1
|
Khalid S, Ekram S, Ramzan F, Salim A, Khan I. Co-regulation of Sox9 and TGFβ1 transcription factors in mesenchymal stem cells regenerated the intervertebral disc degeneration. Front Med (Lausanne) 2023; 10:1127303. [PMID: 37007782 PMCID: PMC10063891 DOI: 10.3389/fmed.2023.1127303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/20/2023] [Indexed: 03/19/2023] Open
Abstract
BackgroundIntervertebral disc (IVD) shows aging and degenerative changes earlier than any other body connective tissue. Its repair and regeneration provide a considerable challenge in regenerative medicine due to its high degree of infrastructure and mechanical complexity. Mesenchymal stem cells, due to their tissue resurfacing potential, represent many explanatory pathways to regenerate a tissue breakdown.MethodsThis study was undertaken to evaluate the co-regulation of Sox9 and TGFβ1 in differentiating human umbilical cord mesenchymal stem cells (hUC-MSC) into chondrocytes. The combinatorial impact of Sox9 and TGFβ1 on hUC-MSCs was examined in vitro by gene expression and immunocytochemical staining. In in vivo, an animal model of IVD degeneration was established under a fluoroscopic guided system through needle puncture of the caudal disc. Normal and transfected MSCs were transplanted. Oxidative stress, pain, and inflammatory markers were evaluated by qPCR. Disc height index (DHI), water content, and gag content were analyzed. Histological examinations were performed to evaluate the degree of regeneration.ResultshUC-MSC transfected with Sox9+TGFβ1 showed a noticeable morphological appearance of a chondrocyte, and highly expressed chondrogenic markers (aggrecan, Sox9, TGFβ1, TGFβ2, and type II collagens) after transfection. Histological observation demonstrated that cartilage regeneration, extracellular matrix synthesis, and collagen remodeling were significant upon staining with H&E, Alcian blue, and Masson's trichrome stain on day 14. Additionally, oxidative stress, pain, and inflammatory markers were positively downregulated in the animals transplanted with Sox9 and TGFβ1 transfected MSCs.ConclusionThese findings indicate that the combinatorial effect of Sox9 and TGFβ1 substantially accelerates the chondrogenesis in hUC-MSCs. Cartilage regeneration and matrix synthesis were significantly enhanced. Therefore, a synergistic effect of Sox9 and TGFβ1 could be an immense therapeutic combination in the tissue engineering of cartilaginous joint bio-prostheses and a novel candidate for cartilage stabilization.
Collapse
|
2
|
Velasco-Salgado C, Pontes-Quero GM, García-Fernández L, Aguilar MR, de Wit K, Vázquez-Lasa B, Rojo L, Abradelo C. The Role of Polymeric Biomaterials in the Treatment of Articular Osteoarthritis. Pharmaceutics 2022; 14:pharmaceutics14081644. [PMID: 36015270 PMCID: PMC9413163 DOI: 10.3390/pharmaceutics14081644] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/28/2022] [Accepted: 07/30/2022] [Indexed: 12/03/2022] Open
Abstract
Osteoarthritis is a high-prevalence joint disease characterized by the degradation of cartilage, subchondral bone thickening, and synovitis. Due to the inability of cartilage to self-repair, regenerative medicine strategies have become highly relevant in the management of osteoarthritis. Despite the great advances in medical and pharmaceutical sciences, current therapies stay unfulfilled, due to the inability of cartilage to repair itself. Additionally, the multifactorial etiology of the disease, including endogenous genetic dysfunctions and exogenous factors in many cases, also limits the formation of new cartilage extracellular matrix or impairs the regular recruiting of chondroprogenitor cells. Hence, current strategies for osteoarthritis management involve not only analgesics, anti-inflammatory drugs, and/or viscosupplementation but also polymeric biomaterials that are able to drive native cells to heal and repair the damaged cartilage. This review updates the most relevant research on osteoarthritis management that employs polymeric biomaterials capable of restoring the viscoelastic properties of cartilage, reducing the symptomatology, and favoring adequate cartilage regeneration properties.
Collapse
Affiliation(s)
- Carmen Velasco-Salgado
- Departamento de Química y Bioquímica, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28925 Alcorcon, Spain
| | - Gloria María Pontes-Quero
- Instituto de Ciencia y Tecnología de Polímeros (ICTP), CSIC, Calle Juan de la Cierva, 3, 28006 Madrid, Spain
- Centro de Investigación Biomédica en Red de Bioingienería, Biomateriales y Biotecnología CIBER-BBN, Instituto de Salud Carlos III, Calle Monforte de Lemos S/N, 28029 Madrid, Spain
| | - Luis García-Fernández
- Centro de Investigación Biomédica en Red de Bioingienería, Biomateriales y Biotecnología CIBER-BBN, Instituto de Salud Carlos III, Calle Monforte de Lemos S/N, 28029 Madrid, Spain
| | - María Rosa Aguilar
- Instituto de Ciencia y Tecnología de Polímeros (ICTP), CSIC, Calle Juan de la Cierva, 3, 28006 Madrid, Spain
- Centro de Investigación Biomédica en Red de Bioingienería, Biomateriales y Biotecnología CIBER-BBN, Instituto de Salud Carlos III, Calle Monforte de Lemos S/N, 28029 Madrid, Spain
| | - Kyra de Wit
- Instituto de Ciencia y Tecnología de Polímeros (ICTP), CSIC, Calle Juan de la Cierva, 3, 28006 Madrid, Spain
| | - Blanca Vázquez-Lasa
- Instituto de Ciencia y Tecnología de Polímeros (ICTP), CSIC, Calle Juan de la Cierva, 3, 28006 Madrid, Spain
- Centro de Investigación Biomédica en Red de Bioingienería, Biomateriales y Biotecnología CIBER-BBN, Instituto de Salud Carlos III, Calle Monforte de Lemos S/N, 28029 Madrid, Spain
| | - Luis Rojo
- Instituto de Ciencia y Tecnología de Polímeros (ICTP), CSIC, Calle Juan de la Cierva, 3, 28006 Madrid, Spain
- Centro de Investigación Biomédica en Red de Bioingienería, Biomateriales y Biotecnología CIBER-BBN, Instituto de Salud Carlos III, Calle Monforte de Lemos S/N, 28029 Madrid, Spain
- Correspondence: (L.R.); (C.A.)
| | - Cristina Abradelo
- Departamento de Química y Bioquímica, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28925 Alcorcon, Spain
- Correspondence: (L.R.); (C.A.)
| |
Collapse
|
3
|
Rodriguez-Marquez CD, Arteaga-Marin S, Rivas-Sánchez A, Autrique-Hernández R, Castro-Muñoz R. A Review on Current Strategies for Extraction and Purification of Hyaluronic Acid. Int J Mol Sci 2022; 23:ijms23116038. [PMID: 35682710 PMCID: PMC9181718 DOI: 10.3390/ijms23116038] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/23/2022] [Accepted: 05/26/2022] [Indexed: 02/06/2023] Open
Abstract
Since it is known that hyaluronic acid contributes to soft tissue growth, elasticity, and scar reduction, different strategies of producing HA have been explored in order to satisfy the current demand of HA in pharmaceutical products and formulations. The current interest deals with production via bacterial and yeast fermentation and extraction from animal sources; however, the main challenge is the right extraction technique and strategy since the original sources (e.g., fermentation broth) represent a complex system containing a number of components and solutes, which complicates the achievement of high extraction rates and purity. This review sheds light on the main pathways for the production of HA, advantages, and disadvantages, along with the current efforts in extracting and purifying this high-added-value molecule from different sources. Particular emphasis has been placed on specific case studies attempting production and successful recovery. For such works, full details are given together with their relevant outcomes.
