1
|
Xue S, Chen H, Zhang J, Tian R, Xie C, Sun Q, Wang H, Shi T, Guo D, Wang Y, Wang Q. Qishen granule alleviates doxorubicin-induced cardiotoxicity by suppressing ferroptosis via nuclear erythroid factor 2-related factor 2 (Nrf2) pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 335:118604. [PMID: 39047881 DOI: 10.1016/j.jep.2024.118604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 07/17/2024] [Accepted: 07/19/2024] [Indexed: 07/27/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The clinical usage of doxorubicin (DOX) is greatly constrained because of its side effects, especially cardiotoxicity. Studies have suggested that ferroptosis of cardiomyocytes is one of the important causes of doxorubicin-induced cardiotoxicity (DIC). Up-regulating Nuclear erythroid factor 2-related factor 2 (Nrf2) is a potential way to prevent ferroptosis associated with DIC. Qishen granules (QSG) has been shown cardioprotective effects on various cardiovascular diseases, including DIC. However, the mechanism of QSG to prevent and treat DIC are not fully understood. AIM OF THE STUDY The main purpose of this work is to probe whether QSG can mitigate DIC by inhibiting ferroptosis, and whether QSG suppresses ferroptosis via Nrf2 pathway. MATERIALS AND METHODS The effects of QSG on mitigating DIC and the potential targets of QSG were investigated in a DIC mice model. The cardiac function of mice was monitored by echocardiography. Transmission electron microscopy was used to assess mitochondrial damage. ROS content was measured by dihydroethidium (DHE) staining. The glutathione (GSH) and malondialdehyde (MDA) levels in cardiac tissue were detected by kits to evaluate cellular oxidative stress. The accumulation and nuclear translocation of Nrf2 was detected by immuno-fluorescence. Ferroptosis analysis was determined by tissue iron content and key proteins in Nrf2 pathway were measured by western blotting. The anti-oxidant and anti-ferroptosis mechanisms of QSG were explored in vitro studies. Delivery of Nrf2 small interfering RNA (siRNA) to H9c2 cells aimed to investigate whether QSG could prevent DIC through Nrf2 signaling pathway. The protective effects of QSG on mito-chondrial function and free iron were measured by MitoSOX™ Red and FerroOrange staining assays, respectively. RESULTS In vivo, QSG could improve heart function and suppress ferroptosis in DIC mice. DOX-induced ROS production decreased after QSG treatment. The accumulation of free iron and MDA induced by DOX was suppressed with QSG treatment. The level of GSH increased after QSG intervention. QSG also protected against DOX-induced mitochondrial structural damage. Meanwhile, QSG promoted the expression of Nrf2 pathway-related proteins, thereby resisting ferroptosis. In vitro, QSG exerted anti-oxidant and anti-ferroptosis effects. QSG promoted the nuclear-translocation of Nrf2. In addition, interference with Nrf2 attenuated the regulatory effect of QSG on free iron content and mitochondrial ROS production. Moreover, Nrf2 knockdown weakened the anti-ferroptosis effects of QSG and inhibited the expressions of key proteins in Nrf2 pathway. CONCLUSION The results of this study first illustrated that QSG could alleviate DIC by suppressing ferroptosis via Nrf2 pathway. Nrf2 may be a potential key target for QSG to prevent and treat DIC.
Collapse
Affiliation(s)
- Siming Xue
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Huan Chen
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Jingmei Zhang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Ran Tian
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Changxu Xie
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Qianbin Sun
- College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Hui Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Tianjiao Shi
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Dongqing Guo
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China; Key Laboratory of TCM Syndrome and Formula (Beijing University of Chinese Medicine), Ministry of Education, Beijing, 100029, China; Beijing Key Laboratory of TCM Syndrome and Formula, Beijing, 100029, China.
| | - Yong Wang
- College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China; Key Laboratory of TCM Syndrome and Formula (Beijing University of Chinese Medicine), Ministry of Education, Beijing, 100029, China; Beijing Key Laboratory of TCM Syndrome and Formula, Beijing, 100029, China.
| | - Qiyan Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China; Key Laboratory of TCM Syndrome and Formula (Beijing University of Chinese Medicine), Ministry of Education, Beijing, 100029, China; Beijing Key Laboratory of TCM Syndrome and Formula, Beijing, 100029, China.
| |
Collapse
|
2
|
Ding C, Wu Y, Zhan C, Naseem A, Chen L, Li H, Yang B, Liu Y. Research progress on the role and inhibitors of Keap1 signaling pathway in inflammation. Int Immunopharmacol 2024; 141:112853. [PMID: 39159555 DOI: 10.1016/j.intimp.2024.112853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/23/2024] [Accepted: 07/30/2024] [Indexed: 08/21/2024]
Abstract
Inflammation is a protective mechanism against endogenous and exogenous pathogens. It is a typical feature of numerous chronic diseases and their complications. Keap1 is an essential target in oxidative stress and inflammatory diseases. Among them, the Keap1-Nrf2-ARE pathway (including Keap1-Nrf2-HO-1) is the most significant pathway of Keap1 targets, which participates in the control of inflammation in multiple organs (including renal inflammation, lung inflammation, liver inflammation, neuroinflammation, etc.). Identifying new Keap1 inhibitors is crucial for new drug discovery. However, most drugs have specificity issues as they covalently bind to cysteine residues of Keap1, causing off-target effects. Therefore, direct inhibition of Keap1-Nrf2 PPIs is a new research idea. Through non-electrophilic and non-covalent binding, its inhibitors have better specificity and ability to activate Nrf2, and targeting therapy against Keap1-Nrf2 PPIs has become a new method for drug development in chronic diseases. This review summarizes the members and downstream genes of the Keap1-related pathway and their roles in inflammatory disease models. In addition, we summarize all the research progress of anti-inflammatory drugs targeting Keap1 from 2010 to 2024, mainly describing their biological functions, molecular mechanisms of action, and therapeutic roles in inflammatory diseases.
Collapse
Affiliation(s)
- Chao Ding
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China.
| | - Ying Wu
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, China.
| | - Chaochao Zhan
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China.
| | - Anam Naseem
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China.
| | - Lixia Chen
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Hua Li
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China; Institute of Structural Pharmacology & TCM Chemical Biology, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China.
| | - Bingyou Yang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China.
| | - Yan Liu
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China.
| |
Collapse
|
3
|
Jiang Q, Dong C, He Z, Wang Y, Jiang R, Liao W, Yang S. Research landscape and pharmacological mechanisms of traditional Chinese medicines in treating and preventing urolithiasis: Unearthing an anti-urolithic treasure trove. JOURNAL OF ETHNOPHARMACOLOGY 2024; 334:118502. [PMID: 38950794 DOI: 10.1016/j.jep.2024.118502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/13/2024] [Accepted: 06/25/2024] [Indexed: 07/03/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Urolithiasis represents a predominant concern within urology due to its high recurrence rate and consequential surgical complications. Traditional Chinese Medicine (TCM), with a history spanning over 2000 years in treating kidney diseases, not only offers a less invasive and cost-effective option for treating and preventing urolithiasis, but also serves as a pharmacological treasure trove for the development of anti-urolithic drugs. AIM OF THE STUDY With the continuous deepening of research on the anti-urolithic effects of Chinese medicines, the pharmacological mechanisms of TCMs against urolithiasis are continuously evolving. Therefore, it is essential to summarize the current research status, clinical effectiveness, and mechanisms of TCM in treating and preventing urolithiasis, to ascertain its potential in anti-urolithic treatments, and to provide a reference for future anti-urolithiasis drug research. METHODS The electronic databases such as PubMed, Web of Science, and China National Knowledge Infrastructure (CNKI) have been utilized to retrieve relevant literature spanning from 2000 to September 2023, using keywords "Traditional Chinese Medicine" and "Urolithiasis". Then we conducted a visual analysis of the current status of related research, as well as a systematic organization of the therapeutic effects and underlying mechanisms of anti-urolithic TCMs. RESULTS Through the organization of research models, therapeutic effects, and active ingredients of 31 potential anti-urolithic TCMs, we have systematically summarized the underlying mechanisms of TCMs in management of urolithiasis. Mechanistically, Chinese herbs facilitate stone expulsion by enhancing diuresis, instigating anti-spasmodic effects, and promoting ureteral peristalsis when addressing calculi. They also harbor the potential to dissolve pre-existing stones. In terms of stone recurrence prevention, TCM compounds obstruct stone formation through targeting the sequence of crystal adhesion, nucleation, growth, and aggregation to inhibit stone formation. Additionally, TCM's significant roles include stifling oxidative stress, augmenting urinary stone inhibitors, and harmonizing oxalate metabolism, all of which are critical actions in stone prevention. CONCLUSION The anti-urolithic mechanism of TCM is multifaceted. Investigating the anti-urolithiasis mechanisms of TCM not only illuminates the potential of Chinese medicine in treating and preventing urolithiasis, but also uncovers active molecules and targets for drug treatment against calculus formation.
Collapse
Affiliation(s)
- Qinhong Jiang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, People's Republic of China
| | - Caitao Dong
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, People's Republic of China
| | - Ziqi He
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, People's Republic of China
| | - Yunhan Wang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, People's Republic of China
| | - Rong Jiang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, People's Republic of China
| | - Wenbiao Liao
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, People's Republic of China.
| | - Sixing Yang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, People's Republic of China.
| |
Collapse
|
4
|
Montanarí C, Franco-Campos F, Taroncher M, Rodríguez-Carrasco Y, Zingales V, Ruiz MJ. Chlorpyrifos induces cytotoxicity via oxidative stress and mitochondrial dysfunction in HepG2 cells. Food Chem Toxicol 2024; 192:114933. [PMID: 39147357 DOI: 10.1016/j.fct.2024.114933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/01/2024] [Accepted: 08/12/2024] [Indexed: 08/17/2024]
Abstract
Chlorpyrifos (CPF), a widely used broad-spectrum organophosphate pesticide, has been associated with various adverse health effects in animals and humans. While its primary mechanism of action involves the irreversible inhibition of acetylcholinesterase, secondary mechanisms have also been suggested. The aim of the present study was to explore the secondary mechanisms of action involved in CPF-induced acute cytotoxicity using human hepatocarcinoma HepG2 cells. In particular, we investigated oxidative stress and mitochondrial function by assessing reactive oxygen species (ROS) generation, lipid peroxidation (LPO) and mitochondrial membrane potential (ΔΨm) alteration. Results showed that 24-h exposure to CPF (78.125-2500 μM) decreased cell viability in a concentration-dependent manner (IC50 = 280.87 ± 26.63 μM). Sub-toxic CPF concentrations (17.5, 35 and 70 μM) induced increases in ROS generation (by 83%), mitochondrial superoxide (by 7.1%), LPO (by 11%), and decreased ΔΨm (by 20%). CPF also upregulated Nrf2 protein expression, indicating the role of the latter in modulating the cellular response to oxidative insults. Overall, our findings suggest that CPF caused hepatotoxicity through oxidative stress and mitochondrial dysfunction. Given the re-emerging use of CPF, this study emphasizes the need for comprehensive analysis to elucidate its toxicity on non-target organs and associated mechanisms.
Collapse
Affiliation(s)
- C Montanarí
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy and Food Sciences, Universitat de València, Av. Vicent Andrés Estellés s/n, Burjassot, 46100, València, Spain
| | - F Franco-Campos
- Research Group in Alternative Methods for Determining Toxic Effects and Risk Assessment of Contaminants and Mixtures (RiskTox), Spain; Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy and Food Sciences, Universitat de València, Av. Vicent Andrés Estellés s/n, Burjassot, 46100, València, Spain
| | - M Taroncher
- Research Group in Alternative Methods for Determining Toxic Effects and Risk Assessment of Contaminants and Mixtures (RiskTox), Spain; Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy and Food Sciences, Universitat de València, Av. Vicent Andrés Estellés s/n, Burjassot, 46100, València, Spain
| | - Y Rodríguez-Carrasco
- Research Group in Alternative Methods for Determining Toxic Effects and Risk Assessment of Contaminants and Mixtures (RiskTox), Spain; Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy and Food Sciences, Universitat de València, Av. Vicent Andrés Estellés s/n, Burjassot, 46100, València, Spain
| | - V Zingales
- Research Group in Alternative Methods for Determining Toxic Effects and Risk Assessment of Contaminants and Mixtures (RiskTox), Spain; Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy and Food Sciences, Universitat de València, Av. Vicent Andrés Estellés s/n, Burjassot, 46100, València, Spain.
| | - M J Ruiz
- Research Group in Alternative Methods for Determining Toxic Effects and Risk Assessment of Contaminants and Mixtures (RiskTox), Spain; Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy and Food Sciences, Universitat de València, Av. Vicent Andrés Estellés s/n, Burjassot, 46100, València, Spain
| |
Collapse
|
5
|
Khan MZ, Chen W, Liu X, Kou X, Khan A, Khan RU, Zahoor M, Wang C. An Overview of Bioactive Compounds' Role in Modulating the Nrf2/Keap1/NF-κB Pathway to Alleviate Lipopolysaccharide-Induced Endometritis. Int J Mol Sci 2024; 25:10319. [PMID: 39408650 PMCID: PMC11476794 DOI: 10.3390/ijms251910319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/16/2024] [Accepted: 09/21/2024] [Indexed: 10/19/2024] Open
Abstract
Endometritis is a common inflammatory condition of the uterine endometrial lining that primarily affects perinatal dairy animals and causes significant economic losses in agriculture. It is usually triggered by pathogenic bacteria and is associated with chronic postpartum reproductive tract infections. Bacterial lipopolysaccharides (LPSs) are known to increase levels of reactive oxygen species (ROS), leading to oxidative stress and inflammation through the activation of the NF-κB signaling pathway and the inhibition of Nrf2 nuclear translocation, which regulates antioxidant response elements (AREs). The effectiveness of the conventional management strategy involving antibiotics is decreasing due to resistance and residual concerns. This review explores the potential therapeutic benefits of targeting the Nrf2/Kelch-like ECH-associated protein 1 (Keap1)/NF-κB signaling pathway to alleviate LPS-induced endometritis. We discuss recent advancements in veterinary medicine that utilize exogenous antioxidants to modulate these pathways, thereby reducing oxidative stress and inflammatory responses in endometrial cells. This review highlights the efficacy of several bioactive compounds that enhance Nrf2 signaling and suppress NF-κB activation, offering protective effects against oxidative damage and inflammation. By examining various in vitro studies, this review emphasizes the emerging role of these signaling pathways in developing new therapeutic strategies that could potentially replace or supplement traditional treatments and mitigate the economic impacts of endometritis in livestock.
Collapse
Affiliation(s)
- Muhammad Zahoor Khan
- College of Agricultural Science and Engineering, Liaocheng University, Liaocheng 522000, China
| | - Wenting Chen
- College of Agricultural Science and Engineering, Liaocheng University, Liaocheng 522000, China
| | - Xiaotong Liu
- College of Agricultural Science and Engineering, Liaocheng University, Liaocheng 522000, China
| | - Xiyan Kou
- College of Agricultural Science and Engineering, Liaocheng University, Liaocheng 522000, China
| | - Adnan Khan
- Animal Genomics Laboratory, School of Agriculture and Food Science, University College Dublin, D04 V1W8 Dublin, Ireland
| | - Rahat Ullah Khan
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, CAS-TWAS Center of Excellence for Emerging Infectious Diseases, Chinese Academy of Sciences, Beijing 100101, China
| | - Muhammad Zahoor
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Sognsvannsveien, 90372 Oslo, Norway
| | - Changfa Wang
- College of Agricultural Science and Engineering, Liaocheng University, Liaocheng 522000, China
| |
Collapse
|
6
|
Yang M, Zhou W, Han X, Xu M, Wang Z, Shi M, Shi Y, Yu Y. Modified bone marrow mesenchymal stem cells derived exosomes loaded with MiRNA ameliorates non-small cell lung cancer. J Cell Mol Med 2024; 28:e70115. [PMID: 39320274 PMCID: PMC11423648 DOI: 10.1111/jcmm.70115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 08/28/2024] [Accepted: 09/17/2024] [Indexed: 09/26/2024] Open
Abstract
The study aimed to reveal the function of LXY30 peptide-modified bone marrow mesenchymal stem cell-derived exosomes (LXY30-Exos) in NSCLC. LXY30 peptide is a peptide ligand targeting α3β1 integrin, and LXY30 specifically binds to Exos derived from different cells. We use transmission electron microscopy to identify LXY30-Exos and tracking analysis for particles, and the LXY30-Exos internalized by NSCLC cells in vitro and targeted NSCLC tumours in vivo were verified by multiple molecular technologies. The functions of LXY30-Exos-encapsulated miR-30c, miR-181b or miR-613 were assessed using cell proliferation, migration and cell apoptosis assays. Meanwhile, the safety of the above engineered Exos was evaluated in vivo. After LXY30-Exos were isolated and identified, LXY30-Exos were confirmed to be internalized by NSCLC cells in vitro and specifically targeted NSCLC tumours in vivo. Functionally, LXY30-Exos-encapsulated miR-30c, miR-181b or miR-613 weakened the proliferation, migration and cell cycle of NSCLC cells induced cellular apoptosis in vitro and restrained the tumour progression in vivo. Meanwhile, the safety of LXY30-Exos-encapsulated miR-30c, miR-181b or miR-613 was confirmed in vivo. Overall, miR-30c, miR-181b and miR-613 encapsulated in LXY30 peptide-modified BMSC-Exos relieved NSCLC.
