1
|
Geng XF, Shang WY, Qi ZW, Zhang C, Li WX, Yan ZP, Fan XB, Zhang JP. The mechanism and promising therapeutic strategy of diabetic cardiomyopathy dysfunctions: Focus on pyroptosis. J Diabetes Complications 2024; 38:108848. [PMID: 39178624 DOI: 10.1016/j.jdiacomp.2024.108848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/16/2024] [Accepted: 08/18/2024] [Indexed: 08/26/2024]
Abstract
Diabetes is a major risk factor for cardiovascular diseases, and myocardial damage caused by hyperglycemia is the main cause of heart failure. However, there is still a lack of systematic understanding of myocardial damage caused by diabetes. At present, we believe that the cellular inflammatory damage caused by hyperglycemia is one of the causes of diabetic cardiomyopathy. Pyroptosis, as a proinflammatory form of cell death, is closely related to the occurrence and development of diabetic cardiomyopathy. Therefore, this paper focuses on the important role of inflammation in the occurrence and development of diabetic cardiomyopathy. From the perspective of pyroptosis, we summarize the pyroptosis of different types of cells in diabetic cardiomyopathy and its related signaling pathways. It also summarizes the treatment of diabetic cardiomyopathy, hoping to provide methods for the prevention and treatment of diabetic cardiomyopathy by inhibiting pyroptosis.
Collapse
Affiliation(s)
- Xiao-Fei Geng
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Wen-Yu Shang
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Zhong-Wen Qi
- Postdoctoral Research Station of China Academy of Chinese Medical Sciences, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, PR China
| | - Chi Zhang
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Wen-Xiu Li
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Zhi-Peng Yan
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Xin-Biao Fan
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Jun-Ping Zhang
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, PR China.
| |
Collapse
|
2
|
Zhang X, Qiu W, Huang J, Pang X, Su Y, Ye J, Zhou S, Tang Z, Wang R, Su R. Insulin combined with N-acetylcysteine attenuates type 1 diabetes-induced splenic inflammatory injury in canines by inhibiting the MAPKs-NF-κB signaling pathway and pyroptosis. J Diabetes Complications 2024; 38:108805. [PMID: 39089052 DOI: 10.1016/j.jdiacomp.2024.108805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 07/05/2024] [Accepted: 07/06/2024] [Indexed: 08/03/2024]
Abstract
PURPOSE Type 1 diabetes (T1DM) is a chronic metabolic disorder that can cause damage to multiple organs including the spleen. Sole insulin therapy is not satisfactory. This study aims to investigate the effects and mechanisms of combined treatment with insulin and N-acetylcysteine (NAC) on spleen damage in T1DM canines, in order to identify drugs that may better assist patients in the management of diabetes and its complications. METHODS The canine model of T1DM was established by intravenous injection of alloxan (ALX) and streptozotocin (STZ). The therapeutic effects of insulin and NAC were evaluated by clinical manifestations, spleen protein and mRNA expression. RESULTS The results indicate that the combined treatment of insulin and NAC can alleviate hyperglycemia and hematologic abnormalities, improve splenic histopathological changes, prevent fibrous tissue proliferation, and glycogen deposition. In addition, we observed that this combination treatment significantly suppressed the protein expression of p-P65/P65 (17.6 %, P < 0.05), NLRP3 (46.8 %, P < 0.05), and p-P38/P38 (37.1 %, P < 0.05) induced by T1DM when compared to insulin treatment alone. Moreover, it also significantly decreased the mRNA expression of TLR4 (45.0 %, P < 0.01), TNF-α (30.3 %, P < 0.05), and NLRP3 (43.3 %, P < 0.05). CONCLUSIONS This combination has the potential to mitigate splenic inflammatory injury in T1DM canines by suppressing the activation of MAPKs-NF-κB pathway and pyroptosis. These findings provide a reference for the treatment strategies of diabetes and its complications.
Collapse
Affiliation(s)
- Xinting Zhang
- College of Veterinary Medicine, South China Agricultural University, 483 Wushan road, Tianhe district, Guangzhou, 510642, People's Republic of China
| | - Wenyue Qiu
- College of Veterinary Medicine, South China Agricultural University, 483 Wushan road, Tianhe district, Guangzhou, 510642, People's Republic of China
| | - Jianjia Huang
- College of Veterinary Medicine, South China Agricultural University, 483 Wushan road, Tianhe district, Guangzhou, 510642, People's Republic of China
| | - Xiaoyue Pang
- College of Veterinary Medicine, South China Agricultural University, 483 Wushan road, Tianhe district, Guangzhou, 510642, People's Republic of China
| | - Yiman Su
- College of Veterinary Medicine, South China Agricultural University, 483 Wushan road, Tianhe district, Guangzhou, 510642, People's Republic of China
| | - Jiali Ye
- College of Veterinary Medicine, South China Agricultural University, 483 Wushan road, Tianhe district, Guangzhou, 510642, People's Republic of China
| | - Shuilian Zhou
- College of Veterinary Medicine, South China Agricultural University, 483 Wushan road, Tianhe district, Guangzhou, 510642, People's Republic of China
| | - Zhaoxin Tang
- College of Veterinary Medicine, South China Agricultural University, 483 Wushan road, Tianhe district, Guangzhou, 510642, People's Republic of China
| | - Rongmei Wang
- Henry Fok College of Biology and Agriculture, Shaoguan University, No. 288, Daxue Road, Zhenjiang District, Shaoguan, 512005, People's Republic of China
| | - Rongsheng Su
- College of Veterinary Medicine, South China Agricultural University, 483 Wushan road, Tianhe district, Guangzhou, 510642, People's Republic of China.
| |
Collapse
|
3
|
Cheng CK, Yi M, Wang L, Huang Y. Role of gasdermin D in inflammatory diseases: from mechanism to therapeutics. Front Immunol 2024; 15:1456244. [PMID: 39253076 PMCID: PMC11381298 DOI: 10.3389/fimmu.2024.1456244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 08/08/2024] [Indexed: 09/11/2024] Open
Abstract
Inflammatory diseases compromise a clinically common and diverse group of conditions, causing detrimental effects on body functions. Gasdermins (GSDM) are pore-forming proteins, playing pivotal roles in modulating inflammation. Belonging to the GSDM family, gasdermin D (GSDMD) actively mediates the pathogenesis of inflammatory diseases by mechanistically regulating different forms of cell death, particularly pyroptosis, and cytokine release, in an inflammasome-dependent manner. Aberrant activation of GSDMD in different types of cells, such as immune cells, cardiovascular cells, pancreatic cells and hepatocytes, critically contributes to the persistent inflammation in different tissues and organs. The contributory role of GSDMD has been implicated in diabetes mellitus, liver diseases, cardiovascular diseases, neurodegenerative diseases, and inflammatory bowel disease (IBD). Clinically, alterations in GSDMD levels are potentially indicative to the occurrence and severity of diseases. GSDMD inhibition might represent an attractive therapeutic direction to counteract the progression of inflammatory diseases, whereas a number of GSDMD inhibitors have been shown to restrain GSDMD-mediated pyroptosis through different mechanisms. This review discusses the current understanding and future perspectives on the role of GSDMD in the development of inflammatory diseases, as well as the clinical insights of GSDMD alterations, and therapeutic potential of GSDMD inhibitors against inflammatory diseases. Further investigation on the comprehensive role of GSDM shall deepen our understanding towards inflammation, opening up more diagnostic and therapeutic opportunities against inflammatory diseases.
Collapse
Affiliation(s)
- Chak Kwong Cheng
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Min Yi
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Department of Endocrinology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Li Wang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Yu Huang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, Hong Kong SAR, China
| |
Collapse
|
4
|
Liu Y, Zhu M, Dou Y, Xue A, Chen X, Leng K, Dong L, Cao G. Knockdown of KCNQ1OT1 Alleviates the Activation of NLRP3 Inflammasome Through miR-17-5p/TXNIP Axis in Retinal Müller Cells. Curr Eye Res 2024:1-10. [PMID: 39104014 DOI: 10.1080/02713683.2024.2378037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 06/05/2024] [Accepted: 06/30/2024] [Indexed: 08/07/2024]
Abstract
PURPOSE Diabetic retinopathy (DR) is one of the most severe and common complications caused by diabetic mellites. Inhibiting NLRP3 inflammasome activation displays a crucial therapeutic value in DR. Studies have shown that KCNQ1OT1 plays a critical role in regulating NLRP3 inflammasome activation and participates in the pathogenesis of diabetic complications. The present study aims to explore the role, and the potential mechanism of KCNQ1OT1 in regulating the activation of NLRP3 inflammasome in DR. METHODS qRT-PCR was used to detect the expression of KCNQ1OT1, miR-17-5p, TXNIP, NLRP3, ASC, caspase-1 and IL-1β. Western blot was performed to detect the expression of NLRP3, ASC, caspase-1, IL-1β and TXNIP. Immunohistochemistry and immunostaining were performed to detect the expression of caspase-1. The levels of the inflammatory cytokine IL-1β were determined by ELISA assay. FISH was used to detect the subcellular localisation of KCNQ1OT1. Bioinformatic analysis, luciferase reporter assay and in vitro studies were performed to elucidate the mechanism of KCNQ1OT1-mediated dysfunction. RESULTS The expression of KCNQ1OT1 and the activation of NLRP3 inflammasome were increased in experimental DR models. KCNQ1OT1 knockdown alleviated NLRP3 inflammasome-associated molecules expression. In addition, KCNQ1OT1 was found to be localized mainly in the cytoplasm of Müller cells and facilitated TXNIP expression by acting as a miR-17-5p sponge. KCNQ1OT1 promoted the activation of NLRP3 inflammasome through miR-17-5p/TXNIP axis. CONCLUSIONS In conclusion, it was found in this study that KCNQ1OT1 promoted the activation of NLRP3 inflammasome both in vitro and in vivo, which was mediated by miR-17-5p/TXNIP axis. KCNQ1OT1 might be an effective interference target for the prevention and treatment of DR.
Collapse
Affiliation(s)
- Yu Liu
- Department of Ophthalmology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, Jiangsu, China
| | - Manhui Zhu
- Department of Ophthalmology, Lixiang Eye Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yuping Dou
- Department of Ophthalmology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, Jiangsu, China
| | - Aihua Xue
- Department of Ophthalmology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, Jiangsu, China
| | - Xiujuan Chen
- Department of Ophthalmology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, Jiangsu, China
| | - Kai Leng
- Department of Medical Informatics, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Lili Dong
- Department of Ophthalmology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, Jiangsu, China
| | - Guoping Cao
- Department of Ophthalmology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, Jiangsu, China
| |
Collapse
|
5
|
Ni D, Xu J, Liu K, Wu N, You B, Yang B, Dai Y. Curcumin ameliorates pyroptosis in diabetic seminal vesicles by upregulating TRPV6. Andrology 2024. [PMID: 38966878 DOI: 10.1111/andr.13687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 06/10/2024] [Accepted: 06/14/2024] [Indexed: 07/06/2024]
Abstract
BACKGROUND Diabetes damages the seminal vesicle tissues leading to a decrease in seminal fluid secretion, so investigations are ongoing to identify specific therapeutic approaches to address diabetes-induced damage to seminal vesicles. OBJECTIVE This study investigated the secretory dysfunction of seminal vesicles and how curcumin can ameliorate this dysfunction. MATERIALS AND METHODS First, 40 diabetic males (DM group) and 40 nondiabetic males (control group) underwent seminal vesicle ultrasound evaluation and ejaculate volume measurements. Then, the effects of curcumin on seminal vesicle function were investigated in a diabetic rat model. Fifty 8-week-old SPF-grade SD rats were categorized into five groups: control, DM (diabetes mellitus), low-dose CUR (curcumin 50 mg/kg/d), medium-dose CUR (curcumin 100 mg/kg/d), and high-dose CUR (curcumin 150 mg/kg/d). After a month-long diet with varying curcumin doses, key parameters such as body weight, blood glucose levels, seminal vesicle volume, and seminal fluid secretion were measured. Transcriptome sequencing was performed to assess differences in gene expression and structural changes in rat seminal vesicle tissues were examined by HE staining. Finally, human seminal vesicle cell lines were cultured and divided into five groups (HG-CON, HG-CUR-5 µM, HG-CUR-10 µM, HG-CUR-20 µM, and HG-CUR-50 µM) to measure the fructose levels in the seminal vesicle cell culture fluids and evaluate the expression of CASP1, GSDMD, and TRPV6. Post TRPV6 interference, variations in the gene expression of CASP1, GSDMD, and TRPV6 were monitored. RESULTS Diabetic patients exhibited a notable reduction in seminal vesicle volume and ejaculate volume compared with the control group, with a direct correlation between the decrease in ejaculate and seminal vesicle volume. Animal studies demonstrated that curcumin supplementation significantly augmented seminal vesicle volume in diabetic rats and notably improved their seminal vesicle secretory dysfunction, particularly in the high-dose curcumin group. Transcriptome sequencing and experimental verification pinpointed the differential expression of TPRV6 and pyroptosis-associated genes (CASP1, GSDMD), with reduced TRPV6 expression but increased markers of pyroptosis (CASP1 and GSDMD) in diabetic rats. Curcumin treatment reversed these effects with an increase in TRPV6 and a decrease in GSDMD and CASP1. Cell transfection experiments indicated that TRPV6 downregulation increased GSDMD and CASP1 gene expression. CONCLUSION Curcumin effectively activates TRPV6, thereby diminishing pyroptosis in the seminal vesicle tissues of diabetic rats. This activation not only leads to an increase in the seminal vesicle volume but also significantly ameliorates the seminal vesicle secretory dysfunction in diabetic rats.
Collapse
Affiliation(s)
- Dawei Ni
- Department of Andrology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
- Department of Urology, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, China
| | - Jie Xu
- Department of Ultrasound, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, China
| | - Kun Liu
- Department of Urology, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, China
| | - Ning Wu
- Department of Andrology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Bin You
- Department of Andrology, Guoyang County Traditional Chinese Medicine Hospital in Bozhou City, Anhui Province, China
| | - Baibing Yang
- Department of Andrology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Yutian Dai
- Department of Andrology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
6
|
Lin Y, Ke S, Ye W, Xie B, Huang Z. Non-Apoptotic Programmed Cell Death as Targets for Diabetic Retinal Neurodegeneration. Pharmaceuticals (Basel) 2024; 17:837. [PMID: 39065688 PMCID: PMC11279440 DOI: 10.3390/ph17070837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/10/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024] Open
Abstract
Diabetic retinopathy (DR) remains the leading cause of blindness among the global working-age population. Emerging evidence underscores the significance of diabetic retinal neurodegeneration (DRN) as a pivotal biomarker in the progression of vasculopathy. Inflammation, oxidative stress, neural cell death, and the reduction in neurotrophic factors are the key determinants in the pathophysiology of DRN. Non-apoptotic programmed cell death (PCD) plays a crucial role in regulating stress response, inflammation, and disease management. Therapeutic modalities targeting PCD have shown promising potential for mitigating DRN. In this review, we highlight recent advances in identifying the role of various PCD types in DRN, with specific emphasis on necroptosis, pyroptosis, ferroptosis, parthanatos, and the more recently characterized PANoptosis. In addition, the therapeutic agents aimed at the regulation of PCD for addressing DRN are discussed.
Collapse
Affiliation(s)
- Yingjia Lin
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou 515041, China; (Y.L.); (S.K.); (W.Y.); (B.X.)
- Fifth Clinical Institute of Shantou University Medical College, Shantou 515041, China
| | - Shuping Ke
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou 515041, China; (Y.L.); (S.K.); (W.Y.); (B.X.)
- Fifth Clinical Institute of Shantou University Medical College, Shantou 515041, China
| | - Weiqing Ye
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou 515041, China; (Y.L.); (S.K.); (W.Y.); (B.X.)
- Fifth Clinical Institute of Shantou University Medical College, Shantou 515041, China
| | - Biyao Xie
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou 515041, China; (Y.L.); (S.K.); (W.Y.); (B.X.)