Collapse
Affiliation(s)
- Carlos Dariel Rodriguez-Marquez
- Tecnologico de Monterrey, Campus Chihuahua, Avenida H. Colegio Militar 4700, Nombre de Dios, Chihuahua 31300, Chihuahua, Mexico;
| | - Susana Arteaga-Marin
- Tecnologico de Monterrey, Campus Querétaro, Avenida Epigmenio González 500, San Pablo, Santiago de Querétaro 76130, Qro., Mexico; (S.A.-M.); (R.A.-H.)
| | - Andrea Rivas-Sánchez
- Tecnologico de Monterrey, Campus Monterrey, Avenida Eugenio Garza Sada 2501 Sur, Tecnológico, Monterrey 64849, N.L., Mexico;
| | - Renata Autrique-Hernández
- Tecnologico de Monterrey, Campus Querétaro, Avenida Epigmenio González 500, San Pablo, Santiago de Querétaro 76130, Qro., Mexico; (S.A.-M.); (R.A.-H.)
| | - Roberto Castro-Muñoz
- Tecnologico de Monterrey, Campus Toluca, Avenida Eduardo Monroy Cárdenas 2000 San Antonio Buenavista, Toluca de Lerdo 50110, Mexico
- Department of Process Engineering and Chemical Technology, Faculty of Chemistry, Gdansk University of Technology, 11/12 Narutowicza St., 80-233 Gdansk, Poland
- Correspondence: or
| |
Collapse
|
4
|
Retracted: Novel Hybrid Gels Made of High and Low Molecular Weight Hyaluronic Acid Induce Proliferation and Reduce Inflammation in an Osteoarthritis In Vitro Model Based on Human Synoviocytes and Chondrocytes. BIOMED RESEARCH INTERNATIONAL 2022; 2022:9873639. [PMID: 35242877 PMCID: PMC8888089 DOI: 10.1155/2022/9873639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 01/20/2022] [Indexed: 11/17/2022]
Abstract
[This retracts the article DOI: 10.1155/2019/4328219.].
Collapse
|
5
|
Hintze V, Schnabelrauch M, Rother S. Chemical Modification of Hyaluronan and Their Biomedical Applications. Front Chem 2022; 10:830671. [PMID: 35223772 PMCID: PMC8873528 DOI: 10.3389/fchem.2022.830671] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/10/2022] [Indexed: 12/26/2022] Open
Abstract
Hyaluronan, the extracellular matrix glycosaminoglycan, is an important structural component of many tissues playing a critical role in a variety of biological contexts. This makes hyaluronan, which can be biotechnologically produced in large scale, an attractive starting polymer for chemical modifications. This review provides a broad overview of different synthesis strategies used for modulating the biological as well as material properties of this polysaccharide. We discuss current advances and challenges of derivatization reactions targeting the primary and secondary hydroxyl groups or carboxylic acid groups and the N-acetyl groups after deamidation. In addition, we give examples for approaches using hyaluronan as biomedical polymer matrix and consequences of chemical modifications on the interaction of hyaluronan with cells via receptor-mediated signaling. Collectively, hyaluronan derivatives play a significant role in biomedical research and applications indicating the great promise for future innovative therapies.
Collapse
Affiliation(s)
- Vera Hintze
- Institute of Materials Science, Max Bergmann Center of Biomaterials, Technische Universität Dresden, Dresden, Germany
| | | | - Sandra Rother
- School of Medicine, Center for Molecular Signaling (PZMS), Saarland University, Homburg, Germany
| |
Collapse
|
6
|
Vassallo V, Tsianaka A, Alessio N, Grübel J, Cammarota M, Tovar GEM, Southan A, Schiraldi C. Evaluation of novel biomaterials for cartilage regeneration based on gelatin methacryloyl interpenetrated with extractive chondroitin sulfate or unsulfated biotechnological chondroitin. J Biomed Mater Res A 2022; 110:1210-1223. [PMID: 35088923 PMCID: PMC9306773 DOI: 10.1002/jbm.a.37364] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 01/11/2022] [Accepted: 01/13/2022] [Indexed: 01/10/2023]
Abstract
Gelatin is widely proposed as scaffold for cartilage tissue regeneration due to its high similarities to the extracellular matrix. However, poor mechanical properties and high sensitivity to enzymatic degradation encouraged the scientific community to develop strategies to obtain better performing hydrogels. Gelatin networks, specifically gelatin‐methacryloyl (GM), have been coupled to hyaluronan or chondroitin sulfate (CS). In this study, we evaluated the biophysical properties of an innovative photocross‐linked hydrogel based on GM with the addition of CS or a new unsulfated biotechnological chondroitin (BC). Biophysical, mechanical, and biochemical characterization have been assessed to compare GM hydrogels to the chondroitin containing networks. Moreover, mesenchymal stem cells (MSCs) were seeded on these biomaterials in order to evaluate the differentiation toward the chondrocyte phenotype in 21 days. Rheological characterization showed that both CS and BC increased the stiffness (G' was about 2‐fold), providing a stronger rigid matrix, with respect to GM alone. The biological tests confirmed the onset of MSCs differentiation process starting from 14 days of in vitro culture. In particular, the combination GM + BC resulted to be more effective than GM + CS in the up‐regulation of key genes such as collagen type 2A1 (COLII), SOX‐9, and aggrecan). In addition, the scanning microscope analyses revealed the cellular adhesion on materials and production of extracellular vesicles. Immunofluorescence staining confirmed an increase of COLII in presence of both chondroitins. Finally, the outcomes suggest that BC entangled within cross‐linked GM matrix may represent a promising new biomaterial with potential applications in cartilage regeneration.
Collapse
Affiliation(s)
- Valentina Vassallo
- Department of Experimental Medicine, Section of Biotechnology, Medical Histology and Molecular Biology, University of Campania "Luigi Vanvitelli", Naples
| | - Anastasia Tsianaka
- Institute of Interfacial Process Engineering and Plasma Technology IGVP, University of Stuttgart, Stuttgart, Germany
| | - Nicola Alessio
- Department of Experimental Medicine, Section of Biotechnology, Medical Histology and Molecular Biology, University of Campania "Luigi Vanvitelli", Naples
| | - Jana Grübel
- Institute of Interfacial Process Engineering and Plasma Technology IGVP, University of Stuttgart, Stuttgart, Germany
| | - Marcella Cammarota
- Department of Experimental Medicine, Section of Biotechnology, Medical Histology and Molecular Biology, University of Campania "Luigi Vanvitelli", Naples
| | - Günter E M Tovar
- Institute of Interfacial Process Engineering and Plasma Technology IGVP, University of Stuttgart, Stuttgart, Germany.,Fraunhofer Institute of Interfacial Engineering and Biotechnology IGB, Stuttgart, Germany
| | - Alexander Southan
- Institute of Interfacial Process Engineering and Plasma Technology IGVP, University of Stuttgart, Stuttgart, Germany
| | - Chiara Schiraldi
- Department of Experimental Medicine, Section of Biotechnology, Medical Histology and Molecular Biology, University of Campania "Luigi Vanvitelli", Naples
| |
Collapse
|
7
|
Santos-Beato P, Midha S, Pitsillides AA, Miller A, Torii R, Kalaskar DM. Biofabrication of the osteochondral unit and its applications: Current and future directions for 3D bioprinting. J Tissue Eng 2022; 13:20417314221133480. [PMID: 36386465 PMCID: PMC9643769 DOI: 10.1177/20417314221133480] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 09/30/2022] [Indexed: 07/20/2023] Open
Abstract
Multiple prevalent diseases, such as osteoarthritis (OA), for which there is no cure or full understanding, affect the osteochondral unit; a complex interface tissue whose architecture, mechanical nature and physiological characteristics are still yet to be successfully reproduced in vitro. Although there have been multiple tissue engineering-based approaches to recapitulate the three dimensional (3D) structural complexity of the osteochondral unit, there are various aspects that still need to be improved. This review presents the different pre-requisites necessary to develop a human osteochondral unit construct and focuses on 3D bioprinting as a promising manufacturing technique. Examples of 3D bioprinted osteochondral tissues are reviewed, focusing on the most used bioinks, chosen cell types and growth factors. Further information regarding the applications of these 3D bioprinted tissues in the fields of disease modelling, drug testing and implantation is presented. Finally, special attention is given to the limitations that currently hold back these 3D bioprinted tissues from being used as models to investigate diseases such as OA. Information regarding improvements needed in bioink development, bioreactor use, vascularisation and inclusion of additional tissues to further complete an OA disease model, are presented. Overall, this review gives an overview of the evolution in 3D bioprinting of the osteochondral unit and its applications, as well as further illustrating limitations and improvements that could be performed explicitly for disease modelling.
