1
|
Walsh C, Lane JA, van Sinderen D, Hickey RM. Tailored Combinations of Human Milk Oligosaccharides Modulate the Immune Response in an In Vitro Model of Intestinal Inflammation. Biomolecules 2024; 14:1481. [PMID: 39766188 PMCID: PMC11727556 DOI: 10.3390/biom14121481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 11/15/2024] [Accepted: 11/19/2024] [Indexed: 01/15/2025] Open
Abstract
Infants rely on their developing immune system and the protective components of breast milk to defend against bacterial and viral pathogens, as well as immune disorders such as food allergies, prior to the introduction of solid foods. When breastfeeding is not feasible, fortified infant formula will most frequently be offered, usually based on a cow's milk-based substitute. The current study aimed to explore the immunomodulatory effects of combinations of commercially available human milk oligosaccharides (HMOs). An in vitro co-culture model of Caco-2 intestinal epithelial cells and THP-1 macrophages was established to replicate the hallmarks of intestinal inflammation and to evaluate the direct effects of different synthetic HMO combinations. Notably, a blend of the most prevalent fucosylated and sialylated HMOs, 2'-fucosyllactose (2'-FL) and 6'-siallylactose (6'-SL), respectively, resulted in decreased pro-inflammatory cytokine levels. These effects were dependent on the HMO concentration and on the HMO ratio resembling those in breastmilk. Interestingly, adding additional HMO structures did not enhance the anti-inflammatory effects. This research highlights the importance of carefully selecting HMO combinations in nutritional products, particularly for infant milk formulations, to effectively mimic the benefits associated with breastmilk.
Collapse
Affiliation(s)
- Clodagh Walsh
- Teagasc Food Research Centre, Moorepark, Fermoy, P61 C996 Cork, Ireland;
- Health and Happiness Group, H&H Research, P61 K202 Cork, Ireland;
- APC Microbiome Ireland and School of Microbiology, University College Cork, T12 YT20 Cork, Ireland;
| | - Jonathan A. Lane
- Health and Happiness Group, H&H Research, P61 K202 Cork, Ireland;
| | - Douwe van Sinderen
- APC Microbiome Ireland and School of Microbiology, University College Cork, T12 YT20 Cork, Ireland;
| | - Rita M. Hickey
- Teagasc Food Research Centre, Moorepark, Fermoy, P61 C996 Cork, Ireland;
- APC Microbiome Ireland and School of Microbiology, University College Cork, T12 YT20 Cork, Ireland;
| |
Collapse
|
2
|
Osipov N, Kudryavtsev I, Spelnikov D, Rubinstein A, Belyaeva E, Kulpina A, Kudlay D, Starshinova A. Differential Diagnosis of Tuberculosis and Sarcoidosis by Immunological Features Using Machine Learning. Diagnostics (Basel) 2024; 14:2188. [PMID: 39410592 PMCID: PMC11476257 DOI: 10.3390/diagnostics14192188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/16/2024] [Accepted: 09/28/2024] [Indexed: 10/20/2024] Open
Abstract
Despite the achievements of modern medicine, tuberculosis remains one of the leading causes of mortality globally. The difficulties in differential diagnosis have particular relevance in the case of suspicion of tuberculosis with other granulomatous diseases. The most similar clinical and radiologic changes are sarcoidosis. The aim of this study is to apply mathematical modeling to determine diagnostically significant immunological parameters and an algorithm for the differential diagnosis of tuberculosis and sarcoidosis. Materials and methods: The serum samples of patients with sarcoidosis (SD) (n = 29), patients with pulmonary tuberculosis (TB) (n = 32) and the control group (n = 31) (healthy subjects) collected from 2017 to 2022 (the average age 43.4 ± 5.3 years) were examined. Circulating 'polarized' T-helper cell subsets were analyzed by multicolor flow cytometry. A symbolic regression method was used to find general mathematical relations between cell concentrations and diagnosis. The parameters of the selected model were finally fitted through multi-objective optimization applied to two conflicting indices: sensitivity to sarcoidosis and sensitivity to tuberculosis. Results: The difference in Bm2 and CD5-CD27- concentrations was found to be more significant for the differential diagnosis of sarcoidosis and tuberculosis than any individual concentrations: the combined feature Bm2 - [CD5-CD27-] differentiates sarcoidosis and tuberculosis with p < 0.00001 and AUC = 0.823. An algorithm for differential diagnosis was developed. It is based on the linear model with two variables: the first variable is the difference Bm2 - [CD5-CD27-] mentioned above, and the second is the naïve-Tregs concentration. The algorithm uses the model twice and returns "dubious" in 26.7% of cases for patients with sarcoidosis and in 16.1% of cases for patients with tuberculosis. For the remaining patients with one of these two diagnoses, its sensitivity to sarcoidosis is 90.5%, and its sensitivity to tuberculosis is 88.5%. Conclusions: A simple algorithm was developed that can distinguish, by certain immunological features, the cases in which sarcoidosis is likely to be present instead of tuberculosis. Such cases may be further investigated to rule out tuberculosis conclusively. The mathematical model underlying the algorithm is based on the analysis of "naive" T-regulatory cells and "naive" B-cells. This may be a promising approach for differential diagnosis between pulmonary sarcoidosis and pulmonary tuberculosis. The findings may be useful in the absence of clear differential diagnostic criteria between pulmonary tuberculosis and sarcoidosis.
Collapse
Affiliation(s)
- Nikolay Osipov
- Department of Mathematics and Computer Science, St. Petersburg State University, 199034 St. Petersburg, Russia; (N.O.); (D.S.); (E.B.); (A.K.)
- Almazov National Medical Research Centre, 197341 St. Petersburg, Russia; (I.K.); (A.R.)
- St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences, 191023 St. Petersburg, Russia
| | - Igor Kudryavtsev
- Almazov National Medical Research Centre, 197341 St. Petersburg, Russia; (I.K.); (A.R.)
- Department of Immunology, Institution of Experimental Medicine, 197376 St. Petersburg, Russia
| | - Dmitry Spelnikov
- Department of Mathematics and Computer Science, St. Petersburg State University, 199034 St. Petersburg, Russia; (N.O.); (D.S.); (E.B.); (A.K.)
| | - Artem Rubinstein
- Almazov National Medical Research Centre, 197341 St. Petersburg, Russia; (I.K.); (A.R.)
- Department of Immunology, Institution of Experimental Medicine, 197376 St. Petersburg, Russia
| | - Ekaterina Belyaeva
- Department of Mathematics and Computer Science, St. Petersburg State University, 199034 St. Petersburg, Russia; (N.O.); (D.S.); (E.B.); (A.K.)
| | - Anastasia Kulpina
- Department of Mathematics and Computer Science, St. Petersburg State University, 199034 St. Petersburg, Russia; (N.O.); (D.S.); (E.B.); (A.K.)
- Almazov National Medical Research Centre, 197341 St. Petersburg, Russia; (I.K.); (A.R.)
| | - Dmitry Kudlay
- Department of Pharmacology, Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia;
- Institute of Immunology, 115478 Moscow, Russia
- Department of Pharmacognosy and Industrial Pharmacy, Faculty of Fundamental Medicine, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Anna Starshinova
- Department of Mathematics and Computer Science, St. Petersburg State University, 199034 St. Petersburg, Russia; (N.O.); (D.S.); (E.B.); (A.K.)
- Almazov National Medical Research Centre, 197341 St. Petersburg, Russia; (I.K.); (A.R.)
| |
Collapse
|
3
|
Fantoni G, Boccadifuoco G, Verdirosa F, Molesti E, Manenti A, Montomoli E. Current challenges and improvements in assessing the immunogenicity of bacterial vaccines. Front Microbiol 2024; 15:1404637. [PMID: 39044946 PMCID: PMC11263209 DOI: 10.3389/fmicb.2024.1404637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 06/26/2024] [Indexed: 07/25/2024] Open
Abstract
The increase in antimicrobial-resistant bacterial strains has highlighted the need for a new vaccine strategy. The primary goal of a candidate vaccine is to prevent disease, by inducing a persistent immunologic memory, through the activation of pathogen-specific immune response. Antibody titer is the main parameter used to assess the immunogenicity of bacterial vaccine candidates and it is the most widely used as a correlate of protection. On the other hand, the antibody titer alone cannot provide complete information on all the activity mediated by antibodies which can only be assessed by functional assays, like the serum bactericidal assay and the opsonophagocytosis assay. However, due to the involvement of many biological factors, these assays are difficult to standardize. Some improvements have been achieved in recent years, but further optimizations are needed to minimize inter- and intra-laboratories variability and to allow the applicability of these functional assays for the vaccine immunogenicity assessment on a larger scale.
Collapse
Affiliation(s)
- Giulia Fantoni
- VisMederi S.r.l., Siena, Italy
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | | | | | | | | | - Emanuele Montomoli
- VisMederi S.r.l., Siena, Italy
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| |
Collapse
|
4
|
Morales-Primo AU, Becker I, Pedraza-Zamora CP, Zamora-Chimal J. Th17 Cell and Inflammatory Infiltrate Interactions in Cutaneous Leishmaniasis: Unraveling Immunopathogenic Mechanisms. Immune Netw 2024; 24:e14. [PMID: 38725676 PMCID: PMC11076297 DOI: 10.4110/in.2024.24.e14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/26/2024] [Accepted: 03/06/2024] [Indexed: 05/12/2024] Open
Abstract
The inflammatory response during cutaneous leishmaniasis (CL) involves immune and non-immune cell cooperation to contain and eliminate Leishmania parasites. The orchestration of these responses is coordinated primarily by CD4+ T cells; however, the disease outcome depends on the Th cell predominant phenotype. Although Th1 and Th2 phenotypes are the most addressed as steers for the resolution or perpetuation of the disease, Th17 cell activities, especially IL-17 release, are recognized to be vital during CL development. Th17 cells perform vital functions during both acute and chronic phases of CL. Overall, Th17 cells induce the migration of phagocytes (neutrophils, macrophages) to the infection site and CD8+ T cells and NK cell activation. They also provoke granzyme and perforin secretion from CD8+ T cells, macrophage differentiation towards an M2 phenotype, and expansion of B and Treg cells. Likewise, immune cells from the inflammatory infiltrate have modulatory activities over Th17 cells involving their differentiation from naive CD4+ T cells and further expansion by generating a microenvironment rich in optimal cytokines such as IL-1β, TGF-β, IL-6, and IL-21. Th17 cell activities and synergies are crucial for the resistance of the infection during the early and acute stages; however, if unchecked, Th17 cells might lead to a chronic stage. This review discusses the synergies between Th17 cells and the inflammatory infiltrate and how these interactions might destine the course of CL.
Collapse
Affiliation(s)
- Abraham U. Morales-Primo
- Laboratorio de Inmunoparasitología, Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Hospital General de México, Mexico City 06720, México
| | - Ingeborg Becker
- Laboratorio de Inmunoparasitología, Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Hospital General de México, Mexico City 06720, México
| | - Claudia Patricia Pedraza-Zamora
- Laboratorio de Biología Periodontal y Tejidos Mineralizados, División de Estudios de Posgrado e Investigación, Facultad de Odontología, Universidad Nacional Autónoma de México, Mexico City 04510, México
| | - Jaime Zamora-Chimal
- Laboratorio de Inmunoparasitología, Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Hospital General de México, Mexico City 06720, México
| |
Collapse
|
5
|
van Schaik EJ, Fratzke AP, Gregory AE, Dumaine JE, Samuel JE. Vaccine development: obligate intracellular bacteria new tools, old pathogens: the current state of vaccines against obligate intracellular bacteria. Front Cell Infect Microbiol 2024; 14:1282183. [PMID: 38567021 PMCID: PMC10985213 DOI: 10.3389/fcimb.2024.1282183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 03/01/2024] [Indexed: 04/04/2024] Open
Abstract
Obligate intracellular bacteria have remained those for which effective vaccines are unavailable, mostly because protection does not solely rely on an antibody response. Effective antibody-based vaccines, however, have been developed against extracellular bacteria pathogens or toxins. Additionally, obligate intracellular bacteria have evolved many mechanisms to subvert the immune response, making vaccine development complex. Much of what we know about protective immunity for these pathogens has been determined using infection-resolved cases and animal models that mimic disease. These studies have laid the groundwork for antigen discovery, which, combined with recent advances in vaccinology, should allow for the development of safe and efficacious vaccines. Successful vaccines against obligate intracellular bacteria should elicit potent T cell memory responses, in addition to humoral responses. Furthermore, they ought to be designed to specifically induce strong cytotoxic CD8+ T cell responses for protective immunity. This review will describe what we know about the potentially protective immune responses to this group of bacteria. Additionally, we will argue that the novel delivery platforms used during the Sars-CoV-2 pandemic should be excellent candidates to produce protective immunity once antigens are discovered. We will then look more specifically into the vaccine development for Rickettsiaceae, Coxiella burnetti, and Anaplasmataceae from infancy until today. We have not included Chlamydia trachomatis in this review because of the many vaccine related reviews that have been written in recent years.
Collapse
Affiliation(s)
- E J van Schaik
- Department of Microbial Pathogenesis and Immunology, School of Medicine, Texas A&M University, Medical Research and Education Building, Bryan, TX, United States
| | - A P Fratzke
- Department of Microbial Pathogenesis and Immunology, School of Medicine, Texas A&M University, Medical Research and Education Building, Bryan, TX, United States
- Charles River Laboratories, Reno, NV, United States
| | - A E Gregory
- Department of Microbial Pathogenesis and Immunology, School of Medicine, Texas A&M University, Medical Research and Education Building, Bryan, TX, United States
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, United States
| | - Jennifer E Dumaine
- Department of Microbial Pathogenesis and Immunology, School of Medicine, Texas A&M University, Medical Research and Education Building, Bryan, TX, United States
| | - J E Samuel
- Department of Microbial Pathogenesis and Immunology, School of Medicine, Texas A&M University, Medical Research and Education Building, Bryan, TX, United States
- Department of Veterinary Pathobiology, School of Veterinary Medicine, Texas A&M University (TAMU), College Station, TX, United States
| |
Collapse
|
6
|
Xiang S, Chen J, Deng M, Wang Z, Li X, Lin D, Zhou J. Celastrol ameliorates experimental autoimmune uveitis through STAT3 targeting and gut microenvironment reprofiling. Int Immunopharmacol 2024; 127:111339. [PMID: 38064813 DOI: 10.1016/j.intimp.2023.111339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 01/18/2024]
Abstract
BACKGROUND Extensive research has revealed the favorable effects of celastrol (CEL) against various diseases, but the role of CEL in autoimmune uveitis remains unexplored. METHODS We first assessed the prophylactical and therapeutical effects of CEL on autoimmune uveitis via rat experimental autoimmune uveitis model. After network pharmacology, functional enrichment and molecular docking analyses, we predicted the potential target of CEL and validated its effect on EAU by clinical and histopathological scores, Evans blue staining, immunofluorescence assay and western blotting. Then we evaluated the role of CEL in the gut environment by 16S rRNA sequencing and untargeted metabolomic analysis. RESULTS We confirmed that CEL treatment suppressed the pathological TH17 response, inhibited the migration of inflammatory cells, and preserved the integrity of BRB via targeting STAT3-IL17 pathway. Furthermore, CEL was found to reduce the relative abundance of opportunistic pathogenic bacteria including Clostridium_sensu_stricto_1, Parasutterella and GCA-900066575, and enrich the relative abundance of beneficial Oscillospirales and Ruminococcus_torques_group in EAU rats by fecal 16S rRNA sequencing. Meanwhile, CEL treatment reshaped the gut metabolites in the EAU rats by increasing the relative concentrations of cholic acid, progesterone and guggulsterone, and decreasing the relative levels of isoproterenol, creatinine and phenylacetylglutamine. CONCLUSIONS CEL exerts its ameliorative effects on the experimental autoimmune uveitis through the dual mechanisms of targeting STAT3 and reprofiling the gut microenvironment.