- Fifth Clinical Institute of Shantou University Medical College, Shantou 515041, China
| | - Zijing Huang
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou 515041, China; (Y.L.); (S.K.); (W.Y.); (B.X.)
| |
Collapse
|
7
|
Ma X, Lieberman J. Poking holes in the blood-brain barrier. Immunity 2024; 57:1192-1194. [PMID: 38865965 PMCID: PMC11495843 DOI: 10.1016/j.immuni.2024.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 05/13/2024] [Accepted: 05/13/2024] [Indexed: 06/14/2024]
Abstract
Bacterial lipopolysaccharide (LPS) is implicated in disrupting the blood-brain barrier (BBB). In a recent issue of Nature, Wei et al. now show that LPS activates the inflammatory caspases (4, 5, and 11) and gasdermin D (GSDMD) in brain endothelial cells, which triggers their pyroptotic cell death and disrupts the BBB.
Collapse
Affiliation(s)
- Xiyu Ma
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, and Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA.
| | - Judy Lieberman
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, and Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
8
|
Xian Y, Wang X, Yu Y, Chen X. Transcriptomics confirms IRF1 as a key regulator of pyroptosis in diabetic retinopathy. Biochem Biophys Res Commun 2024; 709:149760. [PMID: 38554602 DOI: 10.1016/j.bbrc.2024.149760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/01/2024] [Accepted: 03/04/2024] [Indexed: 04/02/2024]
Abstract
BACKGROUND Diabetic retinopathy (DR) is a retinal microvascular complication caused by hyperglycemia, which can lead to visual impairment or blindness. Pyroptosis is a type of inflammation-related programmed cell death, activated by caspase-1, resulting in the maturation of IL-1β and IL-18 and the rupture of the cell membrane. RNA sequencing (RNA-seq) is a high-throughput sequencing technique that reveals the presence and quantity of RNA in the genome at a specific time point, i.e., the transcriptome. RNA-seq can analyze gene expression levels, splicing variants, mutations, fusions, editing and other post-transcriptional modifications, as well as gene expression differences between different samples or conditions. It has been widely used in biological and medical research, clinical diagnosis and new drug development. This study aimed to establish an in vitro model of diabetic retinopathy by culturing human retinal endothelial cells (HREC) with high glucose (30 mmol/L), and to detect their transcriptome expression by RNA-seq, screen for key genes related to pyroptosis, and validate the sequencing results by subsequent experiments. METHODS We used RNA-seq to detect the transcriptome expression differences between HREC cells cultured with high glucose and control group, and identified differentially expressed genes by GO/KEGG analysis. We constructed a PPI network and determined the key genes by Cytoscape software and CytoHubba plugin. We validated the expression of related factors by Western Blot, qPCR and ELISA. RESULTS We performed GO and KEGG analysis on the RNA-seq data and found differentially expressed genes. We used Cytoscape and CytoHubba plugin to screen out IRF1 as the key gene, and then detected the expression of IRF1 in HREC under high glucose and control group by Western Blot and qPCR. We found that the expression of Caspase-1, GSDMD and IL-1β proteins in HREC under high glucose increased, while the expression of these proteins decreased after the inhibition of IRF1 by siRNA. ELISA showed that the secretion of IL-1β in HREC under high glucose increased, while the inhibition of IRF1 reduced the secretion of IL-1β. These results indicate that IRF1 plays an important role in DR, and provides a new target and strategy for the prevention and treatment of this disease.
Collapse
Affiliation(s)
- Yang Xian
- Department of Ophthalmology, Shengjing Hospital of China Medical University, China
| | - Xingli Wang
- Department of Ophthalmology, Shengjing Hospital of China Medical University, China
| | - Yong Yu
- Department of Ophthalmology, Shengjing Hospital of China Medical University, China
| | - XiaoLong Chen
- Department of Ophthalmology, Shengjing Hospital of China Medical University, China.
| |
Collapse
|
9
|
Hashmat A, Ya J, Kadir R, Alwjwaj M, Bayraktutan U. Hyperglycaemia perturbs blood-brain barrier integrity through its effects on endothelial cell characteristics and function. Tissue Barriers 2024:2350821. [PMID: 38712515 DOI: 10.1080/21688370.2024.2350821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 04/29/2024] [Indexed: 05/08/2024] Open
Abstract
Breakdown of blood-brain barrier (BBB) represents a key pathology in hyperglycemia-mediated cerebrovascular damage after an ischemic stroke. As changes in the level and nature of vasoactive agents released by endothelial cells (ECs) may contribute to BBB dysfunction, this study first explored the specific impact of hyperglycemia on EC characteristics and secretome. It then assessed whether secretome obtained from ECs subjected to normoglycaemia or hyperglycemia might regulate pericytic cytokine profile differently. Using a triple cell culture model of human BBB, composed of brain microvascular EC (BMEC), astrocytes and pericytes, this study showed that exposure to hyperglycemia (25 mM D-glucose) for 72 h impaired the BBB integrity and function as evidenced by decreases in transendothelial electrical resistance and increases in paracellular flux of sodium fluorescein. Dissolution of zonula occludens-1, a tight junction protein, and appearance of stress fibers appeared to play a key role in this pathology. Despite elevations in angiogenin, endothelin-1, interleukin-8 and basic fibroblast growth factor levels and a decrease in placental growth factor levels in BMEC subjected to hyperglycemia vs normoglycaemia (5.5 mM D-glucose), tubulogenic capacity of BMECs remained similar in both settings. Similarly, pericytes subjected to secretome obtained from hyperglycemic BMEC released higher quantities of macrophage migration inhibitory factor and serpin and lower quantities of monocyte chemoattractant protein-1, intercellular adhesion molecule, interleukin-6 and interleukin-8. Taken together these findings indicate the complexity of the mechanisms leading to BBB disruption in hyperglycemic settings and emphasize the importance of endothelial cell-pericyte axis in the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Arshad Hashmat
- Academic Unit of Mental Health and Clinical Neurosciences, School of Medicine, The University of Nottingham, Nottingham, UK
| | - Jingyuan Ya
- Academic Unit of Mental Health and Clinical Neurosciences, School of Medicine, The University of Nottingham, Nottingham, UK
| | - Rais Kadir
- Academic Unit of Mental Health and Clinical Neurosciences, School of Medicine, The University of Nottingham, Nottingham, UK
| | - Mansour Alwjwaj
- Academic Unit of Mental Health and Clinical Neurosciences, School of Medicine, The University of Nottingham, Nottingham, UK
| | - Ulvi Bayraktutan
- Academic Unit of Mental Health and Clinical Neurosciences, School of Medicine, The University of Nottingham, Nottingham, UK
| |
Collapse
|
10
|
Xie Y, Shao X, Zhang P, Zhang H, Yu J, Yao X, Fu Y, Wei J, Wu C. High Starch Induces Hematological Variations, Metabolic Changes, Oxidative Stress, Inflammatory Responses, and Histopathological Lesions in Largemouth Bass ( Micropterus salmoides). Metabolites 2024; 14:236. [PMID: 38668364 PMCID: PMC11051861 DOI: 10.3390/metabo14040236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/09/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
This study evaluated effects of high starch (20%) on hematological variations, glucose and lipid metabolism, antioxidant ability, inflammatory responses, and histopathological lesions in largemouth bass. Results showed hepatic crude lipid and triacylglycerol (TAG) contents were notably increased in fish fed high starch. High starch could increase counts of neutrophils, lymphocytes, monocytes, eosinophils, and basophils and serum contents of TAG, TBA, BUN, and LEP (p < 0.05). There were increasing trends in levels of GLUT2, glycolysis, gluconeogenesis, and LDH in fish fed high starch through the AKT/PI3K signal pathway. Meanwhile, high starch not only triggered TAG and cholesterol synthesis, but mediated cholesterol accumulation by reducing ABCG5, ABCG8, and NPC1L1. Significant increases in lipid droplets and vacuolization were also shown in hepatocytes of D3-D7 groups fed high starch. In addition, high starch could decrease levels of mitochondrial Trx2, TrxR2, and Prx3, while increasing ROS contents. Moreover, high starch could notably increase amounts of inflammatory factors (IL-1β, TNF-α, etc.) by activating NLRP3 inflammasome key molecules (GSDME, caspase 1, etc.). In conclusion, high starch could not only induce metabolic disorders via gluconeogenesis and accumulation of glycogen, TAG, and cholesterol, but could disturb redox homeostasis and cause inflammatory responses by activating the NLRP3 inflammasome in largemouth bass.
Collapse
Affiliation(s)
| | - Xianping Shao
- National-Local Joint Engineering Laboratory of Aquatic Animal Genetic Breeding and Nutrition (Zhejiang), Department of Fisheries, School of Life Science, Huzhou University, 759 East 2nd Road, Huzhou 313000, China; (Y.X.); (P.Z.); (H.Z.); (J.Y.); (X.Y.); (Y.F.); (J.W.)
| | | | | | | | | | | | | | - Chenglong Wu
- National-Local Joint Engineering Laboratory of Aquatic Animal Genetic Breeding and Nutrition (Zhejiang), Department of Fisheries, School of Life Science, Huzhou University, 759 East 2nd Road, Huzhou 313000, China; (Y.X.); (P.Z.); (H.Z.); (J.Y.); (X.Y.); (Y.F.); (J.W.)
| |
Collapse
|
11
|
Ding Y, Chen L, Xu J, Feng Y, Liu Q. APAF1 Silencing Ameliorates Diabetic Retinopathy by Suppressing Inflammation, Oxidative Stress, and Caspase-3/GSDME-Dependent Pyroptosis. Diabetes Metab Syndr Obes 2024; 17:1635-1649. [PMID: 38616988 PMCID: PMC11016255 DOI: 10.2147/dmso.s449049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 03/22/2024] [Indexed: 04/16/2024] Open
Abstract
Objective Diabetic retinopathy (DR) can cause permanent blindness with unstated pathogenesis. We aim to find novel biomarkers and explore the mechanism of apoptotic protease activating factor 1 (APAF1) in DR. Methods Differential expression genes (DEGs) were screened based on GSE60436 dataset to find hub genes involved in pyroptosis after comprehensive bioinformatics analysis. DR mice model was constructed by streptozotocin injection. The pathological structure of retina was observed using hematoxylin-eosin staining. The enzyme-linked immunosorbent assay was applied to assess inflammatory factors, vascular endothelial growth factor (VEGF), and oxidative stress. The mRNA and protein expression levels were detected using quantitative real-time polymerase-chain reaction and Western blot. Cell counting kit and flow cytometry were employed to detect proliferation and apoptosis in high glucose-induced ARPE-19 cells. Results Total 71 pyroptosis-related DEGs were screened. BIRC2, CXCL8, APAF1, PPARG, TP53, and CYCS were identified as hub genes of DR. APAF1 was selected as a potential regulator of DR, which was up-regulated in DR mice. APAF1 silencing alleviated retinopathy and inhibited pyroptosis in DR mice with decreased levels of inflammatory factors, VEGF, and oxidative stress. Moreover, APAF1 silencing promoted proliferation while inhibiting apoptosis and caspase-3/GSDME-dependent pyroptosis with a decrease in TNF-α, IL-1β, IL-18, and lactate dehydrogenase in high glucose-induced ARPE-19 cells. Additionally, caspase-3 activator reversed the promotion effect on proliferation and inhibitory effect on apoptosis and pyroptosis after APAF1 silencing in high glucose-induced ARPE-19 cells. Conclusion APAF1 is a novel biomarker for DR and APAF1 silencing inhibits the development of DR by suppressing caspase-3/GSDME-dependent pyroptosis.
Collapse
Affiliation(s)
- Yuanyuan Ding
- Department of Ophthalmology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, People’s Republic of China
| | - Linjiang Chen
- Department of Ophthalmology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, People’s Republic of China
| | - Jing Xu
- Department of Ophthalmology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, People’s Republic of China
| | - Yuhan Feng
- Department of Ophthalmology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, People’s Republic of China
| | - Qiong Liu
- Department of Ophthalmology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, People’s Republic of China
| |
Collapse
|
12
|
Pang H, Huang G, Xie Z, Zhou Z. The role of regulated necrosis in diabetes and its complications. J Mol Med (Berl) 2024; 102:495-505. [PMID: 38393662 DOI: 10.1007/s00109-024-02421-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 12/21/2023] [Accepted: 01/16/2024] [Indexed: 02/25/2024]
Abstract
Morphologically, cell death can be divided into apoptosis and necrosis. Apoptosis, which is a type of regulated cell death, is well tolerated by the immune system and is responsible for hemostasis and cellular turnover under physiological conditions. In contrast, necrosis is defined as a form of passive cell death that leads to a dramatic inflammatory response (also referred to as necroinflammation) and causes organ dysfunction under pathological conditions. Recently, a novel form of cell death named regulated necrosis (such as necroptosis, pyroptosis, and ferroptosis) was discovered. Distinct from apoptosis, regulated necrosis is modulated by multiple internal or external factors, but meanwhile, it results in inflammation and immune response. Accumulating evidence has indicated that regulated necrosis is associated with multiple diseases, including diabetes. Diabetes is characterized by hyperglycemia caused by insulin deficiency and/or insulin resistance, and long-term high glucose leads to various diabetes-related complications. Here, we summarize the mechanisms of necroptosis, pyroptosis, and ferroptosis, and introduce recent advances in characterizing the associations between these three types of regulated necrosis and diabetes and its complications.
Collapse
Affiliation(s)
- Haipeng Pang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Gan Huang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Zhiguo Xie
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China.
| | - Zhiguang Zhou
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China.
| |
Collapse
|
13
|
Zhao L, Hu H, Zhang L, Liu Z, Huang Y, Liu Q, Jin L, Zhu M, Zhang L. Inflammation in diabetes complications: molecular mechanisms and therapeutic interventions. MedComm (Beijing) 2024; 5:e516. [PMID: 38617433 PMCID: PMC11014467 DOI: 10.1002/mco2.516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 02/16/2024] [Accepted: 02/21/2024] [Indexed: 04/16/2024] Open
Abstract
At present, diabetes mellitus (DM) has been one of the most endangering healthy diseases. Current therapies contain controlling high blood sugar, reducing risk factors like obesity, hypertension, and so on; however, DM patients inevitably and eventually progress into different types of diabetes complications, resulting in poor quality of life. Unfortunately, the clear etiology and pathogenesis of diabetes complications have not been elucidated owing to intricate whole-body systems. The immune system was responsible to regulate homeostasis by triggering or resolving inflammatory response, indicating it may be necessary to diabetes complications. In fact, previous studies have been shown inflammation plays multifunctional roles in the pathogenesis of diabetes complications and is attracting attention to be the meaningful therapeutic strategy. To this end, this review systematically concluded the current studies over the relationships of susceptible diabetes complications (e.g., diabetic cardiomyopathy, diabetic retinopathy, diabetic peripheral neuropathy, and diabetic nephropathy) and inflammation, ranging from immune cell response, cytokines interaction to pathomechanism of organ injury. Besides, we also summarized various therapeutic strategies to improve diabetes complications by target inflammation from special remedies to conventional lifestyle changes. This review will offer a panoramic insight into the mechanisms of diabetes complications from an inflammatory perspective and also discuss contemporary clinical interventions.