Collapse
Affiliation(s)
| | - Swati Midha
- Kennedy Institute of Rheumatology,
University of Oxford, Oxford, UK
| | | | - Aline Miller
- Department of Chemical Engineering,
University of Manchester, Manchester, UK
| | - Ryo Torii
- Department of Mechanical Engineering,
University College London, London, UK
| | - Deepak M Kalaskar
- Institute of Orthopaedics and
Musculoskeletal Science, Division of Surgery & Interventional Science,
University College London (UCL), UK
| |
Collapse
|
8
|
Filho MCB, Dos Santos Haupenthal DP, Zaccaron RP, de Bem Silveira G, de Roch Casagrande L, Lupselo FS, Alves N, de Sousa Mariano S, do Bomfim FRC, de Andrade TAM, Machado-de-Ávila RA, Silveira PCL. Intra-articular treatment with hyaluronic acid associated with gold nanoparticles in a mechanical osteoarthritis model in Wistar rats. J Orthop Res 2021; 39:2546-2555. [PMID: 33580538 DOI: 10.1002/jor.25008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 11/26/2020] [Accepted: 02/10/2021] [Indexed: 02/04/2023]
Abstract
This study aimed to evaluate the effects of intra-articular treatment with hyaluronic acid (HA) associated with GNPs in a mechanical model of osteoarthritis induced by median meniscectomy (MM). Fifty Wistar rats (2 months weighing between 250 and 300 g) were used, divided into five groups of 10 animals each: Sham, osteoarthritis (OA), OA + HA, OA + gold nanoparticles (GNPs), and OA + HA + GNPs. Intra-articular treatment was started 30 days after the model was induced, with a frequency of 2 weeks for 60 days. Fifteen days after the last application, the animals were euthanized with the removal of the joint tissue for biochemical and histological analysis. The model used was able to mimic osteoarthritis, characterized by the presence of high levels of proinflammatory cytokines, oxidative stress, and degeneration of joint surfaces (Grade III, according to SCORE OARSI). The isolated use of HA or GNPs provided beneficial results to the joint; however, only the group subjected to the association between HA and GNPs showed the attenuation of oxidative stress and reduced proinflammatory markers, with a simultaneous increase in levels of anti-inflammatory cytokines and growth factors. Upon histological analysis, only the OA + HA + GNPs group achieved the restoration of the thickness of the joint cartilage with reduced damage and return to the intact joint surface. The results found demonstrated that the association of GNPs with HA was able to reverse the deleterious effects caused by the model by inhibiting the progressive degeneration of joint surfaces, representing a promising treatment for osteoarthritis.
Collapse
Affiliation(s)
- Mario Cesar Búrigo Filho
- Laboratory of Experimental Phisiopatology, Program of postgraduate in Science of Health, Universidade do Extremo Sul Catarinense, Criciúma, Santa Catarina, Brazil
| | - Daniela Pacheco Dos Santos Haupenthal
- Laboratory of Experimental Phisiopatology, Program of postgraduate in Science of Health, Universidade do Extremo Sul Catarinense, Criciúma, Santa Catarina, Brazil
| | - Rubya Pereira Zaccaron
- Laboratory of Experimental Phisiopatology, Program of postgraduate in Science of Health, Universidade do Extremo Sul Catarinense, Criciúma, Santa Catarina, Brazil
| | - Gustavo de Bem Silveira
- Laboratory of Experimental Phisiopatology, Program of postgraduate in Science of Health, Universidade do Extremo Sul Catarinense, Criciúma, Santa Catarina, Brazil
| | - Laura de Roch Casagrande
- Laboratory of Experimental Phisiopatology, Program of postgraduate in Science of Health, Universidade do Extremo Sul Catarinense, Criciúma, Santa Catarina, Brazil
| | - Fernando Silva Lupselo
- Laboratory of Experimental Phisiopatology, Program of postgraduate in Science of Health, Universidade do Extremo Sul Catarinense, Criciúma, Santa Catarina, Brazil
| | - Naiara Alves
- Graduate Program of Biomedical Sciences, University Center of Herminio Ometto Foundation, Araras, São Paulo, Brazil
| | - Samara de Sousa Mariano
- Graduate Program of Biomedical Sciences, University Center of Herminio Ometto Foundation, Araras, São Paulo, Brazil
| | | | | | - Ricardo Andrez Machado-de-Ávila
- Laboratory of Experimental Phisiopatology, Program of postgraduate in Science of Health, Universidade do Extremo Sul Catarinense, Criciúma, Santa Catarina, Brazil
| | - Paulo Cesar Lock Silveira
- Laboratory of Experimental Phisiopatology, Program of postgraduate in Science of Health, Universidade do Extremo Sul Catarinense, Criciúma, Santa Catarina, Brazil
| |
Collapse
|
9
|
Bełdowski P, Przybyłek M, Raczyński P, Dedinaite A, Górny K, Wieland F, Dendzik Z, Sionkowska A, Claesson PM. Albumin-Hyaluronan Interactions: Influence of Ionic Composition Probed by Molecular Dynamics. Int J Mol Sci 2021; 22:ijms222212360. [PMID: 34830249 PMCID: PMC8625520 DOI: 10.3390/ijms222212360] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 10/28/2021] [Accepted: 11/10/2021] [Indexed: 12/15/2022] Open
Abstract
The lubrication mechanism in synovial fluid and joints is not yet fully understood. Nevertheless, intermolecular interactions between various neutral and ionic species including large macromolecular systems and simple inorganic ions are the key to understanding the excellent lubrication performance. An important tool for characterizing the intermolecular forces and their structural consequences is molecular dynamics. Albumin is one of the major components in synovial fluid. Its electrostatic properties, including the ability to form molecular complexes, are closely related to pH, solvation, and the presence of ions. In the context of synovial fluid, it is relevant to describe the possible interactions between albumin and hyaluronate, taking into account solution composition effects. In this study, the influence of Na+, Mg2+, and Ca2+ ions on human serum albumin–hyaluronan interactions were examined using molecular dynamics tools. It was established that the presence of divalent cations, and especially Ca2+, contributes mostly to the increase of the affinity between hyaluronan and albumin, which is associated with charge compensation in negatively charged hyaluronan and albumin. Furthermore, the most probable binding sites were structurally and energetically characterized. The indicated moieties exhibit a locally positive charge which enables hyaluronate binding (direct and water mediated).
Collapse
Affiliation(s)
- Piotr Bełdowski
- Faculty of Chemical Technology and Engineering, Institute of Mathematics & Physics, Bydgoszcz University of Science & Technology, 85-796 Bydgoszcz, Poland
- KTH Royal Institute of Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, Engineering Pedagogics, SE-100 44 Stockholm, Sweden;
- Correspondence:
| | - Maciej Przybyłek
- Department of Physical Chemistry, Pharmacy Faculty, Collegium Medicum of Bydgoszcz, Nicolaus Copernicus University in Toruń, Kurpińskiego 5, 85-950 Bydgoszcz, Poland;
| | - Przemysław Raczyński
- Faculty of Science and Technology, University of Silesia in Katowice, 75 Pułku Piechoty 1A, 41-500 Chorzow, Poland; (P.R.); (K.G.); (Z.D.)
| | - Andra Dedinaite
- KTH Royal Institute of Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, Engineering Pedagogics, SE-100 44 Stockholm, Sweden;
- Division of Bioscience and Materials, RISE Research Institutes of Sweden, SE-114 86 Stockholm, Sweden
| | - Krzysztof Górny
- Faculty of Science and Technology, University of Silesia in Katowice, 75 Pułku Piechoty 1A, 41-500 Chorzow, Poland; (P.R.); (K.G.); (Z.D.)
