1
|
Fan W, Gui B, Zhou X, Li L, Chen H. A narrative review on lung injury: mechanisms, biomarkers, and monitoring. Crit Care 2024; 28:352. [PMID: 39482752 PMCID: PMC11526606 DOI: 10.1186/s13054-024-05149-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 10/26/2024] [Indexed: 11/03/2024] Open
Abstract
Lung injury is closely associated with the heterogeneity, severity, mortality, and prognosis of various respiratory diseases. Effective monitoring of lung injury is crucial for the optimal management and improved outcomes of patients with lung diseases. This review describes acute and chronic respiratory diseases characterized by significant lung injury and current clinical tools for assessing lung health. Furthermore, we summarized the mechanisms of lung cell death observed in these diseases and highlighted recently identified biomarkers in the plasma indicative of injury to specific cell types and scaffold structure in the lung. Last, we propose an artificial intelligence-driven lung injury monitoring model to assess disease severity, and predict mortality and prognosis, aiming to achieve precision and personalized medicine.
Collapse
Affiliation(s)
- Wenping Fan
- Department of Respiratory Medicine, Haihe Hospital, Tianjin University, Tianjin, 300350, China
- Tianjin Key Laboratory of Lung Regenerative Medicine, Tianjin, 300350, China
| | - Biyu Gui
- Department of Basic Medicine, Haihe Clinical School, Tianjin Medical University, Tianjin, 300350, China
| | - Xiaolei Zhou
- Department of Pulmonary Medicine, Chest Hospital of Zhengzhou University, Zhengzhou, 450008, China
| | - Li Li
- Tianjin Key Laboratory of Lung Regenerative Medicine, Tianjin, 300350, China.
| | - Huaiyong Chen
- Department of Respiratory Medicine, Haihe Hospital, Tianjin University, Tianjin, 300350, China.
- Tianjin Key Laboratory of Lung Regenerative Medicine, Tianjin, 300350, China.
- Department of Basic Medicine, Haihe Clinical School, Tianjin Medical University, Tianjin, 300350, China.
- Tianjin Institute of Respiratory Diseases, Tianjin, 300350, China.
| |
Collapse
|
2
|
Zhang J, Zhao D, Zhang L, Feng X, Li B, Dong H, Qi Y, Jia Z, Liu F, Zhao S, Zhang J. Impact of HHIP gene polymorphisms on phenotypes, serum IL-17 and IL-18 in COPD patients of the Chinese Han population. Respir Res 2024; 25:386. [PMID: 39468530 PMCID: PMC11520666 DOI: 10.1186/s12931-024-03020-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 10/21/2024] [Indexed: 10/30/2024] Open
Abstract
BACKGROUND Genetic factors, including the Hedgehog Interacting Protein (HHIP) gene, play a crucial role in Chronic Obstructive Pulmonary Disease (COPD) susceptibility. This study examines the association between HHIP gene polymorphisms and COPD susceptibility, phenotypes, and serum IL-17 and IL-18 levels in a Han Chinese population. METHODS A case-control study was conducted with 300 COPD patients and 300 healthy controls in Chinese Han population. Participants underwent genotyping for HHIP gene polymorphisms, pulmonary function tests, and quantitative CT scans. DNA samples were sequenced using a custom chip targeting the HHIP gene. Serum IL-17 and IL-18 levels were measured by enzyme-linked immunosorbent assay. Associations between SNPs, COPD susceptibility, and phenotypes were analyzed using logistic and multiple linear regression models, adjusting for confounders. RESULTS Our study identified the rs11100865 polymorphism in the HHIP gene as significantly associated with COPD susceptibility (OR 2.479, 95% CI 1.527-4.024, P = 2.39E-04) after screening 114 SNPs through rigorous quality control. Stratified analyses further indicated this association was particularly in individuals aged 60 or older. Serum levels of IL-17 and IL-18 were significantly elevated in COPD patients compared to controls, with rs11100865 showing a notable association with IL-18 levels (B = 49.654, SE = 19.627, P = 0.012). However, no significant associations were observed between rs11100865 and serum IL-17 levels, COPD-related imaging parameters, or clinical phenotypes. CONCLUSION This study identified a significant association between HHIP gene polymorphisms and COPD susceptibility in a Han Chinese population, with connections to inflammation, but found no significant associations between this SNP and COPD-related imaging or clinical phenotypes. TRIAL REGISTRATION www.chictr.org.cn ID: ChiCTR2300071579 2023-05-18.
Collapse
Affiliation(s)
- Jiajun Zhang
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia, 750004, People's Republic of China
- Department of Respiratory and Critical Care Medicine, General Hospital of Ningxia Medical University, 804 Shengli South Street, Xingqing District, Yinchuan, 750004, People's Republic of China
| | - Di Zhao
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia, 750004, People's Republic of China
| | - Lili Zhang
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia, 750004, People's Republic of China
- Department of Respiratory and Critical Care Medicine, General Hospital of Ningxia Medical University, 804 Shengli South Street, Xingqing District, Yinchuan, 750004, People's Republic of China
| | - Xueyan Feng
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia, 750004, People's Republic of China
| | - Beibei Li
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia, 750004, People's Republic of China
| | - Hui Dong
- Center of Research Equipment Management, General Hospital of Ningxia Medical University, Yinchuan, 750004, People's Republic of China
| | - Yanchao Qi
- Department of Respiratory and Critical Care Medicine, The Second People's Hospital of Shizuishan, Shizuishan, 753000, People's Republic of China
| | - Zun Jia
- Department of Respiratory and Critical Care Medicine, The Fifth People's Hospital of Ningxia, Shizuishan, 753000, People's Republic of China
| | - Fuyun Liu
- Department of Respiratory and Critical Care Medicine, The Fifth People's Hospital of Ningxia, Shizuishan, 753000, People's Republic of China
| | - Shaohui Zhao
- Department of Respiratory and Critical Care Medicine, The Fifth People's Hospital of Ningxia, Shizuishan, 753000, People's Republic of China
| | - Jin Zhang
- Department of Respiratory and Critical Care Medicine, General Hospital of Ningxia Medical University, 804 Shengli South Street, Xingqing District, Yinchuan, 750004, People's Republic of China.
| |
Collapse
|
3
|
Yin Y, Wang Y, Liu Y, Wang F, Wang Z. Evidence construction of Jinshuibao capsules against stable chronic obstructive pulmonary disease: A systematic review and network pharmacology. Heliyon 2024; 10:e34572. [PMID: 39082031 PMCID: PMC11284407 DOI: 10.1016/j.heliyon.2024.e34572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 07/11/2024] [Accepted: 07/11/2024] [Indexed: 08/02/2024] Open
Abstract
Background Jinshuibao capsules has been utilized in treating stable chronic obstructive pulmonary disease (COPD) for a long time. While the evidence-based evidence and network pharmacology to clarify the therapeutic efficacy and pharmacological mechanisms of Jinshuibao capsules have remained elusive. Objectives Integrating evidence-based medicine and network pharmacology to explain the therapeutic efficacy and pharmacological mechanisms of Jinshuibao capsules for stable COPD. Methods Cochrane Library, Web of Science, EMBASE, PubMed, China National Knowledge Infrastructure (CNKI), Wanfang Data Knowledge Service Platform, VIP Information Resource Integration Service Platform (CQVIP), and China Biomedicine (SinoMed) databases were searched. Studies were selected according to the inclusion and exclusion criteria. Statistical analysis was performed using the RevMan 5.3 software (Cochrane, London, UK). In network pharmacology, components of Jinshuibao capsules were screened, stable COPD-related genes were then identified and the 'component-target-pathway' network constructed. Results Meta-analysis revealed that Jinshuibao capsules exerts therapeutic effects on stable COPD by increasing the levels of FEV1% pred, FEV1/FVC ratio, FEV1, FVC, and PaO2 while decreasing the level of PaCO2. In addition, Jinshuibao capsules could effectively increase the levels of CD3+, CD4+/CD8+ ratio, Th17/Treg ratio, and SOD while reduce the levels of IL-8 and TNF-α. Network pharmacology identified 22 active compounds and 419 intersection gene targets. AKT1, SRC, MAPK1, STAT3, and MAPK3 were top 5 key target proteins. Besides, 20 potential pathways of Jinshuibao capsules on stable COPD were identified, like endocrine resistance, AGE-RAGE signaling pathway in diabetic complications, and chemical carcinogenesis-receptor activation. Conclusion Jinshuibao capsules could positively influence patients with stable COPD, while the efficacy and safety of Jinshuibao capsules in the treatment of COPD could not be reliably confirmed. These findings suggest that Jinshuibao capsules exerts effect on stable COPD through multi-target, multi-component and multi-pathway mechanism. Future studies may explore the active components of Jinshuibao capsules.
Collapse
Affiliation(s)
| | | | | | - Fei Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, Sichuan, 610075, China
| | - Zhenxing Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, Sichuan, 610075, China
| |
Collapse
|
4
|
Kastratovic N, Zdravkovic N, Cekerevac I, Sekerus V, Harrell CR, Mladenovic V, Djukic A, Volarevic A, Brankovic M, Gmizic T, Zdravkovic M, Bjekic-Macut J, Zdravkovic N, Djonov V, Volarevic V. Effects of Combustible Cigarettes and Heated Tobacco Products on Systemic Inflammatory Response in Patients with Chronic Inflammatory Diseases. Diseases 2024; 12:144. [PMID: 39057115 PMCID: PMC11276168 DOI: 10.3390/diseases12070144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 06/22/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024] Open
Abstract
Smoke derived from combustible cigarettes (CCs) contains numerous harmful chemicals that can impair the viability, proliferation, and activation of immune cells, affecting the progression of chronic inflammatory diseases. In order to avoid the detrimental effects of cigarette smoking, many CC users have replaced CCs with heated tobacco products (HTPs). Due to different methods of tobacco processing, CC-sourced smoke and HTP-derived aerosols contain different chemical constituents. With the exception of nicotine, HTP-sourced aerosols contain significantly lower amounts of harmful constituents than CC-derived smoke. Since HTP-dependent effects on immune-cell-driven inflammation are still unknown, herein we used flow cytometry analysis, intracellular staining, and an enzyme-linked immunosorbent assay to determine the impact of CCs and HTPs on systemic inflammatory response in patients suffering from ulcerative colitis (UC), diabetes mellitus (DM), and chronic obstructive pulmonary disease (COPD). Both CCs and HTPs significantly modulated cytokine production in circulating immune cells, affecting the systemic inflammatory response in COPD, DM, and UC patients. Compared to CCs, HTPs had weaker capacity to induce the synthesis of inflammatory cytokines (IFN-γ, IL-1β, IL-5, IL-6, IL-12, IL-23, IL-17, TNF-α), but more efficiently induced the production of immunosuppressive IL-10 and IL-35. Additionally, HTPs significantly enhanced the synthesis of pro-fibrotic TGF-β. The continuous use of CCs and HTPs aggravated immune-cell-driven systemic inflammation in COPD and DM patients, but not in UC patients, suggesting that the immunomodulatory effects of CC-derived smoke and HTP-sourced aerosols are disease-specific, and need to be determined for specific immune-cell-driven inflammatory diseases.
Collapse
Affiliation(s)
- Nikolina Kastratovic
- Center for Research on Harmful Effects of Biological and Chemical Hazards, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozar Markovic Street, 34000 Kragujevac, Serbia; (N.K.); (N.Z.); (I.C.); (A.V.); (N.Z.)
- Department of Genetics, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozar Markovic Street, 34000 Kragujevac, Serbia
| | - Natasa Zdravkovic
- Center for Research on Harmful Effects of Biological and Chemical Hazards, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozar Markovic Street, 34000 Kragujevac, Serbia; (N.K.); (N.Z.); (I.C.); (A.V.); (N.Z.)
- Department of Internal Medicine, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozar Markovic Street, 34000 Kragujevac, Serbia; (V.M.); (A.D.)
- Center for Endocrinology, Diabetes and Metabolic Diseases, University Clinical Center Kragujevac, 30 Zmaj Jovina Street, 34000 Kragujevac, Serbia
| | - Ivan Cekerevac
- Center for Research on Harmful Effects of Biological and Chemical Hazards, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozar Markovic Street, 34000 Kragujevac, Serbia; (N.K.); (N.Z.); (I.C.); (A.V.); (N.Z.)
- Department of Internal Medicine, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozar Markovic Street, 34000 Kragujevac, Serbia; (V.M.); (A.D.)
