1
|
Boualam K, Bouhaddou N, Sobeh M, Tabyaoui M, Taghzouti K. Mentha rotundifolia (L.) Huds. aqueous extract attenuates H 2O 2 induced oxidative stress and neurotoxicity. Front Neurosci 2023; 17:1121029. [PMID: 36968491 PMCID: PMC10035595 DOI: 10.3389/fnins.2023.1121029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 02/17/2023] [Indexed: 03/29/2023] Open
Abstract
Introduction Oxidative stress plays a causal role in neurodegenerative diseases. The aim of this study is to evaluate the antioxidant and neuroprotective effects of Mentha rotundifolia (L.) Huds (M. rotundifolia), a widely used Moroccan plant in traditional medicine. Methods The chemical composition of M. rotundifolia aqueous extract was analyzed by liquid chromatography coupled to mass spectrometry (LC-MS). 2,2-diphenyl 1-picrylhydrazyl (DPPH) and 2,2'-azino-bis 3-ethylbenzothiazoline-6-sulfonic acid (ABTS+) assays were used to assess its in vitro antioxidant activity. H2O2 was utilized to induce oxidative stress and neurotoxicity in vivo. Behavioral changes were evaluated using Open Field, Y-maze and Rotarod tests. Hyperalgesia was assessed using the tail immersion test. Results and discussion The LC-MS/MS analysis revealed high content of kaempferol glucuronide (85%) at the extract. IC50 values of the DPPH and ABTS were 26.47 and 41.21 μg/mL, respectively. Pre-treatments with M. rotundifolia extract attenuated the behavioral changes induced by H2O2. In addition, the latency of tail withdrawal increased significantly in the treated groups suggesting central analgesic effect of M. rotundifolia extract. Moreover, the extract attenuated the deleterious effects of H2O2 and improved all liver biomarkers. The obtained results suggested that M. rotundifolia had remarkable antioxidant and neuroprotective effects and may prevent oxidative stress related disorders.
Collapse
Affiliation(s)
- Khadija Boualam
- Physiology and Physiopathology Team, Genomics of Human Pathologies Research Center, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco
- Materials, Nanotechnology and Environment Laboratory LMNE, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco
- *Correspondence: Khadija Boualam,
| | - Nezha Bouhaddou
- Physiology and Physiopathology Team, Genomics of Human Pathologies Research Center, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco
| | - Mansour Sobeh
- AgroBioSciences, Mohammed VI Polytechnic University, Ben Guerir, Morocco
- *Correspondence: Khadija Boualam,
| | - Mohamed Tabyaoui
- Materials, Nanotechnology and Environment Laboratory LMNE, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco
| | - Khalid Taghzouti
- Physiology and Physiopathology Team, Genomics of Human Pathologies Research Center, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco
| |
Collapse
|
2
|
Molaei S, Amiri F, Salimi R, Ferdowsi S, Bahadori M. Therapeutic effects of mesenchymal stem cells-conditioned medium derived from suspension cultivation or silymarin on liver failure mice. Mol Biol Rep 2022; 49:10315-10325. [PMID: 36097106 DOI: 10.1007/s11033-022-07785-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 07/08/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Common treatments of liver disease failed to meet all the needs in this important medical field. It results in an urgent need for proper some new adjuvant therapies. Mesenchymal stem cells (MSCs) and their derivatives are promising tools in this regard. We aimed to compare the Silymarin, as traditional treatment with mesenchymal stem cell conditioned medium (MSC-CM), as a novel strategy, both with therapeutic potentialities in term of liver failure (LF) treatment. METHODS AND RESULTS Mice models with liver failure were induced with CCl4 and were treated in the groups as follows: normal mice receiving DMEM-LG medium as control, LF-mice receiving DMEM-LG medium as sham, LF-mice receiving Silymarin as LF-SM, and LF-mice receiving MSC sphere CM as LF-MSC-CM. Biochemical, histopathological, molecular and protein level parameters were evaluated using blood and liver samples. Liver enzymes, MicroRNA-122 values as well as necrotic score were significantly lower in the LF-SM and LF-MSC-CM groups compared to sham. LF-SM showed significantly higher level of total antioxidant capacity and malondialdehyde than that of LF-MSC-CM groups. Sph-MSC-CM not only induced more down-regulated expression of fibrinogen-like protein 1 and receptor interacting protein kinases1 but also led to higher expression level of keratinocyte growth factor. LF-MSC-CM showed less mortality rate compared to other groups. CONCLUSIONS Hepato-protective potentialities of Sph-MSC-CM are comparable to those of Silymarin. More inhibition of necroptosis/ necrosis and inflammation might result in rapid liver repair in case of MSC-CM administration.
