1
|
Cheng W, Ren W, Ye P, He L, Bao D, Yue T, Lai J, Wu Y, Wei Y, Wu Z, Piao JG. Camouflaging nanoreactor traverse the blood-brain barrier to catalyze redox cascade for synergistic therapy of glioblastoma. Biomaterials 2024; 311:122702. [PMID: 39008916 DOI: 10.1016/j.biomaterials.2024.122702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/25/2024] [Accepted: 07/07/2024] [Indexed: 07/17/2024]
Abstract
The blood-brain barrier (BBB) is a complex and highly restrictive barrier that prevents most biomolecules and drugs from entering the brain. However, effective strategies for delivering drugs to the brain are urgently needed for the treatment of glioblastoma. Based on the efficient BBB penetration properties of exosomes derived from brain metastatic breast cancer cells (EB), this work prepared a nanoreactor (denoted as MAG@EB), which was constructed by self-assembly of Mn2+, arsenate and glucose oxidase (GOx) into nanoparticles wrapped with EB. MAG@EB can enhance the efficiency of traversing the BBB, target and accumulate at in situ glioblastoma sites. The GOx-driven glycolysis effectively cuts off the glucose supply while also providing an abundance of H2O2 and lowering pH. Meanwhile, the released Mn2+ mediated Fenton-like reaction converts elevated H2O2 into highly toxic ·OH. Besides, AsV was reduced to AsIII by glutathione, and the tumor suppressor gene P53 was activated by AsIII to kill glioblastoma cells. Glioblastoma succumbed to the redox cascade triggered by MAG@EB, as the results demonstrated in vivo and in vitro, yielding a remarkable therapeutic effect. This work provides a promising therapeutic option mediated by cascaded nanoreactors for the future treatment of glioblastoma.
Collapse
Affiliation(s)
- WeiYi Cheng
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - WeiYe Ren
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Peng Ye
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Li He
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Dandan Bao
- Department of Dermatology & Cosmetology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310006, China
| | - Tianxiang Yue
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Jianjun Lai
- Department of Oncology, Zhejiang Hospital, Hangzhou, 310030, China
| | - Yajun Wu
- Department of Pharmacy, Zhejiang Hospital, Hangzhou 310013, China
| | - YingHui Wei
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Zhibing Wu
- Department of Oncology, Zhejiang Hospital, Hangzhou, 310030, China.
| | - Ji-Gang Piao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| |
Collapse
|
2
|
Blancas-Zugarazo SS, Langley E, Hidalgo-Miranda A. Exosomal lncRNAs as regulators of breast cancer chemoresistance and metastasis and their potential use as biomarkers. Front Oncol 2024; 14:1419808. [PMID: 39148900 PMCID: PMC11324554 DOI: 10.3389/fonc.2024.1419808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 07/16/2024] [Indexed: 08/17/2024] Open
Abstract
Breast cancer is the most common cancer in women and the leading cause of female deaths by cancer in the world worldwide. Hence, understanding the molecular mechanisms associated with breast cancer development and progression, including drug resistance and breast cancer metastasis, is essential for achieving the best management of breast cancer patients. Cancer-related long noncoding RNAs have been shown to be involved in the regulation of each stage of breast cancer progression. Additionally, exosomes are extracellular microvesicles that are central to intercellular communication and play an important role in tumorigenesis. Exosomes can be released from primary tumor cells into the bloodstream and transmit cellular signals to distant body sites. In this work, we review the findings regarding the cellular mechanisms regulated by exosomal lncRNAs that are essentials to chemoresistance development and metastasis of breast cancer. Likewise, we evaluate the outcomes of the potential clinical use of exosomal lncRNAs as breast cancer biomarkers to achieve personalized management of the patients. This finding highlights the importance of transcriptomic analysis of exosomal lncRNAs to understand the breast cancer tumorigenesis as well as to improve the clinical tests available for this disease.
Collapse
Affiliation(s)
- Sugela Susana Blancas-Zugarazo
- Cátedras CONAHCYT (Consejo Nacional de Humanidades Ciencia y Tecnología) - Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
| | - Elizabeth Langley
- Laboratorio de Cáncer Hormono Regulado, Instituto Nacional de Cancerología (INCAN), Mexico City, Mexico
| | - Alfredo Hidalgo-Miranda
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
| |
Collapse
|
3
|
Bao H, Chen Y, Zhang Y, Lan H, Jin K. Exosomes-based immunotherapy for cancer: Effective components in the naïve and engineered forms. Int Immunopharmacol 2024; 139:112656. [PMID: 39043104 DOI: 10.1016/j.intimp.2024.112656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/01/2024] [Accepted: 07/06/2024] [Indexed: 07/25/2024]
Abstract
Today, cancer treatment is one of the main challenges for researchers. The main cause of tumor cell formation is mutations that lead to uncontrolled proliferation and inhibition of apoptosis in malignant cells. Tumor cells also create a microenvironment that can suppress the immune system cells' responses through various methods, including producing soluble factors and cell-to-cell communication. After being produced from tumor cells, exosomes can also affect the functions of other cells in this microenvironment. Various studies have shown that exosomes from different sources, including tumor cells and immune cells, can be used to treat cancers due to their characteristics. Since tumor cells are rich sources of various types of tumor peptides, they can induce anti-tumor responses. Immune cells also produce exosomes that mimic the functions of their cells of origin, such that exosomes derived from NK cells and CTLs can directly lead to their apoptosis after merging with tumor cells. However, many researchers have pointed out that naïve exosomes have a limited therapeutic function, and their therapeutic potential can be increased by manipulating and engineering them. There are various methods to modify exosomes and improve their therapeutic potential. In general, these methods are divided into two parts, which include changing the cell of origin of the exosome and encapsulating the exosome to carry different drugs. In this review, we will discuss the studies on the therapeutic use of naive and engineered exosomes and provide an update on new studies in this field.
Collapse
Affiliation(s)
- Huan Bao
- Department of Neurosurgery, Jiashan First People's Hospital, Jiashan First People's Hospital Luoxing Branch, Jiashan, Zhejiang 314100, China
| | - Yun Chen
- Department of Colorectal Surgery, Xinchang People's Hospital, Affiliated Xinchang Hospital, Wenzhou Medical University, Xinchang, Zhejiang 312500, China
| | - Youni Zhang
- Department of Laboratory Medicine, Tiantai People's Hospital, Taizhou, Zhejiang 317200, China
| | - Huanrong Lan
- Department of Surgical Oncology, Hangzhou Cancer Hospital, Hangzhou, Zhejiang 310002, China.
| | - Ketao Jin
- Department of Gastrointestinal, Colorectal and Anal Surgery, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang 310006, China.
| |
Collapse
|
4
|
Nasrollahpour H, Mirzaie A, Sharifi M, Rezabakhsh A, Khalilzadeh B, Rahbarghazi R, Yousefi H, Klionsky DJ. Biosensors; a novel concept in real-time detection of autophagy. Biosens Bioelectron 2024; 254:116204. [PMID: 38507929 DOI: 10.1016/j.bios.2024.116204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 02/23/2024] [Accepted: 03/09/2024] [Indexed: 03/22/2024]
Abstract
Autophagy is an early-stage response with self-degradation properties against several insulting conditions. To date, the critical role of autophagy has been well-documented in physiological and pathological conditions. This process involves various signaling and functional biomolecules, which are involved in different steps of the autophagic response. During recent decades, a range of biochemical analyses, chemical assays, and varied imaging techniques have been used for monitoring this pathway. Due to the complexity and dynamic aspects of autophagy, the application of the conventional methodology for following autophagic progression is frequently associated with a mistake in discrimination between a complete and incomplete autophagic response. Biosensors provide a de novo platform for precise and accurate analysis of target molecules in different biological settings. It has been suggested that these devices are applicable for real-time monitoring and highly sensitive detection of autophagy effectors. In this review article, we focus on cutting-edge biosensing technologies associated with autophagy detection.
Collapse
Affiliation(s)
| | - Arezoo Mirzaie
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Sharifi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Aysa Rezabakhsh
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Balal Khalilzadeh
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Applied Cellular Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Hadi Yousefi
- Department of Applied Cellular Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Daniel J Klionsky
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
5
|
Li J, Lu S, Chen F, Zhu H. Unveiling the hidden role of extracellular vesicles in brain metastases: a comprehensive review. Front Immunol 2024; 15:1388574. [PMID: 38726015 PMCID: PMC11079170 DOI: 10.3389/fimmu.2024.1388574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 04/16/2024] [Indexed: 05/12/2024] Open
Abstract
Background Extracellular vesicles (EVs) are small, transparent vesicles that can be found in various biological fluids and are derived from the amplification of cell membranes. Recent studies have increasingly demonstrated that EVs play a crucial regulatory role in tumorigenesis and development, including the progression of metastatic tumors in distant organs. Brain metastases (BMs) are highly prevalent in patients with lung cancer, breast cancer, and melanoma, and patients often experience serious complications and are often associated with a poor prognosis. The immune microenvironment of brain metastases was different from that of the primary tumor. Nevertheless, the existing review on the role and therapeutic potential of EVs in immune microenvironment of BMs is relatively limited. Main body This review provides a comprehensive analysis of the published research literature, summarizing the vital role of EVs in BMs. Studies have demonstrated that EVs participate in the regulation of the BMs immune microenvironment, exemplified by their ability to modify the permeability of the blood-brain barrier, change immune cell infiltration, and activate associated cells for promoting tumor cell survival and proliferation. Furthermore, EVs have the potential to serve as biomarkers for disease surveillance and prediction of BMs. Conclusion Overall, EVs play a key role in the regulation of the immune microenvironment of brain metastasis and are expected to make advances in immunotherapy and disease diagnosis. Future studies will help reveal the specific mechanisms of EVs in brain metastases and use them as new therapeutic strategies.
Collapse
Affiliation(s)
| | | | | | - Hui Zhu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| |
Collapse
|
6
|
WADHWA KARAN, CHAUHAN PAYAL, KUMAR SHOBHIT, PAHWA RAKESH, VERMA RAVINDER, GOYAL RAJAT, SINGH GOVIND, SHARMA ARCHANA, RAO NEHA, KAUSHIK DEEPAK. Targeting brain tumors with innovative nanocarriers: bridging the gap through the blood-brain barrier. Oncol Res 2024; 32:877-897. [PMID: 38686045 PMCID: PMC11056000 DOI: 10.32604/or.2024.047278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/22/2024] [Indexed: 05/02/2024] Open
Abstract
Background Glioblastoma multiforme (GBM) is recognized as the most lethal and most highly invasive tumor. The high likelihood of treatment failure arises from the presence of the blood-brain barrier (BBB) and stem cells around GBM, which avert the entry of chemotherapeutic drugs into the tumor mass. Objective Recently, several researchers have designed novel nanocarrier systems like liposomes, dendrimers, metallic nanoparticles, nanodiamonds, and nanorobot approaches, allowing drugs to infiltrate the BBB more efficiently, opening up innovative avenues to prevail over therapy problems and radiation therapy. Methods Relevant literature for this manuscript has been collected from a comprehensive and systematic search of databases, for example, PubMed, Science Direct, Google Scholar, and others, using specific keyword combinations, including "glioblastoma," "brain tumor," "nanocarriers," and several others. Conclusion This review also provides deep insights into recent advancements in nanocarrier-based formulations and technologies for GBM management. Elucidation of various scientific advances in conjunction with encouraging findings concerning the future perspectives and challenges of nanocarriers for effective brain tumor management has also been discussed.
Collapse
Affiliation(s)
- KARAN WADHWA
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001, India
| | - PAYAL CHAUHAN
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001, India
| | - SHOBHIT KUMAR
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology (MIET) NH-58, Delhi-Roorkee Highway, Meerut, 250005, India
| | - RAKESH PAHWA
- Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra, 136119, India
| | - RAVINDER VERMA
- Department of Pharmaceutical Sciences, Chaudhary Bansi Lal University, Bhiwani, 127021, India
| | - RAJAT GOYAL
- MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana, 133207, India
| | - GOVIND SINGH
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001, India
| | - ARCHANA SHARMA
- Delhi Pharmaceutical Sciences and Research University (DIPSAR), Delhi Pharmaceutical Sciences and Research University, New Delhi, 110017, India
| | - NEHA RAO
- Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra, 136119, India
| | - DEEPAK KAUSHIK
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001, India
| |
Collapse
|
7
|
Li Y, Zheng Y, Tan X, Du Y, Wei Y, Liu S. Extracellular vesicle-mediated pre-metastatic niche formation via altering host microenvironments. Front Immunol 2024; 15:1367373. [PMID: 38495881 PMCID: PMC10940351 DOI: 10.3389/fimmu.2024.1367373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 02/23/2024] [Indexed: 03/19/2024] Open
Abstract
The disordered growth, invasion and metastasis of cancer are mainly attributed to bidirectional cell-cell interactions. Extracellular vesicles (EVs) secreted by cancer cells are involved in orchestrating the formation of pre-metastatic niches (PMNs). Tumor-derived EVs mediate bidirectional communication between tumor and stromal cells in local and distant microenvironments. EVs carrying mRNAs, small RNAs, microRNAs, DNA fragments, proteins and metabolites determine metastatic organotropism, enhance angiogenesis, modulate stroma cell phenotypes, restructure the extracellular matrix, induce immunosuppression and modify the metabolic environment of organs. Evidence indicates that EVs educate stromal cells in secondary sites to establish metastasis-supportive microenvironments for seeding tumor cells. In this review, we provide a comprehensive overview of PMN formation and the underlying mechanisms mediated by EVs. Potential approaches to inhibit cancer metastasis by inhibiting the formation of PMNs are also presented.