- Pulmonology Clinic, University Clinical Center Kragujevac, 30 Zmaj Jovina Street, 34000 Kragujevac, Serbia
| | - Vanesa Sekerus
- Institute for Pulmonary Diseases of Vojvodina, 4 Institutski Put, 21204 Novi Sad, Serbia;
- Department of Biochemistry, Faculty of Medicine, University of Novi Sad, 3 Hajduk Veljkova Street, 21000 Novi Sad, Serbia
| | - Carl Randall Harrell
- Regenerative Processing Plant, LLC, 34176 US Highway 19 N, Palm Harbor, FL 34684, USA;
| | - Violeta Mladenovic
- Department of Internal Medicine, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozar Markovic Street, 34000 Kragujevac, Serbia; (V.M.); (A.D.)
- Center for Endocrinology, Diabetes and Metabolic Diseases, University Clinical Center Kragujevac, 30 Zmaj Jovina Street, 34000 Kragujevac, Serbia
| | - Aleksandar Djukic
- Department of Internal Medicine, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozar Markovic Street, 34000 Kragujevac, Serbia; (V.M.); (A.D.)
- Center for Endocrinology, Diabetes and Metabolic Diseases, University Clinical Center Kragujevac, 30 Zmaj Jovina Street, 34000 Kragujevac, Serbia
| | - Ana Volarevic
- Center for Research on Harmful Effects of Biological and Chemical Hazards, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozar Markovic Street, 34000 Kragujevac, Serbia; (N.K.); (N.Z.); (I.C.); (A.V.); (N.Z.)
- Department of Psychology, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozar Markovic Street, 34000 Kragujevac, Serbia
| | - Marija Brankovic
- Department of Gastroenterology, University Medical Center “Bežanijska Kosa”, Dr Zoza Matea bb, 11080 Belgrade, Serbia; (M.B.); (T.G.)
- Faculty of Medicine, University of Belgrade, Dr Subotica 8, 11000 Belgrade, Serbia;
| | - Tijana Gmizic
- Department of Gastroenterology, University Medical Center “Bežanijska Kosa”, Dr Zoza Matea bb, 11080 Belgrade, Serbia; (M.B.); (T.G.)
- Faculty of Medicine, University of Belgrade, Dr Subotica 8, 11000 Belgrade, Serbia;
| | - Marija Zdravkovic
- Faculty of Medicine, University of Belgrade, Dr Subotica 8, 11000 Belgrade, Serbia;
- Department of Cardiology, University Medical Center “Bežanijska Kosa”, Dr Zoza Matea bb, 11080 Belgrade, Serbia
| | - Jelica Bjekic-Macut
- Department of Endocrinology, University Medical Center “Bežanijska Kosa”, Dr Zoza Matea bb, 11080 Belgrade, Serbia;
| | - Nebojsa Zdravkovic
- Center for Research on Harmful Effects of Biological and Chemical Hazards, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozar Markovic Street, 34000 Kragujevac, Serbia; (N.K.); (N.Z.); (I.C.); (A.V.); (N.Z.)
- Department of Statistics, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozar Markovic Street, 34000 Kragujevac, Serbia
| | - Valentin Djonov
- Institute of Anatomy, University of Bern, Baltzerstrasse 2, 3012 Bern, Switzerland;
| | - Vladislav Volarevic
- Center for Research on Harmful Effects of Biological and Chemical Hazards, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozar Markovic Street, 34000 Kragujevac, Serbia; (N.K.); (N.Z.); (I.C.); (A.V.); (N.Z.)
- Department of Genetics, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozar Markovic Street, 34000 Kragujevac, Serbia
- Department of Microbiology and Immunology, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozar Markovic Street, 34000 Kragujevac, Serbia
- Faculty of Pharmacy Novi Sad, Trg Mladenaca 5, 21000 Novi Sad, Serbia
| |
Collapse
|
5
|
Zhang M, Wang S, Guan Q, Wang J, Yan B, Zhang L, Li D. A bidirectional Mendelian randomization study investigating the relationship between genetically predicted systemic inflammatory regulators and chronic obstructive pulmonary disease. Heliyon 2024; 10:e24109. [PMID: 38268600 PMCID: PMC10806290 DOI: 10.1016/j.heliyon.2024.e24109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 01/03/2024] [Accepted: 01/03/2024] [Indexed: 01/26/2024] Open
Abstract
Research has shown a connection between inflammation and chronic obstructive pulmonary disease (COPD), however the relationship between inflammation mediators and COPD causation remains unknown. To investigate the causal relationship of mediators of inflammation and COPD, we conducted a two-sample Mendelian randomization (MR) study. In our study, we incorporated 41 regulators of inflammation from 8293 Finnish individuals from genome-wide association studies (GWASs) of COPD corresponding to GWAS summary data for 2115 cases and 454,233 healthy individuals in Europe. Our research validated that higher levels of interleukin 8 (IL-8) are related with a decrease occurrence of COPD (OR = 0.795, 95 % CI = 0.642-0.984, p = 0.035) but that elevated levels of interleukin 18(IL-18) and interleukin 2 (IL-2) may be connected to an amplified risk of COPD (OR = 1.247, 95 % CI = 1.011-1.538; p = 0.039; OR = 1.257, 95 % CI = 1.037-1.523, p = 0.020, respectively). According to our research, cytokines play a crucial role in the development of COPD, and further investigation is necessary to explore the potential of utilizing these cytokines as targets for treatment and prevention of COPD.
Collapse
Affiliation(s)
- Mengyuan Zhang
- Department of Respiratory Medicine, The First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Shengnan Wang
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Qingtian Guan
- First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
| | - Jianglong Wang
- First Operating Room, The First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Bailing Yan
- Department of Respiratory Medicine, The First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Li Zhang
- Department of Cardiology, The First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Dan Li
- Department of Respiratory Medicine, The First Hospital of Jilin University, Changchun, Jilin Province, China
| |
Collapse
|
6
|
Shakeel I, Ashraf A, Afzal M, Sohal SS, Islam A, Kazim SN, Hassan MI. The Molecular Blueprint for Chronic Obstructive Pulmonary Disease (COPD): A New Paradigm for Diagnosis and Therapeutics. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:2297559. [PMID: 38155869 PMCID: PMC10754640 DOI: 10.1155/2023/2297559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 10/28/2023] [Accepted: 11/30/2023] [Indexed: 12/30/2023]
Abstract
The global prevalence of chronic obstructive pulmonary disease (COPD) has increased over the last decade and has emerged as the third leading cause of death worldwide. It is characterized by emphysema with prolonged airflow limitation. COPD patients are more susceptible to COVID-19 and increase the disease severity about four times. The most used drugs to treat it show numerous side effects, including immune suppression and infection. This review discusses a narrative opinion and critical review of COPD. We present different aspects of the disease, from cellular and inflammatory responses to cigarette smoking in COPD and signaling pathways. In addition, we highlighted various risk factors for developing COPD apart from smoking, like occupational exposure, pollutants, genetic factors, gender, etc. After the recent elucidation of the underlying inflammatory signaling pathways in COPD, new molecular targeted drug candidates for COPD are signal-transmitting substances. We further summarize recent developments in biomarker discovery for COPD and its implications for disease diagnosis. In addition, we discuss novel drug targets for COPD that could be explored for drug development and subsequent clinical management of cardiovascular disease and COVID-19, commonly associated with COPD. Our extensive analysis of COPD cause, etiology, diagnosis, and therapeutic will provide a better understanding of the disease and the development of effective therapeutic options. In-depth knowledge of the underlying mechanism will offer deeper insights into identifying novel molecular targets for developing potent therapeutics and biomarkers of disease diagnosis.
Collapse
Affiliation(s)
- Ilma Shakeel
- Department of Zoology, Aligarh Muslim University, Aligarh, Uttar Pradesh 202002, India
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Anam Ashraf
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Mohammad Afzal
- Department of Zoology, Aligarh Muslim University, Aligarh, Uttar Pradesh 202002, India
| | - Sukhwinder Singh Sohal
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, Tasmania 7248, Australia
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Syed Naqui Kazim
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Md. Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| |
Collapse
|
7
|
Małujło-Balcerska E, Pietras T, Śmigielski W. Serum levels of biomarkers that may link chronic obstructive pulmonary disease and depressive disorder. Pharmacol Rep 2023; 75:1619-1626. [PMID: 37921965 PMCID: PMC10661791 DOI: 10.1007/s43440-023-00548-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 10/13/2023] [Accepted: 10/16/2023] [Indexed: 11/05/2023]
Abstract
BACKGROUND Depressive disorder is a common comorbidity of chronic obstructive pulmonary disease (COPD); according to some studies, it occurs in approximately 80% of patients. The presence of depressive symptoms influences the quality of life and affects the course and treatment of this disease. The cause of depressive symptoms in COPD and the linking mechanism between COPD and depressive disorder have not been clearly elucidated, and more studies are warranted. Inflammation and inflammation-related processes and biomarkers are involved in the etiology of COPD and depressive disorder and may be an explanation for the potential occurrence of depressive disorder in patients diagnosed with COPD. The scope of this study was to measure and compare the profiles of IL-18, TGF-β, RANTES, ICAM-1, and uPAR among stable COPD patients, recurrent depressive disorder (rDD) patients, and healthy controls. METHODS Inflammation and inflammation-related factors were evaluated in COPD patients, patients diagnosed with depressive disorder, and control individuals using enzyme-linked immunosorbent assays. RESULTS Interleukin (IL)-18, transforming growth factor (TGF)-β, chemokine RANTES, and urokinase plasminogen activator receptor (uPAR) concentrations were higher in patients suffering from COPD and depression than in control patients. Intercellular adhesive molecule (ICAM)-1 levels were significantly higher in COPD patients and lower in depressive disorder patients than in controls. CONCLUSIONS Higher levels of IL-18, TGF-β, RANTES, and uPAR in patients with COPD might indicate the presence of depressive disorder and suggest the need for further evaluation of the mental state of these patients.
Collapse
Affiliation(s)
- Elżbieta Małujło-Balcerska
- 2nd Chair of Internal Diseases, Department of Pneumology, Medical University of Łódź, 22Nd Kopcińskiego Street, 90-153, Lodz, Poland.
| | - Tadeusz Pietras
- Department of Clinical Pharmacology, Medical University of Łódź, Lodz, Poland
- Second Department of Psychiatry, Institute of Psychiatry and Neurology, Warsaw, Poland
| | - Witold Śmigielski
- Department of Epidemiology, Cardiovascular Disease Prevention and Health Promotion, The Cardinal Stefan Wyszynski National Institute of Cardiology, Warsaw, Poland
| |
Collapse
|
8
|
Barbosa JAS, da Silva LLS, João JMLG, de Campos EC, Fukuzaki S, Camargo LDN, dos Santos TM, dos Santos HT, Bezerra SKM, Saraiva-Romanholo BM, Lopes FDTQDS, Bonturi CR, Oliva MLV, Leick EA, Righetti RF, Tibério IDFLC. Investigating the Effects of a New Peptide, Derived from the Enterolobium contortisiliquum Proteinase Inhibitor (EcTI), on Inflammation, Remodeling, and Oxidative Stress in an Experimental Mouse Model of Asthma-Chronic Obstructive Pulmonary Disease Overlap (ACO). Int J Mol Sci 2023; 24:14710. [PMID: 37834157 PMCID: PMC10573003 DOI: 10.3390/ijms241914710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/23/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
The synthesized peptide derived from Enterolobium contortisiliquum (pep3-EcTI) has been associated with potent anti-inflammatory and antioxidant effects, and it may be a potential new treatment for asthma-COPD overlap-ACO). Purpose: To investigate the primary sequence effects of pep3-EcTI in an experimental ACO. BALB/c mice were divided into eight groups: SAL (saline), OVA (ovalbumin), ELA (elastase), ACO (ovalbumin + elastase), ACO-pep3-EcTI (treated with inhibitor), ACO-DX (treated with dexamethasone), ACO-DX-pep3-EcTI (treated with dexamethasone and inhibitor), and SAL-pep3-EcTI (saline group treated with inhibitor). We evaluated the hyperresponsiveness to methacholine, exhaled nitric oxide, bronchoalveolar lavage fluid (BALF), mean linear intercept (Lm), inflammatory markers, tumor necrosis factor (TNF-α), interferon (IFN)), matrix metalloproteinases (MMPs), growth factor (TGF-β), collagen fibers, the oxidative stress marker inducible nitric oxide synthase (iNOS), transcription factors, and the signaling pathway NF-κB in the airways (AW) and alveolar septa (AS). Statistical analysis was conducted using one-way ANOVA and t-tests, significant when p < 0.05. ACO caused alterations in the airways and alveolar septa. Compared with SAL, ACO-pep3-EcTI reversed the changes in the percentage of resistance of the respiratory system (%Rrs), the elastance of the respiratory system (%Ers), tissue resistance (%Gtis), tissue elastance (%Htis), airway resistance (%Raw), Lm, exhaled nitric oxide (ENO), lymphocytes, IL-4, IL-5, IL-6, IL-10, IL-13, IL-17, TNF-α, INF-γ, MMP-12, transforming growth factor (TGF)-β, collagen fibers, and iNOS. ACO-DX reversed the changes in %Rrs, %Ers, %Gtis, %Htis, %Raw, total cells, eosinophils, neutrophils, lymphocytes, macrophages, IL-1β, IL-6, IL-10, IL-13, IL-17, TNF-α, INF-γ, MMP-12, TGF-β, collagen fibers, and iNOS. ACO-DX-pep3-EcTI reversed the changes, as was also observed for the pep3-EcTI and the ACO-DX-pep3-EcTI. Significance: The pep3-EcTI was revealed to be a promising strategy for the treatment of ACO, asthma, and COPD.