Collapse
Affiliation(s)
- Sedigheh Molaei
- Social Determinants of Health Research Center, Saveh University of Medical Sciences, Saveh, Iran
| | - Fatemeh Amiri
- Department of Medical Laboratory Sciences, School of Para Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Rasoul Salimi
- Department of Emergency Medicine, Besat Hospital, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Shirin Ferdowsi
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Marzie Bahadori
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| |
Collapse
|
3
|
Reactive Oxygen Species (ROS) and Antioxidants as Immunomodulators in Exercise: Implications for Heme Oxygenase and Bilirubin. Antioxidants (Basel) 2022; 11:antiox11020179. [PMID: 35204062 PMCID: PMC8868548 DOI: 10.3390/antiox11020179] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 02/07/2023] Open
Abstract
Exercise is commonly prescribed as a lifestyle treatment for chronic metabolic diseases as it functions as an insulin sensitizer, cardio-protectant, and essential lifestyle tool for effective weight maintenance. Exercise boosts the production of reactive oxygen species (ROS) and subsequent transient oxidative damage, which also upregulates counterbalancing endogenous antioxidants to protect from ROS-induced damage and inflammation. Exercise elevates heme oxygenase-1 (HO-1) and biliverdin reductase A (BVRA) expression as built-in protective mechanisms, which produce the most potent antioxidant, bilirubin. Together, these mitigate inflammation and adiposity. Moderately raising plasma bilirubin protects in two ways: (1) via its antioxidant capacity to reduce ROS and inflammation, and (2) its newly defined function as a hormone that activates the nuclear receptor transcription factor PPARα. It is now understood that increasing plasma bilirubin can also drive metabolic adaptions, which improve deleterious outcomes of weight gain and obesity, such as inflammation, type II diabetes, and cardiovascular diseases. The main objective of this review is to describe the function of bilirubin as an antioxidant and metabolic hormone and how the HO-1-BVRA-bilirubin-PPARα axis influences inflammation, metabolic function and interacts with exercise to improve outcomes of weight management.
Collapse
|
4
|
Bechynska K, Kosek V, Fenclova M, Muchova L, Smid V, Suk J, Chalupsky K, Sticova E, Hurkova K, Hajslova J, Vitek L, Stranska M. The Effect of Mycotoxins and Silymarin on Liver Lipidome of Mice with Non-Alcoholic Fatty Liver Disease. Biomolecules 2021; 11:1723. [PMID: 34827721 PMCID: PMC8615755 DOI: 10.3390/biom11111723] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/03/2021] [Accepted: 11/16/2021] [Indexed: 01/18/2023] Open
Abstract
Milk thistle-based dietary supplements have become increasingly popular. The extract from milk thistle (Silybum marianum) is often used for the treatment of liver diseases because of the presence of its active component, silymarin. However, the co-occurrence of toxic mycotoxins in these preparations is quite frequent as well. The objective of this study was to investigate the changes in composition of liver lipidome and other clinical characteristics of experimental mice fed by a high-fat methionine-choline deficient diet inducing non-alcoholic fatty liver disease. The mice were exposed to (i) silymarin, (ii) mycotoxins (trichothecenes, enniatins, beauvericin, and altertoxins) and (iii) both silymarin and mycotoxins, and results were compared to the controls. The liver tissue extracts were analyzed by ultra-high performance liquid chromatography coupled with high-resolution tandem mass spectrometry. Using tools of univariate and multivariate statistical analysis, we were able to identify 48 lipid species from the classes of diacylglycerols, triacylglycerols, free fatty acids, fatty acid esters of hydroxy fatty acids and phospholipids clearly reflecting the dysregulation of lipid metabolism upon exposure to mycotoxin and/or silymarin.
Collapse
Affiliation(s)
- Kamila Bechynska
- Department of Food Chemistry and Analysis, University of Chemistry and Technology, 166 28 Prague, Czech Republic; (K.B.); (V.K.); (M.F.); (K.H.); (J.H.)
| | - Vit Kosek
- Department of Food Chemistry and Analysis, University of Chemistry and Technology, 166 28 Prague, Czech Republic; (K.B.); (V.K.); (M.F.); (K.H.); (J.H.)
| | - Marie Fenclova
- Department of Food Chemistry and Analysis, University of Chemistry and Technology, 166 28 Prague, Czech Republic; (K.B.); (V.K.); (M.F.); (K.H.); (J.H.)
| | - Lucie Muchova
- Institute of Medical Biochemistry and Laboratory Diagnostics, General University Hospital and 1st Faculty of Medicine, Charles University, 128 08 Prague, Czech Republic; (L.M.); (J.S.); (L.V.)
| | - Vaclav Smid
- 4th Department of Internal Medicine, General University Hospital and 1st Faculty of Medicine, Charles University, 128 00 Prague, Czech Republic;
| | - Jakub Suk
- Institute of Medical Biochemistry and Laboratory Diagnostics, General University Hospital and 1st Faculty of Medicine, Charles University, 128 08 Prague, Czech Republic; (L.M.); (J.S.); (L.V.)
| | - Karel Chalupsky
- Institute of Molecular Genetics of the Czech Academy of Sciences, 142 20 Prague, Czech Republic;
| | - Eva Sticova
- Institute for Clinical and Experimental Medicine, 140 21 Prague, Czech Republic;
| | - Kamila Hurkova
- Department of Food Chemistry and Analysis, University of Chemistry and Technology, 166 28 Prague, Czech Republic; (K.B.); (V.K.); (M.F.); (K.H.); (J.H.)
| | - Jana Hajslova
- Department of Food Chemistry and Analysis, University of Chemistry and Technology, 166 28 Prague, Czech Republic; (K.B.); (V.K.); (M.F.); (K.H.); (J.H.)
| | - Libor Vitek
- Institute of Medical Biochemistry and Laboratory Diagnostics, General University Hospital and 1st Faculty of Medicine, Charles University, 128 08 Prague, Czech Republic; (L.M.); (J.S.); (L.V.)
