1
|
Lukomska A, Rheaume BA, Frost MP, Theune WC, Xing J, Damania A, Trakhtenberg EF. Augmenting fibronectin levels in injured adult CNS promotes axon regeneration in vivo. Exp Neurol 2024; 379:114877. [PMID: 38944331 PMCID: PMC11283980 DOI: 10.1016/j.expneurol.2024.114877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/06/2024] [Accepted: 06/25/2024] [Indexed: 07/01/2024]
Abstract
In an attempt to repair injured central nervous system (CNS) nerves/tracts, immune cells are recruited into the injury site, but endogenous response in adult mammals is insufficient for promoting regeneration of severed axons. Here, we found that a portion of retinal ganglion cell (RGC) CNS projection neurons that survive after optic nerve crush (ONC) injury are enriched for and upregulate fibronectin (Fn)-interacting integrins Itga5 and ItgaV, and that Fn promotes long-term survival and long-distance axon regeneration of a portion of axotomized adult RGCs in culture. We then show that, Fn is developmentally downregulated in the axonal tracts of optic nerve and spinal cord, but injury-activated macrophages/microglia upregulate Fn while axon regeneration-promoting zymosan augments their recruitment (and thereby increases Fn levels) in the injured optic nerve. Finally, we found that Fn's RGD motif, established to interact with Itga5 and ItgaV, promotes long-term survival and long-distance axon regeneration of adult RGCs after ONC in vivo, with some axons reaching the optic chiasm when co-treated with Rpl7a gene therapy. Thus, experimentally augmenting Fn levels in the injured CNS is a promising approach for therapeutic neuroprotection and axon regeneration of at least a portion of neurons.
Collapse
Affiliation(s)
- Agnieszka Lukomska
- Department of Neuroscience, University of Connecticut School of Medicine, 263 Farmington Ave., Farmington, CT 06030, USA
| | - Bruce A Rheaume
- Department of Neuroscience, University of Connecticut School of Medicine, 263 Farmington Ave., Farmington, CT 06030, USA
| | - Matthew P Frost
- Department of Neuroscience, University of Connecticut School of Medicine, 263 Farmington Ave., Farmington, CT 06030, USA
| | - William C Theune
- Department of Neuroscience, University of Connecticut School of Medicine, 263 Farmington Ave., Farmington, CT 06030, USA
| | - Jian Xing
- Department of Neuroscience, University of Connecticut School of Medicine, 263 Farmington Ave., Farmington, CT 06030, USA
| | - Ashiti Damania
- Department of Neuroscience, University of Connecticut School of Medicine, 263 Farmington Ave., Farmington, CT 06030, USA
| | - Ephraim F Trakhtenberg
- Department of Neuroscience, University of Connecticut School of Medicine, 263 Farmington Ave., Farmington, CT 06030, USA..
| |
Collapse
|
2
|
Ricci A, Zara S, Carta F, Di Valerio V, Sancilio S, Cataldi A, Selleri S, Supuran CT, Carradori S, Gallorini M. 2-Substituted-4,7-dihydro-4-ethylpyrazolo[1,5-a]pyrimidin-7-ones alleviate LPS-induced inflammation by modulating cell metabolism via CD73 upon macrophage polarization. Mol Immunol 2024; 170:99-109. [PMID: 38643690 DOI: 10.1016/j.molimm.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 03/10/2024] [Accepted: 04/06/2024] [Indexed: 04/23/2024]
Abstract
Macrophage polarization towards the M1 phenotype under bacterial product-related exposure (LPS) requires a rapid change in gene expression patterns and cytokine production along with a metabolic rewiring. Metabolic pathways and redox reactions are such tightly connected, giving rise to an area of research referred to as immunometabolism. A role in this context has been paid to the master redox-sensitive regulator Nuclear factor erythroid 2-related factor 2 (Nrf2) and to the 5'-ectonucleotidase CD73, a marker related to macrophage metabolism rearrangement under pro-inflammatory conditions. In this light, a cell model of LPS-stimulated macrophages has been established and nine 4,7-dihydro-4-ethylpyrazolo[l,5-a]pyrimidin-7-ones with a potential anti-inflammatory effect have been administered. Our data highlight that two selected compounds (namely, 5 and 8) inhibit the LPS-induced Nrf2 nuclear translocation and ameliorate the activity rate of the antioxidant enzyme catalase. Additionally, the pyridine-containing compound (8) promotes the shift from the pro-inflammatory immunophenotype M1 to the pro-resolving M2 one, by downregulating CD80 and iNOS and by enhancing CD163 and TGFβ1 expression. Most importantly, CD73 is modulated by these compounds as well as the lactate production. Our data demonstrate that pyrazolo[l,5-a]pyrimidine derivatives are effective as anti-inflammatory compounds. Furthermore, these pyrazolo[l,5-a]pyrimidines exert their action via CD73-related signaling and modulation of cell metabolism of activated macrophages.
Collapse
Affiliation(s)
- Alessia Ricci
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, Chieti 66100, Italy
| | - Susi Zara
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, Chieti 66100, Italy
| | - Fabrizio Carta
- NEUROFARBA Department, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Florence, Italy
| | - Valentina Di Valerio
- Department of Innovative Technologies in Medicine and Dentistry, University "G. D'Annunzio" Chieti-Pescara, Chieti, Italy
| | - Silvia Sancilio
- Department of Medicine and Ageing Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti 66100, Italy
| | - Amelia Cataldi
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, Chieti 66100, Italy
| | - Silvia Selleri
- NEUROFARBA Department, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Florence, Italy
| | - Claudiu T Supuran
- NEUROFARBA Department, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Florence, Italy
| | - Simone Carradori
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, Chieti 66100, Italy
| | - Marialucia Gallorini
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, Chieti 66100, Italy.
