1
|
Shen B, Wen Y, Li S, Zhou Y, Chen J, Yang J, Zhao C, Wang J. Paeonol ameliorates hyperlipidemia and autophagy in mice by regulating Nrf2 and AMPK/mTOR pathways. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 132:155839. [PMID: 38943694 DOI: 10.1016/j.phymed.2024.155839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 05/31/2024] [Accepted: 06/20/2024] [Indexed: 07/01/2024]
Abstract
BACKGROUND Hyperlipidemia, inadequate diet, and excessive medication increase the risk of cardiovascular disease. Paeonl (Pae), a phenolic compound found in Peony and Angelica dahurica, can alleviate lipid metabolism disorders and lipotoxicity. However, the molecular mechanism of Pae alleviating hyperlipidemia remains unclear and needs to be further explored. PURPOSE In this study, we explored whether Pae can prevent hyperlipidemia and investigated the molecular mechanisms. METHODS The effects of Pae (30, 45, 60mg·kg-1) on hyperlipidemia in Tyloapol-induced WT mice and Nrf2 knockout mice (Pae: 60mg·kg-1) were detected by oil red O staining, HE staining, TG, TC and other indexes. The expression levels of proinflammatory mediators, key lipid proteins and autophagy signaling pathway proteins were analyzed by enzyme-linked immunosorbent assay, western blot and immunofluorescence. The molecular mechanism of Pae alleviating hyperlipidemia was explored through molecular docking technique and in vivo and in vitro experiments. RESULTS Several studies indicated that Pae effectively improved tyloxapol (Ty)-induced lipid metabolism disorder, as evidenced by decreased triglyceride content, increased carnitine palmitoyltransferase 1 (CPT1), and Sirtuin 1 (Sirt1) protein expression. In addition, Pae ameliorated hyperlipidemia by activating the AMPK/ACC and PI3K/mTOR pathways. Interestingly, the therapeutic effect of Pae on hyperlipidemia was markedly reduced in Nrf2-/- mice. Molecular docking results indicated that Pae and Nrf2 exhibited good binding ability, suggesting that Nrf2 is a core target mediating the effects of Pae in the treatment of hyperlipidemia. Taken together, Pae alleviated hyperlipidemia in vivo and ameliorated lipid accumulation in vitro by activating AMPK/ACC and PI3K/mTOR signaling pathways via Nrf2 binding. CONCLUSION Our data suggest that paeonol can ameliorate hyperlipidemia and autophagy in mice by regulating Nrf2 and AMPK/mTOR pathways, and it has potential therapeutic value in the occurrence and development of hyperlipidemia.
Collapse
Affiliation(s)
- Bingyu Shen
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yongqiang Wen
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shengxin Li
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yi Zhou
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Junlin Chen
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jiaqi Yang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chenxu Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Jianguo Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
2
|
Weissman D, Dudek J, Sequeira V, Maack C. Fabry Disease: Cardiac Implications and Molecular Mechanisms. Curr Heart Fail Rep 2024; 21:81-100. [PMID: 38289538 PMCID: PMC10923975 DOI: 10.1007/s11897-024-00645-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/05/2024] [Indexed: 03/09/2024]
Abstract
PURPOSE OF REVIEW This review explores the interplay among metabolic dysfunction, oxidative stress, inflammation, and fibrosis in Fabry disease, focusing on their potential implications for cardiac involvement. We aim to discuss the biochemical processes that operate in parallel to sphingolipid accumulation and contribute to disease pathogenesis, emphasizing the importance of a comprehensive understanding of these processes. RECENT FINDINGS Beyond sphingolipid accumulation, emerging studies have revealed that mitochondrial dysfunction, oxidative stress, and chronic inflammation could be significant contributors to Fabry disease and cardiac involvement. These factors promote cardiac remodeling and fibrosis and may predispose Fabry patients to conduction disturbances, ventricular arrhythmias, and heart failure. While current treatments, such as enzyme replacement therapy and pharmacological chaperones, address disease progression and symptoms, their effectiveness is limited. Our review uncovers the potential relationships among metabolic disturbances, oxidative stress, inflammation, and fibrosis in Fabry disease-related cardiac complications. Current findings suggest that beyond sphingolipid accumulation, other mechanisms may significantly contribute to disease pathogenesis. This prompts the exploration of innovative therapeutic strategies and underscores the importance of a holistic approach to understanding and managing Fabry disease.
