1
|
Ribeiro MGC, Kravchychyn ACP, Bressan J, Hermsdorff HHM. Adiposity and inflammation markers explain mostly part of the plasma zonulin variation in Brazilian adults with overweight/obesity: A cross-sectional analysis from Brazilian nuts study. Clin Nutr 2024; 45:22-30. [PMID: 39731881 DOI: 10.1016/j.clnu.2024.12.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 11/26/2024] [Accepted: 12/16/2024] [Indexed: 12/30/2024]
Abstract
OBJECTIVE This study evaluated intestinal permeability according to plasma zonulin and its association with adiposity, inflammation, cardiometabolic risk, liver function, and intestinal health markers in adults with overweight/obesity. METHODOLOGY This study is a cross-sectional analysis using baseline data from the Brazilian Nut Study, which involved 123 participants (93 women, age 33.2 ± 8.58 years, BMI 33.9 ± 4.30kg/m2). Subjects were divided into quartiles according to plasma zonulin, assessed by Elisa. Cytokines were assessed by flow cytometry; anthropometric measurements were collected by standard procedure and body composition was assessed by DXA. SCFA analysis was performed by high-performance liquid chromatography, and fecal pH, by a pH meter. Linear regression models were performed (α<5 %). RESULTS Participants included in the last quartile of plasma zonulin had higher values of body fat (%), pro-inflammatory cytokines (CRP, IL-1). According to the multivariate regression model, each one-unit increased in body fat, CRP, IL-12p70, IL-6 and IL-8 resulted correspondingly in an increment of 0.42, 0.14, 0.192, 0.250 and 0.312 ng/ml in plasma zonulin, respectively. Conversely, a one-unit decreased in IL-10 led to an increase of 0.40 ng/ml in plasma zonulin. CONCLUSION Intestinal permeability assessed by plasma zonulin is associated with adiposity, subclinical inflammation and reduced serum HDL levels adults with overweight/obesity, while adiposity and inflammation markers are independent factors for plasma zonulin variation.
Collapse
Affiliation(s)
- Madalena Geralda Cupertino Ribeiro
- Laboratory of Clinical Analysis and Genomics, Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa, MG, Brazil; Laboratory of Energy Metabolism and Body Composition, Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa, MG, Brazil.
| | - Ana Claudia Pelissari Kravchychyn
- Laboratory of Clinical Analysis and Genomics, Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa, MG, Brazil; Laboratory of Energy Metabolism and Body Composition, Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Josefina Bressan
- Laboratory of Clinical Analysis and Genomics, Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa, MG, Brazil; Laboratory of Energy Metabolism and Body Composition, Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Helen Hermana Miranda Hermsdorff
- Laboratory of Clinical Analysis and Genomics, Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa, MG, Brazil; Laboratory of Energy Metabolism and Body Composition, Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| |
Collapse
|
2
|
Yang X, Zhang X, Ma Y, Li S, Wang Q, Hong JS, Yu G, Qi B, Wang J, Liu C, Shang Q, Wu X, Zhao J. Fucoidan ameliorates rotenone-induced Parkinsonism in mice by regulating the microbiota-gut-brain axis. Int J Biol Macromol 2024; 283:137373. [PMID: 39521225 DOI: 10.1016/j.ijbiomac.2024.137373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 11/02/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
Microbiota-gut-brain axis, the bidirectional relationship between the gut microbiota and the brain, has been increasingly appreciated in the pathogenesis of Parkinson's disease (PD). Fucoidan, a sulphate-rich polysaccharide, has been shown to be neuroprotective by reducing oxidative stress in PD models. However, the role of microbiota-gut-brain axis in the neuroprotective activity of fucoidan has not been revealed. In this study, the therapeutic effects of fucoidan and involvement of microbiota-gut-brain axis in rotenone (ROT)-induced PD were investigated. The results showed that fucoidan gavage attenuated neuroinflammation, dopamine neuronal damage and motor dysfunction in ROT-induced PD mice. In addition, fucoidan treatment ameliorated gut dysfunction, intestinal inflammation and disruption of the intestinal barrier in PD mice. Fucoidan also affected the composition of gut microbiota in PD mice, indicated particularly by decreased abundance of Akkermansia muciniphila and Lactobacillus johnsonii and increased abundance of Lactobacillus murinus. Mechanistic studies showed that fecal microbiota transplantation (FMT) from the fucoidan-treated mice and probiotic Lactobacillus murinus supplement are as potent as fucoidan treatment in attenuating peripheral and central inflammation and ameliorating dopamine neuronal damage, which might be attributed to the downregulation of LPS/TLR4/NF-κB signaling pathway. Our study suggests that fucoidan might be potential candidates for the treatment of PD.
Collapse
Affiliation(s)
- Xiaojing Yang
- National-Local Joint Engineering Research Center for Drug-Research and Development (R & D) of Neurodegenerative Diseases, Dalian Medical University, Dalian 116044, China
| | - Xuan Zhang
- National-Local Joint Engineering Research Center for Drug-Research and Development (R & D) of Neurodegenerative Diseases, Dalian Medical University, Dalian 116044, China
| | - Yufang Ma
- National-Local Joint Engineering Research Center for Drug-Research and Development (R & D) of Neurodegenerative Diseases, Dalian Medical University, Dalian 116044, China
| | - Sheng Li
- National-Local Joint Engineering Research Center for Drug-Research and Development (R & D) of Neurodegenerative Diseases, Dalian Medical University, Dalian 116044, China
| | - Qingshan Wang
- National-Local Joint Engineering Research Center for Drug-Research and Development (R & D) of Neurodegenerative Diseases, Dalian Medical University, Dalian 116044, China
| | - Jau-Shyong Hong
- Laboratory of Neurobiology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Guangli Yu
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Bing Qi
- Department of Medical Physiology, Dalian Medical University, Dalian 116044, China
| | - Jie Wang
- Department of Medical Physiology, Dalian Medical University, Dalian 116044, China
| | - Chengkang Liu
- Department of Medical Physiology, Dalian Medical University, Dalian 116044, China
| | - Qingsen Shang
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
| | - Xuefei Wu
- National-Local Joint Engineering Research Center for Drug-Research and Development (R & D) of Neurodegenerative Diseases, Dalian Medical University, Dalian 116044, China; Department of Medical Physiology, Dalian Medical University, Dalian 116044, China.
| | - Jie Zhao
- National-Local Joint Engineering Research Center for Drug-Research and Development (R & D) of Neurodegenerative Diseases, Dalian Medical University, Dalian 116044, China.
| |
Collapse
|
3
|
Freitas M, Ribeiro D, Janela JS, Varela CL, Costa SC, da Silva ET, Fernandes E, Roleira FMF. Plant-derived and dietary phenolic cinnamic acid derivatives: Anti-inflammatory properties. Food Chem 2024; 459:140080. [PMID: 38986205 DOI: 10.1016/j.foodchem.2024.140080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/02/2024] [Accepted: 06/10/2024] [Indexed: 07/12/2024]
Abstract
Cinnamic acids are aromatic acids primarily found in plants and plant-derived food. Phenolic cinnamic acids, with one or more hydroxyl groups in the aromatic ring, often contribute to the biological activities attributed to these compounds. The presence of hydroxyl groups and a carboxyl group makes cinnamic acids very hydrophilic, preventing them from crossing biological membranes and exerting their biological activities. To alleviate this condition, a panel of synthetic modifications have been made leading to a diverse set of phenolic cinnamic structures. In this review, an overview of the natural phenolic cinnamic acid derivatives and their plant sources (more than 200) is described. The synthetic approaches to obtain the referred derivatives (more than 200) namely esters and amides are reviewed. Further, their anti-inflammatory activity (more than 70 compounds) is scrutinized. Finally, future directions will be indicated to translate the research on phenolic cinnamic derivatives into potentially effective anti-inflammatory drugs.
Collapse
Affiliation(s)
- Marisa Freitas
- LAQV, REQUIMTE, University of Porto, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, 4050-313 Porto, Portugal.
| | - Daniela Ribeiro
- LAQV, REQUIMTE, University of Porto, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, 4050-313 Porto, Portugal; Faculdade de Ciências Agrárias e do Ambiente da Universidade dos Açores, Portugal.
| | - João S Janela
- Univ Coimbra, CERES, Faculty of Pharmacy, Laboratory of Pharmaceutical Chemistry, Azinhaga de Santa Comba, Pólo III - Pólo das Ciências da Saúde, 3000-548 Coimbra, Portugal.
| | - Carla L Varela
- Univ Coimbra, CERES, Coimbra, Portugal; Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Clinic Academic Center of Coimbra (CACC), Coimbra, Portugal; Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal.
| | - Saul C Costa
- Univ Coimbra, Faculty of Pharmacy, Laboratory of Pharmaceutical Chemistry, Azinhaga de Santa Comba, Pólo III - Pólo das Ciências da Saúde, 3000-548 Coimbra, Portugal.
| | - Elisiário Tavares da Silva
- Univ Coimbra, CERES, Faculty of Pharmacy, Laboratory of Pharmaceutical Chemistry, Azinhaga de Santa Comba, Pólo III - Pólo das Ciências da Saúde, 3000-548 Coimbra, Portugal.
| | - Eduarda Fernandes
- LAQV, REQUIMTE, University of Porto, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, 4050-313 Porto, Portugal.
| | - Fernanda M F Roleira
- Univ Coimbra, CERES, Faculty of Pharmacy, Laboratory of Pharmaceutical Chemistry, Azinhaga de Santa Comba, Pólo III - Pólo das Ciências da Saúde, 3000-548 Coimbra, Portugal.
| |
Collapse
|
4
|
Liu H, Yan R, Li Y, Wang J, Deng Y, Li Y. Dragon's blood attenuates LPS-induced intestinal epithelial barrier dysfunction via upregulation of FAK-DOCK180-Rac1-WAVE2-Arp3 and downregulation of TLR4/NF-κB signaling pathways. J Nat Med 2024; 78:1013-1028. [PMID: 39014275 DOI: 10.1007/s11418-024-01824-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 05/13/2024] [Indexed: 07/18/2024]
Abstract
Inflammation-induced intestinal epithelial barrier (IEB) dysfunction is one of the important reasons for the occurrence and development of intestinal inflammatory-related diseases, including ulcerative colitis (UC), Crohn's disease and necrotizing enterocolitis (NEC). Dragon's blood (DB) is a traditional Chinese medicine and has been clinically used to treat UC. However, the protective mechanism of DB on intestinal inflammatory-related diseases has still not been elucidated. The present study aimed to explore the protection mechanism of DB on IEB dysfunction in rat ileum and human colorectal adenocarcinoma cells (Caco-2)/human umbilical vein endothelial cells (HUVECs) coculture system induced by lipopolysaccharide (LPS). DB could ameliorate rat ileum mucosa morphological injury, reduce the accumulation of lipid-peroxidation products and increase the expression of junction proteins. DB also alleviated LPS-induced Caco-2 cells barrier integrity destruction in Caco-2/ HUVECs coculture system, leading to increased trans-endothelial electrical resistance (TEER), reduced cell permeability, and upregulation of expressions of F-actin and junction proteins. DB contributed to the assembly of actin cytoskeleton by upregulating the FAK-DOCK180-Rac1-WAVE2-Arp3 pathway and contributed to the formation of intercellular junctions by downregulating TLR4-MyD88-NF-κB pathway, thus reversing LPS-induced IEB dysfunction. These novel findings illustrated the potential protective mechanism of DB on intestinal inflammatory-related diseases and might be useful for further clinical application of DB.