- 4th Department of Internal Medicine, General University Hospital and 1st Faculty of Medicine, Charles University, 128 00 Prague, Czech Republic;
| | - Milena Stranska
- Department of Food Chemistry and Analysis, University of Chemistry and Technology, 166 28 Prague, Czech Republic; (K.B.); (V.K.); (M.F.); (K.H.); (J.H.)
| |
Collapse
|
5
|
Abstract
Significance: As the central metabolic organ, the liver is exposed to a variety of potentially cytotoxic, proinflammatory, profibrotic, and carcinogenic stimuli. To protect the organism from these deleterious effects, the liver has evolved a number of defense systems, which include antioxidant substrates and enzymes, anti-inflammatory tools, enzymatic biotransformation systems, and metabolic pathways. Recent Advances: One of the pivotal systems that evolved during phylogenesis was the heme catabolic pathway. Comprising the important enzymes heme oxygenase and biliverdin reductase, this complex pathway has a number of key functions including enzymatic activities, but also cell signaling, and DNA transcription. It further generates two important bile pigments, biliverdin and bilirubin, as well as the gaseous molecule carbon monoxide. These heme degradation products have potent antioxidant, immunosuppressive, and cytoprotective effects. Recent data suggest that the pathway participates in the regulation of metabolic and hormonal processes implicated in the pathogenesis of hepatic and other diseases. Critical Issues: This review discusses the impact of the heme catabolic pathway on major liver diseases, with particular focus on the involvement of cellular targeting and signaling in the pathogenesis of these conditions. Future Directions: To utilize the biological consequences of the heme catabolic pathway, several unique therapeutic strategies have been developed. Research indicates that pharmaceutical, nutraceutical, and lifestyle modifications positively affect the pathway, delivering potentially long-term clinical benefits. However, further well-designed studies are needed to confirm the clinical benefits of these approaches. Antioxid. Redox Signal. 35, 734-752.
Collapse
Affiliation(s)
- Libor Vítek
- Fourth Department of Internal Medicine, and Institute of Medical Biochemistry and Laboratory Diagnostics, General University Hospital and First Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
6
|
Žiberna L, Jenko-Pražnikar Z, Petelin A. Serum Bilirubin Levels in Overweight and Obese Individuals: The Importance of Anti-Inflammatory and Antioxidant Responses. Antioxidants (Basel) 2021; 10:antiox10091352. [PMID: 34572984 PMCID: PMC8472302 DOI: 10.3390/antiox10091352] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/22/2021] [Accepted: 08/23/2021] [Indexed: 12/14/2022] Open
Abstract
Obesity is a chronic condition involving low-grade inflammation and increased oxidative stress; thus, obese and overweight people have lower values of serum bilirubin. Essentially, bilirubin is a potent endogenous antioxidant molecule with anti-inflammatory, immunomodulatory, antithrombotic, and endocrine properties. This review paper presents the interplay between obesity-related pathological processes and bilirubin, with a focus on adipose tissue and adipokines. We discuss potential strategies to mildly increase serum bilirubin levels in obese patients as an adjunctive therapeutic approach.
Collapse
Affiliation(s)
- Lovro Žiberna
- Institute of Pharmacology and Experimental Toxicology, Faculty of Medicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia;
| | | | - Ana Petelin
- Faculty of Health Sciences, University of Primorska, SI-6310 Izola, Slovenia;
- Correspondence: ; Tel.: +386-5-66-2469
| |
Collapse
|
7
|
Křen V. Chirality Matters: Biological Activity of Optically Pure Silybin and Its Congeners. Int J Mol Sci 2021; 22:ijms22157885. [PMID: 34360650 PMCID: PMC8346157 DOI: 10.3390/ijms22157885] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 07/19/2021] [Indexed: 12/31/2022] Open
Abstract
This review focuses on the specific biological effects of optically pure silymarin flavo-nolignans, mainly silybins A and B, isosilybins A and B, silychristins A and B, and their 2,3-dehydro derivatives. The chirality of these flavonolignans is also discussed in terms of their analysis, preparative separation and chemical reactions. We demonstrated the specific activities of the respective diastereomers of flavonolignans and also the enantiomers of their 2,3-dehydro derivatives in the 3D anisotropic systems typically represented by biological systems. In vivo, silymarin flavonolignans do not act as redox antioxidants, but they play a role as specific ligands of biological targets, according to the "lock-and-key" concept. Estrogenic, antidiabetic, anticancer, antiviral, and antiparasitic effects have been demonstrated in optically pure flavonolignans. Potential application of pure flavonolignans has also been shown in cardiovascular and neurological diseases. Inhibition of drug-metabolizing enzymes and modulation of multidrug resistance activity by these compounds are discussed in detail. The future of "silymarin applications" lies in the use of optically pure components that can be applied directly or used as valuable lead structures, and in the exploration of their true molecular effects.