Collapse
Affiliation(s)
- Ying Li
- Department of Blood Transfusion, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yan Zheng
- Department of Operating Room, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiaojie Tan
- Department of Gastrointestinal Surgery, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yongxing Du
- Department of Pancreatic and Gastric Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yingxin Wei
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Shanglong Liu
- Department of Gastrointestinal Surgery, the Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
8
|
Sakamoto Y, Ochiya T, Yoshioka Y. Extracellular vesicles in the breast cancer brain metastasis: physiological functions and clinical applications. Front Hum Neurosci 2023; 17:1278501. [PMID: 38111675 PMCID: PMC10725966 DOI: 10.3389/fnhum.2023.1278501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 11/10/2023] [Indexed: 12/20/2023] Open
Abstract
Breast cancer, which exhibits an increasing incidence and high mortality rate among cancers, is predominantly attributed to metastatic malignancies. Brain metastasis, in particular, significantly contributes to the elevated mortality in breast cancer patients. Extracellular vesicles (EVs) are small lipid bilayer vesicles secreted by various cells that contain biomolecules such as nucleic acids and proteins. They deliver these bioactive molecules to recipient cells, thereby regulating signal transduction and protein expression levels. The relationship between breast cancer metastasis and EVs has been extensively investigated. In this review, we focus on the molecular mechanisms by which EVs promote brain metastasis in breast cancer. Additionally, we discuss the potential of EV-associated molecules as therapeutic targets and their relevance as early diagnostic markers for breast cancer brain metastasis.
Collapse
Affiliation(s)
| | | | - Yusuke Yoshioka
- Department of Molecular and Cellular Medicine, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| |
Collapse
|
9
|
Pu Q, Gao H. The Role of the Tumor Microenvironment in Triple-Positive Breast Cancer Progression and Therapeutic Resistance. Cancers (Basel) 2023; 15:5493. [PMID: 38001753 PMCID: PMC10670777 DOI: 10.3390/cancers15225493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/26/2023] [Accepted: 11/18/2023] [Indexed: 11/26/2023] Open
Abstract
Breast cancer (BRCA) is a highly heterogeneous systemic disease. It is ranked first globally in the incidence of new cancer cases and has emerged as the primary cause of cancer-related death among females. Among the distinct subtypes of BRCA, triple-positive breast cancer (TPBC) has been associated with increased metastasis and invasiveness, exhibiting greater resistance to endocrine therapy involving trastuzumab. It is now understood that invasion, metastasis, and treatment resistance associated with BRCA progression are not exclusively due to breast tumor cells but are from the intricate interplay between BRCA and its tumor microenvironment (TME). Accordingly, understanding the pathogenesis and evolution of the TPBC microenvironment demands a comprehensive approach. Moreover, addressing BRCA treatment necessitates a holistic consideration of the TME, bearing significant implications for identifying novel targets for anticancer interventions. This review expounds on the relationship between critical cellular components and factors in the TPBC microenvironment and the inception, advancement, and therapeutic resistance of breast cancer to provide perspectives on the latest research on TPBC.
Collapse
Affiliation(s)
- Qian Pu
- Department of Breast Surgery, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao 266035, China;
- Oncology Laboratory, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao 266035, China
| | - Haidong Gao
- Department of Breast Surgery, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao 266035, China;
- Oncology Laboratory, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao 266035, China
| |
Collapse
|
10
|
Brozos-Vázquez EM, Rodríguez-López C, Cortegoso-Mosquera A, López-Landrove S, Muinelo-Romay L, García-González J, López-López R, León-Mateos L. Immunotherapy in patients with brain metastasis: advances and challenges for the treatment and the application of circulating biomarkers. Front Immunol 2023; 14:1221113. [PMID: 38022574 PMCID: PMC10654987 DOI: 10.3389/fimmu.2023.1221113] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023] Open
Abstract
The central nervous system (CNS) is one of the most frequent metastatic sites of various cancers, including lung cancer, breast cancer and melanoma. The development of brain metastases requires a specific therapeutic approach and is associated with high mortality and morbidity in cancer patients. Advances in precision medicine and the introduction in recent years of new drugs, such as immunotherapy, have made it possible to improve the prognosis of these patients by improving survival and quality of life. New diagnostic techniques such as liquid biopsy allow real-time monitoring of tumor evolution, providing molecular information on prognostic and predictive biomarkers of response to treatment in blood or other fluids. In this review, we perform an exhaustive update of the clinical trials that demonstrate the utility of immunotherapy in patients with brain metastases and the potential of circulating biomarkers to improving the results of efficacy and toxicity in this subgroup of patients.
Collapse
Affiliation(s)
- E M Brozos-Vázquez
- Medical Oncology Department, Complexo Hospitalario Universitario de Santiago de Compostela, Santiago de Compostela, Spain
- Medical Oncology Department, Complexo Hospitalario Universitario de A Coruña, Santiago de Compostela, Spain
- ONCOMET, Instituto de Investigación Sanitaria de Santiago, Santiago de Compostela, Spain
- CIBERONC, Madrid, Spain
| | - C Rodríguez-López
- Medical Oncology Department, Complexo Hospitalario Universitario de Santiago de Compostela, Santiago de Compostela, Spain
- ONCOMET, Instituto de Investigación Sanitaria de Santiago, Santiago de Compostela, Spain
- CIBERONC, Madrid, Spain
| | - A Cortegoso-Mosquera
- Medical Oncology Department, Complexo Hospitalario Universitario de Santiago de Compostela, Santiago de Compostela, Spain
- ONCOMET, Instituto de Investigación Sanitaria de Santiago, Santiago de Compostela, Spain
- CIBERONC, Madrid, Spain
| | - S López-Landrove
- ONCOMET, Instituto de Investigación Sanitaria de Santiago, Santiago de Compostela, Spain
| | - L Muinelo-Romay
- ONCOMET, Instituto de Investigación Sanitaria de Santiago, Santiago de Compostela, Spain
- CIBERONC, Madrid, Spain
| | - J García-González
- Medical Oncology Department, Complexo Hospitalario Universitario de Santiago de Compostela, Santiago de Compostela, Spain
- ONCOMET, Instituto de Investigación Sanitaria de Santiago, Santiago de Compostela, Spain
- CIBERONC, Madrid, Spain
| | - R López-López
- Medical Oncology Department, Complexo Hospitalario Universitario de Santiago de Compostela, Santiago de Compostela, Spain
- ONCOMET, Instituto de Investigación Sanitaria de Santiago, Santiago de Compostela, Spain
- CIBERONC, Madrid, Spain
| | - L León-Mateos
- Medical Oncology Department, Complexo Hospitalario Universitario de Santiago de Compostela, Santiago de Compostela, Spain
- ONCOMET, Instituto de Investigación Sanitaria de Santiago, Santiago de Compostela, Spain
- CIBERONC, Madrid, Spain
| |
Collapse
|
11
|
Wu W, He J. Unveiling the functional paradigm of exosome-derived long non-coding RNAs (lncRNAs) in cancer: based on a narrative review and systematic review. J Cancer Res Clin Oncol 2023; 149:15219-15247. [PMID: 37578522 DOI: 10.1007/s00432-023-05273-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/10/2023] [Indexed: 08/15/2023]
Abstract
BACKGROUND AND PURPOSE The intricate mechanisms underlying intercellular communication within the tumor microenvironment remain largely elusive. Recently, attention has shifted towards exploring the intercellular signaling mediated by exosomal long non-coding RNAs (lncRNAs) within this context. This comprehensive systematic review aims to elucidate the functional paradigm of exosome-derived lncRNAs in cancer. MATERIALS AND METHODS The review provides a comprehensive narrative of lncRNA definition, characteristics, as well as the formation, sorting, and uptake processes of exosome-derived lncRNAs. Additionally, it describes comprehensive technology for exosome research and nucleic acid drug loading. This review further systematically examines the cellular origins, functional roles, and underlying mechanisms of exosome-derived lncRNAs in recipient cells within the cancer setting. RESULTS The functional paradigm of exosome-derived lncRNAs in cancer mainly depends on the source cells and sorting mechanism of exosomal lncRNAs, the recipient cells and uptake mechanisms of exosomal lncRNAs, and the specific molecular mechanisms of lncRNAs in recipient cells. The source cells of exosomal lncRNAs mainly involved in the current review included tumor cells, cancer stem cells, normal cells, macrophages, and cancer-associated fibroblasts. CONCLUSION This synthesis of knowledge offers valuable insights for accurately identifying exosomal lncRNAs with potential as tumor biomarkers. Moreover, it aids in the selection of appropriate targeting strategies and preclinical models, thereby facilitating the clinical translation of exosomal lncRNAs as promising therapeutic targets against cancer. Through a comprehensive understanding of the functional role of exosome-derived lncRNAs in cancer, this review paves the way for advancements in personalized medicine and improved treatment outcomes.
Collapse
Affiliation(s)
- Wenhan Wu
- Department of General Surgery (Gastrointestinal Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, China.
| | - Jia He
- Faculty Affairs and Human Resources Management Department, Southwest Medical University, Luzhou, China
| |
Collapse
|
12
|
Osaid Z, Haider M, Hamoudi R, Harati R. Exosomes Interactions with the Blood-Brain Barrier: Implications for Cerebral Disorders and Therapeutics. Int J Mol Sci 2023; 24:15635. [PMID: 37958619 PMCID: PMC10648512 DOI: 10.3390/ijms242115635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023] Open
Abstract
The Blood-Brain Barrier (BBB) is a selective structural and functional barrier between the circulatory system and the cerebral environment, playing an essential role in maintaining cerebral homeostasis by limiting the passage of harmful molecules. Exosomes, nanovesicles secreted by virtually all cell types into body fluids, have emerged as a major mediator of intercellular communication. Notably, these vesicles can cross the BBB and regulate its physiological functions. However, the precise molecular mechanisms by which exosomes regulate the BBB remain unclear. Recent research studies focused on the effect of exosomes on the BBB, particularly in the context of their involvement in the onset and progression of various cerebral disorders, including solid and metastatic brain tumors, stroke, neurodegenerative, and neuroinflammatory diseases. This review focuses on discussing and summarizing the current knowledge about the role of exosomes in the physiological and pathological modulation of the BBB. A better understanding of this regulation will improve our understanding of the pathogenesis of cerebral diseases and will enable the design of effective treatment strategies.
Collapse
Affiliation(s)
- Zaynab Osaid
- Department of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates;
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates;
| | - Mohamed Haider
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates;
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
| | - Rifat Hamoudi
- Clinical Sciences Department, College of Medicine, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates;
- Division of Surgery and Interventional Science, University College London, London W1W 7EJ, UK
| | - Rania Harati
- Department of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates;
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates;
| |
Collapse
|
13
|
Samuels M, Jones W, Towler B, Turner C, Robinson S, Giamas G. The role of non-coding RNAs in extracellular vesicles in breast cancer and their diagnostic implications. Oncogene 2023; 42:3017-3034. [PMID: 37670020 PMCID: PMC10555829 DOI: 10.1038/s41388-023-02827-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/07/2023]
Abstract
Breast Cancer (BC) is the most common form of cancer worldwide, responsible for 25% of cancers in women. Whilst treatment is effective and often curative in early BC, metastatic disease is incurable, highlighting the need for early detection. Currently, early detection relies on invasive procedures, however recent studies have shown extracellular vesicles (EVs) obtained from liquid biopsies may have clinical utility. EVs transport diverse bioactive cargos throughout the body, play major roles in intercellular communication and, importantly, mirror their cell of origin. In cancer cells, EVs alter the behaviour of the tumour microenvironment (TME), forming a bridge of communication between cancerous and non-cancerous cells to alter all aspects of cancer progression, including the formation of a pre-metastatic niche. Through gene regulatory frameworks, non-coding RNAs (ncRNAs) modulate vital molecular and cellular processes and can act as both tumour suppressors and oncogenic drivers in various cancer types. EVs transport and protect ncRNAs, facilitating their use clinically as liquid biopsies for early BC detection. This review summarises current research surrounding ncRNAs and EVs within BC, focusing on their roles in cancer progression through bi-directional communication with the microenvironment and their diagnostic implications. The role of EV ncRNAs in breast cancer. A representation of the different EV ncRNAs involved in tumourigenic processes in breast cancer. Pro-tumourigenic ncRNAs displayed in green and ncRNAs which inhibit oncogenic processes are shown in red.
Collapse
Affiliation(s)
- Mark Samuels
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, JMS Building, Falmer, Brighton, BN1 9QG, UK.
| | - William Jones
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, JMS Building, Falmer, Brighton, BN1 9QG, UK
| | - Benjamin Towler
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, JMS Building, Falmer, Brighton, BN1 9QG, UK
| | - Charlotte Turner
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, JMS Building, Falmer, Brighton, BN1 9QG, UK
| | - Stephen Robinson
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, JMS Building, Falmer, Brighton, BN1 9QG, UK
| | - Georgios Giamas
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, JMS Building, Falmer, Brighton, BN1 9QG, UK.
| |
Collapse
|
14
|
Murillo Carrasco AG, Otake AH, Macedo-da-Silva J, Feijoli Santiago V, Palmisano G, Andrade LNDS, Chammas R. Deciphering the Functional Status of Breast Cancers through the Analysis of Their Extracellular Vesicles. Int J Mol Sci 2023; 24:13022. [PMID: 37629204 PMCID: PMC10455604 DOI: 10.3390/ijms241613022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/10/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023] Open
Abstract
Breast cancer (BC) accounts for the highest incidence of tumor-related mortality among women worldwide, justifying the growing search for molecular tools for the early diagnosis and follow-up of BC patients under treatment. Circulating extracellular vesicles (EVs) are membranous nanocompartments produced by all human cells, including tumor cells. Since minimally invasive methods collect EVs, which represent reservoirs of signals for cell communication, these particles have attracted the interest of many researchers aiming to improve BC screening and treatment. Here, we analyzed the cargoes of BC-derived EVs, both proteins and nucleic acids, which yielded a comprehensive list of potential markers divided into four distinct categories, namely, (i) modulation of aggressiveness and growth; (ii) preparation of the pre-metastatic niche; (iii) epithelial-to-mesenchymal transition; and (iv) drug resistance phenotype, further classified according to their specificity and sensitivity as vesicular BC biomarkers. We discuss the therapeutic potential of and barriers to the clinical implementation of EV-based tests, including the heterogeneity of EVs and the available technologies for analyzing their content, to present a consistent, reproducible, and affordable set of markers for further evaluation.
Collapse
Affiliation(s)
- Alexis Germán Murillo Carrasco
- Center for Translational Research in Oncology (LIM24), Instituto do Cancer do Estado de Sao Paulo (ICESP), Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo (HCFMUSP), São Paulo 01246-000, Brazil; (A.G.M.C.); (A.H.O.); (L.N.d.S.A.)