| |
Collapse
|
3
|
Paul S, Hussain NAS, Lillico DME, Suara MA, Ganiyu SO, Gamal El-Din M, Stafford JL. Examining the immunotoxicity of oil sands process affected waters using a human macrophage cell line. Toxicology 2023; 500:153680. [PMID: 38006929 DOI: 10.1016/j.tox.2023.153680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/09/2023] [Accepted: 11/21/2023] [Indexed: 11/27/2023]
Abstract
Oil sands process affected water (OSPW) is produced during the surface mining of the oil sands bitumen deposits in Northern Alberta. OSPW contains variable quantities of organic and inorganic components causing toxic effects on living organisms. Advanced Oxidation Processes (AOPs) are widely used to degrade toxic organic components from OSPW including naphthenic acids (NAs). However, there is no established biological procedure to assess the effectiveness of the remediation processes. Our previous study showed that human macrophage cells (THP-1) can be used as a bioindicator system to evaluate the effectiveness of OSPW treatments through examining the proinflammatory gene transcription levels. In the present study, we investigated the immunotoxicological changes in THP-1 cells following exposure to untreated and AOP-treated OSPW. Specifically, using proinflammatory cytokine protein secretion assays we showed that AOP treatment significantly abrogates the ability of OSPW to induce the secretion of IL-1β, IL-6, IL-8, TNF-α, IL-1Ra and MCP-1. By measuring transcriptional activity as well as surface protein expression levels, we also showed that two select immune cell surface markers, CD40 and CD54, were significantly elevated following OSPW exposure. However, AOP treatments abolished the immunostimulatory properties of OSPW to enhance the surface expression of these immune proteins. Finally, a transcriptome-based approach was used to examine the proinflammatory effects of OSPW as well as the abrogation of immunotoxicity following AOP treatments. Overall, this research shows how a human macrophage cell-based biomonitoring system serves as an effective in vitro tool to study the immunotoxicity of OSPW samples before and after targeted remediation strategies.
Collapse
Affiliation(s)
- Sunanda Paul
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Nora A S Hussain
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Dustin M E Lillico
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Monsuru A Suara
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
| | - Soliu O Ganiyu
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
| | - Mohamed Gamal El-Din
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
| | - James L Stafford
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada.
| |
Collapse
|
4
|
Co-Treatment with Human Leukocyte Extract and Albendazole Stimulates Drug's Efficacy and Th1 Biased Immune Response in Mesocestoides vogae (Cestoda) Infection via Modulation of Transcription Factors, Macrophage Polarization, and Cytokine Profiles. Pharmaceutics 2023; 15:pharmaceutics15020541. [PMID: 36839863 PMCID: PMC9962889 DOI: 10.3390/pharmaceutics15020541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/10/2023] Open
Abstract
The model flatworm Mesocestoides vogae proliferating stage of infection elicits immunosuppression in the host. It was used to investigate the effects of human leukocyte extract (DLE) alone and in combination with anthelmintic albendazole (ABZ) on the reduction in peritoneal infection, peritoneal exudate cells (PECs), their adherent counterparts, and peritoneal exudates after the termination of therapy. Balb/c mice were infected with the larvae of M. vogae. PECs and adherent macrophages were studied via flow cytometry, mRNA transcript levels, and immunofluorescence. The cytokine levels were measured via ELISA and larvae were counted. ABZ significantly reduced larval counts (581.2 ± 65, p < 0.001), but the highest reduction was observed after combined treatment with ABZ and DLE (389.2 ± 119, p < 0.001) in comparison with the control. Compared to an infected group, the proportions of CD11b+CD19- myeloid cells with suppressive ability decreased after albendazole (ABZ) in combination with DLE, which was the most effective in the elevation of B cells and CD11b+F4/80mid/highMHCIIhigh macrophages/monocytes (22.2 ± 5.4%). Transcripts of the M2 macrophage markers (arginase 1, FIZZ-1, and Ym-1) were downregulated after DLE and combined therapy but not after ABZ, and the opposite trend was seen for iNOS. This contrasts with reduced ex vivo NO production by LPS-stimulated PECs from DLE and ABZ+DLE groups, where adherent macrophages/monocytes had elevated transcripts of the INF-γ receptor and STAT1 and reduced expression of STAT3, STAT6, and IL-10. Each therapy differentially modulated transcription profiles and concentrations of IFN-γ, TNF-α, IL-12p40, IL-6, IL-10, and TGF-β cytokines. DLE strongly ameliorated ABZ-induced suppression of INF-γ and IL-12 and preserved downregulation for IL-4, IL-10, and TGF-β. Epigenetic study on adherent macrophages from infected mice showed that ABZ, ABZ-sulfoxide, and DLE could interact with the mRNA of examined markers in a dose-dependent pattern. Co-administration of DLE with ABZ seemed to augment the drug's larvicidal effect via modulation of immunity. In comparison with ABZ, combined therapy was the most effective in alleviating parasite-induced Th2/Treg/STAT3/STA6 directed immunosuppression by stimulating the Th1 cytokines, M1 macrophage polarization, and activation of the IFNγ/STAT1 signaling pathway.