Collapse
Affiliation(s)
- Lu Zhao
- Department of Biology and MedicineCollege of Life Science, Zhejiang Chinese Medical UniversityHangzhouChina
| | - Haoran Hu
- Department of Biology and MedicineCollege of Life Science, Zhejiang Chinese Medical UniversityHangzhouChina
| | - Lin Zhang
- Department of Biology and MedicineCollege of Life Science, Zhejiang Chinese Medical UniversityHangzhouChina
| | - Zheting Liu
- Department of Biology and MedicineCollege of Life Science, Zhejiang Chinese Medical UniversityHangzhouChina
| | - Yunchao Huang
- Department of Biology and MedicineCollege of Life Science, Zhejiang Chinese Medical UniversityHangzhouChina
| | - Qian Liu
- National Demonstration Center for Experimental Traditional Chinese Medicines Education (Zhejiang Chinese Medical University)College of Pharmaceutical Science, Zhejiang Chinese Medical UniversityHangzhouChina
| | - Liang Jin
- Department of Biology and MedicineCollege of Life Science, Zhejiang Chinese Medical UniversityHangzhouChina
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia MedicaShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Meifei Zhu
- Department of Critical Care MedicineThe First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine)HangzhouChina
| | - Ling Zhang
- Department of Biology and MedicineCollege of Life Science, Zhejiang Chinese Medical UniversityHangzhouChina
| |
Collapse
|
14
|
Zhao H, Dai Y, Li Y, Li J, Li H. TNFSF15 inhibits progression of diabetic retinopathy by blocking pyroptosis via interacting with GSDME. Cell Death Dis 2024; 15:118. [PMID: 38331883 PMCID: PMC10853178 DOI: 10.1038/s41419-024-06499-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 01/20/2024] [Accepted: 01/24/2024] [Indexed: 02/10/2024]
Abstract
Diabetic retinopathy is a common microvascular complication of diabetes and a leading cause of blindness. Pyroptosis has emerged as a mechanism of cell death involved in diabetic retinopathy pathology. This study explored the role of GSDME-mediated pyroptosis and its regulation by TNFSF15 in diabetic retinopathy. We found GSDME was upregulated in the progression of diabetic retinopathy. High glucose promoted GSDME-induced pyroptosis in retinal endothelial cells and retinal pigment epithelial cells, attributed to the activation of caspase-3 which cleaves GSDME to generate the pyroptosis-executing N-terminal fragment. TNFSF15 was identified as a binding partner and inhibitor of GSDME-mediated pyroptosis. TNFSF15 expression was increased by high glucose but suppressed by the caspase-3 activator Raptinal. Moreover, TNFSF15 protein inhibited high glucose- and Raptinal-induced pyroptosis by interacting with GSDME in retinal cells. Collectively, our results demonstrate TNFSF15 inhibits diabetic retinopathy progression by blocking GSDME-dependent pyroptosis of retinal cells, suggesting the TNFSF15-GSDME interaction as a promising therapeutic target for diabetic retinopathy.
Collapse
Affiliation(s)
- Hongkun Zhao
- Key Laboratory of Yunnan Province, Yunnan Eye Institute, Affiliated Hospital of Yunnan University, Yunnan University, Kunming, Yunnan, China
| | - Yating Dai
- Department of Pathology and Pathophysiology, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming, China
| | - Yunqin Li
- Key Laboratory of Yunnan Province, Yunnan Eye Institute, Affiliated Hospital of Yunnan University, Yunnan University, Kunming, Yunnan, China
| | - Juanjuan Li
- Key Laboratory of Yunnan Province, Yunnan Eye Institute, Affiliated Hospital of Yunnan University, Yunnan University, Kunming, Yunnan, China.
| | - Hua Li
- Key Laboratory of Yunnan Province, Yunnan Eye Institute, Affiliated Hospital of Yunnan University, Yunnan University, Kunming, Yunnan, China.
| |
Collapse
|
15
|
Li M, Wu R, Wang L, Zhu D, Liu S, Wang R, Deng C, Zhang S, Chen M, Lu R, Zhu H, Mo M, He X, Luo Z. Usenamine A triggers NLRP3/caspase-1/GSDMD-mediated pyroptosis in lung adenocarcinoma by targeting the DDX3X/SQSTM1 axis. Aging (Albany NY) 2024; 16:1663-1684. [PMID: 38265972 PMCID: PMC10866397 DOI: 10.18632/aging.205450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 11/21/2023] [Indexed: 01/26/2024]
Abstract
BACKGROUND Usenamine A (C18H17NO6) is a newly developed, natural anticancer drug that reportedly exerts low toxicity. The therapeutic efficacy and underlying mechanisms of usenamine A in lung adenocarcinoma (LUAD) remain poorly understood. We aimed to explore the therapeutic effects and molecular mechanisms through which usenamine A inhibits LUAD tumorigenesis. METHODS We used LUAD cell lines H1299 and A549 in the present study. CCK-8 and colony formation assays were performed to analyze cell proliferation. Cell migration, invasion, and apoptosis were evaluated using wound-healing, transwell, and flow cytometric assays, respectively. Levels of reactive oxygen species were measured using a DCFH-DA probe. Inflammatory factors (lactate dehydrogenase, interleukin [IL]-1β, and IL-18) were detected using enzyme-linked immunosorbent assays. Western blotting was performed to determine the expression of NOD-like receptor pyrin 3 (NLRP3)/caspase-1/gasdermin D (GSDMD) pathway-related proteins. Pyroptosis was detected using transmission electron microscopy. The interaction and co-localization of DDX3X and sequestosome 1 (SQSTM1) were identified using co-immunoprecipitation and immunofluorescence assays, respectively. For in vivo assessment, we established a xenograft model to validate the usenamine A-mediated effects and mechanisms of action in LUAD. RESULTS Usenamine A inhibited the proliferation, migration, and invasion of LUAD cells. Furthermore, usenamine A induced NLRP3/caspase-1/GSDMD-mediated pyroptosis in LUAD cells. Usenamine A upregulated DDX3X expression to trigger pyroptosis. DDX3X interacted with SQSTM1, which is responsible for inducing pyroptosis. In vivo, usenamine A suppressed LUAD tumorigenesis by triggering NLRP3/caspase-1/GSDMD-mediated pyroptosis via the upregulation of the DDX3X/SQSTM1 axis. CONCLUSIONS Usenamine A was found to induce NLRP3/caspase-1/GSDMD-mediated pyroptosis in LUAD by upregulating the DDX3X/SQSTM1 axis.
Collapse
Affiliation(s)
- Min Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, China
| | - Rongrong Wu
- Department of Radiology, The First People’s Hospital of Yunnan Province (Affiliated Hospital of Kunming University of Science and Technology), Kunming 650034, China
| | - Le Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, China
| | - Dongyi Zhu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, China
| | - Shinan Liu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, China
| | - Ruolan Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, China
| | - Chaowen Deng
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, China
| | - Shenglin Zhang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, China
| | - Min Chen
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, China
| | - Ruojin Lu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, China
| | - Hongxing Zhu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, China
| | - Mengting Mo
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, China
| | - Xiaoqiong He
- School of Public Health, Kunming Medical University, Kunming 650500, China
| | - Zhuang Luo
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, China
| |
Collapse
|
16
|
Wang S, Zhang J, Chen J, Tang L, Ke M, Xue Y, He Y, Gong Y, Li Z. ω-3PUFAs Inhibit Hypoxia-Induced Retinal Neovascularization via Regulating Microglial Pyroptosis through METTL14-Mediated m6A Modification of IFNB1 mRNA. Appl Biochem Biotechnol 2024:10.1007/s12010-023-04795-1. [PMID: 38175416 DOI: 10.1007/s12010-023-04795-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2023] [Indexed: 01/05/2024]
Abstract
Retinal neovascular disease is the leading reason of vision impairment in all ages. Here, we figured out the function and mechanism of omega-3 polyunsaturated fatty acids (ω-3PUFAs) in hypoxia-induced retinal neovascularization by focusing on microglial pyroptosis. Microglia BV-2 cells were given ω-3PUFAs treatment and co-cultured with mouse retinal microvascular endothelial cells (MRMECs) under hypoxia. Tube formation assay, transwell assay and wound healing assay were utilized to monitor the MRMEC angiogenesis. Cell counting kit-8, western blot, lactate dehydrogenase assay, and enzyme-linked immunosorbent assay were used to assess pyroptosis of BV-2 cells. RNA sequencing and methylated RNA immunoprecipitation-polymerase chain reaction were utilized to identify the target gene of methyltransferase-like 14 (METTL14) and its N6-methyladenosine (m6A) level in BV-2 cells. BV-2 cells prominently enhanced MRMEC angiogenesis under hypoxia, but this effect was abolished after ω-3PUFAs treatment. ω-3PUFAs inhibited pyroptosis in hypoxia-induced BV-2 cells, and BV-2 cell pyroptosis boosted angiogenesis of MRMECs. Additionally, ω-3PUFAs markedly augment the expression of MELLL14 in BV-2 cells, and METTL14 knockdown promoted BV-2 cell pyroptosis and BV-2 cell-mediated angiogenesis in MEMECs. Mechanistically, interferon beta 1 (IFNB1) was a target of METTL14, and METTL14 silencing increased the mRNA expression and decreased the m6A modification of IFNB1 in BV-2 cells. Our results uncovered that ω-3PUFAs diminished hypoxia-induced retinal neovascularization through controlling microglial pyroptosis via METTL14-mediated m6A modification. This study offers a novel potential target for the treatment of retinal neovascular diseases.
Collapse
Affiliation(s)
- Shun Wang
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, Hubei, China
| | - Jing Zhang
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, Hubei, China
| | - Jun Chen
- Department of Ophthalmology, The People's Hospital of Huangmei, Huangmei Hospital Affiliated to Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Lanlan Tang
- Department of Ophthalmology, Wuchang Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Min Ke
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, Hubei, China
| | - Yanni Xue
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, Hubei, China
| | - Ying He
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, Hubei, China
| | - Yan Gong
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, China.
- Tumor Precision Diagnosis and Treatment Technology and Translational Medicine, Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China.
| | - Zhi Li
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, Hubei, China.
| |
Collapse
|
17
|
Sun WJ, An XD, Zhang YH, Zhao XF, Sun YT, Yang CQ, Kang XM, Jiang LL, Ji HY, Lian FM. The ideal treatment timing for diabetic retinopathy: the molecular pathological mechanisms underlying early-stage diabetic retinopathy are a matter of concern. Front Endocrinol (Lausanne) 2023; 14:1270145. [PMID: 38027131 PMCID: PMC10680169 DOI: 10.3389/fendo.2023.1270145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Diabetic retinopathy (DR) is a prevalent complication of diabetes, significantly impacting patients' quality of life due to vision loss. No pharmacological therapies are currently approved for DR, excepted the drugs to treat diabetic macular edema such as the anti-VEGF agents or steroids administered by intraocular route. Advancements in research have highlighted the crucial role of early intervention in DR for halting or delaying disease progression. This holds immense significance in enhancing patients' quality of life and alleviating the societal burden associated with medical care costs. The non-proliferative stage represents the early phase of DR. In comparison to the proliferative stage, pathological changes primarily manifest as microangiomas and hemorrhages, while at the cellular level, there is a loss of pericytes, neuronal cell death, and disruption of components and functionality within the retinal neuronal vascular unit encompassing pericytes and neurons. Both neurodegenerative and microvascular abnormalities manifest in the early stages of DR. Therefore, our focus lies on the non-proliferative stage of DR and we have initially summarized the mechanisms involved in its development, including pathways such as polyols, that revolve around the pathological changes occurring during this early stage. We also integrate cutting-edge mechanisms, including leukocyte adhesion, neutrophil extracellular traps, multiple RNA regulation, microorganisms, cell death (ferroptosis and pyroptosis), and other related mechanisms. The current status of drug therapy for early-stage DR is also discussed to provide insights for the development of pharmaceutical interventions targeting the early treatment of DR.
Collapse
Affiliation(s)
- Wen-Jie Sun
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- China Academy of Chinese Medical Sciences, Beijing, China
| | - Xue-Dong An
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- China Academy of Chinese Medical Sciences, Beijing, China
| | - Yue-Hong Zhang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- China Academy of Chinese Medical Sciences, Beijing, China
| | - Xue-Fei Zhao
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- China Academy of Chinese Medical Sciences, Beijing, China
| | - Yu-Ting Sun
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- China Academy of Chinese Medical Sciences, Beijing, China
| | - Cun-Qing Yang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiao-Min Kang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China
| | - Lin-Lin Jiang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China
| | - Hang-Yu Ji
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Feng-Mei Lian
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
18
|
Li N, Zhang L, Wang X, Zhou Y, Gong L. Exploring exercise-driven inhibition of pyroptosis: novel insights into treating diabetes mellitus and its complications. Front Endocrinol (Lausanne) 2023; 14:1230646. [PMID: 37859981 PMCID: PMC10582706 DOI: 10.3389/fendo.2023.1230646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 09/18/2023] [Indexed: 10/21/2023] Open
Abstract
Diabetes mellitus (DM) and its complications are important, worldwide public health issues, exerting detrimental effects on human health and diminishing both quality of life and lifespan. Pyroptosis, as a new form of programmed cell death, plays a critical role in DM and its complications. Exercise has been shown to be an effective treatment for improving insulin sensitivity or preventing DM. However, the molecular mechanisms underlying the effects of exercise on pyroptosis-related diseases remain elusive. In this review, we provided a comprehensive elucidation of the molecular mechanisms underlying pyroptosis and the potential mechanism of exercise in the treatment of DM and its complications through the modulation of anti-pyroptosis-associated inflammasome pathways. Based on the existing evidence, further investigation into the mechanisms by which exercise inhibits pyroptosis through the regulation of inflammasome pathways holds promising potential for expanding preventive and therapeutic strategies for DM and facilitating the development of novel therapeutic interventions.
Collapse
Affiliation(s)
- Nan Li
- Department of Exercise Physiology, Beijing Sport University, Beijing, China
| | - Liang Zhang
- School of Strength and Conditioning Training, Beijing Sport University, Beijing, China
| | - Xintang Wang
- China Institute of Sport and Health Science, Beijing Sport University, Beijing, China
| | - Yue Zhou
- Department of Exercise Physiology, Beijing Sport University, Beijing, China
| | - Lijing Gong
- Key Laboratory of Physical Fitness and Exercise, Ministry of Education, Beijing Sport University, Beijing, China
| |
Collapse
|
19
|
Dubois N, Muñoz-Garcia J, Heymann D, Renodon-Cornière A. High glucose exposure drives intestinal barrier dysfunction by altering its morphological, structural and functional properties. Biochem Pharmacol 2023; 216:115765. [PMID: 37619641 DOI: 10.1016/j.bcp.2023.115765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 08/07/2023] [Accepted: 08/21/2023] [Indexed: 08/26/2023]
Abstract
High dietary glucose consumption and hyperglycemia can result in chronic complications. Several studies suggest that high glucose (HG) induces dysfunction of the intestinal barrier. However, the precise changes remain unclear. In our study, we used in vitro models composed of Caco-2 and/or HT29-MTX cells in both monoculture and co-culture to assess the effects of long-term HG exposure on the morphological, structural, and functional properties of the intestinal barrier. Cells were grown in medium containing normal physiologic glucose (NG, 5.5 mM) or a clinically relevant HG (25 mM) concentration until 21 days. Results demonstrated that HG induced morphological changes, with the layers appearing denser and less organized than under physiological conditions, which is in accordance with the increased migration capacity of Caco-2 cells and proliferation properties of HT29-MTX cells. Although we mostly observed a small decrease in mRNA and protein expressions of three junction proteins (ZO-1, OCLN and E-cad) in both Caco-2 and HT29-MTX cells cultured in HG medium, confocal microscopy showed that HG induced a remarkable reduction in their immunofluorescence intensity, triggering disruption of their associated structural network. In addition, we highlighted that HG affected different functionalities (permeability, mucus production and alkaline phosphatase activity) of monolayers with Caco-2 and HT29-MTX cells. Interestingly, these alterations were stronger in co-culture than in monoculture, suggesting a cross-relationship between enterocytes and goblet cells. Controlling hyperglycemia remains a major therapeutical method for reducing damage to the intestinal barrier and improving therapies.