Collapse
Affiliation(s)
- Shengjin Xiang
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Jinrun Chen
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Mengyun Deng
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Zixiang Wang
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Xingyi Li
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Dan Lin
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China.
| | - Jianhong Zhou
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China.
| |
Collapse
|
7
|
Nguyen PTD, Giovanni A, Maekawa S, Pham TH, Wang PC, Chen SC. An Integrated in silico and in vivo study of nucleic acid vaccine against Nocardia seriolae infection in orange-spotted grouper Epinephelus coioides. FISH & SHELLFISH IMMUNOLOGY 2023; 143:109202. [PMID: 37913891 DOI: 10.1016/j.fsi.2023.109202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/28/2023] [Accepted: 10/30/2023] [Indexed: 11/03/2023]
Abstract
Nocardiosis in aquatic animals caused by Nocardia seriolae is a frequently occurring serious infection that has recently spread to many countries. In this study, DNA vaccines containing potential bacterial antigens predicted using the reverse vaccinology approach were developed and evaluated in orange-spotted groupers. In silico analysis indicated that proteins including cholesterol oxidase, ld-transpeptidase, and glycosyl hydroxylase have high immunogenicity and are potential vaccine candidates. In vitro assays revealed the mature and biological configurations of these proteins. Importantly, when compared to a control PBS injection, N. seriolae DNA-based vaccines showed significantly higher expression of IL1β, IL17, and IFNγ at 1 or 2 days, in line with higher serum antibody production and expression of other cellular immune-related genes, such as MHCI, CD4, and CD8, at 7 days post-immunization. Remarkably, enhanced immune responses and strong protective efficacy against a highly virulent strain of N. seriolae were recorded in DNA vaccine-cholesterol oxidase (pcD::Cho) injected fish, with a relative survival rate of 73.3%. Our results demonstrate that the reverse vaccinology approach is a valid strategy for screening vaccine candidates and pcD::Cho is a promising candidate that can boost both innate and adaptive immune responses and confer considerable protection against N. seriolae infection.
Collapse
Affiliation(s)
- Phuong T D Nguyen
- International Degree Program of Ornamental Fish Technology and Aquatic Animal Health, International College, National Pingtung University of Science and Technology, Pingtung, Taiwan.
| | - Andre Giovanni
- International Degree Program of Ornamental Fish Technology and Aquatic Animal Health, International College, National Pingtung University of Science and Technology, Pingtung, Taiwan.
| | - Shun Maekawa
- International Degree Program of Ornamental Fish Technology and Aquatic Animal Health, International College, National Pingtung University of Science and Technology, Pingtung, Taiwan; Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan; General Research Service Centre, National Pingtung University of Science and Technology, Pingtung, Taiwan.
| | - Trung Hieu Pham
- International Degree Program of Ornamental Fish Technology and Aquatic Animal Health, International College, National Pingtung University of Science and Technology, Pingtung, Taiwan.
| | - Pei-Chi Wang
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan; Southern Taiwan Fish Diseases Research Centre, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan.
| | - Shih-Chu Chen
- International Degree Program of Ornamental Fish Technology and Aquatic Animal Health, International College, National Pingtung University of Science and Technology, Pingtung, Taiwan; Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan; Southern Taiwan Fish Diseases Research Centre, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan.
| |
Collapse
|
8
|
Ashour RMS, El-Shiekh RA, Sobeh M, Abdelfattah MAO, Abdel-Aziz MM, Okba MM. Eucalyptus torquata L. flowers: a comprehensive study reporting their metabolites profiling and anti-gouty arthritis potential. Sci Rep 2023; 13:18682. [PMID: 37907626 PMCID: PMC10618445 DOI: 10.1038/s41598-023-45499-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 10/20/2023] [Indexed: 11/02/2023] Open
Abstract
Gouty arthritis is one of the most common metabolic disorders affecting people. Plant based drugs can lower the risk of this health disorder. The anti-gouty potential of Eucalyptus torquata flowers methanol extract (ETME) was evaluated in vitro via measuring the inhibitory effects of five pro-inflammatory enzymes; xanthine oxidase (XO), hyaluronidase, lipoxygenase (5-LOX), cyclooxygenases COX-1, and COX-2, in addition to evaluating the inhibition of histamine release, albumin denaturation, membrane stabilization, tyrosinase, and protease inhibitory activities. Also, its antioxidant potential was determined using 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS) radical scavenging assays and ferric reducing power assay (FRAP). HPLC-PDA-MS/MS was used to identify the metabolites in the tested extract. The latter exhibited substantial anti-arthritic properties in all assays with comparable potential to the corresponding reference drugs. HPLC-MS/MS analysis of this bioactive extract tentatively annotated 46 metabolites including phloroglucinols, gallic and ellagic acids derivatives, terpenes, flavonoids, fatty acids, and miscellaneous metabolites. Our study highlights the medicinal importance of E. torquata as an anti-gouty candidate and opens new avenues of gouty management.
Collapse
Affiliation(s)
- Rehab M S Ashour
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Riham A El-Shiekh
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Mansour Sobeh
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120, Heidelberg, Germany
| | - Mohamed A O Abdelfattah
- College of Engineering and Technology, American University of the Middle East, Egaila, 54200, Kuwait
| | - Marwa M Abdel-Aziz
- Regional Center for Mycology and Biotechnology (RCMB), Al-Azhar University, Cairo, 11651, Egypt
| | - Mona M Okba
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| |
Collapse
|
9
|
Tan Y, Guo W, Zhu Q, Song S, Xiang Y, Wu S, Zou S, Yan Y, Feng L, Luo M, Shen L, Feng Y, Liang K. Characterization of peripheral cytokine-secreting cells responses in HIV/TB co-infection. Front Cell Infect Microbiol 2023; 13:1162420. [PMID: 37483385 PMCID: PMC10359493 DOI: 10.3389/fcimb.2023.1162420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 06/08/2023] [Indexed: 07/25/2023] Open
Abstract
Background Currently the responses of peripheral cytokine-secreting cells in the natural course of human immunodeficiency virus (HIV) and tuberculosis (TB) co-infection haven't been fully elucidated. Methods The function of peripheral proinflammatory, regulatory and cytotoxic cytokine-secreting cells were investigated by direct intracellular cytokine staining (ICS) and flow cytometry, additionally, the absolute numbers of different cytokine-secreting cells were measured among patients with HIV/TB co-infection (HT group), and compared them with the healthy controls (HC group), patients with TB (TB group) and patients with HIV infection (HIV group). After one week's anti-TB treatment, the changes of the percentages of cytokine-secreting cells were further evaluated in TB and HT groups. Results Totally 26 individuals in the HC group, 51 in the TB group, 26 in the HIV group and 29 in the HT group were enrolled. The HT. HT group exhibited significantly lower absolute numbers of IFN-γ+CD4+, IFN-γ+CD8+, TNF-α+CD4+, IL17A+CD4+ T cells and TNF-α+CD14+ monocytes than the TB and HIV groups. Compared with the TB group, the percentages of CD8+ T cells secreting IFN-γ and perforin (p=0.010; p=0.043) were significantly lower among the HT group. Compared with the HIV group, the percentages of CD4+, CD8+ T cells and CD14+ monocytes secreting TNF-α (p=0.013; p=0.001; p<0.001) were significantly decreased, and the percentage of CD8+ T cells secreting IL-17A (p=0.015) was significantly increased among the HT group. Both the percentages of CD4+ T cells secreting TGF-β (p<0.001; p=0.001), and CD4+ and CD8+ T cells secreting granzyme A (all p<0.001), were significantly higher among the HT group than among the TB group and HIV group. After one week's anti-TB treatment, an increased percentage of CD4+ T cells secreting TNF-α (p=0.003) was found in the TB group, and an increased percentage of CD8+ T cells secreting TNF-α (p=0.029) was found in the HT group. Conclusion Significantly different functional profiles of peripheral proinflammatory, regulatory, and cytotoxic cytokine-secreting cells were observed in the natural course of HIV/TB co-infection compared to TB and HIV infection alone, even though the absolute numbers of those cells were significantly lower in HIV/TB co-infection. TNF-α-secreting CD8+ T cells may be a more sensitive marker for early evaluation of anti-TB treatment efficacy in patients with HIV/TB co-infection.
Collapse
Affiliation(s)
- Yuting Tan
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, China
| | - Wei Guo
- Department of Pathology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Department of Pathology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Qi Zhu
- Wuhan Pulmonary Hospital, Wuhan Institute for Tuberculosis Control, Wuhan, China
| | - Shihui Song
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yanni Xiang
- Department of Intensive Care Medicine, Yichang Central People’s Hospital, Yichang, Hubei, China
| | - Songjie Wu
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, China
- Department of Nosocomial Infection Management, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Shi Zou
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, China
| | - Yajun Yan
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ling Feng
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Mingqi Luo
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ling Shen
- Department of Microbiology and Immunology, Center for Primate Biomedical Research, University of Illinois College of Medicine, Chicago, IL, United States
| | - Yong Feng
- Department of Medical Microbiology, Wuhan University School of Basic Medical Sciences, Wuhan, China
| | - Ke Liang
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, China
- Department of Nosocomial Infection Management, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Engineering Center for Infectious Disease Prevention, Control and Treatment, Wuhan, China
| |
Collapse
|
10
|
Jayasekera D, Hartmann P. Noninvasive biomarkers in pediatric nonalcoholic fatty liver disease. World J Hepatol 2023; 15:609-640. [PMID: 37305367 PMCID: PMC10251277 DOI: 10.4254/wjh.v15.i5.609] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/14/2023] [Accepted: 04/10/2023] [Indexed: 05/24/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the leading cause of chronic liver disease worldwide among children and adolescents. It encompasses a spectrum of disease, from its mildest form of isolated steatosis, to nonalcoholic steatohepatitis (NASH) to liver fibrosis and cirrhosis, or end-stage liver disease. The early diagnosis of pediatric NAFLD is crucial in preventing disease progression and in improving outcomes. Currently, liver biopsy is the gold standard for diagnosing NAFLD. However, given its invasive nature, there has been significant interest in developing noninvasive methods that can be used as accurate alternatives. Here, we review noninvasive biomarkers in pediatric NAFLD, focusing primarily on the diagnostic accuracy of various biomarkers as measured by their area under the receiver operating characteristic, sensitivity, and specificity. We examine two major approaches to noninvasive biomarkers in children with NAFLD. First, the biological approach that quantifies serological biomarkers. This includes the study of individual circulating molecules as biomarkers as well as the use of composite algorithms derived from combinations of biomarkers. The second is a more physical approach that examines data measured through imaging techniques as noninvasive biomarkers for pediatric NAFLD. Each of these approaches was applied to children with NAFLD, NASH, and NAFLD with fibrosis. Finally, we suggest possible areas for future research based on current gaps in knowledge.
Collapse
Affiliation(s)
- Dulshan Jayasekera
- Department of Internal Medicine and Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, United States
| | - Phillipp Hartmann
- Department of Pediatrics, Division of Pediatric Gastroenterology, Hepatology, and Nutrition, University of California San Diego, La Jolla, CA 92093, United States.
| |
Collapse
|
11
|
Bauer DL, Bachnak L, Limbert VM, Horowitz RM, Baudier RL, D'Souza SJ, Immethun VE, Kurtz JR, Grant SB, McLachlan JB. The Adjuvant Combination of dmLT and Monophosphoryl Lipid A Activates the Canonical, Nonpyroptotic NLRP3 Inflammasome in Dendritic Cells and Significantly Interacts to Expand Antigen-Specific CD4 T Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:1519-1530. [PMID: 37023458 PMCID: PMC10159919 DOI: 10.4049/jimmunol.2200221] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 03/08/2023] [Indexed: 04/08/2023]
Abstract
Adjuvants are often essential additions to vaccines that enhance the activation of innate immune cells, leading to more potent and protective T and B cell responses. Only a few vaccine adjuvants are currently used in approved vaccine formulations in the United States. Combinations of one or more adjuvants have the potential to increase the efficacy of existing and next-generation vaccines. In this study, we investigated how the nontoxic double mutant Escherichia coli heat-labile toxin R192G/L211A (dmLT), when combined with the TLR4 agonist monophosphoryl lipid A (MPL-A), impacted innate and adaptive immune responses to vaccination in mice. We found that the combination of dmLT and MPL-A induced an expansion of Ag-specific, multifaceted Th1/2/17 CD4 T cells higher than that explained by adding responses to either adjuvant alone. Furthermore, we observed more robust activation of primary mouse bone marrow-derived dendritic cells in the combination adjuvant-treated group via engagement of the canonical NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome complex. This was marked by a multiplicative increase in the secretion of active IL-1β that was independent of classical gasdermin D-mediated pyroptosis. Moreover, the combination adjuvant increased the production of the secondary messengers cAMP and PGE2 in dendritic cells. These results demonstrate how certain adjuvant combinations could be used to potentiate better vaccine responses to combat a variety of pathogens.
Collapse
Affiliation(s)
- David L Bauer
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA
| | - Louay Bachnak
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA
| | - Vanessa M Limbert
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA
| | - Rebecca M Horowitz
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA
| | - Robin L Baudier
- Department of Epidemiology, Tulane School of Public Health and Tropical Medicine, New Orleans, LA
| | - Shaina J D'Souza
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA
| | - Victoria E Immethun
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA
| | - Jonathan R Kurtz
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA
| | - Samuel B Grant
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA
| | - James B McLachlan
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA
| |
Collapse
|
12
|
Lugo LZA, Puga MAM, Jacob CMB, Padovani CTJ, Nocetti MC, Tupiná MS, Pina AFS, de Freitas JNM, Ferreira AMT, Fernandes CEDS, Bovo AC, Resende JCP, Tozetti IA. Cytokine profiling of samples positive for Chlamydia trachomatis and Human papillomavirus. PLoS One 2023; 18:e0279390. [PMID: 36897879 PMCID: PMC10004564 DOI: 10.1371/journal.pone.0279390] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 12/06/2022] [Indexed: 03/11/2023] Open
Abstract
Persistent human papillomavirus (HPV) infection is closely associated with cervical carcinoma. Co-infection in the endocervical environment with other microorganisms, such as Chlamydia trachomatis, may increase the risk of HPV infection and neoplastic progression. While in some individuals, Chlamydia trachomatis infection is resolved with the activation of Th1/IFN-γ-mediated immune response, others develop a chronic infection marked by Th2-mediated immune response, resulting in intracellular persistence of the bacterium and increasing the risk of HPV infection. This work aimed to quantify cytokines of the Th1/Th2/Th17 profile in exfoliated cervix cells (ECC) and peripheral blood (PB) of patients positive for Chlamydia trachomatis DNA, patients positive for Papillomavirus DNA, and healthy patients. Cytokine levels were quantified by flow cytometry in ECC and PB samples from patients positive for C. trachomatis DNA (n = 18), patients positive for HPV DNA (n = 30), and healthy patients (n = 17) treated at the Hospital de Amor, Campo Grande-MS. After analysis, a higher concentration of IL-17, IL-6, and IL-4 (p <0.05) in ECC; INF-γ and IL-10 (p <0.05) in PB was found in samples from patients positive for C. trachomatis DNA compared to samples from healthy patients. When comparing samples from patients positive for HPV DNA, there was a higher concentration of cytokines IL-17, IL-10, IL-6, and IL-4 (p <0.05) in ECC and IL-4 and IL-2 (p <0.05) in PB of patients positive for C. trachomatis DNA. These results suggest that induction of Th2- and Th17 mediated immune response occurs in patients positive for C. trachomatis DNA, indicating chronic infection. Our results also demonstrate a high concentration of pro-inflammatory cytokines in ECC of patients positive for C. trachomatis DNA.