Collapse
Affiliation(s)
- Vladimír Křen
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic
| |
Collapse
|
8
|
Metabolism of 2,3-Dehydrosilybin A and 2,3-Dehydrosilybin B: A Study with Human Hepatocytes and Recombinant UDP-Glucuronosyltransferases and Sulfotransferases. Antioxidants (Basel) 2021; 10:antiox10060954. [PMID: 34198653 PMCID: PMC8232340 DOI: 10.3390/antiox10060954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/10/2021] [Accepted: 06/11/2021] [Indexed: 11/17/2022] Open
Abstract
2,3-Dehydrosilybin A and 2,3-dehydrosilybin B are a pair of enantiomers formed by the oxidation of the natural flavonolignans silybin A and silybin B, respectively. However, the antioxidant activity of 2,3-dehydrosilybin molecules is much stronger than that of their precursors. Here, we investigated the biotransformation of pure 2,3-dehydrosilybin A and 2,3-dehydrosilybin B in isolated human hepatocytes, and we also aimed to identify human UDP-glucuronosyltransferases (UGTs) and sulfotransferases (SULTs) with activity toward their respective enantiomers. After incubation with hepatocytes, both 2,3-dehydrosilybin A and 2,3-dehydrosilybin B were converted to hydroxyl derivatives, methylated hydroxyl derivatives, methyl derivatives, sulfates, and glucuronides. The products of direct conjugations predominated over those of oxidative metabolism, and glucuronides were the most abundant metabolites. Furthermore, we found that recombinant human UGTs 1A1, 1A3, 1A7, 1A8, 1A9, and 1A10 were capable of catalyzing the glucuronidation of both 2,3-dehydrosilybin A and 2,3-dehydrosilybin B. UGTs 1A1 and 1A7 showed the highest activity toward 2,3-dehydrosilybin A, and UGT1A9 showed the highest activity toward 2,3-dehydrosilybin B. The sulfation of 2,3-dehydrosilybin A and B was catalyzed by SULTs 1A1*1, 1A1*2, 1A2, 1A3, 1B1, 1C2, 1C4, and 1E1, of which SULT1A3 exhibited the highest activity toward both enantiomers. We conclude that 2,3-dehydrosilybin A and B are preferentially metabolized by conjugation reactions, and that several human UGT and SULT enzymes may play a role in these conjugations.
Collapse
|
9
|
Stec DE, Hinds TD. Natural Product Heme Oxygenase Inducers as Treatment for Nonalcoholic Fatty Liver Disease. Int J Mol Sci 2020; 21:E9493. [PMID: 33327438 PMCID: PMC7764878 DOI: 10.3390/ijms21249493] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/07/2020] [Accepted: 12/09/2020] [Indexed: 02/06/2023] Open
Abstract
Heme oxygenase (HO) is a critical component of the defense mechanism to a wide variety of cellular stressors. HO induction affords cellular protection through the breakdown of toxic heme into metabolites, helping preserve cellular integrity. Nonalcoholic fatty liver disease (NAFLD) is a pathological condition by which the liver accumulates fat. The incidence of NAFLD has reached all-time high levels driven primarily by the obesity epidemic. NALFD can progress to nonalcoholic steatohepatitis (NASH), advancing further to liver cirrhosis or cancer. NAFLD is also a contributing factor to cardiovascular and metabolic diseases. There are currently no drugs to specifically treat NAFLD, with most treatments focused on lifestyle modifications. One emerging area for NAFLD treatment is the use of dietary supplements such as curcumin, pomegranate seed oil, milk thistle oil, cold-pressed Nigella Satvia oil, and resveratrol, among others. Recent studies have demonstrated that several of these natural dietary supplements attenuate hepatic lipid accumulation and fibrosis in NAFLD animal models. The beneficial actions of several of these compounds are associated with the induction of heme oxygenase-1 (HO-1). Thus, targeting HO-1 through dietary-supplements may be a useful therapeutic for NAFLD either alone or with lifestyle modifications.