Collapse
Affiliation(s)
- Huayan Liu
- School of Life Science, Beijing Institute of Technology, Haidian, Beijing, 100081, China
| | - Ranran Yan
- School of Life Science, Beijing Institute of Technology, Haidian, Beijing, 100081, China
| | - Yongzhi Li
- China Astronaut Research and Training Center, Haidian, Beijing, 100094, China
| | - Jiaping Wang
- China Astronaut Research and Training Center, Haidian, Beijing, 100094, China
| | - Yulin Deng
- School of Life Science, Beijing Institute of Technology, Haidian, Beijing, 100081, China
| | - Yujuan Li
- School of Life Science, Beijing Institute of Technology, Haidian, Beijing, 100081, China.
| |
Collapse
|
5
|
Adamowicz M, Abramczyk J, Kilanczyk E, Milkiewicz P, Łaba A, Milkiewicz M, Kempinska-Podhorodecka A. Modulation of miR-155-5p signalling via 5-ASA for the prevention of high microsatellite instability: an in vitro study using human epithelial cell lines. J Physiol Biochem 2024; 80:573-583. [PMID: 38985369 PMCID: PMC11502576 DOI: 10.1007/s13105-024-01033-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 06/28/2024] [Indexed: 07/11/2024]
Abstract
5-aminosalicylic acid (5-ASA) is a first-line treatment for maintaining colitis remission. It is a highly effective, safe, and well-tolerated drug with anti-inflammatory and chemo-preventive properties. While patients with primary sclerosing cholangitis (PSC) with concomitant ulcerative colitis are treated with 5-ASA, the molecular mechanisms underlying the drug's chemo-preventive effects are not entirely understood. We previously reported that bile acids and lipopolysaccharide-induced miR-155 expression was associated with downregulating mismatch repair (MMR) proteins in CACO-2 cell lines. Therefore, in this investigation, a set of in vitro functional studies was performed to show the possible mechanisms behind the epigenetic relationship between miR-155 and 5-ASA's prevention of high microsatellite instability (MSI-H). In transient transfection with miR-155Mimic, which behaves like endogenous miRNA, we confirmed the relationships between miR-155 and its target MMR in three human intestinal epithelial cell lines: CACO-2, NCM460D and HT-29. We have shown, for the first time, that 5-ASA modulates MLH1, MSH2, MSH6 in miR-155 transfected cells. These findings underline that chemoprotective 5-ASA therapy can effectively attenuate the expression of miR-155 and potentially prevent a development of MSI-H in a subset of colorectal cancers associated with PSC.
Collapse
Affiliation(s)
- Monika Adamowicz
- Department of Medical Biology, Pomeranian Medical University in Szczecin, Szczecin, 70-111, Poland
| | - Joanna Abramczyk
- Department of Medical Biology, Pomeranian Medical University in Szczecin, Szczecin, 70-111, Poland
| | - Ewa Kilanczyk
- Department of Medical Biology, Pomeranian Medical University in Szczecin, Szczecin, 70-111, Poland
| | - Piotr Milkiewicz
- Liver and Internal Medicine Unit, Medical University of Warsaw, Warszawa, Poland
- Translational Medicine Group, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Alicja Łaba
- Department of Medical Biology, Pomeranian Medical University in Szczecin, Szczecin, 70-111, Poland
| | - Malgorzata Milkiewicz
- Department of Medical Biology, Pomeranian Medical University in Szczecin, Szczecin, 70-111, Poland
| | | |
Collapse
|
6
|
Chu C, Ru H, Chen Y, Xu J, Wang C, Jin Y. Gallic acid attenuates LPS-induced inflammation in Caco-2 cells by suppressing the activation of the NF-κB/MAPK signaling pathway. Acta Biochim Biophys Sin (Shanghai) 2024; 56:905-915. [PMID: 38516705 PMCID: PMC11214974 DOI: 10.3724/abbs.2024008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/20/2023] [Indexed: 03/23/2024] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory disease characterized by intestinal barrier dysfunction, inflammatory synergistic effects and excessive tissue injury. Gallic acid (GA) is renowned for its remarkable biological activity, encompassing anti-inflammatory and antioxidant properties. However, the underlying mechanisms by which GA protects against intestinal inflammation have not been fully elucidated. The aim of this study is to investigate the effect of GA on the inflammation of a lipopolysaccharide (LPS)-stimulated human colon carcinoma cell line (Caco-2) and on the intestinal barrier dysfunction, and explore the underlying molecular mechanism involved. Our findings demonstrate that 5 μg/mL GA restores the downregulation of the mRNA and protein levels of Claudin-1, Occludin, and ZO-1 and decreases the expressions of inflammatory factors such as IL-6, IL-1β and TNF-α induced by LPS. In addition, GA exhibits a protective effect by reducing the LPS-enhanced early and late apoptotic ratios, downregulating the mRNA levels of pro-apoptotic factors ( Bax, Bad, Caspase-3, Caspase-8, and Caspase-9), and upregulating the mRNA levels of anti-apoptotic factor Bcl-2 in Caco-2 cells. GA also reduces the levels of reactive oxygen species increased by LPS and restores the activity of antioxidant enzymes, namely, superoxide dismutase and catalase, as well as the level of glutathione. More importantly, GA exerts its anti-inflammatory effects by inhibiting the LPS-induced phosphorylation of key signaling molecules in the NF-κB/MAPK pathway, including p65, IκB-α, p38, JNK, and ERK, in Caco-2 cells. Overall, our findings show that GA increases the expressions of tight junction proteins, reduces cell apoptosis, relieves oxidative stress and suppresses the activation of the NF-κB/MAPK pathway to reduce LPS-induced intestinal inflammation in Caco-2 cells, indicating that GA has potential as a therapeutic agent for intestinal inflammation.
Collapse
Affiliation(s)
- Chu Chu
- />College of Biotechnology and BioengineeringZhejiang University of TechnologyHangzhou310032China
| | - Huan Ru
- />College of Biotechnology and BioengineeringZhejiang University of TechnologyHangzhou310032China
| | - Yuyan Chen
- />College of Biotechnology and BioengineeringZhejiang University of TechnologyHangzhou310032China
| | - Jinhua Xu
- />College of Biotechnology and BioengineeringZhejiang University of TechnologyHangzhou310032China
| | - Caihong Wang
- />College of Biotechnology and BioengineeringZhejiang University of TechnologyHangzhou310032China
| | - Yuanxiang Jin
- />College of Biotechnology and BioengineeringZhejiang University of TechnologyHangzhou310032China
| |
Collapse
|
7
|
Zou X, Liu Y, Cui M, Wan Q, Chu X. The in vitro intestinal cell model: different co-cultured cells create different applications. J Drug Target 2024; 32:529-543. [PMID: 38537662 DOI: 10.1080/1061186x.2024.2333877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 03/16/2024] [Indexed: 06/20/2024]
Abstract
As a vitro absorption model, the Caco-2 cells originate from a human colon adenocarcinomas and can differentiate into a cell layer with enterocyte-like features. The Caco-2 cell model is popularly applied to explore drug transport mechanisms, to evaluate the permeability of drug and to predict the absorption of drugs or bioactive substances in the gut. However, there are limitations to the application of Caco-2 cell model due to lack of a mucus layer, the long culture period and the inability to accurately simulate the intestinal environment. The most frequent way to expand the Caco-2 cell model and address its limitations is by co-culturing it with other cells or substances. This article reviews the culture methods and applications of 3D and 2D co-culture cell models established around Caco-2 cells. It also concludes with a summary of model strengths and weaknesses.
Collapse
Affiliation(s)
- Xingyu Zou
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Yue Liu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Mengyao Cui
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Qing Wan
- Tongling Institutes for Food and Drug Control, Tongling, China
| | - Xiaoqin Chu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, China
- Engineering Technology Research Center of Modern Pharmaceutical Preparation, Anhui Province, Hefei, China
| |
Collapse
|
8
|
Tian Y, Jian T, Li J, Huang L, Li S, Lu H, Niu G, Meng X, Ren B, Liao H, Ding X, Chen J. Phenolic acids from Chicory roots ameliorate dextran sulfate sodium-induced colitis in mice by targeting TRP signaling pathways and the gut microbiota. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155378. [PMID: 38507851 DOI: 10.1016/j.phymed.2024.155378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/18/2023] [Accepted: 01/17/2024] [Indexed: 03/22/2024]
Abstract
BACKGROUND Inflammatory bowel disease (IBD) is a type of immune-mediated condition associated with intestinal homeostasis. Our preliminary studies disclosed that Cichorium intybus L., a traditional medicinal plant, also known as Chicory in Western countries, contained substantial phenolic acids displaying significant anti-inflammatory activities. We recognized the potential of harnessing Chicory for the treatment of IBD, prompting a need for in-depth investigation into the underlying mechanisms. METHODS On the third day, mice were given 100, 200 mg/kg of total phenolic acids (PA) from Chicory and 200 mg/kg of sulfasalazine (SASP) via gavage, while dextran sodium sulfate (DSS) concentration was 2.5 % for one week. The study measured and evaluated various health markers including body weight, disease activity index (DAI), colon length, spleen index, histological score, serum concentrations of myeloperoxidase (MPO), nitric oxide (NO), superoxide dismutase (SOD), lipid oxidation (MDA), and inflammatory factors. We evaluated the TRP family and the NLRP3 inflammatory signaling pathways by Western blot, while 16S rDNA sequencing was used to track the effects of PA on gut microbes. RESULTS It was shown that PA ameliorated the weight loss trend, attenuated inflammatory damage, regulated oxidative stress levels, and repaired the intestinal barrier in DSS mice. Analyses of Western blots demonstrated that PA suppressed what was expressed of transient receptor potential family TRPV4, TRPA1, and the expression of NLRP3 inflammatory signaling pathway, NLRP3 and GSDMD. In addition, PA exerted therapeutic effects on IBD by regulating gut microbiota richness and diversity. Meanwhile, the result of the KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway enrichment analysis showed that gut microbiota was mainly related to Membrane Transport, Replication and Repair, Carbohydrate Metabolism and Amino Acid Metabolism. CONCLUSION PA derived from Chicory may have therapeutic effects on IBD by regulating the TRPV4/NLRP3 signaling pathway and gut microbiome. This study provides new insights into the effects of phenolic acids from Chicory on TRP ion channels and gut microbiota, revealing previously unexplored modes of action.