Collapse
Affiliation(s)
- Nolwenn Dubois
- Institut de Cancérologie de l'Ouest, Tumor Heterogeneity and Precision Medicine Laboratory, 44805 Saint-Herblain, France
| | - Javier Muñoz-Garcia
- Nantes Université, CNRS, US2B, UMR 6286, F-44322 Nantes, France; Institut de Cancérologie de l'Ouest, Tumor Heterogeneity and Precision Medicine Laboratory, 44805 Saint-Herblain, France
| | - Dominique Heymann
- Nantes Université, CNRS, US2B, UMR 6286, F-44322 Nantes, France; Institut de Cancérologie de l'Ouest, Tumor Heterogeneity and Precision Medicine Laboratory, 44805 Saint-Herblain, France; The University of Sheffield, Dept of Oncology and Metabolism, S102RX Sheffield, UK
| | - Axelle Renodon-Cornière
- Nantes Université, CNRS, US2B, UMR 6286, F-44322 Nantes, France; Institut de Cancérologie de l'Ouest, Tumor Heterogeneity and Precision Medicine Laboratory, 44805 Saint-Herblain, France.
| |
Collapse
|
20
|
Zhang S, Ma Y, Luo X, Xiao H, Cheng R, Jiang A, Qin X. Integrated Analysis of Immune Infiltration and Hub Pyroptosis-Related Genes for Multiple Sclerosis. J Inflamm Res 2023; 16:4043-4059. [PMID: 37727371 PMCID: PMC10505586 DOI: 10.2147/jir.s422189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 09/02/2023] [Indexed: 09/21/2023] Open
Abstract
Purpose Studies on overall immune infiltration and pyroptosis in patients with multiple sclerosis (MS) are limited. This study explored immune cell infiltration and pyroptosis in MS using bioinformatics and experimental validation. Methods The GSE131282 and GSE135511 microarray datasets including brain autopsy tissues from controls and MS patients were downloaded for bioinformatic analysis. The gene expression-based deconvolution method, CIBERSORT, was used to determine immune infiltration. Differentially expressed genes (DEGs) and functional enrichments were analyzed. We then extracted pyroptosis-related genes (PRGs) from the DEGs by using machine learning strategies. Their diagnostic ability for MS was evaluated in both the training set (GSE131282 dataset) and validation set (GSE135511 dataset). In addition, messenger RNA (mRNA) expression of PRGs was validated using quantitative real-time polymerase chain reaction (qRT-PCR) in cortical tissue from an experimental autoimmune encephalomyelitis (EAE) model of MS. Moreover, the functional enrichment pathways of each hub PRG were estimated. Finally, co-expressed competitive endogenous RNA (ceRNA) networks of PRGs in MS were constructed. Results Among the infiltrating cells, naive CD4+ T cells (P=0.006), resting NK cells (P=0.002), activated mast cells (P=0.022), and neutrophils (P=0.002) were significantly higher in patients with MS than in controls. The DEGs of MS were screened. Analysis of enrichment pathways showed that the pathways of transcriptional regulatory mechanisms and ion channels associating with pyroptosis. Four PRGs genes CASP4, PLCG1, CASP9 and NLRC4 were identified. They were validated in both the GSE135511 dataset and the EAE model by using qRT-PCR. CASP4 and NLRC4 were ultimately identified as stable hub PRGs for MS. Single-gene Gene Set Enrichment Analysis showed that they mainly participated in biosynthesis, metabolism, and organism resistance. ceRNA networks containing CASP4 and NLRC4 were constructed. Conclusion MS was associated with immune infiltration. CASP4 and NLRC4 were key biomarkers of pyroptosis in MS.
Collapse
Affiliation(s)
- Shaoru Zhang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Yue Ma
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Xiaoqin Luo
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Hongmei Xiao
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Ruiqi Cheng
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Anan Jiang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Xinyue Qin
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| |
Collapse
|
21
|
Choi YH. Reduction of high glucose-induced oxidative injury in human retinal pigment epithelial cells by sarsasapogenin through inhibition of ROS generation and inactivation of NF-κB/NLRP3 inflammasome pathway. Genes Genomics 2023; 45:1153-1163. [PMID: 37354257 DOI: 10.1007/s13258-023-01417-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 06/19/2023] [Indexed: 06/26/2023]
Abstract
BACKGROUND Hyperglycemia-induced accumulation of reactive oxygen species (ROS) is a major risk factor for diabetic retinopathy (DR). Sarsasapogenin is a natural steroidal saponin that is known to have excellent antidiabetic effects and improve diabetic complications, but its potential efficacy and mechanism for DR are unknown. OBJECTIVES The current study was designed to explore whether sarsasapogenin inhibits hyperglycemia-induced oxidative stress in human retinal pigment epithelial (RPE) ARPE-19 cells and to elucidate the molecular mechanisms. METHODS To mimic hyperglycemic conditions, ARPE-19 cells were cultured in medium containing high glucose (HG). The suppressive effects of sarsasapogenin on HG-induced cell viability reduction, apoptosis and ROS production were investigated. In addition, the relevance of the nuclear factor-kappa B (NF-κB)/NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome signaling pathway was explored to investigate the mechanism of antioxidant and anti-inflammatory activity of sarsasapogenin. RESULTS Sarsasapogenin significantly alleviated cytotoxicity and apoptosis in HG-treated ARPE-19 cells through inhibition of intracellular ROS generation. Sarsasapogenin also effectively attenuated HG-induced excess accumulation of mitochondrial superoxide, reduction of glutathione content, and inactivation of manganese superoxide dismutase and glutathione peroxidase. The HG condition markedly increased the expression and maturation of interleukin (IL)-1β and IL-18 through the activation of the NF-kB signaling pathway, whereas sarsasapogenin reversed these effects. Moreover, although the expression of NLRP3 inflammasome multiprotein complex molecules was increased in ARPE-19 cells cultured under HG conditions, their levels remained similar to the control group in the presence of sarsasapogenin. CONCLUSION Sarsasapogenin could protect RPE cells from HG-induced injury by inhibiting ROS generation and NF-κB/NLRP3 inflammasome pathway, suggesting its potential as a therapeutic agent to improve the symptoms of DR.
Collapse
Affiliation(s)
- Yung Hyun Choi
- Anti-Aging Research Center, Dong-eui University, Busan, 47340, Republic of Korea.
- Department of Biochemistry, Dong-eui University College of Korean Medicine, 52-57 Yangjeong-ro, Busan, 47227, Republic of Korea.
| |
Collapse
|
22
|
Oshitari T. Neurovascular Cell Death and Therapeutic Strategies for Diabetic Retinopathy. Int J Mol Sci 2023; 24:12919. [PMID: 37629100 PMCID: PMC10454228 DOI: 10.3390/ijms241612919] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/11/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
Diabetic retinopathy (DR) is a major complication of diabetes and a leading cause of blindness worldwide. DR was recently defined as a neurovascular disease associated with tissue-specific neurovascular impairment of the retina in patients with diabetes. Neurovascular cell death is the main cause of neurovascular impairment in DR. Thus, neurovascular cell protection is a potential therapy for preventing the progression of DR. Growing evidence indicates that a variety of cell death pathways, such as apoptosis, necroptosis, ferroptosis, and pyroptosis, are associated with neurovascular cell death in DR. These forms of regulated cell death may serve as therapeutic targets for ameliorating the pathogenesis of DR. This review focuses on these cell death mechanisms and describes potential therapies for the treatment of DR that protect against neurovascular cell death.
Collapse
Affiliation(s)
- Toshiyuki Oshitari
- Department of Ophthalmology and Visual Science, Chiba University Graduate School of Medicine, Inohana 1-8-1, Chuo-ku, Chiba 260-8670, Japan; ; Tel.: +81-43-226-2124; Fax: +81-43-224-4162
- Department of Ophthalmology, School of Medicine, International University of Health and Welfare, 4-3 Kozunomori, Narita 286-8686, Japan
| |
Collapse
|
23
|
Li X, Su X, Xia F, Qiu J, Zhang J, Wu H, Xie X, Xu M. Bibliometric and visual analysis of diabetes mellitus and pyroptosis from 2011 to 2022. Eur J Med Res 2023; 28:235. [PMID: 37443131 DOI: 10.1186/s40001-023-01175-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 06/14/2023] [Indexed: 07/15/2023] Open
Abstract
OBJECTIVE To visualize and analyze the published literature on diabetes mellitus and pyroptosis based on a bibliometric approach, so as to provide a comprehensive picture of the hot research directions and dynamic progress in this field. METHODS This study was based on the web of science core collection database to conduct a comprehensive search of the published literature in the field of diabetes mellitus and Pyroptosis from January 1985 to August 2022, including the published research literature in this field, as well as a visual analysis of the number of citations, year of publication, journal, author, research institution, country, and research topic. RESULTS A total of 139 literature on research related to diabetes mellitus and cellular scorch from 2011 to 2022 were retrieved, with a total of 3009 citations and a maximum of 255 citations for a single article, which had a first author Schmid-Burgk, JL The first author of this article is from Germany; among 20 publishing countries, China leads with 100 articles; among 222 publishing institutions, Harbin Medical University leads with 18 articles and 184 citations; among 980 authors, Chen, X from China tops the list of high-impact authors with 5 articles and 29 citations. Among the 98 journals, "CELL DEATH DISEASE" ranked first in both volume and high-impact journals with 4 articles and 29 citations. Among 349 keywords, "pyroptosis" ranked first with a cumulative frequency of 65 times. The cluster analysis was divided into three categories, chronic complications of diabetes mellitus and pyroptosis (67 articles), diabetes mellitus and pyroptosis (60 articles), and diabetes mellitus combined with other diseases and pyroptosis (12 articles), and the number of articles related to diabetes mellitus and its chronic complications increased rapidly from 2019, among which, diabetic cardiomyopathy (27 articles) had the highest number of articles. CONCLUSIONS Based on a comprehensive analysis of published literature in the field of diabetes mellitus and pyroptosis from 2011 to 2022, this study achieved a visual analysis of studies with significant and outstanding contributions to the field, thus framing a picture showing the development and changes in the field. At the same time, this study provides research information and direction for clinicians and investigators to conduct diabetes mellitus and pyroptosis-related research in the future.
Collapse
Affiliation(s)
- Xiaodong Li
- The First Affiliated Hospital of Guizhou University of Chinese Medicine, Guiyang, 550000, China
- Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Xiaojuan Su
- Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Fenglin Xia
- Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Jing Qiu
- Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Jiaqi Zhang
- Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Haiyan Wu
- Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Xuejun Xie
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Mingchao Xu
- Traditional Chinese Medicine Hospital of Meishan, Meishan, 620010, China.
| |
Collapse
|
24
|
Park C, Cha HJ, Hwangbo H, Bang E, Hong SH, Song KS, Noh JS, Kim DH, Kim GY, Choi YH. β-Asarone Alleviates High-Glucose-Induced Oxidative Damage via Inhibition of ROS Generation and Inactivation of the NF-κB/NLRP3 Inflammasome Pathway in Human Retinal Pigment Epithelial Cells. Antioxidants (Basel) 2023; 12:1410. [PMID: 37507949 PMCID: PMC10376195 DOI: 10.3390/antiox12071410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Diabetic retinopathy (DR) is the leading cause of vision loss and a major complication of diabetes. Hyperglycemia-induced accumulation of reactive oxygen species (ROS) is an important risk factor for DR. β-asarone, a major component of volatile oil extracted from Acori graminei Rhizoma, exerts antioxidant effects; however, its efficacy in DR remains unknown. In this study, we investigated whether β-asarone inhibits high-glucose (HG)-induced oxidative damage in human retinal pigment epithelial (RPE) ARPE-19 cells. We found that β-asarone significantly alleviated cytotoxicity, apoptosis, and DNA damage in HG-treated ARPE-19 cells via scavenging of ROS generation. β-Asarone also significantly attenuated the excessive accumulation of lactate dehydrogenase and mitochondrial ROS by increasing the manganese superoxide dismutase and glutathione activities. HG conditions markedly increased the release of interleukin (IL)-1β and IL-18 and upregulated their protein expression and activation of the nuclear factor-kappa B (NF-κB) signaling pathway, whereas β-asarone reversed these effects. Moreover, expression levels of the NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome multiprotein complex molecules, including thioredoxin-interacting protein, NLRP3, apoptosis-associated speck-like protein containing a caspase-recruitment domain, and cysteinyl aspartate-specific proteinase-1, were increased in ARPE-19 cells under HG conditions. However, their expression levels remained similar to those in the control group in the presence of β-asarone. Therefore, β-asarone protects RPE cells from HG-induced injury by blocking ROS generation and NF-κB/NLRP3 inflammasome activation, indicating its potential as a therapeutic agent for DR treatment.
Collapse
Affiliation(s)
- Cheol Park
- Department Division of Basic Sciences, College of Liberal Studies, Dong-eui University, Busan 47340, Republic of Korea
| | - Hee-Jae Cha
- Department of Parasitology and Genetics, College of Medicine, Kosin University, Busan 49104, Republic of Korea
| | - Hyun Hwangbo
- Anti-Aging Research Center, Dong-eui University, Busan 47340, Republic of Korea
| | - EunJin Bang
- Anti-Aging Research Center, Dong-eui University, Busan 47340, Republic of Korea
| | - Su Hyun Hong
- Department of Biochemistry, College of Korean Medicine, Dong-eui University, Busan 47340, Republic of Korea
| | - Kyoung Seob Song
- Department of Medical Life Science, College of Medicine, Kosin University, Busan 49104, Republic of Korea
| | - Jeong Sook Noh
- Department of Food Science & Nutrition, Tongmyong University, Busan 48520, Republic of Korea
| | - Do-Hyung Kim
- Department of Aquatic Life Medicine, College of Fisheries Sciences, Pukyong National University, Busan 48513, Republic of Korea
| | - Gi-Young Kim
- Department of Marine Life Science, Jeju National University, Jeju 63243, Republic of Korea
| | - Yung Hyun Choi
- Anti-Aging Research Center, Dong-eui University, Busan 47340, Republic of Korea
- Department of Biochemistry, College of Korean Medicine, Dong-eui University, Busan 47340, Republic of Korea
| |
Collapse
|
25
|
Chai R, Li Y, Shui L, Ni L, Zhang A. The role of pyroptosis in inflammatory diseases. Front Cell Dev Biol 2023; 11:1173235. [PMID: 37250902 PMCID: PMC10213465 DOI: 10.3389/fcell.2023.1173235] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 04/18/2023] [Indexed: 05/31/2023] Open
Abstract
Programmed cell death has crucial roles in the physiological maturation of an organism, the maintenance of metabolism, and disease progression. Pyroptosis, a form of programmed cell death which has recently received much attention, is closely related to inflammation and occurs via canonical, non-canonical, caspase-3-dependent, and unclassified pathways. The pore-forming gasdermin proteins mediate pyroptosis by promoting cell lysis, contributing to the outflow of large amounts of inflammatory cytokines and cellular contents. Although the inflammatory response is critical for the body's defense against pathogens, uncontrolled inflammation can cause tissue damage and is a vital factor in the occurrence and progression of various diseases. In this review, we briefly summarize the major signaling pathways of pyroptosis and discuss current research on the pathological function of pyroptosis in autoinflammatory diseases and sterile inflammatory diseases.
Collapse
Affiliation(s)
| | | | | | - Longxing Ni
- *Correspondence: Longxing Ni, ; Ansheng Zhang,
| | | |
Collapse
|
26
|
Zheng X, Wan J, Tan G. The mechanisms of NLRP3 inflammasome/pyroptosis activation and their role in diabetic retinopathy. Front Immunol 2023; 14:1151185. [PMID: 37180116 PMCID: PMC10167027 DOI: 10.3389/fimmu.2023.1151185] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 04/11/2023] [Indexed: 05/15/2023] Open
Abstract
In the working-age population worldwide, diabetic retinopathy (DR), a prevalent complication of diabetes, is the main cause of vision impairment. Chronic low-grade inflammation plays an essential role in DR development. Recently, concerning the pathogenesis of DR, the Nod-Like Receptor Family Pyrin Domain Containing 3 (NLRP3) inflammasome in retinal cells has been determined as a causal factor. In the diabetic eye, the NLRP3 inflammasome is activated by several pathways (such as ROS and ATP). The activation of NPRP3 leads to the secretion of inflammatory cytokines interleukin-1β (IL-1β) and interleukin-18 (IL-18), and leads to pyroptosis, a rapid inflammatory form of lytic programmed cell death (PCD). Cells that undergo pyroptosis swell and rapture, releasing more inflammatory factors and accelerating DR progression. This review focuses on the mechanisms that activate NLRP3 inflammasome and pyroptosis leading to DR. The present research highlighted some inhibitors of NLRP3/pyroptosis pathways and novel therapeutic measures concerning DR treatment.
