1
|
Ko J, Park H, Park S, Kim DH, Cho J. Increased risk of developing cerebro-cardiovascular diseases in police officers: a nationwide retrospective cohort study. Clin Hypertens 2024; 30:18. [PMID: 38946000 PMCID: PMC11215820 DOI: 10.1186/s40885-024-00277-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 05/22/2024] [Indexed: 07/02/2024] Open
Abstract
BACKGROUND Police officers face an increased risk of developing cerebro-cardiovascular diseases (CVD). However, current literature lacks population-based cohort studies specifically focusing on this association. This study aimed to investigate the association between police officers and the risk of developing CVD compared with education officers, while accounting for socioeconomic and demographic factors. METHODS We used the Korean National Health Insurance Service data spanning from 2009 to 2020. In this population-based retrospective matched cohort study, we identified age, sex, and calendar years of job-enrollment-matched education officers for each police officer. This study evaluated the CVD occurrence, including acute myocardial infarction, ischemic stroke, and hemorrhagic stroke. Using multivariable Cox regression analysis, we determined the risk of developing CVD, expressed as a hazard ratio (HR) and 95% confidence interval (CI). RESULTS Among 104,134 police officers and 104,134 education officers, 4,391(42.2%) cases and 3,631(34.9%) cases of CVD occurred, respectively. The mean ± standard deviation age was 38.4 ± 9.4 years in police officers and 38.6 ± 9.5 years in education officers. The proportion of men was 84.8 % in both groups. Police officers were significantly associated with a higher risk of developing CVD compared with education officers, with an adjusted HR of 1.15 (95% CI, 1.09-1.22). In addition, police officers had significantly higher risks for acute myocardial infarction (adjusted HR, 1.16; 95% CI, 1.06-1.26) and ischemic stroke (adjusted HR, 1.17; 95% CI, 1.09-1.25). CONCLUSIONS The findings of our study highlight a significant increase in the risk of developing CVD among police officers, particularly among those aged 45 years and older and those with uncontrolled blood pressure compared to their education officer counterparts. Future cohort studies are required to confirm this association.
Collapse
Affiliation(s)
- Juyeon Ko
- Department of Preventive Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hyunji Park
- Department of Preventive Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sungha Park
- Division of Cardiology, Severance Cardiovascular Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Dae-Hee Kim
- Division of Cardiology, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jaelim Cho
- Department of Preventive Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea.
- Institute for Environmental Research, Yonsei University College of Medicine, Seoul, Republic of Korea.
- Institute of Human Complexity and Systems Science, Yonsei University, Incheon, Republic of Korea.
| |
Collapse
|
2
|
Beggs PJ, Trueck S, Linnenluecke MK, Bambrick H, Capon AG, Hanigan IC, Arriagada NB, Cross TJ, Friel S, Green D, Heenan M, Jay O, Kennard H, Malik A, McMichael C, Stevenson M, Vardoulakis S, Dang TN, Garvey G, Lovett R, Matthews V, Phung D, Woodward AJ, Romanello MB, Zhang Y. The 2023 report of the MJA-Lancet Countdown on health and climate change: sustainability needed in Australia's health care sector. Med J Aust 2024; 220:282-303. [PMID: 38522009 DOI: 10.5694/mja2.52245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 12/06/2023] [Indexed: 03/25/2024]
Abstract
The MJA-Lancet Countdown on health and climate change in Australia was established in 2017 and produced its first national assessment in 2018 and annual updates in 2019, 2020, 2021 and 2022. It examines five broad domains: health hazards, exposures and impacts; adaptation, planning and resilience for health; mitigation actions and health co-benefits; economics and finance; and public and political engagement. In this, the sixth report of the MJA-Lancet Countdown, we track progress on an extensive suite of indicators across these five domains, accessing and presenting the latest data and further refining and developing our analyses. Our results highlight the health and economic costs of inaction on health and climate change. A series of major flood events across the four eastern states of Australia in 2022 was the main contributor to insured losses from climate-related catastrophes of $7.168 billion - the highest amount on record. The floods also directly caused 23 deaths and resulted in the displacement of tens of thousands of people. High red meat and processed meat consumption and insufficient consumption of fruit and vegetables accounted for about half of the 87 166 diet-related deaths in Australia in 2021. Correction of this imbalance would both save lives and reduce the heavy carbon footprint associated with meat production. We find signs of progress on health and climate change. Importantly, the Australian Government released Australia's first National Health and Climate Strategy, and the Government of Western Australia is preparing a Health Sector Adaptation Plan. We also find increasing action on, and engagement with, health and climate change at a community level, with the number of electric vehicle sales almost doubling in 2022 compared with 2021, and with a 65% increase in coverage of health and climate change in the media in 2022 compared with 2021. Overall, the urgency of substantial enhancements in Australia's mitigation and adaptation responses to the enormous health and climate change challenge cannot be overstated. Australia's energy system, and its health care sector, currently emit an unreasonable and unjust proportion of greenhouse gases into the atmosphere. As the Lancet Countdown enters its second and most critical phase in the leadup to 2030, the depth and breadth of our assessment of health and climate change will be augmented to increasingly examine Australia in its regional context, and to better measure and track key issues in Australia such as mental health and Aboriginal and Torres Strait Islander health and wellbeing.