Collapse
Affiliation(s)
- Mingjun Yang
- Department of Cardiothoracic SurgeryAffiliated Hospital of Nantong UniversityNantongJiangsuChina
| | - Wen Zhou
- Department of Cardiothoracic SurgeryAffiliated Hospital of Nantong UniversityNantongJiangsuChina
| | - Xiao Han
- Department of Cardiothoracic SurgeryAffiliated Hospital of Nantong UniversityNantongJiangsuChina
| | - Mingming Xu
- Department of Cardiothoracic SurgeryAffiliated Hospital of Nantong UniversityNantongJiangsuChina
| | - Zhipeng Wang
- Department of Thoracic SurgeryHaimen People's HospitalNantongJiangsuChina
| | - Min Shi
- Department of Cardiothoracic SurgeryAffiliated Hospital of Nantong UniversityNantongJiangsuChina
| | - Yanyan Shi
- Department of Cardiothoracic SurgeryAffiliated Hospital of Nantong UniversityNantongJiangsuChina
| | - Yunchi Yu
- Department of Cardiothoracic SurgeryAffiliated Hospital of Nantong UniversityNantongJiangsuChina
| |
Collapse
|
7
|
Din MAU, Wan A, Chu Y, Zhou J, Yan Y, Xu Z. Therapeutic role of extracellular vesicles from human umbilical cord mesenchymal stem cells and their wide therapeutic implications in inflammatory bowel disease and other inflammatory disorder. Front Med (Lausanne) 2024; 11:1406547. [PMID: 39139783 PMCID: PMC11319305 DOI: 10.3389/fmed.2024.1406547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 07/18/2024] [Indexed: 08/15/2024] Open
Abstract
The chronic immune-mediated inflammatory condition known as inflammatory bowel disease (IBD) significantly affects the gastrointestinal system. While the precise etiology of IBD remains elusive, extensive research suggests that a range of pathophysiological pathways and immunopathological mechanisms may significantly contribute as potential factors. Mesenchymal stem cells (MSCs) have shown significant potential in the development of novel therapeutic approaches for various medical conditions. However, some MSCs have been found to exhibit tumorigenic characteristics, which limit their potential for medical treatments. The extracellular vesicles (EVs), paracrine factors play a crucial role in the therapeutic benefits conferred by MSCs. The EVs consist of proteins, microRNAs, and lipids, and are instrumental in facilitating intercellular communication. Due to the ease of maintenance, and decreased immunogenicity, tumorigenicity the EVs have become a new and exciting option for whole cell treatment. This review comprehensively assesses recent preclinical research on human umbilical cord mesenchymal stem cell (hUC-MSC)-derived EVs as a potential IBD therapy. It comprehensively addresses key aspects of various conditions, including diabetes, cancer, dermal injuries, neurological disorders, cardiovascular issues, liver and kidney diseases, and bone-related afflictions.
Collapse
Affiliation(s)
- Muhammad Azhar Ud Din
- Changzhou Key Laboratory of Molecular Diagnostics and Precision Cancer Medicine, Wujin Hospital Affiliated with Jiangsu University, Jiangsu University, Changzhou, China
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine Jiangsu University, Zhenjiang, China
| | | | - Ying Chu
- Changzhou Key Laboratory of Molecular Diagnostics and Precision Cancer Medicine, Wujin Hospital Affiliated with Jiangsu University, Jiangsu University, Changzhou, China
| | - Jing Zhou
- Changzhou Key Laboratory of Molecular Diagnostics and Precision Cancer Medicine, Wujin Hospital Affiliated with Jiangsu University, Jiangsu University, Changzhou, China
| | - Yongmin Yan
- Changzhou Key Laboratory of Molecular Diagnostics and Precision Cancer Medicine, Wujin Hospital Affiliated with Jiangsu University, Jiangsu University, Changzhou, China
| | - Zhiliang Xu
- Changzhou Key Laboratory of Molecular Diagnostics and Precision Cancer Medicine, Wujin Hospital Affiliated with Jiangsu University, Jiangsu University, Changzhou, China
| |
Collapse
|
8
|
Laddha AP, Wu H, Manautou JE. Deciphering Acetaminophen-Induced Hepatotoxicity: The Crucial Role of Transcription Factors like Nuclear Factor Erythroid 2-Related Factor 2 as Genetic Determinants of Susceptibility to Drug-Induced Liver Injury. Drug Metab Dispos 2024; 52:740-753. [PMID: 38857948 DOI: 10.1124/dmd.124.001282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 05/20/2024] [Accepted: 06/06/2024] [Indexed: 06/12/2024] Open
Abstract
Acetaminophen (APAP) is the most commonly used over-the-counter medication throughout the world. At therapeutic doses, APAP has potent analgesic and antipyretic effects. The efficacy and safety of APAP are influenced by multifactorial processes dependent upon dosing, namely frequency and total dose. APAP poisoning by repeated ingestion of supratherapeutic doses, depletes glutathione stores in the liver and other organs capable of metabolic bioactivation, leading to hepatocellular death due to exhausted antioxidant defenses. Numerous genes, encompassing transcription factors and signaling pathways, have been identified as playing pivotal roles in APAP toxicity, with the liver being the primary organ studied due to its central role in APAP metabolism and injury. Nuclear factor erythroid 2-related factor 2 (NRF2) and its array of downstream responsive genes are crucial in counteracting APAP toxicity. NRF2, along with its negative regulator Kelch-like ECH-associated protein 1, plays a vital role in regulating intracellular redox homeostasis. This regulation is significant in modulating the oxidative stress, inflammation, and hepatocellular death induced by APAP. In this review, we provide an updated overview of the mechanisms through which NRF2 activation and signaling critically influence the threshold for developing APAP toxicity. We also describe how genetically modified rodent models for NRF2 and related genes have been pivotal in underscoring the significance of this antioxidant response pathway. While NRF2 is a primary focus, the article comprehensively explores other genetic factors involved in phase I and phase II metabolism of APAP, inflammation, oxidative stress, and related pathways that contribute to APAP toxicity, thereby providing a holistic understanding of the genetic landscape influencing susceptibility to this condition. SIGNIFICANCE STATEMENT: This review summarizes the genetic elements and signaling pathways underlying APAP-induced liver toxicity, focusing on the crucial protective role of the transcription factor NRF2. This review also delves into the genetic intricacies influencing APAP safety and potential liver harm. It also emphasizes the need for deeper insight into the molecular mechanisms of hepatotoxicity, especially the interplay of NRF2 with other pathways.
Collapse
Affiliation(s)
- Ankit P Laddha
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut
| | - Hangyu Wu
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut
| | - José E Manautou
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut
| |
Collapse
|
9
|
Li Z, Li J, Li Y, Guo L, Xu P, Du H, Lin N, Xu Y. The role of Cistanches Herba and its ingredients in improving reproductive outcomes: A comprehensive review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155681. [PMID: 38718638 DOI: 10.1016/j.phymed.2024.155681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/11/2024] [Accepted: 04/23/2024] [Indexed: 05/30/2024]
Abstract
BACKGROUND Infertility patients account for an astonishing proportion of individuals worldwide. Due to its complex etiology and challenging treatment, infertility has imposed significant psychological and economic burdens on many patients. C. Herba (Cistanche tubulosa (Schenk) Wight and Cistanche deserticola Ma), renowned as one of the most prominent Chinese herbal medicines (CHMs), is abundant in diverse bioactive compounds that exhibit therapeutic effects on many diseases related to oxidative stress (OS) and disorders of sex hormone levels. OBJECTIVE Due to the limited drugs currently used in clinical practice to improve reproductive outcomes and their inevitable side effects, developing safe and effective new medications for infertility is of significance. This article comprehensively reviewed the phytochemicals of C. Herba, focusing on their efficacy and mechanisms on infertility and their safety for the first time, aiming to offer valuable insights for the development and application of C. Herba, and for developing novel strategies for treating infertility. METHODS We used "Cistanche" and its known bioactive components in combination with "sperm", "testicles", "epididymis", "ovaries", "uterus", and "infertility" as keywords to search in PubMed, Web of Science, Scopus and CNKI up to November 2023. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 2020 guideline was followed. RESULTS The therapeutic effects of C. Herba on infertility are mainly attributed to echinacoside (ECH), verbascoside (VB), salidroside (SAL), polysaccharides, and betaine. They can effectively improve spermatogenic dysfunction, gonadal dysfunction and erectile dysfunction (ED) by exerting anti-oxidation, sex hormones regulation and anti-hypoxia. Moreover, they can also improve premature ovarian failure (POF), ovarian and uterine cancer, oocyte maturation by exerting anti-oxidation, anti-apoptosis, and anti-cancer. C. Herba and its active ingredients also exhibit pleasing safety. CONCLUSION C. Herba is a promising source of natural medicine for infertility. Additionally, compared to current therapeutic drugs, its favorable safety also supports its development as a nutritional supplement. However, high-quality clinical studies are required to validate its effectiveness for the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Zehui Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jiashan Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yuan Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Li Guo
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Panyu Xu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Hanqian Du
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Na Lin
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Ying Xu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| |
Collapse
|
10
|
Ivanova S, Dzhakova Z, Staynova R, Ivanov K. Salvia verticillata (L.)-Biological Activity, Chemical Profile, and Future Perspectives. Pharmaceuticals (Basel) 2024; 17:859. [PMID: 39065710 PMCID: PMC11280111 DOI: 10.3390/ph17070859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 06/25/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
Species belonging to the genus Salvia, Lamiaceae, have been deeply involved in the folk medicine of different nations since ancient times. Lilac sage, or Salvia verticillata L. (S. verticillata) is a less studied species from the genus. However, it seems to have a prominent potential for the future drug discovery strategies of novel phytopharmaceuticals. This review aims to summarise the data on the biological activity and the phytochemical profile of extracts and essential oils derived from S. verticillata. This review is based on data from 57 in vitro and in vivo studies. The chemical profile of S. verticillata includes different synergic compounds like phenolic acids, flavonoids, terpenes, and salvianolic acids. Although some small amounts of salvianolic acid B were found in S. verticillata extracts, the major compound among the salvianolic acids is salvianolic acid C, a compound associated with the potential for improving liver fibrosis, cardio- and hepatoprotection, and the inhibition of SARS-CoV-2 infection. The cannabinoid type 2 receptor agonist β-caryophyllene is one of the major compounds in S. verticillata essential oils. It is a compound with a prominent potential in regenerative medicine, neurology, immunology, and other medical fields. The in vivo and the in vitro studies, regarding S. verticillata highlighted good antioxidant potential, anti-inflammatory, antibacterial, and antifungal activity. S.verticillata was also reported as a potential source of drug candidates for the treatment of neurodegenerative diseases such as Alzheimer's disease, because of the inhibitory activity on the acetylcholinesterase. However, the number of studies in this direction is limited.
Collapse
Affiliation(s)
- Stanislava Ivanova
- Department of Pharmacognosy and Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (Z.D.); (K.I.)
- Research Institute, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
| | - Zoya Dzhakova
- Department of Pharmacognosy and Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (Z.D.); (K.I.)
| | - Radiana Staynova
- Department of Organisation and Economics of Pharmacy, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria;
| | - Kalin Ivanov
- Department of Pharmacognosy and Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (Z.D.); (K.I.)
- Research Institute, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
| |
Collapse
|
11
|
Liu Z, Yuan X, Huang Y, Gu Z, Xue L, Xue S, Wang J. The Role of Interferon-Induced Proteins with Tetratricopeptide Repeats 1 and 2 in Sepsis-Induced Acute Liver Injury. Infect Drug Resist 2024; 17:2337-2349. [PMID: 38882652 PMCID: PMC11180434 DOI: 10.2147/idr.s459838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 06/07/2024] [Indexed: 06/18/2024] Open
Abstract
Background Sepsis refers to a life-threatening organ dysfunction which can be resulted from the infection-induced dysregulated host response. A large number of inflammatory cytokines are released to act on the liver, making the liver one of the common target organs for the development of multiple organ dysfunction syndrome (MODS) in patients with sepsis. Sepsis-induced acute liver injury (SALI) can aggravate systemic disease. As a result, it is of great clinical significance to comprehend the molecular biological mechanism of SALI and to identify the markers for evaluating SALI. Interferon-induced proteins with tetratricopeptide repeats 1 and 2 (IFIT1, IFIT2) have been recognized as the anti-inflammatory factors that are widely expressed in various organs. The present study was aimed at clarifying the roles of IFIT1 and IFIT2 in the development of SALI. Methods A two-sample Mendelian randomization (MR) analysis was employed. Summary statistics datas were obtained from GWAS for inflammatory factors [tumor necrosis factor (TNF-α), interleukin-1β (IL-1β), and interleukin-6 (IL-6)], IFIT2, and sepsis as well as liver injury. Independent SNPs were selected as instrumental variables (IVs). Inverse variance weighted (IVW) in the MR analysis was adopted as the primary method for estimating the causal associations of inflammatory factors and IFIT2 with two diseases, and the associations of inflammatory factors with IFIT2. Additionally, weighted median method, MR-Egger and sensitivity analyses were applied in assessing the robustness of the results and ensure the result reliability. Subsequently, 119 healthy volunteers, 116 patients with sepsis and 116 SALI patients were recruited. The ELISA method was employed to quantify the expression levels of TNF-α, IL-1β, and IL-6. Additionally, qRT-PCR was conducted to measure the expression of IFIT1 and IFIT2. Furthermore, the correlations of IFIT1 and IFIT2 with inflammatory factors, alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were explored. Results As shown by the MR analysis, the genetically predisposed sepsis was significantly associated with the risk of IL-1β, with an odds ratio (OR) of 1.069 (95% confidence interval (CI), 1.015-1.127, p = 0.0119), and negatively associated with the risk of IL-6, with an OR of 0.880 (95% CI: 0.792-0.979, p= 0.0184). Meanwhile, there were positive causal effects of IL-6 (OR = 1.269, 95% CI: 1.032-1.561, p= 0.0238), IL-1β (OR = 1.106, 95% CI: 1.010-1.211, p = 0.0299) and IFIT2 (OR = 1.191, 95% CI: 1.045-1.359, p = 0.0090) on liver injury. Additionally, there was a positive causal effect of IFIT2 (OR = 1.164, 95% CI: 1.035-1.309, p= 0.0110) on IL-1β. Upon sensitivity analyses, there was weak evidence of such effects, indicating that the findings of this study were robust and reliable. Our results revealed the elevated levels of TNF-α, IL-1β, and IL-6 in the blood samples of sepsis and SALI patients (p < 0.0001). Conversely, IFIT1 and IFIT2 demonstrated the significantly decreased levels in peripheral blood mononuclear cells (PBMCs) of SALI patients (p < 0.0001). Furthermore, the expression levels of IFIT1 and IFIT2 were both negatively correlated with ALT activity (r = -0.3426, p = 0.0002; r = -0.3069, p = 0.0008) and AST activity (r = -0.2483, p = 0.0072; r = -0.3261, p = 0.0004), respectively. Moreover, the expression of IFIT1 and IFIT2 was both negatively related to the levels of TNF-α (r = -0.5027, p < 0.0001; r = -0.4218, p < 0.0001), IL-1β (r = -0.3349, p = 0.0002; r = -0.4070, p < 0.0001) and IL-6 (r = -0.2734, p = 0.0030; r = -0.3536, p < 0.0001), respectively. Conclusion IFIT1 and IFIT2 can serve as the diagnostic markers for sepsis-related liver injury, and IFIT1 and IFIT2 may participate in the pathological process of sepsis-related liver injury by regulating inflammation and liver function.
Collapse
Affiliation(s)
- Zhipeng Liu
- Information Department, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, Jiangsu Province, 225300, People's Republic of China
| | - Xinyu Yuan
- Emergency Department, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, Jiangsu Province, 225300, People's Republic of China
| | - Yan Huang
- Medical College, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Zihan Gu
- Nanjing University of Finance & Economics, Nanjing, 210023, People's Republic of China
| | - Lu Xue
- Department of Critical Care Medicine, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, Jiangsu Province, 225300, People's Republic of China
| | - Shanshan Xue
- Institute of Clinical Laboratory, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, Jiangsu Province, 225300, People's Republic of China
| | - Jun Wang
- Emergency Department, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, Jiangsu Province, 225300, People's Republic of China
| |
Collapse
|
12
|
Du G, Sun X, He S, Mi L. The Nrf2/HO-1 pathway participates in the antiapoptotic and anti-inflammatory effects of platelet-rich plasma in the treatment of osteoarthritis. Immun Inflamm Dis 2024; 12:e1169. [PMID: 38860757 PMCID: PMC11165680 DOI: 10.1002/iid3.1169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 01/06/2024] [Accepted: 01/12/2024] [Indexed: 06/12/2024] Open
Abstract
INTRODUCTION We aimed to explore the molecular mechanisms through which platelet-rich plasma (PRP) attenuates osteoarthritis (OA)-induced pain, apoptosis, and inflammation. METHODS An in vivo model of OA was established by injuring rats using the anterior cruciate ligament transection method, whereas an in vitro model was generated by exposing chondrocytes to interleukin (IL)-1β. Both models were then treated with PRP. RESULTS In both the in vivo and in vitro models, OA led to the suppression of the nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) pathway, whereas treatment with PRP reactivated this molecular axis. Inhibition of the Nrf2/HO-1 pathway using the Nrf2 inhibitor brusatol or through Nrf2 gene silencing counteracted the effects of PRP in reducing the tenderness and thermal pain thresholds of OA rats. Additionally, PRP reduced the mRNA expression of IL-1β, IL-6, tumor necrosis factor-alpha (TNF-α), and matrix metallopeptidase 13 (MMP-13) and the protein expression of B-cell lymphoma 2 (Bcl-2), Bcl-2 associated X-protein (Bax), and caspase-3. Furthermore, inflammation and apoptosis were induced by brusatol treatment or Nrf2 silencing. Additionally, in the in vitro model, PRP treatment increased the proliferation of chondrocytes and attenuated their inflammatory response and apoptosis, effects that were abrogated by Nrf2 depletion. CONCLUSIONS The Nrf2/HO-1 pathway participates in the PRP-mediated attenuation of OA development by suppressing inflammation and apoptosis.