Collapse
Affiliation(s)
- Xiaoqin Zheng
- Department of Ophthalmology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Jia Wan
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Gang Tan
- Department of Ophthalmology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| |
Collapse
|
27
|
Yang Y, Jiang G, Huang R, Liu Y, Chang X, Fu S. Targeting the NLRP3 inflammasome in diabetic retinopathy: From Pathogenesis to Therapeutic Strategies. Biochem Pharmacol 2023; 212:115569. [PMID: 37100255 DOI: 10.1016/j.bcp.2023.115569] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/16/2023] [Accepted: 04/18/2023] [Indexed: 04/28/2023]
Abstract
Diabetic retinopathy (DR) is a common diabetic microvascular complication and the main cause of vision loss in working-aged people. The NLRP3 inflammasome is a cytosolic multimeric complex that plays a significant role in innate immunity. After sensing injury, the NLRP3 inflammasome induces inflammatory mediator secretion and triggers a form of inflammatory cell death known as pyroptosis. Studies over the past five years have shown increased expression of NLRP3 and related inflammatory mediators in vitreous samples from DR patients at different clinical stages. Many NLRP3-targeted inhibitors have shown great antiangiogenic and anti-inflammatory effects in diabetes mellitus models, suggesting that the NLRP3 inflammasome is involved in the progression of DR. This review covers the molecular mechanisms of NLRP3 inflammasome activation. Furthermore, we discuss the implications of the NLRP3 inflammasome in DR, including the induction of pyroptosis and inflammation and the promotion of microangiopathy and retinal neurodegeneration. We also summarize the research progress on targeting the NLRP3 inflammasome in DR therapeutics with the expectation of providing new insights into DR progression and treatment.
Collapse
Affiliation(s)
- Yuxuan Yang
- The First Clinical Medical College, Lanzhou University, Lanzhou, The People's Republic of China, 730000
| | - Gengchen Jiang
- The First Clinical Medical College, Lanzhou University, Lanzhou, The People's Republic of China, 730000
| | - Runchun Huang
- The First Clinical Medical College, Lanzhou University, Lanzhou, The People's Republic of China, 730000
| | - Yi Liu
- The First Clinical Medical College, Lanzhou University, Lanzhou, The People's Republic of China, 730000
| | - Xingyu Chang
- The First Clinical Medical College, Lanzhou University, Lanzhou, The People's Republic of China, 730000
| | - Songbo Fu
- Department of Endocrinology, First Hospital of Lanzhou University, Lanzhou, Gansu, The People's Republic of China, 730000; Gansu Province Clinical Research Center for Endocrine Disease, Gansu, The People's Republic of China, 730000.
| |
Collapse
|
28
|
Wang W, Sun W, Xu H, Liu Y, Wei C, Wang S, Xian S, Yan P, Zhang J, Guo H, Qin H, Lian J, Han X, Zhang J, Guo R, Zhang J, Huang Z. Bibliometric analysis and mini-review of global research on pyroptosis in the field of cancer. Apoptosis 2023:10.1007/s10495-023-01821-9. [PMID: 37071294 DOI: 10.1007/s10495-023-01821-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/23/2023] [Indexed: 04/19/2023]
Abstract
Pyroptosis is one of the mechanisms of programmed cell death (PCD) activated by inflammasomes and involved by the caspase family and the gasdermin family. During the oncogenesis and progression of tumors, pyroptosis is crucial, and complex withal. Currently, pyroptosis is the focus topic in the research field of oncology, but there is no single bibliometric analysis systematically studying 'pyroptosis and cancer'. Our study aimed to visualize the research status of pyroptosis in oncology and excavate the hotspots and prospects in this field. Furthermore, in consideration of the professional direction of researchers, we particularly emphasized articles on pyroptosis in gynecology and formed a mini systematic review. This bibliometric work integrated and analyzed all articles from ISI Web of Science: Science Citation Index Expanded (SCI-Expanded) (dated April 25th, 2022), based on quantitative and visual mapping approaches. Systematically reviewing articles on pyroptosis in gynecology helped us complement our analysis of research advancements in this field. Including 634 articles, our study found that the number of articles on pyroptosis in cancer increased exponentially in recent years. These publications came from 45 countries and regions headed by China and the US mainly aiming at the mechanism of pyroptosis in cell biology and biochemistry molecular biology, as well as the role of pyroptosis in the development and therapeutic application of various cancers. The top 20 most cited studies on this topic mostly came from the US, followed by China and England, and half of the articles cited more than 100 times in total were published in Nature. Moreover, as for gynecologic cancer, in vitro and bioinformatics analysis were the main methodology conducting to explore roles of pyroptosis-related genes (PRGs) and formation of inflammasomes in cancer progression and prognosis. Pyroptosis has evolved into a burgeoning research field in oncology. The cellular and molecular pathway mechanism of pyroptosis, as well as the effect of pyroptosis in oncogenesis, progression, and treatment have been the hot topic of the current study and provided us the future direction as the potential opportunities and challenges. We advocate more active cooperation to improve therapeutic strategies for cancer.
Collapse
Affiliation(s)
- Wenwen Wang
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, 450052, Zhengzhou, China
- Medical Key Laboratory for Prevention and Treatment of Malignant Gynecological Tumor, Henan Province, 450052, Zhengzhou, China
| | - Wenhuizi Sun
- Department of Obstetrics and Gynecology, Tongji Hospital, School of Medicine, Tongji University, 200065, Shanghai, China
| | - Han Xu
- Department of Obstetrics and Gynecology, East Hospital, School of Medicine, Tongji University, 200120, Shanghai, China
| | - Yao Liu
- Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China.
| | - Chenlu Wei
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, 450052, Zhengzhou, China
| | - Siqiao Wang
- Tongji University School of Medicine, 200092, Shanghai, China
| | - Shuyuan Xian
- Tongji University School of Medicine, 200092, Shanghai, China
| | - Penghui Yan
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, 450052, Zhengzhou, China
| | - Jiajun Zhang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, 450052, Zhengzhou, China
| | - Hongjun Guo
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, 450052, Zhengzhou, China
| | - Hengwei Qin
- Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Jie Lian
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, 450052, Zhengzhou, China
| | - Xiangyu Han
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, 450052, Zhengzhou, China
| | - Jiaqi Zhang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, 450052, Zhengzhou, China
| | - Ruixia Guo
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, 450052, Zhengzhou, China.
- Medical Key Laboratory for Prevention and Treatment of Malignant Gynecological Tumor, Henan Province, 450052, Zhengzhou, China.
| | - Jie Zhang
- Tongji University School of Medicine, 200092, Shanghai, China.
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Medicine, Tongji University, 389 Xincun Road, 200065, Shanghai, China.
| | - Zongqiang Huang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, 450052, Zhengzhou, China.
| |
Collapse
|
29
|
Yang S, Feng Y, Chen L, Wang Z, Chen J, Ni Q, Guo X, Zhang L, Xue G. Disulfiram accelerates diabetic foot ulcer healing by blocking NET formation via suppressing the NLRP3/Caspase-1/GSDMD pathway. Transl Res 2023; 254:115-127. [PMID: 36336332 DOI: 10.1016/j.trsl.2022.10.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/26/2022] [Accepted: 10/30/2022] [Indexed: 11/05/2022]
Abstract
Diabetic foot ulcer (DFU) is among the most frequent complications of diabetes and is associated with significant morbidity and mortality. Excessive neutrophil extracellular traps (NETs) delay wound healing in diabetic patients. Therefore, interventions targeting NET release need to be developed to effectively prevent NET-based wound healing impairment. Gasdermin D (GSDMD), a pore-forming protein acts as a central executioner of inflammatory cell death and can activate inflammasomes in neutrophils to release NETs. A precise understanding of the mechanism underlying NET-mediated delay in diabetic wound healing may be valuable in identifying potential therapeutic targets to improve clinical outcomes. In this study, we reported that neutrophils were more susceptible to NETosis in diabetic wound environments of patients with DFU. By in vitro experiments and using in vivo mouse models of diabetic wound healing (wide-type, Nlrp3-/-, Casp-1-/-, and Gsdmd-/- mice), we demonstrated that NLRP3/caspase-1/GSDMD pathway on activation controls NET release by neutrophils in diabetic wound tissue. Furthermore, inhibition of GSDMD with disulfiram or genic deletion of Gsdmd abrogated NET formation, thereby accelerating diabetic wound healing. Disulfiram could inhibit NETs-mediated diabetic foot ulcer healing impairment by suppressing the NLRP3/Caspase-1/GSDMD pathway. In summary, our findings uncover a novel therapeutic role of disulfiram in inhibiting NET formation, which is of considerable value in accelerating wound healing in patients with DFU.
Collapse
Affiliation(s)
- Shuofei Yang
- Department of Vascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Yu Feng
- Department of Endocrinology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Liang Chen
- Department of Vascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zheyu Wang
- Department of Vascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jiaquan Chen
- Department of Vascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qihong Ni
- Department of Vascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiangjiang Guo
- Department of Vascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lan Zhang
- Department of Vascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Guanhua Xue
- Department of Vascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
30
|
Ma M, Zhao S, Li C, Tang M, Sun T, Zheng Z. Transient receptor potential channel 6 knockdown prevents high glucose-induced Müller cell pyroptosis. Exp Eye Res 2023; 227:109381. [PMID: 36642172 DOI: 10.1016/j.exer.2023.109381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/16/2022] [Accepted: 01/04/2023] [Indexed: 01/15/2023]
Abstract
BACKGROUND Transient receptor potential channel 6 (TRPC6) is reported to be involved in the pathogenesis of diabetic complications, but its role in diabetic retinopathy (DR) remains unknown. The aim of our study was to determine the role and mechanism of TRPC6 in DR. METHODS High glucose was used to construct a DR cell model using rat retinal Müller cells (rMC-1). Intracellular Ca2+, reactive oxygen species (ROS) and cell pyroptosis were evaluated by flow cytometry. Protein levels of NLRP3, pro-caspase-1, active caspase-1, gasdermin D (GSDMD), GSDMD-N, TRPC6 and H3K27ac were detected by Western blot. mRNA levels of EP300 and TRPC6 were analyzed by reverse transcriptase-polymerase chain reaction (RT-PCR). Levels of IL-1β and IL-18 were estimated by enzyme linked immunosorbent assay (ELISA). The interaction between EP300 and TRPC6 was validated by a chromatin immunoprecipitation assay. RESULTS The knockdown of TRPC6 reduced inflammation and cell pyroptosis in HG induced rMC-1 cells, whereas overexpression of TRPC6 had the opposite effects. The inhibition of ROS and NLRP3 reversed TRPC6-mediated cell pyroptosis in the DR cell model. In addition, EP300 increased the expression of H3K27ac and TRPC6 to promote cell pyroptosis, which was suppressed by the knockdown of TRPC6. CONCLUSIONS Our study revealed a novel EP300/H3K27ac/TRPC6 signaling pathway that may contribute to HG induced Müller cell pyroptosis. TRPC6 played a novel role in Müller cell pyroptosis triggered by HG, and may be a potential target for DR treatment in the future.
Collapse
Affiliation(s)
- Mingming Ma
- Department of Ophthalmology, Shanghai General Hospital, National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, China
| | - Shuzhi Zhao
- Department of Ophthalmology, Shanghai General Hospital, National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, China
| | - Chenxin Li
- Department of Ophthalmology, Shanghai General Hospital, National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, China
| | - Min Tang
- Department of Ophthalmology, Shanghai General Hospital, National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, China
| | - Tao Sun
- Shanghai Eye Diseases Prevention &Treatment Center/ Shanghai Eye Hospital, China.
| | - Zhi Zheng
- Department of Ophthalmology, Shanghai General Hospital, National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, China.
| |
Collapse
|
31
|
Li M, Guo M, Xu Y, Wu L, Chen M, Dong Y, Zheng L, Chen D, Qiao Y, Ke Z, Shi X. Murine cytomegalovirus employs the mixed lineage kinases family to regulate the spiral ganglion neuron cell death and hearing loss. Neurosci Lett 2023; 793:136990. [PMID: 36455693 DOI: 10.1016/j.neulet.2022.136990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 11/17/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022]
Abstract
Cytomegalovirus (CMV)-induced sensorineural hearing loss (SNHL) is a worldwide epidemic. Recent studies have shown that the degree of spiral ganglion neuron (SGN) loss is correlated with hearing loss after CMV infection. We aimed to better understand the pathological mechanisms of CMV-related SGN death and to search for intervention measures. We found that both apoptosis and pyroptosis are involved in CMV-induced SGN death, which may be caused by the simultaneous activation of the p53/JNK and NLRP3/caspase-1 signaling pathways, respectively. Moreover, considering that mixed lineage kinase family (MLK1/2/3) are host restriction factors against viral infection and upstream regulators of the p53/JNK and inflammatory (including NLRP3-caspase1) signaling pathways, we further demonstrated that the MLKs inhibitor URMC-099 exhibited a protective effect against CMV-induced SGN death and hearing loss. These results indicate that MLKs signaling may be a key regulator and promising novel target for preventing apoptosis and even pyroptosis during the CMV infection of SGN cells and for treating hearing loss.
Collapse
Affiliation(s)
- Menghua Li
- Department of Otolaryngology, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen 518020, China; The First Affiliated Hospital, Jinan University, Guangzhou 510632, China
| | - Minyan Guo
- Department of Otolaryngology, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen 518020, China; The First Affiliated Hospital, Jinan University, Guangzhou 510632, China
| | - Yice Xu
- Department of Otolaryngology-Head and Neck Surgery, Xiaogan Hospital, Wuhan University of Science and Technology, Xiaogan 432000, China
| | - Liyuan Wu
- Artificial Auditory Laboratory of Jiangsu Province, Xuzhou Medical University, Xuzhou 221000, China; The Second Affiliated Hospital of Jiaxing University, Jiaxing 314000, China
| | | | - Yanfen Dong
- Artificial Auditory Laboratory of Jiangsu Province, Xuzhou Medical University, Xuzhou 221000, China
| | - Liting Zheng
- Artificial Auditory Laboratory of Jiangsu Province, Xuzhou Medical University, Xuzhou 221000, China
| | - Daishi Chen
- Department of Otolaryngology, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen 518020, China; The First Affiliated Hospital, Jinan University, Guangzhou 510632, China
| | - Yuehua Qiao
- Artificial Auditory Laboratory of Jiangsu Province, Xuzhou Medical University, Xuzhou 221000, China.
| | - Zhaoyang Ke
- Department of Otolaryngology, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen 518020, China; The First Affiliated Hospital, Jinan University, Guangzhou 510632, China.
| | - Xi Shi
- Artificial Auditory Laboratory of Jiangsu Province, Xuzhou Medical University, Xuzhou 221000, China.
| |
Collapse
|
32
|
Zhou J, Yan S, Guo X, Gao Y, Chen S, Li X, Zhang Y, Wang Q, Zheng T, Chen L. Salidroside protects pancreatic β-cells against pyroptosis by regulating the NLRP3/GSDMD pathway in diabetic conditions. Int Immunopharmacol 2023; 114:109543. [PMID: 36508922 DOI: 10.1016/j.intimp.2022.109543] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/30/2022] [Accepted: 12/01/2022] [Indexed: 12/13/2022]
Abstract
The NACHT, LRP, and PYD domains-containing protein 3 (NLRP3) inflammasome-evoked chronic inflammation is involved in the pathogenesis of diabetes mellitus (DM), and the NLRP3/gasdermin D (GSDMD)-mediated canonical pathway of pyroptosis leads to the loss of pancreatic β-cells and failure of pancreatic function in DM. A previous study demonstrated that salidroside (SAL) alleviates the pathological hyperplasia of pancreatic β-cells in db/db mice. However, it is not clear whether the NLRP3/GSDMD pathway-mediated pyroptosis can be regulated by SAL. In addition, the action of SAL on pancreatic β-cells in DM remains poorly understood. Thus, this study aimed to investigate the effects and underlying mechanisms of SAL on pancreatic β-cell pyroptosis. Rat insulinoma (INS-1) cells were cultured in a medium containing either high glucose (HG) or HG plus high insulin (HG-HI), and the effects of SAL on cell viability, AMP-activated protein kinase (AMPK) activity, reactive oxygen species (ROS) generation, NLRP3/GSDMD activation, and pyroptotic body formation were assessed. Streptozocin-induced DM mice were used to further investigate the effects of SAL on pancreatic pyroptosis. The results revealed aberrances on cell viability, AMPK activity, ROS generation, NLRP3/GSDMD activation, and pyroptotic body formation in HG- and HG-HI-exposed INS-1 cells; these abnormal effects were corrected by SAL in both a concentration- and AMPK-dependent manner. Moreover, SAL administration activated AMPK, suppressed NLRP3/GSDMD signaling, and protected pancreatic β-cells against pyroptosis in DM mice. These findings suggest that SAL promotes AMPK activation to suppress NLRP3/GSDMD-related pyroptosis in pancreatic β-cells under DM conditions.