| | - Florian Wieland
- Helmholtz-Zentrum Hereon: Institute for metallic Biomaterials, Max-Planck-Straße 1, 21502 Geesthacht, Germany;
| | - Zbigniew Dendzik
- Faculty of Science and Technology, University of Silesia in Katowice, 75 Pułku Piechoty 1A, 41-500 Chorzow, Poland; (P.R.); (K.G.); (Z.D.)
| | - Alina Sionkowska
- Department of Biomaterials and Cosmetics Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarin 7, 87-100 Torun, Poland;
| | - Per M. Claesson
- KTH Royal Institute of Technology, Department of Chemistry, Surface and Corrosion Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, SE-100 44 Stockholm, Sweden;
| |
Collapse
|
10
|
Hossain Rakin R, Kumar H, Rajeev A, Natale G, Menard F, Li ITS, Kim K. Tunable metacrylated hyaluronic acid-based hybrid bioinks for stereolithography 3D bioprinting. Biofabrication 2021; 13. [PMID: 34507314 DOI: 10.1088/1758-5090/ac25cb] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 09/10/2021] [Indexed: 12/23/2022]
Abstract
Hyaluronic acid is a native extra-cellular matrix derivative that promises unique properties, such as anti-inflammatory response and cell-signaling with tissue-specific applications under its bioactive properties. Here, we investigate the importance of the duration of synthesis to obtain photocrosslinkable methacrylated hyaluronic acid (MeHA) with high degree of substitution. MeHA with high degree of substitution can result in rapid photocrosslinking and can be used as a bioink for stereolithographic (SLA) three dimensional 3D bioprinting. Increased degree of substitution results Our findings show that a ten-day synthesis results in an 88% degree of methacrylation (DM), whereas three-day and five-day syntheses result in 32% and 42% DM, respectively. The rheological characterization revealed an increased rate of photopolymerization with increasing DM. Further, we developed a hybrid bioink to overcome the non-cell-adhesive nature of MeHA by combining it with gelatin methacryloyl (GelMA) to fabricate 3D cell-laden hydrogel scaffolds. The hybrid bioink exhibited a 55% enhancement in stiffness compared to MeHA only and enabled cell-adhesion while maintaining high cell viability. Investigations also revealed that the hybrid bioink was a more suitable candidate for stereolithography (SLA) 3D bioprinting than MeHA because of its mechanical strength, printability, and cell-adhesive nature. This research lays out a firm foundation for the development of a stable hybrid bioink with MeHA and GelMA for first-ever use with SLA 3D bioprinting.
Collapse
Affiliation(s)
- Rafaeal Hossain Rakin
- School of Engineering, The University of British Columbia, Kelowna, BC V1V 1V7, Canada
| | - Hitendra Kumar
- School of Engineering, The University of British Columbia, Kelowna, BC V1V 1V7, Canada.,Department of Mechanical and Manufacturing Engineering and Biomedical Engineering Graduate Program, Schulich School of Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Ashna Rajeev
- Department of Chemical & Petroleum Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Giovanniantonio Natale
- Department of Chemical & Petroleum Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Frederic Menard
- Department of Chemistry, The University of British Columbia, Kelowna, BC V1V 1V7, Canada
| | - Isaac T S Li
- Department of Chemistry, The University of British Columbia, Kelowna, BC V1V 1V7, Canada
| | - Keekyoung Kim
- Department of Mechanical and Manufacturing Engineering and Biomedical Engineering Graduate Program, Schulich School of Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
11
|
Hyaluronan and Derivatives: An In Vitro Multilevel Assessment of Their Potential in Viscosupplementation. Polymers (Basel) 2021; 13:polym13193208. [PMID: 34641024 PMCID: PMC8512809 DOI: 10.3390/polym13193208] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/08/2021] [Accepted: 09/12/2021] [Indexed: 12/12/2022] Open
Abstract
In this research work, viscosupplements based on linear, derivatized, crosslinked and complexed HA forms were extensively examined, providing data on the hydrodynamic parameters for the water-soluble-HA-fraction, rheology, sensitivity to enzymatic hydrolysis and capacity to modulate specific biomarkers’ expression in human pathological chondrocytes and synoviocytes. Soluble HA ranged from 0 to 32 mg/mL and from 150 to 1330 kDa MW. The rheological behavior spanned from purely elastic to viscoelastic, suggesting the diversity of the categories that are suitable for restoring specific/different features of the healthy synovial fluid. The rheological parameters were reduced in a diverse manner upon dilution and hyaluronidases action, indicating different durations of the viscosupplementation effect. Bioactivity was found for all the samples, increasing the expression of different matrix markers (e.g., hyaluronan-synthase); however, the hybrid cooperative complexes performed better in most of the experiments. Hybrid cooperative complexes improved COLII mRNA expression (~12-fold increase vs. CTR), proved the most effective at preserving cell phenotype. In addition, in these models, the HA samples reduced inflammation. IL-6 was down-regulated vs. CTR by linear and chemically modified HA, and especially by hybrid complexes. The results represent the first comprehensive panel of data directly comparing the diverse HA forms for intra-articular injections and provide valuable information for tailoring products’ clinical use as well as for designing new, highly performing HA-formulations that can address specific needs.
Collapse
|
12
|
Liu R, Wu H, Song H. Knockdown of TRIM8 Attenuates IL-1β-induced Inflammatory Response in Osteoarthritis Chondrocytes Through the Inactivation of NF-κB Pathway. Cell Transplant 2021; 29:963689720943604. [PMID: 32757662 PMCID: PMC7563946 DOI: 10.1177/0963689720943604] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Osteoarthritis (OA) is a degenerative joint disease associated with inflammatory response. Tripartite motif 8 (TRIM8) is a member of TRIM family that has been found to regulate inflammation. The present study was aimed to evaluate the role of TRIM8 in OA chondrocytes. Our results showed that TRIM8 expression was significantly increased in interleukin 1 beta (IL-1β)-stimulated OA chondrocytes. To knock down the TRIM8 expression in chondrocytes, the chondrocytes were transfected with si-TRIM8. Knockdown of TRIM8 attenuated IL-1β-induced production of inflammatory mediators including nitric oxide and prostaglandin E2. The increased expression levels of inducible nitric oxide synthase and cyclooxygenase-2 in IL-1β-induced chondrocytes were suppressed by TRIM8 knockdown. The IL-1β-induced production of proinflammatory cytokines including TNF-α and IL-6 was significantly decreased after transfection with si-TRIM8. Besides, knockdown of TRIM8 mitigated the IL-1β-induced decrease in aggrecan and collagen-II proteins expression and increase in matrix-degrading enzymes in chondrocytes. Furthermore, TRIM8 knockdown prevented IL-1β-induced nuclear factor kappa B (NF-κB) activation in chondrocytes. Taken together, these findings indicated that knockdown of TRIM8 attenuates IL-1β-induced inflammatory response in OA chondrocytes through the inactivation of NF-κB pathway. Thus, targeting TRIM8 might provide therapeutic treatment for OA.