- Comprehensive Center for Precision Oncology, Universidade de São Paulo, São Paulo 01246-000, Brazil
| | - Andreia Hanada Otake
- Center for Translational Research in Oncology (LIM24), Instituto do Cancer do Estado de Sao Paulo (ICESP), Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo (HCFMUSP), São Paulo 01246-000, Brazil; (A.G.M.C.); (A.H.O.); (L.N.d.S.A.)
- Comprehensive Center for Precision Oncology, Universidade de São Paulo, São Paulo 01246-000, Brazil
| | - Janaina Macedo-da-Silva
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo 05508-000, Brazil; (J.M.-d.-S.); (V.F.S.); (G.P.)
| | - Veronica Feijoli Santiago
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo 05508-000, Brazil; (J.M.-d.-S.); (V.F.S.); (G.P.)
| | - Giuseppe Palmisano
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo 05508-000, Brazil; (J.M.-d.-S.); (V.F.S.); (G.P.)
- School of Natural Sciences, Macquarie University, Macquarie Park, NSW 2109, Australia
| | - Luciana Nogueira de Sousa Andrade
- Center for Translational Research in Oncology (LIM24), Instituto do Cancer do Estado de Sao Paulo (ICESP), Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo (HCFMUSP), São Paulo 01246-000, Brazil; (A.G.M.C.); (A.H.O.); (L.N.d.S.A.)
- Comprehensive Center for Precision Oncology, Universidade de São Paulo, São Paulo 01246-000, Brazil
| | - Roger Chammas
- Center for Translational Research in Oncology (LIM24), Instituto do Cancer do Estado de Sao Paulo (ICESP), Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo (HCFMUSP), São Paulo 01246-000, Brazil; (A.G.M.C.); (A.H.O.); (L.N.d.S.A.)
- Comprehensive Center for Precision Oncology, Universidade de São Paulo, São Paulo 01246-000, Brazil
| |
Collapse
|
15
|
Duan SL, Fu WJ, Jiang YK, Peng LS, Ousmane D, Zhang ZJ, Wang JP. Emerging role of exosome-derived non-coding RNAs in tumor-associated angiogenesis of tumor microenvironment. Front Mol Biosci 2023; 10:1220193. [PMID: 37602326 PMCID: PMC10436220 DOI: 10.3389/fmolb.2023.1220193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/27/2023] [Indexed: 08/22/2023] Open
Abstract
The tumor microenvironment (TME) is an intricate ecosystem that is actively involved in various stages of cancer occurrence and development. Some characteristics of tumor biological behavior, such as proliferation, migration, invasion, inhibition of apoptosis, immune escape, angiogenesis, and metabolic reprogramming, are affected by TME. Studies have shown that non-coding RNAs, especially long-chain non-coding RNAs and microRNAs in cancer-derived exosomes, facilitate intercellular communication as a mechanism for regulating angiogenesis. They stimulate tumor growth, as well as angiogenesis, metastasis, and reprogramming of the TME. Exploring the relationship between exogenous non-coding RNAs and tumor-associated endothelial cells, as well as their role in angiogenesis, clinicians will gain new insights into treatment as a result.
Collapse
Affiliation(s)
- Sai-Li Duan
- Department of General Surgery, Xiangya Hospital Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Wei-Jie Fu
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Ying-Ke Jiang
- Department of General Surgery, Xiangya Hospital Central South University, Changsha, China
| | - Lu-Shan Peng
- Department of Pathology, Xiang-ya Hospital, Central South University, Changsha, China
| | - Diabate Ousmane
- Xiangya School of Medicine, Central South University, Changsha, China
- Department of Pathology, Xiang-ya Hospital, Central South University, Changsha, China
| | - Zhe-Jia Zhang
- Department of General Surgery, Xiangya Hospital Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Jun-Pu Wang
- Xiangya School of Medicine, Central South University, Changsha, China
- Department of Pathology, Xiang-ya Hospital, Central South University, Changsha, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
16
|
Terceiro LEL, Ikeogu NM, Lima MF, Edechi CA, Nickel BE, Fischer G, Leygue E, McManus KJ, Myal Y. Navigating the Blood-Brain Barrier: Challenges and Therapeutic Strategies in Breast Cancer Brain Metastases. Int J Mol Sci 2023; 24:12034. [PMID: 37569410 PMCID: PMC10418424 DOI: 10.3390/ijms241512034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
Breast cancer (BC) is the most common cancer in women, with metastatic BC being responsible for the highest number of deaths. A frequent site for BC metastasis is the brain. Brain metastasis derived from BC involves the cooperation of multiple genetic, epigenetic, angiogenic, and tumor-stroma interactions. Most of these interactions provide a unique opportunity for development of new therapeutic targets. Potentially targetable signaling pathways are Notch, Wnt, and the epidermal growth factor receptors signaling pathways, all of which are linked to driving BC brain metastasis (BCBM). However, a major challenge in treating brain metastasis remains the blood-brain barrier (BBB). This barrier restricts the access of unwanted molecules, cells, and targeted therapies to the brain parenchyma. Moreover, current therapies to treat brain metastases, such as stereotactic radiosurgery and whole-brain radiotherapy, have limited efficacy. Promising new drugs like phosphatase and kinase modulators, as well as BBB disruptors and immunotherapeutic strategies, have shown the potential to ease the disease in preclinical studies, but remain limited by multiple resistance mechanisms. This review summarizes some of the current understanding of the mechanisms involved in BC brain metastasis and highlights current challenges as well as opportunities in strategic designs of potentially successful future therapies.
Collapse
Affiliation(s)
- Lucas E. L. Terceiro
- Department of Pathology and Laboratory Medicine, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 3P5, Canada; (L.E.L.T.); (C.A.E.); (B.E.N.); (G.F.)
| | - Nnamdi M. Ikeogu
- Department of Immunology, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0T5, Canada;
| | - Matheus F. Lima
- Department of Physiology and Pathophysiology, CancerCare Manitoba Research Institute, University of Manitoba, Winnipeg, MB R3E 0V9, Canada;
| | - Chidalu A. Edechi
- Department of Pathology and Laboratory Medicine, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 3P5, Canada; (L.E.L.T.); (C.A.E.); (B.E.N.); (G.F.)
| | - Barbara E. Nickel
- Department of Pathology and Laboratory Medicine, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 3P5, Canada; (L.E.L.T.); (C.A.E.); (B.E.N.); (G.F.)
| | - Gabor Fischer
- Department of Pathology and Laboratory Medicine, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 3P5, Canada; (L.E.L.T.); (C.A.E.); (B.E.N.); (G.F.)
| | - Etienne Leygue
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0T5, Canada; (E.L.); (K.J.M.)
| | - Kirk J. McManus
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0T5, Canada; (E.L.); (K.J.M.)
- Paul Albrechtsen Research Institute, CancerCare Manitoba, Winnipeg, MB R3E 0V9, Canada
| | - Yvonne Myal
- Department of Pathology and Laboratory Medicine, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 3P5, Canada; (L.E.L.T.); (C.A.E.); (B.E.N.); (G.F.)
- Department of Physiology and Pathophysiology, CancerCare Manitoba Research Institute, University of Manitoba, Winnipeg, MB R3E 0V9, Canada;
- Paul Albrechtsen Research Institute, CancerCare Manitoba, Winnipeg, MB R3E 0V9, Canada
| |
Collapse
|
17
|
Geissler M, Jia W, Kiraz EN, Kulacz I, Liu X, Rombach A, Prinz V, Jussen D, Kokkaliaris KD, Medyouf H, Sevenich L, Czabanka M, Broggini T. The Brain Pre-Metastatic Niche: Biological and Technical Advancements. Int J Mol Sci 2023; 24:10055. [PMID: 37373202 DOI: 10.3390/ijms241210055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/31/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Metastasis, particularly brain metastasis, continues to puzzle researchers to this day, and exploring its molecular basis promises to break ground in developing new strategies for combatting this deadly cancer. In recent years, the research focus has shifted toward the earliest steps in the formation of metastasis. In this regard, significant progress has been achieved in understanding how the primary tumor affects distant organ sites before the arrival of tumor cells. The term pre-metastatic niche was introduced for this concept and encompasses all influences on sites of future metastases, ranging from immunological modulation and ECM remodeling to the softening of the blood-brain barrier. The mechanisms governing the spread of metastasis to the brain remain elusive. However, we begin to understand these processes by looking at the earliest steps in the formation of metastasis. This review aims to present recent findings on the brain pre-metastatic niche and to discuss existing and emerging methods to further explore the field. We begin by giving an overview of the pre-metastatic and metastatic niches in general before focusing on their manifestations in the brain. To conclude, we reflect on the methods usually employed in this field of research and discuss novel approaches in imaging and sequencing.
Collapse
Affiliation(s)
- Maximilian Geissler
- Department of Neurosurgery, University Hospital, Goethe-University, 60528 Frankfurt am Main, Germany
| | - Weiyi Jia
- Department of Neurosurgery, University Hospital, Goethe-University, 60528 Frankfurt am Main, Germany
| | - Emine Nisanur Kiraz
- Department of Neurosurgery, University Hospital, Goethe-University, 60528 Frankfurt am Main, Germany
| | - Ida Kulacz
- Department of Neurosurgery, University Hospital, Goethe-University, 60528 Frankfurt am Main, Germany
| | - Xiao Liu
- Department of Neurosurgery, University Hospital, Goethe-University, 60528 Frankfurt am Main, Germany
| | - Adrian Rombach
- Department of Neurosurgery, University Hospital, Goethe-University, 60528 Frankfurt am Main, Germany
| | - Vincent Prinz
- Department of Neurosurgery, University Hospital, Goethe-University, 60528 Frankfurt am Main, Germany
| | - Daniel Jussen
- Department of Neurosurgery, University Hospital, Goethe-University, 60528 Frankfurt am Main, Germany
| | - Konstantinos D Kokkaliaris
- Dr. Senckenberg Institute of Pathology, University Hospital Frankfurt, 60528 Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, 60528 Frankfurt am Main, Germany
- Frankfurt Cancer Institute (FCI), Goethe University Frankfurt, 60528 Frankfurt am Main, Germany
| | - Hind Medyouf
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, 60528 Frankfurt am Main, Germany
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, 60528 Frankfurt am Main, Germany
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Lisa Sevenich
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, 60528 Frankfurt am Main, Germany
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, 60528 Frankfurt am Main, Germany
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Marcus Czabanka
- Department of Neurosurgery, University Hospital, Goethe-University, 60528 Frankfurt am Main, Germany
- Frankfurt Cancer Institute (FCI), Goethe University Frankfurt, 60528 Frankfurt am Main, Germany
| | - Thomas Broggini
- Department of Neurosurgery, University Hospital, Goethe-University, 60528 Frankfurt am Main, Germany
- Frankfurt Cancer Institute (FCI), Goethe University Frankfurt, 60528 Frankfurt am Main, Germany
| |
Collapse
|
18
|
Tang N, Gong XR, Huang H, Meng Q. Activated neutrophil-derived exosomes contribute to blood-brain barrier damage and hemorrhagic transformation after cerebral ischemia/reperfusion. Brain Res 2023; 1810:148374. [PMID: 37116559 DOI: 10.1016/j.brainres.2023.148374] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/13/2023] [Accepted: 04/24/2023] [Indexed: 04/30/2023]
Abstract
BACKGROUND Hemorrhagic transformation (HT) caused by blood-brain barrier (BBB) damage is closely correlated with the poor prognosis of ischemic stroke. Neutrophils are proven to mediate BBB injury after ischemic stroke, but the mechanism remains to be further investigated. Therefore, the present study aims to investigate the effect of neutrophil-derived exosomes on BBB integrity. METHOD A tMCAO-HT model was constructed to assess neutrophil infiltration and its co-localization with brain microvascular endothelial cells (BMEC). After using quiet (Q-Neu) and activated neutrophil (A-Neu) and their exosomes to treat the BBB model in vitro, TEER and permeability were assayed to assess the BBB integrity. Small RNA sequencing was performed to identify differentially expressed miRNAs (DE-miRNAs) in A-Neu- and Q-Neu-derived exosomes, and the function and pathways of DE-miRNA targets were analyzed by GO and KEGG enrichment. RESULT Different degrees of cerebral hemorrhage were observed in the tMCAO-HT model. The expression of the neutrophil marker Ly6G was significantly increased in tMCAO-HT model compared to the sham group, and co-localized with the BMEC marker CD31. Notably, Ly6G expression was positively correlated with hemoglobin content in brain tissue. A-Neu and its derived exosomes reduced TEER and elevated permeability in the BBB model in vitro. Moreover, BBB-related proteins Claudin 5, Occludin and ZO-1 expression were significantly reduced in BMEC after treatment with A-Neu and its derived exosomes. Nevertheless, Q-Neu and its exosomes had no significant effect on BBB integrity. A total of 84 DE-miRNAs are present in Q-Neu- and A-Neu-derived exosomes, and their target genes are involved in the regulation of "positive regulation of establishment of endothelial barrier", "cell junction", "ECM-receptor interaction" and "VEGF signaling pathway". Moreover, RT-qPCR revealed that the expression trends of miR-409-3p, miR-6909-5p, miR-3473d, miR-370-3p and miR-6904-5p in exosomes were consistent with the sequencing results. CONCLUSION Neutrophils are abnormally recruited in HT after ischemic stroke, and are associated with cerebral hemorrhage. In vitro, A-Neu-derived exosomes facilitate BBB injury, which may be accomplished by exosomal transport of miRNAs.
Collapse
Affiliation(s)
- Ning Tang
- Faculty of Life science and Technology, Kunming University of Science and Technology, Kunming, 650051, Yunnan, P. R. China; Department of Neurology, the First People's Hospital of Yunnan Province, the Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650032, Yunnan, P. R. China
| | - Xia-Rong Gong
- Department of magnetic resonance, the First People's Hospital of Yunnan Province, the Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650032, Yunnan, P. R. China
| | - Hong Huang
- Department of Geriatric Medicine, The First People' s Hospital of Yunnan Province, the Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650032, Yunnan, P. R. China
| | - Qiang Meng
- Department of Neurology, the First People's Hospital of Yunnan Province, the Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650032, Yunnan, P. R. China.
| |
Collapse
|
19
|
Abdelsalam M, Ahmed M, Osaid Z, Hamoudi R, Harati R. Insights into Exosome Transport through the Blood-Brain Barrier and the Potential Therapeutical Applications in Brain Diseases. Pharmaceuticals (Basel) 2023; 16:571. [PMID: 37111328 PMCID: PMC10144189 DOI: 10.3390/ph16040571] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/31/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Drug delivery to the central nervous system (CNS) is limited due to the presence of the blood-brain barrier (BBB), a selective physiological barrier located at the brain microvessels that regulates the flow of cells, molecules and ions between the blood and the brain. Exosomes are nanosized extracellular vesicles expressed by all cell types and that function as cargos, allowing for communication between the cells. The exosomes were shown to cross or regulate the BBB in healthy and disease conditions. However, the mechanistic pathways by which exosomes cross the BBB have not been fully elucidated yet. In this review, we explore the transport mechanisms of exosomes through the BBB. A large body of evidence suggests that exosome transport through the BBB occurs primarily through transcytosis. The transcytosis mechanisms are influenced by several regulators. Inflammation and metastasis also enhance exosome trafficking across the BBB. We also shed light on the therapeutical applications of exosomes for treating brain diseases. Further investigations are essential to provide clearer insights related to trafficking of exosomes across the BBB and disease treatment.