Collapse
Affiliation(s)
- Jéssica Anastácia Silva Barbosa
- Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo 01246-903, Brazil; (J.A.S.B.); (L.L.S.d.S.); (J.M.L.G.J.); (E.C.d.C.); (S.F.); (L.d.N.C.); (T.M.d.S.); (H.T.d.S.); (S.K.M.B.); (B.M.S.-R.); (F.D.T.Q.d.S.L.); (E.A.L.); (R.F.R.)
- Hospital Sírio Libanês, São Paulo 01308-050, Brazil
| | - Luana Laura Sales da Silva
- Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo 01246-903, Brazil; (J.A.S.B.); (L.L.S.d.S.); (J.M.L.G.J.); (E.C.d.C.); (S.F.); (L.d.N.C.); (T.M.d.S.); (H.T.d.S.); (S.K.M.B.); (B.M.S.-R.); (F.D.T.Q.d.S.L.); (E.A.L.); (R.F.R.)
| | - Juliana Morelli Lopes Gonçalves João
- Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo 01246-903, Brazil; (J.A.S.B.); (L.L.S.d.S.); (J.M.L.G.J.); (E.C.d.C.); (S.F.); (L.d.N.C.); (T.M.d.S.); (H.T.d.S.); (S.K.M.B.); (B.M.S.-R.); (F.D.T.Q.d.S.L.); (E.A.L.); (R.F.R.)
- Hospital Sírio Libanês, São Paulo 01308-050, Brazil
| | - Elaine Cristina de Campos
- Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo 01246-903, Brazil; (J.A.S.B.); (L.L.S.d.S.); (J.M.L.G.J.); (E.C.d.C.); (S.F.); (L.d.N.C.); (T.M.d.S.); (H.T.d.S.); (S.K.M.B.); (B.M.S.-R.); (F.D.T.Q.d.S.L.); (E.A.L.); (R.F.R.)
- Hospital Sírio Libanês, São Paulo 01308-050, Brazil
| | - Silvia Fukuzaki
- Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo 01246-903, Brazil; (J.A.S.B.); (L.L.S.d.S.); (J.M.L.G.J.); (E.C.d.C.); (S.F.); (L.d.N.C.); (T.M.d.S.); (H.T.d.S.); (S.K.M.B.); (B.M.S.-R.); (F.D.T.Q.d.S.L.); (E.A.L.); (R.F.R.)
| | - Leandro do Nascimento Camargo
- Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo 01246-903, Brazil; (J.A.S.B.); (L.L.S.d.S.); (J.M.L.G.J.); (E.C.d.C.); (S.F.); (L.d.N.C.); (T.M.d.S.); (H.T.d.S.); (S.K.M.B.); (B.M.S.-R.); (F.D.T.Q.d.S.L.); (E.A.L.); (R.F.R.)
- Hospital Sírio Libanês, São Paulo 01308-050, Brazil
| | - Tabata Maruyama dos Santos
- Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo 01246-903, Brazil; (J.A.S.B.); (L.L.S.d.S.); (J.M.L.G.J.); (E.C.d.C.); (S.F.); (L.d.N.C.); (T.M.d.S.); (H.T.d.S.); (S.K.M.B.); (B.M.S.-R.); (F.D.T.Q.d.S.L.); (E.A.L.); (R.F.R.)
- Hospital Sírio Libanês, São Paulo 01308-050, Brazil
| | - Henrique Tibucheski dos Santos
- Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo 01246-903, Brazil; (J.A.S.B.); (L.L.S.d.S.); (J.M.L.G.J.); (E.C.d.C.); (S.F.); (L.d.N.C.); (T.M.d.S.); (H.T.d.S.); (S.K.M.B.); (B.M.S.-R.); (F.D.T.Q.d.S.L.); (E.A.L.); (R.F.R.)
| | - Suellen Karoline Moreira Bezerra
- Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo 01246-903, Brazil; (J.A.S.B.); (L.L.S.d.S.); (J.M.L.G.J.); (E.C.d.C.); (S.F.); (L.d.N.C.); (T.M.d.S.); (H.T.d.S.); (S.K.M.B.); (B.M.S.-R.); (F.D.T.Q.d.S.L.); (E.A.L.); (R.F.R.)
| | - Beatriz Mangueira Saraiva-Romanholo
- Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo 01246-903, Brazil; (J.A.S.B.); (L.L.S.d.S.); (J.M.L.G.J.); (E.C.d.C.); (S.F.); (L.d.N.C.); (T.M.d.S.); (H.T.d.S.); (S.K.M.B.); (B.M.S.-R.); (F.D.T.Q.d.S.L.); (E.A.L.); (R.F.R.)
- Department of Medicine, University City of São Paulo, São Paulo 03071-000, Brazil
| | - Fernanda Degobbi Tenório Quirino dos Santos Lopes
- Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo 01246-903, Brazil; (J.A.S.B.); (L.L.S.d.S.); (J.M.L.G.J.); (E.C.d.C.); (S.F.); (L.d.N.C.); (T.M.d.S.); (H.T.d.S.); (S.K.M.B.); (B.M.S.-R.); (F.D.T.Q.d.S.L.); (E.A.L.); (R.F.R.)
| | - Camila Ramalho Bonturi
- Departamento de Bioquímica, Universidade Federal de São Paulo (UNIFESP), São Paulo 04039-002, Brazil; (C.R.B.); (M.L.V.O.)
| | - Maria Luiza Vilela Oliva
- Departamento de Bioquímica, Universidade Federal de São Paulo (UNIFESP), São Paulo 04039-002, Brazil; (C.R.B.); (M.L.V.O.)
| | - Edna Aparecida Leick
- Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo 01246-903, Brazil; (J.A.S.B.); (L.L.S.d.S.); (J.M.L.G.J.); (E.C.d.C.); (S.F.); (L.d.N.C.); (T.M.d.S.); (H.T.d.S.); (S.K.M.B.); (B.M.S.-R.); (F.D.T.Q.d.S.L.); (E.A.L.); (R.F.R.)
| | - Renato Fraga Righetti
- Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo 01246-903, Brazil; (J.A.S.B.); (L.L.S.d.S.); (J.M.L.G.J.); (E.C.d.C.); (S.F.); (L.d.N.C.); (T.M.d.S.); (H.T.d.S.); (S.K.M.B.); (B.M.S.-R.); (F.D.T.Q.d.S.L.); (E.A.L.); (R.F.R.)
- Hospital Sírio Libanês, São Paulo 01308-050, Brazil
| | - Iolanda de Fátima Lopes Calvo Tibério
- Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo 01246-903, Brazil; (J.A.S.B.); (L.L.S.d.S.); (J.M.L.G.J.); (E.C.d.C.); (S.F.); (L.d.N.C.); (T.M.d.S.); (H.T.d.S.); (S.K.M.B.); (B.M.S.-R.); (F.D.T.Q.d.S.L.); (E.A.L.); (R.F.R.)
| |
Collapse
|
9
|
Dey S, Lu W, Haug G, Chia C, Larby J, Weber HC, Gaikwad AV, Bhattarai P, Shahzad AM, Pathinayake PS, Wark PAB, Eapen MS, Sohal SS. Airway inflammatory changes in the lungs of patients with asthma-COPD overlap (ACO): a bronchoscopy endobronchial biopsy study. Respir Res 2023; 24:221. [PMID: 37700291 PMCID: PMC10498556 DOI: 10.1186/s12931-023-02527-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 08/31/2023] [Indexed: 09/14/2023] Open
Abstract
BACKGROUND Although asthma and chronic obstructive pulmonary disease (COPD) are two distinct chronic airway inflammatory diseases, they often co-exist in a patient and the condition is referred to as asthma-COPD overlap (ACO). Lack of evidence regarding the inflammatory cells in ACO airways has led to their poor prognosis and treatment. The objective of this endobronchial biopsy (EBB) study was to enumerate inflammatory cellular changes in the airway wall of ACO compared with asthma, COPD current smokers (CS) and ex-smokers (ES), normal lung function smokers (NLFS), and non-smoker controls (HC). METHODS EBB tissues from 74 patients were immunohistochemically stained for macrophages, mast cells, eosinophils, neutrophils, CD8+ T-cells and CD4+ T-cells. The microscopic images of stained tissues were evaluated in the epithelium, reticular basement membrane (RBM) cells/mm RBM length, and lamina propria (LP) cells/mm2 up to a depth of 120 µM using the image analysis software Image-Pro Plus 7.0. The observer was blinded to the images and disease diagnosis. Statistical analysis was performed using GraphPad Prism v9. RESULTS The tissue macrophages in ACO were substantially higher in the epithelium and RBM than in HC (P < 0.001 for both), COPD-ES (P < 0.001 for both), and -CS (P < 0.05 and < 0.0001, respectively). The ACO LP macrophages were significantly higher in number than COPD-CS (P < 0.05). The mast cell numbers in ACO were lower than in NLFS (P < 0.05) in the epithelium, lower than COPD (P < 0.05) and NLFS (P < 0.001) in RBM; and lower than HC (P < 0.05) in LP. We noted lower eosinophils in ACO LP than HC (P < 0.05) and the lowest neutrophils in both ACO and asthma. Furthermore, CD8+ T-cell numbers increased in the ACO RBM than HC (P < 0.05), COPD-ES (P < 0.05), and NLFS (P < 0.01); however, they were similar in number in epithelium and LP across groups. CD4+ T-cells remained lower in number across all regions and groups. CONCLUSION These results suggest that the ACO airway tissue inflammatory cellular profile differed from the contributing diseases of asthma and COPD with a predominance of macrophages.
Collapse
Affiliation(s)
- Surajit Dey
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Locked Bag, 1322, Newnham Drive, Launceston, TAS, 7248, Australia
| | - Wenying Lu
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Locked Bag, 1322, Newnham Drive, Launceston, TAS, 7248, Australia
- Launceston Respiratory and Sleep Centre, Launceston, TAS, 7250, Australia
| | - Greg Haug
- Department of Respiratory Medicine, Launceston General Hospital, Launceston, TAS, 7250, Australia
| | - Collin Chia
- Launceston Respiratory and Sleep Centre, Launceston, TAS, 7250, Australia
- Department of Respiratory Medicine, Launceston General Hospital, Launceston, TAS, 7250, Australia
| | - Josie Larby
- Department of Respiratory Medicine, Launceston General Hospital, Launceston, TAS, 7250, Australia
| | - Heinrich C Weber
- Department of Respiratory Medicine, Tasmanian Health Services (THS), North-West Hospital, Burnie, TAS, Australia
| | - Archana Vijay Gaikwad
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Locked Bag, 1322, Newnham Drive, Launceston, TAS, 7248, Australia
| | - Prem Bhattarai
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Locked Bag, 1322, Newnham Drive, Launceston, TAS, 7248, Australia
- Launceston Respiratory and Sleep Centre, Launceston, TAS, 7250, Australia
| | - Affan Mahmood Shahzad
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Locked Bag, 1322, Newnham Drive, Launceston, TAS, 7248, Australia
| | - Prabuddha S Pathinayake
- Immune Health Program, Hunter Medical Research Institute, University of Newcastle, New Lambton Heights, Australia
| | - Peter A B Wark
- Immune Health Program, Hunter Medical Research Institute, University of Newcastle, New Lambton Heights, Australia
- Department of Respiratory and Sleep Medicine, John Hunter Hospital, New Lambton Heights, Australia
| | - Mathew Suji Eapen
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Locked Bag, 1322, Newnham Drive, Launceston, TAS, 7248, Australia
| | - Sukhwinder Singh Sohal
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Locked Bag, 1322, Newnham Drive, Launceston, TAS, 7248, Australia.