Collapse
Affiliation(s)
- David Weissman
- Department of Translational Research, Comprehensive Heart Failure Center, University Hospital Würzburg, Am Schwarzenberg 15, Haus A15, 97078, Würzburg, Germany
| | - Jan Dudek
- Department of Translational Research, Comprehensive Heart Failure Center, University Hospital Würzburg, Am Schwarzenberg 15, Haus A15, 97078, Würzburg, Germany
| | - Vasco Sequeira
- Department of Translational Research, Comprehensive Heart Failure Center, University Hospital Würzburg, Am Schwarzenberg 15, Haus A15, 97078, Würzburg, Germany
| | - Christoph Maack
- Department of Translational Research, Comprehensive Heart Failure Center, University Hospital Würzburg, Am Schwarzenberg 15, Haus A15, 97078, Würzburg, Germany.
| |
Collapse
|
3
|
Abd El-Hakam FEZ, Abo Laban G, Badr El-Din S, Abd El-Hamid H, Farouk MH. Apitherapy combination improvement of blood pressure, cardiovascular protection, and antioxidant and anti-inflammatory responses in dexamethasone model hypertensive rats. Sci Rep 2022; 12:20765. [PMID: 36456799 PMCID: PMC9714403 DOI: 10.1038/s41598-022-24727-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 11/18/2022] [Indexed: 12/03/2022] Open
Abstract
Hypertension-induced ventricular and vascular remodeling causes myocardial infarction, heart failure, and sudden death. Most available pharmaceutical products used to treat hypertension lead to adverse effects on human health. Limited data is available on apitherapy (bee products) combinations for treatment of hypertension. This study aims to evaluate the antihypertensive effects of combinations of natural apitherapy compounds used in the medical sector to treat a variety of diseases. Rats were assigned into six groups consisting of one control group and five hypertensive groups where hypertension (blood pressure > 140/90) was induced with dexamethasone. One of these groups was used as a hypertension model, while the remaining four hypertensive groups were treated with a propolis, royal jelly, and bee venom combination (PRV) at daily oral doses of 0.5, 1.0, and 2.0 mg/kg, and with losartan 10 mg/kg. The PRV combination at all doses decreased arterial blood pressure below the suboptimal value (p < 0.001), and PRV combination treatment improved dexamethasone-induced-ECG changes. The same treatment decreased angiotensin-II, endothelin-1, and tumor growth factor β serum levels in hypertensive rats. Additionally, PRV combination improved histopathological structure, and decreased serum levels of NF-kB and oxidative stress biomarkers. We concluded that PRV combination therapy may be used as a potential treatment for a variety of cardiovascular diseases.
Collapse
Affiliation(s)
| | - Gomaa Abo Laban
- Plant Protection Department, Faculty of Agriculture, Al-Azhar University, Nasr City, 11884, Cairo, Egypt
| | - Sahar Badr El-Din
- Pharmacology Department, Faculty of Medicine for Girls, Al-Azhar University, Nasr City, 11884, Cairo, Egypt
| | - Hala Abd El-Hamid
- Pathology Department, Faculty of Medicine for Girls, Al-Azhar University, Nasr City, 11884, Cairo, Egypt
| | - Mohammed Hamdy Farouk
- Animal Production Department, Faculty of Agriculture, Al-Azhar University, Nasr City, 11884, Cairo, Egypt.
| |
Collapse
|
4
|
Ghosh S, Al-Sharify ZT, Maleka MF, Onyeaka H, Maleke M, Maolloum A, Godoy L, Meskini M, Rami MR, Ahmadi S, Al-Najjar SZ, Al-Sharify NT, Ahmed SM, Dehghani MH. Propolis efficacy on SARS-COV viruses: a review on antimicrobial activities and molecular simulations. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:58628-58647. [PMID: 35794320 PMCID: PMC9258455 DOI: 10.1007/s11356-022-21652-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
This current study review provides a brief review of a natural bee product known as propolis and its relevance toward combating SARS-CoV viruses. Propolis has been utilized in medicinal products for centuries due to its excellent biological properties. These include anti-oxidant, immunomodulatory, anti-inflammatory, anti-viral, anti-fungal, and bactericidal activities. Furthermore, studies on molecular simulations show that flavonoids in propolis may reduce viral replication. While further research is needed to validate this theory, it has been observed that COVID-19 patients receiving propolis show earlier viral clearance, enhanced symptom recovery, quicker discharge from hospitals, and a reduced mortality rate relative to other patients. As a result, it appears that propolis could probably be useful in the treatment of SARS-CoV-2-infected patients. Therefore, this review sought to explore the natural properties of propolis and further evaluated past studies that investigated propolis as an alternative product for the treatment of COVID-19 symptoms. In addition, the review also highlights the possible mode of propolis action as well as molecular simulations of propolis compounds that may interact with the SARS-CoV-2 virus. The activity of propolis compounds in decreasing the impact of COVID-19-related comorbidities, the possible roles of such compounds as COVID-19 vaccine adjuvants, and the use of nutraceuticals in COVID-19 treatment, instead of pharmaceuticals, has also been discussed.