Collapse
Affiliation(s)
- David E. Stec
- Department of Physiology & Biophysics, Center for Cardiovascular and Metabolic Diseases Research, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216, USA
| | - Terry D. Hinds
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, 760 Press Avenue, Healthy Kentucky Research Building, Lexington, KY 40508, USA
| |
Collapse
|
10
|
Wang F, Chen S, Ren L, Wang Y, Li Z, Song T, Zhang H, Yang Q. The Effect of Silibinin on Protein Expression Profile in White Adipose Tissue of Obese Mice. Front Pharmacol 2020; 11:55. [PMID: 32184719 PMCID: PMC7059093 DOI: 10.3389/fphar.2020.00055] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 01/20/2020] [Indexed: 01/07/2023] Open
Abstract
Objective To investigate the effect of silibinin on the protein expression profile of white adipose tissue (WAT) in obese mice by using Tandem Mass Tag (TMT) and liquid chromatography-tandem mass spectrometry (LC-MS/MS). Methods According to experimental requirements, 36 C57BL/6JC mice were randomly divided into normal diet group (WC group), high fat diet group (WF group), and high fat diet + silibinin group (WS group). WS group was intragastrically administered with 54 mg/kg body weight of silibinin, and the WC group and the WF group were intragastrically administered with equal volume of normal saline. Serum samples were collected to detect fasting blood glucose and blood lipids. IPGTT was used to measure the blood glucose value at each time point and calculate the area under the glucose curve. TMT combined with LC-MS/MS were used to study the expression of WAT, and its cellular processes, biological processes, corresponding molecular functions, and related network molecular mechanisms were analyzed by bioinformatics. Finally, RT-PCR and LC-MS/MS were used to detect the mRNA and protein expressions of FABP5, Plin4, GPD1, and AGPAT2, respectively. Results Although silibinin did not reduce the mice's weight, it did improve glucose metabolism. In addition, silibinin decreased the concentration of TC, TG, and LDL-C and increased the concentration of HDL-C in the serum of mice. In the WF/WS group, 182 differentially expressed proteins were up-regulated and 159 were down-regulated. While in the WS/WF group, 362 differentially expressed proteins were up-regulated and 176 were down-regulated. Further analysis found that these differential proteins are mainly distributed in the peroxisome proliferation-activated receptor (PPAR), lipolysis of fat cells, metabolism of glycerides, oxidative phosphorylation, and other signaling pathways, and participate in cell processes and lipid metabolism through catalysis and integration functions. Specifically, silibinin reduced the expression of several key factors such as FABP5, Plin4, GPD1, and AGPTA2. Conclusion High fat diet (HFD) can increase the expression of lipid synthesis and transport-related proteins and reduce mitochondrial related proteins, thereby increasing lipid synthesis, reducing energy consumption, and improving lipid metabolism in vivo. Silibinin can reduce lipid synthesis, increase energy consumption, and improve lipid metabolism in mice in vivo.
Collapse
Affiliation(s)
- Fei Wang
- Graduate School of Hebei Medical University, Shijiazhuang, China.,Department of Endocrinology, Hebei General Hospital, Shijiazhuang, China
| | - Shuchun Chen
- Graduate School of Hebei Medical University, Shijiazhuang, China.,Department of Endocrinology, Hebei General Hospital, Shijiazhuang, China
| | - Luping Ren
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, China
| | - Yichao Wang
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, China.,North China University of Science and Technology, Tangshan, China
| | - Zelin Li
- Graduate School of Hebei Medical University, Shijiazhuang, China.,Department of Endocrinology, Hebei General Hospital, Shijiazhuang, China
| | - Tiantian Song
- Graduate School of Hebei Medical University, Shijiazhuang, China.,Department of Endocrinology, Hebei General Hospital, Shijiazhuang, China
| | - He Zhang
- Graduate School of Hebei Medical University, Shijiazhuang, China.,Department of Endocrinology, Hebei General Hospital, Shijiazhuang, China
| | - Qiwen Yang
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, China.,Hebei North University, Zhangjiakou, China
| |
Collapse
|
11
|
Fenclova M, Stranska-Zachariasova M, Benes F, Novakova A, Jonatova P, Kren V, Vitek L, Hajslova J. Liquid chromatography-drift tube ion mobility-mass spectrometry as a new challenging tool for the separation and characterization of silymarin flavonolignans. Anal Bioanal Chem 2020; 412:819-832. [PMID: 31919606 DOI: 10.1007/s00216-019-02274-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 10/29/2019] [Accepted: 11/11/2019] [Indexed: 12/30/2022]
Abstract
Silymarin, milk thistle (Silybum marianum) extract, contains a mixture of mostly isomeric bioactive flavonoids and flavonolignans that are extensively studied, especially for their possible liver-protective and anticancer effects. Because of the differing bioactivities of individual isomeric compounds, characterization of their proportion in a mixture is highly important for predicting its effect on health. However, because of silymarin's complexity, this is hardly feasible by common analytical techniques. In this work, ultraperformance liquid chromatography coupled with drift tube ion mobility spectrometry and quadrupole time-of-flight mass spectrometry was used. Eleven target silymarin compounds (taxifolin, isosilychristin, silychristins A and B, silydianin, silybins A and B, 2,3-cis-silybin B, isosilybins A and B and 2,3-dehydrosilybin) and five unknown flavonolignan isomers detected in the milk thistle extract were fully separated in a 14.5-min analysis run. All the compounds were characterized on the basis of their accurate mass, retention time, drift time, collision cross section and fragmentation spectra. The quantitative approach based on evaluation of the ion mobility data demonstrated lower detection limits, an extended linear range and total separation of interferences from the compounds of interest compared with the traditional approach based on evaluation of liquid chromatography-quadrupole time-of-flight mass spectrometry data. The following analysis of a batch of milk thistle-based food supplements revealed significant variability in the silymarin pattern, especially in the content of silychristin A and silybins A and B. This newly developed method might have high application potential, especially for the characterization of materials intended for bioactivity studies in which information on the exact silymarin composition plays a crucial role. Graphical Abstract.
