
| | - Mihaiela Cornea-Cipcigan
- Department of Horticulture and Landscaping, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 400372 Cluj-Napoca, Romania;
| | - Gulzar Ahmad Nayik
- Department of Food Science & Technology, Govt. Degree College Shopian, Srinagar 192303, India;
| | - Daniel Severus Dezmirean
- Department of Beekeeping and Sericulture, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 400372 Cluj-Napoca, Romania;
- Correspondence: (O.B.); (D.S.D.)
| |
Collapse
|
31
|
The Effect of Honey on Lipid Profiles: A Systematic Review and Meta-analysis of Controlled Clinical Trials. Br J Nutr 2021; 127:1482-1496. [PMID: 34218823 DOI: 10.1017/s0007114521002506] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Honey is known not only as a natural food but also as complementary medicine. According to the controversial evidence about the effects of honey on blood lipids, this meta-analysis was performed to investigate the potential effects of honey on lipid profiles. Relevant studies were identified by searching PubMed, Web of Science (WOS), Scopus, EMBASE, and Cochrane databases. All human controlled clinical trials (either with a parallel or a crossover design) published in English that reported changes in serum lipid markers (Total Cholesterol (TC), Triglyceride (TG), Low Density Lipoprotein Cholesterol (LDL-C), High Density Lipoprotein Cholesterol (HDL-C), and LDL-C/HDL-C ratio) following honey consumption were considered. Standardized Mean Differences (SMDs) and their respective 95% Confidence Intervals (CIs) were calculated to assess the changes in lipid profiles following honey consumption by random effects model. Statistical heterogeneity, sensitivity analysis, publication bias, and quality of the included studies were assessed, as well. The meta-analysis of 23 trials showed that honey had no significant effects on TC, TG, LDL-C, HDL-C, and LDL-C/HDL-C ratio. Significant heterogeneity was seen among the studies for all the studied factors (I2 index > 50%). Subgroup analysis based on the lipid profile status, types of honey, and intervention duration revealed no significant effect on TC, TG, LDL-C, and HDL-C. Quality of the evidences varied form very low to moderate according to various parameters. In conclusion, honey consumption did not affect serum lipid profiles (TC, TG, LDL-C, HDL-C, and LDL-C/HDL-C ratio).
Collapse
|
32
|
Nohair SFAL. Antidiabetic efficacy of a honey-royal jelly mixture: Biochemical study in rats. Int J Health Sci (Qassim) 2021; 15:4-9. [PMID: 34285683 PMCID: PMC8265305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVES The current tools for the management of diabetes mellitus (DM) do not prevent its development or complications, so investigations into promising new treatments, for example, honey-royal jelly (H-RJ) mixtures, are needed. This study was conducted to evaluate the effect of royal jelly on DM by measuring the biochemical parameters (fasting blood glucose and glycated hemoglobin [HbA1c]) accompanying streptozotocin (i.p. 75 mg/kg once)-induced type 1 DM (T1DM) in rats. Other objectives were to evaluate the effects of H-RJ on lipid parameters. METHODS Ten healthy control male Sprague-Dawley rats (120-150 g) were compared to untreated T1DM (n = 10), metformin-treated T1DM (n = 10), and H-RJ-treated T1DM rats (n = 10) on plasma and whole-blood glycemic control indices (fasting blood glucose, HbA1c %, insulin, and insulin resistance) and plasma lipid profile (triglycerides [TGs] and total, low-density lipoprotein -, high-density lipoprotein -, and very low-density lipoprotein [VLDL]-cholesterol). Diabetes was induced by a single intraperitoneal injection of streptozotocin (SZT) at 75 mg/kg body weight (BW). The T1DM-H-RJ rat group received daily RJ (100 mg/kg BW). Parametric data are presented as mean ± SD and were analyzed for comparison using one-way ANOVA in SPSS software. RESULTS H-RJ normalized glycemic control indices, but its effect on lipid parameters was variable. H-RJ and metformin had comparable effects. The H-RJ treatment caused a significant reduction in plasma VLDL-C content in comparison to the control treatment and metformin. The limitation of this study is that it was restricted to T1DM and did not involve type 2 DM. In addition, the study was limited to male Sprague-Dawley rats, with no females. CONCLUSION The H-RJ mixture is a promising antidiabetic alternative medicine. It effectively reduces VLDL-C and TG in diabetic rats.
Collapse
Affiliation(s)
- Sultan Fahad AL Nohair
- Department of Family Medicine, College of Medicine, Qassim University, Buraydah, Saudi Arabia
| |
Collapse
|
33
|
The Rediscovery of Honey for Skin Repair: Recent Advances in Mechanisms for Honey-Mediated Wound Healing and Scaffolded Application Techniques. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11115192] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Honey is a honey-bee product obtained mainly by the enzymatic processing of nectar from a variety of plants, which leads to the wide range of colours and flavours available on the market. These organoleptic and nutritional features are influenced by the chemical composition, which in turn depends on the botanical origin. Bioactive compounds account for honey beneficial activity in medical applications, which explains the extensive use of honey in ethno-pharmacology since antiquity, from cough remedies to dermatological treatments. Wound healing is one of the main therapeutic uses of honey, and various design options in pharmaceutical technology such as smart delivery systems and advanced dressings are currently being developed to potentiate honey’s valuable properties for better performance and improved final outcome. In this review, we will focus on the latest research that discloses crucial factors in determining what properties are most beneficial when considering honey as a medicinal product. We will present the most recent updates on the possible mechanisms responsible for the exceptional effects of this ageless therapeutical remedy on skin repair. Furthermore, the state-of-the-art in application techniques (incorporation into scaffolds as an alternative to direct administration) used to enhance honey-mediated wound-healing properties are explored.