Collapse
Affiliation(s)
- Guangyu Du
- Department of Bone SurgeryThe Second Affiliated Hospital of Dalian Medical UniversityDalianChina
| | - Xuegang Sun
- Department of Bone SurgeryThe Second Affiliated Hospital of Dalian Medical UniversityDalianChina
| | - Shengwei He
- Department of Bone SurgeryThe Second Affiliated Hospital of Dalian Medical UniversityDalianChina
| | - Lidong Mi
- Department of Bone SurgeryThe Second Affiliated Hospital of Dalian Medical UniversityDalianChina
| |
Collapse
|
13
|
Nivetha S, Asha KRT, Srinivasan S, Murali R, Kanagalakshmi A. p-Coumaric acid pronounced protective effect against potassium bromate-induced hepatic damage in Swiss albino mice. Cell Biochem Funct 2024; 42:e4076. [PMID: 38895919 DOI: 10.1002/cbf.4076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/22/2024] [Accepted: 06/06/2024] [Indexed: 06/21/2024]
Abstract
Potassium bromate (KBrO3) is a common dietary additive, pharmaceutical ingredient, and significant by-product of water disinfection. p-coumaric acid (PCA) is a naturally occurring nutritional polyphenolic molecule with anti-inflammatory and antioxidant activities. The goal of the current investigation was to examine the protective effects of p-coumaric acid against the liver damage caused by KBrO3. The five groups of animals-control, KBrO3 (100 mg/kg bw), treatment with KBrO3 along with Silymarin (100 mg/kg bw), KBrO3, followed by PCA (100 mg/bw, and 200 mg/kg bw) were randomly assigned to the animals. Mice were slaughtered, and blood and liver tissues were taken for assessment of the serum biochemical analysis for markers of liver function (alanine transaminase, aspartate transaminase, alkaline phosphatase, albumin, and protein), lipid markers and antioxidant markers (TBARS), glutathione peroxidase [GSH-Px], glutathione (GSH), and markers of hepatic oxidative stress (CAT), (SOD), as well as histological H&E stain, immunohistochemical stain iNOS, and COX-2 as markers of inflammatory cytokines. PCA protects against acute liver failure by preventing the augmentation of blood biochemical markers and lipid profiles. In mice liver tissues, KBrO3 increases lipid indicators and depletes antioxidants, leading to an increase in JNK, ERK, and p38 phosphorylation. Additionally, PCA inhibited the production of pro-inflammatory cytokines and reduced the histological alterations in KBrO3-induced hepatotoxicity. Notably, PCA effectively mitigated KBrO3-induced hepatic damage by obstructing the TNF-α/NF-kB-mediated inflammatory process signaling system. Additionally, in KBrO3-induced mice, PCA increased the intensities of hepatic glutathione (GSH), SOD, GSH-Px, catalase, and GSH activities. Collectively, we demonstrate the molecular evidence that PCA eliminated cellular inflammatory conditions, mitochondrial oxidative stress, and the TNF-α/NF-κB signaling process, thereby preventing KBrO3-induced hepatocyte damage.
Collapse
Affiliation(s)
- Selvaraj Nivetha
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalainagar, India
- Department of Biochemistry, Government Arts College, Paramakudi, India
| | | | - Subramani Srinivasan
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalainagar, India
- Department of Biochemistry, Government Arts College for Women, Krishnagiri, India
| | - Raju Murali
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalainagar, India
- Department of Biochemistry, Government Arts College for Women, Krishnagiri, India
| | - Ambothi Kanagalakshmi
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalainagar, India
- Department of Biochemistry, Government Arts College for Women, Krishnagiri, India
| |
Collapse
|
14
|
Yan L, Peng Y. Enhanced treatment of acute organophosphorus pesticide poisoning using activated charcoal-embedded sodium alginate-polyvinyl alcohol hydrogel. Biomed Mater Eng 2024:BME240007. [PMID: 38607746 DOI: 10.3233/bme-240007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2024]
Abstract
BACKGROUND The adsorption of activated charcoal is currently a major clinical treatment for acute organophosphorus pesticide poisoning (AOPP). However, the adsorption duration and efficiency of this method is unstable. OBJECTIVE In this study, a hydrogel embedding activated charcoal was prepared and its alleviating effects on AOPP were investigated. METHODS A composite hydrogel using sodium alginate and polyvinyl alcohol (SA-PVA) hydrogel was prepared in this study. The structural properties of the SA-PVA hydrogel were characterized via multiple analysis including FTIR, TGA, XRD, SEM, tensile strength and expansion rate. Based on these, activated charcoal (AC) was embedded within the SA-PVA hydrogel (SA-PVA-AC) and it was used for the treatment of AOPP. RESULTS Structural characterization indicated SA-PVA hydrogel possesses excellent mechanical properties and biocompatibility. The in vivo study demonstrated that SA-PVA-AC significantly alleviated the inflammation and oxidative damage in the liver, as evidenced by reduced levels of IL-6, TNF-α, and, IL-1β, SOD, and MDA. Furthermore, SA-PVA-AC treatment effectively re-regulated the activities of serum AST and ALT, exhibiting an improved effect on liver function. CONCLUSION The findings suggest that activated charcoal embedded within SA-PVA hydrogel has significant potential as a therapeutic agent in treating AOPP, and offering a novel approach to managing pesticide-induced toxicity.
Collapse
Affiliation(s)
- Li Yan
- Department of Occupational Disease and Pooning Medicine, First Affiliated Hospital of Chongqing Medical College, Chongqing, China
| | - Ying Peng
- Department of Occupational Disease and Pooning Medicine, First Affiliated Hospital of Chongqing Medical College, Chongqing, China
| |
Collapse
|
15
|
Zhao Y, Zhang Y, Sun M, Li B, Li Y, Hua S. Cecropin A Alleviates LPS-Induced Oxidative Stress and Apoptosis of Bovine Endometrial Epithelial Cells. Animals (Basel) 2024; 14:768. [PMID: 38473153 DOI: 10.3390/ani14050768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 03/14/2024] Open
Abstract
Dairy cows receiving a prolonged high-concentrate diet express an elevated concentration of lipopolysaccharides (LPSs) in the peripheral blood circulation, accompanied by a series of systemic inflammatory responses; however, the specific impacts of inflammation are yet to be determined. Cecropin-like antimicrobial peptides have become a research hotspot regarding antimicrobial peptides because of their excellent anti-inflammatory activities, and cecropin A is a major member of the cecropin family. To elucidate the mechanism of cecropin A as anti-inflammatory under the condition of sub-acute ruminal acidosis (SARA) in dairy cows, we induced inflammation in bEECs with LPS (10 µg/mL) and then added cecropin A (25 µM). Afterwards, we detected three categories of indexes including oxidative stress indices, inflammation-related genes, and apoptosis-related genes in bovine endometrial epithelial cells (bEECs). The results indicated that cecropin A has the ability to reduce inflammatory factors TNF-α, IL-1β, and IL-8 and inhibit the MAPK pathway to alleviate inflammation. In addition, cecropin A is able to reduce reactive oxygen species (ROS) levels and alleviates LPS-induced oxidative stress and mitochondrial dysfunction by downregulating NADPH Oxidase (NOX), and upregulating catalase (CAT), glutathione peroxidase (GPX), and superoxide dismutase (SOD). Furthermore, cecropin A demonstrates the ability to inhibit apoptosis by suppressing the mitochondrial-dependent apoptotic pathway, specifically Fas/FasL-caspase-8/-3. The observed increase in the Bcl-2/Bax ratio, a known apoptosis regulator, further supports this finding. In conclusion, our study presents novel solutions for addressing inflammatory responses associated with SARA.
Collapse
Affiliation(s)
- Yu Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Yang Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
- Mianyang Habio Bioengineering Co., Ltd., Mianyang 621000, China
| | - Mingkun Sun
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Bowen Li
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Yuqiong Li
- Laboratory Institute of Animal Science, Ningxia Academy of Agricultural and Forestry Sciences, Yinchuan 750000, China
| | - Song Hua
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
16
|
Jiang J, Hou X, Xu K, Ji K, Ji Z, Xi J, Wang X. Bacteria-targeted magnolol-loaded multifunctional nanocomplexes for antibacterial and anti-inflammatory treatment. Biomed Mater 2024; 19:025029. [PMID: 38290149 DOI: 10.1088/1748-605x/ad2406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 01/30/2024] [Indexed: 02/01/2024]
Abstract
Natural plant-derived small molecules have shown great potential for their antimicrobial and anti-inflammatory properties. In this study, we successfully developed a nanocomplex consisting of magnolol (Mag), a surfactant with an 18 carbon hydrocarbon chain and multi-amine head groups (C18N3), and a peptide (cyclic 9-amino acid peptide (CARG)) with targeting capabilities forStaphylococcus aureus(S. aureus). The obtained Mag/C18N3/CARG nanocomplexes exhibited strong antibacterial activity againstS. aureus. Furthermore, they demonstrated anti-inflammatory effects by reducing the secretion of pro-inflammatory cytokines such as TNF-α, IL-6, and IL-1βfrom macrophage inflammatory cells. This was achieved through downregulating the activation of NF-κB, KEAP1, and NRF2 signaling pathways. In a murine skin infection model, the Mag/C18N3/CARG nanocomplexes effectively suppressed the growth ofS. aureusin the infected area and promoted wound healing. Additionally, in a mouse model of acute kidney injury (AKI), the nanocomplexes significantly reduced the levels of blood urea nitrogen and creatinine, leading to a decrease in mortality rate. These findings demonstrate the potential of combining natural plant-derived small molecules with C18N3/CARG assemblies as a novel approach for the development of effective and safe antibacterial agents.
Collapse
Affiliation(s)
- Jian Jiang
- Central Laboratory, Binhai County People's Hospital, Clinical Medical College of Yangzhou University, Yancheng 224000, People's Republic of China
- Institute of Translational Medicine, Yangzhou University, Yangzhou 225009, People's Republic of China
| | - Xuefeng Hou
- Central Laboratory, Binhai County People's Hospital, Clinical Medical College of Yangzhou University, Yancheng 224000, People's Republic of China
| | - Kangjie Xu
- Central Laboratory, Binhai County People's Hospital, Clinical Medical College of Yangzhou University, Yancheng 224000, People's Republic of China
| | - Kangkang Ji
- Central Laboratory, Binhai County People's Hospital, Clinical Medical College of Yangzhou University, Yancheng 224000, People's Republic of China
| | - Zhongkai Ji
- Department of Orthopaedics, Binhai County People's Hospital, Yancheng 224000, People's Republic of China
| | - Juqun Xi
- Central Laboratory, Binhai County People's Hospital, Clinical Medical College of Yangzhou University, Yancheng 224000, People's Republic of China
- Institute of Translational Medicine, Yangzhou University, Yangzhou 225009, People's Republic of China
| | - Xin Wang
- Department of Critical Care Medicine, Binhai County People's Hospital, Yancheng 224000, People's Republic of China
| |
Collapse
|
17
|
Li Q, Huang D, Liao W, Su X, Li J, Zhang J, Fang M, Liu Y. Tanshinone IIA regulates CCl 4 induced liver fibrosis in C57BL/6J mice via the PI3K/Akt and Nrf2/HO-1 signaling pathways. J Biochem Mol Toxicol 2024; 38:e23648. [PMID: 38348705 DOI: 10.1002/jbt.23648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 08/31/2023] [Accepted: 01/10/2024] [Indexed: 02/15/2024]
Abstract
Chronic liver diseases caused by various factors may develop into liver fibrosis (LF). Early stage of LF could be reversible. Tanshinone IIA (Tan IIA), an extract from Salvia miltiorrhiza, has been reported to be hepatoprotective. However, the potential targets and mechanism of Tan IIA in the treatment of LF are still unclear. Our study aims at the anti-LF mechanism of Tan IIA through network pharmacological analysis combined with LF-related experiments. Serum biochemical indicators and histopathological examination showed that Tan IIA could ameliorate the process of LF in the CCl4 -induced mouse model. Western blot and immunohistochemical assays showed that Tan IIA decreased the expression of Kirsten rat sarcoma viral oncogene homolog (KRAS), phosphatidylinositide 3-kinases/protein kinase B (PI3K/Akt), and nuclear factor erythroid 2-related factor/heme oxygenase-1 (Nrf2/HO-1). Compared with the model group, the Tan IIA groups increased the decreased superoxide dismutase activity and glutathione content, while decreasing the increased malondialdehyde content. These results indicate that Tan IIA may play an antioxidant role by inhibiting the expression of KRAS, PI3K/Akt, and Nrf2/HO-1 to ameliorate the progression of LF, which to some extent explains the pharmacological mechanism of Tan IIA in LF. In conclusion, our study demonstrates that Tan IIA could regulate LF via PI3K/Akt and Nrf2/HO-1 signaling pathways. It may be an effective therapeutic compound for the treatment of LF.
Collapse
Affiliation(s)
- Qingqing Li
- School of Medicine, Jianghan University, Wuhan, China
| | - Dongrui Huang
- School of Medicine, Jianghan University, Wuhan, China
| | - Wenjing Liao
- School of Medicine, Jianghan University, Wuhan, China
| | - Xinyue Su
- School of Medicine, Jianghan University, Wuhan, China
| | - Jin Li
- School of Medicine, Jianghan University, Wuhan, China
| | - Jinwei Zhang
- School of Medicine, Jianghan University, Wuhan, China
| | - Meng Fang
- School of Medicine, Jianghan University, Wuhan, China
| | - Yuwei Liu
- School of Medicine, Jianghan University, Wuhan, China
| |
Collapse
|
18
|
Tiwari V, Hemalatha S. Sida cordifolia L. attenuates behavioral hypersensitivity by interfering with KIF17-NR2B signaling in rat model of neuropathic pain. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117085. [PMID: 37640257 DOI: 10.1016/j.jep.2023.117085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/19/2023] [Accepted: 08/23/2023] [Indexed: 08/31/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Sida cordifolia L., a perennial subshrub belonging to the Malvaceae family, holds noteworthy significance in the Indian Ayurvedic System and global texts. Roots of this plant are reported to be useful in neurodegenerative disorders, facial paralysis, and treating several neuropathic pain conditions such as neuralgia, and sciatica. However, despite these claims, there remains a dearth of experimental evidence showcasing the effectiveness of Sida cordifolia L. roots in mitigating neuropathic pain. AIM OF THE STUDY The primary objective of this study was to assess the analgesic properties of the whole extract (SCE) obtained from the roots of Sida cordifolia L., as well as its aqueous fraction (SAF) in rat model of chronic constriction injury (CCI)-induced neuropathic pain. Furthermore, in-depth phytochemical and molecular biology studies were conducted to identify the potential phytoconstituents and unveil the underlying mechanisms of action. MATERIAL AND METHODS DCM: Methanol (1:1) was used to extract the roots of Sida cordifolia L. to get whole extract (SCE) and was subjected to phytochemical investigations including LC-MS analysis. Analgesic potential of SCE was evaluated in chronic constriction injury (CCI) model of neuropathic pain in rats followed by its bioactivity guided fractionation using in-vitro anti-inflammatory assay and assessment of most potent fraction (SAF) in in-vivo pain model. We have also performed the detailed phytochemical and molecular biology investigations to delineate the mechanism of action of Sida cordifolia root extract. RESULTS Chronic constriction injury leads to significant decrease in paw withdrawal threshold and paw withdrawal latency indicating development of hypersensitivity in rodents. Treatment with SCE and its most potent aqueous fraction (SAF) leads to significant and dose-dependent reduction in pain-like behavior of nerve injured rats. Pro-inflammatory cytokines (TNF-α, IL-1β), glia cell markers (Iba1, ICAM1), neuropeptides (CGRP and Substance P), KIF-17 and NR2B expressions were found to be significantly upregulated in DRG and spinal cord of nerve injured rats. Treatment with SCE and SAF suppressed oxido-inflammatory cascade along with attenuation of KIF-17 mediated NR2B trafficking and neuroinflammation in DRG and spinal tissues of neuropathic rats. HPTLC and HR-MS analysis suggest betaine as major constituent in SAF which along with other phytoconstituents. CONCLUSIONS Both the whole extract (SCE) and the aqueous fraction (SAF) demonstrate a significant reduction in mechanical and thermal hypersensitivity by inhibiting KIF-17 mediated NR2B signaling in nerve injured rats and may be used as a potential alternative for the treatment of chronic pain. Our findings support the use of roots of Sida cordifolia L. in neuropathic pain conditions as acclaimed by its traditional use.