Collapse
Affiliation(s)
- Larissa Zatorre Almeida Lugo
- Postgraduate Program of Infectious and Parasitary Diseases from Medicine School, Federal University of Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil
| | - Marco Antonio Moreira Puga
- Postgraduate Program of Infectious and Parasitary Diseases from Medicine School, Federal University of Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil
| | - Camila Mareti Bonin Jacob
- Bioscience Institute from the Federal University of Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil
| | | | - Mariana Calarge Nocetti
- Faculdade de Ciências Farmacêuticas, Nutrição e Alimentos, UFMS, Campo Grande, Mato Grosso do Sul, Brazil
| | - Maisa Souza Tupiná
- Medicine School, Federal University of Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil
| | - Ana Flávia Silva Pina
- Medicine School, Federal University of Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil
| | - Jennifer Naed Martins de Freitas
- Postgraduate Program of Infectious and Parasitary Diseases from Medicine School, Federal University of Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil
| | - Alda Maria Teixeira Ferreira
- Bioscience Institute from the Federal University of Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil
| | | | | | | | - Inês Aparecida Tozetti
- Postgraduate Program of Infectious and Parasitary Diseases from Medicine School, Federal University of Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil
- Bioscience Institute from the Federal University of Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil
| |
Collapse
|
13
|
Arias C, Sepúlveda P, Castillo RL, Salazar LA. Relationship between Hypoxic and Immune Pathways Activation in the Progression of Neuroinflammation: Role of HIF-1α and Th17 Cells. Int J Mol Sci 2023; 24:ijms24043073. [PMID: 36834484 PMCID: PMC9964721 DOI: 10.3390/ijms24043073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/14/2022] [Accepted: 12/17/2022] [Indexed: 02/09/2023] Open
Abstract
Neuroinflammation is a common event in degenerative diseases of the central and peripheral nervous system, triggered by alterations in the immune system or inflammatory cascade. The pathophysiology of these disorders is multifactorial, whereby the therapy available has low clinical efficacy. This review propounds the relationship between the deregulation of T helper cells and hypoxia, mainly Th17 and HIF-1α molecular pathways, events that are involved in the occurrence of the neuroinflammation. The clinical expression of neuroinflammation is included in prevalent pathologies such as multiple sclerosis, Guillain-Barré syndrome, and Alzheimer's disease, among others. In addition, therapeutic targets are analyzed in relation to the pathways that induced neuroinflammation.
Collapse
Affiliation(s)
- Consuelo Arias
- Escuela de Kinesiología, Facultad de Odontología y Ciencias de la Rehabilitación, Universidad San Sebastián, Santiago 7500922, Chile
| | - Paulina Sepúlveda
- Departamento de Ciencias Preclínicas, Facultad de Medicina, Universidad de La Frontera, Temuco 4811230, Chile
| | - Rodrigo L. Castillo
- Departamento de Medicina Interna Oriente, Facultad de Medicina, Universidad de Chile, Santiago 7500922, Chile
| | - Luis A. Salazar
- Center of Molecular Biology and Pharmacogenetics, Department of Basic Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco 4811230, Chile
- Correspondence:
| |
Collapse
|
14
|
Ali S, Majid S, Ali MN, Banday MZ, Taing S, Wani S, Almuqbil M, Alshehri S, Shamim K, Rehman MU. Immunogenetic Role of IL17A Polymorphism in the Pathogenesis of Recurrent Miscarriage. J Clin Med 2022; 11:jcm11247448. [PMID: 36556060 PMCID: PMC9785316 DOI: 10.3390/jcm11247448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022] Open
Abstract
Interleukin-17A (IL17A) is a proinflammatory cytokine and is assumed to play an important role in fetal rejection. In order to evaluate the potential role of IL17A polymorphism in the pathogenesis of recurrent miscarriage (RM), serum IL17A levels were estimated by ELISA. Single-nucleotide polymorphism was assessed by polymerase chain reaction-restriction fragment-length polymorphism (PCR-RFLP) using gene-specific primers and the EcoNI restriction enzyme. Serum IL17A levels were nonsignificantly (p > 0.5) low in RM patients compared with the control group. IL17A gene amplification by PCR yielded the undigested product of 815 bp, and its digestion with EcoNI enzyme produced 815, 529, 286, and 270 bp fragments for the GG genotype; 529, 286, and 270 bp fragments for the GA genotype; and 529 and 286 bp fragments for the AA genotype. The genotype frequency between the RM and control groups exhibited a significant difference (p = 0.001), whereas no significant difference was observed between allele frequencies in the two groups (p = 0.0954). These data suggest that the IL17A gene polymorphism exhibits no significant effect on IL17A gene expression. However, it significantly decreases and increases RM risk in the homozygous and recessive models, suggesting its potential pregnancy-protecting and -harming roles in the AA and GA + GG genotypes, respectively.
Collapse
Affiliation(s)
- Shafat Ali
- Cytogenetics and Molecular Biology Laboratory, Centre of Research for Development, University of Kashmir, Srinagar 190006, J&K, India
- Department of Biochemistry, Government Medical College, Srinagar 190010, J&K, India
- Multidisciplinary Research Unit, Government Medical College, Srinagar 190010, J&K, India
- Department of Obstetrics and Gynaecology, Government Medical College-Associated Lalla Ded Hospital, Srinagar 190008, J&K, India
| | - Sabhiya Majid
- Department of Biochemistry, Government Medical College, Srinagar 190010, J&K, India
- Multidisciplinary Research Unit, Government Medical College, Srinagar 190010, J&K, India
- Correspondence: (S.M.); (M.N.A.); (M.U.R.)
| | - Md. Niamat Ali
- Cytogenetics and Molecular Biology Laboratory, Centre of Research for Development, University of Kashmir, Srinagar 190006, J&K, India
- Correspondence: (S.M.); (M.N.A.); (M.U.R.)
| | - Mujeeb Zafar Banday
- Department of Biochemistry, Government Medical College, Srinagar 190010, J&K, India
| | - Shahnaz Taing
- Department of Obstetrics and Gynaecology, Government Medical College-Associated Lalla Ded Hospital, Srinagar 190008, J&K, India
| | - Saima Wani
- Department of Obstetrics and Gynaecology, Sher-i-Kashmir Institute of Medical Sciences (SKIMS), Soura, Srinagar 190011, J&K, India
| | - Mansour Almuqbil
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Kashif Shamim
- National Centre for Natural Products Research, University of Mississippi, Oxford, MS 38677, USA
| | - Muneeb U. Rehman
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
- Correspondence: (S.M.); (M.N.A.); (M.U.R.)
| |
Collapse
|
15
|
Diversity of Circulating NKT Cells in Defense against Carbapenem-Resistant Klebsiella Pneumoniae Infection. J Pers Med 2022; 12:jpm12122025. [PMID: 36556247 PMCID: PMC9783671 DOI: 10.3390/jpm12122025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/01/2022] [Accepted: 12/03/2022] [Indexed: 12/12/2022] Open
Abstract
Nosocomial infection caused by carbapenem-resistant Klebsiella pneumonia (CRKP) infection has become a global public health problem. Human NK and NKT cells in peripheral immune responses are recognized as occupying a critical role in anti-bacterial immunity. Through performed scRNA-seq on serial peripheral blood samples from 3 patients with CRKP undergoing colonization, infection, and recovery conditions, we were able to described the immune responses of NK and NKT cells during CRKP infection and identified a mechanism that could contribute to CRKP clearance. The central player of CRKP infection process appears to be the NKT subset and CD56hiNKT subset which maintained immune competence during CRKP colonization. With time, CRKP leads to the loss of NK and CD160hiNKT cells in peripheral blood, resulting in suppressed immune responses and increased susceptibility to opportunistic infection. In summary, our study identified a possible mechanism for the CRKP invasion and to decipher the clues behind the host immune response that influences CRKP infection pathogenesis.
Collapse
|
16
|
Characterization of Chlamydia muridarum TC0668 Protein: Localization, Expression, and Inflammation-Inducing Effects on Host Cell. Curr Microbiol 2022; 79:325. [PMID: 36125608 PMCID: PMC9485785 DOI: 10.1007/s00284-022-03018-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 09/01/2022] [Indexed: 11/23/2022]
Abstract
The objective of this study is to elucidate the basic biological properties and function of TC0668 in vitro. Laser confocal microscopy and immune-electron microscopy were used to detect localization of TC0668 in Chlamydia-infected human epithelial cells, while the expression phase was investigated by qRT-PCR and western blot analysis. Protein array technology was employed to evaluate differences in cytokine secretion between cells infected with tc0668 single mutants and those infected with tc0668 null mutants. We found that TC0668 is restricted to the chlamydial inclusion. Translation and transcription of TC0668 were detected at 4 h and peaked at 16 h during the life cycle of Chlamydia in vitro. The cytokines produced by tc0668 single mutant infected cultures compared with tc0668 null mutant group indicated that 36 cytokines were downregulated, while 10 were up-regulated significantly. C. muridarum bearing a single tc0668 gene mutation have decreased urogenital pathogenicity that is explained by the effects of the mutation on the regulation of inflammation-related cytokine secretion.
Collapse
|
17
|
Mycobacterium intracellulare induces a Th17 immune response via M1-like macrophage polarization in canine peripheral blood mononuclear cells. Sci Rep 2022; 12:11818. [PMID: 35821058 PMCID: PMC9276657 DOI: 10.1038/s41598-022-16117-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 07/05/2022] [Indexed: 11/11/2022] Open
Abstract
Mycobacterium avium-intracellulare complex (MAC) is one of the most prevalent pathogenic nontuberculous mycobacteria that cause chronic pulmonary disease. The prevalence of MAC infection has been rising globally in a wide range of hosts, including companion animals. MAC infection has been reported in dogs; however, little is known about interaction between MAC and dogs, especially in immune response. In this study, we investigated the host immune response driven by M. intracellulare using the co-culture system of canine T helper cells and autologous monocyte-derived macrophages (MDMs). Transcriptomic analysis revealed that canine MDMs differentiated into M1-like macrophages after M. intracellulare infection and the macrophages secreted molecules that induced Th1/Th17 cell polarization. Furthermore, canine lymphocytes co-cultured with M. intracellulare-infected macrophages induced the adaptive Th17 responses after 5 days. Taken together, our results indicate that M. intracellulare elicits a Th17 response through macrophage activation in this system. Those findings might help the understanding of the canine immune response to MAC infection and diminishing the potential zoonotic risk in One Health aspect.
Collapse
|
18
|
Role of Th17 Cytokines in the Liver’s Immune Response during Fatal Yellow Fever: Triggering Cell Damage Mechanisms. Cells 2022; 11:cells11132053. [PMID: 35805137 PMCID: PMC9265354 DOI: 10.3390/cells11132053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/04/2022] [Accepted: 06/17/2022] [Indexed: 02/05/2023] Open
Abstract
Yellow fever (YF) is an infectious and acute viral haemorrhagic disease that triggers a cascade of host immune responses. We investigated the Th17 cytokine profile in the liver tissue of patients with fatal YF. Liver tissue samples were collected from 26 deceased patients, including 21 YF-positive and 5 flavivirus-negative patients, with preserved hepatic parenchyma architecture, who died of other causes. Histopathological and immunohistochemical analysis were performed on the liver samples to evaluate the Th17 profiles (ROR-γ, STAT3, IL-6, TGF-β, IL-17A, and IL-23). Substantial differences were found in the expression levels of these markers between the patients with fatal YF and controls. A predominant expression of Th17 cytokine markers was observed in the midzonal region of the YF cases, the most affected area in the liver acinus, compared with the controls. Histopathological changes in the hepatic parenchyma revealed cellular damage characterised mainly by the presence of inflammatory cell infiltrates, Councilman bodies (apoptotic cells), micro/macrovesicular steatosis, and lytic and coagulative necrosis. Hence, Th17 cytokines play a pivotal role in the immunopathogenesis of YF and contribute markedly to triggering cell damage in patients with fatal disease outcomes.
Collapse
|
19
|
Kwiecień I, Rutkowska E, Sokołowski R, Bednarek J, Raniszewska A, Jahnz-Różyk K, Rzepecki P, Domagała-Kulawik J. Effector Memory T Cells and CD45RO+ Regulatory T Cells in Metastatic vs. Non-Metastatic Lymph Nodes in Lung Cancer Patients. Front Immunol 2022; 13:864497. [PMID: 35585972 PMCID: PMC9108231 DOI: 10.3389/fimmu.2022.864497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 04/07/2022] [Indexed: 11/26/2022] Open
Abstract
Lymphocytes play a leading role in regulation of the immune system in lung cancer patients. The recognition of T cells profile may help in prediction of effectiveness of anticancer immunotherapy. The aim of the study was to determine the dominant subpopulation of CD4+ and CD8+ lymphocytes in metastatic and non-metastatic lymph nodes (LNs) of lung cancer patients. LNs aspirates were obtained during EBUS/TBNA procedure and cells were analyzed by flow cytometry. We showed a higher percentage of CD4+ and CD8+ effector memory T cells in the metastatic than in the non-metastatic LNs (28.6 vs. 15.3% and 28.6 vs. 14.0%, p< 0.05). The proportion of CD45RO+ T regulatory cells (CD45RO+ Tregs) was higher in the metastatic LNs than in the non-metastatic ones (65.6 vs. 31%, p< 0.05). We reported the significant differences in T cell subsets depending on the lung cancer metastatic process. We observed that the effector memory T cells were predominant subpopulations in metastatic LNs. Lymphocyte profile in LNs is easy to evaluate by flow cytometry of EBUS/TBNA samples and may reflect the immune status in lung cancer.
Collapse
Affiliation(s)
- Iwona Kwiecień
- Department of Internal Medicine and Hematology, Laboratory of Flow Cytometry, Military Institute of Medicine, Warsaw, Poland
- *Correspondence: Iwona Kwiecień, ;
| | - Elżbieta Rutkowska
- Department of Internal Medicine and Hematology, Laboratory of Flow Cytometry, Military Institute of Medicine, Warsaw, Poland
| | - Rafał Sokołowski
- Department of Internal Medicine, Pulmonology, Allergology and Clinical Immunology, Military Institute of Medicine, Warsaw, Poland
| | - Joanna Bednarek
- Department of Internal Medicine, Pulmonology, Allergology and Clinical Immunology, Military Institute of Medicine, Warsaw, Poland
| | - Agata Raniszewska
- Department of Internal Medicine and Hematology, Laboratory of Flow Cytometry, Military Institute of Medicine, Warsaw, Poland
| | - Karina Jahnz-Różyk
- Department of Internal Medicine, Pulmonology, Allergology and Clinical Immunology, Military Institute of Medicine, Warsaw, Poland
| | - Piotr Rzepecki
- Department of Internal Medicine and Hematology, Military Institute of Medicine, Warsaw, Poland
| | - Joanna Domagała-Kulawik
- Department of Internal Medicine, Pulmonary Diseases and Allergy, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
20
|
Mycobacterium bovis PknG R242P Mutation Results in Structural Changes with Enhanced Virulence in the Mouse Model of Infection. Microorganisms 2022; 10:microorganisms10040673. [PMID: 35456728 PMCID: PMC9030157 DOI: 10.3390/microorganisms10040673] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/14/2022] [Accepted: 03/16/2022] [Indexed: 02/01/2023] Open
Abstract
Mycobacterium bovis is the causative agent of tuberculosis in domestic and wild animal species and sometimes in humans, presenting variable degrees of pathogenicity. It is known that PknG is involved in the first steps of Mycobacterium tuberculosis macrophage infection and immune evasion. We questioned whether M. bovispknG genes were conserved among mycobacteria and if natural genetic modifications would affect its virulence. We discovered a single mutation at a catalytic domain (R242P) of one M. bovis isolate and established the relation between the presence of R242P mutation and enhanced M. bovis virulence. Here, we demonstrated that R242P mutation alters the PknG protein conformation to a more open ATP binding site cleft. It was observed that M. bovis with PknG mutation resulted in increased growth under stress conditions. In addition, infected macrophages by M. bovis (R242P) presented a higher bacterial load compared with M. bovis without the pknG mutation. Furthermore, using the mouse model of infection, animals infected with M. bovis (R242P) had a massive innate immune response migration to the lung that culminated with pneumonia, necrosis, and higher mortality. The PknG protein single point mutation in its catalytic domain did not reduce the bacterial fitness but rather increased its virulence.