Collapse
|
34
|
Ismail NH, Ibrahim SF, Jaffar FHF, Mokhtar MH, Chin KY, Osman K. Augmentation of the Female Reproductive System Using Honey: A Mini Systematic Review. Molecules 2021; 26:molecules26030649. [PMID: 33513715 PMCID: PMC7865304 DOI: 10.3390/molecules26030649] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/21/2021] [Accepted: 01/23/2021] [Indexed: 12/16/2022] Open
Abstract
Phytochemical contents of honey are presumed to be beneficial to the female reproductive system (FRS). However, the biological effects of honey supplementation (HS) in vivo on the FRS remain unclear. This review aims to investigate the current literature on the effects of HS on the FRS, particularly on the sex hormone profile and reproductive organs (uterus and vagina). A systematic literature search using Scopus, MEDLINE via Ovid and Cochrane Library databases was conducted. Records were screened and identified for preclinical and clinical studies addressing the effects of HS on the FRS. Data on populations, interventions, outcomes and methodological quality were extracted. Studies were synthesised using tables and written summaries. Of the 198 identified records, six fulfilled the inclusion criteria. All six records were used for data extraction: two experimental studies using rats as the model organism and four human clinical studies of honey on female reproductive health. HS elevated the progesterone levels, restrained body weight increase, prevented uterine and vaginal atrophies in ovariectomised rats, attenuated symptoms of candidiasis and improved oxidative status in patients. Current evidence shows that short-term HS following surgical or physiological menopause exerts an oestrogenic, antioxidant and anti-inflammatory effect on the FRS. However, insufficient long-term studies preclude any definitive conclusions.
Collapse
Affiliation(s)
- Nur Hilwani Ismail
- School of Biological Sciences, Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam 40450, Malaysia;
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Center, Kuala Lumpur 56000, Malaysia; (S.F.I.); (F.H.F.J.); (M.H.M.)
| | - Siti Fatimah Ibrahim
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Center, Kuala Lumpur 56000, Malaysia; (S.F.I.); (F.H.F.J.); (M.H.M.)
| | - Farah Hanan Fathihah Jaffar
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Center, Kuala Lumpur 56000, Malaysia; (S.F.I.); (F.H.F.J.); (M.H.M.)
| | - Mohd Helmy Mokhtar
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Center, Kuala Lumpur 56000, Malaysia; (S.F.I.); (F.H.F.J.); (M.H.M.)
| | - Kok Yong Chin
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, 56000 Kuala Lumpur, Malaysia;
| | - Khairul Osman
- Centre of Diagnostic Science and Applied Health, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, 43600 Bangi, Malaysia
- Correspondence: ; Tel.: +603-8921-3506
| |
Collapse
|
35
|
Olagunju AI, Oluwajuyitan TD, Oyeleye SI. Effect of Plantain Bulb's Extract-Beverage Blend on Blood Glucose Levels, Antioxidant Status, and Carbohydrate Hydrolysing Enzymes in Streptozotocin-Induced Diabetic Rats. Prev Nutr Food Sci 2020; 25:362-374. [PMID: 33505930 PMCID: PMC7813600 DOI: 10.3746/pnf.2020.25.4.362] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 10/13/2020] [Indexed: 11/13/2022] Open
Abstract
The pharmacological properties of various parts of plantain trees have directed its use in folkloric management of diabetes and other human ailments. However, little is known about plantain bulb extract (PBE) and their mechanisms of action. This study evaluated the effect of PBE-beverage blends (including 1% and 2 % cocoa powder) sweetened with honey on blood glucose levels, antioxidant status, and carbohydrate hydrolysing enzyme activities in streptozotocin (STZ)-induced diabetic rats. Animals were selected at random and distributed into 7 groups (n=7), as follows: normal control (NC), untreated diabetic rats, diabetic rats treated with acarbose (STZ-ACA), diabetic rats administered PBE (STZ- PBE), diabetic rats administered honey and PBE (STZ-HPBE), diabetic rats administered 1% cocoa powder-with HPBE blend (STZ-CHPBE-1), and diabetic rats administered 2% cocoa powder with HPBE blend (STZ-CHPBE-2). Compared with the controls, untreated diabetic rats exhibited increased blood glucose levels and hydrolysing enzyme activities, and significant decreases in the activities of antioxidant (catalase, superoxide dismutase, glutathione-S-transferase, and glutathione peroxidase) enzyme and non-enzymatic (glutathione) antioxidants. However, changes in activities were comparatively reversed in all rats administered plantain bulb formulations. CHPBE-2 was slightly more effective than CHPBE-1. Overall, both blends could serve as nutraceutical and/or functional drinks in the management of diabetes.