Collapse
Affiliation(s)
- Vineeta Tiwari
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (B.H.U), Varanasi, 221005, Uttar Pradesh, India
| | - Siva Hemalatha
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (B.H.U), Varanasi, 221005, Uttar Pradesh, India.
| |
Collapse
|
19
|
Tian WS, Zhao J, Kim MK, Tae HJ, Kim IS, Ahn D, Hwang HP, Mao MX, Park BY. Veronica persica ameliorates acetaminophen-induced murine hepatotoxicity via attenuating oxidative stress and inflammation. Biomed Pharmacother 2023; 169:115898. [PMID: 37989029 DOI: 10.1016/j.biopha.2023.115898] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 11/23/2023] Open
Abstract
Excess acetaminophen (APAP) commonly causes severe acute liver injury (ALI), characterized by oxidative stress, pro-inflammatory responses, and hepatocyte damage. Veronica persica (VP) is a traditional medicine with antioxidant and anti-inflammatory properties. There is a paucity of information on its medicinal value, especially its potential mechanisms for alleviating ALI. This study aimed to clarify the ameliorative effects and intracellular mechanisms of VP on APAP-induced ALI via attenuating oxidative stress and inflammation. Mice were given VP for 7 days before exposure to APAP (300 mg/kg). The HPLC and radical scavenging assay found that VP contains 12 phenolic acids and 6 flavonoids, as well as show robust antioxidant capacity. In the APAP-induced ALI model, pre-treatment with VP significantly reduces APAP-induced hepatotoxicity by observing improved hepatocyte pathological injury and further confirmed by serum biochemical indicator. Also, the reduction of TUNEL-positive regions and the regulation of Bcl-2-associated X protein indicated that VP attenuates hepatocytotoxicity. Moreover, VP pre-intervention inhibits the formation of liver pro-inflammatory cytokines, the expression of inflammatory response genes, and increases in myeloperoxidase (MPO) in APAP-exposed mice. The elevated reduced glutathione (GSH) levels and decreased oxidative stress markers indicate that VP reduces APAP-promoted oxidative stress. Further study revealed that VP inhibited the phosphorylation of NF-κB/STAT3 cascade, blocked ERK and JNK phosphorylation, and activated AMP-activated protein kinase (AMPK). To sum up, this study demonstrated that VP exists hepatoprotective abilities on APAP-induced ALI, primarily by suppressing the phosphorylation of NF-κB/STAT3 cascade and ERK-JNK and inducing AMPK activation to alleviate oxidative stress and inflammation.
Collapse
Affiliation(s)
- Wei-Shun Tian
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, People's Republic of China; College of Veterinary Medicine and Institute of Animal Transplantation, Jeonbuk National University, Iksan, Jeollabuk-do 54596, Republic of Korea
| | - Jing Zhao
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, People's Republic of China
| | - Myung-Kon Kim
- Department of Food Science and Technology, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Hyun-Jin Tae
- College of Veterinary Medicine and Institute of Animal Transplantation, Jeonbuk National University, Iksan, Jeollabuk-do 54596, Republic of Korea
| | - In-Shik Kim
- College of Veterinary Medicine and Institute of Animal Transplantation, Jeonbuk National University, Iksan, Jeollabuk-do 54596, Republic of Korea
| | - Dongchoon Ahn
- College of Veterinary Medicine and Institute of Animal Transplantation, Jeonbuk National University, Iksan, Jeollabuk-do 54596, Republic of Korea
| | - Hong Pil Hwang
- Department of Surgery of Jeonbuk National University Medical School and Hospital, Jeonju 54896, Republic of Korea
| | - Ming-Xian Mao
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, People's Republic of China
| | - Byung-Yong Park
- College of Veterinary Medicine and Institute of Animal Transplantation, Jeonbuk National University, Iksan, Jeollabuk-do 54596, Republic of Korea.
| |
Collapse
|
20
|
Xu H, Yuan Q, Wu Z, Xu Y, Chen J. Integrative transcriptome and single-cell sequencing technology analysis of the potential therapeutic benefits of oleanolic acid in liver injury and liver cancer. Aging (Albany NY) 2023; 15:15267-15286. [PMID: 38127054 PMCID: PMC10781501 DOI: 10.18632/aging.205349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 11/11/2023] [Indexed: 12/23/2023]
Abstract
BACKGROUND Oleanolic acid has important hepatoprotective effects and inhibits liver tissue carcinogenesis. The aim of this study was to investigate the mechanism of action of oleanolic acid in inhibiting liver injury and liver cancer. METHOD In this study, we applied differential gene analysis and gene enrichment analysis to identify the targets of oleanolic acid for the treatment of liver injury. And this study also applied Cibersort and GSVA methods to investigate the targets of oleanolic acid in liver injury. Based on oleanolic acid targets, we explored the major targets and further explored the role of the major targets in liver cancer. This study used the oncoPredict and the TIDE algorithm to predict the effect of oleanolic acid on drug resistance. Finally, the binding effect of oleanolic acid to relevant targets was explored using molecular docking techniques. RESULT In this study, oleanolic acid was found to inhibit liver injury and promote liver regeneration mainly by promoting elevated expression of HMOX1. Oleanolic acid can inhibit oxidative stress and promotes Ferroptosis in liver injury. In liver cancer, we identified that the main target of oleanolic acid is HMOX1 and HDAC1. And we determined that HMOX1 promotes Ferroptosis in liver cancer. This reduced the sensitivity of liver cancer to targeted therapies and immunotherapy. Molecular docking showed high binding of oleanolic acid to HDAC1 and HMOX1. CONCLUSIONS Oleanolic acid is an antioxidant by promoting high expression of HMOX1 and promotes the development of Ferroptosis in liver cancer and liver injury.
Collapse
Affiliation(s)
- Hongji Xu
- Department of Abdominal Surgery, Guiqian International General Hospital, Guiyang, Guizhou, China
| | - Qihang Yuan
- Department of General Surgery, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Zhiqiang Wu
- Department of General Surgery, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Yingsong Xu
- Department of Thoracic Surgery, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Junhong Chen
- Department of Hepatobiliary and Pancreatic Surgery II, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
21
|
Wei B, Sun C, Wan H, Shou Q, Han B, Sheng M, Li L, Kai G. Bioactive components and molecular mechanisms of Salvia miltiorrhiza Bunge in promoting blood circulation to remove blood stasis. JOURNAL OF ETHNOPHARMACOLOGY 2023; 317:116697. [PMID: 37295577 DOI: 10.1016/j.jep.2023.116697] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 05/09/2023] [Accepted: 05/28/2023] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Salvia miltiorrhiza Bunge (SM) is an outstanding herbal medicine with various traditional effects, especially promoting blood circulation to remove blood stasis. It has been widely used for centuries to treat blood stasis syndrome (BSS)-related diseases. BSS is one of the basic pathological syndromes of diseases such as cardiovascular and cerebrovascular diseases in traditional East Asian medicine, which is characterized by disturbance of blood circulation. However, the bioactive components and mechanisms of SM in the treatment of BSS have not been systematically reviewed. Therefore, this article outlines the anti-BSS effects of bioactive components of SM, concentrating on the molecular mechanisms. AIM OF THE REVIEW To summarize the bioactive components of SM against BSS and highlight its potential targets and signaling pathways, hoping to provide a modern biomedical perspective to understand the efficacy of SM on enhancing blood circulation to remove blood stasis. MATERIALS AND METHODS A comprehensive literature search was performed to retrieve articles published in the last two decades on bioactive components of SM used for BSS treatment from the online electronic medical literature database (PubMed). RESULTS Phenolic acids and tanshinones in SM are the main bioactive components in the treatment of BSS, including but not limited to salvianolic acid B, tanshinone IIA, salvianolic acid A, cryptotanshinone, Danshensu, dihydrotanshinone, rosmarinic acid, protocatechuic aldehyde, and caffeic acid. They protect vascular endothelial cells by alleviating oxidative stress and inflammatory damage and regulating of NO/ET-1 levels. They also enhance anticoagulant and fibrinolytic capacity, inhibit platelet activation and aggregation, and dilate blood vessels. Moreover, lowering blood lipids and improving blood rheological properties may be the underlying mechanisms of their anti-BSS. More notably, these compounds play an anti-BSS role by mediating multiple signaling pathways such as Nrf2/HO-1, TLR4/MyD88/NF-κB, PI3K/Akt/eNOS, MAPKs (p38, ERK, and JNK), and Ca2+/K+ channels. CONCLUSIONS Both phenolic acids and tanshinones in SM may act synergistically to target different signaling pathways to achieve the effect of promoting blood circulation.
Collapse
Affiliation(s)
- Baoyu Wei
- Zhejiang Key TCM Laboratory for Chinese Resource Innovation and Transformation, School of Pharmaceutical Sciences, School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 311402, PR China.
| | - Chengtao Sun
- Zhejiang Key TCM Laboratory for Chinese Resource Innovation and Transformation, School of Pharmaceutical Sciences, School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 311402, PR China.
| | - Haitong Wan
- Zhejiang Key TCM Laboratory for Chinese Resource Innovation and Transformation, School of Pharmaceutical Sciences, School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 311402, PR China.
| | - Qiyang Shou
- Zhejiang Key TCM Laboratory for Chinese Resource Innovation and Transformation, School of Pharmaceutical Sciences, School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 311402, PR China.
| | - Bing Han
- Zhejiang Key TCM Laboratory for Chinese Resource Innovation and Transformation, School of Pharmaceutical Sciences, School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 311402, PR China.
| | - Miaomiao Sheng
- Zhejiang Key TCM Laboratory for Chinese Resource Innovation and Transformation, School of Pharmaceutical Sciences, School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 311402, PR China.
| | - Liqing Li
- Huzhou Central Hospital, Huzhou, Zhejiang, 31300, PR China.
| | - Guoyin Kai
- Zhejiang Key TCM Laboratory for Chinese Resource Innovation and Transformation, School of Pharmaceutical Sciences, School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 311402, PR China.
| |
Collapse
|
22
|
Chu H, Zhang W, Tan Y, Diao Z, Li P, Wu Y, Xie L, Sun J, Yang K, Li P, Xie C, Li P, Hua Q, Xu X. Qing-Zhi-Tiao-Gan-Tang (QZTGT) prevents nonalcoholic steatohepatitis (NASH) by expression pattern correction. JOURNAL OF ETHNOPHARMACOLOGY 2023; 317:116665. [PMID: 37279813 DOI: 10.1016/j.jep.2023.116665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 05/12/2023] [Accepted: 05/18/2023] [Indexed: 06/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Qing-Zhi-Tiao-Gan-Tang or Qing-Zhi-Tiao-Gan Decoction (QZTGT) is based on the compatibility theory of traditional Chinese medicine (TCM), that is a combination of three classical formulae for the treatment of nonalcoholic fatty liver disease (NAFLD). Its pharmacodynamic material basis is made up of quinones, flavanones, and terpenoids. AIM OF THE STUDY This study aimed to look for a promising recipe for treating nonalcoholic steatohepatitis (NASH), a more advanced form of NAFLD, and to use a transcriptome-based multi-scale network pharmacological platform (TMNP) to find its therapy targets. MATERIALS AND METHODS A classical dietary model of NASH was established using MCD (Methionine- and choline-deficient) diet-fed mice. Liver coefficients like ALT, AST, serum TC, and TG levels were tested following QZTGT administration. A transcriptome-based multi-scale network pharmacological platform (TMNP) was used to further analyze the liver gene expression profile. RESULTS The composition of QZTGT was analyzed by HPLC-Q-TOF/MS, a total of 89 compounds were separated and detected and 31 of them were found in rat plasma. QZTGT improved liver morphology, inflammation and fibrosis in a classical NASH model. Transcriptomic analysis of liver samples from NASH animal model revealed that QZTGT was able to correct gene expression. We used transcriptome-based multi-scale network pharmacological platform (TMNP) to predicted molecular pathways regulated by QZTGT to improve NASH. Further validation indicated that "fatty acid degradation", "bile secretion" and "steroid biosynthesis" pathways were involved in the improvement of NASH phenotype by QZTGT. CONCLUSIONS Using HPLC-Q-TOF/MS, the compound composition of QZTGT, a Traditional Chinese prescription, was separated, analyzed and identified systematically. QZTGT mitigated NASH symptoms in a classical dietary model of NASH. Transcriptomic and network pharmacology analysis predicted the potential QZTGT regulated pathways. These pathways could be used as therapeutic targets for NASH.
Collapse
Affiliation(s)
- Hang Chu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009, Nanjing, Jiangsu, China
| | - Weitao Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009, Nanjing, Jiangsu, China
| | - Yan Tan
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Zhipeng Diao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009, Nanjing, Jiangsu, China
| | - Peng Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yapeng Wu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009, Nanjing, Jiangsu, China
| | - Like Xie
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009, Nanjing, Jiangsu, China
| | - Jianguo Sun
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009, Nanjing, Jiangsu, China
| | - Ke Yang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Pingping Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China; Diabetes Research Center of Chinese Academy of Medical Sciences, Beijing, 100050, China
| | - Cen Xie
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, PR China
| | - Ping Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009, Nanjing, Jiangsu, China
| | - Qian Hua
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Xiaojun Xu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009, Nanjing, Jiangsu, China.
| |
Collapse
|
23
|
Li X, Lao R, Lei J, Chen Y, Zhou Q, Wang T, Tong Y. Natural Products for Acetaminophen-Induced Acute Liver Injury: A Review. Molecules 2023; 28:7901. [PMID: 38067630 PMCID: PMC10708418 DOI: 10.3390/molecules28237901] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/07/2023] [Accepted: 11/23/2023] [Indexed: 12/18/2023] Open
Abstract
The liver plays a vital role in metabolism, synthesis, and detoxification, but it is susceptible to damage from various factors such as viral infections, drug reactions, excessive alcohol consumption, and autoimmune diseases. This susceptibility is particularly problematic for patients requiring medication, as drug-induced liver injury often leads to underestimation, misdiagnosis, and difficulties in treatment. Acetaminophen (APAP) is a widely used and safe drug in therapeutic doses but can cause liver toxicity when taken in excessive amounts. This study aimed to investigate the hepatotoxicity of APAP and explore potential treatment strategies using a mouse model of APAP-induced liver injury. The study involved the evaluation of various natural products for their therapeutic potential. The findings revealed that natural products demonstrated promising hepatoprotective effects, potentially alleviating liver damage and improving liver function through various mechanisms such as oxidative stress and inflammation, which cause changes in signaling pathways. These results underscore the importance of exploring novel treatment options for drug-induced liver injury, suggesting that further research in this area could lead to the development of effective preventive and therapeutic interventions, ultimately benefiting patients with liver injury caused by medicine.
Collapse
Affiliation(s)
- Xiaoyangzi Li
- School of Medicine, Taizhou University, Taizhou 318000, China; (X.L.); (R.L.); (J.L.)
| | - Ruyang Lao
- School of Medicine, Taizhou University, Taizhou 318000, China; (X.L.); (R.L.); (J.L.)
| | - Jiawei Lei
- School of Medicine, Taizhou University, Taizhou 318000, China; (X.L.); (R.L.); (J.L.)
| | - Yuting Chen
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116000, China;
| | - Qi Zhou
- School of Pharmacy, Taizhou University, Taizhou 318000, China;
| | - Ting Wang
- School of Medicine, Taizhou University, Taizhou 318000, China; (X.L.); (R.L.); (J.L.)
| | - Yingpeng Tong
- School of Pharmacy, Taizhou University, Taizhou 318000, China;
| |
Collapse
|
24
|
Zhang Y, Huang J, Gan L, Wu R, Jin J, Wang T, Sun S, Zhang Z, Li L, Zheng X, Zhang K, Sun L, Ma H, Li D. Hepatoprotective effects of Niudali ( Callerya speciosa) root aqueous extracts against tetrachloromethane-induced acute liver injury and inflammation. Food Sci Nutr 2023; 11:7026-7038. [PMID: 37970412 PMCID: PMC10630805 DOI: 10.1002/fsn3.3626] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 08/02/2023] [Accepted: 08/05/2023] [Indexed: 11/17/2023] Open
Abstract
Niudali (Callerya speciosa) is commonly grown in southeastern regions of China and consumed as a food ingredient. Although Niudali root extracts showed various biological activities, the hepatoprotective effects of Niudali root phytochemicals are not fully studied. Herein, we prepared two Niudali root aqueous extracts, namely, c and Niudali polysaccharides-enriched extract (NPE), and identified an alkaloid, (hypaphorine) in NEW. The hepatoprotective effects of NWE, NPE, and hypaphorine were evaluated in an acute liver injury model induced by carbon tetrachloride (CCl4) in mice. Pathohistological examination and blood chemistry assays showed that treatment of NWE, NPE, and hypaphorine alleviated CCl4-induced liver damage by lowering the liver injury score (by 75.51%, 80.01%, and 41.22%) and serum aspartate and alanine transaminases level (by 63.24%, 85.22%, and 49.74% and by 78.73%, 80.08%, and 81.70%), respectively. NWE, NPE, and hypaphorine also reduced CCl4-induced hepatic oxidative stresses in the liver tissue by decreasing the levels of malondialdehyde (by 40.00%, 51.25%, and 28.75%) and reactive oxygen species (by 30.22%, 36.14%, and 33.54%) while increasing the levels of antioxidant enzymes including superoxide dismutase (by 21.36%, 21.64%, and 8.90%), catalase (by 22.13%, 33.33%, and 5.39%), and glutathione (by 84.87%, 90.65%, and 80.53%), respectively. Mechanistic assays showed that NWE, NPE, and hypaphorine alleviated liver damage by mediating inflammatory biomarkers (e.g., pro-inflammatory cytokines) via the signaling pathways of mitogen-activated protein kinases and nuclear factor-κB. Findings from our study extend the understanding of Niudali's hepatoprotective effects, which is useful for its development as a dietary intervention for liver inflammation.