Collapse
Affiliation(s)
- Ruoxi Liu
- Department of Orthopaedics, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Hao Wu
- Department of Orthopaedics, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Huanjin Song
- Department of Orthopaedics, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
13
|
Vassallo V, Stellavato A, Cimini D, Pirozzi AVA, Alfano A, Cammarota M, Balato G, D'Addona A, Ruosi C, Schiraldi C. Unsulfated biotechnological chondroitin by itself as well as in combination with high molecular weight hyaluronan improves the inflammation profile in osteoarthritis in vitro model. J Cell Biochem 2021; 122:1021-1036. [PMID: 34056757 PMCID: PMC8453819 DOI: 10.1002/jcb.29907] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 12/23/2020] [Accepted: 01/27/2021] [Indexed: 12/11/2022]
Abstract
Several studies suggest that inflammation has a pivotal role during the progression of osteoarthritis (OA) and cytokines have been identified as the main process mediators. This study aimed to explore the ability to modulate the main OA pro-inflammatory biomarkers of novel gels (H-HA/BC) based on high molecular weight hyaluronan (H-HA) and unsulfated biotechnological chondroitin (BC). For the first time, BC was tested also in combination with H-HA on human primary cells isolated from pathological knee joints. Specifically, the experiments were performed using an OA in vitro model based on human chondrocytes and synoviocytes. To evaluate the anti-inflammatory effects of H-HA/BC in comparison with H-HA and BC single gels, NF-kB, COMP-2, MyD88, MMP-13 and a wide range of cytokines, known to be specific biomarkers in OA (e.g., IL-6, IL-8, and TNF-α), were evaluated. In addition, cell morphology and proliferation occurring in the presence of either H-HA/BC or single components were assessed using time-lapse video microscopy. It was shown that synovial fluids and cells isolated from OA suffering patients, presented a cytokine pattern respondent to an ongoing inflammation status. H-HA and BC significantly reduced the levels of 23 biomarkers associated with cartilage damage. However, H-HA/BC decreased significantly 24 biological mediators and downregulated 19 of them more efficiently than the single components. In synoviocytes cultures, cytokine analyses proved that H-HA/BC gels re-established an extracellular environment more similar to a healthy condition reducing considerably the concentration of 11 analytes. Instead, H-HA and BC significantly modulated 7 (5 only with a longer treatment) and 8 biological cytokines, respectively. Our results suggest that H-HA/BC beyond the viscosupplementation effect typical for HA-based gels, can improve the inflammation status in joints and thus could be introduced as a valid protective and anti-inflammatory intraarticular device in the field of Class III medical devices for OA treatments.
Collapse
Affiliation(s)
- Valentina Vassallo
- Department of Experimental Medicine, Section of Biotechnology, Medical Histology and Molecular BiologyUniversity of Campania "Luigi Vanvitelli"NaplesItaly
| | - Antonietta Stellavato
- Department of Experimental Medicine, Section of Biotechnology, Medical Histology and Molecular BiologyUniversity of Campania "Luigi Vanvitelli"NaplesItaly
| | - Donatella Cimini
- Department of Experimental Medicine, Section of Biotechnology, Medical Histology and Molecular BiologyUniversity of Campania "Luigi Vanvitelli"NaplesItaly
| | - Anna V. A. Pirozzi
- Department of Experimental Medicine, Section of Biotechnology, Medical Histology and Molecular BiologyUniversity of Campania "Luigi Vanvitelli"NaplesItaly
| | - Alberto Alfano
- Department of Experimental Medicine, Section of Biotechnology, Medical Histology and Molecular BiologyUniversity of Campania "Luigi Vanvitelli"NaplesItaly
| | - Marcella Cammarota
- Department of Experimental Medicine, Section of Biotechnology, Medical Histology and Molecular BiologyUniversity of Campania "Luigi Vanvitelli"NaplesItaly
| | - Giovanni Balato
- School of Medicine and Surgery "Federico II" of NaplesA.O.U. Federico II of NaplesNaplesItaly
| | - Alessio D'Addona
- School of Medicine and Surgery "Federico II" of NaplesA.O.U. Federico II of NaplesNaplesItaly
| | - Carlo Ruosi
- School of Medicine and Surgery "Federico II" of NaplesA.O.U. Federico II of NaplesNaplesItaly
| | - Chiara Schiraldi
- Department of Experimental Medicine, Section of Biotechnology, Medical Histology and Molecular BiologyUniversity of Campania "Luigi Vanvitelli"NaplesItaly
| |
Collapse
|
14
|
Kuo PJ, Yen HJ, Lin CY, Lai HY, Chen CH, Wang SH, Chang WJ, Lee SY, Huang HM. Estimation of the Effect of Accelerating New Bone Formation of High and Low Molecular Weight Hyaluronic Acid Hybrid: An Animal Study. Polymers (Basel) 2021; 13:1708. [PMID: 34073693 PMCID: PMC8197183 DOI: 10.3390/polym13111708] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 01/09/2023] Open
Abstract
Osteoconduction is an important consideration for fabricating bio-active materials for bone regeneration. For years, hydroxyapatite and β-calcium triphosphate (β-TCP) have been used to develop bone grafts for treating bone defects. However, this material can be difficult to handle due to filling material sagging. High molecular weight hyaluronic acid (H-HA) can be used as a carrier to address this problem and improve operability. However, the effect of H-HA on bone formation is still controversial. In this study, low molecular weight hyaluronic acid (L-HA) was fabricated using gamma-ray irradiation. The viscoelastic properties and chemical structure of the fabricated hybrids were evaluated by a rheological analysis nuclear magnetic resonance (NMR) spectrum. The L-MH was mixed with H-HA to produce H-HA/L-HA hybrids at ratios of 80:20, 50:50 and 20:80 (w/w). These HA hybrids were then combined with hydroxyapatite and β-TCP to create a novel bone graft composite. For animal study, artificial bone defects were prepared in rabbit femurs. After 12 weeks of healing, the rabbits were scarified, and the healing statuses were observed and evaluated through micro-computer tomography (CT) and tissue histological images. Our viscoelastic analysis showed that an HA hybrid consisting 20% H-HA is sufficient to maintain elasticity; however, the addition of L-HA dramatically decreases the dynamic viscosity of the HA hybrid. Micro-CT images showed that the new bone formations in the rabbit femur defect model treated with 50% and 80% L-HA were 1.47 (p < 0.05) and 2.26 (p < 0.01) times higher than samples filled with HA free bone graft. In addition, a similar tendency was observed in the results of HE staining. These results lead us to suggest that the material with an H-HA/L-HA ratio of 50:50 exhibited acceptable viscosity and significant new bone formation. Thus, it is reasonable to suggest that it may be a potential candidate to serve as a supporting system for improving the operability of granular bone grafts and enhancing new bone formations.
Collapse
Affiliation(s)
- Po-Jan Kuo
- School of Dentistry, Department of Periodontology, National Defense Medical Center and Tri-Service General Hospital, Taipei 11490, Taiwan;
| | - Hsiu-Ju Yen
- Department of Dentistry, Division of Prosthodontics, Taipei Medical University Hospital, Taipei 11031, Taiwan;
| | - Chi-Yu Lin
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan; (C.-Y.L.); (H.-Y.L.); (W.-J.C.); (S.-Y.L.)
- Center for Tooth Bank and Dental Stem Cell Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Hsuan-Yu Lai
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan; (C.-Y.L.); (H.-Y.L.); (W.-J.C.); (S.-Y.L.)
| | - Chun-Hung Chen
- School of Biomedical Engineering, College of Medical Engineering, Taipei 11031, Taiwan;
| | - Shwu-Huey Wang
- Core Facility Center, Office of Research and Development, Taipei Medical University, Taipei 11031, Taiwan;
| | - Wei-Jen Chang
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan; (C.-Y.L.); (H.-Y.L.); (W.-J.C.); (S.-Y.L.)
| | - Sheng-Yang Lee
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan; (C.-Y.L.); (H.-Y.L.); (W.-J.C.); (S.-Y.L.)
- Center for Tooth Bank and Dental Stem Cell Technology, Taipei Medical University, Taipei 11031, Taiwan
- Dental Department, Taipei Municipal Wanfang Hospital, Taipei 11031, Taiwan
| | - Haw-Ming Huang
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan; (C.-Y.L.); (H.-Y.L.); (W.-J.C.); (S.-Y.L.)