- Launceston Respiratory and Sleep Centre, Launceston, TAS, 7250, Australia.
| |
Collapse
|
10
|
Ma R, Su H, Jiao K, Liu J. Association Between IL-17 and Chronic Obstructive Pulmonary Disease: A Systematic Review and Meta-Analysis. Int J Chron Obstruct Pulmon Dis 2023; 18:1681-1690. [PMID: 37551391 PMCID: PMC10404405 DOI: 10.2147/copd.s412626] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 07/24/2023] [Indexed: 08/09/2023] Open
Abstract
Background Chronic obstructive pulmonary disease (COPD) is a chronic inflammatory disease characterized by neutrophils airway infiltration. It is currently known that Interleukin-17 (IL-17) is an important pro-inflammatory factor. It can promote the accumulation of neutrophils and participate in the chronic inflammatory process of COPD. However, the value of IL-17 levels in the diagnosis and assessment of COPD remains controversial. In view of this, we conducted a systematic review and meta-analysis to assess its relevance. Methods We searched databases such as PubMed, Web of Science, Cochrane Library and Embase to extract original research. Results A total of 10 studies with 2268 participants were included in this meta-analysis. The results showed that the level of serum IL-17 in patients with stable COPD was significantly higher than that in healthy controls (standard mean difference SMD, 1.59, 95% CI 0.84-2.34; p<0.001). Compared with the stable COPD group, the serum IL-17 level in acute exacerbation (AECOPD) was significantly higher (SMD, 1.78, 95% CI 1.22-2.33; p<0.001). The level of IL-17 in sputum of COPD patients was also higher than that of healthy controls (SMD, 2.03, 95% CI 0.74-3.31; p<0.001). Conclusion Our results showed that IL-17 levels were elevated in serum and sputum in COPD patients compared with healthy controls, and IL-17 levels increased with disease progression. IL-17 serves as a potential biomarker to indicate the persistence of neutrophilic inflammation and exacerbation of COPD.
Collapse
Affiliation(s)
- Ru Ma
- The First Clinical Medical College of Lanzhou University, Lanzhou City, Gansu Province, People’s Republic of China
- Lanzhou University, Lanzhou City, Gansu Province, People’s Republic of China
- Gansu Provincial People’s Hospital, Lanzhou, Gansu Province, People’s Republic of China
| | - Hongling Su
- The First Clinical Medical College of Lanzhou University, Lanzhou City, Gansu Province, People’s Republic of China
- Lanzhou University, Lanzhou City, Gansu Province, People’s Republic of China
- Gansu Provincial People’s Hospital, Lanzhou, Gansu Province, People’s Republic of China
| | - Keping Jiao
- The First Clinical Medical College of Lanzhou University, Lanzhou City, Gansu Province, People’s Republic of China
- Lanzhou University, Lanzhou City, Gansu Province, People’s Republic of China
- Gansu Provincial People’s Hospital, Lanzhou, Gansu Province, People’s Republic of China
| | - Jian Liu
- The First Clinical Medical College of Lanzhou University, Lanzhou City, Gansu Province, People’s Republic of China
- Lanzhou University, Lanzhou City, Gansu Province, People’s Republic of China
| |
Collapse
|
11
|
Benazzouz S, Amri M, Ketfi A, Boutemine IM, Sellam SL, Benkhelifa S, Ameur F, Djebbara S, Achour K, Soufli I, Belguendouz H, Gharnaout M, Touil-Boukoffa C. Ex vivo Immuno-modulatory effect of Echinococcus granulosus laminated layer during allergic rhinitis and allergic asthma: A study in Algerian Patients. Exp Parasitol 2023; 250:108535. [PMID: 37116772 DOI: 10.1016/j.exppara.2023.108535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 04/08/2023] [Accepted: 04/25/2023] [Indexed: 04/30/2023]
Abstract
The effect of helminthic infections on allergic diseases and asthma is still inconclusive. Moreover, there is considerable evidence suggesting that nitric oxide (NO), metalloproteinases and pro-inflammatory cytokines play a significant role in the physiopathology of these diseases. In this sense, the aim of our study is to investigate the ex vivo immunomodulatory effect of the laminated layer (LL, outside layer of parasitic cyst) of the helminth Echinococcus granulosus on NO, IL-17A and IL-10 production. In the first step of our study, we evaluated in vivo the NO, MMP-9, IL-17A, IL-10 levels in Algerian patients with allergic asthma and allergic rhinitis and their changes in relation with exacerbation status of the patients. In the principal part of our work, we assessed NO, IL-10 and IL-17A levels in supernatants of patients PBMCs cultures before and after stimulation with LL. Our results indicate a significant reduction in NO production by PBMCs of patients with allergic rhinitis and allergic asthma whether mild, moderate or severe after stimulation with LL. Interestingly, LL induces a significant decrease in the production of NO and IL17-A levels as well as an increase in the production of IL-10 in the cultures performed with PBMC of patients with severe allergic asthma. Importantly, our data indicate that LL exert a down-modulatory effect on inflammatory mediators (NO, IL-17A) and up immune-regulatory effect on IL-10 production. Collectively, our study supports the hygiene hypothesis suggesting that Echinococcus granulosus infection like other helminths could prevent and/or modulate inflammation responses during inflammatory diseases.
Collapse
Affiliation(s)
- Sara Benazzouz
- Team "Cytokines and NOsynthase, Immunity and Pathogenicity", Laboratory of Cellular and Molecular Biology, Faculty of Biological Sciences, University of Science and Technology Houari Boumediene, BP 32 El Alia, Bab Ezzouar, 16111, Algiers, Algeria
| | - Manel Amri
- Team "Cytokines and NOsynthase, Immunity and Pathogenicity", Laboratory of Cellular and Molecular Biology, Faculty of Biological Sciences, University of Science and Technology Houari Boumediene, BP 32 El Alia, Bab Ezzouar, 16111, Algiers, Algeria
| | | | - Insaf-Meriem Boutemine
- Team "Cytokines and NOsynthase, Immunity and Pathogenicity", Laboratory of Cellular and Molecular Biology, Faculty of Biological Sciences, University of Science and Technology Houari Boumediene, BP 32 El Alia, Bab Ezzouar, 16111, Algiers, Algeria
| | - Sarah Leila Sellam
- Team "Cytokines and NOsynthase, Immunity and Pathogenicity", Laboratory of Cellular and Molecular Biology, Faculty of Biological Sciences, University of Science and Technology Houari Boumediene, BP 32 El Alia, Bab Ezzouar, 16111, Algiers, Algeria
| | - Sarra Benkhelifa
- Team "Cytokines and NOsynthase, Immunity and Pathogenicity", Laboratory of Cellular and Molecular Biology, Faculty of Biological Sciences, University of Science and Technology Houari Boumediene, BP 32 El Alia, Bab Ezzouar, 16111, Algiers, Algeria
| | - Fahima Ameur
- Team "Cytokines and NOsynthase, Immunity and Pathogenicity", Laboratory of Cellular and Molecular Biology, Faculty of Biological Sciences, University of Science and Technology Houari Boumediene, BP 32 El Alia, Bab Ezzouar, 16111, Algiers, Algeria
| | - Sara Djebbara
- Team "Cytokines and NOsynthase, Immunity and Pathogenicity", Laboratory of Cellular and Molecular Biology, Faculty of Biological Sciences, University of Science and Technology Houari Boumediene, BP 32 El Alia, Bab Ezzouar, 16111, Algiers, Algeria
| | - Karima Achour
- Service of Thoracic Surgery, University Hospital Center Lamine Debaghine, Bab El Oued, Algiers, Algeria
| | - Imene Soufli
- Team "Cytokines and NOsynthase, Immunity and Pathogenicity", Laboratory of Cellular and Molecular Biology, Faculty of Biological Sciences, University of Science and Technology Houari Boumediene, BP 32 El Alia, Bab Ezzouar, 16111, Algiers, Algeria
| | - Houda Belguendouz
- Team "Cytokines and NOsynthase, Immunity and Pathogenicity", Laboratory of Cellular and Molecular Biology, Faculty of Biological Sciences, University of Science and Technology Houari Boumediene, BP 32 El Alia, Bab Ezzouar, 16111, Algiers, Algeria
| | | | - Chafia Touil-Boukoffa
- Team "Cytokines and NOsynthase, Immunity and Pathogenicity", Laboratory of Cellular and Molecular Biology, Faculty of Biological Sciences, University of Science and Technology Houari Boumediene, BP 32 El Alia, Bab Ezzouar, 16111, Algiers, Algeria.
| |
Collapse
|
12
|
Wang D, Han D, Huang T, Zhou X, Xu Y. Efficacy evaluation and potential pharmacological mechanism of tanreqing injection in the treatment of COPD combined with respiratory failure based on meta-analysis and network pharmacology. Heliyon 2023; 9:e13513. [PMID: 36846699 PMCID: PMC9947269 DOI: 10.1016/j.heliyon.2023.e13513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/28/2022] [Accepted: 02/01/2023] [Indexed: 02/11/2023] Open
Abstract
Background Tanreqing injection (TRQI) is a Chinese patent medicine. It is commonly used in the treatment of acute exacerbation of COPD in China. It substantially improves the partial pressure of oxygen (PaO2), partial pressure of carbon dioxide (PaCO2), and lung function in patients with COPD combined with respiratory failure (RF) and improves the total clinical effective rate. Materials and methods Relevant randomized controlled trials (RCTs) on the treatment of COPD combined with RF with TRQI were collected through search of PubMed, Web of Science, Embase, Cochrane Library, CBM, VIP, Wanfang, and CNKI up to October 2, 022. Two investigators in this study independently evaluated the quality of the literature and utilized RevMan 5.4 software for analysis. In network pharmacology, TCMSP database, PubChem database, DisGeNet, Genecards, and other databases were searched to screen the chemical components and targets of TRQI and mapped with COPD-RF targets to obtain potential action targets, which were then analyzed using bioinformatics techniques to initially explore their effects. Result A total of 18 RCTs containing 1485 patients, showed that TRQI combined with conventional treatment improved the total clinical efficiency of patients with COPD combined with RF compared with that of the conventional treatment group ([RR = 1.33, 95% CI (1.25, 1.41), P < 0.01]), PaCO2 [SMD = -1.29, 95% CI (-1.41, -1.17), P < 0.00001], PaO2 [SMD = 1.19, 95% CI (1.06, 1.31), P < 0.00001], pulmonary function [SMD = 1.00, 95% CI (0.79, 1.21), P < 0.00001]. Through network pharmacology analysis, 284 potential TRQI and 19 common targets were identified. TNF, TP53, SIRT1, SRC, CCND1, IL-10, NF-κB, MAPK14, STAT3, SMAD3 are core targets proteins. In addition, 56 related pathways of TRQI were identified, such as the TNF, MAPK, IL-17, NF-κB signaling pathways. Conclusion In conclusion, the efficacy of TRQI combined with conventional treatment for COPD combined with RF was higher than that of conventional treatment alone. These findings suggest that TRQI acts on COPD-RF through a multi-target, multi-component, and multi-pathway mechanism. Future studies may explore the active components of TRQI.
Collapse
Affiliation(s)
- Dan Wang
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China,Department of Respiratory and Critical Care Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Di Han
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China,Department of Respiratory and Critical Care Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Tongxing Huang
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China,Department of Respiratory and Critical Care Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Xianmei Zhou
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China,Department of Respiratory and Critical Care Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China,Corresponding author. Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.
| | - Yong Xu
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210029, China,Corresponding author. School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210029, China.
| |
Collapse
|
13
|
Peng J, Wang M, Wu Y, Shen Y, Chen L. Clinical Indicators for Asthma-COPD Overlap: A Systematic Review and Meta-Analysis. Int J Chron Obstruct Pulmon Dis 2022; 17:2567-2575. [PMID: 36259043 PMCID: PMC9572492 DOI: 10.2147/copd.s374079] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 09/24/2022] [Indexed: 11/05/2022] Open
Abstract
Background Some clinical indicators have been reported to be useful in differentiating asthma-chronic obstructive pulmonary disease (COPD) overlap (ACO) from pure asthma/COPD, but the results were inconsistent. This study aims to evaluate the diagnostic value of these indicators for ACO. Methods Databases of PubMed, EMBASE, Ovid and Web of Science were retrieved. Pooled standardized mean differences (SMDs) with 95% confidence intervals (CIs) were calculated in random-effects models. Results 48 eligible studies were included. The pooled results indicated, compared with pure asthma, ACO patients had lower levels of forced expiratory volume in the first second (FEV1)% predicted (pred) (SMD=−1.09, 95% CI −1.3 to −0.87), diffusion lung capacity for carbon monoxide (DLCO)% pred (SMD=−0.83, 95% CI −1.24 to −0.42), fractional exhaled nitric oxide (FeNO) (SMD=−0.23, 95% CI −0.36 to −0.11), and higher levels of induced sputum neutrophil (SMD = 0.51, 95% CI 0.21 to 0.81), circulating YKL-40 (SMD = 0.96, 95% CI 0.27 to 1.64). However, relative to COPD alone, ACO patients had higher levels of FEV1% pred (SMD = 0.15, 95% CI 0.05 to 0.26), DLCO% pred (SMD = 0.38, 95% CI 0.16 to 0.6), FeNO (SMD = 0.59, 95% CI 0.40 to 0.78), serum total immunoglobulin (Ig)E (SMD = 0.42, 95% CI 0.1 to 0.75), blood eosinophil (SMD = 0.44, 95% CI 0.29 to 0.59), induced sputum eosinophil (SMD = 0.62, 95% CI 0.42 to 0.83), and lower levels of induced sputum neutrophil (SMD=−0.48, 95% CI −0.7 to −0.27), circulating YKL-40 (SMD=−1.09, 95% CI −1.92 to −0.26). Conclusion Compared with pure asthma/COPD, ACO patients have different levels of FEV1% pred, DLCO% pred, FeNO, serum total IgE, blood eosinophil, induced sputum eosinophil/neutrophil, and circulating YKL-40, which could be helpful to establish a clinical diagnosis of ACO.