Collapse
Affiliation(s)
- Yuwen Tian
- Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Tunyu Jian
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Jin Li
- Department of Painology, Hainan Cancer Hospital, Haikou 570311, China
| | - Lushi Huang
- Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Shen Li
- Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Hao Lu
- Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Guanting Niu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Xiuhua Meng
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Bingru Ren
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Huarong Liao
- Pharmaceutical Affairs Department, Hubei Provincial Traditional Chinese Medical Hospital HuBei Institute of traditional Chinese Medicine, WuHan 430061, China
| | - Xiaoqin Ding
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China.
| | - Jian Chen
- Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China.
| |
Collapse
|
9
|
Reale M, Costantini E, Aielli L, Rienzo AD, Biase GD, Stefano AD, Cacciatore I. Exploring the therapeutic potential of cinnamoyl derivatives in attenuating inflammation in lipopolysaccharide-induced Caco-2 cells. Future Med Chem 2024; 16:1395-1411. [PMID: 39190472 DOI: 10.1080/17568919.2024.2351293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 04/29/2024] [Indexed: 08/28/2024] Open
Abstract
Aim: In gastrointestinal (GI) diseases, lipopolysaccharide (LPS) exacerbates gut-barrier dysfunction and inflammation. Cinnamoyl derivatives show potential in mitigating LPS-induced inflammation.Materials & methods: We assessed intestinal epithelial barrier function using Trans-epithelial electrical resistance values and measured inflammatory mediators through real-time PCR and ELISA in Caco-2 cells.Results: LPS treatment increased IL-6, IL-1β, TNF-α, PGE2 and TRL4 expression in Caco-2 cells. Pre-treatment with DM1 (1 or 10 μM) effectively countered LPS-induced TLR4 overexpression and reduced IL-6, IL-1β, TNF-α and PGE2 levels.Conclusion: DM1 holds promise in regulating inflammation and maintaining intestinal integrity by suppressing TLR4 and inflammatory mediators in Caco-2 cells. These findings suggest a potential therapeutic avenue for GI diseases.
Collapse
Affiliation(s)
- Marcella Reale
- Department of Innovative Technologies in Medicine & Dentistry, University "G. d'Annunzio", Via dei Vestini, 66100, Chieti, Italy
| | - Erica Costantini
- Department of Medicine & Aging Sciences, University "G. d'Annunzio", Via dei Vestini, 66100, Chieti, Italy
| | - Lisa Aielli
- Department of Innovative Technologies in Medicine & Dentistry, University "G. d'Annunzio", Via dei Vestini, 66100, Chieti, Italy
| | - Annalisa Di Rienzo
- Department of Pharmacy, University "G. d'Annunzio", Via dei Vestini, 66100, Chieti, Italy
| | - Giuseppe Di Biase
- Department of Pharmacy, University "G. d'Annunzio", Via dei Vestini, 66100, Chieti, Italy
| | - Antonio Di Stefano
- Department of Pharmacy, University "G. d'Annunzio", Via dei Vestini, 66100, Chieti, Italy
| | - Ivana Cacciatore
- Department of Pharmacy, University "G. d'Annunzio", Via dei Vestini, 66100, Chieti, Italy
| |
Collapse
|
10
|
Casaro S, Prim JG, Gonzalez TD, Cunha F, Bisinotto RS, Chebel RC, Santos JEP, Nelson CD, Jeon SJ, Bicalho RC, Driver JP, Galvão KN. Integrating uterine microbiome and metabolome to advance the understanding of the uterine environment in dairy cows with metritis. Anim Microbiome 2024; 6:30. [PMID: 38802977 PMCID: PMC11131188 DOI: 10.1186/s42523-024-00314-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 05/02/2024] [Indexed: 05/29/2024] Open
Abstract
BACKGROUND Metritis is a prevalent uterine disease that affects the welfare, fertility, and survival of dairy cows. The uterine microbiome from cows that develop metritis and those that remain healthy do not differ from calving until 2 days postpartum, after which there is a dysbiosis of the uterine microbiome characterized by a shift towards opportunistic pathogens such as Fusobacteriota and Bacteroidota. Whether these opportunistic pathogens proliferate and overtake the uterine commensals could be determined by the type of substrates present in the uterus. The objective of this study was to integrate uterine microbiome and metabolome data to advance the understanding of the uterine environment in dairy cows that develop metritis. Holstein cows (n = 104) had uterine fluid collected at calving and at the day of metritis diagnosis. Cows with metritis (n = 52) were paired with cows without metritis (n = 52) based on days after calving. First, the uterine microbiome and metabolome were evaluated individually, and then integrated using network analyses. RESULTS The uterine microbiome did not differ at calving but differed on the day of metritis diagnosis between cows with and without metritis. The uterine metabolome differed both at calving and on the day of metritis diagnosis between cows that did and did not develop metritis. Omics integration was performed between 6 significant bacteria genera and 153 significant metabolites on the day of metritis diagnosis. Integration was not performed at calving because there were no significant differences in the uterine microbiome. A total of 3 bacteria genera (i.e. Fusobacterium, Porphyromonas, and Bacteroides) were strongly correlated with 49 metabolites on the day of metritis diagnosis. Seven of the significant metabolites at calving were among the 49 metabolites strongly correlated with opportunistic pathogenic bacteria on the day of metritis diagnosis. The main metabolites have been associated with attenuation of biofilm formation by commensal bacteria, opportunistic pathogenic bacteria overgrowth, tissue damage and inflammation, immune evasion, and immune dysregulation. CONCLUSIONS The data integration presented herein helps advance the understanding of the uterine environment in dairy cows with metritis. The identified metabolites may provide a competitive advantage to the main uterine pathogens Fusobacterium, Porphyromonas and Bacteroides, and may be promising targets for future interventions aiming to reduce opportunistic pathogenic bacteria growth in the uterus.
Collapse
Affiliation(s)
- S Casaro
- Department of Large Animal Clinical Sciences, University of Florida, Gainesville, FL, USA
| | - J G Prim
- Department of Clinical Sciences, Auburn University, Auburn, AL, USA
| | - T D Gonzalez
- Department of Large Animal Clinical Sciences, University of Florida, Gainesville, FL, USA
| | - F Cunha
- Department of Large Animal Clinical Sciences, University of Florida, Gainesville, FL, USA
| | - R S Bisinotto
- Department of Large Animal Clinical Sciences, University of Florida, Gainesville, FL, USA
| | - R C Chebel
- Department of Large Animal Clinical Sciences, University of Florida, Gainesville, FL, USA
| | - J E P Santos
- Department of Animal Sciences, University of Florida, Gainesville, FL, USA
- D. H. Barron Reproductive and Perinatal Biology Research Program, University of Florida, Gainesville, FL, USA
| | - C D Nelson
- Department of Animal Sciences, University of Florida, Gainesville, FL, USA
| | - S J Jeon
- Department of Veterinary Biomedical Sciences, Long Island University, Brookville, NY, USA
| | - R C Bicalho
- FERA Diagnostics and Biologicals, College Station, TX, USA
| | - J P Driver
- Division of Animals Sciences, University of Missouri, Columbia, MO, USA
| | - Klibs N Galvão
- Department of Large Animal Clinical Sciences, University of Florida, Gainesville, FL, USA.
- D. H. Barron Reproductive and Perinatal Biology Research Program, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
11
|
Lu Y, Han X. Therapeutic Implications of Phenolic Acids for Ameliorating Inflammatory Bowel Disease. Nutrients 2024; 16:1347. [PMID: 38732594 PMCID: PMC11085699 DOI: 10.3390/nu16091347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 04/28/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory intestinal disorder, and its complex etiology makes prevention and treatment challenging. Research on new drugs and treatment strategies is currently a focal point. Phenolic acids are widely present in plant-based diets and have demonstrated the potential to alleviate colitis due to their powerful antioxidant and anti-inflammatory properties. In this review, we provide an overview of the structures and main dietary sources of phenolic acids, encompassing benzoic acid and cinnamic acid. Additionally, we explore the potential of phenolic acids as a nutritional therapy for preventing and treating IBD. In animal and cell experiments, phenolic acids effectively alleviate IBD induced by drug exposure or genetic defects. The mechanisms include improving intestinal mucosal barrier function, reducing oxidative stress, inhibiting excessive activation of the immune response, and regulating the balance of the intestinal microbiota. Our observation points towards the need for additional basic and clinical investigations on phenolic acids and their derivatives as potential novel therapeutic agents for IBD.
Collapse
Affiliation(s)
- Yanan Lu
- School of Biomedicine, Beijing City University, Huanghoudian Village, Yongfeng Town, Haidian District, Beijing 100094, China;
| | - Xue Han
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
| |
Collapse
|
12
|
Lan H, Dong Z, Zhang M, Li W, Chong C, Wu Y, Wang Z, Liu J, Liu Z, Qin X, Jiang T, Song J. Sinapic acid modulates oxidative stress and metabolic disturbances to attenuate ovarian fibrosis in letrozole-induced polycystic ovary syndrome SD rats. Food Sci Nutr 2024; 12:2917-2931. [PMID: 38628198 PMCID: PMC11016395 DOI: 10.1002/fsn3.3973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/04/2024] [Accepted: 01/09/2024] [Indexed: 04/19/2024] Open
Abstract
Sinapic acid (SA) is renowned for its many pharmacological activities as a polyphenolic compound. The cause of polycystic ovary syndrome (PCOS), a commonly encountered array of metabolic and hormonal abnormalities in females, has yet to be determined. The present experiment was performed to evaluate the antifibrotic properties of SA in rats with letrozole-induced PCOS-related ovarian fibrosis. SA treatment successfully mitigated the changes induced by letrozole in body weight (BW) (p < .01) and relative ovary weight (p < .05). Histological observation revealed that SA reduced the number of atretic and cystic follicles (AFs) and (CFs) (p < .01), as well as ovarian fibrosis, in PCOS rats. Additionally, SA treatment impacted the serum levels of sex hormones in PCOS rats. Luteinizing hormone (LH) and testosterone (T) levels were decreased (p < .01, p < .05), and follicle-stimulating hormone (FSH) levels were increased (p < .05). SA administration also decreased triglyceride (TG) (p < .01) and total cholesterol (TC) levels (p < .05) and increased high-density lipoprotein cholesterol (HDL-C) levels (p < .01), thereby alleviating letrozole-induced metabolic dysfunction in PCOS rats. Furthermore, SA treatment targeted insulin resistance (IR) and increased the messenger RNA (mRNA) levels of antioxidant enzymes in the ovaries of PCOS rats. Finally, SA treatment enhanced the activity of peroxisome proliferator-activated receptor-γ (PPAR-γ), reduced the activation of transforming growth factor-β1 (TGF-β1)/Smads, and decreased collagen I, α-smooth muscle actin (α-SMA), and connective tissue growth factor (CTGF) levels in the ovaries of PCOS rats. These observations suggest that SA significantly ameliorates metabolic dysfunction and oxidative stress and ultimately reduces ovarian fibrosis in rats with letrozole-induced PCOS.