Collapse
Affiliation(s)
- Manal Abdelsalam
- Department of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates; (M.A.); (M.A.); (Z.O.)
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
| | - Munazza Ahmed
- Department of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates; (M.A.); (M.A.); (Z.O.)
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
| | - Zaynab Osaid
- Department of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates; (M.A.); (M.A.); (Z.O.)
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
| | - Rifat Hamoudi
- Clinical Sciences Department, College of Medicine, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates;
- Division of Surgery and Interventional Science, University College London, London W1W 7EJ, UK
| | - Rania Harati
- Department of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates; (M.A.); (M.A.); (Z.O.)
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
| |
Collapse
|
20
|
Cheng J, Zhang K, Qu C, Peng J, Yang L. Non-Coding RNAs Derived from Extracellular Vesicles Promote Pre-Metastatic Niche Formation and Tumor Distant Metastasis. Cancers (Basel) 2023; 15:cancers15072158. [PMID: 37046819 PMCID: PMC10093357 DOI: 10.3390/cancers15072158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/08/2023] Open
Abstract
Metastasis is a critical stage of tumor progression, a crucial challenge of clinical therapy, and a major cause of tumor patient death. Numerous studies have confirmed that distant tumor metastasis is dependent on the formation of pre-metastatic niche (PMN). Recent studies have shown that extracellular vesicles (EVs) play an important role in PMN formation. The non-coding RNAs (ncRNAs) derived from EVs mediate PMN formation and tumor-distant metastasis by promoting an inflammatory environment, inhibiting anti-tumor immune response, inducing angiogenesis and permeability, and by microenvironmental reprogramming. Given the stability and high abundance of ncRNAs carried by EVs in body fluids, they have great potential for application in tumor diagnosis as well as targeted interventions. This review focuses on the mechanism of ncRNAs derived from EVs promoting tumor PMN formation and distant metastasis to provide a theoretical reference for strategies to control tumor metastasis.
Collapse
Affiliation(s)
- Jin Cheng
- Department of Oncology, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410078, China
- Cancer Research Institute, School of Basic Medicine Science, Central South University, Changsha 410078, China
| | - Kun Zhang
- Department of Oncology, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410078, China
| | - Chunhui Qu
- Department of Oncology, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410078, China
- Cancer Research Institute, School of Basic Medicine Science, Central South University, Changsha 410078, China
| | - Jinwu Peng
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410078, China
- Department of Pathology, Xiangya Changde Hospital, Changde 415000, China
| | - Lifang Yang
- Department of Oncology, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410078, China
- Cancer Research Institute, School of Basic Medicine Science, Central South University, Changsha 410078, China
| |
Collapse
|
21
|
Xiong S, Tan X, Wu X, Wan A, Zhang G, Wang C, Liang Y, Zhang Y. Molecular landscape and emerging therapeutic strategies in breast
cancer brain metastasis. Ther Adv Med Oncol 2023; 15:17588359231165976. [PMID: 37034479 PMCID: PMC10074632 DOI: 10.1177/17588359231165976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 03/06/2023] [Indexed: 04/07/2023] Open
Abstract
Breast cancer (BC) is the most commonly diagnosed cancer worldwide. Advanced BC
with brain metastasis (BM) is a major cause of mortality with no specific or
effective treatment. Therefore, better knowledge of the cellular and molecular
mechanisms underlying breast cancer brain metastasis (BCBM) is crucial for
developing novel therapeutic strategies and improving clinical outcomes. In this
review, we focused on the latest advances and discuss the contribution of the
molecular subtype of BC, the brain microenvironment, exosomes, miRNAs/lncRNAs,
and genetic background in BCBM. The blood–brain barrier and blood–tumor barrier
create challenges to brain drug delivery, and we specifically review novel
approaches to bypass these barriers. Furthermore, we discuss the potential
application of immunotherapies and genetic editing techniques based on
CRISPR/Cas9 technology in treating BCBM. Emerging techniques and research
findings continuously shape our views of BCBM and contribute to improvements in
precision therapies and clinical outcomes.
Collapse
Affiliation(s)
- Siyi Xiong
- Breast and Thyroid Surgery, Southwest Hospital,
Army Medical University, Chongqing, China
| | - Xuanni Tan
- Breast and Thyroid Surgery, Southwest Hospital,
Army Medical University, Chongqing, China
| | - Xiujuan Wu
- Breast and Thyroid Surgery, Southwest Hospital,
Army Medical University, Chongqing, China
| | - Andi Wan
- Breast and Thyroid Surgery, Southwest Hospital,
Army Medical University, Chongqing, China
| | - Guozhi Zhang
- Breast and Thyroid Surgery, Southwest Hospital,
Army Medical University, Chongqing, China
| | - Cheng Wang
- Breast and Thyroid Surgery, Southwest Hospital,
Army Medical University, Chongqing, China
| | - Yan Liang
- Breast and Thyroid Surgery, Southwest Hospital,
Army Medical University, 30 Gaotanyan, Shapingba, China Chongqing 400038,
China
| | | |
Collapse
|
22
|
Souza VGP, de Araújo RP, Santesso MR, Seneda AL, Minutentag IW, Felix TF, Hamamoto Filho PT, Pewarchuk ME, Brockley LJ, Marchi FA, Lam WL, Drigo SA, Reis PP. Advances in the Molecular Landscape of Lung Cancer Brain Metastasis. Cancers (Basel) 2023; 15:722. [PMID: 36765679 PMCID: PMC9913505 DOI: 10.3390/cancers15030722] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/16/2023] [Accepted: 01/20/2023] [Indexed: 01/27/2023] Open
Abstract
Lung cancer is one of the most frequent tumors that metastasize to the brain. Brain metastasis (BM) is common in advanced cases, being the major cause of patient morbidity and mortality. BMs are thought to arise via the seeding of circulating tumor cells into the brain microvasculature. In brain tissue, the interaction with immune cells promotes a microenvironment favorable to the growth of cancer cells. Despite multimodal treatments and advances in systemic therapies, lung cancer patients still have poor prognoses. Therefore, there is an urgent need to identify the molecular drivers of BM and clinically applicable biomarkers in order to improve disease outcomes and patient survival. The goal of this review is to summarize the current state of knowledge on the mechanisms of the metastatic spread of lung cancer to the brain and how the metastatic spread is influenced by the brain microenvironment, and to elucidate the molecular determinants of brain metastasis regarding the role of genomic and transcriptomic changes, including coding and non-coding RNAs. We also present an overview of the current therapeutics and novel treatment strategies for patients diagnosed with BM from NSCLC.
Collapse
Affiliation(s)
- Vanessa G. P. Souza
- Molecular Oncology Laboratory, Experimental Research Unit, Faculty of Medicine, São Paulo State University (UNESP), Botucatu 18618-687, Brazil
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
| | - Rachel Paes de Araújo
- Molecular Oncology Laboratory, Experimental Research Unit, Faculty of Medicine, São Paulo State University (UNESP), Botucatu 18618-687, Brazil
| | - Mariana R. Santesso
- Molecular Oncology Laboratory, Experimental Research Unit, Faculty of Medicine, São Paulo State University (UNESP), Botucatu 18618-687, Brazil
| | - Ana Laura Seneda
- Molecular Oncology Laboratory, Experimental Research Unit, Faculty of Medicine, São Paulo State University (UNESP), Botucatu 18618-687, Brazil
| | - Iael W. Minutentag
- Molecular Oncology Laboratory, Experimental Research Unit, Faculty of Medicine, São Paulo State University (UNESP), Botucatu 18618-687, Brazil
| | - Tainara Francini Felix
- Molecular Oncology Laboratory, Experimental Research Unit, Faculty of Medicine, São Paulo State University (UNESP), Botucatu 18618-687, Brazil
| | - Pedro Tadao Hamamoto Filho
- Department of Neurology, Psychology and Psychiatry, Faculty of Medicine, São Paulo State University (UNESP), Botucatu 18618-687, Brazil
| | | | - Liam J. Brockley
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
| | - Fábio A. Marchi
- Faculty of Medicine, University of São Paulo, São Paulo 01246-903, Brazil
| | - Wan L. Lam
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
| | - Sandra A. Drigo
- Molecular Oncology Laboratory, Experimental Research Unit, Faculty of Medicine, São Paulo State University (UNESP), Botucatu 18618-687, Brazil
| | - Patricia P. Reis
- Molecular Oncology Laboratory, Experimental Research Unit, Faculty of Medicine, São Paulo State University (UNESP), Botucatu 18618-687, Brazil
- Department of Surgery and Orthopedics, Faculty of Medicine, São Paulo State University (UNESP), Botucatu 18618-687, Brazil
| |
Collapse
|
23
|
Luo T, Kang Y, Liu Y, Li J, Li J. Small extracellular vesicles in breast cancer brain metastasis and the prospect of clinical application. Front Bioeng Biotechnol 2023; 11:1162089. [PMID: 37091342 PMCID: PMC10113431 DOI: 10.3389/fbioe.2023.1162089] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 03/27/2023] [Indexed: 04/25/2023] Open
Abstract
Extracellular vesicles (EVs) are nanoscale extracellular particles that have received widespread scientific attention for carrying a variety of biomolecules such as nucleic acids and proteins and participating in the process of intercellular information exchange, making them become a research hotspot due to their potential diagnostic value. Breast cancer is the leading cause of cancer-related death in women, approximately 90% of patient deaths are due to metastasis complications. Brain metastasis is an important cause of mortality in breast cancer patients, about 10-15% of breast cancer patients will develop brain metastasis. Therefore, early prevention of brain metastasis and the development of new treatments are crucial. Small EVs have been discovered to be involved in the entire process of breast cancer brain metastasis (BCBM), playing an important role in driving organ-specific metastasis, forming pre-metastatic niches, disrupting the blood-brain barrier, and promoting metastatic tumor cell proliferation. We summarize the mechanisms of small EVs in the aforementioned pathological processes at the cellular and molecular levels, and anticipate their potential applications in the treatment of breast cancer brain metastasis, with the hope of providing new ideas for the precise treatment of breast cancer brain metastasis.
Collapse
|
24
|
Zhao Y, Liu Y, Zhang Q, Liu H, Xu J. The Mechanism Underlying the Regulation of Long Non-coding RNA MEG3 in Cerebral Ischemic Stroke. Cell Mol Neurobiol 2023; 43:69-78. [PMID: 34988760 DOI: 10.1007/s10571-021-01176-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 11/27/2021] [Indexed: 01/07/2023]
Abstract
Cerebral ischemic stroke is one of the leading causes of morbidity and mortality worldwide, and rapidly increasing annually with no more effective therapeutic measures. Thus, the novel diagnostic and prognostic biomarkers are urgent to be identified for prevention and therapy of ischemic stroke. Recently, long noncoding RNAs (lncRNAs), a major family of noncoding RNAs with more than 200 nucleotides, have been considered as new targets for modulating pathological process of ischemic stroke. In this review, we summarized that the lncRNA-maternally expressed gene 3 (MEG3) played a critical role in promotion of neuronal cell death and inhibition of angiogenesis in response to hypoxia or ischemia condition, and further described the challenge of overcrossing blood-brain barrier (BBB) and determination of optimal carrier for delivering lncRNA' drugs into the specific brain regions. In brief, MEG3 will be a potential diagnostic biomarker and drug target in treatment and therapy of ischemic stroke in the future.
Collapse
Affiliation(s)
- Yanfang Zhao
- Institute of Biomedical Research, Shandong Provincial Research Center for Bioinformatic Engineering and Technique, Zibo Key Laboratory of New Drug Development of Neurodegenerative Diseases, School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China.
| | - Yingying Liu
- Institute of Translational Medicine, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Qili Zhang
- Institute of Biomedical Research, Shandong Provincial Research Center for Bioinformatic Engineering and Technique, Zibo Key Laboratory of New Drug Development of Neurodegenerative Diseases, School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| | - Hongliang Liu
- Institute of Biomedical Research, Shandong Provincial Research Center for Bioinformatic Engineering and Technique, Zibo Key Laboratory of New Drug Development of Neurodegenerative Diseases, School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| | - Jianing Xu
- Institute of Biomedical Research, Shandong Provincial Research Center for Bioinformatic Engineering and Technique, Zibo Key Laboratory of New Drug Development of Neurodegenerative Diseases, School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| |
Collapse
|
25
|
Jiang Q, Tan XP, Zhang CH, Li ZY, Li D, Xu Y, Liu YX, Wang L, Ma Z. Non-Coding RNAs of Extracellular Vesicles: Key Players in Organ-Specific Metastasis and Clinical Implications. Cancers (Basel) 2022; 14:cancers14225693. [PMID: 36428785 PMCID: PMC9688215 DOI: 10.3390/cancers14225693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/17/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
Extracellular vesicles (EVs) are heterogeneous membrane-encapsulated vesicles released by most cells. They act as multifunctional regulators of intercellular communication by delivering bioactive molecules, including non-coding RNAs (ncRNAs). Metastasis is a major cause of cancer-related death. Most cancer cells disseminate and colonize a specific target organ via EVs, a process known as "organ-specific metastasis". Mounting evidence has shown that EVs are enriched with ncRNAs, and various EV-ncRNAs derived from tumor cells influence organ-specific metastasis via different mechanisms. Due to the tissue-specific expression of EV-ncRNAs, they could be used as potential biomarkers and therapeutic targets for the treatment of tumor metastasis in various types of cancer. In this review, we have discussed the underlying mechanisms of EV-delivered ncRNAs in the most common organ-specific metastases of liver, bone, lung, brain, and lymph nodes. Moreover, we summarize the potential clinical applications of EV-ncRNAs in organ-specific metastasis to fill the gap between benches and bedsides.