Collapse
Affiliation(s)
- Soumya Ghosh
- Department of Genetics, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, 9301, South Africa
| | - Zainab T Al-Sharify
- Department of Environmental Engineering, College of Engineering, Mustansiriyah University, Bab-al-Mu'adhem, P.O. Box 14150, Baghdad, Iraq
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Mathabatha Frank Maleka
- Department of Genetics, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, 9301, South Africa
| | - Helen Onyeaka
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Maleke Maleke
- Department of Life Science, Faculty of Health and Environmental Science, Central University of Technology, Bloemfontein, 9301, South Africa
| | - Alhaji Maolloum
- Department of Physics, Faculty of Science, University of Maroua, PO BOX 46, Maroua, Cameroon
- Department of Chemistry, University of the Free State, PO BOX 339, Bloemfontein, 9300, South Africa
| | - Liliana Godoy
- Department of Fruit and Oenology, Faculty of Agronomy and Forestry, Pontifical Catholic University of Chile, Santiago, Chile
| | - Maryam Meskini
- Microbiology Research Center, Pasteur Institute of Iran, Teheran, Iran
- Mycobacteriology & Pulmonary Research Department, Pasteur Institute of Iran, Teheran, Iran
| | - Mina Rezghi Rami
- Department of Chemistry, K.N. Toosi University of Technology, P.O. Box 15875-4416, Tehran, Iran
| | - Shabnam Ahmadi
- Department of Environmental Health Engineering, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Shahad Z Al-Najjar
- Chemical Engineering Department, College of Engineering, Al-Nahrain University, Baghdad, Iraq
| | - Noor T Al-Sharify
- Medical Instrumentation Engineering Department, Al-Esraa University College, Baghdad, Iraq
| | - Sura M Ahmed
- Department of Electrical and Electronic Engineering, College of Engineering, Universiti Tenaga Nasional, Kajang, Malaysia
| | - Mohammad Hadi Dehghani
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
- Center for Solid Waste Research, Institute for Environmental Research, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Flavonoid Extract from Propolis Provides Cardioprotection following Myocardial Infarction by Activating PPAR-γ. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:1333545. [PMID: 35928246 PMCID: PMC9345730 DOI: 10.1155/2022/1333545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 05/26/2022] [Accepted: 06/07/2022] [Indexed: 12/03/2022]
Abstract
We have previously reported that flavonoid extract from propolis (FP) can improve cardiac function in rats following myocardial infarction (MI). However, the mechanisms responsible for the cardioprotective effects of FP have not been fully elucidated. In the current study, we explored whether FP can reduce inflammatory cytokines and attenuate sympathetic nerve system activity and antiendoplasmic reticulum (ER) stress and whether the cardioprotective effects are related to peroxisome proliferator-activated receptor gamma (PPAR-γ) activation. Sprague Dawley rats were randomly divided into six groups: Sham group received the surgical procedure but no artery was ligated; MI group received ligation of the left anterior descending (LAD) branch of the coronary artery; MI + FP group received FP (12.5 mg/kg/d, intragastrically) seven days prior to LAD ligation; FP group (Sham group + 12.5 mg/kg/d, intragastrically); MI + FP + GW9662 group received FP prior to LAD ligation with the addition of a specific PPAR-γ inhibitor (GW9662), 1 mg/kg/d, orally); and MI + GW9662 group received the PPAR-γ inhibitor and LAD ligation. The results demonstrated that the following inflammatory markers were significantly elevated following MI as compared with expression in sham animals: IL-1β, TNF-α, CRP; markers of sympathetic activation: plasma norepinephrine, epinephrine and GAP43, nerve growth factor, thyroid hormone; and ER stress response markers GRP78 and CHOP. Notably, the above changes were attenuated by FP, and GW9662 was able to alleviate the effect of FP. In conclusion, FP induces a cardioprotective effect following myocardial infarction by activating PPAR-γ, leading to less inflammation, cardiac sympathetic activity, and ER stress.