Collapse
Affiliation(s)
- Huan Lan
- Guangxi Key Laboratory of Environmental Exposureomics and Entire Lifecycle HealthGuilin Medical UniversityGuilinGuangxiChina
- College of Chinese Material MedicaGuangzhou University of Chinese MedicineGuangzhouGuangzhouChina
| | - Zhe‐Wen Dong
- Guangxi Key Laboratory of Environmental Exposureomics and Entire Lifecycle HealthGuilin Medical UniversityGuilinGuangxiChina
- College of PharmacyShenyang Pharmaceutical UniversityShenyangLiaoningChina
| | - Ming‐Yu Zhang
- Guangxi Key Laboratory of Environmental Exposureomics and Entire Lifecycle HealthGuilin Medical UniversityGuilinGuangxiChina
| | - Wan‐Ying Li
- Guangxi Key Laboratory of Environmental Exposureomics and Entire Lifecycle HealthGuilin Medical UniversityGuilinGuangxiChina
| | - Chao‐Jie Chong
- Guangxi Key Laboratory of Environmental Exposureomics and Entire Lifecycle HealthGuilin Medical UniversityGuilinGuangxiChina
| | - Ya‐Qi Wu
- Guangxi Key Laboratory of Environmental Exposureomics and Entire Lifecycle HealthGuilin Medical UniversityGuilinGuangxiChina
| | - Zi‐Xian Wang
- Guangxi Key Laboratory of Environmental Exposureomics and Entire Lifecycle HealthGuilin Medical UniversityGuilinGuangxiChina
| | - Jun‐Yang Liu
- Guangxi Key Laboratory of Environmental Exposureomics and Entire Lifecycle HealthGuilin Medical UniversityGuilinGuangxiChina
| | - Zhi‐Qiang Liu
- Guangxi Key Laboratory of Environmental Exposureomics and Entire Lifecycle HealthGuilin Medical UniversityGuilinGuangxiChina
| | - Xiao‐Hui Qin
- Guangxi Key Laboratory of Environmental Exposureomics and Entire Lifecycle HealthGuilin Medical UniversityGuilinGuangxiChina
| | - Tie‐Min Jiang
- South Asia Branch of National Engineering Center of Dairy for Maternal and Child HealthGuilin University of TechnologyGuilinGuangxiChina
| | - Jia‐Le Song
- Guangxi Key Laboratory of Environmental Exposureomics and Entire Lifecycle HealthGuilin Medical UniversityGuilinGuangxiChina
- South Asia Branch of National Engineering Center of Dairy for Maternal and Child HealthGuilin University of TechnologyGuilinGuangxiChina
- Department of Obstetrics and Clinical NutritionThe Second Affiliated Hospital of Guilin Medical UniversityGuilinGuangxiChina
- Guangxi Key Laboratory of Health Care Food Science and TechnologyHezhou UniversityHezhouGuangxiChina
| |
Collapse
|
13
|
Wang T, Zhuang Y, Yu C, Wang Z, Liu Y, Xu Q, Liu K, Li Y. D-beta-hydroxybutyrate up-regulates Claudin-1 and alleviates the intestinal hyperpermeability in lipopolysaccharide-treated mice. Tissue Cell 2024; 87:102343. [PMID: 38442546 DOI: 10.1016/j.tice.2024.102343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/21/2024] [Accepted: 02/29/2024] [Indexed: 03/07/2024]
Abstract
The hyperpermeability of intestinal epithelium is a key contributor to the occurrence and development of systemic inflammation. Although D-beta-hydroxybutyrate (BHB) exhibits various protective effects, whether it affects the permeability of intestinal epithelium in systemic inflammation has not been clarified. In this study, we investigated the effects of BHB on the intestinal epithelial permeability, the epithelial marker E-cadherin and the tight junction protein Claudin-1 in colon in the lipopolysaccharide (LPS)-induced systemic inflammation mouse model. Intraperitoneal injection of LPS was used to induce systemic inflammation and BHB was given by oral administration. The permeability of intestinal epithelium, the morphological changes of colonic epithelium, the distribution and generation of colon E-cadherin, and the Claudin-1 generation and its epithelial distribution in colon were detected. The results confirmed the intestinal epithelial hyperpermeability and inflammatory changes in colonic epithelium, with disturbed E-cadherin distribution in LPS-treated mice. Besides, colon Claudin-1 generation was decreased and its epithelial distribution in colon was weakened in LPS-treated mice. However, BHB treatments alleviated the LPS-induced hyperpermeability of intestinal epithelium, attenuated the colonic epithelial morphological changes and promoted orderly distribution of E-cadherin in colon. Furthermore, BHB up-regulated colon Claudin-1 generation and promoted its colonic epithelial distribution and content in LPS-treated mice. In conclusion, BHB may alleviate the hyperpermeability of intestinal epithelium via up-regulation of Claudin-1 in colon in LPS-treated mice.
Collapse
Affiliation(s)
- Ting Wang
- Hebei Key Lab of Laboratory Animal Science, Hebei Medical University, Hebei, People's Republic of China
| | - Yuchen Zhuang
- Hebei Key Lab of Laboratory Animal Science, Hebei Medical University, Hebei, People's Republic of China
| | - Chenglong Yu
- Teaching laboratory center, Hebei Medical University, Hebei, People's Republic of China
| | - Zhaobo Wang
- Hebei Key Lab of Laboratory Animal Science, Hebei Medical University, Hebei, People's Republic of China
| | - Yuan Liu
- Department of Ophthalmology, First Central Hospital of Baoding, Hebei, People's Republic of China
| | - Qian Xu
- Hebei Key Lab of Laboratory Animal Science, Hebei Medical University, Hebei, People's Republic of China
| | - Kun Liu
- Teaching laboratory center, Hebei Medical University, Hebei, People's Republic of China.
| | - Yanning Li
- Hebei Key Lab of Laboratory Animal Science, Hebei Medical University, Hebei, People's Republic of China.
| |
Collapse
|
14
|
Han SH, Lee HD, Lee S, Lee AY. Taraxacum coreanum Nakai extract attenuates lipopolysaccharide-induced inflammatory responses and intestinal barrier dysfunction in Caco-2 cells. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117105. [PMID: 37660957 DOI: 10.1016/j.jep.2023.117105] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/27/2023] [Accepted: 08/28/2023] [Indexed: 09/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Taraxacum coreanum Nakai (TC) is a dandelion native to Korea that has long been used as a medicinal herb with antioxidant and anti-inflammatory properties. Intestinal inflammation is closely associated with intestinal epithelial barrier disruption, which leads to the progression of various intestinal diseases. AIM OF THE STUDY The aim of this study was to investigate the protective effects of TC extract on inflammatory responses and intestinal barrier dysfunction in lipopolysaccharide (LPS)-stimulated Caco-2 cells. MATERIALS AND METHODS The inhibitory effect of TC on nitric oxide (NO) and pro-inflammatory cytokines production were determined by Griess reagent and enzyme-linked immunosorbent assay, respectively. The epithelial permeability was evaluated by transepithelial electrical resistance (TEER) assay, and inflammation- and tight junction (TJ)-related protein expression were analyzed by Western blotting. In addition, the presence of ten active compounds was identified and quantified using UHPLC-ESI-MS and HPLC-DAD analyses. RESULTS Treatment with TC significantly reduced NO production and pro-inflammatory cytokines production [interleukin (IL)-6 and tumor necrosis factor (TNF)-α] compared to the group treated with LPS only, particularly at 100 μg/mL. TC significantly decreased monolayer permeability as detected by TEER. In addition, the transmission of fluorescein isothiocyanate-dextran 4 across the barrier was decreased after treatment with TC. Inflammation-related proteins (inducible NO synthase, cyclooxygenase-2, TNF-α, IL-6, and IL-1β) were down-regulated after treatment with TC. In contrast, TC significantly increased the protein levels of the TJ-related protein, claudin-5. Ten phytochemicals (protocatechuic acid, chlorogenic acid, caffeic acid, scopoletin, chicoric acid, hyperoside, nicotiflorin, luteoloside, sophoricoside, and luteolin) were identified by UHPLC-ESI-MS and HPLC-DAD analysis. CONCLUSION Our findings suggest that ethanolic extract of TC could attenuate the LPS-induced intestinal barrier dysfunction by increasing the TJ protein and suppressing inflammatory responses.
Collapse
Affiliation(s)
- Seok Hee Han
- Department of Food Science, Gyeongsang National University, Jinju, 52725, Republic of Korea.
| | - Hak-Dong Lee
- Department of Plant Science and Technology, Chung-Ang University, Anseong, 17546, Republic of Korea.
| | - Sanghyun Lee
- Department of Plant Science and Technology, Chung-Ang University, Anseong, 17546, Republic of Korea; Natural Product Institute of Science and Technology, Anseong, 17546, Republic of Korea.
| | - Ah Young Lee
- Department of Food Science, Gyeongsang National University, Jinju, 52725, Republic of Korea.
| |
Collapse
|
15
|
Li Z, Li X, Shi P, Li P, Fu Y, Tan G, Zhou J, Zeng J, Huang P. Modulation of Acute Intestinal Inflammation by Dandelion Polysaccharides: An In-Depth Analysis of Antioxidative, Anti-Inflammatory Effects and Gut Microbiota Regulation. Int J Mol Sci 2024; 25:1429. [PMID: 38338707 PMCID: PMC10855136 DOI: 10.3390/ijms25031429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 01/16/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
Acute colitis is a complex disease that can lead to dysregulation of the gut flora, inducing more complex parenteral diseases. Dandelion polysaccharides (DPSs) may have potential preventive and therapeutic effects on enteritis. In this study, LPS was used to induce enteritis and VC was used as a positive drug control to explore the preventive and therapeutic effects of DPS on enteritis. The results showed that DPS could repair the intestinal barrier, down-regulate the expression of TNF-α, IL-6, IL-1β, and other pro-inflammatory factors, up-regulate the expression of IL-22 anti-inflammatory factor, improve the antioxidant capacity of the body, and improve the structure of intestinal flora. It is proved that DPS can effectively prevent and treat LPS-induced acute enteritis and play a positive role in promoting intestinal health.
Collapse
Affiliation(s)
- Zhu Li
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Xinyao Li
- Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Panpan Shi
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Pingping Li
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Yue Fu
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Guifeng Tan
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Junjuan Zhou
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Jianguo Zeng
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Peng Huang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
16
|
Li WY, Liu JY, Wang ZX, Wang KY, Huang CX, He W, Song JL. Sinapic Acid Attenuates Chronic DSS-Induced Intestinal Fibrosis in C57BL/6J Mice by Modulating NLRP3 Inflammasome Activation and the Autophagy Pathway. ACS OMEGA 2024; 9:1230-1241. [PMID: 38222654 PMCID: PMC10785090 DOI: 10.1021/acsomega.3c07474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/23/2023] [Accepted: 12/06/2023] [Indexed: 01/16/2024]
Abstract
Ulcerative colitis (UC) is a chronic gastrointestinal disease that results from repeated inflammation and serious complications. Sinapic acid (SA) is a hydroxycinnamic acid present in a variety of plants that has antioxidant, anti-inflammatory, anticancer, and other protective effects. This study investigated the antifibrotic effect of SA on chronic colitis induced by dextran sulfate sodium salt (DSS) in mice. We observed that SA could significantly reduce clinical symptoms (such as improved body weight loss, increased colon length, and decreased disease activity index score) and pathological changes in mice with chronic colitis. SA supplementation has been demonstrated to repair intestinal mucosal barrier function and maintain epithelial homeostasis by inhibiting activation of the NLRP3 inflammasome and decreasing the expression of IL-6, TNF-α, IL-17A, IL-18, and IL-1β. Furthermore, SA could induce the expression of antioxidant enzymes (Cat, Sod1, Sod2, Mgst1) by activating the Nrf2/keap1 pathway, thus improving antioxidant capacity. Additionally, SA could increase the protein expression of downstream LC3-II/LC3-I and Beclin1 and induce autophagy by regulating the AMPK-Akt/mTOR signaling pathway, thereby reducing the production of intestinal fibrosis-associated proteins Collagen-I and α-SMA. These findings suggest that SA can enhance intestinal antioxidant enzymes, reduce oxidative stress, expedite intestinal epithelial repair, and promote autophagy, thereby ameliorating DSS-induced colitis and intestinal fibrosis.
