1
|
Štarha P. Anticancer iridium( iii) cyclopentadienyl complexes. Inorg Chem Front 2025. [DOI: 10.1039/d4qi02472a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
A comprehensive review of anticancer iridium(iii) cyclopentadienyl complexes, including a critical discussion of structure–activity relationships and mechanisms of action, is provided.
Collapse
Affiliation(s)
- Pavel Štarha
- Department of Inorganic Chemistry, Faculty of Science, Palacky University Olomouc, 17. listopadu 12, 77146 Olomouc, Czech Republic
| |
Collapse
|
2
|
Che X, Zhao T, Hu J, Yang K, Ma N, Li A, Sun Q, Ding C, Ding Q. Application of Chitosan-Based Hydrogel in Promoting Wound Healing: A Review. Polymers (Basel) 2024; 16:344. [PMID: 38337233 DOI: 10.3390/polym16030344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/14/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
Chitosan is a linear polyelectrolyte with active hydroxyl and amino groups that can be made into chitosan-based hydrogels by different cross-linking methods. Chitosan-based hydrogels also have a three-dimensional network of hydrogels, which can accommodate a large number of aqueous solvents and biofluids. CS, as an ideal drug-carrying material, can effectively encapsulate and protect drugs and has the advantages of being nontoxic, biocompatible, and biodegradable. These advantages make it an ideal material for the preparation of functional hydrogels that can act as wound dressings for skin injuries. This review reports the role of chitosan-based hydrogels in promoting skin repair in the context of the mechanisms involved in skin injury repair. Chitosan-based hydrogels were found to promote skin repair at different process stages. Various functional chitosan-based hydrogels are also discussed.
Collapse
Affiliation(s)
- Xueyan Che
- College of Traditional Chinese Medicine, Jilin Agriculture Science and Technology University, Jilin City 132101, China
| | - Ting Zhao
- College of Traditional Chinese Medicine, Jilin Agriculture Science and Technology University, Jilin City 132101, China
| | - Jing Hu
- College of Traditional Chinese Medicine, Jilin Agriculture Science and Technology University, Jilin City 132101, China
| | - Kaicheng Yang
- College of Traditional Chinese Medicine, Jilin Agriculture Science and Technology University, Jilin City 132101, China
| | - Nan Ma
- College of Traditional Chinese Medicine, Jilin Agriculture Science and Technology University, Jilin City 132101, China
| | - Anning Li
- Jilin Aodong Yanbian Pharmaceutical Co., Ltd., Dunhua 133000, China
| | - Qi Sun
- Jilin Zhengrong Pharmaceutical Development Co., Ltd., Dunhua 133700, China
| | - Chuanbo Ding
- College of Traditional Chinese Medicine, Jilin Agriculture Science and Technology University, Jilin City 132101, China
| | - Qiteng Ding
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
3
|
Mikhailova EO. Green Synthesis of Platinum Nanoparticles for Biomedical Applications. J Funct Biomater 2022; 13:260. [PMID: 36412901 PMCID: PMC9680517 DOI: 10.3390/jfb13040260] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/11/2022] [Accepted: 11/17/2022] [Indexed: 11/24/2022] Open
Abstract
The diverse biological properties of platinum nanoparticles (PtNPs) make them ideal for use in the development of new tools in therapy, diagnostics, and other biomedical purposes. "Green" PtNPs synthesis is of great interest as it is eco-friendly, less energy-consuming and minimizes the amount of toxic by-products. This review is devoted to the biosynthesis properties of platinum nanoparticles based on living organisms (bacteria, fungi, algae, and plants) use. The participation of various biological compounds in PtNPs synthesis is highlighted. The biological activities of "green" platinum nanoparticles (antimicrobial, anticancer, antioxidant, etc.), the proposed mechanisms of influence on target cells and the potential for their further biomedical application are discussed.