Collapse
|
5
|
Gani MA, Budiatin AS, Shinta DW, Ardianto C, Khotib J. Bovine hydroxyapatite-based scaffold accelerated the inflammatory phase and bone growth in rats with bone defect. J Appl Biomater Funct Mater 2023; 21:22808000221149193. [PMID: 36708249 DOI: 10.1177/22808000221149193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Hydroxyapatite (HA) is a biomaterial widely used to treat bone defect, such as due to traffic accident. The HA scaffold is obtained from synthetic HA or natural sources, such as bovine hydroxyapatite (BHA). This study aims to compare the characteristics and in vivo performance of BHA-based and HA-based scaffolds. For this purpose, the scaffold was formulated with gelatin (GEL) and characterised by SEM-EDX, FTIR and mini autograph. The defect model was carried out on the femur area of Wistar rats classified into three animal groups: defect, HA-GEL and BHA-GEL. Postoperatively (7, 14 and 28 days), the bone was radiologically evaluated, and stained with haematoxylin-eosin, anti-CD80 and anti-CD163. The BHA-GEL scaffold showed a regular surface and spherical particle shape, whereas the HA-GEL scaffold exhibited irregular surface. The BHA-GEL scaffold had higher pore size and compressive strength and lower calcium-to-phosphorus ratio than the HA-GEL scaffold. In vivo study showed that the expression of CD80 in the three experimental groups was not significantly different. However, the expression of CD163 differed significantly between the groups. The BHA-GEL group showed robust expression of CD163 on day 7, which rapidly decreased over time. It also showed increased osteoclasts, osteoblasts and osteocytes cell count that contributed to the integrity of the defect area. In conclusion, the BHA-based scaffold exhibited the desired physical and chemical characteristics that benefit in vivo performance versus the HA-based scaffold. Thus, the BHA-based scaffold may be used as a bone graft.
Collapse
Affiliation(s)
- Maria Apriliani Gani
- Doctoral Program of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia
| | | | - Dewi Wara Shinta
- Department of Pharmacy Practice, Universitas Airlangga, Surabaya, Indonesia
| | | | - Junaidi Khotib
- Department of Pharmacy Practice, Universitas Airlangga, Surabaya, Indonesia
| |
Collapse
|
6
|
Morano NC, Smith RS, Danelon V, Schreiner R, Patel U, Herrera NG, Smith C, Olson SM, Laerke MK, Celikgil A, Garforth SJ, Garrett-Thomson SC, Lee FS, Hempstead BL, Almo SC. Human immunomodulatory ligand B7-1 mediates synaptic remodeling via the p75 neurotrophin receptor. J Clin Invest 2022; 132:e157002. [PMID: 36107635 PMCID: PMC9663165 DOI: 10.1172/jci157002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 09/13/2022] [Indexed: 12/30/2023] Open
Abstract
Cell surface receptors, ligands, and adhesion molecules underlie development, circuit formation, and synaptic function of the central nervous system and represent important therapeutic targets for many neuropathologies. The functional contributions of interactions between cell surface proteins of neurons and nonneuronal cells have not been fully addressed. Using an unbiased protein-protein interaction screen, we showed that the human immunomodulatory ligand B7-1 (hB7-1) interacts with the p75 neurotrophin receptor (p75NTR) and that the B7-1:p75NTR interaction is a recent evolutionary adaptation present in humans and other primates, but absent in mice, rats, and other lower mammals. The surface of hB7-1 that engages p75NTR overlaps with the hB7-1 surface involved in CTLA-4/CD28 recognition, and these molecules directly compete for binding to p75NTR. Soluble or membrane-bound hB7-1 altered dendritic morphology of cultured hippocampal neurons, with loss of the postsynaptic protein PSD95 in a p75NTR-dependent manner. Abatacept, an FDA-approved therapeutic (CTLA-4-hFc fusion) inhibited these processes. In vivo injection of hB7-1 into the murine subiculum, a hippocampal region affected in Alzheimer's disease, resulted in p75NTR-dependent pruning of dendritic spines. Here, we report the biochemical interaction between B7-1 and p75NTR, describe biological effects on neuronal morphology, and identify a therapeutic opportunity for treatment of neuroinflammatory diseases.
Collapse
Affiliation(s)
- Nicholas C. Morano
- Department of Biochemistry, Albert Einstein College of Medicine, New York, New York, USA
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, New York, USA
| | - Roshelle S. Smith
- Department of Medicine, Weill Cornell Graduate School of Medical Sciences, New York, New York, USA
| | - Victor Danelon
- Department of Medicine, Weill Cornell Graduate School of Medical Sciences, New York, New York, USA
| | - Ryan Schreiner
- Division of Regenerative Medicine, Hartman Institute for Therapeutic Organ Regeneration, Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Uttsav Patel
- Department of Biochemistry, Albert Einstein College of Medicine, New York, New York, USA
| | - Natalia G. Herrera
- Department of Biochemistry, Albert Einstein College of Medicine, New York, New York, USA
| | - Carla Smith
- Department of Biochemistry, Albert Einstein College of Medicine, New York, New York, USA
| | - Steven M. Olson
- Department of Computer Science, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Michelle K. Laerke
- Department of Medicine, Weill Cornell Graduate School of Medical Sciences, New York, New York, USA
| | - Alev Celikgil
- Department of Biochemistry, Albert Einstein College of Medicine, New York, New York, USA
| | - Scott J. Garforth
- Department of Biochemistry, Albert Einstein College of Medicine, New York, New York, USA
| | | | - Francis S. Lee
- Department of Psychiatry, Weill Cornell Medicine, New York, New York, USA
| | - Barbara L. Hempstead
- Department of Medicine, Weill Cornell Graduate School of Medical Sciences, New York, New York, USA
| | - Steven C. Almo
- Department of Biochemistry, Albert Einstein College of Medicine, New York, New York, USA
| |
Collapse
|
7
|
Michiba A, Shiogama K, Tsukamoto T, Hirayama M, Yamada S, Abe M. Morphologic Analysis of M2 Macrophage in Glioblastoma: Involvement of Macrophage Extracellular Traps (METs). Acta Histochem Cytochem 2022; 55:111-118. [PMID: 36060293 PMCID: PMC9427541 DOI: 10.1267/ahc.22-00018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 07/01/2022] [Indexed: 11/22/2022] Open
Abstract
Macrophages are classified into two phenotypes, M1 and M2, based on their roles. M2 macrophages suppress inflammation and increase in proportion to the malignancy of brain tumors. Recently, macrophage extracellular traps (METs), which change into a network, have been reported as a unique form of macrophage cell death. In this study, immunohistochemical analysis of macrophages in METs in human glioblastoma was performed. To distinguish between M1 and M2 macrophages, multiple immunostainings with Iba1 combined with CD163 or CD204 were performed. M2 macrophages were present in small amounts in normal and borderline areas but showed an increasing trend as they shifted to tumor areas, and most of them were the activated- or phagocytic-type. We also successfully detected METs coexisting with fibrin and lactoferrin near the border between the tumor and necrotic area. M2 macrophages not only suppressed inflammation but also were involved in the formation of METs. This study found that M2 macrophages play various roles in unstable situations.