Collapse
Affiliation(s)
- Qian Jiang
- Department of Gastroenterology, First Affiliated Hospital of Yangtze University, Health Science Center, Yangtze University, Jingzhou 434023, China
- Digestive Disease Research Institution of Yangtze University, Yangtze University, Jingzhou 434023, China
- Department of Cardiovascular Medicine, Honghu Hospital of Traditional Chinese Medicine, Honghu 433200, China
| | - Xiao-Ping Tan
- Department of Gastroenterology, First Affiliated Hospital of Yangtze University, Health Science Center, Yangtze University, Jingzhou 434023, China
- Digestive Disease Research Institution of Yangtze University, Yangtze University, Jingzhou 434023, China
| | - Cai-Hua Zhang
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, China
| | - Zhi-Yuan Li
- Department of Cardiovascular Medicine, Honghu Hospital of Traditional Chinese Medicine, Honghu 433200, China
| | - Du Li
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, China
| | - Yan Xu
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, China
| | - Yu Xuan Liu
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | - Lingzhi Wang
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
- NUS Centre for Cancer Research (N2CR), National University of Singapore, Singapore 117599, Singapore
- Correspondence: (Z.M.); (L.W.)
| | - Zhaowu Ma
- Department of Gastroenterology, First Affiliated Hospital of Yangtze University, Health Science Center, Yangtze University, Jingzhou 434023, China
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, China
- Correspondence: (Z.M.); (L.W.)
| |
Collapse
|
26
|
Tumor-Derived Exosomes and Their Role in Breast Cancer Metastasis. Int J Mol Sci 2022; 23:ijms232213993. [PMID: 36430471 PMCID: PMC9693078 DOI: 10.3390/ijms232213993] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/10/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022] Open
Abstract
Breast cancer has been the most common cancer in women worldwide, and metastasis is the leading cause of death from breast cancer. Even though the study of breast cancer metastasis has been extensively carried out, the molecular mechanism is still not fully understood, and diagnosis and prognosis need to be improved. Breast cancer metastasis is a complicated process involving multiple physiological changes, and lung, brain, bone and liver are the main metastatic targets. Exosomes are membrane-bound extracellular vesicles that contain secreted cellular constitutes. The biogenesis and functions of exosomes in cancer have been intensively studied, and mounting studies have indicated that exosomes play a crucial role in cancer metastasis. In this review, we summarize recent findings on the role of breast cancer-derived exosomes in metastasis organotropism and discuss the potential promising clinical applications of targeting exosomes as novel strategies for breast cancer diagnosis and therapy.
Collapse
|
27
|
Molecular Mechanisms Driving the Formation of Brain Metastases. Cancers (Basel) 2022; 14:cancers14194963. [PMID: 36230886 PMCID: PMC9563727 DOI: 10.3390/cancers14194963] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/07/2022] [Accepted: 10/08/2022] [Indexed: 11/20/2022] Open
Abstract
Simple Summary Brain metastases are the most common brain tumor in adults and are associated with poor prognosis. The propensity of different solid tumors to metastasize varies greatly, with lung, breast, and melanoma primary tumors commonly leading to brain metastases, while other primaries such as prostate rarely metastasize to the brain. The molecular mechanisms that predispose and facilitate brain metastasis development are poorly understood. In this review, we present the current data on the genomic landscape of brain metastases that arise from various primary cancers and also outline potential molecular mechanisms that drive the formation of distant metastases in the brain. Abstract Targeted therapies for cancers have improved primary tumor response rates, but concomitantly, brain metastases (BM) have become the most common brain tumors in adults and are associated with a dismal prognosis of generally less than 6 months, irrespective of the primary cancer type. They most commonly occur in patients with primary breast, lung, or melanoma histologies; however, they also appear in patients with other primary cancers including, but not limited to, prostate cancer, colorectal cancer, and renal cell carcinoma. Historically, molecular biomarkers have normally been identified from primary tumor resections. However, clinically informative genomic alterations can occur during BM development and these potentially actionable alterations are not always detected in the primary tumor leading to missed opportunities for effective targeted therapy. The molecular mechanisms that facilitate and drive metastasis to the brain are poorly understood. Identifying the differences between the brain and other extracranial sties of metastasis, and between primary tumors and BM, is essential to improving our understanding of BM development and ultimately patient management and survival. In this review, we present the current data on the genomic landscape of BM from various primary cancers which metastasize to the brain and outline potential mechanisms which may play a role in promoting the formation of the distant metastases in the brain.
Collapse
|
28
|
Ashekyan O, Abdallah S, Shoukari AA, Chamandi G, Choubassy H, Itani ARS, Alwan N, Nasr R. Spotlight on Exosomal Non-Coding RNAs in Breast Cancer: An In Silico Analysis to Identify Potential lncRNA/circRNA-miRNA-Target Axis. Int J Mol Sci 2022; 23:8351. [PMID: 35955480 PMCID: PMC9369058 DOI: 10.3390/ijms23158351] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/26/2022] [Accepted: 07/26/2022] [Indexed: 12/12/2022] Open
Abstract
Breast cancer (BC) has recently become the most common cancer type worldwide, with metastatic disease being the main reason for disease mortality. This has brought about strategies for early detection, especially the utilization of minimally invasive biomarkers found in various bodily fluids. Exosomes have been proposed as novel extracellular vesicles, readily detectable in bodily fluids, secreted from BC-cells or BC-tumor microenvironment cells, and capable of conferring cellular signals over long distances via various cargo molecules. This cargo is composed of different biomolecules, among which are the novel non-coding genome products, such as microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and the recently discovered circular RNA (circRNA), all of which were found to be implicated in BC pathology. In this review, the diverse roles of the ncRNA cargo of BC-derived exosomes will be discussed, shedding light on their primarily oncogenic and additionally tumor suppressor roles at different levels of BC tumor progression, and drug sensitivity/resistance, along with presenting their diagnostic, prognostic, and predictive biomarker potential. Finally, benefiting from the miRNA sponging mechanism of action of lncRNAs and circRNAs, we established an experimentally validated breast cancer exosomal non-coding RNAs-regulated target gene axis from already published exosomal ncRNAs in BC. The resulting genes, pathways, gene ontology (GO) terms, and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis could be a starting point to better understand BC and may pave the way for the development of novel diagnostic and prognostic biomarkers and therapeutics.
Collapse
Affiliation(s)
- Ohanes Ashekyan
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut 11-0236, Lebanon;
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 11-0236, Lebanon; (S.A.); (G.C.); (H.C.)
| | - Samira Abdallah
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 11-0236, Lebanon; (S.A.); (G.C.); (H.C.)
| | - Ayman Al Shoukari
- Department of Experimental Pathology, Immunology, and Microbiology, Faculty of Medicine, American University of Beirut, Beirut 11-0236, Lebanon;
| | - Ghada Chamandi
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 11-0236, Lebanon; (S.A.); (G.C.); (H.C.)
- INSERM U976, HIPI, Pathophysiology of Breast Cancer Team, Université de Paris, 75010 Paris, France
| | - Hayat Choubassy
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 11-0236, Lebanon; (S.A.); (G.C.); (H.C.)
- Faculty of Sciences, Lebanese University, Beirut 11-0236, Lebanon
| | - Abdul Rahman S. Itani
- Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany;
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120 Heidelberg, Germany
- Division of Inflammatory Stress in Stem Cells, Deutsches Krebsforschungszentrum (DKFZ) and DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Nisreen Alwan
- College of Health Sciences, Abu Dhabi University, Abu Dhabi 59911, United Arab Emirates
| | - Rihab Nasr
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 11-0236, Lebanon; (S.A.); (G.C.); (H.C.)
| |
Collapse
|
29
|
Paskeh MDA, Entezari M, Mirzaei S, Zabolian A, Saleki H, Naghdi MJ, Sabet S, Khoshbakht MA, Hashemi M, Hushmandi K, Sethi G, Zarrabi A, Kumar AP, Tan SC, Papadakis M, Alexiou A, Islam MA, Mostafavi E, Ashrafizadeh M. Emerging role of exosomes in cancer progression and tumor microenvironment remodeling. J Hematol Oncol 2022; 15:83. [PMID: 35765040 PMCID: PMC9238168 DOI: 10.1186/s13045-022-01305-4] [Citation(s) in RCA: 229] [Impact Index Per Article: 114.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 06/13/2022] [Indexed: 12/14/2022] Open
Abstract
Cancer is one of the leading causes of death worldwide, and the factors responsible for its progression need to be elucidated. Exosomes are structures with an average size of 100 nm that can transport proteins, lipids, and nucleic acids. This review focuses on the role of exosomes in cancer progression and therapy. We discuss how exosomes are able to modulate components of the tumor microenvironment and influence proliferation and migration rates of cancer cells. We also highlight that, depending on their cargo, exosomes can suppress or promote tumor cell progression and can enhance or reduce cancer cell response to radio- and chemo-therapies. In addition, we describe how exosomes can trigger chronic inflammation and lead to immune evasion and tumor progression by focusing on their ability to transfer non-coding RNAs between cells and modulate other molecular signaling pathways such as PTEN and PI3K/Akt in cancer. Subsequently, we discuss the use of exosomes as carriers of anti-tumor agents and genetic tools to control cancer progression. We then discuss the role of tumor-derived exosomes in carcinogenesis. Finally, we devote a section to the study of exosomes as diagnostic and prognostic tools in clinical courses that is important for the treatment of cancer patients. This review provides a comprehensive understanding of the role of exosomes in cancer therapy, focusing on their therapeutic value in cancer progression and remodeling of the tumor microenvironment.
Collapse
Affiliation(s)
- Mahshid Deldar Abad Paskeh
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.,Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.,Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Amirhossein Zabolian
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Hossein Saleki
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohamad Javad Naghdi
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sina Sabet
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohammad Amin Khoshbakht
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.,Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Kiavash Hushmandi
- Division of Epidemiology, Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore.,NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, 34396, Istanbul, Turkey
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore.,NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Shing Cheng Tan
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia.
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten-Herdecke, University of Witten-Herdecke, Heusnerstrasse 40, 42283, Wuppertal, Germany.
| | - Athanasios Alexiou
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, Australia.,AFNP Med Austria, Vienna, Austria
| | - Md Asiful Islam
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia.,Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, B15 2TT, UK
| | - Ebrahim Mostafavi
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, 94305, USA.,Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, Istanbul, Turkey.
| |
Collapse
|
30
|
Rehman AU, Khan P, Maurya SK, Siddiqui JA, Santamaria-Barria JA, Batra SK, Nasser MW. Liquid biopsies to occult brain metastasis. Mol Cancer 2022; 21:113. [PMID: 35538484 PMCID: PMC9088117 DOI: 10.1186/s12943-022-01577-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 04/19/2022] [Indexed: 02/08/2023] Open
Abstract
Brain metastasis (BrM) is a major problem associated with cancer-related mortality, and currently, no specific biomarkers are available in clinical settings for early detection. Liquid biopsy is widely accepted as a non-invasive method for diagnosing cancer and other diseases. We have reviewed the evidence that shows how the molecular alterations are involved in BrM, majorly from breast cancer (BC), lung cancer (LC), and melanoma, with an inception in how they can be employed for biomarker development. We discussed genetic and epigenetic changes that influence cancer cells to breach the blood-brain barrier (BBB) and help to establish metastatic lesions in the uniquely distinct brain microenvironment. Keeping abreast with the recent breakthroughs in the context of various biomolecules detections and identifications, the circulating tumor cells (CTC), cell-free nucleotides, non-coding RNAs, secretory proteins, and metabolites can be pursued in human body fluids such as blood, serum, cerebrospinal fluid (CSF), and urine to obtain potential candidates for biomarker development. The liquid biopsy-based biomarkers can overlay with current imaging techniques to amplify the signal viable for improving the early detection and treatments of occult BrM.
Collapse
Affiliation(s)
- Asad Ur Rehman
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68108, USA
| | - Parvez Khan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68108, USA
| | - Shailendra Kumar Maurya
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68108, USA
| | - Jawed A Siddiqui
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68108, USA.,Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68108, USA
| | | | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68108, USA.,Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68108, USA.,Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE-68198, USA
| | - Mohd Wasim Nasser
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68108, USA. .,Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68108, USA.
| |
Collapse
|
31
|
Geng S, Tu S, Bai Z, Geng Y. Exosomal lncRNA LINC01356 Derived From Brain Metastatic Nonsmall-Cell Lung Cancer Cells Remodels the Blood-Brain Barrier. Front Oncol 2022; 12:825899. [PMID: 35574344 PMCID: PMC9092220 DOI: 10.3389/fonc.2022.825899] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/22/2022] [Indexed: 11/20/2022] Open
Abstract
Brain metastasis is a severe complication that affects the survival of lung cancer patients. However, the mechanism of brain metastasis in lung cancer remains unclear. In this study, we constructed an in vitro BBB model and found that cells from the high-metastatic nonsmall cell lung cancer (NSCLC) cell line H1299 showed a higher capacity to pass through the blood-brain barrier (BBB), as verified by Transwell assays, than cells from the low-metastatic NSCLC cell line A549. Brain microvascular endothelial cells (BMECs) could internalize H1299-derived exosomes, which remarkably promoted A549 cells across the BBB. The BBB-associated exosomal long noncoding RNA (lncRNA) was selected from the RNA-Seq dataset (GSE126548) and verified by real-time PCR and Transwell assays. LncRNA LINC01356 was significantly upregulated in H1299 cells and exosomes derived from these cells compared to that of A549 cells. Moreover, LINC01356 was also upregulated in serum exosomes of patients with NSCLC with brain metastasis compared with those without metastasis. In addition, BMECs treated with LINC01356-deprived exosomes expressed higher junction proteins than those treated with the control exosomes, and silencing LINC01356 in exosomes derived from H1299 cells could inhibit A549 cells from crossing the BBB. These data might indicate that the exosomal lncRNA LINC01356 derived from brain metastatic NSCLC cells plays a key role in remodeling the BBB system, thereby participating in brain metastasis in lung cancer.
