1
|
Ahmed S, Imon SS, Hasan MJ, Alam MS. Green nanotechnology for the enhancement of antibacterial properties in lining leather: MgO-chitosan nanocomposite coating. Heliyon 2024; 10:e39170. [PMID: 39497953 PMCID: PMC11532286 DOI: 10.1016/j.heliyon.2024.e39170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/27/2024] [Accepted: 10/08/2024] [Indexed: 11/07/2024] Open
Abstract
Antimicrobial nanomaterials have received a lot of interest in recent years due to their potential to fight against microbial degradation, a common problem in leather products. In this study, a nanocomposite was synthesized with MgO nanoparticles prepared by Aloe vera leaf extract and chitosan (CS), as an innovative solution to this problem. Three nanocomposite samples (C1, C2, and C3) were formulated with varying ratios of MgO and chitosan and evaluated for antimicrobial efficacy against Escherichia coli and Bacillus subtilis. Leather treated with MgO/Chitosan nanocomposite (MgO/Chitosan-1:1) exhibited substantial inhibition zones of 13 mm and 12 mm against E. coli and B. subtilis, respectively. Characterization of MgO nanoparticles, chitosan, and MgO/CS nanocomposite was performed through FTIR, XRD, SEM, TGA, and cytotoxicity tests. The average particle size and crystallite size of MgO nanoparticles were found as 136 nm and 10.3 nm, respectively and a weight loss of 67 % for MgO/CS nanocomposite in thermogravimetric analysis. FTIR confirmed the successful incorporation of MgO nanoparticles into the chitosan matrix, evidenced by the presence of characteristic functional groups. Application of nanocomposite onto lining leather via spraying resulted in finished leather with improved color rub fastness, perspiration fastness, and thermal stability compared to untreated leather. In comparison to dry color rub fastness, wet color rub fastness was notably improved by the MgO/CS nanocomposite, with gray scale ratings ranging from 4/5 to 5. Perspiration fastness was marginally enhanced by the MgO/CS coating, with gray scale ratings ranging from 4/5 to 5 for both grain and flesh samples. Specifically, the coated leather exhibited a water vapor permeability (WVP) of 9.94 mg cm-2.hr-1 that was lower than both uncoated (12.37 mg cm-2.hr-1) and PVA-coated (11.22 mg cm-2.hr-1) leather. This study presents a promising solution to the challenge of microbial degradation in leather products and highlights the potential of natural sources for synthesizing functional nanocomposites with diverse applications in materials science and biotechnology.
Collapse
Affiliation(s)
- Sobur Ahmed
- Department of Leather Engineering, Institute of Leather Engineering and Technology, University of Dhaka, 44-50, Hazaribagh, Dhaka-1209, Bangladesh
| | - Sajib Sarker Imon
- Department of Leather Engineering, Institute of Leather Engineering and Technology, University of Dhaka, 44-50, Hazaribagh, Dhaka-1209, Bangladesh
| | - Md Jawad Hasan
- Department of Leather Engineering, Institute of Leather Engineering and Technology, University of Dhaka, 44-50, Hazaribagh, Dhaka-1209, Bangladesh
| | - Md Samaul Alam
- Department of Leather Engineering, Institute of Leather Engineering and Technology, University of Dhaka, 44-50, Hazaribagh, Dhaka-1209, Bangladesh
| |
Collapse
|
2
|
Dasauni K, Nailwal TK, Nenavathu BPN. Plant extract-mediated biosynthesis of sulphur nanoparticles and their antibacterial and plant growth-promoting activity. Heliyon 2024; 10:e37797. [PMID: 39315212 PMCID: PMC11417562 DOI: 10.1016/j.heliyon.2024.e37797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 08/21/2024] [Accepted: 09/10/2024] [Indexed: 09/25/2024] Open
Abstract
This study reports green synthesis of sulphur nanoparticles using sodium thiosulfate pentahydrate (Na2S2O35H2O) and Cannabis sativa leaf extracts. X-ray diffraction (XRD) pattern and scanning electron microscopy (SEM) was employed to examine the crystallinity of the particles and morphological characteristics, proved both spherical and rod-shaped morphology of the S NPs having porous nature. The FTIR spectra revealed the interaction of the synthesized SNPs with the biomolecules present in the leaf extract. UV-VIS spectral investigations confirmed the production of SNPs from C. sativa leaf extract and that these SNPs can be used for visible region photocatalysis for the removal of pollutants from wastewater. Energy dispersive X-ray (EDX) spectrum of the SNP shows a single peak around 2.4 keV, confirmed S NPs purity. TEM image revealed the formation of mainly nanorods having a width of ∼20-25 nm and a length of 50-100 nm. Furthermore, some spherical particles (∼20-30 nm) were also formed. HRTEM image of the rod-shaped particles clearly shows the crystal fringe spacing of 0.38 nm. Further, disc diffusion method (DDM) was used to check the antibacterial activity of S NPs against gram-positive S. aureus (MTCC737) 18 ± 0.12 mm and gram-negative bacteria against E. coli (MTCC443) 21.5 ± 0.12 mm, A. salmonicida (MTCC1522) 19.1 ± 0.12 mm, K. pneumoniae (MTCC3384) 17.8 ± 0.10 mm. Among all the strains of bacteria, E. coli (MTCC443) showed a maximum zone of inhibition of 21.5 ± 0.12 mm and its antibacterial activity is somewhat like streptomycin sulfate. These SNPs also promote growth of C. sativa in pot experiment, resulting in a 30 % increase in biomass, 90 cm in shoot length and 28 cm in root length and higher fresh and dry weight (50g and 20g, respectively) with 1.0 mg mL-1 NPs treatment. In addition, SEM-EDX confirmed the accumulation of nanomaterial in plant leaves. This environmentally friendly approach to SNP synthesis using C. sativa extracts demonstrates both potent antibacterial properties and plant growth-promoting effects, making it a promising solution for agriculture and biomedicine.
Collapse
Affiliation(s)
- Khushboo Dasauni
- Department of Biotechnology, Sir J.C. Bose Technical Campus, Bhimtal-263136, Kumaun University Nainital, Uttarakhand-India
| | - Tapan K. Nailwal
- Department of Biotechnology, Sir J.C. Bose Technical Campus, Bhimtal-263136, Kumaun University Nainital, Uttarakhand-India
| | - Bhavani Prasad Naik Nenavathu
- Department of Applied Sciences and Humanities, Indira Gandhi Delhi Technical University for Women, Delhi-110006-India
| |
Collapse
|
3
|
Okaiyeto K, Gigliobianco MR, Di Martino P. Biogenic Zinc Oxide Nanoparticles as a Promising Antibacterial Agent: Synthesis and Characterization. Int J Mol Sci 2024; 25:9500. [PMID: 39273447 PMCID: PMC11395547 DOI: 10.3390/ijms25179500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/26/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
Nanotechnology has gained popularity in recent years due to its wide-ranging applications within the scientific community. The three main methods for synthesizing nanoparticles are physical, chemical, and biological. However, the adverse effects associated with physical and chemical methods have led to a growing interest in biological methods. Interestingly, green synthesis using plants has gained prominence in developing new treatments for bacterial infections. Zinc oxide nanoparticles (ZnO NPs) produced using environmentally friendly methods are more biocompatible and have potential applications as antibacterial agents in the biomedical field. As a result, this review discusses the green synthesis of ZnO NPs, factors influencing optimal synthesis, characterization techniques, and the antibacterial activity of some plant-mediated ZnO NPs. It also provides a comprehensive and analytical exploration of ZnO NP biosynthesis, the role of phytochemical compounds as reducing and stabilizing agents, the mechanism of action of their antibacterial properties and further highlights the challenges and prospects in this innovative research area.