Collapse
Affiliation(s)
- Yizi Zhang
- School of Biotechnology and Health SciencesWuyi UniversityJiangmenChina
| | - Jinwen Huang
- School of Biotechnology and Health SciencesWuyi UniversityJiangmenChina
| | - Lishe Gan
- School of Biotechnology and Health SciencesWuyi UniversityJiangmenChina
- International Healthcare Innovation Institute (Jiangmen)JiangmenChina
| | - Rihui Wu
- School of Biotechnology and Health SciencesWuyi UniversityJiangmenChina
- International Healthcare Innovation Institute (Jiangmen)JiangmenChina
| | - Jingwei Jin
- School of Biotechnology and Health SciencesWuyi UniversityJiangmenChina
- International Healthcare Innovation Institute (Jiangmen)JiangmenChina
| | - Tinghan Wang
- Bioactive Botanical Research Laboratory, Biomedical and Pharmaceutical Sciences, College of PharmacyUniversity of Rhode IslandKingstonRhode IslandUSA
| | - Shili Sun
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Key Laboratory of Tea Resources Innovation & UtilizationGuangzhouChina
| | - Zhenbiao Zhang
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Key Laboratory of Tea Resources Innovation & UtilizationGuangzhouChina
| | - Liya Li
- Institute of Microbial Pharmaceuticals, College of Life and Health SciencesNortheastern UniversityShenyangChina
| | - Xi Zheng
- School of Biotechnology and Health SciencesWuyi UniversityJiangmenChina
| | - Kun Zhang
- School of Biotechnology and Health SciencesWuyi UniversityJiangmenChina
| | - Lingli Sun
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Key Laboratory of Tea Resources Innovation & UtilizationGuangzhouChina
| | - Hang Ma
- School of Biotechnology and Health SciencesWuyi UniversityJiangmenChina
- International Healthcare Innovation Institute (Jiangmen)JiangmenChina
- Bioactive Botanical Research Laboratory, Biomedical and Pharmaceutical Sciences, College of PharmacyUniversity of Rhode IslandKingstonRhode IslandUSA
| | - Dongli Li
- School of Biotechnology and Health SciencesWuyi UniversityJiangmenChina
- International Healthcare Innovation Institute (Jiangmen)JiangmenChina
| |
Collapse
|
25
|
Sun YY, Zhu HJ, Zhao RY, Zhou SY, Wang MQ, Yang Y, Guo ZN. Remote ischemic conditioning attenuates oxidative stress and inflammation via the Nrf2/HO-1 pathway in MCAO mice. Redox Biol 2023; 66:102852. [PMID: 37598463 PMCID: PMC10462885 DOI: 10.1016/j.redox.2023.102852] [Citation(s) in RCA: 44] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/10/2023] [Accepted: 08/13/2023] [Indexed: 08/22/2023] Open
Abstract
The protective effects of remote ischemic conditioning (RIC) on acute ischemic stroke have been reported. However, the protective mechanisms of RIC have not been fully elucidated. This study aimed to investigate whether RIC could reduce oxidative stress and inflammatory responses in middle cerebral artery occlusion (MCAO)-reperfusion mice via the nuclear factor-E2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) pathway. C57BL/6 mice were subjected to MCAO and underwent RIC twice daily at 1, 3, and 7 days after MCAO. ML385 was used to specifically inhibit Nrf2 in MCAO mice. Neurological deficit scores, infarct volume, and hematoxylin-eosin (HE) staining were assessed. Oxidative stress levels were assessed based on total antioxidant capacity (TAC), malonaldehyde (MDA), superoxide dismutase (SOD), and glutathione/glutathione disulfide (GSH/GSSG). mRNA levels were detected using real-time polymerase chain reaction (PCR), and protein levels were detected using western blotting and enzyme-linked immunosorbent assay (ELISA). Protein localization was investigated using immunofluorescence staining. RIC significantly reduced infarct volume and improved neurological function and histological changes after MCAO. RIC significantly increased TAC, SOD, and GSH/GSSG levels and decreased MDA levels. RIC significantly increased Nrf2 and HO-1 mRNA levels and decreased Keap1, NLRP3, and Cleaved Caspase-1 mRNA levels. RIC significantly increased Nrf2, HO-1, and NQO1 protein expression and decreased Keap1, NLRP3, Cleaved Caspase-1, Cleaved IL-1β, IL-6, and TNF-α protein expression. RIC promoted the activation and translocation of Nrf2 into the nucleus. The protective effects of RIC were abolished by ML385 treatment. In conclusion, our findings suggest that RIC alleviates oxidative stress and inflammatory responses via the Nrf2/HO-1 pathway, which in turn improves neurobehavioral function. RIC may provide novel therapeutic options for acute ischemic stroke.
Collapse
Affiliation(s)
- Ying-Ying Sun
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Chang Chun, Jilin, China
| | - Hong-Jing Zhu
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Chang Chun, Jilin, China
| | - Ruo-Yu Zhao
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Chang Chun, Jilin, China
| | - Sheng-Yu Zhou
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Chang Chun, Jilin, China
| | - Mei-Qi Wang
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Chang Chun, Jilin, China
| | - Yi Yang
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Chang Chun, Jilin, China; Jilin Provincial Key Laboratory of Cerebrovascular Disease, Changchun, China.
| | - Zhen-Ni Guo
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Chang Chun, Jilin, China; Jilin Provincial Key Laboratory of Cerebrovascular Disease, Changchun, China; Neuroscience Research Center, The First Hospital of Jilin University, Chang Chun, Jilin, China.
| |
Collapse
|
26
|
Abdel-Naim AB, Hassanein EHM, Binmahfouz LS, Bagher AM, Hareeri RH, Algandaby MM, Fadladdin YAJ, Aleya L, Abdel-Daim MM. Lycopene attenuates chlorpyrifos-induced hepatotoxicity in rats via activation of Nrf2/HO-1 axis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 262:115122. [PMID: 37329850 DOI: 10.1016/j.ecoenv.2023.115122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/28/2023] [Accepted: 06/07/2023] [Indexed: 06/19/2023]
Abstract
Chlorpyrifos (CPF), is an organophosphate pesticide that is widely used for agricultural purposes. However, it has well-documented hepatotoxicity. Lycopene (LCP) is a plant-derived carotenoid with antioxidant and anti-inflammatory activities. The present work was designed to evaluate the potential hepatoprotective actions of LCP against CPF-induced hepatotoxicity in rats. Animals were assigned into five groups namely: Group I (Control), Group II (LCP), Group III (CPF), Group IV (CPF + LCP 5 mg/kg), and Group V (CPF + LCP 10 mg/kg). LCP offered protection as evidenced by inhibiting the rise in serum activities of alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), and lactate dehydrogenase (LDH) induced by CPF. This was confirmed histologically as LCP-treated animals showed liver tissues with less proliferation of bile ducts and periductal fibrosis. LCP significantly prevented the rise in hepatic content of malondialdehyde (MDA), depletion of reduced glutathione (GSH), and exhaustion of glutathione-s-transferase (GST) and superoxide dismutase (SOD). Further, LCP significantly prevented hepatocyte death as it ameliorated the increase in Bax and the decrease in Bcl-2 expression induced by CPF in liver tissues as determined immunohistochemically. The observed protective effects of LCP were further confirmed by a significant enhancement in heme oxygenase-1 (HO-1) and NF-E2-related factor 2 (Nrf2) expression. In conclusion, LCP possesses protective effects against CPF-induced hepatotoxicity. These include antioxidation and activation of the Nrf2/HO-1 axis.
Collapse
Affiliation(s)
- Ashraf B Abdel-Naim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Medicinal Plants Research Group, Deanship of Scientific Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Emad H M Hassanein
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
| | - Lenah S Binmahfouz
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Amina M Bagher
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Rawan H Hareeri
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mardi M Algandaby
- Medicinal Plants Research Group, Deanship of Scientific Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Yousef A J Fadladdin
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Lotfi Aleya
- Chrono-Environment Laboratory, UMR CNRS 6249, Bourgogne, Franche-Comté University, Cedex F-25030 Besançon, France
| | - Mohamed M Abdel-Daim
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231 Jeddah 21442, Saudi Arabia; Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| |
Collapse
|
27
|
Hussain S, Alshahrani S, Siddiqui R, Khan A, Elhassan Taha MM, Ahmed RA, Jali AM, Qadri M, Khairat KHM, Ashafaq M. Cinnamon Oil Alleviates Acetaminophen-Induced Uterine Toxicity in Rats by Abrogation of Oxidative Stress, Apoptosis, and Inflammation. PLANTS (BASEL, SWITZERLAND) 2023; 12:2290. [PMID: 37375915 DOI: 10.3390/plants12122290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/18/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023]
Abstract
Paracetamol, or acetaminophen (APAP), is one of the first-line medications that is used for fever and pain. However, APAP can induce uterine toxicity when overused. The mode of action of APAP toxicity is due to the production of free radicals. The main goal of our study is to determine uterine toxicity from APAP overdose and the antioxidative activity of cinnamon oil (CO) in female rats. The effect of different doses of CO (50-200 mg/kg b.w.) was assessed in the uterus toxicity induced by APAP. Additionally, the imbalance in oxidative parameters, interleukins, and caspases was evaluated for the protective effects of CO. A single dose of APAP (2 g/kg b.w.) resulted in uterus toxicity, indicated by a significant increase in the level of lipid peroxidation (LPO), inflammatory interleukins cytokines (IL-1 and 6), expression of caspases 3 and 9, and a marked change in uterus tissue architecture evaluated by histopathology. Co-treatment of CO resulted in a significant amelioration of all the parameters such as LPO, interleukins IL-1β, IL-6, caspases 3 and 9 expression, and distortion of tissue architecture in a dose-dependent manner. Therefore, we can conclude that APAP-induced uterine injury due to oxidative stress can be restored by co-treatment with cinnamon oil (CO).
Collapse
Affiliation(s)
- Sohail Hussain
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Saeed Alshahrani
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Rahimullah Siddiqui
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Andleeb Khan
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | | | - Rayan A Ahmed
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Abdulmajeed M Jali
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Marwa Qadri
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Khairat H M Khairat
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Mohammad Ashafaq
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| |
Collapse
|
28
|
Gao J, Hou T. Cardiovascular disease treatment using traditional Chinese medicine:Mitochondria as the Achilles' heel. Biomed Pharmacother 2023; 164:114999. [PMID: 37311280 DOI: 10.1016/j.biopha.2023.114999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 05/30/2023] [Accepted: 06/07/2023] [Indexed: 06/15/2023] Open
Abstract
Cardiovascular disease (CVD), involving the pathological alteration of the heart or blood vessels, is one of the main causes of disability and death worldwide, with an estimated 18.6 million deaths per year. CVDs are caused by a variety of risk factors, including inflammation, hyperglycemia, hyperlipidemia, and increased oxidative stress. Mitochondria, the hub of ATP production and the main generator of reactive oxygen species (ROS), are linked to multiple cellular signaling pathways that regulate the progression of CVD and therefore are recognized as an essential target for CVD management. Initial treatment of CVD generally focuses on diet and lifestyle interventions; proper drugs or surgery can prolong or save the patient's life. Traditional Chinese medicine (TCM), a holistic medical care system with an over 2500-year history, has been proven to be efficient in curing CVD and other illnesses, with a strengthening effect on the body. However, the mechanisms underlying TCM alleviation of CVD remain elusive. Recent studies have recognized that TCM can alleviate cardiovascular disease by manipulating the quality and function of mitochondria. This review systematically summarizes the association of mitochondria with cardiovascular risk factors, and the relationships between mitochondrial dysfunction and CVD progression. We will investigate the research progress of managing cardiovascular disease by TCM and cover widely used TCMs that target mitochondria for the treatment of cardiovascular disease.
Collapse
Affiliation(s)
- Jie Gao
- Chengdu Integrated TCM and Western Medicine Hospital and Chengdu University of Traditional Chinese Medicine, Chengdu 610041 China
| | - Tianshu Hou
- Chengdu Integrated TCM and Western Medicine Hospital and Chengdu University of Traditional Chinese Medicine, Chengdu 610041 China.
| |
Collapse
|
29
|
Yu Y, Zhou S, Wang Y, Di S, Wang Y, Huang X, Chen Y. Leonurine alleviates acetaminophen-induced acute liver injury by regulating the PI3K/AKT signaling pathway in mice. Int Immunopharmacol 2023; 120:110375. [PMID: 37267857 DOI: 10.1016/j.intimp.2023.110375] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/13/2023] [Accepted: 05/19/2023] [Indexed: 06/04/2023]
Abstract
Leonurine (Leo) is a natural alkaloid isolated from the herb Leonurus japonicus Houtt. (Leonuri) that has been shown to inhibit oxidative stress and inflammation. However, the role and mechanism of Leo in acetaminophen (APAP)-induced acute liver injury (ALI) remain unknown. In this study, we investigated the protective effect of Leo against APAP-induced ALI and elucidated the molecular mechanism. Here, we showed that the damage to mouse primary hepatocytes (MPHs) induced by APAP was attenuated by treatment with Leo, which promoted proliferation and inhibited oxidative stress injury, and Leo significantly improved APAP-induced ALI in mice. Leo could protect against APAP-induced ALI by reducing serum aspartate aminotransferase (AST) and alanine transaminase (ALT) levels, hepatic histopathological damage, liver cell necrosis, inflammation, and oxidative stress-induced damage in vivo and in vitro. Moreover, the results indicated that Leo relieved APAP-induced liver cell necrosis by reducing the expression of Bax and cleaved caspase-3 and increasing Bcl-2 expression. Leo alleviated APAP-induced oxidative stress-induced damage by activating the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway, which facilitated Nrf2 nuclear translocation and upregulated oxidative stress-related protein expression in liver tissues. Moreover, the results suggested that APAP-induced inflammation in the liver was suppressed by Leo by suppressing the Toll-like receptor 4 (TLR4) and NLR family pyrin domain containing 3 (NLRP3) pathways. In addition, Leo facilitated the activation of the phosphatidylinositol 3-kinase (PI3K)/AKT signaling pathway in the liver tissue of ALI mice. Network pharmacology, molecular docking, and western blotting showed that PI3K was a potential target of Leo in the treatment of ALI. Molecular docking and cellular thermal shift assay (CETSA) indicated that Leo could stably bind to the PI3K protein. In conclusion, Leo attenuated ALI, and reversed liver cell necrosis, the inflammatory response and oxidative stress-induced damage by regulating the PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Yajie Yu
- Department of Endocrinology and Metabolism, the Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Shizhe Zhou
- Department of Endocrinology and Metabolism, the Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Yan Wang
- Institute of Nutrition and Health, Qingdao University, Qingdao 266003, China
| | - Shuting Di
- Department of Endocrinology and Metabolism, the Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Yingluo Wang
- Department of Endocrinology and Metabolism, the Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Xin Huang
- Department of Endocrinology and Metabolism, the Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Ying Chen
- Department of Endocrinology and Metabolism, the Affiliated Hospital of Qingdao University, Qingdao 266003, China.
| |
Collapse
|
30
|
Jang HJ, Leem J, Kim GM. Protective Effects of Apamin on Acetaminophen-Induced Hepatotoxicity in Mice. Curr Issues Mol Biol 2023; 45:4389-4399. [PMID: 37232748 DOI: 10.3390/cimb45050279] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/07/2023] [Accepted: 05/15/2023] [Indexed: 05/27/2023] Open
Abstract
Acetaminophen (APAP) overdose can cause severe liver damage, but therapeutic options are limited. Apamin is a natural peptide present in bee venom and has antioxidant and anti-inflammatory properties. Accumulating evidence suggests that apamin has favorable actions in rodent models of inflammatory disorders. Here, we examined the effect of apamin on APAP-evoked hepatotoxicity. Intraperitoneal administration of apamin (0.1 mg/kg) alleviated histological abnormalities and reduced serum levels of liver enzymes in mice injected with APAP. Apamin inhibited oxidative stress through an increase in the amount of glutathione and activation of the antioxidant system. Apamin also attenuated apoptosis with inhibition of caspase-3 activation. Moreover, apamin reduced serum and hepatic levels of cytokines in APAP-injected mice. These effects were accompanied by suppression of NF-κB activation. Furthermore, apamin inhibited chemokine expression and inflammatory cell infiltration. Our results suggest that apamin dampens APAP-evoked hepatotoxicity through inhibiting oxidative stress, apoptosis, and inflammation.