Collapse
Affiliation(s)
| | | | - Sunday Idowu Oyeleye
- Department of Biomedical Technology, Federal University of Technology, Akure 34002, Nigeria
| |
Collapse
|
36
|
Virgen-Carrillo CA, Martínez Moreno AG, Rodríguez-Gudiño JJ, Pineda-Lozano JE. Feeding pattern, biochemical, anthropometric and histological effects of prolonged ad libitum access to sucrose, honey and glucose-fructose solutions in Wistar rats. Nutr Res Pract 2020; 15:187-202. [PMID: 33841723 PMCID: PMC8007410 DOI: 10.4162/nrp.2021.15.2.187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/27/2020] [Accepted: 10/14/2020] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND/OBJECTIVES The exposure to sucrose in rats has mimic abnormalities attributed to metabolic syndrome (MetS). The effects of honey bee and "free" glucose and fructose, have not been explored in this context. The aim was to expose Wistar rodents to sucrose solution (SS), honey solution (HS) and fructose/glucose solution (GFS) at 30% to assess their effects. SUBJECTS/METHODS HS (n = 10), SS (n = 10) and GFS (n = 10) groups were formed. Solutions were ad libitum along 14-weeks. RESULTS Between solutions consumptions, honey was significantly 42% higher (P = 0.000), while similar consumption was observed among GFS and SS. The feeding pattern of HS consumption was irregular along experiment; while the food intake pattern showed the similar trend among groups along time. Non statistical differences were obtained in any biochemical and anthropometric measure, however, a higher concentration of leptin (721 ± 507 pg/mL), lower concentration of total cholesterol (TC; 48.87 ± 2.41 mg/100 mL), very low density lipoprotein (VLDL; 16.47 ± 6.55 mg/100 mL) and triglycerides (82.37 ± 32.77 mg/100 mL) was obtained in SS group. For anthropometric values, HS showed less total adipose tissue (AT; average 26 vs. 31-33 g) and adiposity index (average 6.11 vs. 7.6). Due to sugar-sweetened beverages consumption increases the risk for the development of chronic diseases; correlations between fluid intake and anthropometric and biochemical parameters were assessed. A moderate correlation was obtained in groups with the weight of total AT and solution intake; for the weight gain in GFS group and for triglycerides in HS and GFS. The highest hepatic tissue damage was observed in SS group with multiple intracytoplasmic vacuoles, atypia changes, moderate pleomorphism and hepatocellular necrosis. CONCLUSIONS In spite of the significantly higher consumption of HS, biochemical, anthropometrical and histological effects were not remarkably different in comparision to other sweeteners.
Collapse
Affiliation(s)
- Carmen Alejandrina Virgen-Carrillo
- Instituto de Investigaciones en Comportamiento Alimentario y Nutrición, Centro Universitario del Sur, Universidad de Guadalajara, Z.C. 49000, City Guzmán, Municipio de Zapotlán el Grande, Jalisco, México
| | - Alma Gabriela Martínez Moreno
- Instituto de Investigaciones en Comportamiento Alimentario y Nutrición, Centro Universitario del Sur, Universidad de Guadalajara, Z.C. 49000, City Guzmán, Municipio de Zapotlán el Grande, Jalisco, México
| | - Juan José Rodríguez-Gudiño
- Laboratorio de Morfología, Sección de Histopatología, Centro Universitario del Sur, Universidad de Guadalajara, Z.C. 49000, City Guzmán, Municipio de Zapotlán el Grande, Jalisco, México
| | - Jessica Elizabeth Pineda-Lozano
- Instituto de Investigaciones en Comportamiento Alimentario y Nutrición, Centro Universitario del Sur, Universidad de Guadalajara, Z.C. 49000, City Guzmán, Municipio de Zapotlán el Grande, Jalisco, México
| |
Collapse
|
37
|
A Review on Oxidative Stress, Diabetic Complications, and the Roles of Honey Polyphenols. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:8878172. [PMID: 33299532 PMCID: PMC7704201 DOI: 10.1155/2020/8878172] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/18/2020] [Accepted: 10/23/2020] [Indexed: 02/06/2023]
Abstract
Despite the availability of various antidiabetic drugs, diabetes mellitus (DM) remains one of the world's most prevalent chronic diseases and is a global burden. Hyperglycaemia, a characteristic of type 2 diabetes mellitus (T2DM), substantially leads to the generation of reactive oxygen species (ROS), triggering oxidative stress as well as numerous cellular and molecular modifications such as mitochondrial dysfunction affecting normal physiological functions in the body. In mitochondrial-mediated processes, oxidative pathways play an important role, although the responsible molecular mechanisms remain unclear. The impaired mitochondrial function is evidenced by insulin insensitivity in various cell types. In addition, the roles of master antioxidant pathway nuclear factor erythroid 2-related factor 2 (Nrf2)/Kelch-like ECH-associated protein 1 (Keap1)/antioxidant response elements (ARE) are being deciphered to explain various molecular pathways involved in diabetes. Dietary factors are known to influence diabetes, and many natural dietary factors have been studied to improve diabetes. Honey is primarily rich in carbohydrates and is also abundant in flavonoids and phenolic acids; thus, it is a promising therapeutic antioxidant for various disorders. Various research has indicated that honey has strong wound-healing properties and has antibacterial, anti-inflammatory, antifungal, and antiviral effects; thus, it is a promising antidiabetic agent. The potential antidiabetic mechanisms of honey were proposed based on its major constituents. This review focuses on the various prospects of using honey as an antidiabetic agent and the potential insights.
Collapse
|
38
|
Fakhlaei R, Selamat J, Khatib A, Razis AFA, Sukor R, Ahmad S, Babadi AA. The Toxic Impact of Honey Adulteration: A Review. Foods 2020; 9:E1538. [PMID: 33114468 PMCID: PMC7692231 DOI: 10.3390/foods9111538] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/10/2020] [Accepted: 09/11/2020] [Indexed: 12/11/2022] Open
Abstract
Honey is characterized as a natural and raw foodstuff that can be consumed not only as a sweetener but also as medicine due to its therapeutic impact on human health. It is prone to adulterants caused by humans that manipulate the quality of honey. Although honey consumption has remarkably increased in the last few years all around the world, the safety of honey is not assessed and monitored regularly. Since the number of consumers of honey adulteration have increased in recent years, their trust and interest in this valuable product has decreased. Honey adulterants are any substances that are added to the pure honey. In this regard, this paper provides a comprehensive and critical review of the different types of adulteration, common sugar adulterants and detection methods, and draws a clear perspective toward the impact of honey adulteration on human health. Adulteration increases the consumer's blood sugar, which can cause diabetes, abdominal weight gain, and obesity, raise the level of blood lipids and can cause high blood pressure. The most common organ affected by honey adulterants is the liver followed by the kidney, heart, and brain, as shown in several in vivo research designs.