Collapse
Affiliation(s)
- Sumin Geng
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Shaohua Tu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Zhenwei Bai
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Yixiong Geng
- School of Basic Medical Sciences, Capital Medical University, Beijing, China
| |
Collapse
|
32
|
Sun P, Hamblin MH, Yin KJ. Non-coding RNAs in the regulation of blood–brain barrier functions in central nervous system disorders. Fluids Barriers CNS 2022; 19:27. [PMID: 35346266 PMCID: PMC8959280 DOI: 10.1186/s12987-022-00317-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/17/2022] [Indexed: 12/26/2022] Open
Abstract
The blood–brain barrier (BBB) is an essential component of the neurovascular unit that controls the exchanges of various biological substances between the blood and the brain. BBB damage is a common feature of different central nervous systems (CNS) disorders and plays a vital role in the pathogenesis of the diseases. Non-coding RNAs (ncRNAs), such as microRNAs (miRNAs), long non-coding RNA (lncRNAs), and circular RNAs (circRNAs), are important regulatory RNA molecules that are involved in almost all cellular processes in normal development and various diseases, including CNS diseases. Cumulative evidences have demonstrated ncRNA regulation of BBB functions in different CNS diseases. In this review, we have summarized the miRNAs, lncRNAs, and circRNAs that can be served as diagnostic and prognostic biomarkers for BBB injuries, and demonstrated the involvement and underlying mechanisms of ncRNAs in modulating BBB structure and function in various CNS diseases, including ischemic stroke, hemorrhagic stroke, traumatic brain injury (TBI), spinal cord injury (SCI), multiple sclerosis (MS), Alzheimer's disease (AD), vascular cognitive impairment and dementia (VCID), brain tumors, brain infections, diabetes, sepsis-associated encephalopathy (SAE), and others. We have also discussed the pharmaceutical drugs that can regulate BBB functions via ncRNAs-related signaling cascades in CNS disorders, along with the challenges, perspective, and therapeutic potential of ncRNA regulation of BBB functions in CNS diseases.
Collapse
|
33
|
Yang C, Wu Y, Wang L, Li S, Zhou J, Tan Y, Song J, Xing H, Yi K, Zhan Q, Zhao J, Wang Q, Yuan X, Kang C. Glioma-derived exosomes hijack the blood-brain barrier to facilitate nanocapsule delivery via LCN2. J Control Release 2022; 345:537-548. [PMID: 35341902 DOI: 10.1016/j.jconrel.2022.03.038] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 03/18/2022] [Accepted: 03/20/2022] [Indexed: 12/15/2022]
Abstract
Exosomes are small extracellular vehicles which could transport genetic materials and proteins between cells. Although there are reports about exosomes crossing the blood-brain barrier (BBB), the underlying mechanisms still need further study. We found that exosomes from primary brain tumors could upregulate the expression of Lipocalin-2 (LCN2) in bEnd.3 brain microvascular endothelial cells (BMVECs). Furthermore, exosomes increased the membrane fluidity of bEnd.3 cells in an LCN2 dependent manner. Both intraperitoneal injection and caudal vein injection of LCN2 increased the number of nanocapsules crossing the BBB. Evans Blue staining revealed that LCN2 does not interrupt the integrity of the BBB, as observed in the traumatic brain injury model. Tandem mass tags quantitative proteomics and bioinformatics analysis revealed that LCN2 is upregulated by exosomes via the JAK-STAT3 pathway, but not delivered from exosomes. Knocking down LCN2 in bEnd.3 cells significantly abrogated the effect of exosomes on BMVEC membrane fluidity. Previously, we have reported that 2-methacryloyloxyethyl phosphorylcholine (MPC) and a peptide crosslinker could encapsulate mAbs to achieve nanocapsules. The nanocapsules containing choline analogs could effectively penetrate the BBB to deliver therapeutic monoclonal antibodies (tAbs) to the glioma. However, the delivered tAbs could be significantly reduced by blocking the release of exosomes from the gliomas. Application of tAb nanocapsules prior to treatment with MK2206, an AKT pathway inhibitor that has been shown to inhibit the production of exosomes, resulted in a better combination. Insights from this study provide a mechanistic framework with regard to how glioblastomas hijack BMVECs using exosomes. In addition, we provide a strategy for maximizing the effect of the choline-containing nanocapsules and MK2206 combination. These results also demonstrate the therapeutic role of tAbs in glioblastoma and brain tumor metastasis, by shedding new light on strategies that can be used for BBB-penetrating therapies.
Collapse
Affiliation(s)
- Chao Yang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China; Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Department of Neurosurgery, Tianjin Medical University General Hospital and Key Laboratory of Neurotrauma, Variation, and Regeneration, Ministry of Education and Tianjin Municipal Government, Tianjin 300052, China
| | - Ye Wu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China; Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Department of Neurosurgery, Tianjin Medical University General Hospital and Key Laboratory of Neurotrauma, Variation, and Regeneration, Ministry of Education and Tianjin Municipal Government, Tianjin 300052, China
| | - Lin Wang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China; Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Department of Neurosurgery, Tianjin Medical University General Hospital and Key Laboratory of Neurotrauma, Variation, and Regeneration, Ministry of Education and Tianjin Municipal Government, Tianjin 300052, China
| | - Sidi Li
- Tianjin Key Laboratory of Composite and Functional Materials, School of Material Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Junhu Zhou
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China; Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Department of Neurosurgery, Tianjin Medical University General Hospital and Key Laboratory of Neurotrauma, Variation, and Regeneration, Ministry of Education and Tianjin Municipal Government, Tianjin 300052, China
| | - Yanli Tan
- Department of Pathology, Medical College of Hebei University, Baoding, Hebei 071000, China; Key Laboratory of Precise Diagnosis and Treatment of Glioma in Hebei Province, Baoding 071000, China
| | - Jia Song
- Medical College of Hebei University, Baoding, Hebei 071000, China; Key Laboratory of Precise Diagnosis and Treatment of Glioma in Hebei Province, Baoding 071000, China
| | - Huike Xing
- Tianjin Key Laboratory of Composite and Functional Materials, School of Material Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Kaikai Yi
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China; Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Department of Neurosurgery, Tianjin Medical University General Hospital and Key Laboratory of Neurotrauma, Variation, and Regeneration, Ministry of Education and Tianjin Municipal Government, Tianjin 300052, China
| | - Qi Zhan
- Tianjin Key Laboratory of Composite and Functional Materials, School of Material Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Jin Zhao
- Tianjin Key Laboratory of Composite and Functional Materials, School of Material Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Qixue Wang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China; Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Department of Neurosurgery, Tianjin Medical University General Hospital and Key Laboratory of Neurotrauma, Variation, and Regeneration, Ministry of Education and Tianjin Municipal Government, Tianjin 300052, China.
| | - Xubo Yuan
- Tianjin Key Laboratory of Composite and Functional Materials, School of Material Science and Engineering, Tianjin University, Tianjin 300072, China.
| | - Chunsheng Kang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China; Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Department of Neurosurgery, Tianjin Medical University General Hospital and Key Laboratory of Neurotrauma, Variation, and Regeneration, Ministry of Education and Tianjin Municipal Government, Tianjin 300052, China.
| |
Collapse
|
34
|
Wang P, Wu Y, Chen W, Zhang M, Qin J. Malignant Melanoma-Derived Exosomes Induce Endothelial Damage and Glial Activation on a Human BBB Chip Model. BIOSENSORS 2022; 12:89. [PMID: 35200349 PMCID: PMC8869810 DOI: 10.3390/bios12020089] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 01/25/2022] [Accepted: 01/28/2022] [Indexed: 01/16/2023]
Abstract
Malignant melanoma is a type of highly aggressive tumor, which has a strong ability to metastasize to brain, and 60-70% of patients die from the spread of the tumor into the central nervous system. Exosomes are a type of nano-sized vesicle secreted by most living cells, and accumulated studies have reported that they play crucial roles in brain tumor metastasis, such as breast cancer and lung cancer. However, it is unclear whether exosomes also participate in the brain metastasis of malignant melanoma. Here, we established a human blood-brain barrier (BBB) model by co-culturing human brain microvascular endothelial cells, astrocytes and microglial cells under a biomimetic condition, and used this model to explore the potential roles of exosomes derived from malignant melanoma in modulating BBB integrity. Our findings showed that malignant melanoma-derived exosomes disrupted BBB integrity and induced glial activation on the BBB chip. Transcriptome analyses revealed dys-regulation of autophagy and immune responses following tumor exosome treatment. These studies indicated malignant melanoma cells might modulate BBB integrity via exosomes, and verified the feasibility of a BBB chip as an ideal platform for studies of brain metastasis of tumors in vitro.
Collapse
Affiliation(s)
- Peng Wang
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; (P.W.); (Y.W.); (W.C.); (M.Z.)
| | - Yunsong Wu
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; (P.W.); (Y.W.); (W.C.); (M.Z.)
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 116023, China
| | - Wenwen Chen
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; (P.W.); (Y.W.); (W.C.); (M.Z.)
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 116023, China
| | - Min Zhang
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; (P.W.); (Y.W.); (W.C.); (M.Z.)
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 116023, China
| | - Jianhua Qin
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; (P.W.); (Y.W.); (W.C.); (M.Z.)
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 116023, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100864, China
- CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
35
|
Tămaș F, Bălașa R, Manu D, Gyorki G, Chinezu R, Tămaș C, Bălașa A. The Importance of Small Extracellular Vesicles in the Cerebral Metastatic Process. Int J Mol Sci 2022; 23:1449. [PMID: 35163368 PMCID: PMC8835738 DOI: 10.3390/ijms23031449&set/a 886656060+812772520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Brain metastases represent more than 50% of all cerebral tumors encountered in clinical practice. Recently, there has been increased interest in the study of extracellular vesicles, and the knowledge about exosomes is constantly expanding. Exosomes are drivers for organotropic metastatic spread, playing important roles in the brain metastatic process by increasing the permeability of the blood-brain barrier and preparing the premetastatic niche. The promising results of the latest experimental studies raise the possibility of one day using exosomes for liquid biopsies or as drug carriers, contributing to early diagnosis and improving the efficacy of chemotherapy in patients with brain metastases. In this review, we attempted to summarize the latest knowledge about the role of exosomes in the brain metastatic process and future research directions for the use of exosomes in patients suffering from brain metastatic disease.
Collapse
Affiliation(s)
- Flaviu Tămaș
- University of Medicine, Pharmacy, Science and Technology “George Emil Palade”, 540142 Târgu Mureș, Romania; (F.T.); (R.B.); (R.C.); (A.B.)
- Department of Neurosurgery, Emergency Clinical County Hospital, 540136 Târgu Mureș, Romania;
| | - Rodica Bălașa
- University of Medicine, Pharmacy, Science and Technology “George Emil Palade”, 540142 Târgu Mureș, Romania; (F.T.); (R.B.); (R.C.); (A.B.)
- Department of Neurology, Emergency Clinical County Hospital, 540136 Târgu Mureș, Romania
| | - Doina Manu
- Center for Advanced Pharmaceutical and Medical Research, 540139 Târgu Mures, Romania;
| | - Gabriel Gyorki
- Department of Neurosurgery, Emergency Clinical County Hospital, 540136 Târgu Mureș, Romania;
| | - Rareș Chinezu
- University of Medicine, Pharmacy, Science and Technology “George Emil Palade”, 540142 Târgu Mureș, Romania; (F.T.); (R.B.); (R.C.); (A.B.)
- Department of Neurosurgery, Emergency Clinical County Hospital, 540136 Târgu Mureș, Romania;
| | - Corina Tămaș
- University of Medicine, Pharmacy, Science and Technology “George Emil Palade”, 540142 Târgu Mureș, Romania; (F.T.); (R.B.); (R.C.); (A.B.)
- Department of Neurosurgery, Emergency Clinical County Hospital, 540136 Târgu Mureș, Romania;
- Correspondence: ; Tel.: +40-749-867-513
| | - Adrian Bălașa
- University of Medicine, Pharmacy, Science and Technology “George Emil Palade”, 540142 Târgu Mureș, Romania; (F.T.); (R.B.); (R.C.); (A.B.)
- Department of Neurosurgery, Emergency Clinical County Hospital, 540136 Târgu Mureș, Romania;
| |
Collapse
|
36
|
The Importance of Small Extracellular Vesicles in the Cerebral Metastatic Process. Int J Mol Sci 2022. [DOI: 10.3390/ijms23031449
expr 878511370 + 954121262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Brain metastases represent more than 50% of all cerebral tumors encountered in clinical practice. Recently, there has been increased interest in the study of extracellular vesicles, and the knowledge about exosomes is constantly expanding. Exosomes are drivers for organotropic metastatic spread, playing important roles in the brain metastatic process by increasing the permeability of the blood–brain barrier and preparing the premetastatic niche. The promising results of the latest experimental studies raise the possibility of one day using exosomes for liquid biopsies or as drug carriers, contributing to early diagnosis and improving the efficacy of chemotherapy in patients with brain metastases. In this review, we attempted to summarize the latest knowledge about the role of exosomes in the brain metastatic process and future research directions for the use of exosomes in patients suffering from brain metastatic disease.
Collapse
|
37
|
Tămaș F, Bălașa R, Manu D, Gyorki G, Chinezu R, Tămaș C, Bălașa A. The Importance of Small Extracellular Vesicles in the Cerebral Metastatic Process. Int J Mol Sci 2022; 23:ijms23031449. [PMID: 35163368 PMCID: PMC8835738 DOI: 10.3390/ijms23031449] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/18/2022] [Accepted: 01/25/2022] [Indexed: 12/12/2022] Open
Abstract
Brain metastases represent more than 50% of all cerebral tumors encountered in clinical practice. Recently, there has been increased interest in the study of extracellular vesicles, and the knowledge about exosomes is constantly expanding. Exosomes are drivers for organotropic metastatic spread, playing important roles in the brain metastatic process by increasing the permeability of the blood–brain barrier and preparing the premetastatic niche. The promising results of the latest experimental studies raise the possibility of one day using exosomes for liquid biopsies or as drug carriers, contributing to early diagnosis and improving the efficacy of chemotherapy in patients with brain metastases. In this review, we attempted to summarize the latest knowledge about the role of exosomes in the brain metastatic process and future research directions for the use of exosomes in patients suffering from brain metastatic disease.