Collapse
Affiliation(s)
- Wan-Ying Li
- Department
of Nutrition and Food Hygiene, School of Public Health, Guilin Medical University, Guilin 541100, Guangxi, China
- Department
of Clinical Nutrition, Liuzhou People’s
Hospital, Liuzhou 545006, Guangxi, China
| | - Jun-Yang Liu
- Department
of Nutrition and Food Hygiene, School of Public Health, Guilin Medical University, Guilin 541100, Guangxi, China
| | - Zi-Xian Wang
- Department
of Nutrition and Food Hygiene, School of Public Health, Guilin Medical University, Guilin 541100, Guangxi, China
| | - Ke-Ying Wang
- Department
of Nutrition and Food Hygiene, School of Public Health, Guilin Medical University, Guilin 541100, Guangxi, China
| | - Chun-Xiang Huang
- Department
of Nutrition and Food Hygiene, School of Public Health, Guilin Medical University, Guilin 541100, Guangxi, China
| | - Wen He
- Guangxi
Key Laboratory of Environmental Exposureomics and Entire Lifecycle
Health, Guilin Medical University, Guilin 541100, Guangxi, China
| | - Jia-Le Song
- Department
of Nutrition and Food Hygiene, School of Public Health, Guilin Medical University, Guilin 541100, Guangxi, China
- Guangxi
Key Laboratory of Environmental Exposureomics and Entire Lifecycle
Health, Guilin Medical University, Guilin 541100, Guangxi, China
- Department
of Clinical Nutrition and Obstetrics, The
Second Affiliated Hospital of Guilin Medical University, Guilin 541199, Guangxi, China
| |
Collapse
|
17
|
Zhu L, Dou Z, Wu W, Hou Q, Wang S, Yuan Z, Li B, Liu J. Ghrelin/GHSR Axis Induced M2 Macrophage and Alleviated Intestinal Barrier Dysfunction in a Sepsis Rat Model by Inactivating E2F1/NF- κB Signaling. Can J Gastroenterol Hepatol 2023; 2023:1629777. [PMID: 38187112 PMCID: PMC10769719 DOI: 10.1155/2023/1629777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 10/20/2023] [Accepted: 12/11/2023] [Indexed: 01/09/2024] Open
Abstract
Sepsis is an inflammatory reaction disorder state that is induced by infection. The activation and regulation of the immune system play an essential role in the development of sepsis. Our previous studies have shown that ghrelin ameliorates intestinal dysfunction in sepsis. Very little is known about the mechanism of ghrelin and its receptor (GHSR) on the intestinal barrier and the immune function of macrophage regulation. Our research is to investigate the regulatory effect and molecular mechanism of the ghrelin/GHSR axis on intestinal dysfunction and macrophage polarization in septic rats. A rat model of sepsis was established by cecal ligation and puncture (CLP) operation. Then, the sepsis rats were treated with a ghrelin receptor agonist (TZP-101) or ghrelin inhibitor (obestatin). The results suggested that TZP-101 further enhanced ghrelin and GHSR expressions in the colon and spleen of septic rats and obestatin showed the opposite results. Ghrelin/GHSR axis ameliorated colonic structural destruction and intestinal epithelial tight junction injury in septic rats. In addition, the ghrelin/GHSR axis promoted M2-type polarization of macrophages, which was characterized by the decreases of IL-1β, IL-6, and TNF-α, as well as the increase of IL-10. Mechanistically, the ghrelin/GHSR axis promoted E2F2 expression and suppressed the activation of the NF-κB signaling pathway in septic rats. Collectively, targeting ghrelin/GHSR during sepsis may represent a novel therapeutic approach for the treatment of intestinal barrier injury.
Collapse
Affiliation(s)
- Lei Zhu
- Department of Intensive Care Medicine, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Zhimin Dou
- Department of Intensive Care Medicine, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Wei Wu
- Department of Intensive Care Medicine, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Qiliang Hou
- Department of Intensive Care Medicine, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Sen Wang
- Department of Intensive Care Medicine, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Ziqian Yuan
- Department of Intensive Care Medicine, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Bin Li
- Department of Intensive Care Medicine, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Jian Liu
- Department of Intensive Care Medicine, The First Hospital of Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
18
|
Wang J, Yao M, Zou J, Ding W, Sun M, Zhuge Y, Gao F. pH-Sensitive Nanoparticles for Colonic Delivery Anti-miR-301a in Mouse Models of Inflammatory Bowel Diseases. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2797. [PMID: 37887947 PMCID: PMC10610125 DOI: 10.3390/nano13202797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/13/2023] [Accepted: 10/16/2023] [Indexed: 10/28/2023]
Abstract
Though the anti-miR-301a (anti-miR) is a promising treatment strategy for inflammatory bowel disease (IBD), the degradability and the poor targeting of the intestine are a familiar issue. This study aimed to develop a multifunctional oral nanoparticle delivery system loaded with anti-miR for improving the targeting ability and the therapeutic efficacy. The HA-CS/ES100/PLGA nanoparticles (HCeP NPs) were prepared using poly (lactic-co-glycolic acid) copolymer (PLGA), enteric material Eudragit®S100 (ES100), chitosan (CS), and hyaluronic acid (HA). The toxicity of nanoparticles was investigated via the Cell Counting Kit-8, and the cellular uptake and inflammatory factors of nanoparticles were further studied. Moreover, we documented the colon targeting and pharmacodynamic properties of nanoparticles. The nanoparticles with uniform particle size exhibited pH-sensitive release, favorable gene protection, and storage stability. Cytology experiments showed that anti-miR@HCeP NPs improved the cellular uptake through HA and reduced pro-inflammatory factors. Administering anti-miR@HCeP NPs orally to IBD mice markedly reduced their pro-inflammatory factors levels and disease activity indices. We also confirmed that anti-miR@HCeP NPs mostly accumulated in the colon site, and effectively repaired the intestinal barrier, as well as relieved intestinal inflammation. The above nanoparticle is a candidate of the treatment for IBD due to its anti-inflammatory properties.
Collapse
Affiliation(s)
- Junshan Wang
- Department of Gastroenterology, Chongming Branch of Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 202157, China
| | - Min Yao
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China; (M.Y.); (J.Z.); (W.D.); (M.S.)
| | - Jiafeng Zou
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China; (M.Y.); (J.Z.); (W.D.); (M.S.)
| | - Wenxing Ding
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China; (M.Y.); (J.Z.); (W.D.); (M.S.)
| | - Mingyue Sun
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China; (M.Y.); (J.Z.); (W.D.); (M.S.)
| | - Ying Zhuge
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China;
| | - Feng Gao
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China; (M.Y.); (J.Z.); (W.D.); (M.S.)
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, China
- Optogenetics and Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
19
|
Bin Jardan YA, Ahad A, Raish M, Al-Jenoobi FI. Preparation and Characterization of Transethosome Formulation for the Enhanced Delivery of Sinapic Acid. Pharmaceutics 2023; 15:2391. [PMID: 37896151 PMCID: PMC10609874 DOI: 10.3390/pharmaceutics15102391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/13/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
Sinapic acid (SA) is a bioactive phenolic acid; its diverse properties are its anti-inflammatory, antioxidant, anticancer, and antibacterial activities. The bioactive compound SA is poorly soluble in water. Our goal was to formulate SA-transethosomes using thin-film hydration. The prepared formulations were examined for various parameters. In addition, the optimized formulation was evaluated for surface morphology, in-vitro penetration studies across the Strat M®, and its antioxidant activity. The optimized formulation (F5) exhibited 74.36% entrapment efficacy. The vesicle size, zeta potential, and polydispersity index were found to be 111.67 nm, -7.253 mV, and 0.240, respectively. The surface morphology showed smooth and spherical vesicles of SA-transethosomes. In addition, the prepared SA-transethosomes exhibited enhanced antioxidant activity. The SA-transethosomes demonstrated considerably greater penetration across the Strat M® membrane during the study. The flux of SA and SA-transethosomes through the Strat M® membrane was 1.03 ± 0.07 µg/cm2/h and 2.93 ± 0.16 µg/cm2/h. The enhancement ratio of SA-transethosomes was 2.86 ± 0.35 compared to the control. The SA-transethosomes are flexible nano-sized vesicles and are able to penetrate the entrapped drug in a higher concentration. Hence, it was concluded that SA-transethosome-based approaches have the potential to be useful for accentuating the penetrability of SA across the skin.
Collapse
Affiliation(s)
| | - Abdul Ahad
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | | | | |
Collapse
|
20
|
Tian Z, Deng T, Gui X, Wang L, Yan Q, Wang L. Mechanisms of Lung and Intestinal Microbiota and Innate Immune Changes Caused by Pathogenic Enterococcus Faecalis Promoting the Development of Pediatric Pneumonia. Microorganisms 2023; 11:2203. [PMID: 37764047 PMCID: PMC10536929 DOI: 10.3390/microorganisms11092203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/15/2023] [Accepted: 08/16/2023] [Indexed: 09/29/2023] Open
Abstract
Bacterial pneumonia is the main cause of illness and death in children under 5 years old. We isolated and cultured pathogenic bacteria LE from the intestines of children with pneumonia and replicated the pediatric pneumonia model using an oral gavage bacterial animal model. Interestingly, based on 16srRNA sequencing, we found that the gut and lung microbiota showed the same imbalance trend, which weakened the natural resistance of this area. Further exploration of its mechanism revealed that the disruption of the intestinal mechanical barrier led to the activation of inflammatory factors IL-6 and IL-17, which promoted the recruitment of ILC-3 and the release of IL-17 and IL-22, leading to lung inflammation. The focus of this study is on the premise that the gut and lung microbiota exhibit similar destructive changes, mediating the innate immune response to promote the occurrence of pneumonia and providing a basis for the development and treatment of new drugs for pediatric pneumonia.