Collapse
|
6
|
Kaya ST, Agan K, Fulden-Agan A, Agyar-Yoldas P, Ozarslan TO, Kekecoglu M, Kaya A. Protective effect of propolis on myocardial ischemia/reperfusion injury in males and ovariectomized females but not in intact females. J Food Biochem 2022; 46:e14109. [PMID: 35142377 DOI: 10.1111/jfbc.14109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 12/12/2021] [Accepted: 01/22/2022] [Indexed: 11/30/2022]
Abstract
The aim of this study is to investigate the effect of propolis, which may have estrogenic effects, on myocardial ischemia/reperfusion (mI/R) injury not only in male rats but also in intact and ovariectomized (ovx) female rats. Six groups were formed: untreated males (n = 8), treated males (n = 9), untreated intact females (n = 9), treated intact females (n = 10), untreated ovx females (n = 10), and treated ovx females (n = 8). An alcoholic extract of a single dose of propolis (200 mg/kg) was administered orally daily for 14 days. Thirty minutes of ischemia and 120 min of reperfusion were performed. Blood pressure, heart rate, arrhythmias (ventricular premature contraction [VPC], ventricular tachycardia [VT], ventricular fibrillation [VF]), and myocardial infarct size were evaluated. Total antioxidant status (TAS), total oxidant status (TOS), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and 17 beta-estradiol (E2) were measured. The untreated females showed more resistance to mI/R injury than the untreated males, as evidenced by lower duration, incidence, and score of arrhythmias, and smaller infarct size (p < .05). After ovx, this resistance disappeared. Propolis improved these values in treated males and treated ovx females (p < .05). Propolis increased TAS in treated males and decreased TOS in treated ovx females as well as elevated SOD in all treated groups (p < .05). Propolis decreased E2 level in treated intact females; however, it increased E2 level in treated ovx females (p < .05). The results revealed that propolis could protect the heart against mI/R injury in males and ovx females. PRACTICAL APPLICATIONS: It is known that the female heart has an increased sensitivity to myocardial ischemia/reperfusion (mI/R) injury due to estrogen deficiency and/or estrogen deprivation following menopause or surgical removal of the ovaries. Propolis has the potential to mimic estrogen under physiological and pathophysiological conditions, as well as its antioxidant property. The results indicated that propolis decreased myocardial infarct size, arrhythmia score, arrhythmia duration, and incidence in ovariectomized female rats and male rats. In addition, the present results demonstrated that an alcoholic extract of propolis as a natural product can effectively maintain the resistance of female heart to mI/R injury after estrogen deficiency.
Collapse
Affiliation(s)
- Salih Tunc Kaya
- Faculty of Arts and Science, Department of Biology, Duzce University, Duzce, Turkey
| | - Kagan Agan
- Coordination Unit of Healthy and Environmental, Duzce University, Duzce, Turkey
| | - Aydan Fulden-Agan
- Beekeeping Research, Development and Application Centre, Duzce University, Duzce, Turkey
| | - Pınar Agyar-Yoldas
- Coordination Unit of Healthy and Environmental, Duzce University, Duzce, Turkey
| | - Talat Ogulcan Ozarslan
- Faculty of Medicine, Department of Infectious Diseases and Clinical Microbiology, Bolu Abant Izzet Baysal University, Bolu, Turkey
| | - Meral Kekecoglu
- Faculty of Arts and Science, Department of Biology, Duzce University, Duzce, Turkey.,Beekeeping Research, Development and Application Centre, Duzce University, Duzce, Turkey
| | - Adnan Kaya
- Faculty of Medicine, Department of Internal Medicine, Cardiology Section, Duzce University, Duzce, Turkey
| |
Collapse
|
7
|
Wang X, Su J, Lin Z, Liu K, Zhuang Y. PINCH1 knockout aggravates myocardial infarction in mice via mediating the NF-κB signaling pathway. Exp Ther Med 2021; 23:62. [PMID: 34934433 PMCID: PMC8649883 DOI: 10.3892/etm.2021.10984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 10/12/2021] [Indexed: 11/09/2022] Open
Abstract