Collapse
Affiliation(s)
- Flaviu Tămaș
- University of Medicine, Pharmacy, Science and Technology “George Emil Palade”, 540142 Târgu Mureș, Romania; (F.T.); (R.B.); (R.C.); (A.B.)
- Department of Neurosurgery, Emergency Clinical County Hospital, 540136 Târgu Mureș, Romania;
| | - Rodica Bălașa
- University of Medicine, Pharmacy, Science and Technology “George Emil Palade”, 540142 Târgu Mureș, Romania; (F.T.); (R.B.); (R.C.); (A.B.)
- Department of Neurology, Emergency Clinical County Hospital, 540136 Târgu Mureș, Romania
| | - Doina Manu
- Center for Advanced Pharmaceutical and Medical Research, 540139 Târgu Mures, Romania;
| | - Gabriel Gyorki
- Department of Neurosurgery, Emergency Clinical County Hospital, 540136 Târgu Mureș, Romania;
| | - Rareș Chinezu
- University of Medicine, Pharmacy, Science and Technology “George Emil Palade”, 540142 Târgu Mureș, Romania; (F.T.); (R.B.); (R.C.); (A.B.)
- Department of Neurosurgery, Emergency Clinical County Hospital, 540136 Târgu Mureș, Romania;
| | - Corina Tămaș
- University of Medicine, Pharmacy, Science and Technology “George Emil Palade”, 540142 Târgu Mureș, Romania; (F.T.); (R.B.); (R.C.); (A.B.)
- Department of Neurosurgery, Emergency Clinical County Hospital, 540136 Târgu Mureș, Romania;
- Correspondence: ; Tel.: +40-749-867-513
| | - Adrian Bălașa
- University of Medicine, Pharmacy, Science and Technology “George Emil Palade”, 540142 Târgu Mureș, Romania; (F.T.); (R.B.); (R.C.); (A.B.)
- Department of Neurosurgery, Emergency Clinical County Hospital, 540136 Târgu Mureș, Romania;
| |
Collapse
|
38
|
CXCR2 Mediates Distinct Neutrophil Behavior in Brain Metastatic Breast Tumor. Cancers (Basel) 2022; 14:cancers14030515. [PMID: 35158784 PMCID: PMC8833752 DOI: 10.3390/cancers14030515] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/17/2022] [Accepted: 01/19/2022] [Indexed: 02/06/2023] Open
Abstract
Brain metastasis is one of the main causes of mortality among breast cancer patients, but the origins and the mechanisms that drive this process remain poorly understood. Here, we report that the upregulation of certain CXCR2-associated ligands in the brain metastatic variants of the breast cancer cells (BrM) dynamically activate the corresponding CXCR2 receptors on the neutrophils, thereby resulting in the modulation of certain key functional neutrophil responses towards the BrM. Using established neutrophil-tumor biomimetic co-culture models, we show that the upregulation of CXCR2 increases the recruitment of Tumor-Associated Neutrophils (TANs) towards the BrM, to enable location-favored formation of Neutrophil Extracellular Traps (NETs). Inhibition of CXCR2 using small molecule antagonist AZD5069 reversed this behavior, limiting the neutrophil responses to the BrM and retarding the reciprocal tumor development. We further demonstrate that abrogation of NETs formation using Neutrophil Elastase Inhibitor (NEI) significantly decreases the influx of neutrophils towards BrM but not to their parental tumor, suggesting that CXCR2 activation could be used by the brain metastatic tumors as a mechanism to program the tumor-infiltrating TANs into a pro-NETotic state, so as to assume a unique spatial distribution that assists in the subsequent migration and invasion of the metastatic tumor cells. This new perspective indicates that CXCR2 is a critical target for suppressing neutrophilic inflammation in brain metastasis.
Collapse
|
39
|
Rezaie J, Ahmadi M, Ravanbakhsh R, Mojarad B, Mahbubfam S, Shaban SA, Shadi K, Berenjabad NJ, Etemadi T. Tumor-derived extracellular vesicles: The metastatic organotropism drivers. Life Sci 2022; 289:120216. [PMID: 34890589 DOI: 10.1016/j.lfs.2021.120216] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/30/2021] [Accepted: 12/02/2021] [Indexed: 02/07/2023]
Abstract
The continuous growing, spreading, and metastasis of tumor cells depend on intercellular communication within cells resident in a tissue environment. Such communication is mediated through the secretion of particles from tumor cells and resident cells known as extracellular vesicles (EVs) within a microenvironment. EVs are a heterogeneous population of membranous vesicles released from tumor cells that transfer many types of active biomolecules to recipient cells and induce physiologic and phenotypic alterations in the tissue environment. Spreading the 'seeds' of metastasis needs the EVs that qualify the 'soil' at distant sites to promote the progress of arriving tumor cells. Growing evidence indicates that EVs have vital roles in tumorigenesis, including pre-metastatic niche formation and organotropic metastasis. These EVs mediate organotropic metastasis by modifying the pre-metastatic microenvironment through different pathways including induction of phenotypic alternation and differentiation of cells, enrolment of distinct supportive stromal cells, up-regulation of the expression of pro-inflammatory genes, and induction of immunosuppressive status. However, instead of pre-metastatic niche formation, evidence suggests that EVs may mediate reawakening of dormant niches. Findings regarding EVs function in tumor metastasis have led to growing interests in the interdisciplinary significance of EVs, including targeted therapy, cell-free therapy, drug-delivery system, and diagnostic biomarker. In this review, we discuss EVs-mediated pre-metastatic niche formation and organotropic metastasis in visceral such as lung, liver, brain, lymph node, and bone with a focus on associated signaling, causing visceral environment hospitable for metastatic cells. Furthermore, we present an overview of the possible therapeutic application of EVs in cancer management.
Collapse
Affiliation(s)
- Jafar Rezaie
- Solid Tumor Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Mahdi Ahmadi
- Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reyhaneh Ravanbakhsh
- Department of Aquatic Biotechnology, Artemia and Aquaculture Research Institute, Urmia University, Urmia, Iran
| | - Behnam Mojarad
- Biology Department, Faculty of Sciences, Urmia University, Urmia, Iran
| | - Shadi Mahbubfam
- Biology Department, Faculty of Sciences, Urmia University, Urmia, Iran
| | | | - Kosar Shadi
- Solid Tumor Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | | | - Tahereh Etemadi
- Department of Biology, Faculty of Science, Arak University, Arak, Iran
| |
Collapse
|
40
|
Famta P, Shah S, Khatri DK, Guru SK, Singh SB, Srivastava S. Enigmatic role of exosomes in breast cancer progression and therapy. Life Sci 2022; 289:120210. [PMID: 34875250 DOI: 10.1016/j.lfs.2021.120210] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/29/2021] [Accepted: 12/01/2021] [Indexed: 12/17/2022]
Abstract
Breast cancer (BC) is reported to be the leading cause of mortality in females worldwide. At the beginning of the year 2021, about 7.8 million women were diagnosed with BC in past 5 years. High prevalence and poor neoadjuvant chemotherapeutic efficacy has motivated the scientists around the globe to investigate alternative management strategies. In recent years, there has been an exponential rise in the scientific studies reporting the role of tumor derived exosomes (TDEs) in the BC pathophysiology and management. TDEs play an important role in the intercellular communication and transportation of biomolecules. This manuscript reviews the role of exosomes in the BC pathophysiology, diagnosis, and therapy. Role of TDEs in the mechanistic pathways of BC metastasis, immunosuppression, migration, dormancy and chemo-resistance is extensively reviewed. We have also highlighted the epigenetic modulations orchestrated by exosomal miRNAs and long noncoding RNAs (lnc RNAs) in the BC environment. Liquid biopsies analyzing blood circulating exosomes for early and accurate detection of the BC have been discussed. Characterization of exosomes, strategies to use them in BC chemotherapy, BC immunotherapy and potential challenges that will present themselves in translating exosomes based technologies to market are discussed.
Collapse
Affiliation(s)
- Paras Famta
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Saurabh Shah
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Dharmendra Kumar Khatri
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Santosh Kumar Guru
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Shashi Bala Singh
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Saurabh Srivastava
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India.
| |
Collapse
|
41
|
Rufino-Ramos D, Lule S, Mahjoum S, Ughetto S, Cristopher Bragg D, Pereira de Almeida L, Breakefield XO, Breyne K. Using genetically modified extracellular vesicles as a non-invasive strategy to evaluate brain-specific cargo. Biomaterials 2022; 281:121366. [PMID: 35033904 PMCID: PMC8886823 DOI: 10.1016/j.biomaterials.2022.121366] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/25/2021] [Accepted: 01/04/2022] [Indexed: 12/18/2022]
Abstract
The lack of techniques to trace brain cell behavior in vivo hampers the ability to monitor status of cells in a living brain. Extracellular vesicles (EVs), nanosized membrane-surrounded vesicles, released by virtually all brain cells might be able to report their status in easily accessible biofluids, such as blood. EVs communicate among tissues using lipids, saccharides, proteins, and nucleic acid cargo that reflect the state and composition of their source cells. Currently, identifying the origin of brain-derived EVs has been challenging, as they consist of a rare population diluted in an overwhelming number of blood and peripheral tissue-derived EVs. Here, we developed a sensitive platform to select out pre-labelled brain-derived EVs in blood as a platform to study the molecular fingerprints of brain cells. This proof-of-principle study used a transducible construct tagging tetraspanin (TSN) CD63, a membrane-spanning hallmark of EVs equipped with affinity, bioluminescent, and fluorescent tags to increase detection sensitivity and robustness in capture of EVs secreted from pre-labelled cells into biofluids. Our platform enables unprecedented efficient isolation of neural EVs from the blood. These EVs derived from pre-labelled mouse brain cells or engrafted human neuronal progenitor cells (hNPCs) were submitted to multiplex analyses, including transcript and protein levels, in compliance with the multibiomolecule EV carriers. Overall, our novel strategy to track brain-derived EVs in a complex biofluid opens up new avenues to study EVs released from pre-labelled cells in near and distal compartments into the biofluid source.
Collapse
Affiliation(s)
- David Rufino-Ramos
- Neurology and Radiology Department, Massachusetts General Hospital, Harvard Medical School, 13(th)Street, Building 149, Charlestown, MA, 02129, USA; CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, Coimbra, 3004-504, Portugal; Faculty of Pharmacy, University of Coimbra, Coimbra, 3000-548, Portugal; CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Sevda Lule
- Neurology and Radiology Department, Massachusetts General Hospital, Harvard Medical School, 13(th)Street, Building 149, Charlestown, MA, 02129, USA
| | - Shadi Mahjoum
- Neurology and Radiology Department, Massachusetts General Hospital, Harvard Medical School, 13(th)Street, Building 149, Charlestown, MA, 02129, USA
| | - Stefano Ughetto
- Neurology and Radiology Department, Massachusetts General Hospital, Harvard Medical School, 13(th)Street, Building 149, Charlestown, MA, 02129, USA
| | - D Cristopher Bragg
- Neurology and Radiology Department, Massachusetts General Hospital, Harvard Medical School, 13(th)Street, Building 149, Charlestown, MA, 02129, USA; The Collaborative Center for X-linked Dystonia-Parkinsonism, Massachusetts General Hospital, Charlestown, MA, 02129, USA
| | - Luís Pereira de Almeida
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, Coimbra, 3004-504, Portugal; Faculty of Pharmacy, University of Coimbra, Coimbra, 3000-548, Portugal; CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Xandra O Breakefield
- Neurology and Radiology Department, Massachusetts General Hospital, Harvard Medical School, 13(th)Street, Building 149, Charlestown, MA, 02129, USA
| | - Koen Breyne
- Neurology and Radiology Department, Massachusetts General Hospital, Harvard Medical School, 13(th)Street, Building 149, Charlestown, MA, 02129, USA.
| |
Collapse
|
42
|
Tang W, Xia M, Liao Y, Fang Y, Wen G, Zhong J. Exosomes in triple negative breast cancer: From bench to bedside. Cancer Lett 2021; 527:1-9. [PMID: 34902521 DOI: 10.1016/j.canlet.2021.12.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 12/07/2021] [Indexed: 12/12/2022]
Abstract
Exosomes are lipid bilayer extracellular vesicles with a size of 30-150 nm, which can be released by various types of cells including breast cancer cells. Exosomes are enriched with multiple nucleic acids, lipids, proteins and play critical biological roles by binding to recipient cells and transmitting various biological cargos. Studies have reported that tumor-derived exosomes are involved in cancer initiation and progression, such as promoting cancer invasion and metastasis, accelerating angiogenesis, contributing to epithelial-mesenchymal transition, and enhancing drug resistance in tumors. Recently the dysregulating of exosomes has been found in triple-negative breast cancer (TNBC), relating to the clinicopathological characteristics and prognosis of TNBC patients. Considering the poor prognosis and lack of adequate response to conventional therapy of TNBC, the discovery of certain exosomes as a new target for diagnosis and treatment of TNBC may be a good choice that provides new opportunities for the early diagnosis, clinical treatment of TNBC. Here, we first discuss the innovative prognostic and predictive effects of exosomes on TNBC, as well as the practical clinical problems. Secondly, we focus on the new therapeutic areas represented by exosomes, especially the impact of introducing exosomes in TNBC treatment in the future.