Collapse
|
21
|
Lu T, Das S, Howlader DR, Zheng Q, Ratnakaram SSK, Whittier SK, Picking WD, Picking WL. L-DBF Elicits Cross Protection Against Different Serotypes of Shigella spp. FRONTIERS IN TROPICAL DISEASES 2021. [DOI: 10.3389/fitd.2021.729731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Shigellosis is a severe diarrheal disease caused by members of the genus Shigella, with at least 80 million cases and 700,000 deaths annually around the world. The type III secretion system (T3SS) is the primary virulence factor used by the shigellae, and we have previously demonstrated that vaccination with the type T3SS proteins IpaB and IpaD, along with an IpaD/IpaB fusion protein (DBF), protects mice from Shigella infection in a lethal pulmonary model. To simplify the formulation and development of the DBF Shigella vaccine, we have genetically fused LTA1, the active subunit of heat-labile toxin from enterotoxigenic E. coli, with DBF to produce the self-adjuvanting antigen L-DBF. Here we immunized mice with L-DBF via the intranasal, intramuscular, and intradermal routes and challenged them with a lethal dose of S. flexneri 2a. While none of the mice vaccinated intramuscularly or intradermally were protected, mice vaccinated with L-DBF intranasally were protected from lethal challenges with S. flexneri 2a, S. flexneri 1b, S. flexneri 3a, S. flexneri 6, and S. sonnei. Intranasal L-DBF induced both B cell and T cell responses that correlated with protection against Shigella infection. Our results suggest that L-DBF is a candidate for developing an effective serotype-independent vaccine against Shigella spp.
Collapse
|
22
|
Szabo TM, Frigy A, Nagy EE. Targeting Mediators of Inflammation in Heart Failure: A Short Synthesis of Experimental and Clinical Results. Int J Mol Sci 2021; 22:13053. [PMID: 34884857 PMCID: PMC8657742 DOI: 10.3390/ijms222313053] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 11/23/2021] [Accepted: 11/27/2021] [Indexed: 01/22/2023] Open
Abstract
Inflammation has emerged as an important contributor to heart failure (HF) development and progression. Current research data highlight the diversity of immune cells, proteins, and signaling pathways involved in the pathogenesis and perpetuation of heart failure. Chronic inflammation is a major cardiovascular risk factor. Proinflammatory signaling molecules in HF initiate vicious cycles altering mitochondrial function and perturbing calcium homeostasis, therefore affecting myocardial contractility. Specific anti-inflammatory treatment represents a novel approach to prevent and slow HF progression. This review provides an update on the putative roles of inflammatory mediators involved in heart failure (tumor necrosis factor-alpha; interleukin 1, 6, 17, 18, 33) and currently available biological and non-biological therapy options targeting the aforementioned mediators and signaling pathways. We also highlight new treatment approaches based on the latest clinical and experimental research.
Collapse
Affiliation(s)
- Timea Magdolna Szabo
- Department of Biochemistry and Environmental Chemistry, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology of Targu Mures, 540142 Targu Mures, Romania;
- Department of Cardiology, Clinical County Hospital Mures, 540103 Targu Mures, Romania;
| | - Attila Frigy
- Department of Cardiology, Clinical County Hospital Mures, 540103 Targu Mures, Romania;
- Department of Internal Medicine IV, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology of Targu Mures, 540103 Targu Mures, Romania
| | - Előd Ernő Nagy
- Department of Biochemistry and Environmental Chemistry, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology of Targu Mures, 540142 Targu Mures, Romania;
- Laboratory of Medical Analysis, Clinical County Hospital Mures, 540394 Targu Mures, Romania
| |
Collapse
|
23
|
Zhou Z, Sun X, Zhang Q, Zeng F, Yin J, Wang L. Lactobacillus rhamnosus GG attenuates the pathology of Chlamydial muridarium in the upper genital tract in mice. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2021; 46:1187-1194. [PMID: 34911852 PMCID: PMC10929854 DOI: 10.11817/j.issn.1672-7347.2021.210218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Indexed: 11/03/2022]
Abstract
OBJECTIVES Chlamydia trachomatis is a pathogen which can cause hydrosalpinx and tubal fibrosis when infecting the urogenital tract. However, the mechanism is still not clear. There is growing evidence that the gut microbiota is associated with the pathogenesis of both intestinal and extra-intestinal disorders, such as cardiovascular disease, hepatocirrhosis, allergy, respiratory tract infection, polycystic ovary syndrome, endometriosis, and bacterial vaginitis. Lactobacillus rhamnosus GG (LGG) is one of the most extensively studied and widely used probiotic bacteria, the benefits of LGG including the treatment in gastrointestinal disorders and immunomodulation are well demonstrated, and it can also alleviate hypersensitivity reaction and diarrhoea, inhibit a variety of respiratory and urogenital diseases. Chlamydia muridarium (Cm) infection is a good model for the study on human Chlamydia pathogenicity in genitourinary tract. The mice infected with Cm were used as animal models to preliminarily explore the mechanism for the effect of LGG on upper reproductive tract infection in the mice, and to provide experimental basis for the pathogenesis of Chlamydia trachomatis genitourinary tract infection and the new idea for the treatment of Chlamydia trachomatis infection. METHODS Five to six weeks-old C57BL/6J mice were divided into 2 groups: An experimental group and a control group. The experimental group were administrated with 5×108 colony forming units (CFU) LGG for 19 consecutive days, while the control group were feed PBS. The mice in the 2 group were subcutaneously injected with 2.5 mg progesterone on Day 9 and infected with 1×105 inclusion body forming unit of Cm via the vaginal tract on Day 14. Vaginal and rectal swabs were taken every 7 days to infect HeLa cells for 24 hours, then the indirect immunofluorescence assay was used and the number of inclusion bodies of Chlamydia were calculated. Mice were euthanized on Day 14 and Day 63 after Cm inoculation, the vaginal tracts were dissected, and the tissue homogenates were prepared to culture the pathogens for 24 hours. The Cm bearing capacity in the bilateral uterine horn, tubal ovary, and cervical vaginal tissues in the 2 groups were calculated. The spleen cells were harvested to assay the intracellular IFN-γ, IL-5, and IL-17 by flow cytometry. On Day 63 after the Chlamydia infection, the pathology injury in the bilateral uterine horn and oviduct was observed, and the pathological sections and HE staining in the various part of genital tract were performed. The inflammatory cell infiltration and lumen dilatation was assessed. The specific IgM and IgG in sera were detected by indirect ELISA on Day 14 and 63 after infection. RESULTS There was no effect of LGG on the clearing of Cm from the urogenital tract, the Chlamydia ascending to fallopian tube or the uterine horn, and the organism dissemination and colonization to the gastrointestinal tract (all P>0.05). On Day 14 after Cm infection via the vagina, the IL-17 expression level in the experimental group was significant decreased than that in the control group (t=2.486, P<0.05), but there was no significant difference between the 2 groups in the CD4+ T rate in spleen and IgM and IgG levels in serum after Cm intravaginal infection (all P>0.05). On Day 63 after Cm infection, there was no difference in the severity of inflammation in the uterine horns and fallopian tubes between the 2 groups (P>0.05), but the dilation of the fallopian tubes and hydrosalpinx was attenuated in the experimental group compared with the control group (P<0.05). CONCLUSIONS Oral administration of LGG has no effect on inhibiting Cm ascending to upper genital tract and preventing the dissemination and colonization of Cm to the gastrointestinal tract, which also cannot affect the secretion of specific IgM and IgG in sera. Oral administration of LGG can suppress the production of IL-17 in the spleen cells and attenuate hydrosalpinx development when following Cm intravaginal infection in mice.
Collapse
Affiliation(s)
- Zengzi Zhou
- Department of Obstetrics and Gynecology, Third Xiangya Hospital, Central South University, Changsha 410013.
| | - Xin Sun
- Department of Obstetrics and Gynecology, Third Xiangya Hospital, Central South University, Changsha 410013
| | - Qi Zhang
- Department of Obstetrics and Gynecology, Third Xiangya Hospital, Central South University, Changsha 410013
| | - Fei Zeng
- Department of Obstetrics and Gynecology, Third Xiangya Hospital, Central South University, Changsha 410013
| | - Jiaxin Yin
- Department of Obstetrics and Gynecology, Jingzhou People's Hospital, Huaihua Hunan 418400, China
| | - Luying Wang
- Department of Obstetrics and Gynecology, Third Xiangya Hospital, Central South University, Changsha 410013.
| |
Collapse
|
24
|
Luo Y, Kiriya M, Tanigawa K, Kawashima A, Nakamura Y, Ishii N, Suzuki K. Host-Related Laboratory Parameters for Leprosy Reactions. Front Med (Lausanne) 2021; 8:694376. [PMID: 34746168 PMCID: PMC8568883 DOI: 10.3389/fmed.2021.694376] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 09/30/2021] [Indexed: 12/27/2022] Open
Abstract
Leprosy reactions are acute inflammatory episodes that complicate the course of a Mycobacterium leprae infection and are the major cause of leprosy-associated pathology. Two types of leprosy reactions with relatively distinct pathogenesis and clinical features can occur: type 1 reaction, also known as reversal reaction, and type 2 reaction, also known as erythema nodosum leprosum. These acute nerve-destructive immune exacerbations often cause irreversible disabilities and deformities, especially when diagnosis is delayed. However, there is no diagnostic test to detect or predict leprosy reactions before the onset of clinical symptoms. Identification of biomarkers for leprosy reactions, which impede the development of symptoms or correlate with early-onset, will allow precise diagnosis and timely interventions to greatly improve the patients' quality of life. Here, we review the progress of research aimed at identifying biomarkers for leprosy reactions, including its correlation with not only immunity but also genetics, transcripts, and metabolites, providing an understanding of the immune dysfunction and inflammation that underly the pathogenesis of leprosy reactions. Nevertheless, no biomarkers that can reliably predict the subsequent occurrence of leprosy reactions from non-reactional patients and distinguish type I reaction from type II have yet been found.
Collapse
Affiliation(s)
- Yuqian Luo
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital and Jiangsu Key Laboratory for Molecular Medicine, Nanjing University Medical School, Nanjing, China.,Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University, Tokyo, Japan
| | - Mitsuo Kiriya
- Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University, Tokyo, Japan
| | - Kazunari Tanigawa
- Department of Molecular Pharmaceutics, Faculty of Pharma-Science, Teikyo University, Tokyo, Japan
| | - Akira Kawashima
- Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University, Tokyo, Japan
| | - Yasuhiro Nakamura
- Department of Molecular Pharmaceutics, Faculty of Pharma-Science, Teikyo University, Tokyo, Japan
| | - Norihisa Ishii
- Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University, Tokyo, Japan.,National Sanatorium Tamazenshoen, Tokyo, Japan
| | - Koichi Suzuki
- Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University, Tokyo, Japan
| |
Collapse
|
25
|
Schroeter CB, Huntemann N, Bock S, Nelke C, Kremer D, Pfeffer K, Meuth SG, Ruck T. Crosstalk of Microorganisms and Immune Responses in Autoimmune Neuroinflammation: A Focus on Regulatory T Cells. Front Immunol 2021; 12:747143. [PMID: 34691057 PMCID: PMC8529161 DOI: 10.3389/fimmu.2021.747143] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 09/20/2021] [Indexed: 12/22/2022] Open
Abstract
Regulatory T cells (Tregs) are the major determinant of peripheral immune tolerance. Many Treg subsets have been described, however thymus-derived and peripherally induced Tregs remain the most important subpopulations. In multiple sclerosis, a prototypical autoimmune disorder of the central nervous system, Treg dysfunction is a pathogenic hallmark. In contrast, induction of Treg proliferation and enhancement of their function are central immune evasion mechanisms of infectious pathogens. In accordance, Treg expansion is compartmentalized to tissues with high viral replication and prolonged in chronic infections. In friend retrovirus infection, Treg expansion is mainly based on excessive interleukin-2 production by infected effector T cells. Moreover, pathogens seem also to enhance Treg functions as shown in human immunodeficiency virus infection, where Tregs express higher levels of effector molecules such as cytotoxic T-lymphocyte-associated protein 4, CD39 and cAMP and show increased suppressive capacity. Thus, insights into the molecular mechanisms by which intracellular pathogens alter Treg functions might aid to find new therapeutic approaches to target central nervous system autoimmunity. In this review, we summarize the current knowledge of the role of pathogens for Treg function in the context of autoimmune neuroinflammation. We discuss the mechanistic implications for future therapies and provide an outlook for new research directions.
Collapse
Affiliation(s)
- Christina B Schroeter
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Niklas Huntemann
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Stefanie Bock
- Department of Neurology With Institute of Translational Neurology, University of Münster, Münster, Germany
| | - Christopher Nelke
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - David Kremer
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Klaus Pfeffer
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Sven G Meuth
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Tobias Ruck
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
26
|
Ji HJ, Byun EB, Chen F, Ahn KB, Jung HK, Han SH, Lim JH, Won Y, Moon JY, Hur J, Seo HS. Radiation-Inactivated S. gallinarum Vaccine Provides a High Protective Immune Response by Activating Both Humoral and Cellular Immunity. Front Immunol 2021; 12:717556. [PMID: 34484221 PMCID: PMC8415480 DOI: 10.3389/fimmu.2021.717556] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/22/2021] [Indexed: 11/19/2022] Open
Abstract
Salmonella enterica subsp. enterica serovar Gallinarum (SG) is a common pathogen in chickens, and causes an acute systemic disease that leads to high mortality. The live attenuated vaccine 9R is able to successfully protect chickens older than six weeks by activating a robust cell-mediated immune response, but its safety and efficacy in young chickens remains controversial. An inactivated SG vaccine is being used as an alternative, but because of its low cellular immune response, it cannot be used as a replacement for live attenuated 9R vaccine. In this study, we employed gamma irradiation instead of formalin as an inactivation method to increase the efficacy of the inactivated SG vaccine. Humoral, cellular, and protective immune responses were compared in both mouse and chicken models. The radiation-inactivated SG vaccine (r-SG) induced production of significantly higher levels of IgG2b and IgG3 antibodies than the formalin-inactivated vaccine (f-SG), and provided a homogeneous functional antibody response against group D, but not group B Salmonella. Moreover, we found that r-SG vaccination could provide a higher protective immune response than f-SG by inducing higher Th17 activation. These results indicate that r-SG can provide a protective immune response similar to the live attenuated 9R vaccine by activating a higher humoral immunity and a lower, but still protective, cellular immune response. Therefore, we expect that the radiation inactivation method might substitute for the 9R vaccine with little or no side effects in chickens younger than six weeks.