Collapse
Affiliation(s)
- Ekaterina O Mikhailova
- Institute of Innovation Management, Kazan National Research Technological University, K. Marx Street 68, 420015 Kazan, Russia
| |
Collapse
|
4
|
Manganese Schiff Base Complexes, Crystallographic Studies, Anticancer Activities, and Molecular Docking. J CHEM-NY 2022. [DOI: 10.1155/2022/7062912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Choice of ligands is significant to successful synthesis of metal complexes (coordination compounds). This study reports the use of Schiff base as the right ligand to control the poor bioavailability and neurodegenerative toxicity challenges of manganese ion. In line with this study, document analysis was used as the methodological approach to evaluate the significance of Schiff base ligands in easing these manganese’s challenges and aligning the resultant coordination compounds (manganese Schiff base complexes) as therapeutic agents in anticancer studies. Report also involves crystallographic studies where single crystal X-ray crystallography was used as a chemical characterization technique. In addition, molecular docking studies, MOE2008, and AutoDock software were used to reveal the mode of interaction between the Schiff base and the manganese(II) and (III) ions, as well as scrutinizing the biological efficacy of the manganese(II) and manganese(III) Schiff bases coordination compounds as anticancer agents against some anticancer cell lines. Conclusion drawn was that manganese(II) and manganese(III) Schiff bases coordination compounds gave more active and potent activities than the corresponding Schiff bases. As a result, challenges of neurodegenerative toxicity and poor bioavailability of manganese ion were overcome, and the chelation therapy was fulfilled. Results from single crystal X-ray crystallography confirmed the successful synthesis of manganese(II) and manganese(III) Schiff bases coordination compounds and revealed the mechanism of reaction, while the molecular docking buttressed the biological activities of the Schiff base ligand and manganese Schiff base coordination compounds by portraying the structure activity relationship (SAR) between either Schiff base or the manganese Schiff base coordination compounds and the virtual cancer cell line (receptor protein), where hits were obtained for lead optimizations.
Collapse
|
5
|
Quinson J. Osmium and OsO x nanoparticles: an overview of syntheses and applications. OPEN RESEARCH EUROPE 2022; 2:39. [PMID: 37645302 PMCID: PMC10446100 DOI: 10.12688/openreseurope.14595.2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/26/2022] [Indexed: 08/31/2023]
Abstract
Precious metal nanoparticles are key for a range of applications ranging from catalysis and sensing to medicine. While gold (Au), silver (Ag), platinum (Pt), palladium (Pd) or ruthenium (Ru) nanoparticles have been widely studied, other precious metals are less investigated. Osmium (Os) is one of the least studied of the precious metals. However, Os nanoparticles are interesting materials since they present unique features compared to other precious metals and Os nanomaterials have been reported to be useful for a range of applications, catalysis or sensing for instance. With the increasing availability of advanced characterization techniques, investigating the properties of relatively small Os nanoparticles and clusters has become easier and it can be expected that our knowledge on Os nanomaterials will increase in the coming years. This review aims to give an overview on Os and Os oxide materials syntheses and applications.
Collapse
Affiliation(s)
- Jonathan Quinson
- Chemistry, University of Copenhagen, Copenhagen, Denmark
- Biochemical and Chemical Engineering, Aarhus University, Aarhus, Denmark
| |
Collapse
|
6
|
Juelsholt M, Quinson J, Kjær ETS, Wang B, Pittkowski R, Cooper SR, Kinnibrugh TL, Simonsen SB, Theil Kuhn L, Escudero-Escribano M, Jensen KMØ. Surfactant-free syntheses and pair distribution function analysis of osmium nanoparticles. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2022; 13:230-235. [PMID: 35281627 PMCID: PMC8895034 DOI: 10.3762/bjnano.13.17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 01/27/2022] [Indexed: 06/14/2023]
Abstract
A surfactant-free synthesis of precious metal nanoparticles (NPs) performed in alkaline low-boiling-point solvents has been recently reported. Monoalcohols are here investigated as solvents and reducing agents to obtain colloidal Os nanoparticles by using low-temperature (<100 °C) surfactant-free syntheses. The effect of the precursor (OsCl3 or H2OsCl6), precursor concentration (up to 100 mM), solvent (methanol or ethanol), presence or absence of a base (NaOH), and addition of water (0 to 100 vol %) on the resulting nanomaterials is discussed. It is found that no base is required to obtain Os nanoparticles as opposed to the case of Pt or Ir NPs. The robustness of the synthesis for a precursor concentration up to 100 mM allows for the performance of X-ray total scattering with pair distribution function (PDF) analysis, which shows that 1-2 nm hexagonal close packed (hcp) NPs are formed from chain-like [OsO x Cl y ] complexes.