Collapse
Affiliation(s)
- Marie Fenclova
- Department of Food Analysis and Nutrition, University of Chemistry and Technology, Technická 3, 16628, Prague 6, Czech Republic
| | - Milena Stranska-Zachariasova
- Department of Food Analysis and Nutrition, University of Chemistry and Technology, Technická 3, 16628, Prague 6, Czech Republic.
| | - Frantisek Benes
- Department of Food Analysis and Nutrition, University of Chemistry and Technology, Technická 3, 16628, Prague 6, Czech Republic
| | - Alena Novakova
- Department of Food Analysis and Nutrition, University of Chemistry and Technology, Technická 3, 16628, Prague 6, Czech Republic
| | - Petra Jonatova
- Department of Food Analysis and Nutrition, University of Chemistry and Technology, Technická 3, 16628, Prague 6, Czech Republic
| | - Vladimir Kren
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Prague 4, Czech Republic
| | - Libor Vitek
- Institute of Medical Biochemistry and Laboratory Diagnostics and 4th Department of Internal Medicine, 1st Faculty of Medicine and Faculty General Hospital, Charles University, Katerinska 32, 12108, Prague 2, Czech Republic
| | - Jana Hajslova
- Department of Food Analysis and Nutrition, University of Chemistry and Technology, Technická 3, 16628, Prague 6, Czech Republic
| |
Collapse
|
12
|
Vrba J, Papoušková B, Lněničková K, Kosina P, Křen V, Ulrichová J. Identification of UDP-glucuronosyltransferases involved in the metabolism of silymarin flavonolignans. J Pharm Biomed Anal 2020; 178:112972. [PMID: 31727359 DOI: 10.1016/j.jpba.2019.112972] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 10/30/2019] [Accepted: 11/01/2019] [Indexed: 12/18/2022]
Abstract
Silybum marianum (milk thistle) is a medicinal plant used for producing the hepatoprotective remedy silymarin. Its main bioactive constituents, including silybin and related flavonolignans, can be metabolized directly by phase II conjugation reactions. This study was designed to identify UDP-glucuronosyltransferases (UGTs) involved in the glucuronidation of six silymarin flavonolignans, namely silybin A, silybin B, isosilybin A, isosilybin B, silychristin, and silydianin. UHPLC-MS analyses showed that all of the tested compounds, both individually and in silymarin, were glucuronidated by human liver microsomes, and that glucuronidation was the main metabolic transformation in human hepatocytes. Further, each compound was glucuronidated by multiple recombinant human UGT enzymes. UGTs 1A1, 1A3, 1A8 and 1A9 were able to conjugate all of the tested flavonolignans, and some of them were also metabolized by UGTs 1A6, 1A7, 1A10, 2B7 and 2B15. In contrast, no glucuronides were produced by UGTs 1A4, 2B4, 2B10 and 2B17. With silymarin, we found that UGT1A1 and, to a lesser extent UGT1A9, were primarily responsible for the glucuronidation of the flavonolignan constituents. It is concluded that the metabolism of silymarin flavonolignans may involve multiple UGT enzymes, of which UGT1A1 appears to play the major role in the glucuronidation. These results may be relevant for future research on the metabolism of flavonolignans in humans.
Collapse
Affiliation(s)
- Jiří Vrba
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 3, Olomouc 77515, Czech Republic.
| | - Barbora Papoušková
- Regional Centre of Advanced Technologies and Materials, Department of Analytical Chemistry, Faculty of Science, Palacký University, 17. Listopadu 12, Olomouc 77146, Czech Republic
| | - Kateřina Lněničková
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 3, Olomouc 77515, Czech Republic
| | - Pavel Kosina
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 3, Olomouc 77515, Czech Republic
| | - Vladimír Křen
- Institute of Microbiology of the Czech Academy of Sciences, Laboratory of Biotransformation, Vídeňská 1083, Prague 14220, Czech Republic
| | - Jitka Ulrichová
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 3, Olomouc 77515, Czech Republic
| |
Collapse
|
13
|
Nitti M, Furfaro AL, Mann GE. Heme Oxygenase Dependent Bilirubin Generation in Vascular Cells: A Role in Preventing Endothelial Dysfunction in Local Tissue Microenvironment? Front Physiol 2020; 11:23. [PMID: 32082188 PMCID: PMC7000760 DOI: 10.3389/fphys.2020.00023] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 01/13/2020] [Indexed: 12/22/2022] Open
Abstract
Among antioxidants in the human body, bilirubin has been recognized over the past 20 years to afford protection against different chronic conditions, including inflammation and cardiovascular disease. Moderate increases in plasma concentration and cellular bilirubin generation from metabolism of heme via heme oxygenase (HMOX) in virtually all tissues can modulate endothelial and vascular function and exert antioxidant and anti-inflammatory roles. This review aims to provide an up-to-date and critical overview of the molecular mechanisms by which bilirubin derived from plasma or from HMOX1 activation in vascular cells affects endothelial function. Understanding the molecular actions of bilirubin may critically improve the management not only of key cardiovascular diseases, but also provide insights into a broad spectrum of pathologies driven by endothelial dysfunction. In this context, therapeutic interventions aimed at mildly increasing serum bilirubin as well as bilirubin generated endogenously by endothelial HMOX1 should be considered.