Collapse
Affiliation(s)
- Hyo-Jeong Jang
- Department of Pediatrics, School of Medicine, Keimyung University, Daegu 42601, Republic of Korea
| | - Jaechan Leem
- Department of Immunology, School of Medicine, Daegu Catholic University, Daegu 42472, Republic of Korea
| | - Gyun Moo Kim
- Department of Emergency Medicine, School of Medicine, Daegu Catholic University, Daegu 42472, Republic of Korea
| |
Collapse
|
31
|
Gungor H, Ekici M, Ates MB. Lipid-lowering, anti-inflammatory, and hepatoprotective effects of isorhamnetin on acetaminophen-induced hepatotoxicity in mice. Drug Chem Toxicol 2023; 46:566-574. [PMID: 35502492 DOI: 10.1080/01480545.2022.2069256] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Isorhamnetin is a hepatoprotective flavonoid molecule derived from the leaves and fruits of Hippophae rhamnoides L. However, the protective effect of isorhamnetin on acetaminophen (APAP) induced hepatotoxicity is still unknown. Thus, we aimed to investigate the lipid-lowering, anti-inflammatory, and hepatoprotective effects of isorhamnetin on APAP-induced hepatotoxicity in mice. Hepatotoxicity was induced by a single injection of APAP (300 mg/kg, intraperitoneally). Isorhamnetin (50 or 100 mg/kg, orally) and N-acetylcysteine (NAC) (200 mg/kg, orally), or vehicle control, were administered 1 h before the administration of APAP. Total antioxidant status (TAS) and total oxidative status (TOS) of liver tissue and levels of inflammatory factors (TNF-α, IL-1β, and IL-6) were analyzed by ELISA. Lipid profiles and liver function parameters were measured using an autoanalyzer. In addition, liver tissue was examined histopathologically. Isorhamnetin treatment significantly reduced the APAP-induced increase in the liver weight and liver index; it also reduced the APAP-induced increase in serum liver parameters (ALT, AST, ALP, and LDH) (p < 0.05). Isorhamnetin significantly reduced APAP-induced oxidative stress and inflammation by increasing TAS levels and decreasing TOS, TNF-α, IL-1β, and IL-6 levels (p < 0.05). Moreover, isorhamnetin treatment significantly regulated lipid profiles (TG, T-C, LDL-C, and HDL-C levels) that changed in response to APAP administration (p < 0.05). In histopathological examination, liver degeneration observed in the APAP group was significantly reduced in the NAC and isorhamnetin-treated groups (p < 0.05). This study suggests that isorhamnetin has a significant protective effect on APAP-induced hepatotoxicity in mice through its lipid-lowering, antioxidant, and anti-inflammatory effects.
Collapse
Affiliation(s)
- Huseyin Gungor
- Department of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Medicine, Sivas Cumhuriyet University, Sivas, Turkey
| | - Mehmet Ekici
- Department of Veterinary Physiology, Faculty of Veterinary Medicine, Sivas Cumhuriyet University, Sivas, Turkey
| | - Mehmet Burak Ates
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, Selcuk University, Konya, Turkey
| |
Collapse
|
32
|
Chen L, Li Z, Wei W, An B, Tian Y, Liu W, Niu S, Wang Y, Wang L, Li W, Hao J, Wu J. Human embryonic stem cell-derived immunity-and-matrix regulatory cells promote intrahepatic cell renewal to rescue acute liver failure. Biochem Biophys Res Commun 2023; 662:104-113. [PMID: 37104880 DOI: 10.1016/j.bbrc.2023.04.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/27/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023]
Abstract
Acute liver failure (ALF) is a clinical syndrome characterized by the accelerated development of hepatocyte necrosis and significant mortality. Given that liver transplantation is now the only curative treatment available for ALF, there is an urgent need to explore innovative therapies. Mesenchymal stem cells (MSCs) have been applied in preclinical studies for ALF. It had been demonstrated that human embryonic stem cell-derived immunity-and-matrix regulatory cells (IMRCs) met the properties of MSCs and had been employed in a wide range of conditions. In this study, we conducted a preclinical evaluation of IMRCs in the treatment of ALF and investigated the mechanism involved. ALF was induced in C57BL/6 mice via intraperitoneal administration of 50% CCl4 (6 mL/kg) mixed with corn oil, followed by intravenous injection of IMRCs (3 × 106 cells/each). IMRCs improved histopathological changes in the liver and reduced alanine transaminase (ALT) or aspartate transaminase (AST) levels in serum. IMRCs also promoted cell renewal in the liver and protected it from CCl4 damage. Furthermore, our data indicated that IMRCs protected against CCl4-induced ALF by regulating the IGFBP2-mTOR-PTEN signaling pathway, which is associated with the repopulation of intrahepatic cells. Overall, IMRCs offered protection against CCl4-induced ALF and were capable of preventing apoptosis and necrosis in hepatocytes, which provided a new perspective for treating and improving the prognosis of ALF.
Collapse
Affiliation(s)
- Ling Chen
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 100049, China; State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhongwen Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Wumei Wei
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
| | - Bin An
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yao Tian
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wenjing Liu
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Shuaishuai Niu
- National Stem Cell Resource Center, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Yukai Wang
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 100049, China; State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Liu Wang
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 100049, China; State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Wei Li
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 100049, China; State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Jie Hao
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 100049, China; National Stem Cell Resource Center, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Jun Wu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| |
Collapse
|
33
|
Sun X, Cui Q, Ni J, Liu X, Zhu J, Zhou T, Huang H, OuYang K, Wu Y, Yang Z. Retracted and Republished from: "Gut Microbiota Mediates the Therapeutic Effect of Monoclonal Anti-TLR4 Antibody on Acetaminophen-Induced Acute Liver Injury in Mice". Microbiol Spectr 2023; 11:e0471522. [PMID: 36942972 PMCID: PMC10186863 DOI: 10.1128/spectrum.04715-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 02/14/2023] [Indexed: 03/23/2023] Open
Abstract
Acetaminophen (APAP) overdose is one of the most common causes of acute liver injury (ALI) in Western countries. Many studies have shown that the gut microbiota plays an important role in liver injury. Currently, the only approved treatment for APAP-induced ALI is N-acetylcysteine; therefore, it is essential to develop new therapeutic agents and explore the underlying mechanisms. We developed a novel monoclonal anti-Toll-like receptor 4 (TLR4) antibody (ATAB) and hypothesized that it has therapeutic effects on APAP-induced ALI and that the gut microbiota may be involved in the underlying mechanism of ATAB treatment. Male C57BL/6 mice were treated with APAP and ATAB, which produced a therapeutic effect on ALI and altered the members of the gut microbiota and their metabolic pathways, such as Roseburia, Lactobacillus, Akkermansia, and the fatty acid pathway, etc. Furthermore, we verified that purified short-chain fatty acids (SCFAs) could alleviate ALI. Moreover, a separate group of mice that received feces from the ATAB group showed less severe liver injury than mice that received feces from the APAP group. ATAB therapy also improved gut barrier functions in mice and reduced the expression of the protein zonulin. Our results revealed that the gut microbiota plays an important role in the therapeutic effect of ATAB on APAP-induced ALI. IMPORTANCE In this study, we found that a monoclonal anti-Toll-like receptor 4 antibody can alleviate APAP-induced acute liver injury through changes in the gut microbiota, metabolic pathways, and gut barrier function. This work suggested that the gut microbiota can be a therapeutic target of APAP-induced acute liver injury, and we performed foundation for further research.
Collapse
Affiliation(s)
- Xuewei Sun
- Centre for Diseases Prevention and Control of Eastern Theater, Nanjing, China
- Binzhou Medical University, Yantai, China
| | - Qian Cui
- Air Force Hospital of Eastern Theater, Nanjing, China
| | - Juan Ni
- The First Affiliated Hospital of Nanjing Medical University (Jiangsu Province Hospital), Nanjing, China
| | - Xiaoguang Liu
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, Nanjing, China
| | - Jin Zhu
- Centre for Diseases Prevention and Control of Eastern Theater, Nanjing, China
| | - Tingting Zhou
- Centre for Diseases Prevention and Control of Eastern Theater, Nanjing, China
| | - HuaYing Huang
- The First Affiliated Hospital of Nanjing Medical University (Jiangsu Province Hospital), Nanjing, China
| | - Ke OuYang
- The First Affiliated Hospital of Nanjing Medical University (Jiangsu Province Hospital), Nanjing, China
| | - Yulong Wu
- Binzhou Medical University, Yantai, China
| | - Zhan Yang
- Centre for Diseases Prevention and Control of Eastern Theater, Nanjing, China
| |
Collapse
|
34
|
Shen XL, Guo YN, Lu MH, Ding KN, Liang SS, Mou RW, Yuan S, He YM, Tang LP. Acetaminophen-induced hepatotoxicity predominantly via inhibiting Nrf2 antioxidative pathway and activating TLR4-NF-κB-MAPK inflammatory response in mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 252:114590. [PMID: 36738614 DOI: 10.1016/j.ecoenv.2023.114590] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/23/2022] [Accepted: 12/01/2022] [Indexed: 06/18/2023]
Abstract
To explore the action time and molecular mechanism underlying the effect of acetaminophen (APAP) on liver injury. APAP was used to establish drug-induced liver injury (DILI) model in mice. Mice in the model group were intraperitoneally injected 300 mg/kg APAP for 6, 12, and 24 h respectively, and control group mice were given the same volume of normal saline. The mice were anesthetized through intravenous injection of sodium pentobarbital at 6, 12, and 24 h after APAP poisoning. Analysis of ALT, AST and ALP in serum, liver histopathological observation, oxidative damage and western blot were performed. The livers in APAP exposed mice were pale, smaller, with a rough texture, and poorly arranged cells. Lesions, large areas of hyperemia, inflammation, swelling, poorly cell arrangement, necrosis, and apoptosis of liver cells were obvious in the liver tissue sections. Serum ALT, AST and ALP levels were significantly enhanced at 12 h of APAP adminstration mice than that of in control group mice (P<0.05). The histopathological alterations and proinflammatory cytokines (IL-1β, TNF-α and IL-6) levels were most severe at 12 h of APAP-induced hepatotoxicity. APAP treatment induced oxidative stress by decreasing hepatic activities of superoxide dismutase (SOD) and glutathione (GSH) (P<0.05), and enhancing malondialdehyde (MDA) content (P<0.05). Moreover, APAP inhibited erythroid 2-related factor 2 (Nrf2) antioxidative pathway with decreased of Nrf2 and HO-1 proteins levels. Furthermore, APAP aggravated the activation of NLRP3 inflammasome by increasing of NLRP3, caspase-1, ASC, IL-1β and IL-18 proteins levels. Finally, APAP further significantly activated the toll-like receptor 4 (TLR4), nuclear factor-kappa B (NF-κB) and mitogen-activated protein kinases (MAPKs) signaling pathways. This study demonstrated that APAP-induced hepatotoxicity by inhibiting of Nrf2 antioxidative pathway and promoting TLR4-NF-κB-MAPK inflammatory response and NLRP3 inflammasome activation.
Collapse
Affiliation(s)
- Xing-Ling Shen
- School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Yan-Na Guo
- School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Meng-Han Lu
- School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Kang-Ning Ding
- School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Shao-Shan Liang
- School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Rui-Wei Mou
- School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Sheng Yuan
- School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Yong-Ming He
- School of Life Science and Engineering, Foshan University, Foshan 528225, China.
| | - Lu-Ping Tang
- School of Life Science and Engineering, Foshan University, Foshan 528225, China.
| |
Collapse
|
35
|
Martins-Gomes C, Nunes FM, Silva AM. Modulation of Cell Death Pathways for Cellular Protection and Anti-Tumoral Activity: The Role of Thymus spp. Extracts and Their Bioactive Molecules. Int J Mol Sci 2023; 24:ijms24021691. [PMID: 36675206 PMCID: PMC9864824 DOI: 10.3390/ijms24021691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/06/2023] [Accepted: 01/10/2023] [Indexed: 01/18/2023] Open
Abstract
Natural products used for their health-promoting properties have accompanied the evolution of humanity. Nowadays, as an effort to scientifically validate the health-promoting effects described by traditional medicine, an ever-growing number of bioactivities are being described for natural products and the phytochemicals that constitute them. Among them, medicinal plants and more specifically the Thymus genus spp., arise as products already present in the diet and with high acceptance, that are a source of phytochemicals with high pharmacological value. Phenolic acids, flavonoid glycoside derivatives, and terpenoids from Thymus spp. have been described for their ability to modulate cell death and survival pathways, much-valued bioactivities in the pharmaceutical industry, that continually sought-after new formulations to prevent undesired cell death or to control cell proliferation. Among these, wound treatment, protection from endogenous/exogenous toxic molecules, or the induction of selective cell death, such as the search for new anti-tumoral agents, arise as main objectives. This review summarizes and discusses studies on Thymus spp., as well as on compounds present in their extracts, with regard to their health-promoting effects involving the modulation of cell death or survival signaling pathways. In addition, studies regarding the main bioactive molecules and their cellular molecular targets were also reviewed. Concerning cell survival and proliferation, Thymus spp. present themselves as an option for new formulations designed for wound healing and protection against chemicals-induced toxicity. However, Thymus spp. extracts and some of their compounds regulate cell death, presenting anti-tumoral activity. Therefore Thymus spp. is a rich source of compounds with nutraceutical and pharmaceutical value.
Collapse
Affiliation(s)
- Carlos Martins-Gomes
- Centre for Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Cell Biology and Biochemistry Lab, University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5001-801 Vila Real, Portugal
- Chemistry Research Centre-Vila Real (CQ-VR), Food and Wine Chemistry Lab, UTAD Quinta de Prados, 5001-801 Vila Real, Portugal
| | - Fernando M. Nunes
- Chemistry Research Centre-Vila Real (CQ-VR), Food and Wine Chemistry Lab, UTAD Quinta de Prados, 5001-801 Vila Real, Portugal
- Department of Chemistry, School of Life Sciences and Environment, UTAD, 5001-801 Vila Real, Portugal
| | - Amélia M. Silva
- Centre for Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Cell Biology and Biochemistry Lab, University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5001-801 Vila Real, Portugal
- Department of Biology and Environment, School of Life Sciences and Environment, UTAD, 5001-801 Vila Real, Portugal
- Correspondence: ; Tel.: +351-259-350-921
| |
Collapse
|
36
|
Zheng T, Huang Z, Ling H, Li J, Cheng H, Chen D, Lu Q, Zhao J, Su W. The mechanism of the Nfe2l2/Hmox1 signaling pathway in ferroptosis regulation in acute compartment syndrome. J Biochem Mol Toxicol 2023; 37:e23228. [PMID: 36193742 PMCID: PMC10078270 DOI: 10.1002/jbt.23228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 07/30/2022] [Accepted: 09/16/2022] [Indexed: 01/18/2023]
Abstract
Acute compartment syndrome (ACS) is a life-threatening orthopedic emergency, which can even result in amputation. Ferroptosis is an iron-dependent form of nonapoptotic cell death. This study investigated the mechanism of ferroptosis in ACS, explored candidate markers, and determined effective treatments. This study identified pathways involved in the development of ACS through gene set enrichment analysis (GSEA), Gene Ontology, Kyoto Encyclopedia of Genes and Genomes (KEGG), and GSEA of heme oxygenase 1 (Hmox1). Bioinformatics methods, combined with real-time quantitative polymerase chain reaction, western blot analysis, and iron staining, were applied to determine whether ferroptosis was involved in the progression of ACS and to explore the mechanism of nuclear factor erythroid-2-related factor 2 (Nfe2l2)/Hmox1 in ferroptosis regulation. Optimal drugs for the treatment of ACS were also investigated using Connectivity Map. The ferroptosis pathway was enriched in GSEA, KEGG of DEGs, and GSEA of Hmox1. After ACS, the reactive oxygen species content, tissue iron content, and oxidative stress level increased, whereas glutathione peroxidase 4 protein expression decreased. The skeletal muscle was swollen and necrotized; the number of mitochondrial cristae became fewer or even disappeared, and Nfe2l2/Hmox1 expression increased at the transcriptional and protein levels. Hmox1 was highly expressed in ACS, indicating that Hmox1 is a possible marker for ACS. we could predict 12 potential target drugs for the treatment of ACS. In conclusion, Hmox1 was a potential candidate marker for ACS diagnosis. Ferroptosis was involved in the progression of ACS. It was speculated that ferroptosis is inhibited by the Nfe2l2/Hmox1 signaling pathway.