Collapse
Affiliation(s)
- Kunle Okaiyeto
- Department of Pharmacy, University of "G. d'Annunzio" of Chieti and Pescara, Via dei Vestini, 1, 66100 Chieti, Italy
| | - Maria Rosa Gigliobianco
- Department of Pharmacy, University of "G. d'Annunzio" of Chieti and Pescara, Via dei Vestini, 1, 66100 Chieti, Italy
| | - Piera Di Martino
- Department of Pharmacy, University of "G. d'Annunzio" of Chieti and Pescara, Via dei Vestini, 1, 66100 Chieti, Italy
| |
Collapse
|
4
|
Sahu K, Kurrey R, Pillai AK. Green synthesis of silver nanoparticles from Manilkara zapota leaf extract for the detection of aminoglycoside antibiotics and other applications. RSC Adv 2024; 14:23240-23256. [PMID: 39045403 PMCID: PMC11265568 DOI: 10.1039/d4ra01906g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 07/02/2024] [Indexed: 07/25/2024] Open
Abstract
Antibiotics of aminoglycoside (AMG) class, such as streptomycin (STR), have been widely used to treat infectious diseases caused by Gram-negative bacteria in livestock and humans. In this study, a selective and sensitive colorimetric probe for the determination of STR was proposed based on eco-friendly green synthesized AgNPs from the leaf extract of Manilkara zapota. The mechanism for the detection of STR is based on the electrostatic interaction of opposite charges between negatively charged silver nanoparticle-Manilkara zapota leaf (AgNP-MZL) and STR, causing an aggregation-induced characteristic shift of the SPR band (from 390 nm to 570 nm wavelength) of AgNP-MZL. The morphology, size distribution and optical properties of AgNP-MZL were characterized using UV/visible absorption spectroscopy, FTIR spectroscopy, XRD, DLS, zeta-potential measurements and TEM. The selective determination of STR was experimentally confirmed by performing controlled testing with other classes of antibiotics. To test the sensitivity level of this method, the ratio of these two A 390/A 570 absorbance wavelengths was selected to provide a linear concentration plot between 5 and 100 ng mL-1 STR. The LOD and LOQ were calculated to be 3.5 ng mL-1 and 26.8 ng mL-1, respectively. Good precision was evaluated with a standard deviation of 0.45 ng mL-1 and a relative standard deviation of 2.0% (intraday) and 2.42% (interday) at 10 ng mL-1 for 3 replicate measurements. Advantages of the green synthesis of AgNP-MZL include its eco-friendly nature and it is easy, efficient, cost effective and selective for the detection of the AMG class of antibiotics, i.e. STR, in agricultural and environmental samples.
Collapse
Affiliation(s)
- Khushboo Sahu
- Govt. V. Y. T. Post Graduate Autonomous College Durg-491 001 Chhattisgarh India +917882 393644
| | - Ramsingh Kurrey
- National Center for Natural Resources, Pt. Ravishankar Shukla University Raipur-492 010 Chhattisgarh India
| | - Ajai Kumar Pillai
- Govt. V. Y. T. Post Graduate Autonomous College Durg-491 001 Chhattisgarh India +917882 393644
| |
Collapse
|
5
|
Chutrakulwong F, Thamaphat K, Intarasawang M. Investigating UV-Irradiation Parameters in the Green Synthesis of Silver Nanoparticles from Water Hyacinth Leaf Extract: Optimization for Future Sensor Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1018. [PMID: 38921894 PMCID: PMC11206564 DOI: 10.3390/nano14121018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/08/2024] [Accepted: 06/10/2024] [Indexed: 06/27/2024]
Abstract
Silver nanoparticles (AgNPs) can be produced safely and greenly using water hyacinth, an invasive aquatic plant, as a reducing agent. This study aimed to optimize the UV-irradiation parameters for the synthesis of AgNPs from water hyacinth leaf extract. The study varied the reaction time and pH levels and added a stabilizing agent to the mixture. The synthesized AgNPs were characterized using UV-visible spectroscopy (UV-vis), transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and inductively coupled plasma optical emission spectroscopy (ICP-OES). The findings revealed that the optimal conditions for synthesizing AgNPs were achieved by adjusting the pH level to 8.5, adding starch as a stabilizing agent, and exposing the mixture to UV-A radiation for one hour. These conditions resulted in the smallest size and highest quantity of AgNPs. Furthermore, the synthesized AgNP colloids remained stable for up to six months. This study highlights the potential of utilizing water hyacinth as a sustainable and cost-effective reducing agent for AgNP synthesis, with potential applications in pharmaceuticals, drug development, catalysis, and sensing detection.
Collapse
Affiliation(s)
- Fueangfakan Chutrakulwong
- Division of Physics, Faculty of Science and Technology, Rajamangala University of Technology Krungthep, Bangkok 10120, Thailand;
| | - Kheamrutai Thamaphat
- Green Synthesis and Application Laboratory, Applied Science and Engineering for Social Solution Research Unit, Department of Physics, Faculty of Science, King Mongkut’s University of Technology Thonburi, Bangkok 10140, Thailand
| | - Mana Intarasawang
- Department of Science and Technology, Suksanari School, Bangkok 10600, Thailand;
| |
Collapse
|
6
|
Arshad F, Naikoo GA, Hassan IU, Chava SR, El-Tanani M, Aljabali AA, Tambuwala MM. Bioinspired and Green Synthesis of Silver Nanoparticles for Medical Applications: A Green Perspective. Appl Biochem Biotechnol 2024; 196:3636-3669. [PMID: 37668757 PMCID: PMC11166857 DOI: 10.1007/s12010-023-04719-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2023] [Indexed: 09/06/2023]
Abstract
Silver nanoparticles (AgNPs) possess unmatched chemical, biological, and physical properties that make them unique compounds as antimicrobial, antifungal, antiviral, and anticancer agents. With the increasing drug resistance, AgNPs serve as promising entities for targeted drug therapy against several bacterial, fungal, and viral components. In addition, AgNPs also serve as successful anticancer agents against several cancers, including breast, prostate, and lung cancers. Several works in recent years have been done towards the development of AgNPs by using plant extracts like flowers, leaves, bark, root, stem, and whole plant parts. The green method of AgNP synthesis thus has several advantages over chemical and physical methods, especially the low cost of synthesis, no toxic byproducts, eco-friendly production pathways, can be easily regenerated, and the bio-reducing potential of plant derived nanoparticles. Furthermore, AgNPs are biocompatible and do not harm normally functioning human or host cells. This review provides an exhaustive overview and potential of green synthesized AgNPs that can be used as antimicrobial, antifungal, antiviral, and anticancer agents. After a brief introduction, we discussed the recent studies on the development of AgNPs from different plant extracts, including leaf parts, seeds, flowers, stems, bark, root, and whole plants. In the following section, we highlighted the different therapeutic actions of AgNPs against various bacteria, fungi, viruses, and cancers, including breast, prostate, and lung cancers. We then highlighted the general mechanism of action of AgNPs. The advantages of the green synthesis method over chemical and physical methods were then discussed in the article. Finally, we concluded the review by providing future perspectives on this promising field in nanotechnology.
Collapse
Affiliation(s)
- Fareeha Arshad
- Department of Mathematics and Sciences, College of Arts and Applied Sciences, Dhofar University, Salalah, PC 211, Oman
| | - Gowhar A Naikoo
- Department of Mathematics and Sciences, College of Arts and Applied Sciences, Dhofar University, Salalah, PC 211, Oman.
| | - Israr U Hassan
- College of Engineering, Dhofar University, Salalah, PC 211, Oman
| | | | - Mohamed El-Tanani
- College of Pharmacy, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates
| | - Alaa A Aljabali
- Department of Pharmaceutics and Pharmaceutical Technology, Yarmouk University, Irbid, 21163, Jordan
| | - Murtaza M Tambuwala
- Lincoln Medical School, University of Lincoln, Brayford Pool Campus, Lincoln, LN6 7TS, UK.
| |
Collapse
|
7
|
Akhtar MF, Irshad M, Ali S, Summer M, Gulrukh S, Irfan M. Evaluation of biological potential of UV-spectrophotometric, SEM, FTIR, and EDS observed Punica granatum and Plectranthus rugosus extract-coated silver nanoparticles: A comparative study. Microsc Res Tech 2024; 87:616-627. [PMID: 38031715 DOI: 10.1002/jemt.24454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/09/2023] [Accepted: 10/31/2023] [Indexed: 12/01/2023]
Abstract
Recent developments in the green synthesis of metallic nanoparticles (NPs) using phytoconstituents have attracted the attention of the global scientific community. The present study was designed to synthesize silver NPs (AgNPs) using Punica granatum and Plectranthus rugosus plant extracts. The fabricated AgNPs were characterized using UV-visible spectrophotometry (UV-Vis), Fourier-transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), and energy-dispersive x-ray spectroscopy (EDS). The shift in the color of the silver nitrate (AgNO3 ) solution after the addition of P. granatum and P. rugosus extracts indicated the synthesis of AgNPs. The effect of AgNO3 concentrations and pH on the synthesis of AgNPs was also evaluated. The findings of this study suggest that AgNO3 concentration of 1 mM, reaction time of 1 h, and pH of 7 at room temperature were the best suited conditions for the synthesis of AgNPs. According to the FTIR analysis, amidic and carbonyl compounds were primarily responsible for the encapsulation of AgNPs. SEM investigations have shown irregularly shaped geometry with sizes of 35 nm (P. granatum) and 33 nm (P. rugosus) with low agglomeration. The prepared AgNPs exhibited good potential for 2,2-diphenyl-1-picrylhydrazyl radical scavenging, with values of 70% (P. granatum) and 68% (P. rugosus). Hence, we conclude that the leaves of P. granatum and P. rugosus are excellent material for designing of different plant-extracted-conjugated AgNPs for biomedical applications. RESEARCH HIGHLIGHTS: Preparation of the AgNPs using novel plants extracts. P. granatum and P. rugosus extract as reducing, capping, stabilizing, and optimizing agents. Thorough comparative characterization using UV-Vis spectrophotometer, FTIR, SEM, and EDS which is a first of its kind. Comparative antioxidant activity.