Collapse
Affiliation(s)
- Ayano Michiba
- Department of Diagnostic Pathology, Fujita Health University Graduate School of Medicine
| | - Kazuya Shiogama
- Department of Morphology and Pathology, Fujita Health University Medical Science, 1–98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470–1192, Japan
| | - Tetsuya Tsukamoto
- Department of Diagnostic Pathology, Fujita Health University Graduate School of Medicine
| | - Masaya Hirayama
- Department of Morphology and Pathology, Fujita Health University Medical Science, 1–98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470–1192, Japan
| | - Seiji Yamada
- Department of Diagnostic Pathology, Fujita Health University Graduate School of Medicine
| | - Masato Abe
- Department of Morphology and Pathology, Fujita Health University Medical Science, 1–98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470–1192, Japan
| |
Collapse
|
8
|
Dry Powder Comprised of Isoniazid-Loaded Nanoparticles of Hyaluronic Acid in Conjugation with Mannose-Anchored Chitosan for Macrophage-Targeted Pulmonary Administration in Tuberculosis. Pharmaceutics 2022; 14:pharmaceutics14081543. [PMID: 35893799 PMCID: PMC9330414 DOI: 10.3390/pharmaceutics14081543] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/17/2022] [Accepted: 07/20/2022] [Indexed: 11/17/2022] Open
Abstract
Marketed dosage forms fail to deliver anti-tubercular drugs directly to the lungs in pulmonary Tuberculosis (TB). Therefore, nanomediated isoniazid (INH)-loaded dry powder for inhalation (Nano-DPI) was developed for macrophage-targeted delivery in TB. Mannosylated chitosan (MC) and hyaluronic acid (HA) with an affinity for the surface mannose and CD44 receptors of macrophages were used in conjugation to prepare hybrid nanosuspension by ionic gelation method using cross-linker, sodium tri-polyphosphate (TPP) followed by freeze-drying to obtain a dry powder composed of nanoparticles (INH-MC/HA NPs). Nanoformulations were evaluated for aerodynamic characteristics, cytotoxicity, hemocompatibility, macrophage phenotype analysis, and immune regulation. Cellular uptake imaging was also conducted to evaluate the uptake of NPs. The nanopowders did not pose any significant toxicity to the cells, along with good compatibility with red blood cells (RBCs). The pro-inflammatory costimulatory markers were upregulated, demonstrating the activation of T-cell response. Moreover, the NPs did not show any tolerogenic effect on the macrophages. Furthermore, confocal imaging exhibited the translocation of NPs in the cells. Altogether, the findings present that nano-DPI was found to be a promising vehicle for targeting macrophages.
Collapse
|
9
|
Elevated lncRNA MIAT in peripheral blood mononuclear cells contributes to post-menopausal osteoporosis. Aging (Albany NY) 2022; 14:3143-3154. [PMID: 35381577 PMCID: PMC9037269 DOI: 10.18632/aging.204001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 08/31/2021] [Indexed: 11/25/2022]
Abstract
Inflammatory cytokines contribute to the development of osteoporosis with sophisticated mechanisms. Globally alteration of long-chain non-coding RNA was screened in osteoporosis, while we still know little about their functional role in the inflammatory cytokine secretion. In this study, we collected the peripheral blood mononuclear cells (PBMCs) from post-menopausal osteoporosis patients to measure lncRNA MIAT (lncMIAT) expression levels, and explored the molecular mechanism of lncMIAT induced inflammatory cytokine secretion. We identified increased lncMIAT expression in the PBMCs of post-menopausal osteoporosis patients, which was an important predictive biomarker for the diagnosis. LncMIAT expression in PBMCs was positively correlated with the inflammatory cytokine secretion. Mechanism study indicated that lncMIAT increased the expression levels of p38MAPK by crosstalk with miR-216a in PBMCs. The lncMIAT/miR-216a/p38MAPK signaling contributed predominantly to the increased inflammatory cytokine secretion in the PBMCs from postmenopausal osteoporosis. In conclusion, we identified that increased lncMIAT in PBMCs induced inflammatory cytokine secretion, which contributed to the development of post-menopausal osteoporosis. lncMIAT/miR-216a axis was critical for the regulation of AMPK/p38MAPK signaling, which may be a promising therapeutic target for osteoporosis treatment by inflammatory cytokine inhibition.