Collapse
Affiliation(s)
- Hyun Jung Ji
- Research Division for Radiation Science, Korea Atomic Energy Research Institute, Jeongeup, South Korea.,Department of Oral Microbiology and Immunology, and DRI, School of Dentistry, Seoul National University, Seoul, South Korea
| | - Eui-Baek Byun
- Research Division for Radiation Science, Korea Atomic Energy Research Institute, Jeongeup, South Korea
| | - Fengjia Chen
- Research Division for Radiation Science, Korea Atomic Energy Research Institute, Jeongeup, South Korea
| | - Ki Bum Ahn
- Research Division for Radiation Science, Korea Atomic Energy Research Institute, Jeongeup, South Korea
| | - Ho Kyoung Jung
- Research and Development Center, HONGCHEON CTCVAC Co., Ltd., Hongcheon, South Korea
| | - Seung Hyun Han
- Department of Oral Microbiology and Immunology, and DRI, School of Dentistry, Seoul National University, Seoul, South Korea
| | - Jae Hyang Lim
- Department of Microbiology, Ewha Womans University College of Medicine, Seoul, South Korea.,Ewha Education & Research Center for Infection, Ewha Womans University Medical Center, Seoul, South Korea
| | - Yongkwan Won
- Research and Development Center, HONGCHEON CTCVAC Co., Ltd., Hongcheon, South Korea
| | - Ja Young Moon
- Department of Veterinary Public Health, College of Veterinary Medicine, Jeonbuk National University, Iksan, South Korea
| | - Jin Hur
- Department of Veterinary Public Health, College of Veterinary Medicine, Jeonbuk National University, Iksan, South Korea
| | - Ho Seong Seo
- Research Division for Radiation Science, Korea Atomic Energy Research Institute, Jeongeup, South Korea.,Department of Radiation Science, University of Science and Technology, Daejeon, South Korea
| |
Collapse
|
27
|
Eltwisy HO, Abdel-Fattah M, Elsisi AM, Omar MM, Abdelmoteleb AA, El-Mokhtar MA. Pathogenesis of Staphylococcus haemolyticus on primary human skin fibroblast cells. Virulence 2021; 11:1142-1157. [PMID: 32799619 PMCID: PMC7549902 DOI: 10.1080/21505594.2020.1809962] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
STAPHYLOCOCCUS HAEMOLYTICUS (S. haemolyticus) is one of the Coagulase-negative staphylococci (CoNS) that inhabits the skin as a commensal. It is increasingly implicated in opportunistic infections, including diabetic foot ulcer (DFU) infections. In contrast to the abundance of information available for S. aureus and S. epidermidis, little is known about the pathogenicity of S. haemolyticus, despite the increased prevalence of this pathogen in hospitalized patients. We described, for the first time, the pathogenesis of different clinical isolates of S. haemolyticus isolated from DFU on primary human skin fibroblast (PHSF) cells. Virulence-related genes were investigated, adhesion and invasion assays were carried out using Giemsa stain, transmission electron microscopy (TEM), MTT and flowcytometry assays. Our results showed that most S. haemolyticus carried different sets of virulence-related genes. S. haemolyticus adhered to the PHSF cells to variable degrees. TEM showed that the bacteria were engulfed in a zipper-like mechanism into a vacuole inside the cell. Bacterial internalization was confirmed using flowcytometry and achieved high intracellular levels. PHSF cells infected with S.haemolyticus suffered from amarked decrease in viability and increased apoptosis when treated with whole bacterial suspensions or cell-free supernatants but not with heat-treated cells. After co-culture with PBMCs, S. haemolyticus induced high levels of pro-inflammatory cytokines. This study highlights the significant development of S. haemolyticus, which was previously considered a contaminant when detected in cultures of clinical samples. Their high ability to adhere, invade and kill the PHSF cells illustrate the severe damage associated with DFU infections. ABBREVIATIONS CoNS, coagulase-negative staphylococci; DFU, diabetic foot ulcer; DM, diabetes mellitus; DMEM, Dulbecco's Modified Eagle Medium; MTT, 3-(4, 5-dimethylthiazolyl-2)-2, 5-diphenyltetrazolium bromide; PBMCs,peripheral blood mononuclear cells; PHSF, primary human skin fibroblast; CFU, colony-forming unit.
Collapse
Affiliation(s)
- Hala O Eltwisy
- Department of Microbiology, Faculty of Science, Beni-Suef University , Beni-Suef, Egypt
| | - Medhat Abdel-Fattah
- Department of Microbiology and Botany, Faculty of Science, Beni-Suef University , Beni-Suef, Egypt
| | - Amani M Elsisi
- Department of Pharmaceutics and Industrial Pharmacy, Beni-Suef University , Beni-Suef, Egypt
| | - Mahmoud M Omar
- Department of Pharmaceutics and Industrial Pharmacy, Deraya University , El-Minia, Egypt
| | | | - Mohamed A El-Mokhtar
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University , Assiut, Egypt
| |
Collapse
|
28
|
Park HT, Park WB, Kim S, Lim JS, Nah G, Yoo HS. Revealing immune responses in the Mycobacterium avium subsp. paratuberculosis-infected THP-1 cells using single cell RNA-sequencing. PLoS One 2021; 16:e0254194. [PMID: 34214113 PMCID: PMC8253428 DOI: 10.1371/journal.pone.0254194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 06/21/2021] [Indexed: 01/13/2023] Open
Abstract
Mycobacterium avium subsp. paratuberculosis (MAP) is a causative agent of Johne’s disease, which is a chronic and debilitating disease in ruminants. MAP is also considered to be a possible cause of Crohn’s disease in humans. However, few studies have focused on the interactions between MAP and human macrophages to elucidate the pathogenesis of Crohn’s disease. We sought to determine the initial responses of human THP-1 cells against MAP infection using single-cell RNA-seq analysis. Clustering analysis showed that THP-1 cells were divided into seven different clusters in response to phorbol-12-myristate-13-acetate (PMA) treatment. The characteristics of each cluster were investigated by identifying cluster-specific marker genes. From the results, we found that classically differentiated cells express CD14, CD36, and TLR2, and that this cell type showed the most active responses against MAP infection. The responses included the expression of proinflammatory cytokines and chemokines such as CCL4, CCL3, IL1B, IL8, and CCL20. In addition, the Mreg cell type, a novel cell type differentiated from THP-1 cells, was discovered. Thus, it is suggested that different cell types arise even when the same cell line is treated under the same conditions. Overall, analyzing gene expression patterns via scRNA-seq classification allows a more detailed observation of the response to infection by each cell type.
Collapse
Affiliation(s)
- Hong-Tae Park
- Department of Infectious Disease, College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - Woo Bin Park
- Department of Infectious Disease, College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - Suji Kim
- Department of Infectious Disease, College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - Jong-Sung Lim
- Genome Analysis Center, National Instrumentation Center for Environmental Management, Seoul National University, Seoul, Korea
| | - Gyoungju Nah
- Genome Analysis Center, National Instrumentation Center for Environmental Management, Seoul National University, Seoul, Korea
| | - Han Sang Yoo
- Department of Infectious Disease, College of Veterinary Medicine, Seoul National University, Seoul, Korea
- * E-mail:
| |
Collapse
|
29
|
The Salivary Microbiota, Cytokines, and Metabolome in Patients with Ankylosing Spondylitis Are Altered and More Proinflammatory than Those in Healthy Controls. mSystems 2021; 6:e0117320. [PMID: 34156295 PMCID: PMC8269253 DOI: 10.1128/msystems.01173-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The pathogenesis of ankylosing spondylitis (AS) remains unclear but appears to be associated with heredity and the environment. The mouth links the external environment to the gut and lungs. In the present study, compared to that observed in healthy controls (HCs), AS saliva was depleted of Bacilli such as Streptococcus, enriched with Clostridia such as Veillonellaceae, and enriched with opportunistic pathogens from Proteobacteria such as Brucella spp. and Campylobacter concisus. AS saliva was enriched with 16 cytokines related to inflammation, such as soluble IL-6 receptor α (sIL-6Rα), interleukin 2 (IL-2), IL-10, IL-11, IL-12p40, IL-12p70, IL-20, IL-26, IL-27, IL-28A, IL-29, alpha 2 interferon (IFN-α2), IFN-β, and matrix metalloproteinase 3 (MMP-3). AS saliva was also enriched with hazardous compounds, such as cadaverine and putrescine. AS-altered salivary bacteria, compounds, and cytokines are closely linked with disease indicators. Oral cleaning reduced the levels of proinflammatory cytokines and hazardous compounds in AS saliva compared with HC saliva. AS saliva induced the production of more proinflammatory cytokines, such as IL-12p70 and IL-8, by THP-1 monocyte-derived macrophages, than did HC saliva. The results highlight the importance of salivary microbes, cytokines, and compounds in the development and treatment of AS and provide new ideas for the pathogenesis and treatment of AS. IMPORTANCE Ankylosing spondylitis (AS) affects as much as 0.32% of the population in some districts and causes work disability in one-third of these patients. Microbes are considered to play important roles in AS pathogenesis, and the mouth links the environment to the lungs and the gut. Our results showed that opportunistic pathogens such as Brucella and Campylobacter are enriched in the saliva of AS patients with ankylosing spondylitis. In addition, proinflammatory cytokines and hazardous materials such as putrescine were also enriched in the saliva of AS patients.[AQ1 sentence edit] Interestingly, the opportunistic pathogens and hazardous materials detected in the saliva of AS patients were associated with disease indexes. The saliva of AS patients was shown to induce immune cells to secrete proinflammatory cytokines in vitro. Reducing the levels of salivary microbes can significantly reduce the hazardous materials present in the saliva of AS patients. Our results provide a new perspective on the potential role of salivary microbes, cytokines, and hazardous compounds in the pathogenesis and treatment of AS.
Collapse
|
30
|
Tomioka H, Tatano Y, Shimizu T, Sano C. Immunoadjunctive Therapy against Bacterial Infections Using Herbal Medicines Based on Th17 Cell-mediated Protective Immunity. Curr Pharm Des 2021; 27:3949-3962. [PMID: 34102961 DOI: 10.2174/1381612827666210608143449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 04/27/2021] [Indexed: 11/22/2022]
Abstract
One of the major health concerns in the world is the global increase in intractable bacterial infectious diseases due to the emergence of multi- and extensively drug-resistant bacterial pathogens as well as an increase in compromised hosts around the world. Particularly, in the case of mycobacteriosis, the high incidence of tuberculosis in developing countries, resurgence of tuberculosis in industrialized countries, and increase in the prevalence of Mycobacterium avium complex infections are important worldwide health concerns. However, the development of novel antimycobacterial drugs is currently making slow progress. Therefore, it is considered that devising improved administration protocols for clinical treatment against refractory mycobacteriosis using existing chemotherapeutics is more practical than awaiting the development of new antimycobacterial drugs. The regulation of host immune responses using immunoadjunctive agents may increase the efficacy of antimicrobial treatment against mycobacteriosis. The same situations also exist in cases of intractable infectious diseases due to common bacteria other than mycobacteria. The mild and long-term up-regulation of host immune reactions in hosts with intractable chronic bacterial infections, using herbal medicines and medicinal plants, may be beneficial for such immunoadjunctive therapy. This review describes the current status regarding basic and clinical studies on therapeutic regimens using herbal medicines, useful for the clinical treatment of patients with intractable bacterial infections. In particular, we focus on immunoadjunctive effects of herbal medicines on the establishment and manifestation of host antibacterial immunity related to the immunological roles of Th17 cell lineages.
Collapse
Affiliation(s)
- Haruaki Tomioka
- Department of Basic Medical Science for Nursing, Department of Contemporary Psychology, Yasuda Women's University, Hiroshima, Japan
| | - Yutaka Tatano
- Department of Pharmaceutical Sciences, International University of Health and Welfare, Fukuoka, Japan
| | - Toshiaki Shimizu
- Department of Nutrition Administration, Yasuda Women's University, Hiroshima,, Japan
| | - Chiaki Sano
- Department of Community Medicine Management, Shimane University School of Medicine, Izumo, Japan
| |
Collapse
|
31
|
Chen J, Yang S, Li W, Yu W, Fan Z, Wang M, Feng Z, Tong C, Song B, Ma J, Cui Y. IL-17A Secreted by Th17 Cells Is Essential for the Host against Streptococcus agalactiae Infections. J Microbiol Biotechnol 2021; 31:667-675. [PMID: 33879639 PMCID: PMC9706036 DOI: 10.4014/jmb.2103.03053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/15/2021] [Accepted: 04/19/2021] [Indexed: 12/15/2022]
Abstract
Streptococcus agalactiae is an important bacterial pathogen and causative agent of diseases including neonatal sepsis and meningitis, as well as infections in healthy adults and pregnant women. Although antibiotic treatments effectively relieve symptoms, the emergence and transmission of multidrug-resistant strains indicate the need for an effective immunotherapy. Effector T helper (Th) 17 cells are a relatively newly discovered subpopulation of helper CD4+ T lymphocytes, and which, by expressing interleukin (IL)-17A, play crucial roles in host defenses against a variety of pathogens, including bacteria and viruses. However, whether S. agalactiae infection can induce the differentiation of CD4+ T cells into Th17 cells, and whether IL-17A can play an effective role against S. agalactiae infections, are still unclear. In this study, we analyzed the responses of CD4+ T cells and their defensive effects after S. agalactiae infection. The results showed that S. agalactiae infection induces not only the formation of Th1 cells expressing interferon (IFN)-γ, but also the differentiation of mouse splenic CD4+ T cells into Th17 cells, which highly express IL-17A. In addition, the bacterial load of S. agalactiae was significantly increased and decreased in organs as determined by antibody neutralization and IL-17A addition experiments, respectively. The results confirmed that IL-17A is required by the host to defend against S. agalactiae and that it plays an important role in effectively eliminating S. agalactiae. Our findings therefore prompt us to adopt effective methods to regulate the expression of IL-17A as a potent strategy for the prevention and treatment of S. agalactiae infection.
Collapse
Affiliation(s)
- Jing Chen
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, P.R. China,College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, P.R. China
| | - Siyu Yang
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, P.R. China
| | - Wanyu Li
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, P.R. China
| | - Wei Yu
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, P.R. China
| | - Zhaowei Fan
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, P.R. China
| | - Mengyao Wang
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, P.R. China
| | - Zhenyue Feng
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, P.R. China
| | - Chunyu Tong
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, P.R. China
| | - Baifen Song
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, P.R. China
| | - Jinzhu Ma
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, P.R. China
| | - Yudong Cui
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, P.R. China,College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, P.R. China,Corresponding author Phone: +13836962508 Fax: +0459-6031177 E-mail:
| |
Collapse
|
32
|
Chen W, Lai D, Li Y, Wang X, Pan Y, Fang X, Fan J, Shu Q. Neuronal-Activated ILC2s Promote IL-17A Production in Lung γδ T Cells During Sepsis. Front Immunol 2021; 12:670676. [PMID: 33995408 PMCID: PMC8119647 DOI: 10.3389/fimmu.2021.670676] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 04/15/2021] [Indexed: 01/13/2023] Open
Abstract
Background Studies have revealed important roles for IL-17A in the development of acute lung injury (ALI) following sepsis. However, the mechanism underlying the regulation of lung IL-17A remains to be fully addressed. Recent studies suggested the effect of neuromedin U (NMU) on immune cell activation and the role of group 2 innate lymphoid cells (ILC2s) in the modulation of IL-17A production. We aimed to gain in-depth insight into the mechanism underlying sepsis-induced lung IL-17A production, particularly, the role of NMU in mediating neuronal regulation of ILC2s and IL-17A-producing γδ T cells activation in sepsis. Methods Wild type mice were subjected to cecal ligation and puncture (CLP) to induce sepsis with or without intraperitoneal injection of NMU. The levels of ILC2s, γδ T cells, IL-17A, NMU and NMU receptor 1 (NMUR1) in the lung were then measured. In order to determine the role of NMU signaling in ILC2 activation and the role of ILC2-released IL-9 in ILC2-γδ T cell interaction, ILC2s were sorted, and the genes of nmur1 and il9 in the ILC2s were knocked down using CRISPR/Cas9. The genetically manipulated ILC2s were then co-cultured with lung γδ T cells, and the levels of IL-17A from co-culture systems were measured. Results In septic mice, the levels of NMU, IL-17A, ILC2s, and IL-17A-producing γδ T cells in the lung are significantly increased, and the expression of NMUR1 in ILC2s is increased as well. Exogenous NMU further augments these increases. The main source of IL-17A in response to CLP is γδ T cells, and lung nmur1 is specifically expressed in ILC2s. In vitro co-culture of ILC2s and γδ T cells leads to increased number of γδ T cells and higher production of IL-17A from γδ T cells, and these alterations are further augmented by septic treatment and exogenous NMU. Genetic knockdown of nmur1 or il9 in ILC2s attenuated the upregulation of γδ T cells and IL-17A production. Conclusion In sepsis, NMU acting through NMUR1 in lung ILC2s initiates the ILC2 activation, which, in turn, promote IL-17A-producing γδ T cell expansion and secretion of IL-17A. ILC2-derived IL-9 plays an important role in mediating γδ T cell expansion and IL-17A production. This study explores a new mechanism underlying neuronal regulation of innate immunity in sepsis.