Collapse
Affiliation(s)
- Muhammad Faran Akhtar
- Department of Chemistry, University of Kotli, Kotli, Azad Jammu and Kashmir, Pakistan
| | - Muhammad Irshad
- Department of Chemistry, University of Kotli, Kotli, Azad Jammu and Kashmir, Pakistan
| | - Shaukat Ali
- Laboratory of Applied Entomology and Medical Toxicology, Department of Zoology, Government College University Lahore, Lahore, Pakistan
| | - Muhammad Summer
- Laboratory of Applied Entomology and Medical Toxicology, Department of Zoology, Government College University Lahore, Lahore, Pakistan
| | - Saima Gulrukh
- Department of Chemistry, University of Kotli, Kotli, Azad Jammu and Kashmir, Pakistan
| | - Muhammad Irfan
- Department of Chemistry, University of Kotli, Kotli, Azad Jammu and Kashmir, Pakistan
| |
Collapse
|
8
|
Jain R, Singh R, Badhwar R, Gupta T, Popli H. Development and optimization of Clitoria teratea synthesized silver nanoparticles and its application to nanogel systems for wound healing. Drug Dev Ind Pharm 2024; 50:181-191. [PMID: 38318676 DOI: 10.1080/03639045.2024.2308043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 01/16/2024] [Indexed: 02/07/2024]
Abstract
OBJECTIVE The present research deals with sequential optimization strategy based on Central Composite Design to optimize the process variables for efficient production of Clitoria teratea (CLT) synthesized silver nanoparticles (AgNPs) using biological synthesis. METHODS Two substantial factors influencing the dependent variables viz UV-visible absorbance, particle size, zeta potential and polydispersity index (PDI) were identified as NaOH concentration, RH concentration, temperature as independent variables. In-vitro and ex-vivo studies of prepared CLT-AgNPs gel and marketed gel were carried out using dialysis membrane and egg membrane, respectively. In addition, antimicrobial study was also performed on the bacterial strains. RESULTS The particles size (114 nm), PDI (0.45), and zeta potential (-29.5 mV) of optimized formulation were found, respectively. In-vitro profile of AgNPs from prepared CLT-AgNPs gel was noted (95.6%) in 8 h. It was found that the prepared CLT-AgNPs gel stimulates fibroblast and agranulocytosis development resulting better and timely wound healing. CONCLUSIONS The prepared CLT-AgNPs gel can be as a potential substitute in the management and treatment of acute and chronic wounds.
Collapse
Affiliation(s)
- Richa Jain
- Department of Pharmaceutics, Delhi Pharmaceutical Science and Research University, New Delhi, India
| | - Ruchi Singh
- Department of Pharmaceutics, Delhi Pharmaceutical Science and Research University, New Delhi, India
| | - Reena Badhwar
- Department of Pharmaceutics, Delhi Pharmaceutical Science and Research University, New Delhi, India
- Department of Pharmaceutics, Shree Guru Gobind Singh Tercentenary University, Gurugram, India
| | - Tinku Gupta
- Department of Pharmacognosy & Phytochemistry, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, India
| | - Harvinder Popli
- Department of Pharmaceutics, Delhi Pharmaceutical Science and Research University, New Delhi, India
| |
Collapse
|
9
|
Sun Y, Wang J, Li D, Cheng F. The Recent Progress of the Cellulose-Based Antibacterial Hydrogel. Gels 2024; 10:109. [PMID: 38391439 PMCID: PMC10887981 DOI: 10.3390/gels10020109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/26/2024] [Accepted: 01/26/2024] [Indexed: 02/24/2024] Open
Abstract
Cellulose-based antibacterial hydrogel has good biocompatibility, antibacterial performance, biodegradability, and other characteristics. It can be very compatible with human tissues and degradation, while its good water absorption and moisturizing properties can effectively absorb wound exudates, keep the wound moist, and promote wound healing. In this paper, the structural properties, and physical and chemical cross-linking preparation methods of cellulose-based antibacterial hydrogels were discussed in detail, and the application of cellulose-based hydrogels in the antibacterial field was deeply studied. In general, cellulose-based antibacterial hydrogels, as a new type of biomaterial, have shown good potential in antimicrobial properties and have been widely used. However, there are still some challenges, such as optimizing the preparation process and performance parameters, improving the antibacterial and physical properties, broadening the application range, and evaluating safety. However, with the deepening of research and technological progress, it is believed that cellulose-based antibacterial hydrogels will be applied and developed in more fields in the future.
Collapse
Affiliation(s)
- Ying Sun
- College of Light Industry and Textile, Qiqihar University, Qiqihar 161006, China
- Cold Area Hemp and Products Engineering Research Center of Ministry of Education, Qiqihar 161006, China
| | - Jiayi Wang
- College of Light Industry and Textile, Qiqihar University, Qiqihar 161006, China
| | - Duanxin Li
- College of Light Industry and Textile, Qiqihar University, Qiqihar 161006, China
- Cold Area Hemp and Products Engineering Research Center of Ministry of Education, Qiqihar 161006, China
| | - Feng Cheng
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| |
Collapse
|
10
|
Muhammed A, Asere TG, Diriba TF. Photocatalytic and Antimicrobial Properties of ZnO and Mg-Doped ZnO Nanoparticles Synthesized Using Lupinus albus Leaf Extract. ACS OMEGA 2024; 9:2480-2490. [PMID: 38250416 PMCID: PMC10795139 DOI: 10.1021/acsomega.3c07093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 01/23/2024]
Abstract
Dye effluents discharged from various industries contribute to environmental contamination, making their treatment highly necessary. Infectious diseases also pose a threat to public health worldwide. Nanomaterials have promising features and are potential candidates for overcoming the problems of drug resistance in microbes and environmental pollution. Therefore, this study aimed to synthesize zinc oxide (ZnO) and magnesium-doped zinc oxide (Mg-doped ZnO) nanoparticles (NPs) using the plant extract of Lupinus albus for applications in photocatalysis and antimicrobial activity. A sample of Lupinus albus leaves was collected from Motta, in the eastern Gojjam zone of Ethiopia. The leaves were air-dried and then ground into a powder. The powdered plant material was extracted using distilled water. The ZnO and Mg-doped ZnO NPs were synthesized using 0.1 M Zn(NO3)2·6H2O, 7.5% 0.1 M Mg(NO3)2.6H2O, and 10 mL of the leaf extract. The nanoparticles (NPs) were characterized using UV-vis, FT-IR, XRD, and SEM. The average crystallite sizes of ZnO and Mg-doped ZnO NPs were determined using the Debye-Scherrer formula and were found to be 28.1 and 34.4 nm, respectively. The antimicrobial activity of the synthesized NPs was evaluated against four bacterial strains (Escherichia coli, Bacillus cereus, Salmonella typhi, and Staphylococcus aureus) and one fungal strain (Candida albicans) by using the agar disk diffusion method. The Mg-doped ZnO NPs exhibited significant antimicrobial activity, with a maximum zone of inhibition measuring 24 and 22 mm against Escherichia coli and Salmonella typhi, respectively. The photocatalytic activity of ZnO and Mg-doped ZnO NPs was investigated by studying the degradation of methylene blue (MB) dye under sunlight irradiation for 120 min. The results showed that Mg-doped ZnO NPs exhibited higher photocatalytic activity (99.6%) than ZnO NPs (94.1%). In conclusion, the synthesized NPs could serve as viable alternatives for antimicrobial drugs and photocatalysts to mitigate the pollution of the environment caused by organic dyes.