Collapse
|
10
|
Akkaya I, Oylumlu E, Ozel I, Uzel G, Durmus L, Ciraci C. NLRC4 Inflammasome-Mediated Regulation of Eosinophilic Functions. Immune Netw 2022; 21:e42. [PMID: 35036029 PMCID: PMC8733190 DOI: 10.4110/in.2021.21.e42] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/26/2021] [Accepted: 10/29/2021] [Indexed: 12/01/2022] Open
Abstract
Eosinophils play critical roles in the maintenance of homeostasis in innate and adaptive immunity. Although primarily known for their roles in parasitic infections and the development of Th2 cell responses, eosinophils also play complex roles in other immune responses ranging from anti-inflammation to defense against viral and bacterial infections. However, the contributions of pattern recognition receptors in general, and NOD-like receptors (NLRs) in particular, to eosinophil involvement in these immune responses remain relatively underappreciated. Our in vivo studies demonstrated that NLRC4 deficient mice had a decreased number of eosinophils and impaired Th2 responses after induction of an allergic airway disease model. Our in vitro data, utilizing human eosinophilic EoL-1 cells, suggested that TLR2 induction markedly induced pro-inflammatory responses and inflammasome forming NLRC4 and NLRP3. Moreover, activation by their specific ligands resulted in caspase-1 cleavage and mature IL-1β secretion. Interestingly, Th2 responses such as secretion of IL-5 and IL-13 decreased after transfection of EoL-1 cells with short interfering RNAs targeting human NLRC4. Specific induction of NLRC4 with PAM3CSK4 and flagellin upregulated the expression of IL-5 receptor and expression of Fc epsilon receptors (FcεR1α, FcεR2). Strikingly, activation of the NLRC4 inflammasome also promoted expression of the costimulatory receptor CD80 as well as expression of immunoregulatory receptors PD-L1 and Siglec-8. Concomitant with NLRC4 upregulation, we found an increase in expression and activation of matrix metalloproteinase (MMP)-9, but not MMP-2. Collectively, our results present new potential roles of NLRC4 in mediating a variety of eosinopilic functions.
Collapse
Affiliation(s)
- Ilgin Akkaya
- Department of Molecular Biology and Genetics, Istanbul Technical University, Istanbul 34469, Turkey
| | - Ece Oylumlu
- Department of Molecular Biology and Genetics, Istanbul Technical University, Istanbul 34469, Turkey
| | - Irem Ozel
- Department of Molecular Biology and Genetics, Istanbul Technical University, Istanbul 34469, Turkey
| | - Goksu Uzel
- Department of Molecular Biology and Genetics, Istanbul Technical University, Istanbul 34469, Turkey
| | - Lubeyne Durmus
- Department of Molecular Biology and Genetics, Istanbul Technical University, Istanbul 34469, Turkey
| | - Ceren Ciraci
- Department of Molecular Biology and Genetics, Istanbul Technical University, Istanbul 34469, Turkey.,Inflammation Program, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| |
Collapse
|
11
|
Pal L, Nandani R, Kumar P, Swami B, Roy G, Bhaskar S. Macrophages Are the Key Players in Promoting Hyper-Inflammatory Response in a Mouse Model of TB-IRIS. Front Immunol 2021; 12:775177. [PMID: 34899731 PMCID: PMC8662811 DOI: 10.3389/fimmu.2021.775177] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/29/2021] [Indexed: 01/01/2023] Open
Abstract
TB-IRIS is an abnormal inflammatory response in a subset of HIV-TB co-infected patients shortly after initiation of anti-retroviral therapy (ART). Therapy in these patients could have greatly improved the life expectancy as ART reconstitutes the function and number of CD4+ T cells and many patients see improvement in symptoms but paradoxically up to 54% of co-infected patients develop TB-IRIS. Different studies have indicated that both innate and adaptive immunity are involved in the pathology of IRIS but the role of macrophages in abnormal activation of CD4+ T cells is poorly understood. Since macrophages are one of the major antigen-presenting cells and are infected by M.tb at a high frequency, they are very much likely to be involved in the development of TB-IRIS. In this study, we have developed a mouse model of experimental IRIS, in which M.tb-infected T-cell knockout mice undergo a fatal inflammatory disease after CD4+ T cell reconstitution. Lung macrophages and blood monocytes from M.tb-infected TCRβ-/- mice showed upregulated expression of cell surface activation markers and also showed higher mRNA expression of inflammation-associated chemokines and matrix metalloproteases responsible for tissue damage. Furthermore, cytokine and TLR signaling feedback mechanism to control excessive inflammation was also found to be dysregulated in these macrophages under lymphopenic conditions. Previous studies have shown that hyperactive CD4+ T cells are responsible for disease induction and our study shows that somehow macrophages are in a higher activated state when infected with M.tb in an immune-deficient condition, which results in excessive activation of the adoptively transferred CD4+ T cells. Understanding of the mechanisms underlying the pathophysiology of TB-IRIS would facilitate identification of prospective biomarkers for disease development in HIV-TB co-infected patients before starting antiretroviral therapy.
Collapse
Affiliation(s)
| | | | | | | | | | - Sangeeta Bhaskar
- Product Development Cell-1, National Institute of Immunology, New Delhi, India
| |
Collapse
|
12
|
Islam T, Koboziev I, Albracht-Schulte K, Mistretta B, Scoggin S, Yosofvand M, Moussa H, Zabet-Moghaddam M, Ramalingam L, Gunaratne PH, Moustaid-Moussa N. Curcumin Reduces Adipose Tissue Inflammation and Alters Gut Microbiota in Diet-Induced Obese Male Mice. Mol Nutr Food Res 2021; 65:e2100274. [PMID: 34510720 DOI: 10.1002/mnfr.202100274] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 08/04/2021] [Indexed: 12/24/2022]
Abstract
SCOPE Obesity prevalence continues to increase and contribute to metabolic diseases, potentially by driving systemic inflammation. Curcumin is an anti-inflammatory spice with claimed health benefits. However, mechanisms by which curcumin may reduce obesity-associated inflammation are poorly understood; thus, it is hypothesized that benefits of curcumin consumption may occur through reduced white adipose tissue (WAT) inflammation and/or beneficial changes in gut bacteria. METHODS AND RESULTS Male B6 mice are fed high-fat diets (HFD, 45% kcal fat) or HFD supplemented with 0.4% (w/w) curcumin (HFC) for 14 weeks. Curcumin supplementation significantly reduces adiposity and total macrophage infiltration in WAT, compared to HFD group, consistent with reduced mRNA levels of M1 (Cd80, Cd38, Cd11c) and M2 (Arginase-1) macrophage markers. Moreover, curcumin supplementation reduces expression of other key pro-inflammatory genes, such as NF-κB p65 subunit (p65), Stat1, Tlr4, and Il6, in WAT (p < 0.05). Using microbial 16S RNA sequencing, it is demonstrated that the relative abundance of the Lactococcus, Parasutterella, and Turicibacter genera are increased in the HFC group versus HFD. CONCLUSIONS Curcumin exerts protective metabolic effects in dietary obesity, in part through downregulation of adipose tissue inflammation, which may be mediated by alterations in composition of gut microbiota, and metabolism of curcumin into curcumin-O-glucuronide.