Collapse
Affiliation(s)
- Rafieh Fakhlaei
- Food Safety and Food Integrity (FOSFI), Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | - Jinap Selamat
- Food Safety and Food Integrity (FOSFI), Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (A.F.A.R.); (R.S.)
| | - Alfi Khatib
- Pharmacognosy Research Group, Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan 25200, Pahang Darul Makmur, Malaysia;
- Faculty of Pharmacy, Airlangga University, Surabaya 60155, Indonesia
| | - Ahmad Faizal Abdull Razis
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (A.F.A.R.); (R.S.)
- Natural Medicines and Products Research Laboratory, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Rashidah Sukor
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (A.F.A.R.); (R.S.)
| | - Syahida Ahmad
- Department of Biochemistry, Faculty of Biotechnology & Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | - Arman Amani Babadi
- School of Energy and Power Engineering, Jiangsu University, Zhenjiang 212013, China;
| |
Collapse
|
39
|
El Sayed SM, Aboonq MS, El Rashedy AG, Aljehani YT, Abou El-Magd RM, Okashah AM, El-Anzi ME, Alharbi MB, El-Tahlawi R, Nabo MMH, Yousef RS, Elshazley M, Abu-Elnaga M, Mahmoud HS, El-Alaf H, Abdelrahman AI, Abdel-Gawad AR, Soliman TM. Promising preventive and therapeutic effects of TaibUVID nutritional supplements for COVID-19 pandemic: towards better public prophylaxis and treatment (A retrospective study). AMERICAN JOURNAL OF BLOOD RESEARCH 2020; 10:266-282. [PMID: 33224571 PMCID: PMC7675122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 08/23/2020] [Indexed: 06/11/2023]
Abstract
Adjuvant nutritional treatment is a commonly overlooked topic when treating lethal viral diseases as COVID-19 pandemic. We recently introduced TaibUVID nutritional supplements (nigella sativa, chamomile and natural honey) as adjuvants for COVID-19 contacts, patients and public prophylaxis. TaibUVID Forte adds costus, senna and fennel to TaibUVID. Meta-analyses and systematic reviews confirmed evidence-based therapeutic benefits of TaibUVID components in treating many human diseases e.g. diabetes mellitus and hypertension, common co-morbidities in COVID-19 patients. Double-blind clinical trials for treating COVID-19 patients with TaibUVID supplements were inapplicable. In this retrospective study in Egypt, COVID-19 patients and contacts knew TaibUVID via social media and voluntarily used them. 65% of COVID-19 patients (n = 13) received both pharmacological treatments and adjuvant TaibUVID nutritional supplements. 35% (n = 7) received TaibUVID only. Lymphopenia rapidly improved to lymphocytosis upon regular TaibUVID intake. TaibUVID nutritional supplements helped COVID-19 contacts' prophylaxis. 70% of COVID-19 contacts (n = 14) (on regular TaibUVID intake) did not get SARS-COV2 infection. 30% (n = 6) were not using TaibUVID regularly and got mild flu-like symptoms and upon using both TaibUVID and pharmacological treatments, all improved and got negative nasopharyngeal swabs PCR. COVID-19 contacts were mainly physicians (40%, n = 8) (dealing with COVID-19 patients daily) and members of physicians' families (45%). Main presentations reported by COVID-19 patients (n = 20) were cough (90%), fever (55%), anosmia (45%), taste loss (45%), sore throat (45%), respiratory difficulty (45%) and malaise (35%). TaibUVID inhalation therapy (nigella sativa/anthemis/costus solution nebulization) was used by 65% of COVID-19 patients (n = 13) and alleviated respiratory manifestations e.g. cough and respiratory difficulty and was life-saving in some cases. 70% of COVID-19 patients (n = 14) improved in 1-4 days, 25% (n = 5) improved in 5-10 days while 5% improved in more than 10 days. TaibUVID nutritional supplements were tolerable and significantly satisfactory (P<0.01). 81.25% of COVID-19 patients (n = 13) did not report side effects. 18.25% (n = 3) reported mild diarrhea, sweating and hyperglycemia (not confirmed to be due to TaibUVID supplements). 31.25% of patients (n = 5) were satisfied by 100% with TaibUVID nutritional supplements. 37.5% (n = 6) of patients were satisfied by 75%. In conclusion, TaibUVID nutritional supplements are recommended for public prophylaxis (to decrease emergence of new cases) and treatment in COVID-19 pandemic. Clinical trials and further investigations are recommended.