Collapse
Affiliation(s)
- Abdu Muhammed
- Department of Chemistry, College of Natural Sciences, Jimma University, P.O. Box 378, Jimma, Ethiopia
| | - Tsegaye Girma Asere
- Department of Chemistry, College of Natural Sciences, Jimma University, P.O. Box 378, Jimma, Ethiopia
| | - Tamiru Fayisa Diriba
- Department of Chemistry, College of Natural Sciences, Jimma University, P.O. Box 378, Jimma, Ethiopia
| |
Collapse
|
11
|
Vikal S, Gautam YK, Kumar A, Kumar A, Singh J, Pratap D, Singh BP, Singh N. Bioinspired palladium-doped manganese oxide nanocorns: a remarkable antimicrobial agent targeting phyto/animal pathogens. Sci Rep 2023; 13:14039. [PMID: 37640751 PMCID: PMC10462759 DOI: 10.1038/s41598-023-40822-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 08/17/2023] [Indexed: 08/31/2023] Open
Abstract
Microbial pathogens are known for causing great environmental stress, owing to which emerging challenges like lack of eco-friendly remediation measures, development of drug-resistant and mutational microbial strains, etc., warrants novel and green routes as a stepping stone to serve such concerns sustainably. In the present study, palladium (Pd) doped manganese (II, III) oxide (Mn3O4) nanoparticles (NPs) were synthesized using an aqueous Syzygium aromaticum bud (ASAB) extract. Preliminary phytochemical analysis of ASAB extract indicates the presence of polyphenolics such as phenols, alkaloids, and flavonoids that can act as potential capping agents in NPs synthesis, which was later confirmed in FTIR analysis of pure and Pd-doped Mn3O4 NPs. XRD, Raman, and XPS analyses confirmed the Pd doping in Mn3O4 NPs. FESEM and HRTEM study reveals the mixed morphologies dominated by nanocorns appearance. Zeta potential investigation reveals high stability of the synthesized NPs in colloidal solutions. The developed Pd-doped Mn3O4 NPs were tested against two fungal phytopathogens, i.e., Sclerotinia sclerotiorum and Colletotrichum gloeosporioides, known for causing great economic losses in yield and quality of different plant species. The antifungal activity of synthesized Pd-doped Mn3O4 NPs displayed a dose-dependent response with a maximum of ~92%, and ~72% inhibition was recorded against S. sclerotiorum and C. gloeosporioides, respectively, at 1000 ppm concentration. However, C. gloeosporioides demonstrated higher sensitivity to Pd-doped Mn3O4 NPs upto 500 ppm) treatment than S. sclerotiorum. The prepared NPs also showed significant antibacterial activity against Enterococcus faecalis. The Pd-doped Mn3O4 NPs were effective even at low treatment doses, i.e., 50-100 ppm, with the highest Zone of inhibition obtained at 1000 ppm concentration. Our findings provide a novel, eco-benign, and cost-effective approach for formulating a nanomaterial composition offering multifaceted utilities as an effective antimicrobial agent.
Collapse
Affiliation(s)
- Sagar Vikal
- Smart Materials and Sensors Laboratory, Department of Physics, Chaudhary Charan Singh University, Meerut, Uttar Pradesh, 250004, India
| | - Yogendra K Gautam
- Smart Materials and Sensors Laboratory, Department of Physics, Chaudhary Charan Singh University, Meerut, Uttar Pradesh, 250004, India.
| | - Ashwani Kumar
- Nanoscience Laboratory, Institute Instrumentation Centre, IIT Roorkee, Roorkee, 247667, India.
- Department of Physics, Graphic Era (Deemed to Be University), Dehradun, Uttarakhand, 248002, India.
| | - Ajay Kumar
- Department of Biotechnology, Mewar Institute of Management, Ghaziabad, Uttar Pradesh, 201012, India.
| | - Jyoti Singh
- Plant Molecular Virology Laboratory, Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, Uttar Pradesh, 250004, India
| | - Dharmendra Pratap
- Plant Molecular Virology Laboratory, Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, Uttar Pradesh, 250004, India
| | - Beer Pal Singh
- Smart Materials and Sensors Laboratory, Department of Physics, Chaudhary Charan Singh University, Meerut, Uttar Pradesh, 250004, India
| | - Neetu Singh
- Department of Biotechnology, Mewar Institute of Management, Ghaziabad, Uttar Pradesh, 201012, India
| |
Collapse
|
12
|
Ao B, Du Q, Liu D, Shi X, Tu J, Xia X. A review on synthesis and antibacterial potential of bio-selenium nanoparticles in the food industry. Front Microbiol 2023; 14:1229838. [PMID: 37520346 PMCID: PMC10373938 DOI: 10.3389/fmicb.2023.1229838] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 06/29/2023] [Indexed: 08/01/2023] Open
Abstract
Effective control of foodborne pathogen contamination is a significant challenge to the food industry, but the development of new antibacterial nanotechnologies offers new opportunities. Notably, selenium nanoparticles have been extensively studied and successfully applied in various food fields. Selenium nanoparticles act as food antibacterial agents with a number of benefits, including selenium as an essential trace element in food, prevention of drug resistance induction in foodborne pathogens, and improvement of shelf life and food storage conditions. Compared to physical and chemical methods, biogenic selenium nanoparticles (Bio-SeNPs) are safer and more multifunctional due to the bioactive molecules in Bio-SeNPs. This review includes a summarization of (1) biosynthesized of Bio-SeNPs from different sources (plant extracts, fungi and bacteria) and their antibacterial activity against various foodborne bacteria; (2) the antibacterial mechanisms of Bio-SeNPs, including penetration of cell wall, damage to cell membrane and contents leakage, inhibition of biofilm formation, and induction of oxidative stress; (3) the potential antibacterial applications of Bio-SeNPs as food packaging materials, food additives and fertilizers/feeds for crops and animals in the food industry; and (4) the cytotoxicity and animal toxicity of Bio-SeNPs. The related knowledge contributes to enhancing our understanding of Bio-SeNP applications and makes a valuable contribution to ensuring food safety.
Collapse
|
13
|
Asiri M, Srivastava N, Singh R, Al Ali A, Tripathi SC, Alqahtani A, Saeed M, Srivastava M, Rai AK, Gupta VK. Rice straw derived graphene-silica based nanocomposite and its application in improved co-fermentative microbial enzyme production and functional stability. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 876:162765. [PMID: 36906037 DOI: 10.1016/j.scitotenv.2023.162765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/22/2023] [Accepted: 03/06/2023] [Indexed: 06/18/2023]
Abstract
Cellulases are the one of the most highly demanded industrial biocatalysts due to their versatile applications, such as in the biorefinery industry. However, relatively poor efficiency and high production costs are included as the key industrial constraints that hinder enzyme production and utilization at economic scale. Furthermore, the production and functional efficiency of the β-glucosidase (BGL) enzyme is usually found to be relatively low among the cellulase cocktail produced. Thus, the current study focuses on fungi-mediated improvement of BGL enzyme in the presence of a rice straw-derived graphene-silica-based nanocomposite (GSNCs), which has been characterized using various techniques to analyze its physicochemical properties. Under optimized conditions of solid-state fermentation (SSF), co-fermentation using co-cultured cellulolytic enzyme has been done, and maximum enzyme production of 42 IU/gds FP, 142 IU/gds BGL, and 103 IU/gds EG have been achieved at a 5 mg concentration of GSNCs. Moreover, at a 2.5 mg concentration of nanocatalyst, the BGL enzyme showed its thermal stability at 60°C and 70 °C by holding its half-life relative activity for 7 h, while the same enzyme demonstrated pH stability at pH 8.0 and 9.0 for the 10 h. This thermoalkali BGL enzyme might be useful for the long-term bioconversion of cellulosic biomass into sugar.