Collapse
Affiliation(s)
- Tariful Islam
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, USA.,Obesity Research Institute, Texas Tech University, Lubbock, TX, USA
| | - Iurii Koboziev
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, USA.,Obesity Research Institute, Texas Tech University, Lubbock, TX, USA
| | - Kembra Albracht-Schulte
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, USA.,Obesity Research Institute, Texas Tech University, Lubbock, TX, USA
| | - Brandon Mistretta
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - Shane Scoggin
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, USA.,Obesity Research Institute, Texas Tech University, Lubbock, TX, USA
| | - Mohammad Yosofvand
- Obesity Research Institute, Texas Tech University, Lubbock, TX, USA.,Department of Mechanical Engineering, Texas Tech University, Lubbock, TX, USA
| | - Hanna Moussa
- Obesity Research Institute, Texas Tech University, Lubbock, TX, USA.,Department of Mechanical Engineering, Texas Tech University, Lubbock, TX, USA
| | - Masoud Zabet-Moghaddam
- Obesity Research Institute, Texas Tech University, Lubbock, TX, USA.,Center for Biotechnology and Genomics, Texas Tech University, Lubbock, TX, USA
| | - Latha Ramalingam
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, USA.,Obesity Research Institute, Texas Tech University, Lubbock, TX, USA
| | - Preethi H Gunaratne
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - Naima Moustaid-Moussa
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, USA.,Obesity Research Institute, Texas Tech University, Lubbock, TX, USA
| |
Collapse
|
13
|
Cicuéndez M, Casarrubios L, Barroca N, Silva D, Feito MJ, Diez-Orejas R, Marques PAAP, Portolés MT. Benefits in the Macrophage Response Due to Graphene Oxide Reduction by Thermal Treatment. Int J Mol Sci 2021; 22:ijms22136701. [PMID: 34206699 PMCID: PMC8267858 DOI: 10.3390/ijms22136701] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/18/2021] [Accepted: 06/19/2021] [Indexed: 02/07/2023] Open
Abstract
Graphene and its derivatives are very promising nanomaterials for biomedical applications and are proving to be very useful for the preparation of scaffolds for tissue repair. The response of immune cells to these graphene-based materials (GBM) appears to be critical in promoting regeneration, thus, the study of this response is essential before they are used to prepare any type of scaffold. Another relevant factor is the variability of the GBM surface chemistry, namely the type and quantity of oxygen functional groups, which may have an important effect on cell behavior. The response of RAW-264.7 macrophages to graphene oxide (GO) and two types of reduced GO, rGO15 and rGO30, obtained after vacuum-assisted thermal treatment of 15 and 30 min, respectively, was evaluated by analyzing the uptake of these nanostructures, the intracellular content of reactive oxygen species, and specific markers of the proinflammatory M1 phenotype, such as CD80 expression and secretion of inflammatory cytokines TNF-α and IL-6. Our results demonstrate that GO reduction resulted in a decrease of both oxidative stress and proinflammatory cytokine secretion, significantly improving its biocompatibility and potential for the preparation of 3D scaffolds able of triggering the appropriate immune response for tissue regeneration.
Collapse
Affiliation(s)
- Mónica Cicuéndez
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain; (M.C.); (L.C.); (M.J.F.)
| | - Laura Casarrubios
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain; (M.C.); (L.C.); (M.J.F.)
| | - Nathalie Barroca
- Center for Mechanical Technology & Automation (TEMA), Mechanical Engineering Department, University of Aveiro, 3810-193 Aveiro, Portugal; (N.B.); (D.S.)
| | - Daniela Silva
- Center for Mechanical Technology & Automation (TEMA), Mechanical Engineering Department, University of Aveiro, 3810-193 Aveiro, Portugal; (N.B.); (D.S.)
| | - María José Feito
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain; (M.C.); (L.C.); (M.J.F.)
| | - Rosalía Diez-Orejas
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain;
| | - Paula A. A. P. Marques
- Center for Mechanical Technology & Automation (TEMA), Mechanical Engineering Department, University of Aveiro, 3810-193 Aveiro, Portugal; (N.B.); (D.S.)
- Correspondence: (P.A.A.P.M.); (M.T.P.)
| | - María Teresa Portolés
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain; (M.C.); (L.C.); (M.J.F.)
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, 28040 Madrid, Spain
- Correspondence: (P.A.A.P.M.); (M.T.P.)