Collapse
Affiliation(s)
- Salah Mohamed El Sayed
- Department of Clinical Biochemistry and Molecular Medicine, Taibah Faculty of Medicine, Taibah UniversityAl-Madinah Al-Munawwarah, Saudi Arabia
- Department of Medical Biochemistry, Sohag Faculty of Medicine, Sohag UniversityEgypt
- Prophetic Medicine and Integrative Medicine Course and Research, Taibah Faculty of Medicine, Taibah UniversityAl-Madinah Al-Munawwarah, Saudi Arabia
| | - Moutasem Salih Aboonq
- Department of Medical Physiology, Taibah Faculty of Medicine, Taibah UniversityAl-Madinah Al-Munawwarah, Saudi Arabia
| | - Amr Gamal El Rashedy
- Department of Gastroenterology and Infectious Diseases, Sohag Fever HospitalSohag, Egypt
| | - Yasmeen Talal Aljehani
- Director of The Research and Studies Department of Health Affairs in Al-Madinah Region, Consultant Family Medicine and Trainer in Family Medicine Program for Postgraduate StudiesAl-Madinah Al-Munawwarah, Saudi Arabia
| | - Rabab M Abou El-Magd
- Department of Psychiatry, Faculty of Medicine and Dentistry, University of AlbertaEdmonton, Alberta, Canada
- Genetic Engineering and Biotechnology Research Institute, City for Scientific Research and Technology ApplicationsAlexandria, Egypt
| | - Ahmed M Okashah
- Academic Affairs Director and Consultant Clinical Immunologist, Al-Madinah Directorate of Health, Al-Madinah Al-Munawwarah, Ministry of HealthSaudi Arabia
| | - Mariam E El-Anzi
- Diabetic Center in King Fahd Hospital & Sayed Al-Shohada Primary Health Care CenterAl-Madinah Al-Munawwarah, Saudi Arabia
| | - Mansour Barakah Alharbi
- Head of Training and Academic Affairs and Designated Institutional Official (DIO), King Fahad Hospital, Al-Madinah and Leader of Training and Academic Affairs TaskforceAl-Madinah Al-Munawwarah, Saudi Arabia
| | - Rehab El-Tahlawi
- Department of Microbiology, College of Medicine, Taibah UniversitySaudi Arabia
- Department of Microbiology, Faculty of Medicine, Zagazig UniversityEgypt
| | - Manal Mohamed Helmy Nabo
- Division of Pediatric Cardiology, Pediatrics Department, Maternity and Children HospitalHail, Saudi Arabia
- Division of Pediatric Cardiology, Pediatrics Department, Sohag Teaching HospitalSohag, Egypt
| | - Reda S Yousef
- Department of Medical Biochemistry, Sohag Faculty of Medicine, Sohag UniversityEgypt
| | - Momen Elshazley
- Department of Medicine, Taibah Faculty of Medicine, Taibah UniversityAl-Madinah Al-Munawwarah, Saudi Arabia
- Department of Occupational Diseases and Toxigenomics, Sohag Faculty of Medicine, Sohag UniversityEgypt
| | - Mostafa Abu-Elnaga
- Department of Anatomy, College of Medicine, King Abdul-Aziz UniversityJeddah, Saudi Arabia
- Department of Anatomy, Faculty of Medicine, Al-Azhar UniversityEgypt
| | - Hany Salah Mahmoud
- Center of Scientific Foundation for Experimental Studies and ResearchIsmailia, Egypt
| | - Hassan El-Alaf
- Department of Physiology, Faculty of Medicine, Sohag UniversityEgypt
| | | | | | - Tamer M Soliman
- Department of Clinical Pathology, Sohag Faculty of Medicine, Sohag UniversityEgypt
| |
Collapse
|
40
|
Setijadi CH, Felix JN, Ellis HC, Alumbro JSS, Bello G, Dumancas GG. Development of a Facile and Convenient Method for Sugar Determination in Low Moisture Confectioneries and Honeys Using Fourier Transform Infrared Attenuated Total Reflectance Spectroscopy and Chemometrics. ANAL LETT 2020. [DOI: 10.1080/00032719.2020.1712605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Catherine H. Setijadi
- Department of Mathematics and Physical Sciences, Louisiana State University - Alexandria, Alexandria, LA, USA
| | - Jonathan N. Felix
- Department of Mathematics and Physical Sciences, Louisiana State University - Alexandria, Alexandria, LA, USA
| | - Helena C. Ellis
- Department of Mathematics and Physical Sciences, Louisiana State University - Alexandria, Alexandria, LA, USA
| | | | - Ghalib Bello
- MRC London Institute of Medical Sciences, London, United Kingdom
| | - Gerard G. Dumancas
- Department of Mathematics and Physical Sciences, Louisiana State University - Alexandria, Alexandria, LA, USA
- Department of Chemistry, University of the Philippines Visayas, Iloilo, Philippines
| |
Collapse
|
41
|
Terzo S, Mulè F, Amato A. Honey and obesity-related dysfunctions: a summary on health benefits. J Nutr Biochem 2020; 82:108401. [PMID: 32454412 DOI: 10.1016/j.jnutbio.2020.108401] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/16/2020] [Accepted: 03/30/2020] [Indexed: 12/12/2022]
Abstract
Honey is a natural product, containing flavonoids and phenolic acids, appreciated for its therapeutic abilities since ancient times. Although the bioactive potential is linked to the composition, that is variable depending on mainly the botanical origin, honey has antioxidant and anti-inflammatory properties. Therefore, honey, administered alone or in combination with conventional therapy, might result useful in the management of chronic diseases that are commonly associated with oxidative stress and inflammation state. Obesity is a metabolic disorder characterized by visceral adiposity. The adipose tissue becomes hypertrophic and undergoes hyperplasia, resulting in a hypoxic environment, oxidative stress and production of pro-inflammatory mediators that can be responsible for other disorders, such as metabolic syndrome and neurodegeneration. Experimental evidence from animals have shown that honey improves glycemic control and lipid profile with consequent protection from endothelial dysfunction and neurodegeneration. The purpose of the present review is to summarize the current literature concerning the beneficial effects of honey in the management of the obesity-related dysfunctions, including neurodegeneration. Based on the key constituents of honey, the paper also highlights polyphenols to be potentially responsible for the health benefits of honey. Further well-designed and controlled studies are necessary to validate these benefits in humans.