Collapse
Affiliation(s)
- Zhiying Tian
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, Regenerative Medicine Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian 116011, China;
| | - Ting Deng
- Department of Biotechnology, College of Basic Medical Science, Dalian Medical University, Dalian 116044, China; (T.D.); (X.G.); (L.W.)
| | - Xuwen Gui
- Department of Biotechnology, College of Basic Medical Science, Dalian Medical University, Dalian 116044, China; (T.D.); (X.G.); (L.W.)
| | - Leilei Wang
- Department of Biotechnology, College of Basic Medical Science, Dalian Medical University, Dalian 116044, China; (T.D.); (X.G.); (L.W.)
| | - Qiulong Yan
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Dalian Medical University, Dalian 116044, China;
| | - Liang Wang
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, Regenerative Medicine Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian 116011, China;
| |
Collapse
|
21
|
Jang S, Kim S, So BR, Kim Y, Kim CK, Lee JJ, Jung SK. Sinapic acid alleviates inflammatory bowel disease (IBD) through localization of tight junction proteins by direct binding to TAK1 and improves intestinal microbiota. Front Pharmacol 2023; 14:1217111. [PMID: 37649894 PMCID: PMC10462984 DOI: 10.3389/fphar.2023.1217111] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/26/2023] [Indexed: 09/01/2023] Open
Abstract
Introduction: Although sinapic acid is found in various edible plants and has been shown to have anti-inflammatory properties including colitis, its underlying mechanism and effects on the composition of the gut microbiota are largely unknown. We aimed to identify an early response kinase that regulates the localization of tight junction proteins, act at the onset of the inflammatory response, and is regulated by sinapic acid. Additionally, we analyzed the effects of sinapic acid on the homeostasis of the intestinal microbiome. Methods: We examined the aberrant alterations of early response genes such as nuclear factor-kappa B (NF-κB) and activating transcription factor (ATF)-2 within 2 h of sinapic acid treatment in fully differentiated Caco-2 cells with or without lipopolysaccharide and tumor necrosis factor (TNF)-α stimulation. To confirm the effect of sinapic acid on stimulus-induced delocalization of tight junction proteins, including zonula occludens (ZO)-1, occludin, and claudin-2, all tight junction proteins were investigated by analyzing a fraction of membrane and cytosol proteins extracted from Caco-2 cells and mice intestines. Colitis was induced in C57BL/6 mice using 2% dextran sulfate sodium and sinapic acid (2 or 10 mg/kg/day) was administrated for 15 days. Furthermore, the nutraceutical and pharmaceutical activities of sinapic acid for treating inflammatory bowel disease (IBD) evaluated. Results: We confirmed that sinapic acid significantly suppressed the stimulus-induced delocalization of tight junction proteins from the intestinal cell membrane and abnormal intestinal permeability as well as the expression of inflammatory cytokines such as interleukin (IL)-1β and TNF-α in vitro and in vivo. Sinapic acid was found to bind directly to transforming growth factor beta-activated kinase 1 (TAK1) and inhibit the stimulus-induced activation of NF-κB as well as MAPK/ATF-2 pathways, which in turn regulated the expression of mitogen-activated protein kinase (MLCK). Dietary sinapic acid also alleviated the imbalanced of gut microbiota and symptoms of IBD, evidenced by improvements in the length and morphology of the intestine in mice with colitis. Discussion: These findings indicate that sinapic acid may be an effective nutraceutical and pharmaceutical agent for IBD treatment as it targets TAK1 and inhibits subsequent NF-κB and ATF-2 signaling.
Collapse
Affiliation(s)
- Sehyeon Jang
- School of Food Science and Biotechnology, Kyungpook National University, Daegu, Republic of Korea
| | - San Kim
- School of Food Science and Biotechnology, Kyungpook National University, Daegu, Republic of Korea
| | - Bo Ram So
- School of Food Science and Biotechnology, Kyungpook National University, Daegu, Republic of Korea
| | - Younghoon Kim
- Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Chang-Kil Kim
- Department of Horticultural Science, Kyungpook National University, Daegu, Republic of Korea
| | - Jeong Jae Lee
- Institute of Agricultural Science and Technology, Kyungpook National University, Daegu, Republic of Korea
| | - Sung Keun Jung
- School of Food Science and Biotechnology, Kyungpook National University, Daegu, Republic of Korea
- Research Institute of Tailored Food Technology, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
22
|
Wu D, Xia M, Yan A, Jiang H, Fan J, Zhou S, Wei X, Liu S, Chen B. Carvacrol attenuated lipopolysaccharide-induced intestinal injury by down-regulating TLRs gene expression and regulating the gut microbiota in rabbit. Sci Rep 2023; 13:11447. [PMID: 37454126 PMCID: PMC10349838 DOI: 10.1038/s41598-023-38577-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023] Open
Abstract
Carvacrol (CAR) is a plant extract that has been reported to enhance antioxidant activity in animals. However, the effect of CAR on the intestinal health of rabbits is poorly understood. Here, we investigated whether CAR exerts protective effects on the intestinal health of rabbits following lipopolysaccharide (LPS) challenge and whether these effects were mediated via the reduction of intestinal inflammation and the regulation of the intestinal flora. Intestinal damage was assessed in LPS-challenged rabbits treated or not with CAR. The serum levels of inflammatory factors were assessed by enzyme-linked immunosorbent assay. Histopathological changes in the ileum and cecum were examined using hematoxylin and eosin staining. The relative gene expression levels of inflammatory factors and tight junction proteins in the rabbit cecum were determined by qRT-PCR. High-throughput sequencing analysis of the microbial 16S rRNA gene was performed using the Illumina NovaSeq Platform. The results showed that CAR can prevent intestinal inflammation and damage as well as mitigate gut dysbiosis in rabbits following LPS challenge. Our study provides a theoretical reference for the application of dietary CAR in rabbit production.
Collapse
Affiliation(s)
- Diange Wu
- College of Animal Science and Technology, Hebei Agricultural University, No 2596, Lekai South Street Nanshi District, Baoding, 071000, China
| | - Miao Xia
- College of Animal Science and Technology, Hebei Agricultural University, No 2596, Lekai South Street Nanshi District, Baoding, 071000, China
| | - An Yan
- College of Animal Science and Technology, Hebei Agricultural University, No 2596, Lekai South Street Nanshi District, Baoding, 071000, China
| | - Haotian Jiang
- College of Animal Science and Technology, Hebei Agricultural University, No 2596, Lekai South Street Nanshi District, Baoding, 071000, China
| | - Jiaqi Fan
- College of Animal Science and Technology, Hebei Agricultural University, No 2596, Lekai South Street Nanshi District, Baoding, 071000, China
| | - Siyuan Zhou
- College of Animal Science and Technology, Hebei Agricultural University, No 2596, Lekai South Street Nanshi District, Baoding, 071000, China
| | - Xu Wei
- College of Animal Science and Technology, Hebei Agricultural University, No 2596, Lekai South Street Nanshi District, Baoding, 071000, China
| | - Shudong Liu
- College of Animal Science and Technology, Hebei Agricultural University, No 2596, Lekai South Street Nanshi District, Baoding, 071000, China.
| | - Baojiang Chen
- College of Animal Science and Technology, Hebei Agricultural University, No 2596, Lekai South Street Nanshi District, Baoding, 071000, China.
| |
Collapse
|
23
|
Yang L, Nao J, Dong X. The Therapeutic Potential of Hydroxycinnamic Acid Derivatives in Parkinson's Disease: Focus on In Vivo Research Advancements. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37432913 DOI: 10.1021/acs.jafc.3c02787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
Hydroxycinnamic acid derivatives (HCDs) are polyphenols that are abundant in cereals, coffee, tea, wine, fruits, vegetables, and other plant-based foods. To aid in the clinical prevention and treatment of Parkinson's disease (PD), we evaluated in vivo investigations of the pharmacological properties of HCDs relevant to PD, and their pharmacokinetic and safety aspects. An extensive search of published journals was conducted using several literature databases, including PubMed, Google Scholar, and the Web of Science. The search terms included "hydroxycinnamic acid derivatives," "ferulic acid," "caffeic acid," "sinapic acid," "p-coumaric acid," "Parkinson's disease," and combinations of these keywords. As of April 2023, 455 preclinical studies were retrieved, of which 364 were in vivo studies; we included 17 of these articles on the pharmaceutics of HCDs in PD. Available evidence supports the protective effects of HCDs in PD due to their anti-inflammatory, antioxidant, as well as antiapoptotic physiological activities. Studies have identified possible molecular targets and pathways for the protective actions of HCDs in PD. However, the paucity of studies on these compounds in PD, and the risk of toxicity induced with high-dose applications, limits their use. Thus, multifaceted studies of HCDs in vitro and in vivo are needed.
Collapse
Affiliation(s)
- Lan Yang
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, PR China
| | - Jianfei Nao
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, PR China
| | - Xiaoyu Dong
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, PR China
| |
Collapse
|
24
|
Wang ZY, Yin Y, Li DN, Zhao DY, Huang JQ. Biological Activities of p-Hydroxycinnamic Acids in Maintaining Gut Barrier Integrity and Function. Foods 2023; 12:2636. [PMID: 37444374 DOI: 10.3390/foods12132636] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/02/2023] [Accepted: 07/05/2023] [Indexed: 07/15/2023] Open
Abstract
It is well established that p-Hydroxycinnamic acids (HCAs), including ferulic, caffeic, sinapic, and p-coumaric acids, possess a characteristic phenylpropanoid C6-C3 backbone and account for about one-third of the phenolic compounds in our diet. HCAs are typically associated with various plant cell wall components, including mono-, di-, and polysaccharides, sterols, polyamines, glycoproteins, and lignins. Interestingly, enzymes produced by intestinal microbes liberate HCAs from these associations. HCAs are completely absorbed in their free form upon ingestion and undergo specific reactions upon absorption in the small intestine or liver. The gut epithelium, composed of intestinal epithelial cells (IECs), acts as a physical barrier against harmful bacteria and a site for regulated interactions between bacteria and the gut lumen. Thus, maintaining the integrity of the epithelial barrier is essential for establishing a physiochemical environment conducive to homeostasis. This review summarizes the protective effects of HCAs on the intestinal barrier, achieved through four mechanisms: preserving tight junction proteins (TJPs), modulating pro-inflammatory cytokines, exerting antioxidant activity, and regulating the intestinal microbiota.
Collapse
Affiliation(s)
- Zi-Ying Wang
- Interdisciplinary Institute for Personalized Medicine in Brain Disorders, School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China
| | - Ying Yin
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China
| | - Dong-Ni Li
- Interdisciplinary Institute for Personalized Medicine in Brain Disorders, School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China
| | - Dan-Yue Zhao
- Department of Food Science and Nutrition, Faculty of Science, The Hong Kong Polytechnic University, Hong Kong SAR, China
- Research Institute for Future Food, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Jun-Qing Huang
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China
| |
Collapse
|
25
|
Zhang L, Wang L, Huang J, Jin Z, Guan J, Yu H, Zhang M, Yu M, Jiang H, Qiao Z. Effects of Aeromonas hydrophila infection on the intestinal microbiota, transcriptome, and metabolomic of common carp (Cyprinus carpio). FISH & SHELLFISH IMMUNOLOGY 2023:108876. [PMID: 37271325 DOI: 10.1016/j.fsi.2023.108876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/31/2023] [Accepted: 06/01/2023] [Indexed: 06/06/2023]
Abstract
Aeromonas hydrophila frequently has harmful effects on aquatic organisms. The intestine is an important defense against stress. In this study, we investigated the intestinal microbiota and transcriptomic and metabolomic responses of Cyprinus carpio subjected to A. hydrophila infection. The results showed that obvious variation in the intestinal microbiota was observed after infection, with increased levels of Firmicutes and Bacteroidetes and decreased levels of Proteobacteria. Several genera of putatively beneficial microbiota (Cetobacterium, Bacteroides, and Lactobacillus) were abundant, while Demequina, Roseomonas, Rhodobacter, Pseudoxanthomonas, and Cellvibrio were decreased; pathogenic bacteria of the genus Vibrio were increased after microbiota infection. The intestinal transcriptome revealed several immune-related differentially expressed genes associated with the cytokines and oxidative stress. The metabolomic analysis showed that microbiota infection disturbed the metabolic processes of the carp, particularly amino acid metabolism. This study provides insight into the underlying mechanisms associated with the intestinal microbiota, immunity, and metabolism of carp response to A. hydrophila infection; eleven stress-related metabolite markers were identified, including N-acetylglutamic acid, capsidiol, sedoheptulose 7-phosphate, prostaglandin B1, 8,9-DiHETrE, 12,13-DHOME, ADP, cellobiose, 1H-Indole-3-carboxaldehyde, sinapic acid and 5,7-dihydroxyflavone.