Collapse
Affiliation(s)
- Weiwei Chen
- Department of Thoracic and Cardiovascular Surgery, National Clinical Research Center for Child Health, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Dengming Lai
- Department of Thoracic and Cardiovascular Surgery, National Clinical Research Center for Child Health, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuehua Li
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States.,Research and Development, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA, United States
| | - Xueke Wang
- Department of Thoracic and Cardiovascular Surgery, National Clinical Research Center for Child Health, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yihang Pan
- Department of Thoracic and Cardiovascular Surgery, National Clinical Research Center for Child Health, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiangming Fang
- Department of Anesthesiology and Intensive Care Unit, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jie Fan
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States.,Research and Development, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA, United States.,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Qiang Shu
- Department of Thoracic and Cardiovascular Surgery, National Clinical Research Center for Child Health, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
33
|
Sahu R, Dixit S, Verma R, Duncan SA, Smith L, Giambartolomei GH, Singh SR, Dennis VA. Encapsulation of Recombinant MOMP in Extended-Releasing PLGA 85:15 Nanoparticles Confer Protective Immunity Against a Chlamydia muridarum Genital Challenge and Re-Challenge. Front Immunol 2021; 12:660932. [PMID: 33936096 PMCID: PMC8081181 DOI: 10.3389/fimmu.2021.660932] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/24/2021] [Indexed: 01/12/2023] Open
Abstract
Recently we reported the immune-potentiating capacity of a Chlamydia nanovaccine (PLGA-rMOMP) comprising rMOMP (recombinant major outer membrane protein) encapsulated in extended-releasing PLGA [poly (D, L-lactide-co-glycolide) (85:15)] nanoparticles. Here we hypothesized that PLGA-rMOMP would bolster immune-effector mechanisms to confer protective efficacy in mice against a Chlamydia muridarum genital challenge and re-challenge. Female BALB/c mice received three immunizations, either subcutaneously (SC) or intranasally (IN), before receiving an intravaginal challenge with C. muridarum on day 49 and a re-challenge on day 170. Both the SC and IN immunization routes protected mice against genital challenge with enhanced protection after a re-challenge, especially in the SC mice. The nanovaccine induced robust antigen-specific Th1 (IFN-γ, IL-2) and IL-17 cytokines plus CD4+ proliferating T-cells and memory (CD44high CD62Lhigh) and effector (CD44high CD62Llow) phenotypes in immunized mice. Parallel induction of antigen-specific systemic and mucosal Th1 (IgG2a, IgG2b), Th2 (IgG1), and IgA antibodies were also noted. Importantly, immunized mice produced highly functional Th1 avidity and serum antibodies that neutralized C. muridarum infectivity of McCoy fibroblasts in-vitro that correlated with their respective protection levels. The SC, rather than the IN immunization route, triggered higher cellular and humoral immune effectors that improved mice protection against genital C. muridarum. We report for the first time that the extended-releasing PLGA 85:15 encapsulated rMOMP nanovaccine confers protective immunity in mice against genital Chlamydia and advances the potential towards acquiring a nano-based Chlamydia vaccine.
Collapse
Affiliation(s)
- Rajnish Sahu
- Center for NanoBiotechnology Research, Department of Biological Sciences, Alabama State University, Montgomery, AL, United States
| | - Saurabh Dixit
- Center for NanoBiotechnology Research, Department of Biological Sciences, Alabama State University, Montgomery, AL, United States
| | - Richa Verma
- Center for NanoBiotechnology Research, Department of Biological Sciences, Alabama State University, Montgomery, AL, United States
| | - Skyla A. Duncan
- Center for NanoBiotechnology Research, Department of Biological Sciences, Alabama State University, Montgomery, AL, United States
| | - Lula Smith
- Center for NanoBiotechnology Research, Department of Biological Sciences, Alabama State University, Montgomery, AL, United States
| | - Guillermo H. Giambartolomei
- Instituto de Inmunología, Genética y Metabolismo (INIGEM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Shree R. Singh
- Center for NanoBiotechnology Research, Department of Biological Sciences, Alabama State University, Montgomery, AL, United States
| | - Vida A. Dennis
- Center for NanoBiotechnology Research, Department of Biological Sciences, Alabama State University, Montgomery, AL, United States
| |
Collapse
|
34
|
Lee CH, Choi Y, Seo SY, Kim SH, Kim IH, Kim SW, Lee ST, Lee SO. Addition of probiotics to antibiotics improves the clinical course of pneumonia in young people without comorbidities: a randomized controlled trial. Sci Rep 2021; 11:926. [PMID: 33441702 PMCID: PMC7806890 DOI: 10.1038/s41598-020-79630-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 12/07/2020] [Indexed: 12/16/2022] Open
Abstract
This study was aimed at investigating the clinical efficacy of probiotics in pneumonia patients. To this end, we enrolled 80 participants diagnosed with pneumonia at Naval Pohang Hospital, Pohang, Korea, from May 2016 to January 2017. The participants were randomly assigned to the control and probiotic groups depending on whether they received probiotics. All participants clinically improved but 22.6% of the participants complained of abnormal stool habits after pneumonia treatment. In comparison, fever duration was significantly shorter in the probiotic group, and the group exhibited an improved general condition. The probiotic group also showed better stool characteristics according to the Bristol stool scale (P = 0.009). Notably, the serum hs-CRP levels were significantly lower in the probiotic group at 2 weeks of treatment (P = 0.015), and all participants in the probiotic group achieved their levels within the normal range. Flow cytometry was used to analyze T-helper 17 (Th17) cells and regulatory T cells (Tregs). Tregs were promoted and the Th17 cell/Treg ratio was suppressed after 2 weeks of treatment in the probiotic group (P = 0.007 and 0.037, respectively). This study demonstrated that probiotics improved clinical symptoms and normalized inflammatory biomarker levels in patients with pneumonia. Early infection and inflammation recovery may be due to the immunomodulatory effects of probiotics by facilitating the subset of Tregs and suppressing the Th17 cell/Treg ratio.
Collapse
Affiliation(s)
- Chang Hun Lee
- Department of Internal Medicine, Naval Pohang Hospital, Pohang, South Korea.,Division of Gastroenterology, Department of Internal Medicine, Jeonbuk National University Medical School, Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, South Korea
| | - Yunjung Choi
- Division of Rheumatology, Department of Internal Medicine, Jeonbuk National University Medical School, Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, South Korea
| | - Seung Young Seo
- Division of Gastroenterology, Department of Internal Medicine, Jeonbuk National University Medical School, Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, South Korea
| | - Seong-Hun Kim
- Division of Gastroenterology, Department of Internal Medicine, Jeonbuk National University Medical School, Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, South Korea
| | - In Hee Kim
- Division of Gastroenterology, Department of Internal Medicine, Jeonbuk National University Medical School, Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, South Korea
| | - Sang Wook Kim
- Division of Gastroenterology, Department of Internal Medicine, Jeonbuk National University Medical School, Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, South Korea
| | - Soo Teik Lee
- Division of Gastroenterology, Department of Internal Medicine, Jeonbuk National University Medical School, Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, South Korea
| | - Seung Ok Lee
- Division of Gastroenterology, Department of Internal Medicine, Jeonbuk National University Medical School, Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, South Korea.
| |
Collapse
|
35
|
He S, Chen XX, Ge W, Yang S, Chen JT, Niu JW, Xia L, Chen GH. Are Anti-Inflammatory Cytokines Associated with Cognitive Impairment in Patients with Insomnia Comorbid with Depression? A Pilot Study. Nat Sci Sleep 2021; 13:989-1000. [PMID: 34234602 PMCID: PMC8254552 DOI: 10.2147/nss.s312272] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 06/15/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND To distinguish insomnia comorbid with depression (ICD) from chronic insomnia disorder (CID) by exploring the relationship between serum levels of frequently overlooked anti-inflammatory cytokines and cognitive function. METHODS A total of 42 ICD patients, 63 CID patients, and 42 healthy control subjects were enrolled in the study. The Pittsburgh Sleep Quality Index and Hamilton Depression Rating Scale were used to assess sleep quality and depression severity, respectively. The Chinese-Beijing version of Montreal Cognitive Assessment scale (MoCA-C) and Nine-Box Maze Test (NBMT) were used to assess cognitive function. Serum levels of anti-inflammatory interleukins (IL-1RA, IL-4, IL-5, IL-10, IL-13, and IL-28A), transforming growth factor (TGF)-β1, granulocyte-macrophage colony-stimulating factor, interferon-γ, and the chemokine regulated upon activation, normal T cell expressed and secreted (RANTES) were measured by enzyme-linked immunosorbent assay. RESULTS The ICD group had significantly more errors in the spatial reference task (H=2.55, Ps=0.03) and spatial working memory task (H=5.67, Ps<0.01) of the NBMT, as well as lower levels of IL-1RA (H=-2.85, Ps=0.01), IL-4 (H=-3.28, Ps<0.01), IL-5 (H=-3.35, Ps<0.01), IL-10 (H=-4.46, Ps<0.01), and IL-28A (H=-2.75, Ps=0.02) than control subjects. Compared with the CID group, the ICD group had significantly more errors in the spatial reference memory task (H=-2.84, Ps=0.01) of the NBMT, and lower levels of IL-5 (H=3.41, Ps<0.01), IL-10 (H=5.30, Ps<0.01), IL-13 (H=3.89, Ps<0.01), and GM-CSF (H=2.72, Ps=0.02). A partial correlation analysis showed that the level of one or more of IL-4, IL-5, IL-10, IL-13, and TGF-β1 was positively correlated with cognitive function (MoCA-C score and/or performance in spatial memory task) in ICD patients. CONCLUSION ICD is a distinct condition that can be distinguished from CID based on immune dysfunction and specific types of cognitive dysfunction.
Collapse
Affiliation(s)
- Shuo He
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei (Chaohu), 238000, People's Republic of China
| | - Xi-Xi Chen
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, People's Republic of China
| | - Wei Ge
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei (Chaohu), 238000, People's Republic of China
| | - Shuai Yang
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei (Chaohu), 238000, People's Republic of China
| | - Jun-Tao Chen
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei (Chaohu), 238000, People's Republic of China
| | - Jing-Wen Niu
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei (Chaohu), 238000, People's Republic of China
| | - Lan Xia
- Department of Neurology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, People's Republic of China
| | - Gui-Hai Chen
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei (Chaohu), 238000, People's Republic of China
| |
Collapse
|
36
|
Chatzileontiadou DSM, Sloane H, Nguyen AT, Gras S, Grant EJ. The Many Faces of CD4 + T Cells: Immunological and Structural Characteristics. Int J Mol Sci 2020; 22:E73. [PMID: 33374787 PMCID: PMC7796221 DOI: 10.3390/ijms22010073] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/20/2020] [Accepted: 12/21/2020] [Indexed: 12/14/2022] Open
Abstract
As a major arm of the cellular immune response, CD4+ T cells are important in the control and clearance of infections. Primarily described as helpers, CD4+ T cells play an integral role in the development and activation of B cells and CD8+ T cells. CD4+ T cells are incredibly heterogeneous, and can be divided into six main lineages based on distinct profiles, namely T helper 1, 2, 17 and 22 (Th1, Th2, Th17, Th22), regulatory T cells (Treg) and T follicular helper cells (Tfh). Recent advances in structural biology have allowed for a detailed characterisation of the molecular mechanisms that drive CD4+ T cell recognition. In this review, we discuss the defining features of the main human CD4+ T cell lineages and their role in immunity, as well as their structural characteristics underlying their detection of pathogens.
Collapse
Affiliation(s)
- Demetra S. M. Chatzileontiadou
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; (D.S.M.C.); (H.S.); (A.T.N.); (S.G.)
| | - Hannah Sloane
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; (D.S.M.C.); (H.S.); (A.T.N.); (S.G.)
| | - Andrea T. Nguyen
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; (D.S.M.C.); (H.S.); (A.T.N.); (S.G.)
| | - Stephanie Gras
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; (D.S.M.C.); (H.S.); (A.T.N.); (S.G.)
- Australian Research Council Centre of Excellence for Advanced Molecular Imaging, Monash University, Clayton, VIC 3800, Australia
| | - Emma J. Grant
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; (D.S.M.C.); (H.S.); (A.T.N.); (S.G.)
| |
Collapse
|
37
|
Fukuzaki S, Righetti RF, Santos TMD, Camargo LDN, Aristóteles LRCRB, Souza FCR, Garrido AC, Saraiva-Romanholo BM, Leick EA, Prado CM, Martins MDA, Tibério IDFLC. Preventive and therapeutic effect of anti-IL-17 in an experimental model of elastase-induced lung injury in C57Bl6 mice. Am J Physiol Cell Physiol 2020; 320:C341-C354. [PMID: 33326311 DOI: 10.1152/ajpcell.00017.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is an important health care issue, and IL-17 can modulate inflammatory responses. We evaluated preventive and therapeutic effect of anti-interleukin (IL)-17 in a model of lung injury induced by elastase, using 32 male C57Bl6 mice, divided into 4 groups: SAL, ELASTASE CONTROL (EC), ELASTASE + PREVENTIVE ANTI-IL-17 (EP), and ELASTASE + THERAPEUTIC ANTI-IL-17 (ET). On the 29th day, animals were anesthetized with thiopental, tracheotomized, and placed on a ventilator to evaluate lung mechanical, exhaled nitric oxide (eNO), and total cells of bronchoalveolar lavage fluid was collected. We performed histological techniques, and linear mean intercept (Lm) was analyzed. Both treatments with anti-IL-17 decreased respiratory resistance and elastance, airway resistance, elastance of pulmonary parenchyma, eNO, and Lm compared with EC. There was reduction in total cells and macrophages in ET compared with EC. Both treatments decreased nuclear factor-кB, inducible nitric oxide synthase, matrix metalloproteinase (MMP)-9, MMP-12, transforming growth factor-β, tumor necrosis factor-α, neutrophils, IL-1β, isoprostane, and IL-17 in airways and alveolar septa; collagen fibers, decorin and lumican in airways; and elastic fibers and fibronectin in alveolar septa compared with EC. There was reduction of collagen fibers in alveolar septa and biglycan in airways in EP and a reduction of eNO synthase in airways in ET. In conclusion, both treatments with anti-IL-17 contributed to improve most of parameters evaluated in inflammation and extracellular matrix remodeling in this model of lung injury.