Collapse
Affiliation(s)
- Simona Terzo
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy; Department of Neuroscience and cell biology, University of Palermo, Palermo, Italy.
| | - Flavia Mulè
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy.
| | - Antonella Amato
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy.
| |
Collapse
|
42
|
Zhang S, Kumari S, Gu Y, Li X, Meng G, Zhang Q, Liu L, Wu H, Wang Y, Zhang T, Wang X, Cao X, Li H, Liu Y, Wang X, Sun S, Wang X, Zhou M, Jia Q, Song K, Sun Z, Niu K. Honey consumption is inversely associated with prediabetes among Chinese adults: results from the Tianjin Chronic Low-Grade Systemic Inflammation and Health (TCLSIH) Cohort Study. Br J Nutr 2020; 124:1-8. [PMID: 32122417 DOI: 10.1017/s0007114520000835] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Evidence has suggested that honey intake has a beneficial impact on glycaemic control in patients with type 2 diabetes. Whether these findings apply to adults with prediabetes is yet unclear. The aim of the present study was to examine whether honey intake is associated with a lower prevalence of prediabetes. A cross-sectional study was performed in 18 281 participants (mean age 39·6 (sd 11·1) years; men, 51·5 %). Dietary intake was assessed through a validated 100-item FFQ. Prediabetes was defined according to the American Diabetes Association criteria: impaired fasting glucose, impaired glucose tolerance or raised glycosylated Hb. Multivariable logistic regression models were used to estimate the association between honey consumption and prediabetes. As compared with those who almost never consumed honey, the multivariable OR of prediabetes were 0·94 (95 % CI 0·86, 1·02) for ≤3 times/week, 0·77 (95 % CI 0·63, 0·94) for 4-6 times/week and 0·85 (95 % CI 0·73, 0·99) for ≥1 time/d (Pfor trend < 0·01). These associations did not differ substantially in sensitivity analysis. Higher honey consumption was associated with a decreased prevalence of prediabetes. More large prospective cohort studies are needed to investigate this association.
Collapse
Affiliation(s)
- Shunming Zhang
- Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin300070, People's Republic of China
| | - Shubham Kumari
- Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin300070, People's Republic of China
| | - Yeqing Gu
- Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin300070, People's Republic of China
| | - Xiaoyue Li
- Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin300070, People's Republic of China
| | - Ge Meng
- Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin300070, People's Republic of China
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Tianjin Medical University, Tianjin300070, People's Republic of China
| | - Qing Zhang
- Health Management Centre, Tianjin Medical University General Hospital, Tianjin300052, People's Republic of China
| | - Li Liu
- Health Management Centre, Tianjin Medical University General Hospital, Tianjin300052, People's Republic of China
| | - Hongmei Wu
- Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin300070, People's Republic of China
| | - Yawen Wang
- Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin300070, People's Republic of China
| | - Tingjing Zhang
- Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin300070, People's Republic of China
| | - Xuena Wang
- Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin300070, People's Republic of China
| | - Xingqi Cao
- Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin300070, People's Republic of China
| | - Huiping Li
- Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin300070, People's Republic of China
| | - Yunyun Liu
- Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin300070, People's Republic of China
| | - Xiaohe Wang
- Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin300070, People's Republic of China
| | - Shaomei Sun
- Health Management Centre, Tianjin Medical University General Hospital, Tianjin300052, People's Republic of China
| | - Xing Wang
- Health Management Centre, Tianjin Medical University General Hospital, Tianjin300052, People's Republic of China
| | - Ming Zhou
- Health Management Centre, Tianjin Medical University General Hospital, Tianjin300052, People's Republic of China
| | - Qiyu Jia
- Health Management Centre, Tianjin Medical University General Hospital, Tianjin300052, People's Republic of China
| | - Kun Song
- Health Management Centre, Tianjin Medical University General Hospital, Tianjin300052, People's Republic of China
| | - Zhong Sun
- Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin300070, People's Republic of China
| | - Kaijun Niu
- Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin300070, People's Republic of China
- Health Management Centre, Tianjin Medical University General Hospital, Tianjin300052, People's Republic of China
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin300070, People's Republic of China
- Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin300070, People's Republic of China
| |
Collapse
|
43
|
|
44
|
Mohd Sairazi NS, Sirajudeen KNS. Natural Products and Their Bioactive Compounds: Neuroprotective Potentials against Neurodegenerative Diseases. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2020; 2020:6565396. [PMID: 32148547 PMCID: PMC7042511 DOI: 10.1155/2020/6565396] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 12/09/2019] [Accepted: 01/06/2020] [Indexed: 02/06/2023]
Abstract
In recent years, natural products, which originate from plants, animals, and fungi, together with their bioactive compounds have been intensively explored and studied for their therapeutic potentials for various diseases such as cardiovascular, diabetes, hypertension, reproductive, cancer, and neurodegenerative diseases. Neurodegenerative diseases, including Alzheimer's disease, Huntington's disease, Parkinson's disease, and amyotrophic lateral sclerosis are characterized by the progressive dysfunction and loss of neuronal structure and function that resulted in the neuronal cell death. Since the multifactorial pathological mechanisms are associated with neurodegeneration, targeting multiple mechanisms of actions and neuroprotection approach, which involves preventing cell death and restoring the function to damaged neurons, could be promising strategies for the prevention and therapeutic of neurodegenerative diseases. Natural products have emerged as potential neuroprotective agents for the treatment of neurodegenerative diseases. This review focused on the therapeutic potential of natural products and their bioactive compounds to exert a neuroprotective effect on the pathologies of neurodegenerative diseases.