Collapse
Affiliation(s)
- Jun Zhou
- School of Pharmaceutical Sciences, Hubei University of Medicine, Shiyan, Hubei, China; Institute of Wudang Traditional Chinese Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Shan Yan
- School of Pharmaceutical Sciences, Hubei University of Medicine, Shiyan, Hubei, China; Institute of Wudang Traditional Chinese Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Xu Guo
- School of Pharmaceutical Sciences, Hubei University of Medicine, Shiyan, Hubei, China; Institute of Wudang Traditional Chinese Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Yanguo Gao
- School of Pharmaceutical Sciences, Hubei University of Medicine, Shiyan, Hubei, China; Institute of Wudang Traditional Chinese Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Shiqi Chen
- School of Pharmaceutical Sciences, Hubei University of Medicine, Shiyan, Hubei, China; Institute of Wudang Traditional Chinese Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Xiaohan Li
- School of Pharmaceutical Sciences, Hubei University of Medicine, Shiyan, Hubei, China; Institute of Wudang Traditional Chinese Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Yonghong Zhang
- School of Pharmaceutical Sciences, Hubei University of Medicine, Shiyan, Hubei, China; Institute of Wudang Traditional Chinese Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Qibin Wang
- School of Pharmaceutical Sciences, Hubei University of Medicine, Shiyan, Hubei, China; Institute of Wudang Traditional Chinese Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China; Department of Pharmacy, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Tao Zheng
- School of Pharmaceutical Sciences, Hubei University of Medicine, Shiyan, Hubei, China; Institute of Wudang Traditional Chinese Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China; Department of Pharmacy, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China.
| | - Li Chen
- School of Pharmaceutical Sciences, Hubei University of Medicine, Shiyan, Hubei, China; Institute of Wudang Traditional Chinese Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China; Department of Pharmacy, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China.
| |
Collapse
|
33
|
Xu G, Guo Z, Liu Y, Yang Y, Lin Y, Li C, Huang Y, Fu Q. Gasdermin D protects against Streptococcus equi subsp. zooepidemicus infection through macrophage pyroptosis. Front Immunol 2022; 13:1005925. [PMID: 36311722 PMCID: PMC9614658 DOI: 10.3389/fimmu.2022.1005925] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/28/2022] [Indexed: 11/13/2022] Open
Abstract
Streptococcus equi subsp. zooepidemicus (S. zooepidemicus, SEZ) is an essential zoonotic bacterial pathogen that can cause various inflammation, such as meningitis, endocarditis, and pneumonia. Gasdermin D (GSDMD) is involved in cytokine release and cell death, indicating an important role in controlling the microbial infection. This study investigated the protective role of GSDMD in mice infected with SEZ and examined the role of GSDMD in peritoneal macrophages in the infection. GSDMD-deficient mice were more susceptible to intraperitoneal infection with SEZ, and the white pulp structure of the spleen was seriously damaged in GSDMD-deficient mice. Although the increased proportion of macrophages did not depend on GSDMD in both spleen and peritoneal lavage fluid (PLF), deficiency of GSDMD caused the minor release of the pro-inflammatory cytokines interleukin-1β (IL-1β) and interleukin-18 (IL-18) during the infection in vivo. In vitro, SEZ infection induced more release of IL-1β, IL-18, and lactate dehydrogenase (LDH) in wild-type macrophages than in GSDMD-deficient macrophages. Finally, we demonstrated that pore formation and pyroptosis of macrophages depended on GSDMD. Our findings highlight the host defense mechanisms of GSDMD against SEZ infection, providing a potential therapeutic target in SEZ infection.
Collapse
Affiliation(s)
- Guobin Xu
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Zheng Guo
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Yuxuan Liu
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Yalin Yang
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Yongjin Lin
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Chunliu Li
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Yunfei Huang
- School of Life Science and Engineering, Foshan University, Foshan, China
- Foshan University Veterinary Teaching Hospital, Foshan University, Foshan, China
| | - Qiang Fu
- School of Life Science and Engineering, Foshan University, Foshan, China
- Foshan University Veterinary Teaching Hospital, Foshan University, Foshan, China
- *Correspondence: Qiang Fu,
| |
Collapse
|
34
|
Wan J, Liu D, Pan S, Zhou S, Liu Z. NLRP3-mediated pyroptosis in diabetic nephropathy. Front Pharmacol 2022; 13:998574. [PMID: 36304156 PMCID: PMC9593054 DOI: 10.3389/fphar.2022.998574] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Diabetic nephropathy (DN) is the main cause of end-stage renal disease (ESRD), which is characterized by a series of abnormal changes such as glomerulosclerosis, podocyte loss, renal tubular atrophy and excessive deposition of extracellular matrix. Simultaneously, the occurrence of inflammatory reaction can promote the aggravation of DN-induced kidney injury. The most important processes in the canonical inflammasome pathway are inflammasome activation and membrane pore formation mediated by gasdermin family. Converging studies shows that pyroptosis can occur in renal intrinsic cells and participate in the development of DN, and its activation mechanism involves a variety of signaling pathways. Meanwhile, the activation of the NOD-like receptor thermal protein domain associated protein 3 (NLRP3) inflammasome can not only lead to the occurrence of inflammatory response, but also induce pyroptosis. In addition, a number of drugs targeting pyroptosis-associated proteins have been shown to have potential for treating DN. Consequently, the pathogenesis of pyroptosis and several possible activation pathways of NLRP3 inflammasome were reviewed, and the potential drugs used to treat pyroptosis in DN were summarized in this review. Although relevant studies are still not thorough and comprehensive, these findings still have certain reference value for the understanding, treatment and prognosis of DN.
Collapse
Affiliation(s)
- Jiayi Wan
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Dongwei Liu
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Shaokang Pan
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Sijie Zhou
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
- *Correspondence: Sijie Zhou, ; Zhangsuo Liu,
| | - Zhangsuo Liu
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
- *Correspondence: Sijie Zhou, ; Zhangsuo Liu,
| |
Collapse
|
35
|
Xing C, Yang F, Lin Y, Shan J, Yi X, Ali F, Zhu Y, Wang C, Zhang C, Zhuang Y, Cao H, Hu G. Hexavalent Chromium Exposure Induces Intestinal Barrier Damage via Activation of the NF-κB Signaling Pathway and NLRP3 Inflammasome in Ducks. Front Immunol 2022; 13:952639. [PMID: 35935959 PMCID: PMC9353580 DOI: 10.3389/fimmu.2022.952639] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 06/23/2022] [Indexed: 11/30/2022] Open
Abstract
Hexavalent chromium [Cr(VI)] is a dangerous heavy metal which can impair the gastrointestinal system in various species; however, the processes behind Cr(VI)-induced intestinal barrier damage are unknown. Forty-eight healthy 1-day-old ducks were stochastically assigned to four groups and fed a basal ration containing various Cr(VI) dosages for 49 days. Results of the study suggested that Cr(VI) exposure could significantly increase the content of Cr(VI) in the jejunum, increase the level of diamine oxidase (DAO) in serum, affect the production performance, cause histological abnormalities (shortening of the intestinal villi, deepening of the crypt depth, reduction and fragmentation of microvilli) and significantly reduced the mRNA levels of intestinal barrier-related genes (ZO-1, occludin, claudin-1, and MUC2) and protein levels of ZO-1, occludin, cand laudin-1, resulting in intestinal barrier damage. Furthermore, Cr(VI) intake could increase the contents of hydrogen peroxide (H2O2) and malondialdehyde (MDA), tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and interleukin-18 (IL-18) but decrease the activities of total superoxide dismutase (T-SOD), catalase (CAT), and glutathione reductase (GR), as well as up-regulate the mRNA levels of TLR4, MyD88, NF-κB, TNFα, IL-6, NLRP3, caspase-1, ASC, IL-1β, and IL-18 and protein levels of TLR4, MyD88, NF-κB, NLRP3, caspase-1, ASC, IL-1β, and IL-18 in the jejunum. In conclusion, Cr(VI) could cause intestinal oxidative damage and inflammation in duck jejunum by activating the NF-κB signaling pathway and the NLRP3 inflammasome.
Collapse
Affiliation(s)
- Chenghong Xing
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Fan Yang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Yiqun Lin
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Jiyi Shan
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Xin Yi
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Farah Ali
- Department of Theriogenology, Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Yibo Zhu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Chang Wang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Caiying Zhang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Yu Zhuang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Huabin Cao
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
- *Correspondence: Guoliang Hu, ; Huabin Cao,
| | - Guoliang Hu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
- *Correspondence: Guoliang Hu, ; Huabin Cao,
| |
Collapse
|
36
|
Chen M, Rong R, Xia X. Spotlight on pyroptosis: role in pathogenesis and therapeutic potential of ocular diseases. J Neuroinflammation 2022; 19:183. [PMID: 35836195 PMCID: PMC9281180 DOI: 10.1186/s12974-022-02547-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 07/05/2022] [Indexed: 11/10/2022] Open
Abstract
Pyroptosis is a programmed cell death characterized by swift plasma membrane disruption and subsequent release of cellular contents and pro-inflammatory mediators (cytokines), including IL‐1β and IL‐18. It differs from other types of programmed cell death such as apoptosis, autophagy, necroptosis, ferroptosis, and NETosis in terms of its morphology and mechanism. As a recently discovered form of cell death, pyroptosis has been demonstrated to be involved in the progression of multiple diseases. Recent studies have also suggested that pyroptosis is linked to various ocular diseases. In this review, we systematically summarized and discussed recent scientific discoveries of the involvement of pyroptosis in common ocular diseases, including diabetic retinopathy, age-related macular degeneration, AIDS-related human cytomegalovirus retinitis, glaucoma, dry eye disease, keratitis, uveitis, and cataract. We also organized new and emerging evidence suggesting that pyroptosis signaling pathways may be potential therapeutic targets in ocular diseases, hoping to provide a summary of overall intervention strategies and relevant multi-dimensional evaluations for various ocular diseases, as well as offer valuable ideas for further research and development from the perspective of pyroptosis.
Collapse
Affiliation(s)
- Meini Chen
- Eye Center of Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.,Hunan Key Laboratory of Ophthalmology, Changsha, 410008, Hunan, People's Republic of China.,National Clinical Research Center for Geriatric Diseases (Xiangya Hospital), Changsha, 410008, Hunan, People's Republic of China
| | - Rong Rong
- Eye Center of Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.,Hunan Key Laboratory of Ophthalmology, Changsha, 410008, Hunan, People's Republic of China.,National Clinical Research Center for Geriatric Diseases (Xiangya Hospital), Changsha, 410008, Hunan, People's Republic of China
| | - Xiaobo Xia
- Eye Center of Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China. .,Hunan Key Laboratory of Ophthalmology, Changsha, 410008, Hunan, People's Republic of China. .,National Clinical Research Center for Geriatric Diseases (Xiangya Hospital), Changsha, 410008, Hunan, People's Republic of China.
| |
Collapse
|
37
|
Gao S, Zhang Y, Zhang M. Targeting Novel Regulated Cell Death: Pyroptosis, Necroptosis, and Ferroptosis in Diabetic Retinopathy. Front Cell Dev Biol 2022; 10:932886. [PMID: 35813208 PMCID: PMC9260392 DOI: 10.3389/fcell.2022.932886] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 06/06/2022] [Indexed: 12/15/2022] Open
Abstract
Diabetic retinopathy (DR) is one of the primary causes of visual impairment in the working-age population. Retinal cell death is recognized as a prominent feature in the pathological changes of DR. Several types of cell death occurrence have been confirmed in DR, which might be the underlying mechanisms of retinal cell loss. Regulated cell death (RCD) originates from too intense or prolonged perturbations of the intracellular or extracellular microenvironment for adaptative responses to cope with stress and restore cellular homeostasis. Pyroptosis, necroptosis, and ferroptosis represent the novel discovered RCD forms, which contribute to retinal cell death in the pathogenesis of DR. This evidence provides new therapeutic targets for DR. In this review, we summarize the mechanisms of three types of RCD and analyse recent advances on the association between novel RCD and DR, aiming to provide new insights into the underlying pathogenic mechanisms and propose a potential new strategy for DR therapy.
Collapse
Affiliation(s)
- Sheng Gao
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
- Research Laboratory of Macular Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Yun Zhang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
- Research Laboratory of Macular Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Meixia Zhang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
- Research Laboratory of Macular Disease, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Meixia Zhang,
| |
Collapse
|
38
|
Xie Q, Xue L, Cao X, Huang L, Song Y. Apoptosis of Lens Epithelial Cells and Expression of NLRP3-related Proteins in Patients with Diabetes and Cataract. Ocul Immunol Inflamm 2022:1-8. [PMID: 35708312 DOI: 10.1080/09273948.2022.2079537] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
AIM To compare the expression of apoptosis-related factors and Nlrp3-related proteins in the lens epithelial cells (LECs) of patients with diabetes and cataract and patients with age-related cataract (ARC) alone. METHODS All patients were divided into four groups according to the presence or absence of diabetes mellitus (DM) and the degree of diabetic retinopathy (DR). LECs were obtained during cataract surgery. The expression levels of cleaved caspase-3, caspase-7, ASC, caspase-1and Nlrp3 in LECs were determined. And analyzed by age, course of DM, and HbA1c levels. RESULTS The incidence of LEC apoptosis and positive rates of cleaved caspase-3 and caspase-7 expression were significantly higher in the groups with DM (P<0.05).The positive expression rates of ASC, caspase-1, and Nlrp3 increased with longer duration of DM, increased HbA1c level, or advanced DR (P<0.05). CONCLUSION In cataract patients with DM, the expression of apoptosis-related factors in LECs increased. Nlrp3-related protein expression levels, diabetes duration, HbA1c levels, and extent of DR may be potential risk factors for diabetic cataract formation.