| |
Collapse
|
14
|
Chen J, Cao X, Li B, Zhao Z, Chen S, Lai SWT, Muend SA, Nossa GK, Wang L, Guo W, Ye J, Lee PP, Feng M. Warburg Effect Is a Cancer Immune Evasion Mechanism Against Macrophage Immunosurveillance. Front Immunol 2021; 11:621757. [PMID: 33603751 PMCID: PMC7884830 DOI: 10.3389/fimmu.2020.621757] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 12/22/2020] [Indexed: 12/13/2022] Open
Abstract
Evasion of immunosurveillance is critical for cancer initiation and development. The expression of “don’t eat me” signals protects cancer cells from being phagocytosed by macrophages, and the blockade of such signals demonstrates therapeutic potential by restoring the susceptibility of cancer cells to macrophage-mediated phagocytosis. However, whether additional self-protective mechanisms play a role against macrophage surveillance remains unexplored. Here, we derived a macrophage-resistant cancer model from cells deficient in the expression of CD47, a major “don’t eat me” signal, via a macrophage selection assay. Comparative studies performed between the parental and resistant cells identified self-protective traits independent of CD47, which were examined with both pharmacological or genetic approaches in in vitro phagocytosis assays and in vivo tumor models for their roles in protecting against macrophage surveillance. Here we demonstrated that extracellular acidification resulting from glycolysis in cancer cells protected them against macrophage-mediated phagocytosis. The acidic tumor microenvironment resulted in direct inhibition of macrophage phagocytic ability and recruitment of weakly phagocytic macrophages. Targeting V-ATPase which transports excessive protons in cancer cells to acidify extracellular medium elicited a pro-phagocytic microenvironment with an increased ratio of M1-/M2-like macrophage populations, therefore inhibiting tumor development and metastasis. In addition, blockade of extracellular acidification enhanced cell surface exposure of CD71, targeting which by antibodies promoted cancer cell phagocytosis. Our results reveal that extracellular acidification due to the Warburg effect confers immune evasion ability on cancer cells. This previously unrecognized role highlights the components mediating the Warburg effect as potential targets for new immunotherapy harnessing the tumoricidal capabilities of macrophages.
Collapse
Affiliation(s)
- Jing Chen
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA, United States
| | - Xu Cao
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA, United States
| | - Bolei Li
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA, United States
| | - Zhangchen Zhao
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, United States
| | - Siqi Chen
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA, United States
| | - Seigmund W T Lai
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA, United States
| | - Sabina A Muend
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA, United States
| | - Gianna K Nossa
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA, United States
| | - Lei Wang
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA, United States
| | - Weihua Guo
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA, United States
| | - Jian Ye
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA, United States
| | - Peter P Lee
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA, United States
| | - Mingye Feng
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA, United States
| |
Collapse
|
15
|
Vallejo-Castillo L, Favari L, Vázquez-Leyva S, Mellado-Sánchez G, Macías-Palacios Z, López-Juárez LE, Valencia-Flores L, Medina-Rivero E, Chacón-Salinas R, Pavón L, Pérez-Tapia SM. Sequencing Analysis and Identification of the Primary Peptide Component of the Dialyzable Leukocyte Extract "Transferon Oral": The Starting Point to Understand Its Mechanism of Action. Front Pharmacol 2020; 11:569039. [PMID: 33117165 PMCID: PMC7577238 DOI: 10.3389/fphar.2020.569039] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 09/16/2020] [Indexed: 02/02/2023] Open
Abstract
"Transferon Oral" is a peptide-derived product with immunomodulatory properties obtained from the lysis and dialysis of human buffy coat. Its active pharmaceutical ingredient, generically known as Dialyzable Leucocyte Extract, is a mixture of peptide populations with reproducible proportions among batches. "Transferon Oral" modulates IFN-γ, TNF-α, and IL-6 and increases the survival rate in a herpes infection murine model when oropharyngeally (ORO) administered, which correlate with clinical observations where "Transferon Oral" is used as a therapeutic auxiliary in inflammatory diseases. Notwithstanding, how a peptide-derived product elicits systemic modulation of cytokines when ORO administered remains unclear. To shed light on the pharmacology of "Transferon Oral" its peptide components must be known. Ten "Transferon Oral" batches were sequenced by mass spectrometry and the intact peptides were identified. The most abundant peptides were the monomeric human Ubiquitin (Ub), a globular low-molecular mass protein, and an Ub variant which lacks the two-terminal Gly (Ub-GG). Recombinant Ub prevented murine death when ORO administered in a herpes infection murine model. Besides, the percentage of survival increased in groups treated with Transferon Oral+Ub and decreased in groups treated with Ub-depleted "Transferon Oral" respect to the group treated with "Transferon Oral" only. Our findings indicate that the biological properties of "Transferon Oral" are partially associated to the Ub content. They suggest that Ub may activate its extracellular receptor (CXCR-4) in the stomach eliciting systemic immunomodulatory effects via vagus nerve. This is the first report that identifies an active component of "Transferon Oral" with the potential for the development of oral peptide immunomodulators.
Collapse
Affiliation(s)
- Luis Vallejo-Castillo
- Unidad de Desarrollo e Investigación en Bioprocesos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del IPN, Ciudad de México, Mexico
- Laboratorio Nacional para Servicios Especializados de Investigación, Desarrollo e Innovación (I + D + i) para Farmoquímicos y Biotecnológicos (LANSEIDI-FarBiotec-CONACyT), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Liliana Favari
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del IPN, Ciudad de México, Mexico
| | - Said Vázquez-Leyva
- Unidad de Desarrollo e Investigación en Bioprocesos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
- Laboratorio Nacional para Servicios Especializados de Investigación, Desarrollo e Innovación (I + D + i) para Farmoquímicos y Biotecnológicos (LANSEIDI-FarBiotec-CONACyT), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Gabriela Mellado-Sánchez
- Unidad de Desarrollo e Investigación en Bioprocesos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
- Laboratorio Nacional para Servicios Especializados de Investigación, Desarrollo e Innovación (I + D + i) para Farmoquímicos y Biotecnológicos (LANSEIDI-FarBiotec-CONACyT), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Zaira Macías-Palacios