Collapse
Affiliation(s)
- Mohammed Asiri
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Neha Srivastava
- Department of Chemical Engineering & Technology, Indian Institute of Technology (BHU) Varanasi, Varanasi 221005, Uttar Pradesh, India.
| | - Rajeev Singh
- Department of Environmental Science, Jamia Millia Islamia (A Central University), New Delhi 110025, India
| | - Amer Al Ali
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, University of Bisha, Al Nakhil, Bisha, Saudi Arabia
| | - Subhash C Tripathi
- Institute of Applied Sciences & Humanities, Department of Chemistry, GLA University, Mathura 281406, Uttar Pradesh, India
| | - Abdulaziz Alqahtani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Mohd Saeed
- Department of Biology, College of Sciences, University of Hail, Hail, Saudi Arabia
| | - Manish Srivastava
- Department of Chemical Engineering & Technology, Indian Institute of Technology (BHU) Varanasi, Varanasi 221005, Uttar Pradesh, India; LCB Fertilizer Pvt. Ltd., Shyam Vihar Phase 2, Rani Sati Mandir Road, Lachchhipur, Gorakhpur, Uttar Pradesh 273015, India
| | - Ashutosh Kumar Rai
- Department of Biochemistry, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Vijai Kumar Gupta
- Biorefining and Advanced Materials Research Center, SRUC, Kings Buildings, West Mains Road, Edinburgh EH9 3JG, UK; Center for Safe and Improved Food, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh EH9 3JG, UK.
| |
Collapse
|
14
|
Maity A, Mondal A, Kundu S, Shome G, Misra R, Singh A, Pal U, Mandal AK, Bera K, Maiti NC. Naringenin-Functionalized Gold Nanoparticles and Their Role in α-Synuclein Stabilization. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:7231-7248. [PMID: 37094111 DOI: 10.1021/acs.langmuir.2c03259] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Misfolding and self-assembly of several intrinsically disordered proteins into ordered β-sheet-rich amyloid aggregates emerged as hallmarks of several neurodegenerative disorders such as Alzheimer's and Parkinson's diseases. Here we show how the naringenin-embedded nanostructure effectively retards aggregation and fibril formation of α-synuclein, which is strongly associated with the pathology of Parkinson's-like diseases. Naringenin is a polyphenolic compound from a plant source, and in our current investigation, we reported the one-pot synthesis of naringenin-coated spherical and monophasic gold nanoparticles (NAR-AuNPs) under optimized conditions. The average hydrodynamic diameter of the produced nanoparticle was ∼24 nm and showed a distinct absorption band at 533 nm. The zeta potential of the nanocomposite was ∼-22 mV and indicated the presence of naringenin on the surface of nanoparticles. Core-level XPS spectrum analysis showed prominent peaks at 84.02 and 87.68 eV, suggesting the zero oxidation state of metal in the nanostructure. Additionally, the peaks at 86.14 and 89.76 eV were due to the Au-O bond, induced by the hydroxyl groups of the naringenin molecule. The FT-IR analysis further confirmed strong interactions of the molecule with the gold nanosurface via the phenolic oxygen group. The composite surface was found to interact with monomeric α-synuclein and caused a red shift in the nanoparticle absorption band by ∼5 nm. The binding affinity of the composite nanostructure toward α-synuclein was in the micromolar range (Ka∼ 5.02 × 106 M-1) and may produce a protein corona over the gold nanosurface. A circular dichroism study showed that the nanocomposite can arrest the conformational fluctuation of the protein and hindered its transformation into a compact cross-β-sheet conformation, a prerequisite for amyloid fibril formation. Furthermore, it was found that naringenin and its nanocomplex did not perturb the viability of neuronal cells. It thus appeared that engineering of the nanosurface with naringenin could be an alternative strategy in developing treatment approaches for Parkinson's and other diseases linked to protein conformation.
Collapse
Affiliation(s)
- Anupam Maity
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Kolkata 700032, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre, (CSIR-HRDC) Campus, Postal Staff College Area, Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh 201 002, India
| | - Animesh Mondal
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Kolkata 700032, India
| | - Shubham Kundu
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Kolkata 700032, India
| | - Gourav Shome
- Division of Molecular Medicine, Bose Institute, Kolkata 700091, India
| | - Rajdip Misra
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Kolkata 700032, India
| | - Aakriti Singh
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Kolkata 700032, India
| | - Uttam Pal
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Kolkata 700032, India
| | - Atin Kumar Mandal
- Division of Molecular Medicine, Bose Institute, Kolkata 700091, India
| | - Kaushik Bera
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Kolkata 700032, India
- Department of Chemistry, The Heritage School, 994 Chowbaga Road, Anandapur, East Kolkata Twp, Kolkata 700107, India
| | - Nakul C Maiti
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Kolkata 700032, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre, (CSIR-HRDC) Campus, Postal Staff College Area, Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh 201 002, India
| |
Collapse
|
15
|
Alhalili Z. Metal Oxides Nanoparticles: General Structural Description, Chemical, Physical, and Biological Synthesis Methods, Role in Pesticides and Heavy Metal Removal through Wastewater Treatment. Molecules 2023; 28:3086. [PMID: 37049850 PMCID: PMC10096196 DOI: 10.3390/molecules28073086] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/20/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
Nanotechnology (NT) is now firmly established in both the private home and commercial markets. Due to its unique properties, NT has been fully applied within multiple sectors like pharmacy and medicine, as well as industries like chemical, electrical, food manufacturing, and military, besides other economic sectors. With the growing demand for environmental resources from an ever-growing world population, NT application is a very advanced new area in the environmental sector and offers several advantages. A novel template synthesis approach is being used for the promising metal oxide nanostructures preparation. Synthesis of template-assisted nanomaterials promotes a greener and more promising protocol compared to traditional synthesis methods such as sol-gel and hydrothermal synthesis, and endows products with desirable properties and applications. It provides a comprehensive general view of current developments in the areas of drinking water treatment, wastewater treatment, agriculture, and remediation. In the field of wastewater treatment, we focus on the adsorption of heavy metals and persistent substances and the improved photocatalytic decomposition of the most common wastewater pollutants. The drinking water treatment section covers enhanced pathogen disinfection and heavy metal removal, point-of-use treatment, and organic removal applications, including the latest advances in pesticide removal.
Collapse
Affiliation(s)
- Zahrah Alhalili
- Department of Chemistry, College of Science and Arts-Sajir, Shaqra University, Sahqra 17684, Saudi Arabia
| |
Collapse
|
16
|
Diksha D, Gupta SK, Gupta P, Banerjee UC, Kalita D. Antibacterial Potential of Gold Nanoparticles Synthesized From Leaf Extract of Syzygium cumini Against Multidrug-Resistant Urinary Tract Pathogens. Cureus 2023; 15:e34830. [PMID: 36919069 PMCID: PMC10008408 DOI: 10.7759/cureus.34830] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/10/2023] [Indexed: 02/12/2023] Open
Abstract
BACKGROUND Urinary tract infection (UTI) is one of the most commonly encountered bacterial infections. Due to the misuse or excessive use of antibiotics, the upsurge of multidrug-resistance cases in UTIs has now become a global threat to public health. Exploring a newer or safer treatment using green synthesized nanoparticles (NPs) is another substitute for eliminating multidrug-resistant pathogens. METHODOLOGY Leaf extract of Syzygium cumini was used for green synthesis of gold NPs. Synthesis of Syzygium cumini gold nanoparticles (ScAu-NPs) was achieved by optimizing various reaction parameters. These ScAu-NPs were characterized through UV-visible spectroscopy, transmission electron microscope, Fourier transform infrared spectroscopy (FTIR), and X-ray diffraction. ScAu-NPs were then processed for antibacterial activity against clinically isolated multidrug-resistant pathogens like Escherichia coli, Klebsiella pneumoniae, Proteus vulgaris, Acinetobacter baumannii, Staphylococcus aureus, and Enterococcus faecalis. RESULTS Characterization of NPs revealed that biosynthesized NPs were spherical in shape. FTIR spectroscopy showed the presence of phenolics and aromatic compounds. Biosynthesized NPs exhibit good antibacterial activity with a significant bacterial reduction seen against all bacterial isolates compared to the controls. CONCLUSION From the results of the present study, the formulation of biosynthesized ScAu-NPs can be utilized in drug development for eliminating infections caused by multidrug-resistant pathogens.