Collapse
Affiliation(s)
- Lan Zhang
- College of Fisheries, Henan Normal University, Xinxiang, China; Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang, China; Engineering Lab of Henan Province for Aquatic Animal Disease Control, Henan Normal University, Xinxiang, China
| | - Lei Wang
- College of Fisheries, Henan Normal University, Xinxiang, China; Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang, China; Engineering Lab of Henan Province for Aquatic Animal Disease Control, Henan Normal University, Xinxiang, China.
| | - Jintai Huang
- College of Fisheries, Henan Normal University, Xinxiang, China
| | - Zhan Jin
- College of Fisheries, Henan Normal University, Xinxiang, China
| | - Junxiang Guan
- College of Fisheries, Henan Normal University, Xinxiang, China; Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang, China; Engineering Lab of Henan Province for Aquatic Animal Disease Control, Henan Normal University, Xinxiang, China
| | - Hang Yu
- College of Fisheries, Henan Normal University, Xinxiang, China; Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang, China; Engineering Lab of Henan Province for Aquatic Animal Disease Control, Henan Normal University, Xinxiang, China
| | - Meng Zhang
- College of Fisheries, Henan Normal University, Xinxiang, China; Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang, China; Engineering Lab of Henan Province for Aquatic Animal Disease Control, Henan Normal University, Xinxiang, China
| | - Miao Yu
- College of Fisheries, Henan Normal University, Xinxiang, China; Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang, China; Engineering Lab of Henan Province for Aquatic Animal Disease Control, Henan Normal University, Xinxiang, China
| | - Hongxia Jiang
- College of Fisheries, Henan Normal University, Xinxiang, China; Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang, China; Engineering Lab of Henan Province for Aquatic Animal Disease Control, Henan Normal University, Xinxiang, China
| | - Zhigang Qiao
- College of Fisheries, Henan Normal University, Xinxiang, China; Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang, China; Engineering Lab of Henan Province for Aquatic Animal Disease Control, Henan Normal University, Xinxiang, China
| |
Collapse
|
26
|
Lu Q, Xie Y, Luo J, Gong Q, Li C. Natural flavones from edible and medicinal plants exhibit enormous potential to treat ulcerative colitis. Front Pharmacol 2023; 14:1168990. [PMID: 37324477 PMCID: PMC10268007 DOI: 10.3389/fphar.2023.1168990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 05/24/2023] [Indexed: 06/17/2023] Open
Abstract
Ulcerative colitis (UC) is a chronic aspecific gut inflammatory disorder that primarily involves the recta and colons. It mostly presents as a long course of repeated attacks. This disease, characterized by intermittent diarrhoea, fecal blood, stomachache, and tenesmus, severely decreases the living quality of sick persons. UC is difficult to heal, has a high recurrence rate, and is tightly related to the incidence of colon cancer. Although there are a number of drugs available for the suppression of colitis, the conventional therapy possesses certain limitations and severe adverse reactions. Thus, it is extremely required for safe and effective medicines for colitis, and naturally derived flavones exhibited huge prospects. This study focused on the advancement of naturally derived flavones from edible and pharmaceutical plants for treating colitis. The underlying mechanisms of natural-derived flavones in treating UC were closely linked to the regulation of enteric barrier function, immune-inflammatory responses, oxidative stress, gut microflora, and SCFAs production. The prominent effects and safety of natural-derived flavones make them promising candidate drugs for colitis treatment.
Collapse
Affiliation(s)
- Qiang Lu
- Department of Pharmaceutical Sciences, Zhuhai Campus, Zunyi Medical University, Zhuhai, China
| | - Yuhong Xie
- Department of Pharmacology, Zhuhai Campus, Zunyi Medical University, Zhuhai, China
| | - Jingbin Luo
- China Traditional Chinese Medicine Holdings Company Limited, Foshan, China
| | - Qihai Gong
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Cailan Li
- Department of Pharmacology, Zhuhai Campus, Zunyi Medical University, Zhuhai, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi, China
| |
Collapse
|
27
|
Othman AM, Abdel-Rahman N, Denewer M, Eissa LA. Sinapic acid and 3,3′-diindolylmethane potentiate cyclophosphamide antitumor activity through induction of apoptosis and inhibition of metastasis. Int Immunopharmacol 2023; 118:110074. [PMID: 36989898 DOI: 10.1016/j.intimp.2023.110074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 03/08/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023]
Abstract
AIM New therapeutic strategies are required to enhance the anticancer efficacy of chemotherapeutic drugs and to reduce their cytotoxicity. The purpose of this study was to assess the anti-tumor, antimetastatic and anti-apoptotic activities of sinapic acid (SA) and 3,3'-diindolylmethane (DIM) in solid Ehrlich carcinoma (SEC) induced in mice and combining SA or DIM compounds with cyclophosphamide (CYP). METHODS For induction of solid tumor, the right hind limbs of mice were inoculated subcutaneously with Ehrlich carcinoma cells. After 5 days of tumor inoculation, mice were treated with SA (56 mg/kg), DIM (40 mg/kg), CYP (10 mg/kg), and their combinations (SA/CYP) and (SA/DIM) for 21 days. The mRNA levels of Elabela, Serpina3, caspase-3, MMP-2 and MMP-9 were assessed by qPCR. Tumor and liver tissues were stained with hematoxylin and eosin for histological examination. Serum was investigated for ALT and AST activities. MAIN FINDINGS Treatment of SEC mice with SA and DIM significantly reduced solid tumor weight by 45.6% and 33.2%, respectively. They also reduced tumor size and increased life span of SEC mice. SA and DIM diminished area of metastatic nodules of tumor cells in the liver by 54.1% and 47.4%, respectively. They also reduced serum aminotransferases activities. Both SA and DIM were found to upregulate caspase 3 and downregulate MMP-2 and MMP-9. Furthermore, SA and DIM reduced gene expression of Elabela by (44.8% and 35.1%) and Serpina3 by (30.7% and 23.5%), respectively. SA and DIM were also shown to potentiate the anti-tumor activity CYP. SA and DIM showed promising antitumor effects and enhanced CYP antitumor activity mostly through upregulation of apoptotic caspase 3 and suppressing metastatic enzymes MMP-2 and MMP-9. Additionally, SA and DIM exhibited a hepatoprotective effect. Our results suggest that these natural compounds may be used to improve the efficacy and reduce the adverse effects of chemotherapeutic drugs in the treatment of solid malignancies.
Collapse
|
28
|
Li J, Pu Y, Li S, He B, Chen J. Orally Administrated Olsalazine-Loaded Multilayer Pectin/Chitosan/Alginate Composite Microspheres for Ulcerative Colitis Treatment. Biomacromolecules 2023; 24:2250-2263. [PMID: 37068182 DOI: 10.1021/acs.biomac.3c00146] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2023]
Abstract
The pathogenesis of inflammatory bowel diseases (IBDs) including ulcerative colitis (UC) and Crohn's disease is extremely cloudy. Maintaining the level of remission lesions in colitis is the default treatment attitude at present. Epithelial barrier restoration is considered as the same important strategy as colonic targeted drug delivery in UC treatment. In this paper, we developed a multilayer natural polysaccharide microsphere (pectin/chitosan/alginate) with pH and enzyme dual sensitivity to reduce the loss of medication in the upper digestive tract and preferentially adhere to exposed epithelial cells in colonic tissues by electrostatic forces for efficiently targeted UC treatment. Olsalazine as an inflammatory drug was efficiently loaded in the chitosan layer and realized a colonic pH-responsive drug release. Furthermore, the multilayer microspheres exhibited excellent capability in suppressing harmful flora and a bio-adhesion effect to extend the duration of local medicine. In the in vivo anti-colitis study, the downregulated levels of pro-inflammatory factors and the increase of tight junction protein indicated the excellent anti-inflammation effect of the olsalazine-loaded microspheres. In summary, these results showed that the multilayer natural polysaccharide microspheres could be a powerful candidate in the targeted drug delivery system for UC therapy.
Collapse
Affiliation(s)
- Jiaying Li
- College of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Yuji Pu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Sai Li
- College of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Bin He
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Jianlin Chen
- School of Laboratory Medicine, Sichuan Provincial Engineering Laboratory for Prevention and Control Technology of Veterinary Drug Residue in Animal-origin Food, Chengdu Medical College, Chengdu 610500, China
| |
Collapse
|
29
|
Zhao H, Wang L, Zhang L, Zhao H. Phytochemicals targeting lncRNAs: A novel direction for neuroprotection in neurological disorders. Biomed Pharmacother 2023; 162:114692. [PMID: 37058817 DOI: 10.1016/j.biopha.2023.114692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/06/2023] [Accepted: 04/10/2023] [Indexed: 04/16/2023] Open
Abstract
Neurological disorders with various etiologies impacting the nervous system are prevalent in clinical practice. Long non-coding RNA (lncRNA) molecules are functional RNA molecules exceeding 200 nucleotides in length that do not encode proteins, but participate in essential activities. Research indicates that lncRNAs may contribute to the pathogenesis of neurological disorders, and may be potential targets for their treatment. Phytochemicals in traditional Chinese herbal medicine (CHM) have been found to exert neuroprotective effects by targeting lncRNAs and regulating gene expression and various signaling pathways. We aim to establish the development status and neuroprotective mechanism of phytochemicals that target lncRNAs through a thorough literature review. A total of 369 articles were retrieved through manual and electronic searches of PubMed, Web of Science, Scopus and CNKI databases from inception to September 2022. The search utilized combinations of natural products, lncRNAs, neurological disorders, and neuroprotective effects as keywords. The included studies, a total of 31 preclinical trials, were critically reviewed to present the current situation and the progress in phytochemical-targeted lncRNAs in neuroprotection. Phytochemicals have demonstrated neuroprotective effects in preclinical studies of various neurological disorders by regulating lncRNAs. These disorders include arteriosclerotic ischemia-reperfusion injury, ischemic/hemorrhagic stroke, Alzheimer's disease, Parkinson's disease, glioma, peripheral nerve injury, post-stroke depression, and depression. Several phytochemicals exert neuroprotective roles through mechanisms such as anti-inflammatory, antioxidant, anti-apoptosis, autophagy regulation, and antagonism of Aβ-induced neurotoxicity. Some phytochemicals targeted lncRNAs and served a neuroprotective role by regulating microRNA and mRNA expression. The emergence of lncRNAs as pathological regulators provides a novel direction for the study of phytochemicals in CHM. Elucidating the mechanism of phytochemicals regulating lncRNAs will help to identify new therapeutic targets and promote their application in precision medicine.