Myocardial infarction (MI), the leading cause of death among patients with cardiovascular diseases, is characterized by acute cardiac muscle injury due to severe impairment of the coronary blood supply, which may lead to cardiogenic shock and cardiac arrest. Particularly interesting new cysteine histidine rich 1 (PINCH1) protein, a key component of the integrin signaling pathway, interacts with several proteins and serves a vital role in numerous cellular processes, including cytoskeleton remodeling, cell proliferation and cell migration. To investigate the role of PINCH1 in heart injury in the present study, PINCH1 was knocked out in the myocardial tissue of mice (age, 18 weeks) to induce MI. In addition, cell viability, migration and apoptosis, as well as the expression levels of NF-κB-associated proteins were determined in murine HL1 cardiomyocytes with a conditional PINCH1 shRNA using Cell Counting Kit-8, Transwell, flow cytometry and western blot assays, respectively. Furthermore, the cardiac expansion and myocardial fibrosis in PINCH1 knockout mice was investigated in vivo by performing morphological and histological examinations. Additionally, the murine ventricular myocardial ultrastructure was evaluated using an electron microscope, and the cardiomyocyte apoptotic rate and expression levels of NF-κB-related proteins were determined using TUNEL and western blot assays, respectively. The results showed that the apoptotic rate in the in vivo PINCH1 knockdown group was significantly increased. In addition, the protein expression levels of NF-κB signaling pathway-related proteins, including NF-κB, myeloid differentiation factor 88, TNF-α and caspase-3, were significantly increased in the in vivo PINCH1 knockdown group compared with the wild-type group, but the protein expression of MMP2 and MMP9 were the opposite. Overall, the in vitro and in vivo results revealed that PINCH1 knockout in mice significantly aggravated MI via the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Xuejun Wang
- Department of Cardiology, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, P.R. China
| | - Jinwen Su
- Department of Cardiology, Shanghai Ninth People's Hospital Affiliated to Shanghai JiaoTong University School of Medicine, Shanghai 200011, P.R. China
| | - Zhikang Lin
- Department of Cardiology, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, P.R. China
| | - Kangyong Liu
- Department of Neurology, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, P.R. China
| | - Yu Zhuang
- Department of Cardiovascular Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, P.R. China
| |
Collapse
|
8
|
Guler HI, Tatar G, Yildiz O, Belduz AO, Kolayli S. Investigation of potential inhibitor properties of ethanolic propolis extracts against ACE-II receptors for COVID-19 treatment by molecular docking study. Arch Microbiol 2021; 203:3557-3564. [PMID: 33950349 PMCID: PMC8098016 DOI: 10.1007/s00203-021-02351-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 04/22/2021] [Accepted: 04/24/2021] [Indexed: 11/28/2022]
Abstract
The angiotensin-converting enzyme (ACE)-related carboxypeptidase, ACE-II, is a type I integral membrane protein of 805 amino acids that contains 1 HEXXH-E zinc binding consensus sequence. ACE-II has been implicated in the regulation of heart function and also as a functional receptor for the coronavirus that causes the severe acute respiratory syndrome (SARS). In this study, the potential of some flavonoids presents in propolis to bind to ACE-II receptors was calculated with in silico. Binding constants of ten flavonoids, caffeic acid, caffeic acid phenethyl ester, chrysin, galangin, myricetin, rutin, hesperetin, pinocembrin, luteolin and quercetin were measured using the AutoDock 4.2 molecular docking program. And also, these binding constants were compared to reference ligand of MLN-4760. The results are shown that rutin has the best inhibition potentials among the studied molecules with high binding energy − 8.04 kcal/mol, and it is followed by myricetin, quercetin, caffeic acid phenethyl ester and hesperetin. However, the reference molecule has binding energy of – 7.24 kcal/mol. In conclusion, the high potential of flavonoids in ethanolic propolis extracts to bind to ACE-II receptors indicates that this natural bee product has high potential for COVID-19 treatment, but this needs to be supported by experimental studies.