Collapse
Affiliation(s)
- Diksha Diksha
- Microbiology, All India Institute of Medical Sciences, Rishikesh, IND
| | - Shailesh K Gupta
- Microbiology, All India Institute of Medical Sciences, Rishikesh, IND
| | - Pratima Gupta
- Microbiology, All India Institute of Medical Sciences, Rishikesh, IND
| | | | - Deepjyoti Kalita
- Microbiology, All India Institute of Medical Sciences, Rishikesh, IND
| |
Collapse
|
17
|
Mejía-Méndez JL, López-Mena ER, Sánchez-Arreola E. Activities against Lung Cancer of Biosynthesized Silver Nanoparticles: A Review. Biomedicines 2023; 11:389. [PMID: 36830926 PMCID: PMC9953519 DOI: 10.3390/biomedicines11020389] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/22/2023] [Accepted: 01/26/2023] [Indexed: 02/03/2023] Open
Abstract
Nanomedicine is an interdisciplinary field where nanostructured objects are applied to treat or diagnose disease. Nanoparticles (NPs) are a special class of materials at nanometric scale that can be prepared from lipids, polymers, or noble metals through bottom-up approaches. Biological synthesis is a reliable, sustainable, and non-toxic bottom-up method that uses phytochemicals, microorganisms, and enzymes to induce the reduction of metal ions into NPs. Silver (Ag) NPs exhibit potent therapeutic properties that can be exploited to overcome the limitations of current treatment modalities for human health issues such as lung cancer (LC). Here, we review the preparation of AgNPs using biological synthesis and their application against LC using in vitro and in vivo models. An overview of the staging, diagnosis, genetic mutations, and treatment of LC, as well as its main subtypes, is presented. A summary of the reaction mechanisms of AgNPs using microbial cell cultures, plant extracts, phytochemicals, and amino acids is included. The use of capping agents in the biosynthesis of AgNPs with anticancer activity is also detailed. The history and biological activities of metal-based nanostructures synthesized with gold, copper, palladium, and platinum are considered. The possible anticancer mechanisms of AgNPs against LC models are covered. Our perspective about the future of AgNPs in LC treatment and nanomedicine is added.
Collapse
Affiliation(s)
- Jorge L. Mejía-Méndez
- Laboratorio de Investigación Fitoquímica, Departamento de Ciencias Químico Biológicas, Universidad de las Américas Puebla, Ex Hacienda Sta. Catarina Mártir S/N, San Andrés Cholula 72810, Mexico
| | - Edgar R. López-Mena
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Av. Gral. Ramón Corona No 2514, Colonia Nuevo México, Zapopan 45121, Mexico
| | - Eugenio Sánchez-Arreola
- Laboratorio de Investigación Fitoquímica, Departamento de Ciencias Químico Biológicas, Universidad de las Américas Puebla, Ex Hacienda Sta. Catarina Mártir S/N, San Andrés Cholula 72810, Mexico
| |
Collapse
|
18
|
Al-Gethami W, Al-Qasmi N, Ismail SH, Sadek AH. QCM-Based MgFe 2O 4@CaAlg Nanocomposite as a Fast Response Nanosensor for Real-Time Detection of Methylene Blue Dye. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 13:97. [PMID: 36616006 PMCID: PMC9824339 DOI: 10.3390/nano13010097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/17/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
Methylene blue (MB) dye is a common colorant used in numerous industries, particularly the textile industry. When methylene blue is discharged into water bodies without being properly treated, it may seriously damage aquatic and human life. As a result, a variety of methods have been established to remove dyes from aqueous systems. Thanks to their distinguishing features e.g., rapid responsiveness, cost-effectiveness, potential selectivity, portability, and simplicity, the electrochemical methods provided promising techniques. Considering these aspects, a novel quartz crystal microbalance nanosensors based on green synthesized magnesium ferrite nanoparticles (QCM-Based MgFe2O4 NPs) and magnesium ferrite nanoparticles coated alginate hydrogel nanocomposite (QCM-Based MgFe2O4@CaAlg NCs) were designed for real-time detection of high concentrations of MB dye in the aqueous streams at different temperatures. The characterization results of MgFe2O4 NPs and MgFe2O4@CaAlg NCs showed that the MgFe2O4 NPs have synthesized in good crystallinity, spherical shape, and successfully coated by the alginate hydrogel. The performance of the designed QCM-Based MgFe2O4 NPs and MgFe2O4@CaAlg NCs nanosensors were examined by the QCM technique, where the developed nanosensors showed great potential for dealing with continuous feed, very small volumes, high concentrations of MB, and providing an instantaneous response. In addition, the alginate coating offered more significant attributes to MgFe2O4 NPs and enhanced the sensor work toward MB monitoring. The sensitivity of designed nanosensors was evaluated at different MB concentrations (100 mg/L, 400 mg/L, and 800 mg/L), and temperatures (25 °C, 35 °C, and 45 °C). Where a real-time detection of 400 mg/L MB was achieved using the developed sensing platforms at different temperatures within an effective time of about 5 min. The results revealed that increasing the temperature from 25 °C to 45 °C has improved the detection of MB using the MgFe2O4@CaAlg NCs nanosensor and the MgFe2O4@CaAlg NCs nanosensor exhibited high sensitivity for different MB concentrations with more efficiency than the MgFe2O4 NPs nanosensor.
Collapse
Affiliation(s)
- Wafa Al-Gethami
- Chemistry Department, Faculty of Science, Taif University, Al-Hawiah, Taif City P.O. Box 11099, Saudi Arabia
| | - Noha Al-Qasmi
- Chemistry Department, Faculty of Science, Taif University, Al-Hawiah, Taif City P.O. Box 11099, Saudi Arabia
| | - Sameh H. Ismail
- Nano Engineering-Xnem Program, Faculty of Nanotechnology for Postgraduate Studies, Sheikh Zayed Campus, Cairo University, 6th October City, Giza 12588, Egypt
| | - Ahmed H. Sadek
- Nano Engineering-Xnem Program, Faculty of Nanotechnology for Postgraduate Studies, Sheikh Zayed Campus, Cairo University, 6th October City, Giza 12588, Egypt
- Environmental Engineering Program, Zewail City of Science, Technology and Innovation, 6th October City, Giza 12578, Egypt
| |
Collapse
|
19
|
Meena PL, Surela AK, Saini JK, Chhachhia LK. Millettia pinnata plant pod extract-mediated synthesis of Bi 2O 3 for degradation of water pollutants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:79253-79271. [PMID: 35708808 DOI: 10.1007/s11356-022-21435-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/08/2022] [Indexed: 06/15/2023]
Abstract
In this study, plant extract obtained from pods of Millettia pinnata plant species was employed for nanosynthesis of Bi2O3. The as-synthesized semiconductor metal oxide nanoparticles were analyzed using various characterization tools such as X-ray diffraction (XRD), Scanning electron microscope (SEM), ultra violet-visible (UV-Vis), Fourier transform infrared (FTIR), Zeta potential, Raman, and X-ray photoelectron spectroscopy (XPS). The characterization results designate the formation of α and β forms of Bi2O3. FESEM images demonstrate rod and flake-like nanostructures ranging from 25 to 70 nm. The green synthesized nanomaterial was found efficient for reduction of 4-nitro phenol (4-NP) and 4-nitro aniline (4-NA). However, it showed better performance toward the reduction of 4-NA. Photocatalytic investigations demonstrated that the green synthesized nanophotocatalyst was capable in degrading Amido Black 10B (AB-10B) dye efficiently under visible light illumination. 98.83% degradation of AB-10B dye was achieved within 120 min of irradiation under optimum conditions of photocatalyst dose and dye concentration. Active species trapping experiments revealed prominent role of superoxide radicals (•O2-) while hydroxyl radicals (•OH) played considerable role in the AB-10B photocatalytic degradation process. Moreover, the photostability and reusability assessment study ascertained good performance of the catalyst after four runs of successive cycles.