Collapse
Affiliation(s)
- Hang Zhao
- Department of Family Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, PR China
| | - Lin Wang
- Department of Emergency medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, PR China
| | - Lijuan Zhang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, PR China.
| | - Hongyu Zhao
- Department of Emergency medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, PR China.
| |
Collapse
|
30
|
Yujiao H, Xinyu T, Xue F, Zhe L, Lin P, Guangliang S, Shu L. Selenium deficiency increased duodenal permeability and decreased expression of antimicrobial peptides by activating ROS/NF-κB signal pathway in chickens. Biometals 2023; 36:137-152. [PMID: 36434352 DOI: 10.1007/s10534-022-00468-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 11/16/2022] [Indexed: 11/27/2022]
Abstract
Selenium (Se) is an essential trace element for the body. Various organs of the body, including the intestine, are affected by its deficiency. Se deficiency can induce oxidative stress and inflammatory responses in the intestine. It can also increase intestinal permeability and decrease intestinal immune function in mammals. However, the detailed studies, conducted on the intestinal molecular mechanisms of Se deficiency-induced injury in poultry, are limited. This study explored the adverse effects of Se deficiency on intestinal permeability and its mechanism. A Se-deficient chicken model was established, and the morphological changes in the chicken duodenum tissues were observed using a light microscope and transmission electron microscope (TEM). Western blotting, qRT-PCR, and other methods were used to detect the expression levels of selenoproteins, oxidative stress indicators, inflammatory factors, tight junction (TJ) proteins, antimicrobial peptides, and other related indicators in intestinal tissues. The results showed that Se deficiency could decrease the expression levels of selenoproteins and antioxidant capacity, activate the nuclear factor kappa-B (NF-κB) pathway, cause inflammation, and decrease the expression levels of TJ proteins and antimicrobial peptides in the duodenum tissues. The study also demonstrated that Se deficiency could increase intestinal permeability and decrease antimicrobial peptides via reactive oxygen species (ROS)/NF-κB. This study provided a theoretical basis for the scientific prevention and control of Se deficiency in poultry. Se deficiency decreased the expression levels of selenoproteins and increased ROS levels to activate the NF-κB pathway, resulting in the production of pro-inflammatory cytokines, reducing the expression levels of TJ protein, and weakening the expression of antimicrobial peptides, which contributed to the higher intestinal permeability. Oxidative stress weakened the expression of antimicrobial peptides.
Collapse
Affiliation(s)
- He Yujiao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Tang Xinyu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Fan Xue
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Li Zhe
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Peng Lin
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Shi Guangliang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China.
| | - Li Shu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
31
|
Han X, Li M, Sun L, Liu X, Yin Y, Hao J, Zhang W. p-Hydroxybenzoic Acid Ameliorates Colitis by Improving the Mucosal Barrier in a Gut Microbiota-Dependent Manner. Nutrients 2022; 14:nu14245383. [PMID: 36558542 PMCID: PMC9784546 DOI: 10.3390/nu14245383] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/07/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic intestinal inflammatory disease characterized by intestinal inflammatory cell infiltration and intestinal mucosal damage. The mechanism by which diet contributes to the pathogenesis of IBD remains largely unknown. In this study, we explored the therapeutic effect of p-hydroxybenzoic acid (HA), a phenolic acid mainly derived from dietary polyphenols in the gut, on DSS-induced colitis. HA intervention effectively relieved the dextran sulfate sodium salt (DSS)-induced colitis, reduced inflammation, and enhanced mucosal barrier function, as evidenced by an increment of goblet cell numbers and MUC2. These effects were largely dependent on the gut microbiota (GM), as antibiotics treatment substantially attenuated the improvement of colitis by HA. On the other hand, transplantation of GM from colitis mice treated with HA significantly reduced the colitis induced by DSS. Our study demonstrates that HA ameliorates DSS-induced colitis by improving the mucosal barrier in a GM-dependent manner. This study provides new dietary choices for the prevention and treatment of IBD.
Collapse
Affiliation(s)
- Xue Han
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing 100191, China
| | - Miaomiao Li
- Department of Gastroenterology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Lijun Sun
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing 100191, China
| | - Xinjuan Liu
- Department of Gastroenterology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Yue Yin
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing 100191, China
| | - Jianyu Hao
- Department of Gastroenterology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
- Correspondence: (J.H.); (W.Z.)
| | - Weizhen Zhang
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing 100191, China
- Correspondence: (J.H.); (W.Z.)
| |
Collapse
|
32
|
Domínguez-Avila JA, Salazar-López NJ, Montiel-Herrera M, Martínez-Martínez A, Villegas-Ochoa MA, González-Aguilar GA. Phenolic compounds can induce systemic and central immunomodulation, which result in a neuroprotective effect. J Food Biochem 2022; 46:e14260. [PMID: 35633197 DOI: 10.1111/jfbc.14260] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/25/2022] [Accepted: 05/02/2022] [Indexed: 01/13/2023]
Abstract
Inflammation may negatively impact health, particularly that of the central nervous system. Phenolic compounds are bioactive molecules present in fruits and vegetables with potential anti-inflammatory effects. The purpose of the present work is to review the immunomodulatory bioactivities of phenolic compounds in the periphery and in the central nervous system. Results show that various types of phenolics are able to counter diet- or pathogen-induced systemic inflammation (among others) in various models. In vitro data show significant effects of flavonoids and phenolic acids in particular; similar bioactivities were reported in vivo, when administering them as pure compounds or from fruit and vegetable extracts that contain them. In the central nervous system, phenolics counter chronic inflammation and aggressive acute inflammatory processes, such as ischemic events, when administered preemptively and even therapeutically. We therefore conclude that the immunomodulatory potential of phenolic compounds can maintain an adequate immune response; their regular consumption should therefore be prioritized in order to maintain health. PRACTICAL APPLICATIONS: The immune response must be carefully regulated in order to avoid its deleterious effects. The present work highlights how phenolic compounds, dietary components ubiquitous in everyday diet, are able to maintain it within an adequate range. As humans are exposed to more proinflammatory stimuli (inadequate dietary pattern, mental stress, environmental pollution, chronic diseases, etc.), it becomes necessary to counter them, and consuming adequate amounts of foods that contain compounds with this ability is a rather simple strategy. Thus, the present work highlights how fruits and vegetables can help to maintain an adequate immune response that can preserve systemic health and that of the central nervous system. Furthermore, specific compounds contained in them can also be ideal candidates for additional in-depth studies, which can potentially lead to the development of potent, targeted, and safe anti-inflammatory molecules.
Collapse
Affiliation(s)
| | - Norma J Salazar-López
- Centro de Investigación en Alimentación y Desarrollo A. C., Hermosillo, Mexico.,Universidad Autónoma de Baja California, Facultad de Medicina Mexicali, Mexicali, Mexico
| | | | - Alejandro Martínez-Martínez
- Departamento de Ciencias Químico-Biológicas, Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Ciudad Juárez, Mexico
| | | | | |
Collapse
|
33
|
Shao M, Yan Y, Zhu F, Yang X, Qi Q, Yang F, Hao T, Lin Z, He P, Zhou Y, Tang W, He S, Zuo J. Artemisinin analog SM934 alleviates epithelial barrier dysfunction via inhibiting apoptosis and caspase-1-mediated pyroptosis in experimental colitis. Front Pharmacol 2022; 13:849014. [PMID: 36120344 PMCID: PMC9477143 DOI: 10.3389/fphar.2022.849014] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 08/03/2022] [Indexed: 11/13/2022] Open
Abstract
Intestinal barrier disruption due to the intestinal epithelial cells’ (IECs) death is one of the critical pathological features of inflammatory bowel diseases (IBDs). SM934, an artemisinin analog, has previously been proven to ameliorate colitis induced by dextran sulfate sodium (DSS) in mice by suppressing inflammation response. In this study, we investigated the protective effects of SM934 on the epithelial barrier and the underlying mechanism in trinitrobenzene sulfonic acid (TNBS)-induced colitis mice. We demonstrated that SM934 restored the body weight and colon length, and improved the intestine pathology. Furthermore, SM934 treatment preserved the intestinal barrier function via decreasing the intestinal permeability, maintaining epithelial tight junction (TJ) protein expressions, and preventing apoptosis of epithelial cells, which were observed both in the colon tissue and the tumor necrosis factor-α (TNF-α)-induced human colonic epithelial cell line HT-29. Specifically, SM934 reduced the pyroptosis of IECs exposed to pathogenic signaling and inhibited pyroptosis-related factors such as NOD-like receptor family pyrin domain containing 3 (NLRP3), adapter apoptosis-associated speck-like protein (ASC), cysteine protease-1 (caspase-1), gasdermin (GSDMD), interleukin-18 (IL-18), and high-mobility group box 1 (HMGB1) both in colon tissue and lipopolysaccharide (LPS) and adenosine triphosphate (ATP) co-stimulated HT-29 cells in vitro. Moreover, SM934 interdicted pyroptosis via blocking the transduction of mitogen-activated protein kinase (MAPK) and nuclear factor-kB (NF-kB) signaling pathways. In conclusion, SM934 protected TNBS-induced colitis against intestinal barrier disruption by inhibiting the apoptosis and pyroptosis of epithelial cells via the NLRP3/NF-κB/MAPK signal axis, and intestinal barrier protection in company with an anti-inflammatory strategy might yield greater benefits in IBD treatment.
Collapse
Affiliation(s)
- Meijuan Shao
- Laboratory of Immunology and Virology, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Laboratory of Immunopharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yuxi Yan
- Laboratory of Immunopharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Fenghua Zhu
- Laboratory of Immunopharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Xiaoqian Yang
- Laboratory of Immunopharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Qing Qi
- Laboratory of Immunopharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Fangming Yang
- Laboratory of Immunology and Virology, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Laboratory of Immunopharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Tingting Hao
- Laboratory of Immunology and Virology, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Laboratory of Immunopharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Zemin Lin
- Laboratory of Immunopharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Peilan He
- Laboratory of Immunopharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yu Zhou
- Laboratory of Immunopharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Wei Tang
- University of Chinese Academy of Sciences, Beijing, China
- Laboratory of Anti-inflammation, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Shijun He
- Laboratory of Immunopharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- *Correspondence: Shijun He, ; Jianping Zuo,
| | - Jianping Zuo
- Laboratory of Immunology and Virology, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Laboratory of Immunopharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- *Correspondence: Shijun He, ; Jianping Zuo,
| |
Collapse
|
34
|
Zhao L, Xie Q, Evivie SE, Yue Y, Yang H, Lv X, Liu F, Li B, Huo G. Bifidobacterium longum subsp. longum K5 alleviates inflammatory response and prevents intestinal barrier injury induced by LPS in vitro based on comparative genomics. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
35
|
Zongo AWS, Zogona D, Youssef M, Ye S, Zhan F, Li J, Li B. Senegalia macrostachya seed polysaccharides attenuate inflammation-induced intestinal epithelial barrier dysfunction in a Caco-2 and RAW264.7 macrophage co-culture model by inhibiting the NF-κB/MLCK pathway. Food Funct 2022; 13:11676-11689. [DOI: 10.1039/d2fo02377f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Senegalia macrostachya seed polysaccharides improved the Caco-2 cell monolayer integrity from the inflammatory insult. SMSP2 treatment lowered the inflammatory cytokine release, increased TJ proteins, and downregulated the NF-κB/MLCK pathway.
Collapse
Affiliation(s)
- Abel Wend-Soo Zongo
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, China
- Center for Research in Biological Sciences, Food and Nutrition, Department of Biochemistry and Microbiology, University Joseph Ki-Zerbo, BP 7021 Ouagadougou 03, Burkina Faso
| | - Daniel Zogona
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, China
- Center for Research in Biological Sciences, Food and Nutrition, Department of Biochemistry and Microbiology, University Joseph Ki-Zerbo, BP 7021 Ouagadougou 03, Burkina Faso
| | - Mahmoud Youssef
- Food Science and Technology Department, Faculty of Agriculture, Al-Azhar University, Cairo, Egypt
| | - Shuxin Ye
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, China
| | - Fuchao Zhan
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, China
| | - Jing Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, China
| | - Bin Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, China
| |
Collapse
|