Collapse
Affiliation(s)
- Junjie Peng
- Department of Respiratory and Critical Care Medicine, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, People’s Republic of China
| | - Min Wang
- Department of Respiratory and Critical Care Medicine, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, People’s Republic of China
| | - Yanqiu Wu
- Department of Respiratory and Critical Care Medicine, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, People’s Republic of China
| | - Yongchun Shen
- Department of Respiratory and Critical Care Medicine, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, People’s Republic of China
| | - Lei Chen
- Department of Respiratory and Critical Care Medicine, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, People’s Republic of China,Correspondence: Lei Chen; Yongchun Shen, Department of Respiratory and Critical Care Medicine, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, People’s Republic of China, Email ;
| |
Collapse
|
14
|
Palma G, Sorice GP, Genchi VA, Giordano F, Caccioppoli C, D’Oria R, Marrano N, Biondi G, Giorgino F, Perrini S. Adipose Tissue Inflammation and Pulmonary Dysfunction in Obesity. Int J Mol Sci 2022; 23:ijms23137349. [PMID: 35806353 PMCID: PMC9267094 DOI: 10.3390/ijms23137349] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 02/04/2023] Open
Abstract
Obesity is a chronic disease caused by an excess of adipose tissue that may impair health by altering the functionality of various organs, including the lungs. Excessive deposition of fat in the abdominal area can lead to abnormal positioning of the diaphragm and consequent reduction in lung volume, leading to a heightened demand for ventilation and increased exposure to respiratory diseases, such as chronic obstructive pulmonary disease, asthma, and obstructive sleep apnoea. In addition to mechanical ventilatory constraints, excess fat and ectopic deposition in visceral depots can lead to adipose tissue dysfunction, which promotes metabolic disorders. An altered adipokine-secretion profile from dysfunctional adipose tissue in morbid obesity fosters systemic, low-grade inflammation, impairing pulmonary immune response and promoting airway hyperresponsiveness. A potential target of these adipokines could be the NLRP3 inflammasome, a critical component of the innate immune system, the harmful pro-inflammatory effect of which affects both adipose and lung tissue in obesity. In this review, we will investigate the crosstalk between adipose tissue and the lung in obesity, highlighting the main inflammatory mediators and novel therapeutic targets in preventing pulmonary dysfunction.
Collapse
|
15
|
Aldhalmi AK, Al-Athari AJH, Makki Al-Hindy HAA. Association of Tumor Necrosis Factor-α and Myeloperoxidase enzyme with Severe Asthma: A comparative study. Rep Biochem Mol Biol 2022; 11:238-245. [PMID: 36164624 PMCID: PMC9455177 DOI: 10.52547/rbmb.11.2.238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 11/22/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Tumor necrosis factor-alpha (TNF-α) may stimulate airway hyperresponsiveness in asthma, which is also affected by neutrophils activity. The latter can be determined indirectly by evaluating myeloperoxidase (MPO) activity. The insufficient studies that investigated the combined association of serum TNF-α and MPO with asthma was objective of this study. METHODS A case-control study included 110-asthmatics besides 92-controls. All participants underwent venous sampling for TNF-α and MPO immunoassays. A percentage of predicted "forced expiratory volume in one second (FEV1%)", and the "peak expiratory flow rate (PEF/L)" of all participants were verified. The statistical analyses had done using SPSS V-25. The accuracy, specificity, sensitivity, and significance of both biomarkers to distinguish asthma examined "under the ROC-curves". RESULTS High TNF-α levels observed among the controls(p-0.006), opposing the higher MPO levels among the patients(p-0.00). There were nonsignificant variations of two biomarkers between the treatment groups and nonsignificant correlations of MPO with FEV1 and PEF. There was a significant correlation of MPO with the TNF-α levels of all participants. The TNF-α showed lower sensitivity, specificity, and accuracy to diagnose asthma. There were no MPO differences according to asthma levels. The TNF-α was higher among the severe asthmatics significantly. DISCUSSION TNF-α may be a contributory particle for neutrophilic inflammation of severe asthma. MPO levels were significantly higher among asthmatics, whereas TNF-α levels were lower. TNF-α levels were higher among those with severe compared to mild/moderate asthma. The MPO level has a significant predictive capacity compared to TNF-α for distinguishing asthma from healthy subjects.
Collapse
|
16
|
Matarazzo L, Hernandez Santana YE, Walsh PT, Fallon PG. The IL-1 cytokine family as custodians of barrier immunity. Cytokine 2022; 154:155890. [DOI: 10.1016/j.cyto.2022.155890] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 03/31/2022] [Accepted: 04/13/2022] [Indexed: 12/12/2022]
|
17
|
Asthma-Chronic Obstructive Pulmonary Disease Overlap. Immunol Allergy Clin North Am 2022; 42:591-600. [DOI: 10.1016/j.iac.2022.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
18
|
Blockade of NLRP3/Caspase-1/IL-1β Regulated Th17/Treg Immune Imbalance and Attenuated the Neutrophilic Airway Inflammation in an Ovalbumin-Induced Murine Model of Asthma. J Immunol Res 2022; 2022:9444227. [PMID: 35664352 PMCID: PMC9159827 DOI: 10.1155/2022/9444227] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 03/28/2022] [Accepted: 05/04/2022] [Indexed: 12/12/2022] Open
Abstract
Asthma is a heterogeneous inflammatory disorder of the airways, and multiple studies have addressed the vital role of the nucleotide-binding oligomerization domain-like receptor family pyrin domain containing 3 (NLRP3)/caspase-1/interleukin-1β (IL-1β) pathway in asthma, but its impact on ovalbumin- (OVA-) induced neutrophilic asthma remains unclear. Here, we explored this pathway's effect on airway inflammation in neutrophilic asthma to clarify whether blocking this signaling could alleviate asthmatic airway inflammation. Using an established OVA-induced neutrophilic asthma mouse model, we provided asthmatic mice with a highly selective NLRP3 inhibitor, MCC950, and a specific caspase-1 inhibitor, Ac-YVAD-cmk. Our results indicated that asthmatic mice exhibited increased airway hyperresponsiveness, neutrophil infiltration, and airway mucus hypersecretion, upregulated retinoid-related orphan receptor-γt (RORγt) mRNA expression, and downregulated fork head box p3 (Foxp3) mRNA expression, which was concurrent with NLRP3 inflammasome activation and upregulation of caspase-1, IL-1β, and IL-18 expression in lung. Treatment of NLRP3 inflammasome inhibitors significantly attenuated airway hyperresponsiveness, airway inflammation, and reversed T helper 17 (Th17)/regulatory T (Treg) cell imbalance in asthmatic mice. We propose that the NLRP3/caspase-1/IL-1β pathway plays an important role in the pathological process of neutrophilic asthma and provides evidence that blocking this pathway could potentially be a treatment strategy to ameliorate airway inflammation in asthma after validation with future experimental and clinical studies.
Collapse
|
19
|
Chen YC, Chang YP, Huang KT, Hsu PY, Hsiao CC, Lin MC. Unraveling the Pathogenesis of Asthma and Chronic Obstructive Pulmonary Disease Overlap: Focusing on Epigenetic Mechanisms. Cells 2022; 11:cells11111728. [PMID: 35681424 PMCID: PMC9179497 DOI: 10.3390/cells11111728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/05/2022] [Accepted: 05/21/2022] [Indexed: 12/10/2022] Open
Abstract
Asthma and COPD overlap (ACO) is characterized by patients presenting with persistent airflow limitation and features of both asthma and COPD. It is associated with a higher frequency and severity of exacerbations, a faster lung function decline, and a higher healthcare cost. Systemic inflammation in COPD and asthma is driven by type 1 T helper (Th1) and Th2 immune responses, respectively, both of which may contribute to airway remodeling in ACO. ACO-related biomarkers can be classified into four categories: neutrophil-mediated inflammation, Th2 cell responses, arachidonic acid-eicosanoids pathway, and metabolites. Gene–environment interactions are key contributors to the complexity of ACO and are regulated by epigenetic mechanisms, including DNA methylation, histone modifications, and non-coding RNAs. Thus, this review focuses on the link between epigenetics and ACO, and outlines the following: (I) inheriting epigenotypes without change with environmental stimuli, or epigenetic changes in response to long-term exposure to inhaled particles plus intermittent exposure to specific allergens; (II) epigenetic markers distinguishing ACO from COPD and asthma; (III) potential epigenetic drugs that can reverse oxidative stress, glucocorticoid insensitivity, and cell injury. Improved understanding of the epigenetic regulations holds great value to give deeper insight into the mechanisms, and clarify their implications for biomedical research in ACO.
Collapse
Affiliation(s)
- Yung-Che Chen
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; (Y.-P.C.); (K.-T.H.); (P.-Y.H.)
- Department of Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Correspondence: (Y.-C.C.); (C.-C.H.); (M.-C.L.); Tel.: +886-7-731-7123 (ext. 8199) (Y.-C.C. & M.-C.L.); +886-7-731-7123 (ext. 8979) (C.-C.H.)
| | - Yu-Ping Chang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; (Y.-P.C.); (K.-T.H.); (P.-Y.H.)
| | - Kuo-Tung Huang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; (Y.-P.C.); (K.-T.H.); (P.-Y.H.)
| | - Po-Yuan Hsu
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; (Y.-P.C.); (K.-T.H.); (P.-Y.H.)
| | - Chang-Chun Hsiao
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; (Y.-P.C.); (K.-T.H.); (P.-Y.H.)
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Correspondence: (Y.-C.C.); (C.-C.H.); (M.-C.L.); Tel.: +886-7-731-7123 (ext. 8199) (Y.-C.C. & M.-C.L.); +886-7-731-7123 (ext. 8979) (C.-C.H.)
| | - Meng-Chih Lin
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; (Y.-P.C.); (K.-T.H.); (P.-Y.H.)
- Correspondence: (Y.-C.C.); (C.-C.H.); (M.-C.L.); Tel.: +886-7-731-7123 (ext. 8199) (Y.-C.C. & M.-C.L.); +886-7-731-7123 (ext. 8979) (C.-C.H.)
| |
Collapse
|
20
|
Alshevskaya A, Zhukova J, Kireev F, Lopatnikova J, Evsegneeva I, Demina D, Nepomniashchikch V, Gladkikh V, Karaulov A, Sennikov S. Redistribution of TNF Receptor 1 and 2 Expression on Immune Cells in Patients with Bronchial Asthma. Cells 2022; 11:cells11111736. [PMID: 35681430 PMCID: PMC9179889 DOI: 10.3390/cells11111736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/22/2022] [Accepted: 05/23/2022] [Indexed: 12/04/2022] Open
Abstract
Background: The co-expression patterns of type 1 and 2 tumor necrosis factor (TNF)-α membrane receptors (TNFR1/TNFR2) are associated with the presence, stage, and activity of allergic diseases. The aim of this study was to assess the expression levels and dynamics of TNFRs on immune cells and to assess associations between their expression and severity of bronchial asthma (BA). Methods: Patients with severe (n = 8), moderate (n = 10), and mild (n = 4) BA were enrolled. As a comparison group, data from 46 healthy volunteers (HV) were accessed. Co-expression of TNFR1/2 was evaluated as a percentage of cells and the number of receptors of each type per cell. Multivariate logistic regression analysis was used to identify diagnostic biomarkers of BA. Results: More than 90% of the monocytes in patients with mild BA were TNFR1+TNFR2+ but had significantly lower TNFR1 expression density compared with HV (7.82- to 14.08-fold, depending on disease severity). Lower percentages of the TNFR+ B-lymphocytes were observed in combination with significantly lower receptors density in BA compared with HV (2.59- to 11.64-fold for TNFR1 and 1.72- to 3.4-fold for TNFR2, depending on disease severity). The final multivariate model for predicting the presence of BA included the percentage of double-positive CD5+ B-lymphocytes and average number of TNFR1 molecules expressed on cytotoxic naive T-lymphocytes and T-helper cells (R2 = 0.87). Conclusions: The co-expression patterns of TNFRs on immune cells in BA differed significantly compared with HV. The expression differences were associated with disease severity. TNFR1 expression changes were key parameters that discriminated patients with BA from those with HV.