Collapse
Affiliation(s)
| | - Ajay Kumar Surela
- Department of Chemistry, University of Rajasthan, Jaipur, 302004, India
| | | | | |
Collapse
|
20
|
Al-Gethami W, Alhashmialameer D, Al-Qasmi N, Ismail SH, Sadek AH. Design of a Novel Nanosensors Based on Green Synthesized CoFe 2O 4/Ca-Alginate Nanocomposite-Coated QCM for Rapid Detection of Pb(II) Ions. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3620. [PMID: 36296809 PMCID: PMC9610289 DOI: 10.3390/nano12203620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Pb(II) is a significant contaminant that is known to have negative effects on both humans and animals. Recent industrial operations have exacerbated these consequences, and their release of several contaminants, including lead ions, has drawn attention to the potential effects on human health. Therefore, there is a lot of interest in the rapid, accurate, and selective detection of lead ions in various environmental samples. Sensors-based nanomaterials are a significant class among the many tools and methods developed and applied for such purposes. Therefore, a novel green synthesized cobalt ferrite (CoFe2O4) nanoparticles and functionalized CoFe2O4/Ca-alginate nanocomposite was designed and successfully synthesized for the fabrication of nanoparticles and nanocomposite-coated quartz crystal microbalance (QCM) nanosensors to detect the low concentrations of Pb(II) ions in the aqueous solutions at different temperatures. The structural and morphological properties of synthesized nanoparticles and nanocomposite were characterized using different tools such as X-ray diffraction (XRD), N2 adsorption-desorption isotherm, dynamic light scattering (DLS), zeta potential analyzer (ζ-potential), atomic force microscopy (AFM), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and energy-dispersive X-ray spectroscopy (EDX). The QCM results revealed that the green synthesized CoFe2O4 nanoparticles and functionalized CoFe2O4/Ca-alginate nanocomposite-coated QCM nanosensors exhibited high sensitivity, stability, and rapid detection of Pb(II) ions in the aqueous solutions at different temperature. The lowest detection limit for Pb(II) ions in the aqueous solutions could reach 125 ng, which resulted in a frequency shift of 27.49 ± 0.81, 23.63 ± 0.90, and 19.57 ± 0.86 Hz (Δf) for the QCM detector coated with green synthesized CoFe2O4 nanoparticles thin films, and 25.85 ± 0.85, 33.87 ± 0.73, and 6.87 ± 0.08 Hz (Δf) for the QCM detector coated with CoFe2O4/Ca-Alg nanocomposite thin films in a real-time of about 11, 13, and 13 min at 25 °C, 35 °C, and 45 °C, respectively. In addition, the resonance frequency change results showed the superiority of functionalized CoFe2O4/Ca-alginate nanocomposite coated QCM nanosensor over CoFe2O4 nanoparticles towards Pb(II) ions detecting, which attributed to the beneficial properties of alginate biopolymer.
Collapse
Affiliation(s)
- Wafa Al-Gethami
- Chemistry Department, Faculty of Science, Taif University, Al-Hawiah, Taif City P.O. Box 11099, Saudi Arabia
| | - Dalal Alhashmialameer
- Chemistry Department, Faculty of Science, Taif University, Al-Hawiah, Taif City P.O. Box 11099, Saudi Arabia
| | - Noha Al-Qasmi
- Chemistry Department, Faculty of Science, Taif University, Al-Hawiah, Taif City P.O. Box 11099, Saudi Arabia
| | - Sameh H. Ismail
- Faculty of Nanotechnology for Postgraduate Studies, Sheikh Zayed Campus, Cairo University, 6th October City, Giza 12588, Egypt
| | - Ahmed H. Sadek
- Faculty of Nanotechnology for Postgraduate Studies, Sheikh Zayed Campus, Cairo University, 6th October City, Giza 12588, Egypt
- Zewail City of Science, Technology and Innovation, 6th October City, Giza 12578, Egypt
| |
Collapse
|
21
|
Aram E, Moeni M, Abedizadeh R, Sabour D, Sadeghi-Abandansari H, Gardy J, Hassanpour A. Smart and Multi-Functional Magnetic Nanoparticles for Cancer Treatment Applications: Clinical Challenges and Future Prospects. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12203567. [PMID: 36296756 PMCID: PMC9611246 DOI: 10.3390/nano12203567] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/16/2022] [Accepted: 09/27/2022] [Indexed: 05/14/2023]
Abstract
Iron oxide nanoparticle (IONPs) have become a subject of interest in various biomedical fields due to their magnetism and biocompatibility. They can be utilized as heat mediators in magnetic hyperthermia (MHT) or as contrast media in magnetic resonance imaging (MRI), and ultrasound (US). In addition, their high drug-loading capacity enabled them to be therapeutic agent transporters for malignancy treatment. Hence, smartening them allows for an intelligent controlled drug release (CDR) and targeted drug delivery (TDD). Smart magnetic nanoparticles (SMNPs) can overcome the impediments faced by classical chemo-treatment strategies, since they can be navigated and release drug via external or internal stimuli. Recently, they have been synchronized with other modalities, e.g., MRI, MHT, US, and for dual/multimodal theranostic applications in a single platform. Herein, we provide an overview of the attributes of MNPs for cancer theranostic application, fabrication procedures, surface coatings, targeting approaches, and recent advancement of SMNPs. Even though MNPs feature numerous privileges over chemotherapy agents, obstacles remain in clinical usage. This review in particular covers the clinical predicaments faced by SMNPs and future research scopes in the field of SMNPs for cancer theranostics.
Collapse
Affiliation(s)
- Elham Aram
- Department of Cancer Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Babol 47138-18981, Iran
- Department of Polymer Engineering, Faculty of Engineering, Golestan University, Gorgan 49188-88369, Iran
| | - Masome Moeni
- School of Chemical and Process Engineering, University of Leeds, Leeds LS2 9JT, UK
| | - Roya Abedizadeh
- Department of Cancer Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Babol 47138-18981, Iran
| | - Davood Sabour
- Department of Cancer Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Babol 47138-18981, Iran
| | - Hamid Sadeghi-Abandansari
- Department of Cancer Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Babol 47138-18981, Iran
- Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 16635-148, Iran
| | - Jabbar Gardy
- School of Chemical and Process Engineering, University of Leeds, Leeds LS2 9JT, UK
- Correspondence: (J.G.); (A.H.)
| | - Ali Hassanpour
- School of Chemical and Process Engineering, University of Leeds, Leeds LS2 9JT, UK
- Correspondence: (J.G.); (A.H.)
| |
Collapse
|
22
|
Yaraki MT, Zahed Nasab S, Zare I, Dahri M, Moein Sadeghi M, Koohi M, Tan YN. Biomimetic Metallic Nanostructures for Biomedical Applications, Catalysis, and Beyond. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c00285] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
| | - Shima Zahed Nasab
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran 143951561, Iran
| | - Iman Zare
- Research and Development Department, Sina Medical Biochemistry Technologies Co. Ltd., Shiraz 7178795844, Iran
| | - Mohammad Dahri
- Student Research Committee, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 71345, Iran
| | - Mohammad Moein Sadeghi
- Student Research Committee, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 71345, Iran
| | - Maedeh Koohi
- Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan 45371-38791, Islamic Republic of Iran
| | - Yen Nee Tan
- Faculty of Science, Agriculture and Engineering, Newcastle University, Newcastle Upon Tyne NE1 7RU, U.K
- Newcastle Research and Innovation Institute, Newcastle University in Singapore, 80 Jurong East Street 21, No. 05-04, 609607, Singapore
| |
Collapse
|
23
|
Bao Y, Tian C, Yu H, He J, Song K, Guo J, Zhou X, Zhuo O, Liu S. In Situ Green Synthesis of Graphene Oxide-Silver Nanoparticles Composite with Using Gallic Acid. Front Chem 2022; 10:905781. [PMID: 35572121 PMCID: PMC9091365 DOI: 10.3389/fchem.2022.905781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 04/11/2022] [Indexed: 11/19/2022] Open
Abstract
The adoption of plant-derived natural products to synthesize metal nanoparticles and their complexes has the advantages of mild reaction conditions, environmental protection, sustainability and simple operation compared with traditional physical or chemical synthesis methods. Herein, silver nanoparticles (AgNPs) were in situ synthesized on the surface of graphene oxide (GO) by a “one-pot reaction” to prepare graphene oxide-silver nanoparticles composite (GO-AgNPs) based on using AgNO3 as the precursor of AgNPs and gallic acid (GA) as the reducing agent and stabilizer. The size and morphology of GO-AgNPs were characterized by ultraviolet-visible spectrophotometer (Uv-vis), Fourier transform infrared spectroscopy (FT-IR), transmission electron microscope (TEM), X-ray diffractometer (XRD) and dynamic light scattering (DLS). The effects of pH, temperature, time and material ratio on the synthesis of GO-AgNPs were investigated experimentally. The results showed that ideal GO-AgNPs could be prepared under the conditions of pH = 9, 45°C, 2 h and the 2:1 of molar ratio of AgNO3 to GA. The AgNPs within GO-AgNPs are highly crystalline spherical particles with moderate density on the surface of GO, and the size of AgNPs is relatively uniform and determined to be about 8.19 ± 4.21 nm. The research results will provide new ideas and references for the green synthesis of metal nanoparticles and their complexes using plant-derived natural products as the reducing agent and stabilizer.