Collapse
Affiliation(s)
- Mikkel Juelsholt
- Department of Chemistry, University of Copenhagen, 5 Universitetsparken, Copenhagen, 2100, Denmark
| | - Jonathan Quinson
- Department of Chemistry, University of Copenhagen, 5 Universitetsparken, Copenhagen, 2100, Denmark
| | - Emil T S Kjær
- Department of Chemistry, University of Copenhagen, 5 Universitetsparken, Copenhagen, 2100, Denmark
| | - Baiyu Wang
- Department of Chemistry, University of Copenhagen, 5 Universitetsparken, Copenhagen, 2100, Denmark
| | - Rebecca Pittkowski
- Department of Chemistry, University of Copenhagen, 5 Universitetsparken, Copenhagen, 2100, Denmark
| | - Susan R Cooper
- Department of Chemistry, University of Copenhagen, 5 Universitetsparken, Copenhagen, 2100, Denmark
| | - Tiffany L Kinnibrugh
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, 9700 S Cass Ave, Lemont, IL 60439, USA
| | - Søren B Simonsen
- Department of Energy Conversion and Storage, Technical University of Denmark, Fysikvej Bldg. 310, Lyngby, DK-2800 Kgs., Denmark
| | - Luise Theil Kuhn
- Department of Energy Conversion and Storage, Technical University of Denmark, Fysikvej Bldg. 310, Lyngby, DK-2800 Kgs., Denmark
| | - María Escudero-Escribano
- Department of Chemistry, University of Copenhagen, 5 Universitetsparken, Copenhagen, 2100, Denmark
| | - Kirsten M Ø Jensen
- Department of Chemistry, University of Copenhagen, 5 Universitetsparken, Copenhagen, 2100, Denmark
| |
Collapse
|
7
|
Bíró L, Buglyó P, Farkas E. Diversity in the Interaction of Amino Acid- and Peptide-Based Hydroxamic Acids with Some Platinum Group Metals in Solution. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27030669. [PMID: 35163937 PMCID: PMC8839353 DOI: 10.3390/molecules27030669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/12/2022] [Accepted: 01/17/2022] [Indexed: 11/29/2022]
Abstract
Complexes that incorporate both ligand(s) and metal(s) exhibiting cytotoxic activity can especially be interesting to develop multifunctional drug molecules with desired activities. In this review, the limited number of solution results collected in our laboratory on the complexes of Pd(II) and two other platinum group metals—the half-sandwich type, [(η6-p-cym)Ru(H2O)3]2+, and [(η5-Cp*)Rh(H2O)3]2+—with hydroxamic acid derivatives of three amino acids, two imidazole analogues, and four small peptides are summarized and evaluated. Unlike the limited number of coordination sites of these metal ions (four and three for Pd(II) and the organometallic cations, respectively), the ligands discussed here offer a relatively high number of donor atoms as well as variation in their position within the ligands, resulting in a large versatility of the likely coordination modes. The review, besides presenting the solution equilibrium results, also discusses the main factors, such as (N,N) versus (O,O) chelate; size of chelate; amino-N versus imidazole-N; primary versus secondary hydroxamic function; differences between hydrolytic ability of the metal ions studied; and hydrolysis of the coordinated peptide hydroxamic acids in their Pd(II) complexes, which all determine the coordination modes present in the complexes formed in measurable concentrations in these systems. The options for the quantitative evaluation of metal binding effectivity and selectivity of the various ligands and the comparison with each other by using solution equilibrium data are also discussed.