Collapse
Affiliation(s)
| | | | | | - Hilary Bambrick
- National Centre for Epidemiology and Population Health, Australian National University, Canberra, ACT
| | - Anthony G Capon
- Monash Sustainable Development Institute, Monash University, Melbourne, VIC
| | | | | | | | | | - Donna Green
- Climate Change Research Centre and ARC Centre of Excellence for Climate Extremes, UNSW, Sydney, NSW
| | - Maddie Heenan
- Australian Prevention Partnership Centre, Sax Institute, Sydney, NSW
- The George Institute for Global Health, Sydney, NSW
| | - Ollie Jay
- Thermal Ergonomics Laboratory, University of Sydney, Sydney, NSW
| | - Harry Kennard
- Center on Global Energy Policy, Columbia University, New York, NY, USA
| | | | | | - Mark Stevenson
- Transport, Health and Urban Design (THUD) Research Lab, University of Melbourne, Melbourne, VIC
| | - Sotiris Vardoulakis
- National Centre for Epidemiology and Population Health, Australian National University, Canberra, ACT
| | - Tran N Dang
- University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | | | - Raymond Lovett
- National Centre for Epidemiology and Population Health, Australian National University, Canberra, ACT
- Australian Institute of Aboriginal and Torres Strait Islander Studies, Canberra, ACT
| | - Veronica Matthews
- University Centre for Rural Health, University of Sydney, Sydney, NSW
| | | | | | | | | |
Collapse
|
3
|
Linh Tran NQ, Cam Hong Le HT, Pham CT, Nguyen XH, Tran ND, Thi Tran TH, Nghiem S, Ly Luong TM, Bui V, Nguyen-Huy T, Doan VQ, Dang KA, Thuong Do TH, Thi Ngo HK, Nguyen TV, Nguyen NH, Do MC, Ton TN, Thu Dang TA, Nguyen K, Tran XB, Thai P, Phung D. Climate change and human health in Vietnam: a systematic review and additional analyses on current impacts, future risk, and adaptation. THE LANCET REGIONAL HEALTH. WESTERN PACIFIC 2023; 40:100943. [PMID: 38116497 PMCID: PMC10730327 DOI: 10.1016/j.lanwpc.2023.100943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/29/2023] [Accepted: 10/09/2023] [Indexed: 12/21/2023]
Abstract
This study aims to investigate climate change's impact on health and adaptation in Vietnam through a systematic review and additional analyses of heat exposure, heat vulnerability, awareness and engagement, and projected health costs. Out of 127 reviewed studies, findings indicated the wider spread of infectious diseases, and increased mortality and hospitalisation risks associated with extreme heat, droughts, and floods. However, there are few studies addressing health cost, awareness, engagement, adaptation, and policy. Additional analyses showed rising heatwave exposure across Vietnam and global above-average vulnerability to heat. By 2050, climate change is projected to cost up to USD1-3B in healthcare costs, USD3-20B in premature deaths, and USD6-23B in work loss. Despite increased media focus on climate and health, a gap between public and government publications highlighted the need for more governmental engagement. Vietnam's climate policies have faced implementation challenges, including top-down approaches, lack of cooperation, low adaptive capacity, and limited resources.