Collapse
Affiliation(s)
- Tiejun Zheng
- Department of Orthopaedic Traumatology and Hand Surgery, The First Affiliated Hospital to Guangxi Medical University, Nanning, Guangxi, China
| | - Zhao Huang
- Department of Orthopaedic Traumatology and Hand Surgery, The First Affiliated Hospital to Guangxi Medical University, Nanning, Guangxi, China
| | - He Ling
- Department of Orthopaedic Traumatology and Hand Surgery, The First Affiliated Hospital to Guangxi Medical University, Nanning, Guangxi, China
| | - Junfeng Li
- Department of Orthopaedic Traumatology and Hand Surgery, The First Affiliated Hospital to Guangxi Medical University, Nanning, Guangxi, China
| | - Hong Cheng
- Department of Orthopaedic Traumatology and Hand Surgery, The First Affiliated Hospital to Guangxi Medical University, Nanning, Guangxi, China
| | - Dingquan Chen
- Department of Orthopaedic Traumatology and Hand Surgery, The First Affiliated Hospital to Guangxi Medical University, Nanning, Guangxi, China
| | - Qinzhen Lu
- Department of Orthopaedic Traumatology and Hand Surgery, The First Affiliated Hospital to Guangxi Medical University, Nanning, Guangxi, China
| | - Jinmin Zhao
- Department of Orthopaedic Traumatology and Hand Surgery, The First Affiliated Hospital to Guangxi Medical University, Nanning, Guangxi, China.,Guangxi Collaborative Innovation Center for Biomedicine, Guangxi Medical University, Nanning, Guangxi, China
| | - Wei Su
- Department of Orthopaedic Traumatology and Hand Surgery, The First Affiliated Hospital to Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
37
|
Shen LH, Luo QQ, Hu CB, Jiang H, Yang Y, Wang GH, Ji QH, Jia ZZ. DL-3-n-butylphthalide alleviates motor disturbance by suppressing ferroptosis in a rat model of Parkinson’s disease. Neural Regen Res 2023; 18:194-199. [PMID: 35799542 PMCID: PMC9241398 DOI: 10.4103/1673-5374.343892] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
38
|
Zhao J, Ding K, Hou M, Li Y, Hou X, Dai W, Li Z, Zhao J, Liu W, Bai Z. Schisandra chinensis essential oil attenuates acetaminophen-induced liver injury through alleviating oxidative stress and activating autophagy. PHARMACEUTICAL BIOLOGY 2022; 60:958-967. [PMID: 35588406 PMCID: PMC9122381 DOI: 10.1080/13880209.2022.2067569] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 02/25/2022] [Accepted: 04/11/2022] [Indexed: 06/15/2023]
Abstract
CONTEXT Schisandra chinensis (Turcz.) Baill. (Magnoliaceae) essential oil (SCEO) composition is rich in lignans that are believed to perform protective effects in the liver. OBJECTIVE This study investigates the effects of SCEO in the treatment of acetaminophen (APAP)-induced liver injury in mice. MATERIALS AND METHODS C57BL/6 mice (n = 56) were randomly divided into seven groups: normal; APAP (300 mg/kg); APAP plus bicyclol (200 mg/kg); APAP plus SCEO (0.25, 0.5, 1, 2 g/kg). Serum biochemical parameters for liver function, inflammatory factors, and antioxidant activities were determined. The protein expression levels of Nrf2, GCLC, GCLM, HO-1, p62, and LC3 were assessed by western blotting. Nrf2, GCLC, HO-1, p62, and LC3 mRNA were detected by real-time PCR. RESULTS Compared to APAP overdose, SCEO (2 g/kg) pre-treatment reduced the serum levels of AST (79.4%), ALT (84.6%), TNF-α (57.3%), and IL-6 (53.0%). In addition, SCEO (2 g/kg) markedly suppressed cytochrome P450 2E1 (CYP2E1) (15.4%) and attenuated the exhaustion of GSH (43.6%) and SOD (16.8%), and the accumulation of MDA (22.6%) in the liver, to inhibit the occurrence of oxidative stress. Moreover, hepatic tissues from our experiment revealed that SCEO pre-treatment mitigated liver injury caused by oxidative stress by increasing Nrf2, HO-1, and GCL. Additionally, SCEO activated autophagy, which upregulated hepatic LC3-II and decreased p62 in APAP overdose mice (p < 0.05). DISCUSSION AND CONCLUSIONS Our evidence demonstrated that SCEO protects hepatocytes from APAP-induced liver injury in vivo and the findings will provide a reliable theoretical basis for developing novel therapeutics.
Collapse
Affiliation(s)
- Jing Zhao
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
- Department of Hepatology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
- China Military Institute of Chinese Materia, the Fifth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Kaixin Ding
- Department of Hepatology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
- China Military Institute of Chinese Materia, the Fifth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Manting Hou
- Department of Hepatology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
- China Military Institute of Chinese Materia, the Fifth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Yuanhua Li
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
- Department of Hepatology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
- China Military Institute of Chinese Materia, the Fifth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Xiaorong Hou
- Department of Hepatology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
- China Military Institute of Chinese Materia, the Fifth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Wenzhang Dai
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
- Department of Hepatology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
- China Military Institute of Chinese Materia, the Fifth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Zhiyong Li
- Department of Hepatology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
- China Military Institute of Chinese Materia, the Fifth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Jun Zhao
- Department of Hepatology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Wenlong Liu
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Zhaofang Bai
- Department of Hepatology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
- China Military Institute of Chinese Materia, the Fifth Medical Centre, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
39
|
Zhang K, Gu X, Xia Y, Zhao X, Khoso Pervez A, Li S. MiR-129-3p regulates ferroptosis in the liver of Selenium-deficient broilers by targeting SLC7A11. Poult Sci 2022; 102:102271. [PMID: 36436380 PMCID: PMC9700304 DOI: 10.1016/j.psj.2022.102271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 10/12/2022] [Accepted: 10/15/2022] [Indexed: 11/23/2022] Open
Abstract
Selenium (Se) has been proven to be an essential trace element for organism. Se deficiency in poultry can cause widespread damage, such as exudative diathesis. The liver is not only the main organ of metabolism, but also one of the organs with high Se content in organism. Recent studies have shown that solute carrier family 7 member 11 (SLC7A11) plays a key role in the negative regulation of ferroptosis. In order to explore the mechanism of Se deficiency induces liver ferroptosis in broilers, and the role of microRNAs (miRNAs) in this process, we divided broilers into 2 groups: control group (0.2 mg/kg Se) and Se deficiency group (0.03 mg/kg Se). Hematoxylin-Eosin staining detected liver tissue damage in broilers. Predicted and verified the targeting relationship between miR-129-3p and SLC7A11 through miRDB and dual luciferase report experiments. The genes related to ferroptosis were detected by qRT-PCR and Western Blot. The results showed that the expression level of miR-129-3p mRNA in Se-deficient liver was significantly increased. To understand whether the miR-129-3p/SLC7A11 axis could involve in the process of ferroptosis, our further research showed that overexpression of miR-129-3p could reduce the expression of SLC7A11 and its downstream GCL, GSS, and GPX4, thereby inducing ferroptosis. These data indicates that miR-129-3p affected ferroptosis under Se deficiency conditions through the SLC7A11 pathway. Our research provides a new perspective for the mechanism of Se deficiency on the liver damage.
Collapse
Affiliation(s)
- Kaixin Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Xuedie Gu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Yu Xia
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Xiaochun Zhao
- Animal Disease Control and Prevention of Heilongjiang Province, Harbin 150069, China
| | - Ahmed Khoso Pervez
- Shaheed Benazir Bhutto, University of Veterinary and Animal Sciences, Sakrand, Pakistan
| | - Shu Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China.
| |
Collapse
|
40
|
Tang D, Wang RY, Sun KW, Wu Y, Ding L, Mo Y. Network pharmacology-based prediction of active compounds in the Wenyang Jiedu Huayu formula acting on acute-on-chronic liver failure with experimental support in vitro and in vivo. Front Pharmacol 2022; 13:1003479. [PMID: 36339606 PMCID: PMC9631206 DOI: 10.3389/fphar.2022.1003479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 09/28/2022] [Indexed: 11/25/2022] Open
Abstract
Acute-on-chronic liver failure (ACLF) is characterized by undermined liver function, massive necrosis/apoptosis of hepatocytes, and hepatic inflammatory cell recruitment, leading to multiorgan failure. Traditional Chinese medicine (TCM) has been widely applied in clinical and experimental studies of ACLF. In this study, 23 compounds with 6,386 drug targets were obtained from Wenyang Jiedu Huayu (WYJDHY), and 8,096 genes were identified as ACLF disease targets, among which 3,132 were overlapping co-targets. Expression profile analysis identified 105 DEGs among the co-targets, which were associated with biological activities such as lymphocyte activation, immune response regulation, and pathways such as Th17 cell differentiation and NF-κB signaling. After PPI analysis and network construction, atractylenolide I (AT-1) has been identified as the hub active ingredient of the WYJDHY formula. LPS stimulation inhibited rat hepatocytes’ BRL 3A cell viability, promoted cell apoptosis, increased the levels of ALT, AST, IL-6, and VCAM-1 within the culture medium, and activated NF-κB signaling, whereas AT-1 treatment significantly attenuated LPS-induced toxicity on BRL 3A cells. Furthermore, the NF-κB signaling inhibitor PDTC exerted effects on LPS-stimulated BRL 3A cells similar to those of AT-1, and the combination of PDTC and AT-1 further attenuated LPS-induced toxicity on BRL 3A cells. In vivo, AT-1 alone or with PDTC improved the symptoms and local inflammation in ACLF model rats. In conclusion, 23 active ingredients of six herbs in the WYJDHY formula were retrieved, and 105 co-targets were differentially expressed in ACLF. AT-1 exerts protective effects on LPS-stimulated hepatocytes and ACLF rats, possibly by inhibiting the NF-κB pathway.
Collapse
Affiliation(s)
- Dan Tang
- Department of Hepatology, The First Hospital of Hunan University of Traditional Chinese Medicine, Changsha, China
| | - Ruo-Yu Wang
- Department of Hepatology, The First Hospital of Hunan University of Traditional Chinese Medicine, Changsha, China
| | - Ke-Wei Sun
- Department of Hepatology, The First Hospital of Hunan University of Traditional Chinese Medicine, Changsha, China
- *Correspondence: Ke-Wei Sun,
| | - Yunan Wu
- Department of Hepatology, The First Hospital of Hunan University of Traditional Chinese Medicine, Changsha, China
| | - Lin Ding
- Department of Hepatology, The First Hospital of Hunan University of Traditional Chinese Medicine, Changsha, China
| | - Yang Mo
- Academic Affairs Office, Hunan University of Traditional Chinese Medicine, Changsha, China
| |
Collapse
|
41
|
Tao YC, Wang YH, Wang ML, Jiang W, Wu DB, Chen EQ, Tang H. Upregulation of microRNA-125b-5p alleviates acute liver failure by regulating the Keap1/Nrf2/HO-1 pathway. Front Immunol 2022; 13:988668. [PMID: 36268033 PMCID: PMC9578503 DOI: 10.3389/fimmu.2022.988668] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 09/15/2022] [Indexed: 12/14/2022] Open
Abstract
Background Acute liver failure (ALF) and acute-on-chronic liver failure (ACLF) are the two most common subtypes of liver failure. They are both life-threatening clinical problems with high short-term mortality. Although liver transplantation is an effective therapeutic, its application is limited due to the shortage of donor organs. Given that both ACLF and ALF are driven by excessive inflammation in the initial stage, molecules targeting inflammation may benefit the two conditions. MicroRNAs (miRNAs) are a group of small endogenous noncoding interfering RNA molecules. Regulation of miRNAs related to inflammation may serve as promising interventions for the treatment of liver failure. Aims To explore the role and mechanism of miR-125b-5p in the development of liver failure. Methods Six human liver tissues were categorized into HBV-non-ACLF and HBV-ACLF groups. Differentially expressed miRNAs (DE-miRNAs) were screened and identified through high-throughput sequencing analysis. Among these DE-miRNAs, miR-125b-5p was selected for further study of its role and mechanism in lipopolysaccharide (LPS)/D-galactosamine (D-GalN) -challenged Huh7 cells and mice in vitro and in vivo. Results A total of 75 DE-miRNAs were obtained. Of these DE-miRNAs, miR-125b-5p was the focus of further investigation based on our previous findings and preliminary results. We preliminarily observed that the levels of miR-125b-5p were lower in the HBV-ACLF group than in the HBV-non-ACLF group. Meanwhile, LPS/D-GalN-challenged mice and Huh7 cells both showed decreased miR-125b-5p levels when compared to their untreated control group, suggesting that miR-125b-5p may have a protective role against liver injury, regardless of ACLF or ALF. Subsequent results revealed that miR-125b-5p not only inhibited Huh7 cell apoptosis in vitro but also relieved mouse ALF in vivo with evidence of improved liver histology, decreased alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels, and reduced tumor necrosis factor-α (TNF-α) and IL-1β levels. Based on the results of a biological prediction website, microRNA.org, Kelch-like ECH-associated protein 1 (Keap1) was predicted to be one of the target genes of miR-125b-5p, which was verified by a dual-luciferase reporter gene assay. Western blot results in vitro and in vivo showed that miR-125b-5p could decrease the expression of Keap1 and cleaved caspase-3 while upregulating the expression of nuclear factor (erythroid-derived 2)-like 2 (Nrf2) and heme oxygenase-1(HO-1). Conclusion Upregulation of miR-125b-5p can alleviate acute liver failure by regulating the Keap1/Nrf2/HO-1 pathway, and regulation of miR-125b-5p may serve as an alternative intervention for liver failure.
Collapse
Affiliation(s)
- Ya-Chao Tao
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China,Division of Infectious Diseases, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Yong-Hong Wang
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China,Division of Infectious Diseases, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Meng-Lan Wang
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China,Division of Infectious Diseases, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Wei Jiang
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China,Division of Infectious Diseases, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Dong-Bo Wu
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China,Division of Infectious Diseases, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - En-Qiang Chen
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China,Division of Infectious Diseases, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China,*Correspondence: Hong Tang, ; En-Qiang Chen,
| | - Hong Tang
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China,Division of Infectious Diseases, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China,*Correspondence: Hong Tang, ; En-Qiang Chen,
| |
Collapse
|
42
|
Song L, Wang J, Gong M, Zhang Y, Li Y, Wu X, Qin L, Duan Y. Detoxification technology and mechanism of processing with Angelicae sinensis radix in reducing the hepatotoxicity induced by rhizoma Dioscoreae bulbiferae in vivo. Front Pharmacol 2022; 13:984858. [PMID: 36249801 PMCID: PMC9554241 DOI: 10.3389/fphar.2022.984858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 08/08/2022] [Indexed: 11/18/2022] Open
Abstract
Rhizoma Dioscoreae Bulbiferae (RDB) was effective on relieving cough and expectorant but accompanied by severe toxicity, especially in hepatotoxicity. A previous study found that processing with Angelicae Sinensis Radix (ASR) reduced RDB-induced hepatotoxicity. However, up to now, the optimized processing process of ASR-processed RDB has not been explored or optimized, and the detoxification mechanism is still unknown. This study evaluated the detoxification technology and possible mechanism of processing with ASR on RDB-induced hepatotoxicity. The optimized processing process of ASR-processed RDB was optimized by the content of diosbulbin B (DB), the levels of serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), and histopathological analysis. The processing detoxification mechanism was evaluated by detecting the antioxidant levels of nuclear factor E2 related factor 2 (Nrf2) and its downstream heme oxygenase 1 (HO-1), quinone oxidoreductase 1 (NQO1), glutamylcysteine ligase catalytic subunit (GCLM), and the levels of downstream antioxidant factors of Nrf2. Besides, the antitussive and expectorant efficacy of RDB was also investigated. This work found that processing with ASR attenuated RDB-induced hepatotoxicity, which can be verified by reducing the levels of ALT, AST, and ALP, and reversing the pathological changes of liver histomorphology. And the optimized processing process of ASR-processed RDB is “processing at a mass ratio of 100:20 (RDB:ASR) and a temperature of 140°C for 10 min.” Further results corroborated that the intervention of processed products of ASR-processed RDB remarkably upregulated the Nrf2/HO-1/NQO1/GCLM protein expression levels in liver, and conserved antitussive and expectorant efficacy of RDB. The above findings comprehensively indicated that the optimized processing process of ASR-processed RDB was “processing at a mass ratio of 100:20 (RDB:ASR) and a temperature of 140°C for 10 min,” and the processing detoxification mechanism involved enhancing the level of Nrf2-mediated antioxidant defense in liver as a key target organ.
Collapse
Affiliation(s)
- Lingling Song
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Junming Wang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
- Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan and Education Ministry of P. R. China, Henan University of Chinese Medicine, Zhengzhou, China
- *Correspondence: Junming Wang,
| | - Mingzhu Gong
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Yueyue Zhang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Yamin Li
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Xiaohui Wu
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Lingyu Qin
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Yaqian Duan
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| |
Collapse
|
43
|
Oxidative Stress Induces Bovine Endometrial Epithelial Cell Damage through Mitochondria-Dependent Pathways. Animals (Basel) 2022; 12:ani12182444. [PMID: 36139304 PMCID: PMC9495185 DOI: 10.3390/ani12182444] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 11/30/2022] Open
Abstract
Simple Summary Polymorphonuclear neutrophil (PMN) count is the main diagnostic method of bovine endometritis. High neutrophil PMN counts in the endometrium of cows affected by endometritis suggest the involvement of oxidative stress among the causes of impaired fertility. The damage mechanism of oxidative stress on bovine endometrial epithelial cells (BEECs) is still unelucidated. The objective of this experiment was to investigate the relationship between oxidative stress and graded endometritis in dairy uteri and the molecular mechanism of oxidative stress injury to BEECs. Our research showed that there was an imbalance of antioxidant stress in dairy cow uterine with endometritis, oxidative stress damaged dairy cow endometrial epithelial cells through mitochondria-dependent pathways. These findings may provide new insight into the therapeutic target of bovine endometrial cell injury. Abstract Bovine endometritis is a mucosal inflammation that is characterized by sustained polymorphonuclear neutrophil (PMN) infiltration. Elevated PMN counts in the uterine discharge of dairy cows affected by endometritis suggest that oxidative stress may be among the causes of impaired fertility due to the condition. Nevertheless, the effects of oxidative stress-mediated endometritis in dairy cows largely remain uninvestigated. Therefore, fresh uterine tissue and uterine discharge samples were collected to diagnose the severity of endometritis according to the numbers of inflammatory cells in the samples. Twenty-six fresh uteri were classified into healthy, mild, moderate, and severe endometritis groups based on hematoxylin and eosin stain characteristics and the percentage of PMNs in discharge. BEECs were treated with graded concentrations of H2O2 from 50 μM to 200 μM in vitro as a model to explore the mechanism of oxidative stress during bovine graded endometritis. The expressions of antioxidant stress kinases were detected by quantitative fluorescence PCR to verify the oxidative stress level in uteri with endometritis. Reactive oxygen species were detected by fluorescence microscope, and inflammation-related mRNA expression increased significantly after H2O2 stimulation. Moreover, mRNA expression levels of antioxidant oxidative stress-related enzymes (glutathione peroxidase, superoxide dismutase, and catalase) and mitochondrial membrane potential both decreased. Further investigation revealed that expression of the apoptosis regulator Bcl-2/Bax decreased, whereas expression of the mitochondrial apoptosis-related proteins cytochrome c and caspase-3 increased in response to oxidative stress. Our results indicate that an imbalance exists between oxidation and antioxidation during bovine endometritis. Moreover, apoptosis induced in vitro by oxidative stress was characterized by mitochondrial damage in BEECs.