Collapse
|
8
|
Mihajlović-Lalić LE, Poljarević J, Grgurić-Šipka S. Metal complexes with α-picolinic acid frameworks and their antitumor activity. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2021.120582] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
9
|
Metwally NH, Mohamed MS, Deeb EA. Synthesis, anticancer evaluation, CDK2 inhibition, and apoptotic activity assessment with molecular docking modeling of new class of pyrazolo[1,5-a]pyrimidines. RESEARCH ON CHEMICAL INTERMEDIATES 2021. [DOI: 10.1007/s11164-021-04564-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
10
|
Abstract
The incorporation of dithiocarbamate ligands in the preparation of metal complexes is largely prompted by the versatility of this molecule. Fascinating coordination chemistry can be obtained from the study of such metal complexes ranging from their preparation, the solid-state properties, solution behavior as well as their applications as bioactive materials and luminescent compounds, to name a few. In this overview, the dithiocarbamate complexes of platinum-group elements form the focus of the discussion. The structural aspects of these complexes will be discussed based upon the intriguing findings obtained from their solid- (crystallographic) and solution-state (NMR) studies. At the end of this review, the applications of platinum-group metal complexes will be discussed.
Collapse
|
11
|
Bernier CM, DuChane CM, Martinez JS, Falkinham JO, Merola JS. Synthesis, Characterization, and Antimicrobial Activity of Rh III and Ir III N-Heterocyclic Carbene Piano-Stool Complexes. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00166] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Chad M. Bernier
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Christine M. DuChane
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Justin S. Martinez
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Joseph O. Falkinham
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Joseph S. Merola
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
12
|
Bolitho EM, Bridgewater HE, Needham RJ, Coverdale JPC, Quinn PD, Sanchez-Cano C, Sadler PJ. Elemental mapping of half-sandwich azopyridine osmium arene complexes in cancer cells. Inorg Chem Front 2021. [DOI: 10.1039/d1qi00512j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Nanofocused synchrotron X-ray fluorescence and inductively coupled plasma-mass spectrometry provide insights into time-dependent ligand exchange reactions of organo-osmium anticancer complexes in cancer cells. Created with Biorender.com.
Collapse
Affiliation(s)
| | | | | | | | | | - Carlos Sanchez-Cano
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE)
- Basque Research and Technology Alliance (BRTA)
- San Sebastián
- Spain
| | | |
Collapse
|
13
|
Mbaba M, Golding TM, Smith GS. Recent Advances in the Biological Investigation of Organometallic Platinum-Group Metal (Ir, Ru, Rh, Os, Pd, Pt) Complexes as Antimalarial Agents. Molecules 2020; 25:molecules25225276. [PMID: 33198217 PMCID: PMC7698227 DOI: 10.3390/molecules25225276] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/08/2020] [Accepted: 11/09/2020] [Indexed: 01/06/2023] Open
Abstract
In the face of the recent pandemic and emergence of infectious diseases of viral origin, research on parasitic diseases such as malaria continues to remain critical and innovative methods are required to target the rising widespread resistance that renders conventional therapies unusable. The prolific use of auxiliary metallo-fragments has augmented the search for novel drug regimens in an attempt to combat rising resistance. The development of organometallic compounds (those containing metal-carbon bonds) as antimalarial drugs has been exemplified by the clinical development of ferroquine in the nascent field of Bioorganometallic Chemistry. With their inherent physicochemical properties, organometallic complexes can modulate the discipline of chemical biology by proffering different modes of action and targeting various enzymes. With the beneficiation of platinum group metals (PGMs) in mind, this review aims to describe recent studies on the antimalarial activity of PGM-based organometallic complexes. This review does not provide an exhaustive coverage of the literature but focusses on recent advances of bioorganometallic antimalarial drug leads, including a brief mention of recent trends comprising interactions with biomolecules such as heme and intracellular catalysis. This resource can be used in parallel with complementary reviews on metal-based complexes tested against malaria.