Collapse
Affiliation(s)
- Nur Shafika Mohd Sairazi
- Faculty of Medicine, Universiti Sultan Zainal Abidin (UniSZA), Medical Campus, Jalan Sultan Mahmud, 20400 Kuala Terengganu, Terengganu, Malaysia
| | - K. N. S. Sirajudeen
- Department of Chemical Pathology, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
- Department of Basic Medical Sciences, Kulliyyah of Medicine, International Islamic University Malaysia, Bandar Indera Mahkota, 25200 Kuantan, Pahang, Malaysia
| |
Collapse
|
45
|
The Effect of Adding the Leaves and Fruits of Morus alba to Rape Honey on Its Antioxidant Properties, Polyphenolic Profile, and Amylase Activity. Molecules 2019; 25:molecules25010084. [PMID: 31878340 PMCID: PMC6982941 DOI: 10.3390/molecules25010084] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 12/20/2019] [Accepted: 12/21/2019] [Indexed: 01/20/2023] Open
Abstract
Two various species of mulberry (Morus sp.) were selected to enrich rape honey with dried leaves or lyophilized fruits (4% w/v). Finally, fruits and leaves of the ‘Ukraińska’ clone were introduced into the honey during creaming in concentrations from 1 to 4% w/v. The total phenolic content, antioxidant activity, anthocyanins content, and polyphenolic profile were tested in plant extracts and enriched honeys. Moreover, α-glucosidase, β-galactosidase, and diastase activities were investigated in honeys. For mulberry extracts, chlorogenic acid isomers and rutin were considered main antioxidant compounds. The antioxidant activity of honey enriched with mulberry leaves increased even more than 50 times, due to introducing numerous phenolic acids and flavonoid glycosides. A significant decrease in the diastase activity in honey depending on the content of added mulberry leaves (almost 50% decrease in the case of 4% addition) was found, suggesting the inhibitory effect of honey with mulberry leaves against carbohydrate hydrolyzing enzymes.
Collapse
|
46
|
Sahlan M, Rahmawati O, Pratami DK, Raffiudin R, Mukti RR, Hermasyah H. The Effects of stingless bee ( Tetragonula biroi) honey on streptozotocin-induced diabetes mellitus in rats. Saudi J Biol Sci 2019; 27:2025-2030. [PMID: 32714027 PMCID: PMC7376182 DOI: 10.1016/j.sjbs.2019.11.039] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 11/12/2019] [Accepted: 11/26/2019] [Indexed: 02/07/2023] Open
Abstract
Diabetes mellitus (DM) is a metabolic disease characterised by chronic hyperglycaemia with impaired carbohydrate, fat and protein metabolism caused by defects in insulin secretion or action. Based on our previous research, stingless bee honey (SLBH) from Tetragonula biroi and T. laeviceps can inhibit alpha-glucosidase activities. Therefore, the aim of the present study was to determine the effects of daily oral administration of SLBH on body weight (BW) and fasting blood glucose (FBG) levels of male rats with streptozotocin (STZ)-induced DM. Thirty-six male Sprague Dawley rats were divided into six groups of six rats each. One group of normal non-diabetic rats served as a positive control. The diabetic groups were intraperitoneally (i.p.) injected with STZ (50 mg/kg BW) for induction of DM and divided into five equal subgroups of six animals each: an untreated group as a negative control; a group treated with 0.6 mg/kg BW of glibenclamide as a positive control and three SLBN treatment groups that had daily oral administration of 0.5, 1.0 or 2.0 g/kg BW, respectively, for 35 days. The results showed that SLBH significantly reduced loss of BW in diabetic rats. FBG levels in diabetic rat blood, collected from the tail, were measured using Accu-Chek test strips. The FBG levels in diabetic rats that have oral administered intake with glibenclamide and SLBH were stable. There were no changes in serum FBG levels in SLBH-treated diabetic rats for 35 days. Pancreatic histopathology results from all groups showed no abnormalities or tissue damage in either diabetic or non-diabetic rats. The results of this study show that administration of SLBH reduced BW loss or improved BW of rats with STZ-induced DM. Meanwhile, the reduction in loss of BW that occurred in diabetic rats after 35 days of SLBH administration was the result of reduced formation of fats and proteins, which are broken down into energy. Further research is needed to determine the antidiabetic effects of honey from other stingless honeybee species.
Collapse
Affiliation(s)
- Muhamad Sahlan
- Department of Chemical Engineering, Faculty of Engineering, Universitas Indonesia, Depok, West Java 16425, Indonesia.,Research Center for Biomedical Engineering, Faculty of Engineering, Universitas Indonesia, Depok, West Java 16425, Indonesia
| | - Oktavia Rahmawati
- Department of Chemical Engineering, Faculty of Engineering, Universitas Indonesia, Depok, West Java 16425, Indonesia
| | - Diah Kartika Pratami
- Lab of Pharmacognosy and Phytochemistry, Faculty of Pharmacy, University of Pancasila, South Jakarta, DKI Jakarta 12640, Indonesia
| | - Rika Raffiudin
- Department of Biology, Faculty of Mathematic & Natural Sciences, IPB University (Bogor Agricultural University), Bogor 16880, West Java, Indonesia
| | - Rino Rakhmata Mukti
- Division of Inorganic and Physical Chemistry, and Research Center for Nanosciences and Nanotechnology, Institut Teknologi Bandung , Jl. Ganesha No. 10, Bandung 40132, Indonesia
| | - Heri Hermasyah
- Department of Chemical Engineering, Faculty of Engineering, Universitas Indonesia, Depok, West Java 16425, Indonesia
| |
Collapse
|
47
|
Mădaş NM, Mărghitaş LA, Dezmirean DS, Bonta V, Bobiş O, Fauconnier ML, Francis F, Haubruge E, Nguyen KB. Volatile Profile and Physico-Chemical Analysis of Acacia Honey for Geographical Origin and Nutritional Value Determination. Foods 2019; 8:E445. [PMID: 31569748 PMCID: PMC6836064 DOI: 10.3390/foods8100445] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 09/20/2019] [Accepted: 09/24/2019] [Indexed: 11/17/2022] Open
Abstract
Honey composition and color depend greatly on the botanical and geographical origin. Water content, water activity and color of 50 declared acacia samples, collected from three different geographical zones of Romania, together with chromatographic determination of sugar spectrum were analyzed. A number of 79 volatile compounds from the classes of: Alcohols, aldehydes, esters, ketones, sulphur compounds, aliphatic hydrocarbons, nitrogen compounds, carboxylic acids, aromatic acids and ethers were identified by solid-phase micro-extraction and gas-chromatography mass spectrometry. The overall volatile profile and sugar spectrum of the investigated honey samples allow the differentiation of geographical origin for the acacia honey samples subjected to analysis. The statistical models of the chromatic determination, physicochemical parameters and volatile profile was optimal to characterize the honey samples and group them into three geographical origins, even they belong to the same botanical origin.