Collapse
Affiliation(s)
- Qing Xie
- Department of Ophthalmology, The Second Affiliated Hospital of Nantong University, Nantong, China
| | - Lidan Xue
- Department of Ophthalmology, The Second Affiliated Hospital of Nantong University, Nantong, China
| | - Xin Cao
- Department of Ophthalmology, The Second Affiliated Hospital of Nantong University, Nantong, China
| | - Lili Huang
- Department of Ophthalmology, The Second Affiliated Hospital of Nantong University, Nantong, China
| | - Yu Song
- Department of Ophthalmology, The Second Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
39
|
Huang C, Qi P, Cui H, Lu Q, Gao X. CircFAT1 regulates retinal pigment epithelial cell pyroptosis and autophagy via mediating m6A reader protein YTHDF2 expression in diabetic retinopathy. Exp Eye Res 2022; 222:109152. [PMID: 35714699 DOI: 10.1016/j.exer.2022.109152] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 05/28/2022] [Accepted: 06/10/2022] [Indexed: 11/04/2022]
Abstract
Diabetic retinopathy (DR) is a serious blinding complication of diabetes. At present, the therapeutic intervention effect is limited. We aimed to investigate the circRNA expression profiles in retinal proliferative fibrovascular membranes of patients with DR and explore the effect of circFAT1 on pyroptosis and autophagy of high glucose (HG)-induced retinal pigment epithelial (RPE) cells and its molecualr mechanism. In this study, circRNA sequencing was performed to determine the expression profiles of circRNAs in DR patients. The expression of circFAT1 was measured by qRT-PCR. Cell counting kit-8, transmission electron microscope, western blot, immunofluorescence and enzyme-linked immunosorbent assay were conducted to explore the roles of HG and circFAT1 in RPE cell pyroptosis and autophagy. RNA pull down was used to determine the binding protein of circFAT1. Our data showed that HG significantly reduced the viability of RPE cells, inhibited cell autophagy and contributed to cell pyroptosis. In addition, a total of 189 differentially expressed circRNAs (DEcircRNAs) were identified between DR patients and non-DR patients, including 93 upregulated and 96 downregulated DEcircRNAs in the retinal proliferative fibrovascular membranes of DR patients. Pathway analysis showed that DEcircRNAs were mainly involved in MAPK signaling pathway, TGF-beta signaling pathway and adherens junction. Moreover, circFAT1 was significantly downregulated in retinal proliferative fibrovascular membranes of DR patients and HG-induced RPE cells. CircFAT1 overexpression remarkably enhanced the expression of LC3B, while reduced the expression of GSDMD in HG-induced RPE cells. RNA pull down combined with western blot analysis indicated that circFAT1 bound to m6A reader YTHDF2. YTHDF2 overexpression significantly increased the protein expression of LC3B in HG-induced RPE cells. In summary, circFAT1 promoted autophagy and inhibited pyroptosis of RPE cells induced by HG, and could combine with YTHDF2. This study provides new ideas for DR prevention and treatment.
Collapse
Affiliation(s)
- Chengchi Huang
- Department of Ophthalmology, The Fourth Hospital of Harbin Medical University, 37 YiYuan Street, NanGang District, Harbin, 150001, China.
| | - Peng Qi
- Department of Ophthalmology, The Fourth Hospital of Harbin Medical University, 37 YiYuan Street, NanGang District, Harbin, 150001, China
| | - Hao Cui
- Department of Ophthalmology, Harbin 242 Hospital, 3 WeiJian Road, PingFang District, Harbin, China
| | - Qun Lu
- Department of Ophthalmology, Sino-Singapore Eco-city Hospital of TianJin Medical University, Tianjin, 300467, China
| | - Xue Gao
- Department of Ophthalmology, The Fourth Hospital of Harbin Medical University, 37 YiYuan Street, NanGang District, Harbin, 150001, China
| |
Collapse
|
40
|
Liang G, Luo Y, Wei R, Yin J, Qin Z, Lu L, Ma W. CircZNF532 knockdown protects retinal pigment epithelial cells against high glucose-induced apoptosis and pyroptosis by regulating the miR-20b-5p/STAT3 axis. J Diabetes Investig 2022; 13:781-795. [PMID: 34839589 PMCID: PMC9077727 DOI: 10.1111/jdi.13722] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 11/05/2021] [Accepted: 11/21/2021] [Indexed: 11/29/2022] Open
Abstract
INTRODUCTION The loss of retinal pigment epithelial (RPE) cells is associated with the etiology of diabetic retinopathy (DR). This study investigated the effects of circular RNA ZNF532 (circZNF532) on apoptosis and pyroptosis of RPE cells. MATERIALS AND METHODS Blood samples were collected from patients with DR and healthy volunteers. A human RPE cell line ARPE-19 was induced by high glucose (HG) and assayed for cell viability, apoptosis, and pyroptosis. The binding of miR-20b-5p with circZNF532 and STAT3 was confirmed by a luciferase activity assay. A mouse model of diabetic retinopathy was established. RESULTS CircZNF532 and STAT3 were upregulated but miR-20b-5p was downregulated in the serum samples of patients with DR and HG-induced ARPE-19 cells. Elevated miR-20b-5p or CircZNF532 knockdown enhanced proliferation but reduced apoptosis and pyroptosis of ARPE-19 cells. CircZNF532 sponged miR-20b-5p and inhibited its expression. STAT3 was verified as a target of miR-20b-5p. MiR-20b-5p modulated ARPE-19 cell viability, apoptosis, and pyroptosis by targeting STAT3. Mice with STZ-induced diabetes showed elevated expressions of circZNF532 and STAT3 but decreased the level of miR-20b-5p compared with the controls. Knockdown of circZNF532 inhibited apoptosis and pyroptosis in mouse retinal tissues. CONCLUSION CircZNF532 knockdown rescued human RPE cells from HG-induced apoptosis and pyroptosis by regulating STAT3 via miR-20b-5p.
Collapse
Affiliation(s)
- Gao‐Hua Liang
- Department of OphthalmologyThe Affiliated Hospital of Youjiang Medical University for NationalitiesBaiseChina
| | - Yan‐Ni Luo
- Department of OphthalmologyThe Affiliated Hospital of Youjiang Medical University for NationalitiesBaiseChina
| | - Ri‐Zhang Wei
- Department of OphthalmologyThe Affiliated Hospital of Youjiang Medical University for NationalitiesBaiseChina
| | - Jia‐Yang Yin
- Department of OphthalmologyThe First Affiliated Hospital of Jinan UniversityGuangzhouChina
| | - Zhi‐Liang Qin
- Department of OphthalmologyThe Affiliated Hospital of Youjiang Medical University for NationalitiesBaiseChina
| | - Li‐Li Lu
- Department of OphthalmologyThe Affiliated Hospital of Youjiang Medical University for NationalitiesBaiseChina
| | - Wen‐Hao Ma
- Department of OphthalmologyThe Affiliated Hospital of Youjiang Medical University for NationalitiesBaiseChina
| |
Collapse
|
41
|
Liu Q, Zhao C, Zhou J, Zhang H, Zhang Y, Wang S, Pu Y, Yin L. Reactive oxygen species-mediated activation of NLRP3 inflammasome associated with pyroptosis in Het-1A cells induced by the co-exposure of nitrosamines. J Appl Toxicol 2022; 42:1651-1661. [PMID: 35437791 DOI: 10.1002/jat.4332] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 04/05/2022] [Accepted: 04/16/2022] [Indexed: 11/10/2022]
Abstract
Nitrosamines were a class of important environmental carcinogens associated with digestive tract neoplasms. As the early toxic effect of nitrosamines, inflammatory response participated in the malignant transformation of cells and promoted the occurrence and development of tumors. However, the role of NLRP3 inflammasome in the nitrosamines-induced inflammatory response was unclear. In this study, the human esophageal epithelial cells (Het-1A) were used to explore potential mechanisms of the activation of NLRP3 inflammasome under co-exposure to nine nitrosamines commonly found in drinking water at the doses of 0, 4, 20, 100, 500, and 2500 ng/mL. The results showed that nitrosamines stimulated activation of the NLRP3 inflammasome and induced cellular oxidative damage in a dose-dependent manner. Pretreatment of reactive oxygen species scavenger N-acetyl-L-cysteine (NAC), particularly mitochondrial reactive oxygen species (mtROS) scavengers Mito-TEMPO, effectively inhibited the activation of NLRP3 inflammasome, suggesting that nitrosamines could mediate the activation of NLRP3 inflammasome via mtROS. Furthermore, we found that nitrosamines co-exposure also promoted cell pyroptosis through the NLRP3/caspase-1/GSDMD pathway, which was demonstrated by adding the caspase-1 inhibitor Z-YVAD-FMK and constructing NLRP3 downregulated Het-1A cell line. This study revealed the underlying mechanism of the activation of NLRP3 inflammasome initiated by nitrosamines co-exposure and provided new perspectives on the toxic effects of nitrosamines.
Collapse
Affiliation(s)
- Qiwei Liu
- Laboratory of Environmental Medicine Engineering, Ministry of Education of China, School of Public Health, Southeast University, Nanjing, China
| | - Chao Zhao
- Laboratory of Environmental Medicine Engineering, Ministry of Education of China, School of Public Health, Southeast University, Nanjing, China
| | - Jingjing Zhou
- Laboratory of Environmental Medicine Engineering, Ministry of Education of China, School of Public Health, Southeast University, Nanjing, China
| | - Hu Zhang
- Laboratory of Environmental Medicine Engineering, Ministry of Education of China, School of Public Health, Southeast University, Nanjing, China
| | - Ying Zhang
- Laboratory of Environmental Medicine Engineering, Ministry of Education of China, School of Public Health, Southeast University, Nanjing, China
| | - Shizhi Wang
- Laboratory of Environmental Medicine Engineering, Ministry of Education of China, School of Public Health, Southeast University, Nanjing, China
| | - Yuepu Pu
- Laboratory of Environmental Medicine Engineering, Ministry of Education of China, School of Public Health, Southeast University, Nanjing, China
| | - Lihong Yin
- Laboratory of Environmental Medicine Engineering, Ministry of Education of China, School of Public Health, Southeast University, Nanjing, China
| |
Collapse
|
42
|
Chatziralli I, Touhami S, Cicinelli MV, Agapitou C, Dimitriou E, Theodossiadis G, Theodossiadis P. Disentangling the association between retinal non-perfusion and anti-VEGF agents in diabetic retinopathy. Eye (Lond) 2022; 36:692-703. [PMID: 34408316 PMCID: PMC8956693 DOI: 10.1038/s41433-021-01750-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 07/29/2021] [Accepted: 08/06/2021] [Indexed: 02/07/2023] Open
Abstract
Diabetic retinopathy (DR) is the most common microvascular complication of diabetes mellitus (DM) and the leading cause of blindness in patients with DM. In the pathogenesis of DR, chronic hyperglycemia leads to biochemical and structural alterations in retinal blood vessels' wall, resulting in hyperpermeability and non-perfusion. Since vascular endothelial growth factor (VEGF) has been found to play a significant role in the pathogenesis of DR, this review sheds light on the effect of intravitreal anti-VEGF agents on retinal non-perfusion in patients with DR. Based on the existing literature, anti-VEGF agents have been shown to improve DR severity, although they cannot reverse retinal ischemia. The results of the published studies are controversial and differ based on the location of retinal non-perfusion, as well as the imaging modality used to assess retinal non-perfusion. In cases of macular non-perfusion, most of studies showed no change in both fundus fluorescein angiography (FFA) and optical coherence tomography (OCTA) in patients with DR treated with intravitreal anti-VEGF agents, while few studies reported worsening of non-perfusion with enlargement of foveal avascular zone (FAZ). Regarding peripheral ischemia, studies using wide-field-FFA demonstrated an improvement or stability in non-perfusion areas after anti-VEGF treatment. However, the use of wide-field-OCTA revealed no signs of re-perfusion of retinal vessels post anti-VEGF treatment. Further prospective studies with long follow-up and large sample size are still needed to draw solid conclusions.
Collapse
Affiliation(s)
- Irini Chatziralli
- grid.5216.00000 0001 2155 08002nd Department of Ophthalmology, National and Kapodistrian University of Athens, Athens, Greece
| | - Sara Touhami
- grid.462844.80000 0001 2308 1657Department of Ophthalmology, Reference Center in Rare diseases, DHU Sight Restore, Hôpital Pitié Salpêtrière, Sorbonne Université, Paris, France
| | - Maria Vittoria Cicinelli
- grid.15496.3f0000 0001 0439 0892School of Medicine, Vita-Salute San Raffaele University, Milan, Italy ,grid.18887.3e0000000417581884Department of Ophthalmology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Chrysa Agapitou
- grid.5216.00000 0001 2155 08002nd Department of Ophthalmology, National and Kapodistrian University of Athens, Athens, Greece
| | - Eleni Dimitriou
- grid.5216.00000 0001 2155 08002nd Department of Ophthalmology, National and Kapodistrian University of Athens, Athens, Greece
| | - George Theodossiadis
- grid.5216.00000 0001 2155 08002nd Department of Ophthalmology, National and Kapodistrian University of Athens, Athens, Greece
| | - Panagiotis Theodossiadis
- grid.5216.00000 0001 2155 08002nd Department of Ophthalmology, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
43
|
Fei L, Zhang N, Zhang J. Mechanism of miR-126 in hypoxia-reoxygenation-induced cardiomyocyte pyroptosis by regulating HMGB1 and NLRP3 inflammasome. Immunopharmacol Immunotoxicol 2022; 44:500-509. [PMID: 35297734 DOI: 10.1080/08923973.2022.2054819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
OBJECTIVE Pyroptosis refers to the programmed cell death. This study evaluated the mechanism of miR-126 in hypoxia-reoxygenation (HR)-induced cardiomyocyte pyroptosis. METHODS The HR rat cardiomyocyte models were established. The cell viability, cytotoxicity, and levels of miR-126, pro-caspase-1 (p45), activated caspase-1 (p20/p10), caspase-11, gasdermin D (GSDMD), and GSDMD-N were detected. The cells were transfected with miR-126 mimics to verify the effect on rat cardiomyocyte pyroptosis, and added with HMGB1 inhibitor (Glycyrrhizin) or NLRP3 inhibitor (S3680) to explore the regulatory mechanisms on rat cardiomyocyte pyroptosis. The binding relationship of miR-126 and HMGB1 was explored. The regulatory effect of miR-126 and HMGB1 on HR-stimulated cardiomyocytes was verified through co-transfection with miR-126 mimics and pcDNA3.1-HMGB1. RESULTS HR treatment inhibited rat cardiomyocyte viability and increased cytotoxicity. After HR treatment, pro-caspase-1 (p45), activated caspase-1 (p20/p10), caspase-11, GSDMD, and GSDMD-N were elevated in rat cardiomyocytes, while miR-126 was evidently downregulated in rat cardiomyocytes. miR-126 overexpression, and inhibition of HMGB1 or NLRP3 partially reversed HR-induced rat cardiomyocyte cytotoxicity and pyroptosis. miR-126 targeted HMGB1 and HMGB1 overexpression partly reversed the inhibition of miR-126 overexpression on HR-induced cardiomyocyte pyroptosis. CONCLUSION miR-126 inhibits HMGB1/NLRP3 activity and the caspase-1/11 activation and reduces the GSDMD-N cleaved from GSDMD, ultimately inhibiting HR-induced cardiomyocyte pyroptosis.