Collapse
Affiliation(s)
- Nu Quy Linh Tran
- Centre for Environment and Population Health, School of Medicine and Dentistry, Griffith University, Australia
| | - Huynh Thi Cam Hong Le
- Child Health Research Centre, Faculty of Medicine, University of Queensland, Australia
| | | | - Xuan Huong Nguyen
- Centre for Scientific Research and International Collaboration, Phan Chau Trinh University, Quang Nam, Vietnam
| | - Ngoc Dang Tran
- University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | | | - Son Nghiem
- Department of Health Economics, Wellbeing and Society, Australian National University, Australia
| | - Thi Mai Ly Luong
- Faculty of Environmental Sciences, Vietnam University of Science, Hanoi, Vietnam
| | - Vinh Bui
- Faculty of Science and Engineering, Southern Cross University, Australia
| | - Thong Nguyen-Huy
- Centre for Applied Climate Sciences, University of Southern Queensland, Australia
| | - Van Quang Doan
- Centre for Computational Sciences, University of Tsukuba, Japan
| | - Kim Anh Dang
- Queensland Alliance for Environmental Health Sciences, The University of Queensland, Australia
| | - Thi Hoai Thuong Do
- University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Hieu Kim Thi Ngo
- University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | | | - Ngoc Huy Nguyen
- Vietnam National University - Vietnam Japan University, Hanoi, Vietnam
| | - Manh Cuong Do
- Health Environment Management Agency, Ministry of Health, Vietnam
| | | | - Thi Anh Thu Dang
- Hue University of Medicine and Pharmacy, Hue University, Hue City, Vietnam
| | - Kien Nguyen
- Hue University of Economics, Hue University, Hue City, Vietnam
| | | | - Phong Thai
- Queensland Alliance for Environmental Health Sciences, The University of Queensland, Australia
| | - Dung Phung
- School of Public Health, The University of Queensland, Australia
| |
Collapse
|
4
|
Williams A, McDonogh‐Wong L, Spengler JD. The Influence of Extreme Heat on Police and Fire Department Services in 23 U.S. Cities. GEOHEALTH 2020; 4:e2020GH000282. [PMID: 33204929 PMCID: PMC7648134 DOI: 10.1029/2020gh000282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/11/2020] [Accepted: 08/12/2020] [Indexed: 06/11/2023]
Abstract
Recent research suggests that extreme heat affects the demand for emergency services, including police and fire department incidents. Yet there is limited understanding of impacts across U.S. cities, with varying population sizes, and between different climates. This study sought to examine the daily utilization of police and fire department services, during hot days in 23 U.S. cities representing six climate zones using relative risk (RR) and time series analyses of daily police and fire department incidents. The warm season analyses utilized three temperature metrics: daily maximum temperature (TMAX), daily maximum heat index (HIMAX), and the preceding daily minimum temperature (TMIN). Across these cities, the RR of police department incidents on days where TMAX was at or above the 95th percentile significantly increased within a range from 3% (95% confidence interval [CI]: 0.3%, 6.3%) to 57% (95% CI: 24.5%, 89.7%), compared with a nonhot day. At the same temperature thresholds, the RR of fire department dispatches increased from 6% (95% CI: 3.0%, 8.6%) to 18% (95% CI: 15.2%, 21.6%). These results remained consistent across temperature metrics and consecutive days of extreme heat. The estimated effects of daily maximum temperature, daily maximum heat index, and daily minimum temperature were nonlinear for police and fire department incidents across all cities. These findings inform climate change adaptation strategies, preparing budgets and personnel for emergency agencies to ensure resilience as periods of extreme heat increase in frequency, severity, and duration.
Collapse
Affiliation(s)
- Augusta Williams
- Department of Environmental HealthHarvard T.H. Chan School of Public HealthBostonMAUSA
- Center for Climate, Health, and the Global EnvironmentHarvard T.H. Chan School of Public HealthBostonMAUSA
| | - Larissa McDonogh‐Wong
- Department of Environmental HealthHarvard T.H. Chan School of Public HealthBostonMAUSA
- Center for Climate, Health, and the Global EnvironmentHarvard T.H. Chan School of Public HealthBostonMAUSA
| | - John D. Spengler
- Department of Environmental HealthHarvard T.H. Chan School of Public HealthBostonMAUSA
| |
Collapse
|