Collapse
Affiliation(s)
- Silvia Fukuzaki
- School of Medicine-Faculty of Medicine, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Renato Fraga Righetti
- School of Medicine-Faculty of Medicine, University of São Paulo, São Paulo, São Paulo, Brazil.,Hospital Sírio-Libanês, São Paulo, Brazil
| | - Tabata Maruyama Dos Santos
- School of Medicine-Faculty of Medicine, University of São Paulo, São Paulo, São Paulo, Brazil.,Hospital Sírio-Libanês, São Paulo, Brazil
| | - Leandro do Nascimento Camargo
- School of Medicine-Faculty of Medicine, University of São Paulo, São Paulo, São Paulo, Brazil.,Hospital Sírio-Libanês, São Paulo, Brazil
| | | | - Flavia C R Souza
- School of Medicine-Faculty of Medicine, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Aurelio C Garrido
- School of Medicine-Faculty of Medicine, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Beatriz Mangueira Saraiva-Romanholo
- School of Medicine-Faculty of Medicine, University of São Paulo, São Paulo, São Paulo, Brazil.,Department of Medicine (LIM 20), Hospital Public Employee of São Paulo (Instituto de Assistência Médica ao Servidor Público Estadual de São Paulo), University City of São Paulo, São Paulo, Brazil
| | - Edna Aparecida Leick
- School of Medicine-Faculty of Medicine, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Carla Máximo Prado
- School of Medicine-Faculty of Medicine, University of São Paulo, São Paulo, São Paulo, Brazil.,Department of Bioscience, Federal University of São Paulo, Santos, São Paulo, Brazil
| | | | | |
Collapse
|
38
|
Epithelial processed Mycobacterium avium subsp. paratuberculosis induced prolonged Th17 response and suppression of phagocytic maturation in bovine peripheral blood mononuclear cells. Sci Rep 2020; 10:21048. [PMID: 33273606 PMCID: PMC7713309 DOI: 10.1038/s41598-020-78113-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 11/19/2020] [Indexed: 02/06/2023] Open
Abstract
Johne’s disease (JD) caused by Mycobacterium avium subsp. paratuberculosis (MAP) is a chronic, wasting infectious disease in ruminants that causes enormous economic losses to the dairy and beef cattle industries. Understanding the mechanism of persistency of MAP is key to produce novel ideas for the development of new diagnostic methods or prevention techniques. We sought interactions between the host and MAP using epithelial passage model, which mimic initial stage of infection. From the transcriptomic analysis of bovine immune cells (PBMCs), it was suggested that infection through the epithelial cells elicited prolonged Th17-derived immune response, as indicated by upregulation of IL-17A, IL-17F and RORC until 120 h p.i., compared to directly infected PBMCs. Global downregulation of gene expression was observed after 72 h p.i., especially for genes encoding cell surface receptors of phagocytic cells, such as Toll-like receptors and MHC class II molecules. In addition, the cholesterol efflux transporters ABCA1, ABCG1, and APOE, which are regulated by the LXR/RXR pathway, were downregulated. In summary, it would be suggested that the host initiate immune response to activate Th17-derived cytokines, and MAP survives persistently by altering the host adaptive immune response by suppressing surface receptors and manipulating lipid metabolism in phagocytic cells.
Collapse
|
39
|
Gómez-Mora E, Carrillo J, Urrea V, Rigau J, Alegre J, Cabrera C, Oltra E, Castro-Marrero J, Blanco J. Impact of Long-Term Cryopreservation on Blood Immune Cell Markers in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: Implications for Biomarker Discovery. Front Immunol 2020; 11:582330. [PMID: 33329554 PMCID: PMC7732598 DOI: 10.3389/fimmu.2020.582330] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 10/20/2020] [Indexed: 12/11/2022] Open
Abstract
Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is a complex neuroimmune disorder characterized by numerous symptoms of unknown etiology. The ME/CFS immune markers reported so far have failed to generate a clinical consensus, perhaps partly due to the limitations of biospecimen biobanking. To address this issue, we performed a comparative analysis of the impact of long-term biobanking on previously identified immune markers and also explored additional potential immune markers linked to infection in ME/CFS. A correlation analysis of marker cryostability across immune cell subsets based on flow cytometry immunophenotyping of fresh blood and frozen PBMC samples collected from individuals with ME/CFS (n = 18) and matched healthy controls (n = 18) was performed. The functionality of biobanked samples was assessed on the basis of cytokine production assay after stimulation of frozen PBMCs. T cell markers defining Treg subsets and the expression of surface glycoprotein CD56 in T cells and the frequency of the effector CD8 T cells, together with CD57 expression in NK cells, appeared unaltered by biobanking. By contrast, NK cell markers CD25 and CD69 were notably increased, and NKp46 expression markedly reduced, by long-term cryopreservation and thawing. Further exploration of Treg and NK cell subsets failed to identify significant differences between ME/CFS patients and healthy controls in terms of biobanked PBMCs. Our findings show that some of the previously identified immune markers in T and NK cell subsets become unstable after cell biobanking, thus limiting their use in further immunophenotyping studies for ME/CFS. These data are potentially relevant for future multisite intervention studies and cooperative projects for biomarker discovery using ME/CFS biobanked samples. Further studies are needed to develop novel tools for the assessment of biomarker stability in cryopreserved immune cells from people with ME/CFS.
Collapse
Affiliation(s)
- Elisabet Gómez-Mora
- IrsiCaixa AIDS Research Institute, Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona, Spain
| | - Jorge Carrillo
- IrsiCaixa AIDS Research Institute, Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona, Spain
| | - Víctor Urrea
- IrsiCaixa AIDS Research Institute, Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona, Spain
| | | | - José Alegre
- Division of Rheumatology, ME/CFS Clinical Unit, Vall d’Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Cecilia Cabrera
- IrsiCaixa AIDS Research Institute, Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona, Spain
| | - Elisa Oltra
- School of Medicine, Universidad Católica de Valencia San Vicente Mártir, Valencia, Spain
| | - Jesús Castro-Marrero
- Division of Rheumatology, ME/CFS Research Unit, Vall d’Hebron Hospital Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Julià Blanco
- IrsiCaixa AIDS Research Institute, Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona, Spain
- Chair in Infectious Diseases and Immunity, Centre for Health and Social Care Research (CESS), Faculty of Medicine, University of Vic, Central University of Catalonia (UVic–UCC), Vic, Spain
| |
Collapse
|
40
|
Katayama H. Can immunological manipulation defeat SARS-CoV-2? Why G-CSF induced neutrophil expansion is worth a clinical trial: G-CSF treatment against COVID-19. Bioessays 2020; 43:e2000232. [PMID: 33166093 DOI: 10.1002/bies.202000232] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/13/2020] [Accepted: 10/14/2020] [Indexed: 12/27/2022]
Abstract
Immunity against SARS-CoV-2 that is acquired by convalescent COVID-19 patients is examined in reference to (A) the Th17 cell generation system in psoriatic epidermis and (B) a recently discovered phenomenon in which Th17 cells are converted into tissue-resident memory T (TRM ) cells with Th1 phenotype. Neutrophils that are attracted to the site of infection secrete IL-17A, which stimulates lung epithelial cells to express CCL20. Natural Th17 (nTh17) cells are recruited to the infection site by CCL20 and expand in the presence of IL-23. These nTh17 cells are converted to TRM cells upon encounter with SARS-CoV-2 and continue to exist as ex-Th17 cells, which exert Th1-like immunity during a memory response. G-CSF can induce nTh17 cell accumulation at the infection site because it promotes neutrophil egress from the bone marrow. Hence, G-CSF may be effective against COVID-19. Administration of G-CSF to patients infected with SARS-CoV-2 is worth a clinical trial.
Collapse
|
41
|
Yang J, Wang G, Li H, Zheng W, Guo B, Wang Z. Knockdown of Mg 2+/Mn 2+ dependent protein phosphatase 1A promotes apoptosis in BV2 cells infected with Brucella suis strain 2 vaccine. Exp Ther Med 2020; 20:926-932. [PMID: 32742335 PMCID: PMC7388305 DOI: 10.3892/etm.2020.8745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 12/10/2019] [Indexed: 12/12/2022] Open
Abstract
The ability to inhibit host macrophage apoptosis is one of the survival strategies of intracellular bacteria, including Brucella. In the present study the role of Mg2+/Mn2+ dependent protein phosphatase 1A (PPM1A) in the apoptosis of Brucella suis (B. suis) strain 2 vaccine-infected BV2 cells was investigated. Compared with control cells, the protein expression levels of cleaved caspase-3 were markedly increased in PPM1A short hairpin (sh)RNA-transfected BV2 cells. Flow cytometry analysis showed that treatment with JNK activator anisomycin significantly increased the rate of apoptosis in BV2 cells in comparison with the control cells. Furthermore, PPM1A shRNA significantly increased the levels of JNK phosphorylation and the levels of cleaved caspase-3 in BV2 cells infected with B. suis strain 2 in comparison with the control cells. DAPI staining showed nuclear condensation in B. suis infected BV2 cells transfected with PPM1A shRNA in comparison with the control shRNA cells. Flow cytometry analysis showed that PPM1A shRNA significantly increased the percentage of apoptotic BV2 cells infected with B. suis strain 2 compared with those transfected with control shRNA. Taken together, these data suggested that knockdown of PPM1A promotes apoptosis in B. suis strain 2-infected BV2 cells and that PPM1A may be a potential target in the development of treatments to inhibit intracellular growth of B. suis.
Collapse
Affiliation(s)
- Juan Yang
- Department of Neurology, The General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Guowei Wang
- Department of Neurology, The General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Haining Li
- Department of Neurology, The General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Wenli Zheng
- Department of Neurology, The General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Burui Guo
- Department of Neurology, The General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Zhenhai Wang
- Department of Neurology, The General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China.,Ningxia Key Laboratory of Cerebrocranial Diseases, Incubation Base of National Key Laboratory, Yinchuan, Ningxia 750004, P.R. China
| |
Collapse
|
42
|
Regulatory T cells suppress Th17 cell Ca 2+ signaling in the spinal cord during murine autoimmune neuroinflammation. Proc Natl Acad Sci U S A 2020; 117:20088-20099. [PMID: 32732436 PMCID: PMC7443932 DOI: 10.1073/pnas.2006895117] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
T lymphocyte motility and interaction dynamics with other immune cells are vital determinants of immune responses. Regulatory T (Treg) cells prevent autoimmune disorders by suppressing excessive lymphocyte activity, but how interstitial motility patterns of Treg cells limit neuroinflammation is not well understood. We used two-photon microscopy to elucidate the spatial organization, motility characteristics, and interactions of endogenous Treg and Th17 cells together with antigen-presenting cells (APCs) within the spinal cord leptomeninges in experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis. Th17 cells arrive before the onset of clinical symptoms, distribute uniformly during the peak, and decline in numbers during later stages of EAE. In contrast, Treg cells arrive after Th17 cells and persist during the chronic phase. Th17 cells meander widely, interact with APCs, and exhibit cytosolic Ca2+ transients and elevated basal Ca2+ levels before the arrival of Treg cells. In contrast, Treg cells adopt a confined, repetitive-scanning motility while contacting APCs. These locally confined but highly motile Treg cells limit Th17 cells from accessing APCs and suppress Th17 cell Ca2+ signaling by a mechanism that is upstream of store-operated Ca2+ entry. Finally, Treg cell depletion increases APC numbers in the spinal cord and exaggerates ongoing neuroinflammation. Our results point to fundamental differences in motility characteristics between Th17 and Treg cells in the inflamed spinal cord and reveal three potential cellular mechanisms by which Treg cells regulate Th17 cell effector functions: reduction of APC density, limiting access of Th17 cells to APCs, and suppression of Th17 Ca2+ signaling.
Collapse
|
43
|
Ge Y, Huang M, Yao YM. Biology of Interleukin-17 and Its Pathophysiological Significance in Sepsis. Front Immunol 2020; 11:1558. [PMID: 32849528 PMCID: PMC7399097 DOI: 10.3389/fimmu.2020.01558] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 06/12/2020] [Indexed: 12/13/2022] Open
Abstract
The interleukin (IL)-17 family includes six structure-related cytokines (A-F). To date, majority of studies have focused on IL-17A. IL-17A plays a pivotal role in various infectious diseases, inflammatory and autoimmune disorders, and cancer. Several recent studies have indicated that IL-17A is a biomarker as well as a therapeutic target in sepsis. In the current review, we summarize the biological functions of IL-17, including IL-17-mediated responses and signal transduction pathways, with particular emphasis on clinical relevance to sepsis.
Collapse
Affiliation(s)
- Yun Ge
- Department of General Intensive Care Unit, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Man Huang
- Department of General Intensive Care Unit, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yong-Ming Yao
- Department of General Intensive Care Unit, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.,Trauma Research Center, Fourth Medical Center and Medical Innovation Research Department of the Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
44
|
Brune Z, Rice MR, Barnes BJ. Potential T Cell-Intrinsic Regulatory Roles for IRF5 via Cytokine Modulation in T Helper Subset Differentiation and Function. Front Immunol 2020; 11:1143. [PMID: 32582209 PMCID: PMC7283537 DOI: 10.3389/fimmu.2020.01143] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 05/11/2020] [Indexed: 12/24/2022] Open
Abstract
Interferon Regulatory Factor 5 (IRF5) is one of nine members of the IRF family of transcription factors. Although initially discovered as a key regulator of the type I interferon and pro-inflammatory cytokine arm of the innate immune response, IRF5 has now been found to also mediate pathways involved in cell growth and differentiation, apoptosis, metabolic homeostasis and tumor suppression. Hyperactivation of IRF5 has been implicated in numerous autoimmune diseases, chief among them systemic lupus erythematosus (SLE). SLE is a heterogeneous autoimmune disease in which patients often share similar characteristics in terms of autoantibody production and strong genetic risk factors, yet also possess unique disease signatures. IRF5 pathogenic alleles contribute one of the strongest risk factors for SLE disease development. Multiple models of murine lupus have shown that loss of Irf5 is protective against disease development. In an attempt to elucidate the regulatory role(s) of IRF5 in driving SLE pathogenesis, labs have begun to examine the function of IRF5 in several immune cell types, including B cells, macrophages, and dendritic cells. A somewhat untouched area of research on IRF5 is in T cells, even though Irf5 knockout mice were reported to have skewing of T cell subsets from T helper 1 (Th1) and T helper 17 (Th17) toward T helper 2 (Th2), indicating a potential role for IRF5 in T cell regulation. However, most studies attributed this T cell phenotype in Irf5 knockout mice to dysregulation of antigen presenting cell function rather than an intrinsic role for IRF5 in T cells. In this review, we offer a different interpretation of the literature. The role of IRF5 in T cells, specifically its control of T cell effector polarization and the resultant T cell-mediated cytokine production, has yet to be elucidated. A strong understanding of the regulatory role(s) of this key transcription factor in T cells is necessary for us to grasp the full picture of the complex pathogenesis of autoimmune diseases like SLE.
Collapse
Affiliation(s)
- Zarina Brune
- Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Matthew R. Rice
- Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Betsy J. Barnes
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
- Departments of Molecular Medicine and Pediatrics, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| |
Collapse
|
45
|
Chen G, Du JW, Nie Q, Du YT, Liu SC, Liu DH, Zhang HM, Wang FF. Plasmodium yoelii 17XL infection modified maturation and function of dendritic cells by skewing Tregs and amplificating Th17. BMC Infect Dis 2020; 20:266. [PMID: 32252652 PMCID: PMC7132900 DOI: 10.1186/s12879-020-04990-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 03/25/2020] [Indexed: 11/25/2022] Open
Abstract
Background Emerging data has suggested that Tregs, Th17, Th1 and Th2 are correlated with early immune mechanisms by controlling Plasmodium infection. Plasmodium infection appeared to impair the antigen presentation and maturation of DCs, leading to attenuation of specific cellular immune response ultimately. Hence, in this study, we aim to evaluate the relevance between DCs and Tregs/Th17 populations in the process and outcomes of infection with Plasmodium yoelii 17XL (P.y17XL). Methods DCs detection/analysis dynamically was performed by Tregs depletion or Th17 neutralization in P.y17XL infected BALB/c mice via flow cytometry. Then the levels of cytokines production were detected using enzyme-linked mmunosorbent assay (ELISA). Results Our results indicated that Tregs depletion or Th17 neutralization in BALB/c mice infected with P.y17XL significantly up-regulated the percentages of mDC and pDC, increased the expressions of major histocompatibility complex (MHC) class II, CD80, CD86 on DCs and the levels of IL-10/IL-12 secreted by DCs, indicating that abnormal amplification of Tregs or Th17 may damage the maturation and function of DCs during the early stage of malaria infection. Interestingly, we also found that the abnormal amplification of Th17, as well as Tregs, could inhibit the maturation of DCs. Conclusions Tregs skewing or Th17 amplification during the early stage of malaria infection may inhibit the maturation and function of DCs by modifying the subsets of DCs, expressions of surface molecules on DCs and secretion mode of cytokines.