Collapse
|
14
|
Marković K, Milačič R, Marković S, Kladnik J, Turel I, Ščančar J. Binding Kinetics of Ruthenium Pyrithione Chemotherapeutic Candidates to Human Serum Proteins Studied by HPLC-ICP-MS. Molecules 2020; 25:molecules25071512. [PMID: 32225069 PMCID: PMC7180866 DOI: 10.3390/molecules25071512] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 03/23/2020] [Accepted: 03/23/2020] [Indexed: 01/22/2023] Open
Abstract
The development of ruthenium-based complexes for cancer treatment requires a variety of pharmacological studies, one of them being a drug's binding kinetics to serum proteins. In this work, speciation analysis was used to study kinetics of ruthenium-based drug candidates with human serum proteins. Two ruthenium (Ru) complexes, namely [(η6-p-cymene)Ru(1-hydroxypyridine-2(1H)-thionato)Cl] (1) and [(η6-p-cymene)Ru(1-hydroxypyridine-2(1H)-thionato)pta]PF6 (2) (where pta = 1,3,5-triaza-7-phosphaadamantane), were selected. Before a kinetics study, their stability in relevant media was confirmed by nuclear magnetic resonance (NMR). Conjoint liquid chromatography (CLC) monolithic column, assembling convective interaction media (CIM) protein G and diethylamino (DEAE) disks, was used for separation of unbound Ru species from those bound to human serum transferrin (Tf), albumin (HSA) and immunoglobulins G (IgG). Eluted proteins were monitored by UV spectrometry (278 nm), while Ru species were quantified by post-column isotope dilution inductively coupled plasma mass spectrometry (ID-ICP-MS). Binding kinetics of chlorido (1) and pta complex (2) to serum proteins was followed from 5 min up to 48 h after incubation with human serum. Both Ru complexes interacted mainly with HSA. Complex (1) exhibited faster and more extensive interaction with HSA than complex (2). The equilibrium concentration for complex (1) was obtained 6 h after incubation, when about 70% of compound was bound to HSA, 5% was associated with IgG, whereas 25% remained unbound. In contrast, the rate of interaction of complex (2) with HSA was much slower and less extensive and the equilibrium concentration was obtained 24 h after incubation, when about 50% of complex (2) was bound to HSA and 50% remained unbound.
Collapse
Affiliation(s)
- Katarina Marković
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia; (K.M.); (R.M.); (S.M.)
- Jožef Stefan International Postgraduate School, Jamova 39, SI-1000 Ljubljana, Slovenia
| | - Radmila Milačič
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia; (K.M.); (R.M.); (S.M.)
- Jožef Stefan International Postgraduate School, Jamova 39, SI-1000 Ljubljana, Slovenia
| | - Stefan Marković
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia; (K.M.); (R.M.); (S.M.)
- Jožef Stefan International Postgraduate School, Jamova 39, SI-1000 Ljubljana, Slovenia
| | - Jerneja Kladnik
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, SI-1000 Ljubljana, Slovenia;
| | - Iztok Turel
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, SI-1000 Ljubljana, Slovenia;
- Correspondence: (I.T.); (J.Š.); Tel.: +386-14-79-8525 (I.T.); +386-14-77-3846 (J.Š.)
| | - Janez Ščančar
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia; (K.M.); (R.M.); (S.M.)
- Jožef Stefan International Postgraduate School, Jamova 39, SI-1000 Ljubljana, Slovenia
- Correspondence: (I.T.); (J.Š.); Tel.: +386-14-79-8525 (I.T.); +386-14-77-3846 (J.Š.)
| |
Collapse
|