Collapse
|
44
|
Yang J, Li G, Bao X, Suo Y, Xu H, Deng Y, Feng T, Deng G. Hepatoprotective effects of Phloridzin against isoniazid-rifampicin induced liver injury by regulating CYP450 and Nrf2/HO-1 pathway in mice. Chem Pharm Bull (Tokyo) 2022; 70:805-811. [PMID: 36070932 DOI: 10.1248/cpb.c22-00466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The protective effect of phloridzin (PHL) and its potential mechanism were examined in mice with liver injury induced by isoniazid (INH) and rifampicin (RFP). The mice were randomly divided into normal control group, model group, low (80 mg/kg), medium (160 mg/kg) and high (320 mg/kg) phloridzin-treated groups. After 28 days treatment, blood and liver tissue were collected and analysed. The results revealed that PHL regulated liver function related indicators and reduced the pathological tissue damage, indicating that PHL significantly alleviated the liver injury. Furthermore, the level of cytochrome P450 (CYP450) enzyme, the expression of cytochrome P450 3A4 (CYP3A4), cytochrome P450 2E1 (CYP2E1), heme oxygenase-1 (HO-1) and nuclear factor erythroid 2-related factor 2 (Nrf2) mRNA and protein were inhibited by PHL. These results indicated that PHL exerts a protecting effect against liver injury induced by combination of RFP and INH. The potential mechanisms may be concerned with the activation of Nrf2/HO-1 signaling pathway containing its key antioxidant enzymes and regulation of CYP3A4 and CYP2E1.
Collapse
Affiliation(s)
- Jiao Yang
- College of Medical Science, China Three Gorges University
| | - Guorong Li
- College of Medical Science, China Three Gorges University
| | - Xiaoai Bao
- College of Medical Science, China Three Gorges University
| | - Yujie Suo
- College of Medical Science, China Three Gorges University
| | - Hailong Xu
- College of Medical Science, China Three Gorges University
| | - Ying Deng
- College of Medical Science, China Three Gorges University
| | - Tianyan Feng
- Hubei Key Laboratory of Natural Products Research and Development, China Three Gorges University
| | - Gaigai Deng
- College of Medical Science, China Three Gorges University.,Hubei Key Laboratory of Natural Products Research and Development, China Three Gorges University
| |
Collapse
|
45
|
Zhao L, Zheng L, Li Z, Jin M, Wang Q, Cheng J, Li J, Feng H. Phellinus linteus polysaccharides mediates acetaminophen-induced hepatotoxicity via activating AMPK/Nrf2 signaling pathways. Aging (Albany NY) 2022; 14:6993-7002. [PMID: 36057264 PMCID: PMC9512509 DOI: 10.18632/aging.204260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/25/2022] [Indexed: 12/14/2022]
Abstract
Overdose of acetaminophen (APAP) is currently one of the main causes of hepatoxicity and acute liver injury, which is often linked to oxidative stress. Phellinus linteus polysaccharides (Phps) have shown many hepatoprotective effects, however, the mechanism of Phps on APAP-induced acute liver injury has not been further elucidated. The aim of this study is to investigate the underlying mechanism of Phps to acute liver injury. The expression of AMPK/Nrf2 and autophagy were detected using western blot. The results indicated that Phps treatment effectively alleviated APAP-induced acute liver injury by reducing alanine transaminase (ALT) and aspartate aminotransferase (AST) levels in serum. Phps significantly attenuated myeloperoxidase (MPO) activity and glutathione (GSH) depletion. Meanwhile, Phps remarkably alleviated histopathological changes. Further research found that Phps promoted AMPK pathway and up-regulated nuclear factor erythroid-2-related factor (Nrf2) transported into nucleus, and elevated heme oxygenase 1(HO-1), glutamate-cysteine ligase catalytic (GCLC), glutamate cysteine ligase modifier (GCLM) and quinone oxidoreductase (NQO1). Additionally, Phps apparently facilitated the expression of autophagy proteins (ATG3, ATG5, ATG7, and ATG12). However, the protection of pathologic changes was nearly absent in Nrf2<sup>-/-</sup> mice. Phps have potential in preventing oxidative stress in APAP-induced acute liver injury.
Collapse
Affiliation(s)
- Lilei Zhao
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, Jilin, P.R. China
| | - Lianwen Zheng
- Reproductive Medical Center, The Second Hospital of Jilin University, Changchun 130041, Jilin, P.R. China
| | - Zheng Li
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, Jilin, P.R. China
| | - Meiyu Jin
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, Jilin, P.R. China
| | - Qi Wang
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, Jilin, P.R. China
| | - Jiaqi Cheng
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, Jilin, P.R. China
| | - Jinxia Li
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, Jilin, P.R. China
| | - Haihua Feng
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, Jilin, P.R. China
| |
Collapse
|
46
|
Liu Z, Tu M, Shi J, Zhou H, Meng G, Gu J, Wang Y. Inhibition of fucosylation by 2-fluorofucose attenuated acetaminophen-induced liver injury via its anti-inflammation and anti-oxidative stress effects. Front Pharmacol 2022; 13:939317. [PMID: 36120347 PMCID: PMC9475176 DOI: 10.3389/fphar.2022.939317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Fucosylation is a common glycan terminal modification, which has been reported to be inhibited by 2-fluorofucose (2FF) both in vivo and in vitro. The present study aimed to investigate the effect of 2FF on acetaminophen (APAP)-induced acute liver injury, and further clarified the possible mechanisms. In the present study, inhibition of fucosylation by 2FF relieved APAP-induced acute liver injury in vivo. Pretreatment with 2FF remarkably suppressed APAP-induced oxidative stress and mitochondria damage. 2FF markedly enhanced the nuclear translocation of nuclear factor erythroid 2-related factor 2 (Nrf2) and simultaneously promoted the expression of downstream proteins including HO-1 and NQO1. Furthermore, pretreatment with 2FF significantly suppressed the expression of inflammation-associated proteins, such as COX2 and iNOS. The data from lectin blot assay revealed that the alteration of α1,6-fucosylation was involved in APAP-induced acute liver injury. The second part of this study further confirmed that the enhancements to antioxidant capacity of 2FF pretreatment and α1,6-fucose deficiency were related to Nrf2/keap1 and NF-κB signaling pathways in HepG2 cells. Taken together, the current study suggested that 2FF might have a potential therapeutic effect for APAP-induced acute liver injury.
Collapse
Affiliation(s)
- Zhaoguo Liu
- Department of Pharmacology, School of Pharmacy and Key Laboratory of Inflammation and Molecular Drug Target of Jiangsu Province, Nantong University, Nantong, China
| | - Mengjue Tu
- Department of Pharmacology, School of Pharmacy and Key Laboratory of Inflammation and Molecular Drug Target of Jiangsu Province, Nantong University, Nantong, China
| | - Jianan Shi
- Department of Pharmacology, School of Pharmacy and Key Laboratory of Inflammation and Molecular Drug Target of Jiangsu Province, Nantong University, Nantong, China
| | - Hong Zhou
- Department of Pharmacology, School of Pharmacy and Key Laboratory of Inflammation and Molecular Drug Target of Jiangsu Province, Nantong University, Nantong, China
| | - Guoliang Meng
- Department of Pharmacology, School of Pharmacy and Key Laboratory of Inflammation and Molecular Drug Target of Jiangsu Province, Nantong University, Nantong, China
| | - Jianguo Gu
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
- *Correspondence: Jianguo Gu, ; Yuqin Wang,
| | - Yuqin Wang
- Department of Pharmacology, School of Pharmacy and Key Laboratory of Inflammation and Molecular Drug Target of Jiangsu Province, Nantong University, Nantong, China
- *Correspondence: Jianguo Gu, ; Yuqin Wang,
| |
Collapse
|
47
|
He Y, Zhang Y, Zhang J, Hu X. The Key Molecular Mechanisms of Sini Decoction Plus Ginseng Soup to Rescue Acute Liver Failure: Regulating PPARα to Reduce Hepatocyte Necroptosis? J Inflamm Res 2022; 15:4763-4784. [PMID: 36032938 PMCID: PMC9417306 DOI: 10.2147/jir.s373903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 08/09/2022] [Indexed: 12/02/2022] Open
Abstract
Purpose This study aimed to investigate the improvement effect of Sini Decoction plus Ginseng Soup (SNRS) on the LPS/D-GalN-induced acute liver failure (ALF) mouse model and the molecular mechanism of the SNRS effect. Methods To study the protective effect of SNRS on ALF mice, the ICR mice were firstly divided into 4 groups: Control group (vehicle-treated), Model group (LPS/D-GalN), SNRS group (LPS/D-GalN+SNRS), and Silymarin group (LPS/D-GalN+Silymarin), the therapeutic drug was administered by gavage 48h, 24h before, and 10 min after LPS/D-GalN injection. On this basis, the peroxisome proliferator-activated receptor (PPAR) α agonist (WY14643) and inhibitor (GW6471) were added to verify whether the therapeutic mechanism of SNRS is related to its promoting effect on PPARα. The animals are grouped as follows: Control group (vehicle-treated), Model group (LPS/D-GalN+DMSO), SNRS group (LPS/D-GalN+SNRS+DMSO), Inhibitor group (LPS/D-GalN+GW6471), Agonist group (LPS/D-GalN+WY14643), and Inhibitor+SNRS group (LPS/D-GalN+GW6471+SNRS). Results The protective effect of SNRS on the ALF model is mainly reflected in the reduction of serum alanine aminotransaminase (ALT) and aspartate aminotransaminase (AST) as well as the ameliorated pathology of the liver tissue. The survival rate of ALF mice treated with SNRS was significantly increased. Further mechanism studies showed that SNRS significantly promoted the protein expression of PPARα and decreased the expression of necroptosis proteins (RIP3, MLKL, p-MLKL) in ALF mice. Reduced necroptosis resulted in decreased HMGB1 release, which in turn inhibited the activation of TLR4-JNK and NLRP3 inflammasome signaling pathways and the expression of NF-κB protein induced by LPS/D-GalN. The expression of CPT1A, a key enzyme involved in fatty acid β-oxidation, was found to be significantly up-regulated in the SNRS treated group, accompanied by an increased adenosine-triphosphate (ATP) level, which may be the relevant mechanism by which SNRS reduces necroptosis. Conclusion The potential therapeutic effect of SNRS on ALF may be through promoting the expression of PPARα and increasing the level of ATP in liver tissue, thereby inhibiting necroptosis of hepatocytes, reducing hepatocyte damage, and improving liver function.
Collapse
Affiliation(s)
- Ying He
- Department of Gastroenterology, Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, Chengdu, People's Republic of China.,Department of College of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Yang Zhang
- Department of Infectious Disease, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Junli Zhang
- Department of College of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Xiaoyu Hu
- Department of Infectious Disease, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| |
Collapse
|
48
|
Liu F, Liu Y, Peng Q, Wang G, Tan Q, Ou Z, Xu Q, Liu C, Zuo D, Zhao J. Creatinine accelerates APAP-induced liver damage by increasing oxidative stress through ROS/JNK signaling pathway. Front Pharmacol 2022; 13:959497. [PMID: 36091804 PMCID: PMC9449354 DOI: 10.3389/fphar.2022.959497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/29/2022] [Indexed: 11/13/2022] Open
Abstract
Serum creatinine is an endogenous biomarker to estimate glomerular filtration rate (GFR) and is commonly used to assess renal function in clinical practice. Acetaminophen (APAP), the most available analgesic and antipyretic medication, is recommended as the drug of choice for pain control in patients with renal diseases. However, an overdose of APAP can lead to severe acute liver injury, which is also the most common cause of acute liver failure in western countries. The role of creatinine in APAP-induced liver injury is unclear and should be further explored. Herein, clinical data on patients with drug-induced liver injury revealed that the creatinine concentration between 82-442 μmol/L for female and 98–442 μmol/L for male is positively correlated with alanine aminotransferase (ALT), aspartate aminotransferase (AST). While there was no correlation between creatinine and ALT and AST when creatinine concentration is over 442 μmol/L. In addition, mice were administrated with creatinine intraperitoneally for 1 week before APAP injection to investigated the pathophysiological role of creatinine in APAP-induced acute liver injury. The results showed that creatinine administration aggravated hepatic necrosis and elevated serum lactate dehydrogenase (LDH) and ALT levels in mice upon APAP injection. The mechanism study demonstrated that creatinine could increase the production of reactive oxygen activation (ROS) and the activation of c-Jun N-terminal kinase (JNK). Furthermore, the liver injury was alleviated and the difference between APAP-treated mice and APAP combined with creatinine-treated mice was blunted after using specific ROS and JNK inhibitors. Significantly, creatinine stimulation aggravates APAP-induced cell death in HepaRG cells with the same mechanism. In summary, this study proposed that creatinine is closely related with liver function of drug-induced liver injury and exacerbates APAP-induced hepatocyte death by promoting ROS production and JNK activation, thus providing new insight into the usage of APAP in patients with kidney problems.
Collapse
Affiliation(s)
- Fang Liu
- Division of Vascular and Interventional Radiology, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Department of Medical Laboratory, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Yan Liu
- Syndrome Laboratory of Integrated Chinese and Western Medicine, School of Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Qifeng Peng
- Division of Vascular and Interventional Radiology, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Guodong Wang
- Department of Oncology, Liuzhou Workers Hospital, Liuzhou, China
| | - Qing Tan
- Division of Vascular and Interventional Radiology, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhongyue Ou
- Division of Vascular and Interventional Radiology, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Qishan Xu
- Department of Medical Laboratory, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Chixiang Liu
- Department of Blood Transfusion, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
- Correspondence: Chixiang Liu, ; Daming Zuo, ; Jianbo Zhao,
| | - Daming Zuo
- Department of Medical Laboratory, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
- Correspondence: Chixiang Liu, ; Daming Zuo, ; Jianbo Zhao,
| | - Jianbo Zhao
- Division of Vascular and Interventional Radiology, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Correspondence: Chixiang Liu, ; Daming Zuo, ; Jianbo Zhao,
| |
Collapse
|
49
|
Effect of Salvia Miltiorrhiza Polyphenolic Acid Injection on Improving Limb Use and Cognitive Impairment in Patients with Acute Stroke. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:1481294. [PMID: 35983530 PMCID: PMC9381215 DOI: 10.1155/2022/1481294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/05/2022] [Accepted: 07/08/2022] [Indexed: 11/18/2022]
Abstract
Aims. To investigate the effect of injectable salvia polyphenolic acid on the improvement of limb movement and cognitive dysfunction in acute stroke patients. Materials and Methods. The clinical data of 90 acute stroke patients were collected for retrospective study and divided into 45 cases each in the comparison group and the observation group according to the different treatment methods; using basic treatment + salvianolic acid, the comparison group implemented conventional alteplase and butalbital treatment, and the observation group used injectable salvianolic acid treatment, to observe and compare the clinical efficacy, changes in neurological deficits, cognitive function, and motor function scores before and after treatment in the two groups. Results. The NIHSS (National Institute of Health stroke scale) score, cerebral infarct volume, NSE (neuron-specific enolase), and S100β (A neurotrophic factor) levels were reduced after treatment compared with those before treatment in this group, and the NIHSS score, cerebral infarct volume, NSE, and S100β levels in the observation group were lower than those in the comparison group after treatment, and the difference was statistically significant (
). Compared with the clinical efficacy of the comparison group and the observation group, the treatment effect of the observation group was better than that of the comparison group, and the difference was statistically significant (
). After treatment, the cognitive function and motor function scores of both groups were significantly improved compared with those before treatment, and the degree of improvement of each score in the observation group was significantly better than that in the comparison group (
). During the trial, two patients in the comparison group developed a generalized rash and withdrew from the experiment, and the rash subsided after anti-allergic treatment, and no significant adverse events were observed in the remaining participants. There was no statistically significant difference in liver and kidney function and cardiac enzyme test indexes between the two groups of patients at 14 days of treatment (
). Conclusion. Danshen polyphenolic acid for injection has definite clinical efficacy in the treatment of acute ischemic stroke, and it can effectively improve cognitive and motor functions and promote neurological recovery in patients with high safety.
Collapse
|
50
|
Zhao H, Deng B, Li D, Jia L, Yang F. Enzymatic-extractable polysaccharides from Cordyceps militaris alleviate carbon tetrachloride-induced liver injury via Nrf2/ROS/NF-κB signaling pathway. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|