Collapse
Affiliation(s)
- Halil Ibrahim Guler
- Faculty of Science, Department of Molecular Biology and Genetics, Karadeniz Technical University, 61080, Trabzon, Turkey.
| | - Gizem Tatar
- Faculty of Medicine, Department of Biostatistics and Medical Informatics, Karadeniz Technical University, 61080, Trabzon, Turkey
| | - Oktay Yildiz
- Faculty of Pharmacy, Basic Pharmaceutical Sciences, Department of Biochemistry, Karadeniz Technical University, 61080, Trabzon, Turkey
| | - Ali Osman Belduz
- Faculty of Science, Department of Biology, Karadeniz Technical University, 61080, Trabzon, Turkey
| | - Sevgi Kolayli
- Faculty of Science, Department of Chemistry, Karadeniz Technical University, 61080, Trabzon, Turkey
| |
Collapse
|
9
|
Ali AM, Kunugi H. Propolis, Bee Honey, and Their Components Protect against Coronavirus Disease 2019 (COVID-19): A Review of In Silico, In Vitro, and Clinical Studies. Molecules 2021; 26:1232. [PMID: 33669054 PMCID: PMC7956496 DOI: 10.3390/molecules26051232] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/19/2021] [Accepted: 02/20/2021] [Indexed: 12/14/2022] Open
Abstract
Despite the virulence and high fatality of coronavirus disease 2019 (COVID-19), no specific antiviral treatment exists until the current moment. Natural agents with immune-promoting potentials such as bee products are being explored as possible treatments. Bee honey and propolis are rich in bioactive compounds that express strong antimicrobial, bactericidal, antiviral, anti-inflammatory, immunomodulatory, and antioxidant activities. This review examined the literature for the anti-COVID-19 effects of bee honey and propolis, with the aim of optimizing the use of these handy products as prophylactic or adjuvant treatments for people infected with severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2). Molecular simulations show that flavonoids in propolis and honey (e.g., rutin, naringin, caffeic acid phenyl ester, luteolin, and artepillin C) may inhibit viral spike fusion in host cells, viral-host interactions that trigger the cytokine storm, and viral replication. Similar to the potent antiviral drug remdesivir, rutin, propolis ethanolic extract, and propolis liposomes inhibited non-structural proteins of SARS-CoV-2 in vitro, and these compounds along with naringin inhibited SARS-CoV-2 infection in Vero E6 cells. Propolis extracts delivered by nanocarriers exhibit better antiviral effects against SARS-CoV-2 than ethanolic extracts. In line, hospitalized COVID-19 patients receiving green Brazilian propolis or a combination of honey and Nigella sativa exhibited earlier viral clearance, symptom recovery, discharge from the hospital as well as less mortality than counterparts receiving standard care alone. Thus, the use of bee products as an adjuvant treatment for COVID-19 may produce beneficial effects. Implications for treatment outcomes and issues to be considered in future studies are discussed.
Collapse
Affiliation(s)
- Amira Mohammed Ali
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo 187-0031, Japan;
- Department of Psychiatric Nursing and Mental Health, Faculty of Nursing, Alexandria University, Alexandria 21527, Egypt
| | - Hiroshi Kunugi
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo 187-0031, Japan;
- Department of Psychiatry, Teikyo University School of Medicine, Tokyo 173-8605, Japan
| |
Collapse
|
10
|
Elmahallawy EK, Mohamed Y, Abdo W, El-Gohary FA, Ahmed Awad Ali S, Yanai T. New Insights Into Potential Benefits of Bioactive Compounds of Bee Products on COVID-19: A Review and Assessment of Recent Research. Front Mol Biosci 2021; 7:618318. [PMID: 33628764 PMCID: PMC7897699 DOI: 10.3389/fmolb.2020.618318] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/29/2020] [Indexed: 12/24/2022] Open
Abstract
The recent emergence of COVID-19 represents one of the biggest challenges facing the world today. Despite the recent attempts to understand the epidemiological pattern and pathogenesis of the disease, detailed data about the physiology and pathology of the disease is still out of reach. Moreover, the lack of a widespread vaccine prompts an urgent call for developing a proper intervention strategy against the virus. Importantly, identification of novel molecules that target replication of the virus represents one of the promising strategies for the control this pandemic crisis. Among others, honey bee products contain numerous bioactive compounds such as propolis and several phenolic compounds that possess a wide range of therapeutic properties for combating various pathological disorders and infectious agents. The intention of the present review is to highlight the stages of SARS-CoV-2 lifecycle, the molecular mechanisms explaining the health benefits of honey bee products on COVID-19 physiology and pathology and the possible limitations. Further future research is suggested to explore more about bee natural bioactive compounds as potential candidates against SARS-CoV-2.