- Unidad de Desarrollo e Investigación en Bioprocesos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
- Laboratorio Nacional para Servicios Especializados de Investigación, Desarrollo e Innovación (I + D + i) para Farmoquímicos y Biotecnológicos (LANSEIDI-FarBiotec-CONACyT), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Leonardo E. López-Juárez
- Unidad de Desarrollo e Investigación en Bioprocesos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
- Laboratorio Nacional para Servicios Especializados de Investigación, Desarrollo e Innovación (I + D + i) para Farmoquímicos y Biotecnológicos (LANSEIDI-FarBiotec-CONACyT), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Luis Valencia-Flores
- Unidad de Desarrollo e Investigación en Bioprocesos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
- Laboratorio Nacional para Servicios Especializados de Investigación, Desarrollo e Innovación (I + D + i) para Farmoquímicos y Biotecnológicos (LANSEIDI-FarBiotec-CONACyT), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Emilio Medina-Rivero
- Unidad de Desarrollo e Investigación en Bioprocesos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Rommel Chacón-Salinas
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Lenin Pavón
- Laboratorio de Psicoinmunología, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente., Mexico City, Mexico
| | - Sonia Mayra Pérez-Tapia
- Unidad de Desarrollo e Investigación en Bioprocesos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
- Laboratorio Nacional para Servicios Especializados de Investigación, Desarrollo e Innovación (I + D + i) para Farmoquímicos y Biotecnológicos (LANSEIDI-FarBiotec-CONACyT), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| |
Collapse
|
16
|
Carballo-Uicab G, Linares-Trejo JE, Mellado-Sánchez G, López-Morales CA, Velasco-Velázquez M, Pavón L, Estrada-Parra S, Pérez-Tapia SM, Medina-Rivero E. Validation of a Cell Proliferation Assay to Assess the Potency of a Dialyzable Leukocyte Extract Intended for Batch Release. Molecules 2019; 24:E3426. [PMID: 31547184 PMCID: PMC6804008 DOI: 10.3390/molecules24193426] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 09/06/2019] [Accepted: 09/08/2019] [Indexed: 11/16/2022] Open
Abstract
Transferon® is a blood product with immunomodulatory properties constituted by a complex mixture of peptides obtained from a human dialyzable leukocyte extract (DLE). Due to its complex nature, it is necessary to demonstrate batch consistency in its biological activity. Potency is the quantitative measure of biological activity and is also a quality attribute of drugs. Here we developed and validated a proliferation assay using Jurkat cells exposed to azathioprine, which is intended to determine the potency of Transferon® according to international guidelines for pharmaceuticals. The assay showed a linear response (2.5 to 40 µg/mL), coefficients of variation from 0.7 to 13.6% demonstrated that the method is precise, while r2 = 0.97 between the nominal and measured values obtained from dilutional linearity showed that the method is accurate. We also demonstrated that the cell proliferation response was specific for Transferon® and was not induced by its vehicle nor by other peptide complex mixtures (glatiramer acetate or hydrolyzed collagen). The bioassay validated here was used to assess the relative potency of eight released batches of Transferon® with respect to a reference standard, showing consistent results. The collective information from the validation and the assessment of several batches indicate that the bioassay is suitable for the release of Transferon®.
Collapse
Affiliation(s)
- Gregorio Carballo-Uicab
- Unidad de Desarrollo e Investigación en Bioprocesos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de Mexico 11340, Mexico.
| | - José E Linares-Trejo
- Unidad de Desarrollo e Investigación en Bioprocesos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de Mexico 11340, Mexico.
| | - Gabriela Mellado-Sánchez
- Unidad de Desarrollo e Investigación en Bioprocesos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de Mexico 11340, Mexico.
| | - Carlos A López-Morales
- Unidad de Desarrollo e Investigación en Bioprocesos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de Mexico 11340, Mexico.
| | - Marco Velasco-Velázquez
- Departamento de Farmacología y Unidad Periférica de Investigación en Biomedicina Traslacional (CMN 20 de noviembre, ISSSTE), Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de Mexico 04510, Mexico.
| | - Lenin Pavón
- Laboratorio de Psicoinmunología, Dirección de Investigaciones en Neurociencias del Instituto Nacional de Psiquiatría Ramón de la Fuente, Cuida de Mexico 14370, Mexico.
| | - Sergio Estrada-Parra
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de Mexico 11340, Mexico.
| | - Sonia Mayra Pérez-Tapia
- Unidad de Desarrollo e Investigación en Bioprocesos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de Mexico 11340, Mexico.
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de Mexico 11340, Mexico.
- Laboratorio Nacional para Servicios Especializados de Investigación, Desarrollo e Innovación (I+D+i) para Farmacoquímicos y Biotecnológicos, LANSEIDI-FarBiotec-CONACyT, Ciudad de Mexico 11340, Mexico.
| | - Emilio Medina-Rivero
- Unidad de Desarrollo e Investigación en Bioprocesos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de Mexico 11340, Mexico.
| |
Collapse
|
17
|
Dialyzable Leukocyte Extract (Transferon™) Administration in Sepsis: Experience from a Single Referral Pediatric Intensive Care Unit. BIOMED RESEARCH INTERNATIONAL 2019; 2019:8980506. [PMID: 31341910 PMCID: PMC6612374 DOI: 10.1155/2019/8980506] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 05/02/2019] [Accepted: 05/27/2019] [Indexed: 12/29/2022]
Abstract
Immunomodulatory agents have been proposed as therapeutic candidates to improve outcomes in sepsis. Transferon™, a dialyzable leukocyte extract (DLE), has been supported in Mexico as an immunomodulatory adjuvant in anti-infectious therapy. Here we present a retrospective study describing the experience of a referral pediatric intensive care unit (PICU) with Transferon™ in sepsis. We studied clinical and laboratory data from 123 patients with sepsis (15 in the DLE group and 108 in the control group) that were admitted to PICU during the period between January 2010 and December 2016. Transferon™ DLE use was associated with lower C reactive protein (CRP), increase in total lymphocyte counts (TLC), and decrease in total neutrophil count (TNC) 72 hours after Transferon™ DLE administration. The control group did not present any significant difference in CRP values and had lower TLC after 72 hours of admission. There was no difference in PICU length of stay between control and Transferon™ DLE group. Transferon™ DLE administration was associated with a higher survival rate at the end of PICU stay. This study shows a possible immunomodulatory effect of Transferon™ on pediatric sepsis patients.
Collapse
|