Collapse
Affiliation(s)
- Alina Alshevskaya
- Federal State Budgetary Scientific Institution, Research Institute of Fundamental and Clinical Immunology (RIFCI), Novosibirsk 630099, Russia; (A.A.); (J.Z.); (F.K.); (J.L.); (D.D.); (V.N.)
| | - Julia Zhukova
- Federal State Budgetary Scientific Institution, Research Institute of Fundamental and Clinical Immunology (RIFCI), Novosibirsk 630099, Russia; (A.A.); (J.Z.); (F.K.); (J.L.); (D.D.); (V.N.)
| | - Fedor Kireev
- Federal State Budgetary Scientific Institution, Research Institute of Fundamental and Clinical Immunology (RIFCI), Novosibirsk 630099, Russia; (A.A.); (J.Z.); (F.K.); (J.L.); (D.D.); (V.N.)
| | - Julia Lopatnikova
- Federal State Budgetary Scientific Institution, Research Institute of Fundamental and Clinical Immunology (RIFCI), Novosibirsk 630099, Russia; (A.A.); (J.Z.); (F.K.); (J.L.); (D.D.); (V.N.)
| | - Irina Evsegneeva
- Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov, First Moscow State Medical University of the Ministry of Health of the Russian Federation, Moscow 101000, Russia; (I.E.); (A.K.)
| | - Daria Demina
- Federal State Budgetary Scientific Institution, Research Institute of Fundamental and Clinical Immunology (RIFCI), Novosibirsk 630099, Russia; (A.A.); (J.Z.); (F.K.); (J.L.); (D.D.); (V.N.)
| | - Vera Nepomniashchikch
- Federal State Budgetary Scientific Institution, Research Institute of Fundamental and Clinical Immunology (RIFCI), Novosibirsk 630099, Russia; (A.A.); (J.Z.); (F.K.); (J.L.); (D.D.); (V.N.)
| | - Victor Gladkikh
- Biostatistics and Clinical Trials Center, Novosibirsk 630099, Russia;
| | - Alexander Karaulov
- Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov, First Moscow State Medical University of the Ministry of Health of the Russian Federation, Moscow 101000, Russia; (I.E.); (A.K.)
| | - Sergey Sennikov
- Federal State Budgetary Scientific Institution, Research Institute of Fundamental and Clinical Immunology (RIFCI), Novosibirsk 630099, Russia; (A.A.); (J.Z.); (F.K.); (J.L.); (D.D.); (V.N.)
- Correspondence: ; Tel.: +7-(383)-2221910
| |
Collapse
|
21
|
Banafea GH, Bakhashab S, Alshaibi HF, Natesan Pushparaj P, Rasool M. The role of human mast cells in allergy and asthma. Bioengineered 2022; 13:7049-7064. [PMID: 35266441 PMCID: PMC9208518 DOI: 10.1080/21655979.2022.2044278] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Mast cells are tissue-inhabiting cells that play an important role in inflammatory diseases of the airway tract. Mast cells arise in the bone marrow as progenitor cells and complete their differentiation in tissues exposed to the external environment, such as the skin and respiratory tract, and are among the first to respond to bacterial and parasitic infections. Mast cells express a variety of receptors that enable them to respond to a wide range of stimulants, including the high-affinity FcεRI receptor. Upon initial contact with an antigen, mast cells are sensitized with IgE to recognize the allergen upon further contact. FcεRI-activated mast cells are known to release histamine and proteases that contribute to asthma symptoms. They release a variety of cytokines and lipid mediators that contribute to immune cell accumulation and tissue remodeling in asthma. Mast cell mediators trigger inflammation and also have a protective effect. This review aims to update the existing knowledge on the mediators released by human FcεRI-activated mast cells, and to unravel their pathological and protective roles in asthma and allergy. In addition, we highlight other diseases that arise from mast cell dysfunction, the therapeutic approaches used to address them, and fill the gaps in our current knowledge. Mast cell mediators not only trigger inflammation but may also have a protective effect. Given the differences between human and animal mast cells, this review focuses on the mediators released by human FcεRI-activated mast cells and the role they play in asthma and allergy.
Collapse
Affiliation(s)
- Ghalya H Banafea
- Biochemistry Department, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sherin Bakhashab
- Biochemistry Department, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Huda F Alshaibi
- Biochemistry Department, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Peter Natesan Pushparaj
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.,Center of Excellence in Genomic Medicine Research, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mahmood Rasool
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.,Center of Excellence in Genomic Medicine Research, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
22
|
Araújo NPDS, de Matos NA, Oliveira M, de Souza ABF, Castro TDF, Machado-Júnior PA, de Souza DMS, Talvani A, Cangussú SD, de Menezes RCA, Bezerra FS. Quercetin Improves Pulmonary Function and Prevents Emphysema Caused by Exposure to Cigarette Smoke in Male Mice. Antioxidants (Basel) 2022; 11:antiox11020181. [PMID: 35204064 PMCID: PMC8868486 DOI: 10.3390/antiox11020181] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/22/2021] [Accepted: 01/05/2022] [Indexed: 12/12/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is the major cause of morbidity and mortality worldwide, and cigarette smoke is a key factor in the development of COPD. Thus, the development of effective therapies to prevent the advancement of COPD has become increasingly essential. We hypothesized that quercetin protects lungs in mice exposed to long-term cigarette smoke. Thirty-five C57BL/6 mice were exposed to cigarette smoke (12 cigarettes per day) for 60 days and pretreated with 10 mg/kg/day of quercetin via orogastric gavage. After the experimental protocol, the animals were euthanized and samples were collected for histopathological, antioxidant defense, oxidative stress and inflammatory analysis. The animals exposed to cigarette smoke showed an increase in respiratory rate and hematological parameters, cell influx into the airways, oxidative damage and inflammatory mediators, besides presenting with alterations in the pulmonary histoarchitecture. The animals receiving 10 mg/kg/day of quercetin that were exposed to cigarette smoke presented a reduction in cellular influx, less oxidative damage, reduction in cytokine levels, improvement in the histological pattern and improvement in pulmonary emphysema compared to the group that was only exposed to cigarette smoke. These results suggest that quercetin may be an agent in preventing pulmonary emphysema induced by cigarette smoke.
Collapse
Affiliation(s)
- Natália Pereira da Silva Araújo
- Laboratory of Experimental Pathophysiology, Department of Biological Sciences and Center of Research in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto 35400-000, Brazil; (N.P.d.S.A.); (N.A.d.M.); (M.O.); (A.B.F.d.S.); (T.d.F.C.); (P.A.M.-J.); (S.D.C.)
| | - Natália Alves de Matos
- Laboratory of Experimental Pathophysiology, Department of Biological Sciences and Center of Research in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto 35400-000, Brazil; (N.P.d.S.A.); (N.A.d.M.); (M.O.); (A.B.F.d.S.); (T.d.F.C.); (P.A.M.-J.); (S.D.C.)
| | - Michel Oliveira
- Laboratory of Experimental Pathophysiology, Department of Biological Sciences and Center of Research in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto 35400-000, Brazil; (N.P.d.S.A.); (N.A.d.M.); (M.O.); (A.B.F.d.S.); (T.d.F.C.); (P.A.M.-J.); (S.D.C.)
| | - Ana Beatriz Farias de Souza
- Laboratory of Experimental Pathophysiology, Department of Biological Sciences and Center of Research in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto 35400-000, Brazil; (N.P.d.S.A.); (N.A.d.M.); (M.O.); (A.B.F.d.S.); (T.d.F.C.); (P.A.M.-J.); (S.D.C.)
| | - Thalles de Freitas Castro
- Laboratory of Experimental Pathophysiology, Department of Biological Sciences and Center of Research in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto 35400-000, Brazil; (N.P.d.S.A.); (N.A.d.M.); (M.O.); (A.B.F.d.S.); (T.d.F.C.); (P.A.M.-J.); (S.D.C.)
| | - Pedro Alves Machado-Júnior
- Laboratory of Experimental Pathophysiology, Department of Biological Sciences and Center of Research in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto 35400-000, Brazil; (N.P.d.S.A.); (N.A.d.M.); (M.O.); (A.B.F.d.S.); (T.d.F.C.); (P.A.M.-J.); (S.D.C.)
| | - Débora Maria Soares de Souza
- Laboratory of Immunobiology of Inflammation, Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto 35400-000, Brazil; (D.M.S.d.S.); (A.T.)
| | - André Talvani
- Laboratory of Immunobiology of Inflammation, Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto 35400-000, Brazil; (D.M.S.d.S.); (A.T.)
| | - Sílvia Dantas Cangussú
- Laboratory of Experimental Pathophysiology, Department of Biological Sciences and Center of Research in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto 35400-000, Brazil; (N.P.d.S.A.); (N.A.d.M.); (M.O.); (A.B.F.d.S.); (T.d.F.C.); (P.A.M.-J.); (S.D.C.)
| | - Rodrigo Cunha Alvim de Menezes
- Laboratory of Cardiovascular Physiology, Department of Biological Sciences and Center of Research in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto 35400-000, Brazil;
| | - Frank Silva Bezerra
- Laboratory of Experimental Pathophysiology, Department of Biological Sciences and Center of Research in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto 35400-000, Brazil; (N.P.d.S.A.); (N.A.d.M.); (M.O.); (A.B.F.d.S.); (T.d.F.C.); (P.A.M.-J.); (S.D.C.)
- Correspondence:
| |
Collapse
|
23
|
Saminan S, Julisafrida L, Ridwan M, Fajri N. COVID-19 Pandemic: What Considerations Should Be Taken during the Assessment and Management of COPD Exacerbation? Open Access Maced J Med Sci 2022. [DOI: 10.3889/oamjms.2022.7930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
The on-going coronavirus disease 2019 (COVID-19) pandemic could contribute to higher mortality in population with underlying respiratory diseases, including chronic obstructive pulmonary disease (COPD). The aim of this review was to inform readers pertaining to the correlation of COPD exacerbation and severe acute respiratory syndrome-2 (SARS-CoV-2) infection along with considerations that could be taken in the clinical diagnosis and management. The literature search was conducted on Google Scholar, Scopus, and PubMed databases using related terms (such as, but not limited to, “COVID-19,” “SARS-CoV-2,” “COPD management,” “N-acetylcysteine,” and “corticosteroids”) on November 1–9, 2021. Recent studies suggest that COVID-19 and COPD are correlated through three pathways, namely, angiotensin-converting enzyme 2 expression, dysregulation of biological parameters, and occurrence of pneumonia. Early detection of COVID-19 in patients with underlying COPD is difficult because they share similar symptoms, attributed to advanced progression of the infection and subsequently deteriorates lung function. During COPD management, clinicians are expected to take consideration on the effect of systemic corticosteroids if patients develop COVID-19. In conclusion, COVID-19 and COPD and its management are potentially correlated, contributing to the worsening of the disease. There is a need of immediate research to reveal the true correlation between COVID-19 and COPD to improve the management.
Collapse
|
24
|
Guntur VP, Manka LA, Moore CM, Wynn E, Vladar EK, Alam R, Pham TH, Fingerlin TE, Martin RJ. Refractory neutrophilic asthma and ciliary genes. J Allergy Clin Immunol 2022; 149:1970-1980. [PMID: 35034774 DOI: 10.1016/j.jaci.2021.12.761] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 11/12/2021] [Accepted: 12/08/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND Refractory asthma (RA) remains poorly controlled, resulting in high health care utilization despite guideline-based therapies. Patients with RA manifest higher neutrophilia as a result of increased airway inflammation and subclinical infection, the underlying mechanisms of which remain unclear. OBJECTIVE We sought to characterize and clinically correlate gene expression differences between refractory and nonrefractory (NR) asthma to uncover molecular mechanisms driving group distinctions. METHODS Microarray gene expression of paired airway epithelial brush and endobronchial biopsy samples was compared between 60 RA and 30 NR subjects. Subjects were hierarchically clustered to identify subgroups of RA, and biochemical and clinical traits (airway inflammatory molecules, respiratory pathogens, chest imaging) were compared between groups. Weighted gene correlation network analysis was used to identify coexpressed gene modules. Module expression scores were compared between groups using linear regression, controlling for age, sex, and body mass index. RESULTS Differential gene expression analysis showed upregulation of proneutrophilic and downregulation of ciliary function genes/pathways in RA compared to NR. A subgroup of RA with downregulated ciliary gene expression had increased levels of subclinical infections, airway neutrophilia, and eosinophilia as well as higher chest imaging mucus burden compared to other RA, the dominant differences between RA and NR. Weighted gene correlation network analysis identified gene modules related to ciliary function, which were downregulated in RA and were associated with lower pulmonary function and higher airway wall thickness/inflammation, markers of poorer asthma control. CONCLUSIONS Identification of a novel ciliary-deficient subgroup of RA suggests that diminished mucociliary clearance may underlie repeated asthma exacerbations despite adequate treatment, necessitating further exploration of function, mechanism, and therapeutics.