Collapse
Affiliation(s)
- Ehab Kotb Elmahallawy
- Department of Zoonoses, Faculty of Veterinary Medicine, Sohag University, Sohag, Egypt
| | - Yasser Mohamed
- Laboratory of Kafr El Sheikh Fever Hospital, Kafr El Sheikh Fever Hospital, Kafr El-Sheikh, Egypt
| | - Walied Abdo
- Department of Pathology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El-Sheikh, Egypt
| | - Fatma A. El-Gohary
- Department of Hygiene and Zoonoses, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Shaimaa Ahmed Awad Ali
- Department of Nursing, College of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia
- Department of Critical Care and Emergency Nursing, Faculty of Nursing, Mansoura University, Mansoura, Egypt
| | - Tokuma Yanai
- Laboratory of Wildlife and Forensic Pathology/Biomedical Science Examination and Research Center, Department of Veterinary Medicine, Faculty of Veterinary Medicine, Okayama University of Science, Okayama, Japan
| |
Collapse
|
11
|
do Prado AF, Bannwart CM, Shinkai VMT, de Souza Lima IM, Meschiari CA. Phyto-derived Products as Matrix Metalloproteinases Inhibitors in Cardiovascular Diseases. Curr Hypertens Rev 2020; 17:47-58. [PMID: 32386496 DOI: 10.2174/1573402116666200510011356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 02/22/2020] [Accepted: 03/09/2020] [Indexed: 11/22/2022]
Abstract
Matrix metalloproteinases (MMPs) are enzymes that present a metallic element in their structure. These enzymes are ubiquitously distributed and function as extracellular matrix (ECM) remodelers. MMPs play a broad role in cardiovascular biology regulating processes such as cell adhesion and function, cellular communication and differentiation, integration of mechanical force and force transmission, tissue remodeling, modulation of damaged-tissue structural integrity, cellular survival or apoptosis and regulation of inflammation-related cytokines and growth factors. MMPs inhibition and downregulation are correlated with minimization of cardiac damage, i.e., Chinese herbal medicine has shown to stabilize abdominal aorta aneurysm due to its antiinflammatory, antioxidant and MMP-2 and 9 inhibitory properties. Thus phyto-derived products rise as promising sources for novel therapies focusing on MMPs inhibition and downregulation to treat or prevent cardiovascular disorders.
Collapse
Affiliation(s)
- Alejandro F do Prado
- Structural Biology Laboratory, Biological Sciences Institute, Federal University of Para, Belem, PA, Brazil
| | - Cahy M Bannwart
- Structural Biology Laboratory, Biological Sciences Institute, Federal University of Para, Belem, PA, Brazil
| | - Victoria M T Shinkai
- Molecular and Cellular Neurochemistry Laboratory, Biological Sciences Institute, Federal University of Para, Belem, PA, Brazil
| | | | - César A Meschiari
- Health and Sports Science Center, Federal University of Acre, Rio Branco, AC, Brazil
| |
Collapse
|
12
|
Wang R, Wang M, Zhou J, Ye T, Xie X, Ni D, Ye J, Han Q, Di C, Guo L, Sun G, Sun X. Shuxuening injection protects against myocardial ischemia-reperfusion injury through reducing oxidative stress, inflammation and thrombosis. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:562. [PMID: 31807543 DOI: 10.21037/atm.2019.09.40] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Background Shuxuening injection (SXNI) has a good effect on cardiovascular and cerebrovascular diseases. Here, our study aims to investigate whether SXNI have the protective effect on myocardial ischemia-reperfusion injury (MIRI) and elucidate the mechanism of SXNI's cardiac protection. Methods In this experiment, the coronary arteries of Sprague-Dawley (SD) rats were ligated for the induction of a MIRI model. TTC staining and haematoxylin-eosin (HE), as well as troponin I (TnI), lactate dehydrogenase (LDH), aspartate aminotransferase (AST), creatine kinase (CK) and CK-MB levels, were used to detect the protective effect of SXNI. In rat cardiac tissue, superoxide dismutase, catalase, glutathione and malondialdehyde (MDA) activities and glucose-regulated protein 78 (GRP78), calreticulin (CRT), CCAAT/enhancer binding protein homologous protein (CHOP) and caspase-12 expression levels were detected. In rat serum, the levels of inflammatory factors, including high-sensitivity C-reactive protein, monocyte chemoattractant protein-1, tumour necrosis factor-α, interleukin-6 (IL-6) and IL-1β, were measured by Elisa. In the rat arterial tissue, Toll-like receptor 4 (TLR4)/nuclear factor kappa B (NF-κB) expression was measured by western blot. In the rat plasma, ELISA was used to assay the levels of coagulation and plasmin system indicators, including platelet activating factor, endothelin, tissue factor (TF), plasminogen inhibitor, thromboxane B2, plasma fibrinogen. Results The results showed that SXNI can reduce the infarct size of myocardial tissue, decrease the myocardial enzyme and TnI levels and decrease the degree of myocardial damage compared with the model group. Additionally, SXNI can increase the activity of antioxidant enzymes, reduce the MDA level and decrease the GRP78, CRT, CHOP and caspase-12 expression levels. SXNI also decreased the levels of inflammatory cytokines in rat serum, lowered the level of procoagulant molecules in plasma and reduced the TLR4/NF-κB expression. Conclusions SXNI has protective effect on MIRI mainly by inhibiting oxidative stress and endoplasmic reticulum stress (ERS), thereby regulating TLR4/NF-κB pathway to reduce inflammation, and lowing procoagulant-related factors levels to reduce the risk of thrombosis.