Collapse
Affiliation(s)
- Mariapaola Nitti
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Anna Lisa Furfaro
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Giovanni E Mann
- King's British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine & Sciences, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom
| |
Collapse
|
14
|
Gabbia D, Saponaro M, Sarcognato S, Guido M, Ferri N, Carrara M, De Martin S. Fucus vesiculosus and Ascophyllum nodosum Ameliorate Liver Function by Reducing Diet-Induced Steatosis in Rats. Mar Drugs 2020; 18:E62. [PMID: 31963560 PMCID: PMC7024370 DOI: 10.3390/md18010062] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/11/2020] [Accepted: 01/13/2020] [Indexed: 12/16/2022] Open
Abstract
The Asian coastal communities have used the brown seaweeds Fucus vesiculosus and Ascophyllum nodosum since ancient times. Recently, some in vitro and in vivo studies have demonstrated their abilities in reducing risk factors for metabolic syndrome. Here, we analyzed the protective effect of a phytocomplex extracted from these seaweeds on the deposition of fat in the liver after the administration of a high-fat diet (HFD) to rats for five weeks. The administration of F. vesiculosus and A. nodosum led to significant reductions in microvescicular steatosis and plasma biochemical and lipid parameters, such as alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), total and conjugated bilirubin, and triglycerides. Furthermore, the postprandial glycemic peak was delayed and significantly reduced (p < 0.01) by the algal extract administration. In conclusion, this extract is effective in reducing microvescicular steatosis and improving glycemic control, thereby lowering the risk of nonalcoholic fatty liver disease, obesity, and diabetes, diseases related to the consumption of fat and sugar-enriched diets.
Collapse
Affiliation(s)
- Daniela Gabbia
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35100 Padova, Italy; (D.G.); (N.F.); (M.C.)
| | - Miriam Saponaro
- Department of Medicine, University of Padova, 35100 Padova, Italy;
- Venetian Institute of Molecular Medicine—VIMM, 35100 Padova, Italy
| | - Samantha Sarcognato
- Department of Medicine, General Pathology and Cytophatology Unit, University of Padova, 35100 Padova, Italy; (S.S.); (M.G.)
- Department of Pathology, Azienda ULSS2 Marca Trevigiana, 31100 Treviso, Italy
| | - Maria Guido
- Department of Medicine, General Pathology and Cytophatology Unit, University of Padova, 35100 Padova, Italy; (S.S.); (M.G.)
- Department of Pathology, Azienda ULSS2 Marca Trevigiana, 31100 Treviso, Italy
| | - Nicola Ferri
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35100 Padova, Italy; (D.G.); (N.F.); (M.C.)
| | - Maria Carrara
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35100 Padova, Italy; (D.G.); (N.F.); (M.C.)
| | - Sara De Martin
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35100 Padova, Italy; (D.G.); (N.F.); (M.C.)
| |
Collapse
|
15
|
Quercetin, but not rutin, attenuated hydrogen peroxide-induced cell damage via heme oxygenase-1 induction in endothelial cells. Arch Biochem Biophys 2019; 676:108157. [DOI: 10.1016/j.abb.2019.108157] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 09/26/2019] [Accepted: 10/16/2019] [Indexed: 01/10/2023]
|
16
|
Complex Evaluation of Antioxidant Capacity of Milk Thistle Dietary Supplements. Antioxidants (Basel) 2019; 8:antiox8080317. [PMID: 31426591 PMCID: PMC6720444 DOI: 10.3390/antiox8080317] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 07/30/2019] [Accepted: 08/12/2019] [Indexed: 12/17/2022] Open
Abstract
Numerous in vitro assays are used to characterize the antioxidant properties of natural-based matrices. However, many of them generate contradictory and non-compliant results. In our study, we focused on the characterization of traditionally used biochemical (2,2′-azino-bis-(3-ethylbenzothiazoline-6 sulfonic acid) (ABTS), Oxygen Radical Absorption Capacity (ORAC), and 2,2-diphenyl-1-picrylhydrazyl (DPPH)) and cellular (CAA) antioxidant tests on a broad set of milk thistle dietary supplements containing silymarin. In addition to 26 commercially available preparations, also the natural silymarin extract available from Sigma Aldrich, St. Louis, MI, USA, and a model mixture of pure flavonoid/flavonolignans mimicking the silymarin composition were investigated as control samples. Significant differences in the antioxidant capacity of the supplements were observed. Unlike the DPPH, the results of the ABTS and ORAC methods correlated with the silymarin components determined by U-HPLC-HRMS/MS. The responses in CAA were considerably lower than in other assays. Silymarin exhibited a significantly higher antioxidant capacity than the artificially prepared flavonoid/flavonolignans mixture in all tests, indicating possible presence of other antioxidants of natural origin. The follow-up U-HPLC-HRMS/MS screening revealed the presence of tens of non-silymarin compounds with reported antioxidant activity (not only in the silymarin extract, but also in the milk thistle preparations). The sum of the total phenolics and the sum of the simple phenolics correlated with CAA results more than silymarin.