- Graduate Institute of Biomedical Optomechatronics, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
15
|
Stellavato A, Restaino OF, Vassallo V, Cassese E, Finamore R, Ruosi C, Schiraldi C. Chondroitin Sulfate in USA Dietary Supplements in Comparison to Pharma Grade Products: Analytical Fingerprint and Potential Anti-Inflammatory Effect on Human Osteoartritic Chondrocytes and Synoviocytes. Pharmaceutics 2021; 13:pharmaceutics13050737. [PMID: 34067775 PMCID: PMC8156081 DOI: 10.3390/pharmaceutics13050737] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 12/16/2022] Open
Abstract
The biological activity of chondroitin sulfate (CS) and glucosamine (GlcN) food supplements (FS), sold in USA against osteoarthritis, might depend on the effective CS and GlcN contents and on the CS structural characteristics. In this paper three USA FS were compared to two pharmaceutical products (Ph). Analyses performed by HPAE-PAD, by HPCE and by SEC-TDA revealed that the CS and GlcN titers were up to −68.8% lower than the contents declared on the labels and that CS of mixed animal origin and variable molecular weights was present together with undesired keratan sulfate. Simulated gastric and intestinal digestions were performed in vitro to evaluate the real CS amount that may reach the gut as biopolymer. Chondrocytes and synoviocytes primary cells derived from human pathological joints were used to assess: cell viability, modulation of the NF-κB, quantification of cartilage oligomeric matrix protein (COMP-2), hyaluronate synthase enzyme (HAS-1), pentraxin (PTX-3) and the secreted IL-6 and IL-8 to assess inflammation. Of the three FS tested only one (US FS1) enhanced chondrocytes viability, while all of them supported synoviocytes growth. Although US FS1 proved to be less effective than Ph as it reduced NF-kB, it could not down-regulate COMP-2; HAS-1 was up-regulated but with a lower efficacy. Inflammatory cytokines were markedly reduced by Ph while a slight decrease was only found for US-FS1.
Collapse
Affiliation(s)
- Antonietta Stellavato
- Department of Experimental Medicine, Section of Biotechnology and Molecular Biology, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.S.); (O.F.R.); (V.V.); (E.C.); (R.F.)
| | - Odile Francesca Restaino
- Department of Experimental Medicine, Section of Biotechnology and Molecular Biology, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.S.); (O.F.R.); (V.V.); (E.C.); (R.F.)
| | - Valentina Vassallo
- Department of Experimental Medicine, Section of Biotechnology and Molecular Biology, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.S.); (O.F.R.); (V.V.); (E.C.); (R.F.)
| | - Elisabetta Cassese
- Department of Experimental Medicine, Section of Biotechnology and Molecular Biology, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.S.); (O.F.R.); (V.V.); (E.C.); (R.F.)
| | - Rosario Finamore
- Department of Experimental Medicine, Section of Biotechnology and Molecular Biology, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.S.); (O.F.R.); (V.V.); (E.C.); (R.F.)
| | - Carlo Ruosi
- Department of Public Health, School of Medicine and Surgery “Federico II” of Naples, A.O.U. Federico II of Naples, 80131 Naples, Italy;
| | - Chiara Schiraldi
- Department of Experimental Medicine, Section of Biotechnology and Molecular Biology, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.S.); (O.F.R.); (V.V.); (E.C.); (R.F.)
- Correspondence: ; Tel.: +39-081-566-7546
| |
Collapse
|
16
|
Rooney P, Ryan C, McDermott BJ, Dev K, Pandit A, Quinlan LR. Effect of Glycosaminoglycan Replacement on Markers of Interstitial Cystitis In Vitro. Front Pharmacol 2021; 11:575043. [PMID: 33390947 PMCID: PMC7775665 DOI: 10.3389/fphar.2020.575043] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 10/21/2020] [Indexed: 12/14/2022] Open
Abstract
Aims: To examine the effect of three commercial intravesical formulations of glycosaminoglycan on in vitro inflammatory models of IC/BPS to better understand there effect on specific markers of disease. Methods: Human urothelial cells (HTB-4) were cultured under four conditions in the presence or absence of commercial GAG formulations. Cells were cultured under a basal condition or pre-treated with protamine sulfate (100 ng/ml) (damages the endogenous glycosaminoglycan layer), hydrogen peroxide (1%) (a metabolic stressor) or TNFα (10 ng/ml) (creating an inflammatory environment). Each of these four culture conditions was then treated with one of three GAG formulations, CystistatⓇ, iAluRilⓇ and HyacystⓇ. Assays were then performed to examine the effect of the exogenous GAGs on cell viability, cell migration, sGAG production, cytokine and gene expression. Results: All GAG formulations were well tolerated by the HTB-4 cells and supported cell growth and migration. iAluRilⓇ was most effective at stimulating endogenous sGAG production under all conditions, increasing sGAGs by up to 15-fold. All GAG formulations significantly reduced the production of the pro-inflammatory cytokine IL-8 under basal conditions, while no GAG treatment suppressed cytokine production under any other condition. Only CystistatⓇ had a significant effect on HA receptor expression, significantly increasing ICAM-1 expression at 3 h that returned to basal levels at 24 h. No GAG treatment significantly changed the expression of GAG synthesis enzymes (CSGALNACT1, CSGALNACT2) or markers of tissue remodeling (MMP2, TIMP1) and pain (COX-1/PTGS-1, NGF). Conclusions: The data presented in this study reveal that commercial intravesical formulation support cell viability and migration. In addition, the commercial GAG formulations have a mild anti-inflammatory effect in the in vitro model of interstitial cystitis/bladder pain syndrome.
Collapse
Affiliation(s)
- Peadar Rooney
- CÚRAM SFI Research Centre for Medical Devices, National University of Ireland Galway, Galway, Ireland
| | - Christina Ryan
- CÚRAM SFI Research Centre for Medical Devices, National University of Ireland Galway, Galway, Ireland.,Physiology, School of Medicine, National University of Ireland Galway, Galway, Ireland
| | - Barry J McDermott
- Translational Medical Device Lab, National University of Ireland Galway, Galway, Ireland
| | - Kapil Dev
- CÚRAM SFI Research Centre for Medical Devices, National University of Ireland Galway, Galway, Ireland.,Physiology, School of Medicine, National University of Ireland Galway, Galway, Ireland
| | - Abhay Pandit
- CÚRAM SFI Research Centre for Medical Devices, National University of Ireland Galway, Galway, Ireland
| | - Leo R Quinlan
- CÚRAM SFI Research Centre for Medical Devices, National University of Ireland Galway, Galway, Ireland.,Physiology, School of Medicine, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
17
|
Corrigendum to "Novel Hybrid Gels Made of High and Low Molecular Weight Hyaluronic Acid Induce Proliferation and Reduce Inflammation in an Osteoarthritis In Vitro Model Based on Human Synoviocytes and Chondrocytes". BIOMED RESEARCH INTERNATIONAL 2020; 2020:7530149. [PMID: 32775439 PMCID: PMC7397382 DOI: 10.1155/2020/7530149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 07/01/2020] [Indexed: 11/24/2022]
|
18
|
Zhang Z, Zha Z, Zhao Z, Liu W, Li W. Lentinan Inhibits AGE-Induced Inflammation and the Expression of Matrix-Degrading Enzymes in Human Chondrocytes. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:2819-2829. [PMID: 32764881 PMCID: PMC7373527 DOI: 10.2147/dddt.s243311] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 05/19/2020] [Indexed: 12/17/2022]
Abstract
Background Chondrocyte-mediated inflammation is an important pathological component of osteoarthritis (OA) development. There are currently no therapies that completely reverse the development of OA. Lentinan, a type of polysaccharide derived from Lentinus edodes, has been demonstrated to possess significant anti-viral, anti-cancer, and anti-inflammatory effects, and has been recently used in the treatment of several inflammatory diseases. However, little research has focused on the pharmacological effect of lentinan in human OA. Materials and Methods We evaluated the anti-inflammatory and anti-ROS effects of lentinan in SW1353 chondrocytes treated with AGEs using real-time polymerase chain reaction (PCR), enzyme-linked immunosorbent assay (ELISA), and the nitro oxide-specific stain DAF-FM DA. The regulatory effects of lentinan on NF-κB and MAPK p38 signaling were investigated via promoter assay and Western blot analysis. Results We found that lentinan inhibits the production of pro-inflammatory cytokines, including IL-1β, TNF-α, IL-8 and the secretion of PGE2 and NO, by reducing the expression of COX-2 and iNOS in AGE-challenged chondrocytes. Lentinan also reduces AGE-induced increased expression of matrix metalloproteinases-1, −3, and −13 (MMP-1, MMP-3, MMP-13). Furthermore, lentinan has a similar effect on a disintegrin and metalloproteinase with thrombospondin motifs-4 and −5 (ADAMTS-4, ADAMTS-5). Mechanistically, lentinan reduces the activation of NF-κB. Conclusion Our findings indicate that lentinan shows a protective effect against AGE-induced inflammatory response in chondrocytes. These findings suggest that lentinan is a promising agent for the treatment of OA that could be used as a dietary supplement for patients with OA.