Collapse
Affiliation(s)
- Ruiying Wang
- Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Beijing 100193, China.,Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing 100193, China.,Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China.,Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China
| | - Min Wang
- Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Beijing 100193, China.,Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing 100193, China.,Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China.,Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China
| | - Jiahui Zhou
- Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Beijing 100193, China.,Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing 100193, China.,Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China.,Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China
| | - Tianyuan Ye
- Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Beijing 100193, China.,Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing 100193, China.,Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China.,Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China
| | - Xueheng Xie
- Harbin University of Commerce, Harbin 150076, China
| | - Dong Ni
- Jilin Agricultural University, Changchun 130118, China
| | - Jingxue Ye
- Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Beijing 100193, China.,Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing 100193, China.,Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China.,Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China
| | - Qiaoling Han
- Shiyao Yinhu Pharmaceutical Co., Ltd., Yuncheng 044000, China
| | - Caixia Di
- Shiyao Yinhu Pharmaceutical Co., Ltd., Yuncheng 044000, China
| | - Liang Guo
- Shiyao Yinhu Pharmaceutical Co., Ltd., Yuncheng 044000, China
| | - Guibo Sun
- Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Beijing 100193, China.,Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing 100193, China.,Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China.,Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China
| | - Xiaobo Sun
- Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Beijing 100193, China.,Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing 100193, China.,Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China.,Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China
| |
Collapse
|
13
|
Lin C, Wei D, Xin D, Pan J, Huang M. Ellagic acid inhibits proliferation and migration of cardiac fibroblasts by down-regulating expression of HDAC1. J Toxicol Sci 2019; 44:425-433. [PMID: 31168029 DOI: 10.2131/jts.44.425] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Cardiac fibroblasts (CFs) could be activated after myocardial infarction (MI). Thus, it is necessary to explore effective drugs to suppress the activation of CFs following MI. This study was designed to investigate the impacts of ellagic acid on CFs and the underlying mechanisms. The expression of histone deacetylases (HDACs) and fibrosis-related genes was detected by qRT-PCR and western blot. The Masson's Trichrome Staining assay was used to evaluate the area of cardiac fibrosis. The proliferation and migration of CFs were measured by CCK8 Kit and Transwell assay, respectively. Our results showed that ellagic acid significantly reduced protein expression of HDAC1, mRNA expression of collagen I, collagen III, MMP-2 and MMP-9 and the area of cardiac fibrosis in MI rats. In Ang II-stimulated CFs, ellagic acid (60 μmol/L) decreased the protein expression of HDAC1, collagen I, collagen III, MMP-2 and MMP-9, and inhibited cell proliferation and migration. Further, HDAC1 over-expression reversed the inhibitor effects of ellagic acid on proteins expression (collagen I, collagen III, MMP-2 and MMP-9) and proliferation and migration of CFs. The present results suggested that ellagic acid suppressed proliferation and migration of CFs by down-regulating expression of HDAC1.
Collapse
Affiliation(s)
- Cong Lin
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, China
| | - Dazhen Wei
- Department of Intensive Care Unite, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, China
| | - Dawei Xin
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, China
| | - Jialin Pan
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, China
| | - Mingyuan Huang
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, China
| |
Collapse
|