Collapse
Affiliation(s)
- Guang Chen
- Department of Basic Medical Sciences, Taizhou University Hospital, Taizhou University, No 1139 Shifu Road, Jiaojiang District, Taizhou, 318000, China.
| | - Ji-Wei Du
- Nursing Department, Xiang'An Hospital, Xiamen University, No 2000, Xian'an East Road, Xiang'an District, Xiamen, 361005, China
| | - Qing Nie
- Weifang Centers for Disease Control and Prevention, No 4801 Huixian Road, Gaoxin District, Shandong Province, Weifang, 261061, China
| | - Yun-Ting Du
- Department of Laboratory Medicine, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, No 44, Xiaoheyan Road, Dadong District, Shenyang, 110042, China
| | - Shuang-Chun Liu
- Municipal Hospital Affiliated to Medical School of Taizhou University, No 381, Zhongshan East Road, Jiaojiang District, Taizhou, 318000, China
| | - De-Hui Liu
- Weifang Centers for Disease Control and Prevention, No 4801 Huixian Road, Gaoxin District, Shandong Province, Weifang, 261061, China
| | - Hui-Ming Zhang
- College of Basic Medical Sciences, Jiamusi University, No 148 Xuefu Street, Jiamusi, 154007, China
| | - Fang-Fang Wang
- College of Basic Medical Sciences, Jiamusi University, No 148 Xuefu Street, Jiamusi, 154007, China
| |
Collapse
|
46
|
陈 曦, 刘 璐, 张 旭, 陆 春, 陈 利, 全 淑, 陈 丽. [Role of tumor necrosis factor-α in Chlamydia Muridarum infection in the urogenital tract of mice]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2020; 40:388-393. [PMID: 32376576 PMCID: PMC7167326 DOI: 10.12122/j.issn.1673-4254.2020.03.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To explore the role of tumor necrosis factor-α (TNF-α) in immune response to urogenital chlamydial infection and urogenital pathology in mice. METHODS Fifteen female wild-type (WT) C57BL/6J mice and 15 TNF-α receptor knockout (TNF-αR KO) mice were inoculated intravaginally with 1×104 inclusion forming units (IFUs) of live C. muridarum. At 56 days after the first inoculation, 8 mice from each group were subjected to a second inoculation at the same dose. Vaginal swabs were taken every 3 or 4 days to detect the number of inclusion bodies of chlamydia. On day 80 after the first inoculation, the mice were euthanized and peritoneal macrophages were collected and the vaginal tract and spleen were dissected. The pathologies in the fallopian tube and the uterine horn were observed and the severity of inflammatory cell infiltration and lumen dilatation were semi-quantitatively scored. The levels of interleukin-6 (IL-6), IL-8, IL-1α, IL-1β and TNF-α in the supernatant of the peritoneal macrophage were detected. Spleen cell suspension was prepared, and after stimulation with chlamydia EB in vitro, the levels of the cytokines including IL-4, IL-5, IL-17 and interferon-γ (IFN-γ) were determined in the cells. RESULTS The clearance rate of Chlamydia from the urogenital tract was similar between TNF-αR KO mice and WT mice regardless of the primary or second infection. The severity of inflammation in the fallopian tube and the uterine horn did not differ significantly between the two groups, but TNF-αR KO mice had significantly milder dilation of the fallopian tubes (P < 0.05). The peritoneal macrophages from TNF-αR KO mice produced a significantly higher level of TNF-α than those from WT mice (P < 0.05); the spleen cells from the two groups both produced high levels of IFN-γ, but IL-17 production by the spleen cells was significantly lower in TNF-αR KO mice than in WT mice (P < 0.05). CONCLUSIONS TNF-α is not associated with protective immune response against C. muridarum infection, and can worsen the inflammatory damages of the urogenital tract caused by C. muridarum in mice.
Collapse
Affiliation(s)
- 曦 陈
- 南华大学公共卫生学院,湖南 衡阳 421001School of Public Health, University of South China, Hengyang 421001, China
- 衡阳市健康危害因子检验检疫新技术研究重点实验室,湖南 衡阳 421001Hengyang Key Laboratory for Health Hazard Factors Inspection and Quarantine, Hengyang 421001, China
| | - 璐瑶 刘
- 南华大学公共卫生学院,湖南 衡阳 421001School of Public Health, University of South China, Hengyang 421001, China
- 衡阳市健康危害因子检验检疫新技术研究重点实验室,湖南 衡阳 421001Hengyang Key Laboratory for Health Hazard Factors Inspection and Quarantine, Hengyang 421001, China
| | - 旭 张
- 南华大学公共卫生学院,湖南 衡阳 421001School of Public Health, University of South China, Hengyang 421001, China
- 衡阳市健康危害因子检验检疫新技术研究重点实验室,湖南 衡阳 421001Hengyang Key Laboratory for Health Hazard Factors Inspection and Quarantine, Hengyang 421001, China
| | - 春雪 陆
- 南华大学医学院,湖南 衡阳 421001School of Medical Sciences, University of South China, Hengyang 421001, China
| | - 利 陈
- 南华大学公共卫生学院,湖南 衡阳 421001School of Public Health, University of South China, Hengyang 421001, China
- 衡阳市健康危害因子检验检疫新技术研究重点实验室,湖南 衡阳 421001Hengyang Key Laboratory for Health Hazard Factors Inspection and Quarantine, Hengyang 421001, China
| | - 淑芬 全
- 南华大学公共卫生学院,湖南 衡阳 421001School of Public Health, University of South China, Hengyang 421001, China
- 衡阳市健康危害因子检验检疫新技术研究重点实验室,湖南 衡阳 421001Hengyang Key Laboratory for Health Hazard Factors Inspection and Quarantine, Hengyang 421001, China
| | - 丽丽 陈
- 南华大学公共卫生学院,湖南 衡阳 421001School of Public Health, University of South China, Hengyang 421001, China
| |
Collapse
|
47
|
Ikemoto K, Kobayashi S, Haranosono Y, Kozai S, Wada T, Tokushige H, Kawamura A. Contribution of anti-inflammatory and anti-virulence effects of azithromycin in the treatment of experimental Staphylococcus aureus keratitis. BMC Ophthalmol 2020; 20:89. [PMID: 32143675 PMCID: PMC7060554 DOI: 10.1186/s12886-020-01358-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 02/27/2020] [Indexed: 12/01/2022] Open
Abstract
Background We aimed to demonstrate the contribution of anti-inflammatory and anti-virulence effects of azithromycin (AZM) in ocular surface infection treatment. Methods Staphylococcus aureus was injected into the corneal stroma of rabbits to induce keratitis. AZM at concentrations of 0.01, 0.1, and 1% was instilled into the eye twice daily. The eyes were examined using a slit lamp and scored. The viable bacteria in the cornea were counted at 48 h post infection. To evaluate the anti-inflammatory efficacy of AZM, S. aureus culture supernatant-induced anterior ocular inflammation in rabbit was examined using a slit lamp and scored. To evaluate the inhibitory effect of AZM on bacterial toxin production, S. aureus was cultured with AZM and hemolytic reaction in the culture supernatant was determined. Results In the bacterial keratitis model, AZM dose-dependently inhibited the increase in the clinical score. The viable bacterial count in the cornea treated with 1% AZM significantly decreased compared with that of the vehicle, whereas bacterial count in 0.01 and 0.1% AZM-treated corneas was similar to that of the vehicle. In the anterior ocular inflammation model, 0.1 and 1% AZM inhibited the increase in the clinical score. AZM inhibited hemolytic reaction at concentrations that did not inhibit bacterial growth. Conclusions The results demonstrated that AZM has not only anti-bacterial, but also anti-inflammatory effects, and inhibits bacterial toxin production leading to ocular surface damage in bacterial infection. Thus, the therapeutic effect of AZM against ocular infections is expected to be higher than that which could be assumed if it only had anti-bacterial activity.
Collapse
Affiliation(s)
- Kana Ikemoto
- Senju Pharmaceutical Co., Ltd., 6-4-3 Minatojima-Minamimachi, Chuo-Ku, Kobe, Hyogo, 650-0047, Japan.
| | - Shinya Kobayashi
- Senju Pharmaceutical Co., Ltd., 6-4-3 Minatojima-Minamimachi, Chuo-Ku, Kobe, Hyogo, 650-0047, Japan
| | - Yu Haranosono
- Senju Pharmaceutical Co., Ltd., 6-4-3 Minatojima-Minamimachi, Chuo-Ku, Kobe, Hyogo, 650-0047, Japan
| | - Seiko Kozai
- Senju Pharmaceutical Co., Ltd., 6-4-3 Minatojima-Minamimachi, Chuo-Ku, Kobe, Hyogo, 650-0047, Japan
| | - Tomoyuki Wada
- Senju Pharmaceutical Co., Ltd., 6-4-3 Minatojima-Minamimachi, Chuo-Ku, Kobe, Hyogo, 650-0047, Japan
| | - Hideki Tokushige
- Senju Pharmaceutical Co., Ltd., 6-4-3 Minatojima-Minamimachi, Chuo-Ku, Kobe, Hyogo, 650-0047, Japan
| | - Akio Kawamura
- Senju Pharmaceutical Co., Ltd., 6-4-3 Minatojima-Minamimachi, Chuo-Ku, Kobe, Hyogo, 650-0047, Japan
| |
Collapse
|
48
|
Baskara-Yhuellou I, Tost J. The impact of microRNAs on alterations of gene regulatory networks in allergic diseases. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2020; 120:237-312. [PMID: 32085883 DOI: 10.1016/bs.apcsb.2019.11.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Allergic diseases including asthma are worldwide on the rise and contribute significantly to health expenditures. Allergic diseases are prototypic diseases with a strong gene by environment interaction component and epigenetic mechanisms might mediate the effects of the environment on the disease phenotype. MicroRNAs, small non-coding RNAs (miRNAs), regulate gene expression post-transcriptionally. Functional single-stranded miRNAs are generated in multiple steps of enzymatic processing from their precursors and mature miRNAs are included into the RNA-induced silencing complex (RISC). They imperfectly base-pair with the 3'UTR region of targeted genes leading to translational repression or mRNA decay. The cellular context and microenvironment as well the isoform of the mRNA control the dynamics and complexity of the regulatory circuits induced by miRNAs that regulate cell fate decisions and function. MiR-21, miR-146a/b and miR-155 are among the best understood miRNAs of the immune system and implicated in different diseases including allergic diseases. MiRNAs are implicated in the induction of the allergy reinforcing the Th2 phenotype (miR-19a, miR-24, miR-27), while other miRNAs promote regulatory T cells associated with allergen tolerance or unresponsiveness. In the current chapter we describe in detail the biogenesis and regulatory function of miRNAs and summarize current knowledge on miRNAs in allergic diseases and allergy relevant cell fate decisions focusing mainly on immune cells. Furthermore, we evoke the principles of regulatory loops and feedback mechanisms involving miRNAs on examples with relevance for allergic diseases. Finally, we show the potential of miRNAs and exosomes containing miRNAs present in several biological fluids that can be exploited with non-invasive procedures for diagnostic and potentially therapeutic purposes.
Collapse
Affiliation(s)
- Indoumady Baskara-Yhuellou
- Laboratory for Epigenetics & Environment, Centre National de Recherche en Génomique Humaine, CEA-Institut de Biologie François Jacob, Evry, France
| | - Jörg Tost
- Laboratory for Epigenetics & Environment, Centre National de Recherche en Génomique Humaine, CEA-Institut de Biologie François Jacob, Evry, France
| |
Collapse
|
49
|
Yue B, Luo X, Yu Z, Mani S, Wang Z, Dou W. Inflammatory Bowel Disease: A Potential Result from the Collusion between Gut Microbiota and Mucosal Immune System. Microorganisms 2019; 7:microorganisms7100440. [PMID: 31614539 PMCID: PMC6843348 DOI: 10.3390/microorganisms7100440] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/02/2019] [Accepted: 10/09/2019] [Indexed: 12/11/2022] Open
Abstract
Host health depends on the intestinal homeostasis between the innate/adaptive immune system and the microbiome. Numerous studies suggest that gut microbiota are constantly monitored by the host mucosal immune system, and any slight disturbance in the microbial communities may contribute to intestinal immune disruption and increased susceptibility to inflammatory bowel disease (IBD), a chronic relapsing inflammatory condition of the gastrointestinal tract. Therefore, maintaining intestinal immune homeostasis between microbiota composition and the mucosal immune system is an effective approach to prevent and control IBD. The overall theme of this review is to summarize the research concerning the pathogenesis of IBD, with particular focus on the factors of gut microbiota-mucosal immune interactions in IBD. This is a comprehensive and in-depth report of the crosstalk between gut microbiota and the mucosal immune system in IBD pathogenesis, which may provide insight into the further evaluation of the therapeutic strategies for IBD.
Collapse
Affiliation(s)
- Bei Yue
- Shanghai Key Laboratory of Formulated Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine (SHUTCM), Shanghai 201203, China.
| | - Xiaoping Luo
- Shanghai Key Laboratory of Formulated Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine (SHUTCM), Shanghai 201203, China.
| | - Zhilun Yu
- Shanghai Key Laboratory of Formulated Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine (SHUTCM), Shanghai 201203, China.
| | - Sridhar Mani
- Departments of Medicine and Genetics, Albert Einstein College of Medicine, The Bronx, NY 10461, USA.
| | - Zhengtao Wang
- Shanghai Key Laboratory of Formulated Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine (SHUTCM), Shanghai 201203, China.
| | - Wei Dou
- Shanghai Key Laboratory of Formulated Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine (SHUTCM), Shanghai 201203, China.
| |
Collapse
|
50
|
Zhu H, Ji W. Dihydroartemisinin Ameliorated Ovalbumin-Induced Asthma in Mice via Regulation of MiR-183C. Med Sci Monit 2019; 25:3804-3814. [PMID: 31115390 PMCID: PMC6542303 DOI: 10.12659/msm.915399] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The purpose of the present study was to investigate the function and mechanism of dihydroartemisinin (DHA) in treating ovalbumin-induced asthma in BALB/c mice. MATERIAL AND METHODS Thirty female BALB/c mice were randomly separated into 3 groups: the control group, the asthma model group stimulated by ovalbumin (OVA group), and the DHA treatment group (DHA group). The therapeutic effects and potential pharmacological mechanisms of DHA were specifically clarified by examining its effects on asthma-related phenomena, such as body weight, lung function, cell counts in bronchoalveolar lavage fluid (BALF), and hemotoxin and eosin staining. In addition, the expression of inflammatory factors was checked by enzyme-linked immunosorbent assay kits, and fractions of Th17 cells were detected by FACS analysis. Moreover, the downstream molecular pathway of IL-6/Stat3 (interleukin-6/signal transducer and activator of transcription 3) and expression of miR-183C was investigated by western blot and/or quantitative real-time polymerase chain reaction. Luciferase assay was used to reveal the function of miR-183C on the transcriptional regulation of Foxo1 (forkhead box O). RESULTS DHA administration significantly relieved the severity of the asthma through its effect on body weight, survival rate, and airway pressure. DHA was able to ameliorate lung damage in terms of pathological morphology and it reduced the percentage of helper T 17 (Th17) cells and the secretion of cytokines. As a result, the activity of the IL-6/Stat3 pathway was inhibited by DHA. In addition, the adoption of DHA decreased the expression of miR-183C but increased the expression of the transcription factor Foxo1. CONCLUSIONS Our results suggest that the therapeutic effects of DHA on asthma are partially realized via the regulation of miR-183C and IL-6/Stat3 pathway.
Collapse
Affiliation(s)
- Hui Zhu
- Department of Respiratory Disease, Children's Hospital of Soochow University, Suzhou, Jiangsu, China (mainland).,Department of Paediatric, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China (mainland)
| | - Wei Ji
- Department of Respiratory Disease, Children's Hospital of Soochow University, Suzhou, Jiangsu, China (mainland)
| |
Collapse
|