Collapse
Affiliation(s)
- Vamsi P Guntur
- Division of Pulmonary, Critical Care, and Sleep Medicine, National Jewish Health, Denver, Colo; The NJH Cohen Family Asthma Institute, National Jewish Health, Denver, Colo.
| | - Laurie A Manka
- Division of Pulmonary, Critical Care, and Sleep Medicine, National Jewish Health, Denver, Colo; The NJH Cohen Family Asthma Institute, National Jewish Health, Denver, Colo
| | - Camille M Moore
- Center for Genes, Environment and Health, National Jewish Health, Denver, Colo
| | - Elizabeth Wynn
- Department of Biostatistics and Informatics, University of Colorado Anschutz Medical Campus, Aurora, Colo
| | - Eszter K Vladar
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, and the Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, Colo
| | - Rafeul Alam
- The NJH Cohen Family Asthma Institute, National Jewish Health, Denver, Colo; Division of Allergy and Immunology, National Jewish Health, Denver, Colo
| | - Tuyet-Hang Pham
- Translational Science & Experimental Medicine, Research & Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg
| | - Tasha E Fingerlin
- Center for Genes, Environment and Health, National Jewish Health, Denver, Colo; Department of Biostatistics and Informatics, University of Colorado Anschutz Medical Campus, Aurora, Colo
| | - Richard J Martin
- Division of Pulmonary, Critical Care, and Sleep Medicine, National Jewish Health, Denver, Colo; The NJH Cohen Family Asthma Institute, National Jewish Health, Denver, Colo
| |
Collapse
|
25
|
MIR-548ar-3p increases cigarette smoke extractinduced chronic obstructive pulmonary disease (COPD) injury through solute carrier family 17 member 9 (SLC17A9). ARCH BIOL SCI 2022. [DOI: 10.2298/abs220201008z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
This study investigated the effect of microRNA mir-548ar-3p on cigarette
smoke extract (CSE)-induced chronic obstructive pulmonary disease (COPD).
High-throughput sequencing was performed on peripheral blood from smoking
COPD patients and non-smoking individuals with normal pulmonary function,
and mir-548ar-3p RNA, possessing large differential expression was selected.
Experimental groups were divided into control, experimental model (EM),
EM+mimic miRNA, negative control (NC) and EM+miR-548ar-3p groups; an empty
vector or miR-548ar-3p mimic was transfected into human bronchial epithelial
(HBE) cells. A COPD model was established by treating HBE cells with CSE.
Cell viability, apoptosis and solute carrier family 17 member 9 (SLC17A9)
protein expression were examined by cell counting kit-8, flow cytometry and
Western blotting, respectively. Cell viability in the EM+miR-548ar-3p group
decreased significantly, and the apoptosis rate and SLC17A9 protein
expression increased significantly compared with the control (P<0.05, all
groups). In smoking COPD patients, interferon (IFN)-? and interleukin
(IL)-17? expression detected by ELISA was significantly higher than in
normal individuals. miR-548ar-3p expression was significantly lower (P<0.05,
all groups). These findings suggest that miR-548ar-3p was expressed at a
lower level in COPD patients. miR-548ar-3p may increase the extent of
CSE-induced COPD injury through SLC17A9.
Collapse
|
26
|
Uzeloto JS, de Toledo-Arruda AC, Silva BSA, Braz AMM, de Lima FF, Grigoletto I, Ramos D, Golim MA, Ramos EMC. Effect of physical training on cytokine expression in CD4+ T lymphocytes in subjects with stable COPD. Ther Adv Respir Dis 2022; 16:17534666221091179. [PMID: 35695009 PMCID: PMC9189509 DOI: 10.1177/17534666221091179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Introduction: Although evidence suggests that physical exercise reduces systemic inflammation, at the plasma level, there are still contradictions in chronic obstructive pulmonary disease (COPD). In this sense, analysis of intracellular cytokines could clear off the effect of physical exercise on the inflammatory profile of these subjects. Aim: The aim was to evaluate the effect of physical training on cytokine expression in CD4+ T lymphocytes from subjects with COPD. Methods: This is a randomized controlled trial. Subjects with stable COPD were grouped into two groups, exercise and control. In total, 23 subjects with stable COPD were evaluated, of which 15 underwent aerobic strength training [physical exercise group (PEG)] and 8 underwent breathing exercises [respiratory physiotherapy group (RPG)]. Intracellular cytokines [interleukin (IL)-8, IL-13, IL-17, IL-6, IL-2, IL-10, and tumor necrosis factor alpha (TNF-α)] from CD4+ T lymphocytes were analyzed from peripheral blood through flow cytometry, before and after 8 weeks of intervention. Results: The PEG and RPG groups had a mean age of 68 ± 5.96 and 72.25 ± 6.86 years and predicted forced expiratory volume in the first second (FEV1) of 58.6 ± 15.99% and 39.75 ± 10.39%, respectively. It was possible to detect a significant reduction in IL-8 (p = 0.0125) and an increase in IL-13 (p = 0.0014) and an increase in TNF-α (p < 0.001) in both groups. Conclusion: Eight weeks of physical training, both peripheral and respiratory, were able to reduce concentrations of IL-8 and to increase IL-13, and TNF-α in CD4+ T lymphocytes in subjects with stable COPD. The findings reinforce the benefits of interventions in subjects with COPD, revealing data not previously investigated.
Collapse
Affiliation(s)
- Juliana S Uzeloto
- Department of Physiotherapy, Postgraduate Program in Physiotherapy, Faculty of Science and Technology, São Paulo State University (UNESP), Rua Roberto Simonsen, 305, Presidente Prudente, São Paulo 19060-900, Brazil
| | - Alessandra C de Toledo-Arruda
- Department of Physiology and Pharmacology, Laboratory of Exercise Sciences, Fluminense Federal University, Rio de Janeiro, Brazil
| | - Bruna S A Silva
- Physiotherapy, Universidade Estadual Paulista Julio de Mesquita Filho, Presidente Prudente
| | - Aline M M Braz
- Universidade Estadual Paulista Julio de Mesquita Filho.,Instituto de Biociencias Campus de Botucatu, Medical Biotechnology, Botucatu
| | - Fabiano F de Lima
- Physiotherapy, Universidade Estadual Paulista Julio de Mesquita Filho, Presidente Prudente
| | - Isis Grigoletto
- Physiotherapy, Universidade Estadual Paulista Julio de Mesquita Filho, Presidente Prudente
| | - Dionei Ramos
- Physiotherapy, Universidade Estadual Paulista Julio de Mesquita Filho, Presidente Prudente
| | - Marjorie A Golim
- Botucatu Medical School, Postgraduate Program in Research & Development: Medical Biotechnology, Blood Center, Flow Cytometry Laboratory, São Paulo State University (UNESP), São Paulo, Brazil
| | - Ercy M C Ramos
- Physiotherapy, Universidade Estadual Paulista Julio de Mesquita Filho, Presidente Prudente
| |
Collapse
|
27
|
N-Acetylcysteine (NAC) Inhibits Synthesis of IL-18 in Macrophage by Suppressing NLRP3 Expression to Reduce the Production of IFN- γ from NK Cells. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2021; 2021:7596343. [PMID: 34899969 PMCID: PMC8664516 DOI: 10.1155/2021/7596343] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 10/25/2021] [Indexed: 12/28/2022]
Abstract
Background N-Acetylcysteine (NAC) had exerted antioxidation and anti-inflammation effects on chronic obstructive pulmonary disease (COPD) patients. However, its effect in regulating interleukin- (IL-) 18 was not fully understood. This study was designed to evaluate the specific mechanism of NAC regulating IL-18. Materials and Methods A total of 112 COPD patients and 103 health individuals were recruited in the study. Cytokine level in patients' serum was measured by enzyme-linked immunosorbent assay (ELISA). A COPD mouse model was established by administration of lipopolysaccharide (LPS) and cigarette smoke. The expression of cytokines was measured by ELISA and flow cytometry. Inflammasome-related protein was measured by Western blot. Result NAC could effectively improve the immune status of COPD patients as well as the COPD mouse model by downregulating proinflammation and inflammation cytokines including IL-1β, interferon- (IFN-) γ, tumor necrosis factor- (TNF-) α, and IL-18. It also had the capability to suppress synthesis of IL-18 in macrophage to inhibit the secretion of IFN-γ from natural killer (NK) cells through influencing the inflammasome-related protein in macrophages. Conclusion NAC could effectively inhibit the production of IL-18 by suppressing NLRP3 expression in macrophages to reduce the production of IFN-γ in NK cells.
Collapse
|
28
|
A Potential Link Between Polycystic Ovary Syndrome and Asthma: a Meta-Analysis. Reprod Sci 2021; 29:312-319. [PMID: 34811714 DOI: 10.1007/s43032-021-00662-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 06/10/2021] [Indexed: 10/19/2022]
Abstract
While there exists some evidence indicating a higher prevalence of asthma in polycystic ovary syndrome (PCOS) patients, whether PCOS is an independent risk factor for asthma remains debatable. In this report, a systematic review and meta-analysis were performed to assess the association between PCOS and asthma. Using of the terms "PCOS," "polycystic ovary syndrome," "polycystic ovarian syndrome," "Stein Leventhal Syndrome," "asthma," and "wheezing," PubMed, Embase, Web of Science, Scopus, Cochrane Trial Register, China National Knowledge Infrastructure (CNKI), and Wanfang databases were searched for studies published from their inceptions to February 2021. The data were extracted and a meta-analysis was conducted under the guidance of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). A random-effects model was used to calculate the odds ratios (OR) and 95% confidence intervals (95% CI). A total of 6 articles involving 26,876 PCOS women and 156,143 healthy controls were included in this survey. Our results indicate that PCOS patients showed an increased risk of asthma (OR = 1.75, 95% CI = 1.40-2.19, I2 = 91.2%, P = 0.000, random-effects model). No statistically significant differences were obtained when these data were stratified by region, diagnostic criteria for asthma, and study design. PCOS is associated with a higher risk of asthma, a relationship which is independent of region, diagnostic criteria for bronchitis, and study design.
Collapse
|
29
|
王 小, 朱 洁, 高 雅, 吴 凡, 杨 勤, 童 佳, 张 星, 王 传, 吴 迪, 李 泽. [ Liuwei Buqi capsule modulates immune function by targeting multiple immune cell subsets in lung tissue of patients with COPD]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2021; 41:1492-1500. [PMID: 34755664 PMCID: PMC8586865 DOI: 10.12122/j.issn.1673-4254.2021.10.07] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To investigate the characteristics of immune cell subsets in the lung tissues of patients with chronic obstructive pulmonary disease (COPD) and the mechanism of Liuwei Buqi capsule in modulating immune and inflammatory imbalance in COPD. METHODS We downloaded COPD-related single-cell RNA sequencing data from Gene Expression Omnibus (GEO) and identified COPD immune cell subsets using the Seurat package in the R software to construct an immune cell subsets-differential genes network. The target genes and active ingredients of Liuwei Buqi capsule were obtained from the Chinese Medicine System Pharmacology Database and Analysis Platform (TCMSP), and the Liuwei Buqi capsule-immune cell subsets-target genes network was constructed by mapping the target genes to the differentially expressed genes in each immune cell subset. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis was performed to analyze significantly enriched pathways of the target genes, and the key genes involved in the top 20 pathways were identified. In a rat model of COPD, we investigated the effects of Liuwei Buqi capsule on pulmonary function, lung tissue pathology, serum levels of IL-1β, NF-κB, and TNF-α, and expressions of IKBα, JNK, c-JUN, and c-FOS proteins in the lung tissue. RESULTS A total of 18 immune-related cell subsets, including macrophages and alveolar macrophages, were identified in both COPD patients and healthy control subjects, and the patients with COPD showed significant changes the percentages of macrophages, cDC1, pDC, mast cells, T cells, and mature dendritic cells (P < 0.05). Liuwei Buqi capsules targeted multiple immune cell subsets, and the identified target genes were enriched mostly in such immune and inflammation-related signaling pathways as lipids and atherosclerosis, IL-17 signaling pathway, Toll-like receptor signaling pathway, and TNF signaling pathway; the genes CXCL8, IL1B, JUN, NFKBIA, MAPK8, and FOS were the key genes involved in the significantly enriched pathways. In the rat models of COPD, treatment with Liuwei Buqi capsule significantly improved pulmonary function, alleviated lung pathologies, reduced serum levels of IL-1β, TNF-α, and NF-κB (P < 0.05) and pulmonary expressions of JNK, c-JUN, and c-FOS (P < 0.01) protein, and increased pulmonary expression of IκBα (P < 0.01). CONCLUSION Liuwei Buqi capsule may play an immunomodulatory role by targeting multiple immune cell subsets in the lung tissue of COPD patients.