Collapse
Affiliation(s)
- Zhaozhen Zhang
- Department of Bone Surgery, Luoyang Orthopedic Hospital of Henan Province (Henan Provincial Orthopedic Hospital), Zhengzhou City, Henan Province 450000, People's Republic of China
| | - Zhuqing Zha
- Department of Bone Surgery, Luoyang Orthopedic Hospital of Henan Province (Henan Provincial Orthopedic Hospital), Zhengzhou City, Henan Province 450000, People's Republic of China
| | - Zhiwei Zhao
- Department of Bone Surgery, Luoyang Orthopedic Hospital of Henan Province (Henan Provincial Orthopedic Hospital), Zhengzhou City, Henan Province 450000, People's Republic of China
| | - Wenjing Liu
- Department of Bone Surgery, Luoyang Orthopedic Hospital of Henan Province (Henan Provincial Orthopedic Hospital), Zhengzhou City, Henan Province 450000, People's Republic of China
| | - Wuyin Li
- Department of Bone Surgery, Luoyang Orthopedic Hospital of Henan Province (Henan Provincial Orthopedic Hospital), Zhengzhou City, Henan Province 450000, People's Republic of China
| |
Collapse
|
19
|
Stellavato A, Abate L, Vassallo V, Donniacuo M, Rinaldi B, Schiraldi C. An in vitro study to assess the effect of hyaluronan-based gels on muscle-derived cells: Highlighting a new perspective in regenerative medicine. PLoS One 2020; 15:e0236164. [PMID: 32760085 PMCID: PMC7410276 DOI: 10.1371/journal.pone.0236164] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 06/30/2020] [Indexed: 02/07/2023] Open
Abstract
Hyaluronan (HA) is a nonsulfated glycosaminoglycan that has been widely used for biomedical applications. Here, we have analyzed the effect of HA on the rescue of primary cells under stress as well as its potential to recover muscle atrophy and validated the developed model in vitro using primary muscle cells derived from rats. The potentials of different HAs were elucidated through comparative analyses using pharmaceutical grade a) high (HHA) and b) low molecular weight (LHA) hyaluronans, c) hybrid cooperative complexes (HCC) of HA in three experimental set-ups. The cells were characterized based on the expression of myogenin, a muscle-specific biomarker, and the proliferation was analyzed using Time-Lapse Video Microscopy (TLVM). Cell viability in response to H2O2 challenge was evaluated by 3-[4,5-dimethylthiazole-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay, and the expression of the superoxide dismutase enzyme (SOD-2) was assessed by western blotting. Additionally, in order to establish an in vitro model of atrophy, muscle cells were treated with tumor necrosis factor-alpha (TNF-α), along with hyaluronans. The expression of Atrogin, MuRF-1, nuclear factor kappa-light-chain-enhancer of activated B-cells (NF-kB), and Forkhead-box-(Fox)-O-3 (FoxO3a) was evaluated by western blotting to elucidate the molecular mechanism of atrophy. The results showed that HCC and HHA increased cell proliferation by 1.15 and 2.3 folds in comparison to un-treated cells (control), respectively. Moreover, both pre- and post-treatments of HAs restored the cell viability, and the SOD-2 expression was found to be reduced by 1.5 fold in HA-treated cells as compared to the stressed condition. Specifically in atrophic stressed cells, HCC revealed a noteworthy beneficial effect on the myogenic biomarkers indicating that it could be used as a promising platform for tissue regeneration with specific attention to muscle cell protection against stressful agents.
Collapse
Affiliation(s)
- Antonietta Stellavato
- Department of Experimental Medicine, School of Medicine, University of Campania “Luigi Vanvitelli,” Via L. De Crecchio, Naples, Italy
- * E-mail: (CS); (AS)
| | - Lucrezia Abate
- Department of Experimental Medicine, School of Medicine, University of Campania “Luigi Vanvitelli,” Via L. De Crecchio, Naples, Italy
| | - Valentina Vassallo
- Department of Experimental Medicine, School of Medicine, University of Campania “Luigi Vanvitelli,” Via L. De Crecchio, Naples, Italy
| | - Maria Donniacuo
- Unit of Pharmacology, Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Barbara Rinaldi
- Unit of Pharmacology, Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Chiara Schiraldi
- Department of Experimental Medicine, School of Medicine, University of Campania “Luigi Vanvitelli,” Via L. De Crecchio, Naples, Italy
- * E-mail: (CS); (AS)
| |
Collapse
|
20
|
Differential Secretome Profiling of Human Osteoarthritic Synoviocytes Treated with Biotechnological Unsulfated and Marine Sulfated Chondroitins. Int J Mol Sci 2020; 21:ijms21113746. [PMID: 32466468 PMCID: PMC7312545 DOI: 10.3390/ijms21113746] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/21/2020] [Accepted: 05/23/2020] [Indexed: 02/07/2023] Open
Abstract
Symptomatic slow-acting drugs (SYSADOA) are increasingly used as effective therapies for osteoarthritis, representing an attractive alternative to analgesics or non-steroidal anti-inflammatory drugs to relieve disease symptoms. Pharmaceutical preparations of chondroitin sulfate, derived from animal sources, alone or in combination with glucosamine sulfate, are widely recognized for their beneficial effect on osteoarthritis treatment. A growing interest has also been devoted to understanding the molecular mechanisms modulated by SYSADOA using -omic strategies, most of which rely on chondrocytes as a model system. In this work, by using an integrated strategy based on unbiased proteomics and targeted cytokine profiling by a multiplexed protein array, we identified differences in the secretomes of human osteoarthritic synoviocytes in response to biotechnological unsulfated, and marine sulfated chondroitins treatments. The combined strategy allowed the identification of candidate proteins showing both common and distinct regulation responses to the two treatments of chondroitins. These molecules, mainly belonging to ECM proteins, enzymes, enzymatic inhibitors and cytokines, are potentially correlated to treatment outcomes. Overall, the present results provide an integrated overview of protein changes in human osteoarthritic synoviocytes secretome associated to different chondroitin treatments, thus improving current knowledge of the biochemical effects driven by these drugs potentially involved in pathways associated to osteoarthritis pathogenesis.
Collapse
|
21
|
Ma P, Yue L, Yang H, Fan Y, Bai J, Li S, Yuan J, Zhang Z, Yao C, Lin M, Hou Q. Chondroprotective and anti-inflammatory effects of amurensin H by regulating TLR4/Syk/NF-κB signals. J Cell Mol Med 2019; 24:1958-1968. [PMID: 31876072 PMCID: PMC6991675 DOI: 10.1111/jcmm.14893] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 11/21/2019] [Accepted: 11/26/2019] [Indexed: 12/25/2022] Open
Abstract
The low-grade, chronic inflammation initiated by TLR4-triggered innate immune responses has a central role on early osteoarthritis. Amurensin H is a resveratrol dimer with anti-inflammatory and anti-apoptotic effects, while its effects on TLR-4 signals to inhibit osteoarthritis are still unclear. In the present study, treatment with amurensin H for 2 weeks in monosodium iodoacetate-induced mice significantly slows down cartilage degeneration and inflammation using macroscopic evaluation, haematoxylin and eosin (HE) staining and micro-magnetic resonance imaging. In IL-1β-stimulated rat chondrocytes, amurensin H suppresses the production of inflammatory mediators including nitric oxide, IL-6, IL-17, PGE2 and TNF-α using Greiss and ELISA assay. Amurensin H inhibits matrix degradation via decreasing levels of MMP-9 and MMP-13 using Western blot assay, promotes synthesis of type II collagen and glycosaminoglycan using immunostaining and safranin O staining, respectively. Amurensin H inhibits intracellular and mitochondrial reactive oxygen species (ROS) generation, and mitochondrial membrane depolarization using DCFH-DA, MitoSOX Red and JC-1 assay as well. IL-1β stimulates TLR4 activation and Syk phosphorylation in chondrocytes, while amurensin H inhibits TLR4/Syk signals and downstream p65 phosphorylation and translocation in a time and dose-dependent manner. Together, these results suggest that amurensin H exerts chondroprotective effects by attenuating oxidative stress, inflammation and matrix degradation via the TLR4/Syk/NF-κB pathway.