Collapse
Affiliation(s)
- Weiqiang Tang
- Institute of Clinical Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China
| | - Min Xia
- Institute of Clinical Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China
| | - Yajie Liao
- Institute of Pharmacy and Pharmacology, The First People's Hospital of Chenzhou, University of South China, Hengyang, Hunan, 421001, PR China
| | - Yuan Fang
- Organ Transplantation Center, The First Affiliated Hospital, Kunming Medical University, Kunming, Yunnan, 650032, PR China
| | - Gebo Wen
- Institute of Clinical Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China; Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, PR China.
| | - Jing Zhong
- Institute of Clinical Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China; Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, PR China.
| |
Collapse
|
43
|
Huang K, Huang L, Zhang X, Zhang M, Wang Q, Lin H, Yu Z, Li X, Liu XB, Wu Q, Wang Y, Wang J, Jin X, Gao H, Han X, Lin R, Cen S, Liu Z, Huang B. Mast cells-derived exosomes worsen the development of experimental cerebral malaria. Acta Trop 2021; 224:106145. [PMID: 34562426 DOI: 10.1016/j.actatropica.2021.106145] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 12/21/2022]
Abstract
Cerebral malaria (CM) is the most severe neurological complication caused by Plasmodium falciparum infection. The accumulating evidence demonstrated that mast cells (MCs) and its mediators played a critical role in mediating malaria severity. Earlier studies identified that exosomes were emerging as key mediators of intercellular communication and can be released from several kinds of MCs. However, the potential functions and pathological mechanisms of MCs-derived exosomes (MCs-Exo) impacting on CM pathogenesis remain largely unknown. Herein, we utilized an experimental CM (ECM) model (C57BL/6 mice infected with P. berghei ANKA strain), and then intravenously (i.v.) injected MCs-Exo into P. berghei ANKA-infected mice to unfold this mechanism and investigate the effect of MCs-Exo on ECM pathogenies. We also used an in vitro model by investigating the pathogenesis development of brain microvascular endothelial cells line (bEnd.3 cells) co-cultured with P. berghei ANKA blood-stage soluble antigen (PbAg) after MCs-Exo treatment. The higher numbers of MCs and levels of MCs degranulation were observed in skin, cervical lymph node, and brain of ECM mice than those of the uninfected mice. Exosomes were successfully isolated from culture supernatants of mouse MCs line (P815 cells) and characterized by spherical vesicles with the diameter of 30-150 nm, and expression of typical exosomal markers (e.g., CD9, CD63, and CD81). The i.v. injection of MCs-Exo dramatically elevated incidence of ECM in the P. berghei ANKA-infected mice, exacerbated liver and brain histopathological damage, promoted Th1 cytokine response, aggravated brain vascular endothelial activation and blood brain barrier breakdown in ECM mice. In addition, the treatment of MCs-Exo led to the decrease of cells viability and mRNA levels of Ang-1, ZO-1, and Claudin-5, but increase of mRNA levels of Ang-2, CCL2, CXCL1, and CXCL9 in bEnd.3 cells co-cultured with PbAg in vitro. Taken together, our data indicated that MCs-Exo could worsen pathogenesis of ECM in mice.
Collapse
|
44
|
Corrado C, Barreca MM, Zichittella C, Alessandro R, Conigliaro A. Molecular Mediators of RNA Loading into Extracellular Vesicles. Cells 2021; 10:cells10123355. [PMID: 34943863 PMCID: PMC8699260 DOI: 10.3390/cells10123355] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/22/2021] [Accepted: 11/27/2021] [Indexed: 12/16/2022] Open
Abstract
In the last decade, an increasing number of studies have demonstrated that non-coding RNA (ncRNAs) cooperate in the gene regulatory networks with other biomolecules, including coding RNAs, DNAs and proteins. Among them, microRNAs (miRNAs), long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) are involved in transcriptional and translation regulation at different levels. Intriguingly, ncRNAs can be packed in vesicles, released in the extracellular space, and finally internalized by receiving cells, thus affecting gene expression also at distance. This review focuses on the mechanisms through which the ncRNAs can be selectively packaged into extracellular vesicles (EVs).
Collapse
Affiliation(s)
- Chiara Corrado
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), Section of Biology and Genetics, University of Palermo, 90133 Palermo, Italy; (C.C.); (M.M.B.); (C.Z.); (R.A.)
| | - Maria Magdalena Barreca
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), Section of Biology and Genetics, University of Palermo, 90133 Palermo, Italy; (C.C.); (M.M.B.); (C.Z.); (R.A.)
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128 Palermo, Italy
| | - Chiara Zichittella
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), Section of Biology and Genetics, University of Palermo, 90133 Palermo, Italy; (C.C.); (M.M.B.); (C.Z.); (R.A.)
| | - Riccardo Alessandro
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), Section of Biology and Genetics, University of Palermo, 90133 Palermo, Italy; (C.C.); (M.M.B.); (C.Z.); (R.A.)
- Institute for Biomedical Research and Innovation (IRIB), National Research Council (CNR), 90146 Palermo, Italy
| | - Alice Conigliaro
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), Section of Biology and Genetics, University of Palermo, 90133 Palermo, Italy; (C.C.); (M.M.B.); (C.Z.); (R.A.)
- Correspondence:
| |
Collapse
|
45
|
Gaebe K, Li AY, Das S. Clinical Biomarkers for Early Identification of Patients with Intracranial Metastatic Disease. Cancers (Basel) 2021; 13:cancers13235973. [PMID: 34885083 PMCID: PMC8656478 DOI: 10.3390/cancers13235973] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/25/2021] [Accepted: 11/25/2021] [Indexed: 12/18/2022] Open
Abstract
Simple Summary The development of brain metastases, or intracranial metastatic disease (IMD), is a serious and life-altering complication for many patients with cancer. While there have been substantial advancements in the treatments available for IMD and in our understanding of its pathogenesis, conventional methods remain insufficient to detect IMD at an early stage. In this review, we discuss current research on biomarkers specific to IMD. In particular, we highlight biomarkers that can be easily accessed via the bloodstream or cerebrospinal fluid, including circulating tumor cells and DNA, as well as advanced imaging techniques. The continued development of these assays could enable clinicians to detect IMD prior to the development of IMD-associated symptoms and ultimately improve patient prognosis and survival. Abstract Nearly 30% of patients with cancer will develop intracranial metastatic disease (IMD), and more than half of these patients will die within a few months following their diagnosis. In light of the profound effect of IMD on survival and quality of life, there is significant interest in identifying biomarkers that could facilitate the early detection of IMD or identify patients with cancer who are at high IMD risk. In this review, we will highlight early efforts to identify biomarkers of IMD and consider avenues for future investigation.
Collapse
Affiliation(s)
- Karolina Gaebe
- Institute of Medical Science, Faculty of Medicine, University of Toronto, 1 King’s College Circle, Toronto, ON M5S 3K1, Canada; (K.G.); (A.Y.L.)
| | - Alyssa Y. Li
- Institute of Medical Science, Faculty of Medicine, University of Toronto, 1 King’s College Circle, Toronto, ON M5S 3K1, Canada; (K.G.); (A.Y.L.)
| | - Sunit Das
- Institute of Medical Science, Faculty of Medicine, University of Toronto, 1 King’s College Circle, Toronto, ON M5S 3K1, Canada; (K.G.); (A.Y.L.)
- Division of Neurosurgery, St. Michael’s Hospital, University of Toronto, 30 Bond Street, Toronto, ON M5B 1W8, Canada
- Correspondence:
| |
Collapse
|
46
|
Pauwels MJ, Vandendriessche C, Vandenbroucke RE. Special delEVery: Extracellular Vesicles as Promising Delivery Platform to the Brain. Biomedicines 2021; 9:1734. [PMID: 34829963 PMCID: PMC8615927 DOI: 10.3390/biomedicines9111734] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/13/2021] [Accepted: 11/17/2021] [Indexed: 12/12/2022] Open
Abstract
The treatment of central nervous system (CNS) pathologies is severely hampered by the presence of tightly regulated CNS barriers that restrict drug delivery to the brain. An increasing amount of data suggests that extracellular vesicles (EVs), i.e., membrane derived vesicles that inherently protect and transfer biological cargoes between cells, naturally cross the CNS barriers. Moreover, EVs can be engineered with targeting ligands to obtain enriched tissue targeting and delivery capacities. In this review, we provide a detailed overview of the literature describing a natural and engineered CNS targeting and therapeutic efficiency of different cell type derived EVs. Hereby, we specifically focus on peripheral administration routes in a broad range of CNS diseases. Furthermore, we underline the potential of research aimed at elucidating the vesicular transport mechanisms across the different CNS barriers. Finally, we elaborate on the practical considerations towards the application of EVs as a brain drug delivery system.
Collapse
Affiliation(s)
- Marie J. Pauwels
- VIB Center for Inflammation Research, 9052 Ghent, Belgium; (M.J.P.); (C.V.)
- Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium
| | - Charysse Vandendriessche
- VIB Center for Inflammation Research, 9052 Ghent, Belgium; (M.J.P.); (C.V.)
- Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium
| | - Roosmarijn E. Vandenbroucke
- VIB Center for Inflammation Research, 9052 Ghent, Belgium; (M.J.P.); (C.V.)
- Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
47
|
Liu QL, Zhang Z, Wei X, Zhou ZG. Noncoding RNAs in tumor metastasis: molecular and clinical perspectives. Cell Mol Life Sci 2021; 78:6823-6850. [PMID: 34499209 PMCID: PMC11073083 DOI: 10.1007/s00018-021-03929-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/12/2021] [Accepted: 08/26/2021] [Indexed: 02/08/2023]
Abstract
Metastasis is the main culprit of cancer-associated mortality and involves a complex and multistage process termed the metastatic cascade, which requires tumor cells to detach from the primary site, intravasate, disseminate in the circulation, extravasate, adapt to the foreign microenvironment, and form organ-specific colonization. Each of these processes has been already studied extensively for molecular mechanisms focused mainly on protein-coding genes. Recently, increasing evidence is pointing towards RNAs without coding potential for proteins, referred to as non-coding RNAs, as regulators in shaping cellular activity. Since those first reports, the detection and characterization of non-coding RNA have explosively thrived and greatly enriched the understanding of the molecular regulatory networks in metastasis. Moreover, a comprehensive description of ncRNA dysregulation will provide new insights into novel tools for the early detection and treatment of metastatic cancer. In this review, we focus on discussion of the emerging role of ncRNAs in governing cancer metastasis and describe step by step how ncRNAs impinge on cancer metastasis. In particular, we highlight the diagnostic and therapeutic applications of ncRNAs in metastatic cancer.
Collapse
Affiliation(s)
- Qiu-Luo Liu
- Department of Gastrointestinal Surgery, State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Zhe Zhang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China.
| | - Zong-Guang Zhou
- Department of Gastrointestinal Surgery, State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, People's Republic of China.
| |
Collapse
|
48
|
Yi Y, Wu M, Zeng H, Hu W, Zhao C, Xiong M, Lv W, Deng P, Zhang Q, Wu Y. Tumor-Derived Exosomal Non-Coding RNAs: The Emerging Mechanisms and Potential Clinical Applications in Breast Cancer. Front Oncol 2021; 11:738945. [PMID: 34707990 PMCID: PMC8544822 DOI: 10.3389/fonc.2021.738945] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 09/23/2021] [Indexed: 12/11/2022] Open
Abstract
Breast cancer (BC) is the most frequent malignancy and is ranking the leading cause of cancer-related death among women worldwide. At present, BC is still an intricate challenge confronted with high invasion, metastasis, drug resistance, and recurrence rate. Exosomes are membrane-enclosed extracellular vesicles with the lipid bilayer and recently have been confirmed as significant mediators of tumor cells to communicate with surrounding cells in the tumor microenvironment. As very important orchestrators, non-coding RNAs (ncRNAs) are aberrantly expressed and participate in regulating gene expression in multiple human cancers, while the most reported ncRNAs within exosomes in BC are microRNAs (miRNAs), long-noncoding RNAs (lncRNAs), and circular RNAs (circRNAs). Notably, ncRNAs containing exosomes are novel frontiers to shape malignant behaviors in recipient BC cells such as angiogenesis, immunoregulation, proliferation, and migration. It means that tumor-derived ncRNAs-containing exosomes are pluripotent carriers with intriguing and elaborate roles in BC progression via complex mechanisms. The ncRNAs in exosomes are usually excavated based on specific de-regulated expression verified by RNA sequencing, bioinformatic analyses, and PCR experiments. Here, this article will elucidate the recent existing research on the functions and mechanisms of tumor-derived exosomal miRNA, lncRNA, circRNA in BC, especially in BC cell proliferation, metastasis, immunoregulation, and drug resistance. Moreover, these tumor-derived exosomal ncRNAs that existed in blood samples are proved to be excellent diagnostic biomarkers for improving diagnosis and prognosis. The in-depth understanding of tumor-derived exosomal ncRNAs in BC will provide further insights for elucidating the BC oncogenesis and progress and exploring novel therapeutic strategies for combating BC.
Collapse
Affiliation(s)
- Yi Yi
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Wu
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hong Zeng
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weijie Hu
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chongru Zhao
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mingchen Xiong
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenchang Lv
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pei Deng
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qi Zhang
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yiping Wu
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
49
|
Oliveira FD, Castanho MARB, Neves V. Exosomes and Brain Metastases: A Review on Their Role and Potential Applications. Int J Mol Sci 2021; 22:10899. [PMID: 34639239 PMCID: PMC8509735 DOI: 10.3390/ijms221910899] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/26/2021] [Accepted: 09/28/2021] [Indexed: 12/21/2022] Open
Abstract
Brain metastases (BM) are a frequent complication in patients with advanced stages of cancer, associated with impairment of the neurological function, quality of life, prognosis, and survival. BM treatment consists of a combination of the available cancer therapies, such as surgery, radiotherapy, chemotherapy, immunotherapy and targeted therapies. Even so, cancer patients with BM are still linked to poor prognosis, with overall survival being reported as 12 months or less. Intercellular communication has a pivotal role in the development of metastases, therefore, it has been extensively studied not only to better understand the metastization process, but also to further develop new therapeutic strategies. Exosomes have emerged as key players in intercellular communication being potential therapeutic targets, drug delivery systems (DDS) or biomarkers. In this Review, we focus on the role of these extracellular vesicles (EVs) in BM formation and their promising application in the development of new BM therapeutic strategies.
Collapse
Affiliation(s)
| | | | - Vera Neves
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Professor Egas Moniz, 1649-028 Lisboa, Portugal; (F.D.O.); (M.A.R.B.C.)
| |
Collapse
|
50
|
Emerging Nano-Carrier Strategies for Brain Tumor Drug Delivery and Considerations for Clinical Translation. Pharmaceutics 2021; 13:pharmaceutics13081193. [PMID: 34452156 PMCID: PMC8399364 DOI: 10.3390/pharmaceutics13081193] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 12/13/2022] Open
Abstract
Treatment of brain tumors is challenging since the blood–brain tumor barrier prevents chemotherapy drugs from reaching the tumor site in sufficient concentrations. Nanomedicines have great potential for therapy of brain disorders but are still uncommon in clinical use despite decades of research and development. Here, we provide an update on nano-carrier strategies for improving brain drug delivery for treatment of brain tumors, focusing on liposomes, extracellular vesicles and biomimetic strategies as the most clinically feasible strategies. Finally, we describe the obstacles in translation of these technologies including pre-clinical models, analytical methods and regulatory issues.
Collapse
|