Collapse
Affiliation(s)
- 小乐 王
- 安徽中医药大学研究生院, 安徽 合肥 230012Graduate School, Anhui University of Chinese Medicine, Hefei 230012, China
| | - 洁 朱
- 安徽中医药大学中西医结合学院, 安徽 合肥 230012College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei 230012, China
- 安徽省中医药科学院中医呼吸病防治研究所, 安徽 合肥 230031Institute of Medicine for Respiratory Disease, Anhui Academy of Chinese Medicine, Hefei 230031, China
- 安徽省教育厅重点实验室中医药防治肺系重大疾病重点实验室, 安徽 合肥 230031Key Laboratory of Chinese Medicine for Prevention and Control of Major Diseases in Pulmonary System, Key Laboratory of Anhui Provincial Education Department, Hefei 230031, China
| | - 雅婷 高
- 安徽中医药大学研究生院, 安徽 合肥 230012Graduate School, Anhui University of Chinese Medicine, Hefei 230012, China
| | - 凡 吴
- 安徽中医药大学研究生院, 安徽 合肥 230012Graduate School, Anhui University of Chinese Medicine, Hefei 230012, China
| | - 勤军 杨
- 安徽中医药大学研究生院, 安徽 合肥 230012Graduate School, Anhui University of Chinese Medicine, Hefei 230012, China
| | - 佳兵 童
- 第一附属医院, 安徽 合肥 230031First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei 230031, China
- 安徽省中医药科学院中医呼吸病防治研究所, 安徽 合肥 230031Institute of Medicine for Respiratory Disease, Anhui Academy of Chinese Medicine, Hefei 230031, China
- 安徽省教育厅重点实验室中医药防治肺系重大疾病重点实验室, 安徽 合肥 230031Key Laboratory of Chinese Medicine for Prevention and Control of Major Diseases in Pulmonary System, Key Laboratory of Anhui Provincial Education Department, Hefei 230031, China
| | - 星星 张
- 第一附属医院, 安徽 合肥 230031First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei 230031, China
- 安徽省中医药科学院中医呼吸病防治研究所, 安徽 合肥 230031Institute of Medicine for Respiratory Disease, Anhui Academy of Chinese Medicine, Hefei 230031, China
- 安徽省教育厅重点实验室中医药防治肺系重大疾病重点实验室, 安徽 合肥 230031Key Laboratory of Chinese Medicine for Prevention and Control of Major Diseases in Pulmonary System, Key Laboratory of Anhui Provincial Education Department, Hefei 230031, China
| | - 传博 王
- 安徽省中医药科学院中医呼吸病防治研究所, 安徽 合肥 230031Institute of Medicine for Respiratory Disease, Anhui Academy of Chinese Medicine, Hefei 230031, China
- 安徽省教育厅重点实验室中医药防治肺系重大疾病重点实验室, 安徽 合肥 230031Key Laboratory of Chinese Medicine for Prevention and Control of Major Diseases in Pulmonary System, Key Laboratory of Anhui Provincial Education Department, Hefei 230031, China
- 安徽医科大学第二附属医院中医科, 安徽 合肥 230601Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - 迪 吴
- 安徽中医药大学研究生院, 安徽 合肥 230012Graduate School, Anhui University of Chinese Medicine, Hefei 230012, China
| | - 泽庚 李
- 第一附属医院, 安徽 合肥 230031First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei 230031, China
- 安徽省中医药科学院中医呼吸病防治研究所, 安徽 合肥 230031Institute of Medicine for Respiratory Disease, Anhui Academy of Chinese Medicine, Hefei 230031, China
- 安徽省教育厅重点实验室中医药防治肺系重大疾病重点实验室, 安徽 合肥 230031Key Laboratory of Chinese Medicine for Prevention and Control of Major Diseases in Pulmonary System, Key Laboratory of Anhui Provincial Education Department, Hefei 230031, China
| |
Collapse
|
30
|
Odimba U, Senthilselvan A, Farrell J, Gao Z. Current Knowledge of Asthma-COPD Overlap (ACO) Genetic Risk Factors, Characteristics, and Prognosis. COPD 2021; 18:585-595. [PMID: 34555990 DOI: 10.1080/15412555.2021.1980870] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Asthma-COPD overlap (ACO) is a newly identified phenotype of chronic obstructive airway diseases with shared asthma and COPD features. Patients with ACO are poorly defined, and some evidence suggests that they have worse health outcomes and greater disease burden than patients with COPD or asthma. Generally, there is no evidence-based and universal definition for ACO; several consensus documents have provided various descriptions of the phenotype. In addition, the mechanisms underlying the development of ACO are not fully understood. Whether ACO is a distinct clinical entity with its particular discrete genetic determinant different from asthma and COPD alone or an intermediate phenotype with overlapping genetic markers within asthma and COPD spectrum of obstructive airway disease remains unproven. This review summarizes the current knowledge of the genetic risk factors, characteristics, and prognosis of ACO.
Collapse
Affiliation(s)
- Ugochukwu Odimba
- Clinical Epidemiology Unit, Division of Community Health and Humanities, Faculty of Medicine, Memorial University, St. John's, Newfoundland and Labrador, Canada
| | | | - Jamie Farrell
- Clinical Epidemiology Unit, Division of Community Health and Humanities, Faculty of Medicine, Memorial University, St. John's, Newfoundland and Labrador, Canada.,Faculty of Medicine, Health Sciences Centre (Respirology Department), Memorial University, St John's, Newfoundland and Labrador, Canada
| | - Zhiwei Gao
- Clinical Epidemiology Unit, Division of Community Health and Humanities, Faculty of Medicine, Memorial University, St. John's, Newfoundland and Labrador, Canada
| |
Collapse
|
31
|
Hui C, Liu X. Regulatory effect of NLRP3 on airway inflammatory response and pyroptosis in mice with asthma. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2021; 23:959-964. [PMID: 34535213 DOI: 10.7499/j.issn.1008-8830.2106107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
OBJECTIVES To study the regulatory effect of the NOD-like receptor, pyrin domain-containing 3 (NLRP3) on airway inflammatory response and pyroptosis in mice with asthma. METHODS The NLRP3 wild-type (WT) C57BL/6J mice were divided into two groups: NLRP3-WT control and NLRP3-WT asthma. The mice with NLRP3 knockout (KO) were divided into two groups: NLRP3-KO control and NLRP3-KO asthma (n=10 each). A model of asthma was prepared by intraperitoneal injection of ovalbumin + aluminium hydroxide for sensitization and ovalbumin inhalation for challenge. Enhanced pause, an index for airway responsiveness, was measured for each group. Hematoxylin and eosin staining was used to observe the histomorphological changes of lungs and determine the inflammation score for each group. Bronchoalveolar lavage fluid was collected from each group to determine the numbers of neutrophils, eosinophils, and lymphocytes and measure the content of interleukin-1β (IL-1β) and interleukin-18 (IL-18). Western blot was used to measure the expression of NLRP3, cleaved caspase-1, and Gasdermin D-N in lung tissue of each group. RESULTS Compared with the NLRP3-WT control group, the NLRP3-WT asthma group showed morphological changes including airway smooth muscle thickening and inflammatory cell infiltration. Compared with the NLRP3-WT asthma group, the NLRP3-KO asthma group had significant improvements in the above morphological manifestations. Compared with the NLRP3-WT control group, the NLRP3-WT asthma group had significant increases in the enhanced pause, the inflammation score of lung tissue, the numbers of neutrophils, eosinophils and lymphocytes in bronchoalveolar lavage fluid, and the levels of IL-1β and IL-18 in bronchoalveolar lavage fluid (P<0.05). The expression of NLRP3, cleaved caspase-1, and Gasdermin D-N in lung tissue also significantly increased in the NLRP3-WT asthma group (P<0.05). The above indices in the NLRP3-KO asthma group were significantly lower than those in the NLRP3-WT asthma group (P<0.05). CONCLUSIONS The overexpression of NLRP3 is associated with the pathogenesis of asthma, which may be related to the molecular mechanisms of the activation of airway inflammatory response and pyroptosis. Citation.
Collapse
Affiliation(s)
- Chao Hui
- Clinical Laboratory, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121000, China (Liu X, 420901580@qq. com)
| | - Xin Liu
- Clinical Laboratory, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121000, China (Liu X, 420901580@qq. com)
| |
Collapse
|
32
|
Shen Y, Lu H, Song G. MiR-221-3p and miR-92a-3p enhances smoking-induced inflammation in COPD. J Clin Lab Anal 2021; 35:e23857. [PMID: 34097306 PMCID: PMC8274981 DOI: 10.1002/jcla.23857] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 03/29/2021] [Accepted: 04/10/2021] [Indexed: 12/23/2022] Open
Abstract
Background Smoking is likely to facilitate airway inflammation and finally contributes to chronic obstructive pulmonary disease (COPD). This investigation was intended to elucidate miRNAs that were involved in smoking‐induced COPD. Methods Altogether 155 COPD patients and 77 healthy volunteers were recruited, and their serum levels of miR‐221‐3p and miR‐92a‐3p were determined. Besides, human bronchial epithelial cells (16HBECs) were purchased, and they were treated by varying concentrations of cigarette smoke extract (CSE). The 16HBECs were, additionally, transfected by miR‐221‐3p mimic, miR‐92a‐3p mimic, miR‐221‐3p inhibitor or miR‐92a‐3p inhibitor, and cytokines released by them, including TNF‐α, IL‐8, IL‐1β, and TGF‐β1, were monitored using enzyme linked immunosorbent assay (ELISA) kits. Results Chronic obstructive pulmonary disease patients possessed higher serum levels of miR‐221‐3p and miR‐92a‐3p than healthy volunteers (p < 0.05), and both miR‐221‐3p and miR‐92a‐3p were effective biomarkers in diagnosing stable COPD from acute exacerbation COPD. Moreover, viability of 16HBECs was undermined by CSE treatment (p < 0.05), and exposure to CSE facilitated 16HBECs’ release of TNF‐α, IL‐8, IL‐1β, and TGF‐β1 (p < 0.05). Furthermore, miR‐221‐3p/miR‐92a‐3p expression in 16HBECs was significantly suppressed after transfection of miR‐221‐3p/miR‐92a‐3p inhibitor (p < 0.05), which abated CSE‐triggered increase in cytokine production and decline in viability of 16HBECs (p < 0.05). Conclusion MiR‐221‐3p and miR‐92a‐3p were involved in CSE‐induced hyperinflammation of COPD, suggesting that they were favorable alternatives in diagnosing COPD patients with smoking history.
Collapse
Affiliation(s)
- Yahui Shen
- Department of Respiratory and Critical Care Medicine, Taizhou Clinical Medical School of Nanjing Medical University (Taizhou People's Hospital), Taizhou, China
| | - Huiyu Lu
- Department of Respiratory and Critical Care Medicine, Taizhou Clinical Medical School of Nanjing Medical University (Taizhou People's Hospital), Taizhou, China
| | - Guixian Song
- Department of Cardiology, Taizhou Clinical Medical School of Nanjing Medical University (Taizhou People's Hospital), Taizhou, China
| |
Collapse
|
33
|
Fujino N, Sugiura H. ACO (Asthma-COPD Overlap) Is Independent from COPD, a Case in Favor: A Systematic Review. Diagnostics (Basel) 2021; 11:859. [PMID: 34064650 PMCID: PMC8150952 DOI: 10.3390/diagnostics11050859] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 05/10/2021] [Indexed: 01/03/2023] Open
Abstract
Asthma and chronic obstructive pulmonary disease (COPD) are now recognized to be able to co-exist as asthma-COPD overlap (ACO). It is clinically relevant to evaluate whether patients with COPD concurrently have components of asthma in primary care. This is because: (i) ACO is a relatively common condition among asthma (over 40 years of age) or COPD irrespective of its diagnosis criteria; (ii) patients with ACO can have higher frequency of exacerbation and more rapid decline in lung function than those with asthma or COPD; and (iii) asthmatic features such as eosinophilic airway inflammation are promising indicators for prediction of inhaled corticosteroid-responsiveness in COPD. The aim of this review to evaluate diagnostic markers for ACO. We searched PubMed for articles related to ACO published until 2020. Articles associated with diagnostic biomarkers were included. We identified a total of 25 studies, some of which have revealed that a combination of biomarkers such as fractional exhaled nitric oxide and serum immunoglobulin E is useful to discern type 2 inflammation in the airways of COPD. Here, we review the current understanding of the clinical characteristics, biomarkers and molecular pathophysiology of ACO in the context of how ACO can be differentiated from COPD.
Collapse
Affiliation(s)
- Naoya Fujino
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan;
| | | |
Collapse
|