Collapse
|
17
|
Affiliation(s)
- Nahum Méndez-Sánchez
- Liver Research Unit Medica Sur Clinic & Foundation, Mexico City, Mexico
- Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| | - Xingshun Qi
- Liver Cirrhosis Group, Department of Gastroenterology, General Hospital of Shenyang Military Area, Shenyang, China
| | - Libor Vitek
- Fourth Department of Internal Medicine and Institute of Medical Biochemistry and Laboratory Diagnostics, 1st Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Marco Arrese
- Gastroenterology Department, Medical School, Pontifical Catholic University of Chile, Santiago, Chile
| |
Collapse
|
18
|
Fenclova M, Novakova A, Viktorova J, Jonatova P, Dzuman Z, Ruml T, Kren V, Hajslova J, Vitek L, Stranska-Zachariasova M. Poor chemical and microbiological quality of the commercial milk thistle-based dietary supplements may account for their reported unsatisfactory and non-reproducible clinical outcomes. Sci Rep 2019; 9:11118. [PMID: 31366891 PMCID: PMC6668463 DOI: 10.1038/s41598-019-47250-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 07/04/2019] [Indexed: 12/31/2022] Open
Abstract
Herbal-based dietary supplements have become increasingly popular. The extract from milk thistle (Silybum marianum), is often used for the treatment of liver diseases. However, serious concerns exist regarding the efficacy, composition, as well as the safety of these over-the-counter preparations. Therefore, the aim of the present study was to investigate the composition as well as chemical and biological safety of 26 milk thistle-based dietary supplements purchased from both the U.S. and Czech markets between 2016 and 2017. The study was focused on a determination of the composition of active ingredients, as well as analyses of possible contaminants including: mycotoxins, plant alkaloids, and pesticide residues, as well as the microbial purity. High-throughput analyses were performed using advanced U-HPLC-HRMS techniques. Large differences in the silymarin content were observed among individual milk thistle preparations, often in contrast with the information provided by the manufacturers. In addition, substantial inter-batch differences in silymarin content were also demonstrated. In all milk thistle preparations tested, large numbers and high concentrations of mycotoxins and several pesticides, as well as the substantial presence of microbiological contamination were detected, pointing to serious safety issues. In conclusion, our results strongly indicate the need for strict controls of the composition, chemical contaminants, as well as the microbiological purity of commercial milk thistle extracts used for the treatment of liver diseases. Poor definition of these preparations together with contamination by biologically active substances may not only account for the inconsistency of clinical observations, but also be responsible for possible herbal-based dietary supplements-induced liver injury.
Collapse
Affiliation(s)
- Marie Fenclova
- Department of Food Analysis and Nutrition, University of Chemistry and Technology, Technicka 3, 16628, Prague 6, Czech Republic
| | - Alena Novakova
- Department of Food Analysis and Nutrition, University of Chemistry and Technology, Technicka 3, 16628, Prague 6, Czech Republic
| | - Jitka Viktorova
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Technicka 3, 16628, Prague 6, Czech Republic
| | - Petra Jonatova
- Department of Food Analysis and Nutrition, University of Chemistry and Technology, Technicka 3, 16628, Prague 6, Czech Republic
| | - Zbynek Dzuman
- Department of Food Analysis and Nutrition, University of Chemistry and Technology, Technicka 3, 16628, Prague 6, Czech Republic
| | - Tomas Ruml
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Technicka 3, 16628, Prague 6, Czech Republic
| | - Vladimir Kren
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1082, 14000, Prague 6, Czech Republic
| | - Jana Hajslova
- Department of Food Analysis and Nutrition, University of Chemistry and Technology, Technicka 3, 16628, Prague 6, Czech Republic
| | - Libor Vitek
- Institute of Medical Biochemistry and Laboratory Diagnostics and 4th Department of Internal Medicine, 1st Faculty of Medicine, Charles University, Katerinska 32, 12108, Prague 2, Czech Republic.
| | - Milena Stranska-Zachariasova
- Department of Food Analysis and Nutrition, University of Chemistry and Technology, Technicka 3, 16628, Prague 6, Czech Republic.
| |
Collapse
|