Collapse
Affiliation(s)
- Pei Ma
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Lifeng Yue
- Department of Neology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Hui Yang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yannan Fan
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jinye Bai
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Shuyi Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jiqiao Yuan
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Ziqian Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Chunsuo Yao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Mingbao Lin
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Qi Hou
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
22
|
Comparative Analyses of Pharmaceuticals or Food Supplements Containing Chondroitin Sulfate: Are Their Bioactivities Equivalent? Adv Ther 2019; 36:3221-3237. [PMID: 31494830 PMCID: PMC6822805 DOI: 10.1007/s12325-019-01064-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Indexed: 12/23/2022]
Abstract
Introduction Oral supplementation of chondroitin sulfate (CS) and glucosamine (GlcN), symptomatic slow-acting molecules, is recommended by European Society for Clinical and Economic Aspects of Osteoporosis and Osteoarthritis and Musculoskeletal Diseases (ESCEO) and other European Union (EU) guidelines for the restoration of the articular cartilage surface in patients affected by osteoarthritis (OA). They are commercialized as pharmaceutical grade products and as food supplements in combination with plant extracts hyaluronic acid, methylsulfonylmethane, and other components. Food supplements do not need to undergo the strict regulatory controls of pharmaceutical grade products; thus, composition and contaminants that could be present may not be evidenced before commercialization and these uncertainties may give rise to concerns about the bioactivity of these formulations. Methods In this paper 10 different food supplements (FS) from diverse European countries were analyzed in comparison with two pharmaceutical grade products (Ph) using updated analytical approaches and biochemical cell-based assays. The purity, the titer, and the origin of CS in Ph and FS samples were initially assessed in order to successively compare the biological function. Both food supplements and pharmaceutical formulations were tested in vitro, using the same final CS concentration, on primary chondrocytes and synoviocytes in terms of (i) cell viability, (ii) activation of the NF-κB-mediated inflammation pathway, (iii) cartilage oligomeric matrix protein (COMP-2), IL-6, and IL-8 production. Results All the FS presented a certain insoluble fraction; the CS and the GlcN contents were lower than the declared ones in 9/10 and 8/10 samples, respectively. All FS contained keratan sulfate (KS) at up to 50% of the total glycosaminoglycan amount declared on the label. Primary cells treated with the samples diluted to present the same CS concentration in the medium showed cytotoxicity in 7/10 FS while Ph preserved viability and reduced NF-κB, COMP-2, and secreted inflammatory cytokines. Conclusion Among all samples tested, the pharmaceutical grade products demonstrated effective modulation of biomarkers counteracting the inflammation status and improving viability and the physiological condition of OA human primary chondrocyte and synoviocyte cells. In contrast to that, most FS were cytotoxic at the tested concentrations, and only 3/10 of them showed similarities to Ph sample behavior in vitro. Funding This work was partially supported by PON01_1226 NUTRAFAST, MIUR Ministero dell’Università e della Ricerca Scientifica. Bioteknet financed two short-term grants for graduate technicians. The journal’s Rapid Service and Open Access fees were funded by IBSA CH.
Collapse
|
23
|
Restaino OF, Finamore R, Stellavato A, Diana P, Bedini E, Trifuoggi M, De Rosa M, Schiraldi C. European chondroitin sulfate and glucosamine food supplements: A systematic quality and quantity assessment compared to pharmaceuticals. Carbohydr Polym 2019; 222:114984. [DOI: 10.1016/j.carbpol.2019.114984] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 06/04/2019] [Accepted: 06/06/2019] [Indexed: 01/25/2023]
|
24
|
D'Agostino A, Maritato R, La Gatta A, Fusco A, Reale S, Stellavato A, Pirozzi AVA, De Rosa M, Donnarumma G, Schiraldi C. In Vitro Evaluation of Novel Hybrid Cooperative Complexes in a Wound Healing Model: A Step Toward Improved Bioreparation. Int J Mol Sci 2019; 20:ijms20194727. [PMID: 31554177 PMCID: PMC6801722 DOI: 10.3390/ijms20194727] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 09/09/2019] [Accepted: 09/18/2019] [Indexed: 12/14/2022] Open
Abstract
The effectiveness of hyaluronic acid (HA), also called as hyaluronan, and its formulations on tissue regeneration and epidermal disease is well-documented. High-molecular-weight hyaluronan (HHA) is an efficient space filler that maintains hydration, serves as a substrate for proteoglycan assembly, and is involved in wound healing. Recently, an innovative hybrid cooperative complex (HCC) of high- and low-molecular-weight hyaluronan was developed that is effective in wound healing and bioremodeling. The HCC proposed here consisted of a new formulation and contained 1.6 ± 0.1 kDa HHA and 250 ± 7 kDa LHA (low molecular weight hyaluronic acid). We investigated the performance of this HCC in a novel in vitro HaCaT (immortalized human keratinocytes)/HDF (human dermal fibroblast) co-culture model to assess its ability to repair skin tissue lesions. Compared to linear HA samples, HCC reduced the biomarkers of inflammation (Transforming Growth Factor-β (TGF-β), Tumor Necrosis Factor receptor-α (TNF-α), interleukin-6 (IL-6), and interleukin-8 (IL-8)), and accelerated the healing process. These data were confirmed by the modulation of metalloproteases (MMPs) and elastin, and were compatible with a prospectively reduced risk of scar formation. We also examined the expression of defensin-2, an antimicrobial peptide, in the presence of hyaluronan, showing a higher expression in the HCC-treated samples and suggesting a potential increase in antibacterial and immunomodulatory functions. Based on these in vitro data, the presence of HCC in creams or dressings would be expected to enhance the resolution of inflammation and accelerate the skin wound healing process.
Collapse
Affiliation(s)
- Antonella D'Agostino
- Department of Experimental Medicine, School of Medicine, University of Campania "Luigi Vanvitelli," Via L. De Crecchio 7, 80138 Naples, Italy.
| | - Rosa Maritato
- Department of Experimental Medicine, School of Medicine, University of Campania "Luigi Vanvitelli," Via L. De Crecchio 7, 80138 Naples, Italy.
| | - Annalisa La Gatta
- Department of Experimental Medicine, School of Medicine, University of Campania "Luigi Vanvitelli," Via L. De Crecchio 7, 80138 Naples, Italy.
| | - Alessandra Fusco
- Department of Experimental Medicine, School of Medicine, University of Campania "Luigi Vanvitelli," Via L. De Crecchio 7, 80138 Naples, Italy.
| | - Sabrina Reale
- Department of Experimental Medicine, School of Medicine, University of Campania "Luigi Vanvitelli," Via L. De Crecchio 7, 80138 Naples, Italy.
| | - Antonietta Stellavato
- Department of Experimental Medicine, School of Medicine, University of Campania "Luigi Vanvitelli," Via L. De Crecchio 7, 80138 Naples, Italy.
| | - Anna Virginia Adriana Pirozzi
- Department of Experimental Medicine, School of Medicine, University of Campania "Luigi Vanvitelli," Via L. De Crecchio 7, 80138 Naples, Italy.
| | - Mario De Rosa
- Department of Experimental Medicine, School of Medicine, University of Campania "Luigi Vanvitelli," Via L. De Crecchio 7, 80138 Naples, Italy.
| | - Giovanna Donnarumma
- Department of Experimental Medicine, School of Medicine, University of Campania "Luigi Vanvitelli," Via L. De Crecchio 7, 80138 Naples, Italy.
| | - Chiara Schiraldi
- Department of Experimental Medicine, School of Medicine, University of Campania "Luigi Vanvitelli," Via L. De Crecchio 7, 80138 Naples, Italy.
| |
Collapse
|