Collapse
Affiliation(s)
- Ling Fei
- Department of Cardiovascular, Tian Jin Medical University, Chengdu Xinhua Hospital, Cheng Du, 610055, China
| | - Ning Zhang
- Department of Cardiovascular, Chengdu Xinhua Hospital, Cheng Du, 610055, China
| | - Jun Zhang
- Department of Cardiovascular, Cang Zhou Central Hospital, Tian Jin Medical University, Cang Zhou, 061011, China
| |
Collapse
|
44
|
Zeng X, Peng Y, Wang Y, Kang K. C1q/tumor necrosis factor-related protein-3 (CTRP3) activated by forkhead box O4 (FOXO4) down-regulation protects retinal pericytes against high glucose-induced oxidative damage through nuclear factor erythroid 2-related factor 2 (Nrf2)/Nuclear factor-kappaB (NF-κB) signaling. Bioengineered 2022; 13:6080-6091. [PMID: 35196182 PMCID: PMC8974204 DOI: 10.1080/21655979.2022.2031413] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Diabetic retinopathy (DR) remains a major cause of blindness among diabetes mellitus patients. C1q/tumor necrosis factor-related protein-3 (CTRP3) is a novel adipokine which is associated with multiple types of metabolism. Nevertheless, little is known about the role of CTRP3 in high glucose (HG)-induced human retinal pericytes (HRPs). This study set out to assess the influence of CTRP3 on HG-induced HRPs and elucidate the latent regulatory mechanism. RT-qPCR and Western blot were to analyze CTRP3 and forkhead box O4 (FOXO4) expression. Western blot was also utilized to detect the protein levels of apoptosis-related factors and nuclear factor erythroid 2-related factor 2 (Nrf2)/Nuclear factor-kappaB (NF-κB) signaling-related factors. CCK-8 was to measure cell proliferation while TUNEL assay was to estimate cell apoptosis. Levels of oxidative stress biomarkers including manganese (MnSOD), catalase (CAT) and malonedialdehyde (MDA) were evaluated by the corresponding kits. JASPAR database, ChIP and luciferase reporter assay were to verify the interaction between FOXO4 and CTRP3 promoter. The experimental results uncovered that CTRP3 expression was decreased in HG-stimulated HRPs. Moreover, CTRP3 overexpression strengthened the viability while abrogated the apoptosis and oxidative stress of HG-induced HRPs. Furthermore. FOXO4 was up-regulated in HG-induced HRPs. Besides, FOXO4 bond to CTRP3 promoter and inhibited CTRP3 transcription to modulate the Nrf2/NF-κB signaling pathway. FOXO4 up-regulation reversed the influence of CTRP3 elevation on the proliferation, apoptosis and oxidative stress of HG-induced HRPs. To be summarized, CTRP3 negatively modulated by FOXO4 prevented HG-induced oxidative damage in DR via modulation of Nrf2/NF-κB signaling.
Collapse
Affiliation(s)
- XiuYa Zeng
- Department of Clinical Laboratory, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China.,Xiamen Key Laboratory of Genetic Testing, Xiamen, China
| | - YouYuan Peng
- Department of Hepatobiliary Surgery, Zhongshan Hospital of Xiamen University, Xiamen, China
| | - YanFeng Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China.,Xiamen Key Laboratory of Genetic Testing, Xiamen, China
| | - KeMing Kang
- Department of Ophthalmic Fundus Disease, Xiamen Eye Center of Xiamen University, Xiamen, China
| |
Collapse
|
45
|
Zhao M, Li S, Matsubara JA. Targeting Pyroptotic Cell Death Pathways in Retinal Disease. Front Med (Lausanne) 2022; 8:802063. [PMID: 35047535 PMCID: PMC8763245 DOI: 10.3389/fmed.2021.802063] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 11/29/2021] [Indexed: 11/13/2022] Open
Abstract
Pyroptosis is a gasdermin-mediated, pro-inflammatory form of cell death distinct from apoptosis. In recent years, increasing attention has shifted toward pyroptosis as more studies demonstrate its involvement in diverse inflammatory disease states, including retinal diseases. This review discusses how currently known pyroptotic cell death pathways have been implicated in models of age-related macular degeneration, diabetic retinopathy, and glaucoma. We also identify potential future therapeutic strategies for these retinopathies that target drivers of pyroptotic cell death. Presently, the drivers of pyroptosis that have been studied the most in retinal cells are the nucleotide-binding and oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome, caspase-1, and gasdermin D (GSDMD). Targeting these proteins may help us develop new drug therapies, or supplement existing therapies, in the treatment of retinal diseases. As novel mechanisms of pyroptosis come to light, including those involving other inflammatory caspases and members of the gasdermin protein family, more targets for pyroptosis-mediated therapies in retinal disease can be explored.
Collapse
Affiliation(s)
- Mary Zhao
- Department of Ophthalmology and Visual Sciences, Eye Care Centre, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Siqi Li
- Department of Ophthalmology and Visual Sciences, Eye Care Centre, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Joanne A Matsubara
- Department of Ophthalmology and Visual Sciences, Eye Care Centre, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
46
|
Meng L, Lin H, Huang X, Weng J, Peng F, Wu S. METTL14 suppresses pyroptosis and diabetic cardiomyopathy by downregulating TINCR lncRNA. Cell Death Dis 2022; 13:38. [PMID: 35013106 PMCID: PMC8748685 DOI: 10.1038/s41419-021-04484-z] [Citation(s) in RCA: 88] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 12/07/2021] [Accepted: 12/17/2021] [Indexed: 12/14/2022]
Abstract
N6-methyladenosine (m6A) is one of the most important epigenetic regulation of RNAs, such as lncRNAs. However, the underlying regulatory mechanism of m6A in diabetic cardiomyopathy (DCM) is very limited. In this study, we sought to define the role of METTL14-mediated m6A modification in pyroptosis and DCM progression. DCM rat model was established and qRT-PCR, western blot, and immunohistochemistry (IHC) were used to detect the expression of METTL14 and TINCR. Gain-and-loss functional experiments were performed to define the role of METTL14-TINCR-NLRP3 axis in pyroptosis and DCM. RNA pulldown and RNA immunoprecipitation (RIP) assays were carried out to verify the underlying interaction. Our results showed that pyroptosis was tightly involved in DCM progression. METTL14 was downregulated in cardiomyocytes and hear tissues of DCM rat tissues. Functionally, METTL14 suppressed pyroptosis and DCM via downregulating lncRNA TINCR, which further decreased the expression of key pyroptosis-related protein, NLRP3. Mechanistically, METTL14 increased m6A methylation level of TINCR gene, resulting in its downregulation. Moreover, the m6A reader protein YTHDF2 was essential for m6A methylation and mediated the degradation of TINCR. Finally, TINCR positively regulated NLRP3 by increasing its mRNA stability. To conclude, our work revealed the novel role of METTL14-mediated m6A methylation and lncRNA regulation in pyroptosis and DCM, which could help extend our understanding the epigenetic regulation of pyroptosis in DCM progression.
Collapse
Affiliation(s)
- Liping Meng
- Department of Cardiology, Shaoxing People's Hospital(Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, 312000, Zhejiang, China
| | - Hui Lin
- Department of Cardiology, Shaoxing People's Hospital(Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, 312000, Zhejiang, China
| | - Xingxiao Huang
- Department of Cardiology, Shaoxing People's Hospital(Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, 312000, Zhejiang, China
| | - Jingfan Weng
- Department of Cardiology, Shaoxing People's Hospital(Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, 312000, Zhejiang, China
| | - Fang Peng
- Department of Cardiology, Shaoxing People's Hospital(Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, 312000, Zhejiang, China.
| | - Shengjie Wu
- Department of Cardiology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
47
|
Wang N, Ding L, Liu D, Zhang Q, Zheng G, Xia X, Xiong S. Molecular investigation of candidate genes for pyroptosis-induced inflammation in diabetic retinopathy. Front Endocrinol (Lausanne) 2022; 13:918605. [PMID: 35957838 PMCID: PMC9357938 DOI: 10.3389/fendo.2022.918605] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Diabetic retinopathy is a diabetic microvascular complication. Pyroptosis, as a way of inflammatory death, plays an important role in the occurrence and development of diabetic retinopathy, but its underlying mechanism has not been fully elucidated. The purpose of this study is to identify the potential pyroptosis-related genes in diabetic retinopathy by bioinformatics analysis and validation in a diabetic retinopathy model and predict the microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) interacting with them. Subsequently, the competing endogenous RNA (ceRNA) regulatory network is structured to explore their potential molecular mechanism. METHODS We obtained mRNA expression profile dataset GSE60436 from the Gene Expression Omnibus (GEO) database and collected 51 pyroptosis-related genes from the PubMmed database. The differentially expressed pyroptosis-related genes were obtained by bioinformatics analysis with R software, and then eight key genes of interest were identified by correlation analysis, Gene Ontology (GO) enrichment analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, and protein-protein interaction (PPI) network analysis. Then, the expression levels of these key pyroptosis-related genes were validated with quantitative real-time polymerase chain reaction (qRT-PCR) in human retinal endothelial cells with high glucose incubation, which was used as an in vitro model of diabetic retinopathy. Western blot was performed to measure the protein levels of gasdermin D (GSDMD), dasdermin E (GSDME) and cleaved caspase-3 in the cells. Moreover, the aforementioned genes were further confirmed with the validation set. Finally, the ceRNA regulatory network was structured, and the miRNAs and lncRNAs which interacted with CASP3, TLR4, and GBP2 were predicted. RESULTS A total of 13 differentially expressed pyroptosis-related genes were screened from six proliferative diabetic retinopathy patients and three RNA samples from human retinas, including one downregulated gene and 12 upregulated genes. A correlation analysis showed that there was a correlation among these genes. Then, KEGG pathway and GO enrichment analyses were performed to explore the functional roles of these genes. The results showed that the mRNA of these genes was mainly related to inflammasome complex, interleukin-1 beta production, and NOD-like receptor signaling pathway. In addition, eight hub genes-CASP3, TLR4, NLRP3, GBP2, CASP1, CASP4, PYCARD, and GBP1-were identified by PPI network analysis using Cytoscape software. High glucose increased the protein level of GSDMD and GSDME, as critical effectors of pyroptosis, in retinal vascular endothelial cells. Verified by qRT-PCR, the expression of all these eight hub genes in the in vitro model of diabetic retinopathy was consistent with the results of the bioinformatics analysis of mRNA chip. Among them, CASP4, GBP1, CASP3, TLR4, and GBP2 were further validated in the GSE179568 dataset. Finally, 20 miRNAs were predicted to target three key genes-CASP3, GBP2, and TLR4, and 22 lncRNAs were predicted to potentially bind to these 20 miRNAs. Then, we constructed a key ceRNA network that is expected to mediate cellular pyroptosis in diabetic retinopathy. CONCLUSION Through the data analysis of the GEO database by R software and verification by qRT-PCR and validation set, we successfully identified potential pyroptosis-related genes involved in the occurrence of diabetic retinopathy. The key ceRNA regulatory network associated with these genes was structured. These findings might improve the understanding of molecular mechanisms underlying pyroptosis in diabetic retinopathy.
Collapse
Affiliation(s)
- Nan Wang
- Eye Center of Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Ophthalmology, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Lexi Ding
- Eye Center of Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Ophthalmology, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Die Liu
- Eye Center of Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Ophthalmology, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Quyan Zhang
- Eye Center of Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Ophthalmology, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Guoli Zheng
- Eye Center of Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Ophthalmology, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaobo Xia
- Eye Center of Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Ophthalmology, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Siqi Xiong
- Eye Center of Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Ophthalmology, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Siqi Xiong,
| |
Collapse
|
48
|
Li X, Xiao GY, Guo T, Song YJ, Li QM. Potential therapeutic role of pyroptosis mediated by the NLRP3 inflammasome in type 2 diabetes and its complications. Front Endocrinol (Lausanne) 2022; 13:986565. [PMID: 36387904 PMCID: PMC9646639 DOI: 10.3389/fendo.2022.986565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 10/13/2022] [Indexed: 11/25/2022] Open
Abstract
As a new way of programmed cell death, pyroptosis plays a vital role in many diseases. In recent years, the relationship between pyroptosis and type 2 diabetes (T2D) has received increasing attention. Although the current treatment options for T2D are abundant, the occurrence and development of T2D appear to continue, and the poor prognosis and high mortality of patients with T2D remain a considerable burden in the global health system. Numerous studies have shown that pyroptosis mediated by the NLRP3 inflammasome can affect the progression of T2D and its complications; targeting the NLRP3 inflammasome has potential therapeutic effects. In this review, we described the molecular mechanism of pyroptosis more comprehensively, discussed the most updated progress of pyroptosis mediated by NLRP3 inflammasome in T2D and its complications, and listed some drugs and agents with potential anti-pyroptosis effects. Based on the available evidence, exploring more mechanisms of the NLRP3 inflammasome pathway may bring more options and benefits for preventing and treating T2D and drug development.
Collapse
|
49
|
Zhang Y, Jiao Y, Li X, Gao S, Zhou N, Duan J, Zhang M. Pyroptosis: A New Insight Into Eye Disease Therapy. Front Pharmacol 2021; 12:797110. [PMID: 34925047 PMCID: PMC8678479 DOI: 10.3389/fphar.2021.797110] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 11/15/2021] [Indexed: 02/05/2023] Open
Abstract
Pyroptosis is a lytic form of programmed cell death mediated by gasdermins (GSDMs) with pore-forming activity in response to certain exogenous and endogenous stimuli. The inflammasomes are intracellular multiprotein complexes consisting of pattern recognition receptors, an adaptor protein ASC (apoptosis speck-like protein), and caspase-1 and cause autocatalytic activation of caspase-1, which cleaves gasdermin D (GSDMD), inducing pyroptosis accompanied by cytokine release. In recent years, the pathogenic roles of inflammasomes and pyroptosis in multiple eye diseases, including keratitis, dry eyes, cataracts, glaucoma, uveitis, age-related macular degeneration, and diabetic retinopathy, have been continuously confirmed. Inhibiting inflammasome activation and abnormal pyroptosis in eyes generally attenuates inflammation and benefits prognosis. Therefore, insight into the pathogenesis underlying pyroptosis and inflammasome development in various types of eye diseases may provide new therapeutic strategies for ocular disorders. Inhibitors of pyroptosis, such as NLRP3, caspase-1, and GSDMD inhibitors, have been proven to be effective in many eye diseases. The purpose of this article is to illuminate the mechanism underlying inflammasome activation and pyroptosis and emphasize its crucial role in various ocular disorders. In addition, we review the application of pyroptosis modulators in eye diseases.
Collapse
Affiliation(s)
- Yun Zhang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China.,Research Laboratory of Macular Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Yan Jiao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xun Li
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China.,Research Laboratory of Macular Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Sheng Gao
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China.,Research Laboratory of Macular Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Nenghua Zhou
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Jianan Duan
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China.,Research Laboratory of Macular Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Meixia Zhang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China.,Research Laboratory of Macular Disease, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
50
|
Sankaramoorthy A, Roy S. High Glucose-Induced Apoptosis Is Linked to Mitochondrial Connexin 43 Level in RRECs: Implications for Diabetic Retinopathy. Cells 2021; 10:cells10113102. [PMID: 34831325 PMCID: PMC8618331 DOI: 10.3390/cells10113102] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/02/2021] [Accepted: 11/05/2021] [Indexed: 12/22/2022] Open
Abstract
Diabetic retinopathy (DR) is one of the most common causes of vision loss and blindness among the working-age population. High glucose (HG)-induced decrease in mitochondrial connexin 43 (mtCx43) level is known to promote mitochondrial fragmentation, cytochrome c release, and apoptosis in retinal endothelial cells associated with DR. In this study, we investigated whether counteracting HG-induced decrease in mtCx43 level would preserve mitochondrial integrity and prevent apoptosis. Rat retinal endothelial cells (RRECs) were grown in normal (N; 5 mM glucose) or HG (30 mM glucose) medium for 7 days. In parallel, cells grown in HG were transfected with Cx43 plasmid, or empty vector (EV), as control. Western blot (WB) analysis showed a significant decrease in mtCx43 level concomitant with increased cleaved caspase-3, Bax, cleaved PARP, and mitochondrial fragmentation in cells grown in HG condition compared to those grown in N medium. When cells grown in HG were transfected with Cx43 plasmid, mtCx43 level was significantly increased and resulted in reduced cleaved caspase-3, Bax, cleaved PARP and preservation of mitochondrial morphology with a significant decrease in the number of TUNEL-positive cells compared to those grown in HG alone. Findings from the study indicate a novel role for mtCx43 in regulating apoptosis and that maintenance of mtCx43 level could be useful in preventing HG-induced apoptosis by reducing mitochondrial fragmentation associated with retinal vascular cell loss in DR.
Collapse
Affiliation(s)
| | - Sayon Roy
- Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA;
- Department of Ophthalmology, Boston University School of Medicine, Boston, MA 02118, USA
- Correspondence: ; Tel.: +1-(617)-358-6801; Fax: +1-(617)-638-4177
| |
Collapse
|