Collapse
Affiliation(s)
- Yunhui Bao
- Key Laboratory of Hunan Forest Products and Chemical Industry Engineering, Jishou University, Zhangjiajie, China
| | - Chunlian Tian
- Key Laboratory of Hunan Forest Products and Chemical Industry Engineering, Jishou University, Zhangjiajie, China
| | - Huazhong Yu
- Key Laboratory of Hunan Forest Products and Chemical Industry Engineering, Jishou University, Zhangjiajie, China
- College of Chemistry and Chemical Engineering, Jishou University, Jishou, China
| | - Jian He
- Key Laboratory of Hunan Forest Products and Chemical Industry Engineering, Jishou University, Zhangjiajie, China
- College of Chemistry and Chemical Engineering, Jishou University, Jishou, China
| | - Ke Song
- Key Laboratory of Hunan Forest Products and Chemical Industry Engineering, Jishou University, Zhangjiajie, China
- College of Chemistry and Chemical Engineering, Jishou University, Jishou, China
| | - Jie Guo
- Key Laboratory of Hunan Forest Products and Chemical Industry Engineering, Jishou University, Zhangjiajie, China
- College of Chemistry and Chemical Engineering, Jishou University, Jishou, China
| | - Xianwu Zhou
- Key Laboratory of Hunan Forest Products and Chemical Industry Engineering, Jishou University, Zhangjiajie, China
- College of Chemistry and Chemical Engineering, Jishou University, Jishou, China
| | - Ou Zhuo
- College of Chemistry and Chemical Engineering, Jishou University, Jishou, China
| | - Shima Liu
- Key Laboratory of Hunan Forest Products and Chemical Industry Engineering, Jishou University, Zhangjiajie, China
- College of Chemistry and Chemical Engineering, Jishou University, Jishou, China
- *Correspondence: Shima Liu,
| |
Collapse
|
24
|
Bao Y, He J, Song K, Guo J, Zhou X, Liu S. Functionalization and Antibacterial Applications of Cellulose-Based Composite Hydrogels. Polymers (Basel) 2022; 14:polym14040769. [PMID: 35215680 PMCID: PMC8879376 DOI: 10.3390/polym14040769] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/12/2022] [Accepted: 02/14/2022] [Indexed: 02/04/2023] Open
Abstract
Pathogens, especially drug-resistant pathogens caused by the abuse of antibiotics, have become a major threat to human health and public health safety. The exploitation and application of new antibacterial agents is extremely urgent. As a natural biopolymer, cellulose has recently attracted much attention due to its excellent hydrophilicity, economy, biocompatibility, and biodegradability. In particular, the preparation of cellulose-based hydrogels with excellent structure and properties from cellulose and its derivatives has received increasing attention thanks to the existence of abundant hydrophilic functional groups (such as hydroxyl, carboxy, and aldehyde groups) within cellulose and its derivatives. The cellulose-based hydrogels have broad application prospects in antibacterial-related biomedical fields. The latest advances of preparation and antibacterial application of cellulose-based hydrogels has been reviewed, with a focus on the antibacterial applications of composite hydrogels formed from cellulose and metal nanoparticles; metal oxide nanoparticles; antibiotics; polymers; and plant extracts. In addition, the antibacterial mechanism and antibacterial characteristics of different cellulose-based antibacterial hydrogels were also summarized. Furthermore, the prospects and challenges of cellulose-based antibacterial hydrogels in biomedical applications were also discussed.
Collapse
Affiliation(s)
- Yunhui Bao
- Key Laboratory of Hunan Forest Products and Chemical Industry Engineering, Jishou University, Zhangjiajie 427000, China; (Y.B.); (J.H.); (K.S.); (J.G.); (X.Z.)
| | - Jian He
- Key Laboratory of Hunan Forest Products and Chemical Industry Engineering, Jishou University, Zhangjiajie 427000, China; (Y.B.); (J.H.); (K.S.); (J.G.); (X.Z.)
- College of Chemistry and Chemical Engineering, Jishou University, Jishou 416000, China
| | - Ke Song
- Key Laboratory of Hunan Forest Products and Chemical Industry Engineering, Jishou University, Zhangjiajie 427000, China; (Y.B.); (J.H.); (K.S.); (J.G.); (X.Z.)
- College of Chemistry and Chemical Engineering, Jishou University, Jishou 416000, China
| | - Jie Guo
- Key Laboratory of Hunan Forest Products and Chemical Industry Engineering, Jishou University, Zhangjiajie 427000, China; (Y.B.); (J.H.); (K.S.); (J.G.); (X.Z.)
- College of Chemistry and Chemical Engineering, Jishou University, Jishou 416000, China
| | - Xianwu Zhou
- Key Laboratory of Hunan Forest Products and Chemical Industry Engineering, Jishou University, Zhangjiajie 427000, China; (Y.B.); (J.H.); (K.S.); (J.G.); (X.Z.)
- College of Chemistry and Chemical Engineering, Jishou University, Jishou 416000, China
| | - Shima Liu
- Key Laboratory of Hunan Forest Products and Chemical Industry Engineering, Jishou University, Zhangjiajie 427000, China; (Y.B.); (J.H.); (K.S.); (J.G.); (X.Z.)
- College of Chemistry and Chemical Engineering, Jishou University, Jishou 416000, China
- Correspondence: ; Tel.: +86-0744-8231386
| |
Collapse
|
25
|
Noah NM, Ndangili PM. Green synthesis of nanomaterials from sustainable materials for biosensors and drug delivery. SENSORS INTERNATIONAL 2022. [DOI: 10.1016/j.sintl.2022.100166] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
26
|
Jebril S, Fdhila A, Dridi C. Nanoengineering of eco-friendly silver nanoparticles using five different plant extracts and development of cost-effective phenol nanosensor. Sci Rep 2021; 11:22060. [PMID: 34764386 PMCID: PMC8586347 DOI: 10.1038/s41598-021-01609-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 10/20/2021] [Indexed: 11/16/2022] Open
Abstract
The production of environmentally friendly silver nanoparticles (AgNPs) has aroused the interest of the scientific community due to their wide applications mainly in the field of environmental pollution detection and water quality monitoring. Here, for the first time, five plant leaf extracts were used for the synthesis of AgNPs such as Basil, Geranium, Eucalyptus, Melia, and Ruta by a simple and eco-friendly method. Stable AgNPs were obtained by adding a silver nitrate (AgNO3) solution with the leaves extract as reducers, stabilizers and cappers. Only, within ten minutes of reaction, the yellow mixture changed to brown due to the reduction of Ag+ ions to Ag atoms. The optical, structural, and morphology characteristics of synthesized AgNPs were determined using a full technique like UV-visible spectroscopy, FTIR spectrum, XRD, EDX spectroscopy, and the SEM. Thus, Melia azedarach was found to exhibit smaller nanoparticles (AgNPs-M), which would be interesting for electrochemical application. So, a highly sensitive electrochemical sensor based on AgNPs-M modified GCE for phenol determination in water samples was developed, indicating that the AgNPs-M displayed good electrocatalytic activity. The developed sensor showed good sensing performances: a high sensitivity, a low LOD of 0.42 µM and good stability with a lifetime of about one month, as well as a good selectivity towards BPA and CC (with a deviation less than 10%) especially for nanoplastics analysis in the water contained in plastics bottles. The obtained results are repeatable and reproducible with RSDs of 5.49% and 3.18% respectively. Besides, our developed sensor was successfully applied for the determination of phenol in tap and mineral water samples. The proposed new approach is highly recommended to develop a simple, cost effective, ecofriendly, and highly sensitive sensor for the electrochemical detection of phenol which can further broaden the applications of green silver NPs.
Collapse
Affiliation(s)
- Siwar Jebril
- NANOMISENE Laboratory, LR16CRMN01, Centre for Research on Microelectronics and Nanotechnology (CRMN), Sousse, Tunisia ,grid.7900.e0000 0001 2114 4570High School of Sciences and Technology of Hammam Sousse 4011, University of Sousse, Sousse, Tunisia
| | - Alaeddine Fdhila
- NANOMISENE Laboratory, LR16CRMN01, Centre for Research on Microelectronics and Nanotechnology (CRMN), Sousse, Tunisia ,grid.7900.e0000 0001 2114 4570High School of Sciences and Technology of Hammam Sousse 4011, University of Sousse, Sousse, Tunisia
| | - Chérif Dridi
- NANOMISENE Laboratory, LR16CRMN01, Centre for Research on Microelectronics and Nanotechnology (CRMN), Sousse, Tunisia.
| |
Collapse
|