Collapse
Affiliation(s)
- Niculina M Mădaş
- Department of Apiculture and Sericulture, University of Agricultural Sciences and Veterinary Medicine, Mănăştur st, 3-5, 400372 Cluj-Napoca, Romania.
- Department of Functional and Evolutionary Entomology, University of Liège, Gembloux Agro-Bio Tech, Passage des Déportés, 2, 5030 Gembloux, Belgium.
| | - Liviu A Mărghitaş
- Department of Apiculture and Sericulture, University of Agricultural Sciences and Veterinary Medicine, Mănăştur st, 3-5, 400372 Cluj-Napoca, Romania.
| | - Daniel S Dezmirean
- Department of Apiculture and Sericulture, University of Agricultural Sciences and Veterinary Medicine, Mănăştur st, 3-5, 400372 Cluj-Napoca, Romania.
| | - Victorita Bonta
- Life Science Institute, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Manastur st. 3-5, 400372 Cluj-Napoca, Romania.
| | - Otilia Bobiş
- Life Science Institute, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Manastur st. 3-5, 400372 Cluj-Napoca, Romania.
| | - Marie-Laure Fauconnier
- Laboratory of Chemistry of Natural Molecules, University of Liège, Gembloux Agro-Bio Tech, Passage des Déportés, 2, 5030 Gembloux, Belgium.
| | - Frédéric Francis
- Department of Functional and Evolutionary Entomology, University of Liège, Gembloux Agro-Bio Tech, Passage des Déportés, 2, 5030 Gembloux, Belgium.
| | - Eric Haubruge
- Department of Functional and Evolutionary Entomology, University of Liège, Gembloux Agro-Bio Tech, Passage des Déportés, 2, 5030 Gembloux, Belgium.
| | - Kim B Nguyen
- Department of Functional and Evolutionary Entomology, University of Liège, Gembloux Agro-Bio Tech, Passage des Déportés, 2, 5030 Gembloux, Belgium.
| |
Collapse
|
48
|
Mohammadimanesh A, Vahidiniya AA, Doaei S, Gholamalizadeh M, Shahvegharasl Z, Salehi I, Fayyaz N, Khosravi HM. The effect of different types of honey on the lipid profile of streptozotocin-induced diabetic rats. Arch Med Sci Atheroscler Dis 2019; 4:e113-e118. [PMID: 31211278 PMCID: PMC6554755 DOI: 10.5114/amsad.2019.85409] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 12/11/2018] [Indexed: 01/20/2023] Open
Abstract
INTRODUCTION The effect of honey consumption in diabetic patients has been contradictory. The aim of the present animal study was to compare the effect of different types of honey on the lipid profile in diabetic rats. MATERIAL AND METHODS Sixty-four male Wistar rats were divided into two main groups: a streptozotocin-induced diabetes mellitus (DM) group (including four subgroups) and a healthy group (including four subgroups), based on random allocation. Three subgroups of each main group were given 1 mg/kg of three different types of honey (acacia, astragalus, and artificial honey) by oral gavage for 10 weeks. The control groups were given distilled water. Blood samples were collected, and the lipid profile was measured and compared between the eight groups after the intervention. RESULTS The levels of LDL, triglycerides (TG), and total cholesterol (Tchol) in DM rats treated with astragalus honey were significantly lower and the HDL level was significantly higher compared to the other DM and healthy groups (all p-values < 0.05). LDL, TG, and Tchol levels in DM rats treated with artificial honey were significantly higher, and HDL levels were significantly lower than for other types of honey and for the control groups (all p-values < 0.05). LDL, HDL, TG, and Tchol levels in healthy rats were not significantly different between the groups (p-value > 0.05). CONCLUSIONS Different types of honey (acacia, astragalus, and artificial honey) had various effects on serum lipid profiles in diabetic rats. The results of this study indicated that the effect of honey on diabetic patients can vary widely based on its source.
Collapse
Affiliation(s)
- Ali Mohammadimanesh
- Nutrition Department, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Ali Asghar Vahidiniya
- Nutrition Department, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Saeid Doaei
- Research Centre of Health and Environment, Guilan University of Medical Sciences, Rasht, Iran
- Natural Products and Medicinal Plants Research Centre, North Khorasan University of Medical Sciences, Bojnurd, Iran
- Student Research Committee, Cancer Research Centre, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Gholamalizadeh
- Student Research Committee, Cancer Research Centre, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Shahvegharasl
- Faculty of Nutrition Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Iraj Salehi
- Nauru Sciences Research Centre, Hamedan University of medical sciences, Hamedan, Iran
| | - Nasrin Fayyaz
- Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Hassan Mozzaffari Khosravi
- Nutrition Department, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|