1
|
Itzel CG, Eduardo MM, Velia RA, Mireya CV, Alfredo HM, Pilar RGMD, Gabriela AS. Salivary Extracellular Vesicles Separation: Analysis of Ultracentrifugation-Based Protocols. Oral Dis 2024. [PMID: 39462790 DOI: 10.1111/odi.15171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 09/30/2024] [Accepted: 10/09/2024] [Indexed: 10/29/2024]
Abstract
INTRODUCTION The clinical potential of extracellular vesicles (EVs) is widely acknowledged, yet the standardization and reproducibility of its separation remain challenging. This study compares three protocols: ultracentrifugation (UC), UC with purification step (UC + PS), and a combined protocol using polymer-based precipitation and UC (PBP + UC). METHODS Salivary samples were collected from healthy donors. EVs were separated (UC, UC + PS, and PBP + UC) and characterized using transmission electron microscopy, nanoparticle tracking analysis, EV purity, RNA concentration, and Western blotting. miRNA expression was evaluated by quantitative RT-PCR. Statistical analyses comparing groups were performed using ANOVA. RESULTS All methods successfully separated CD9+ and CD63+ EVs from saliva. The UC + PS and PBP + UC protocols yielded the highest concentrations of EVs, enriched in < 200 nm vesicles. EV purity and RNA recovery were comparable among all methods. Expression of miR-16, miR-27a, and miR-99a was successfully detected using all methods. CONCLUSIONS The UC + PS and PBP + UC protocols demonstrate comparable efficiency in separating salivary EVs. However, the combined PBP + UC protocol, with its simplified processing capability, offers a significant advantage, particularly in the initial phase of EV separation. This finding suggests its potential application in clinical settings where time-sensitive simple processing is critical. Further validation is needed to confirm its effectiveness for transcriptomic and proteomic analyses.
Collapse
Affiliation(s)
- Castillejos-García Itzel
- Doctorado en Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Ciudad de México, Mexico
| | - Martínez-Martínez Eduardo
- Laboratorio de Vesículas Extracelulares y Comunicación Celular, Instituto Nacional de Medicina Genómica, Ciudad de México, Mexico
| | - Ramírez-Amador Velia
- Posgrado en Patología y Medicina Oral, Universidad Autónoma Metropolitana-Xochimilco, Ciudad de México, Mexico
| | | | - Hidalgo-Miranda Alfredo
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica, Ciudad de México, Mexico
| | | | - Anaya-Saavedra Gabriela
- Posgrado en Patología y Medicina Oral, Universidad Autónoma Metropolitana-Xochimilco, Ciudad de México, Mexico
| |
Collapse
|
2
|
Gutierrez-Riquelme T, Karkossa I, Schubert K, Liebscher G, Packeiser EM, Nolte I, von Bergen M, Murua Escobar H, Aguilera-Rojas M, Einspanier R, Stein T. Proteomic analysis of extracellular vesicles derived from canine mammary tumour cell lines identifies protein signatures specific for disease state. BMC Vet Res 2024; 20:488. [PMID: 39462388 PMCID: PMC11515202 DOI: 10.1186/s12917-024-04331-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 10/13/2024] [Indexed: 10/29/2024] Open
Abstract
BACKGROUND Canine mammary tumours (CMT) are among the most common types of tumours in female dogs. Diagnosis currently requires invasive tissue biopsies and histological analysis. Tumour cells shed extracellular vesicles (EVs) containing RNAs and proteins with potential for liquid biopsy diagnostics. We aimed to identify CMT subtype-specific proteome profiles by comparing the proteomes of EVs isolated from epithelial cell lines derived from morphologically normal canine mammary tissue, adenomas, and carcinomas. METHODS Whole-cell protein lysates (WCLs) and EV-lysates were obtained from five canine mammary cell lines: MTH53A (non-neoplastic); ZMTH3 (adenoma); MTH52C (simple carcinoma); 1305, DT1406TB (complex carcinoma); and their proteins identified by LC-MS/MS analyses. Gene Ontology analysis was performed on differentially abundant proteins from each group to identify up- and down-regulated biological processes. To establish CMT subtype-specific proteomic profiles, weighted gene correlation network analysis (WGCNA) was carried out. RESULTS WCL and EVs displayed distinct protein abundance signatures while still showing the same increase in adhesion, migration, and motility-related proteins in carcinoma-derived cell lines, and of RNA processing and RNA splicing factors in the adenoma cell line. WGCNA identified CMT stage-specific co-abundant EV proteins, allowing the identification of adenoma and carcinoma EV signatures not seen in WCLs. CONCLUSIONS EVs from CMT cell lines exhibit distinct protein profiles reflecting malignancy state, allowing us to identify potential biomarkers for canine mammary carcinomas, such as biglycan. Our dataset could therefore potentially serve as a basis for the development of a less invasive clinical diagnostic tool for the characterisation of CMT.
Collapse
Affiliation(s)
- Tania Gutierrez-Riquelme
- Institute of Veterinary Biochemistry, Department of Veterinary Medicine, Freie Universität Berlin, 14163, Berlin, Germany
| | - Isabel Karkossa
- Department of Molecular Systems Biology, Helmholtz Centre of Environmental Research GmbH - UFZ, 04318, Leipzig, Germany
| | - Kristin Schubert
- Department of Molecular Systems Biology, Helmholtz Centre of Environmental Research GmbH - UFZ, 04318, Leipzig, Germany
| | - Gudrun Liebscher
- Department of Molecular Systems Biology, Helmholtz Centre of Environmental Research GmbH - UFZ, 04318, Leipzig, Germany
| | - Eva-Maria Packeiser
- Reproductive Unit, Clinic for Small Animals, University of Veterinary Medicine Hannover, Foundation, 30559, Hannover, Germany
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Foundation, 30559, Hannover, Germany
| | - Ingo Nolte
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Foundation, 30559, Hannover, Germany
| | - Martin von Bergen
- Department of Molecular Systems Biology, Helmholtz Centre of Environmental Research GmbH - UFZ, 04318, Leipzig, Germany
| | - Hugo Murua Escobar
- Department of Internal Medicine, Medical Clinic III, Clinic for Hematology, Oncology and Palliative Care, University Medical Center Rostock, Ernst-Heydemann-Strasse 6, 18057, Rostock, Germany
| | | | - Ralf Einspanier
- Institute of Veterinary Biochemistry, Department of Veterinary Medicine, Freie Universität Berlin, 14163, Berlin, Germany
| | - Torsten Stein
- Institute of Veterinary Biochemistry, Department of Veterinary Medicine, Freie Universität Berlin, 14163, Berlin, Germany.
| |
Collapse
|
3
|
Sharma N, Angori S, Sandberg A, Mermelekas G, Lehtiö J, Wiklander OPB, Görgens A, Andaloussi SE, Eriksson H, Pernemalm M. Defining the Soluble and Extracellular Vesicle Protein Compartments of Plasma Using In-Depth Mass Spectrometry-Based Proteomics. J Proteome Res 2024; 23:4114-4127. [PMID: 39141927 PMCID: PMC11385381 DOI: 10.1021/acs.jproteome.4c00490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Plasma-derived extracellular vesicles (pEVs) are a potential source of diseased biomarker proteins. However, characterizing the pEV proteome is challenging due to its relatively low abundance and difficulties in enrichment. This study presents a streamlined workflow to identify EV proteins from cancer patient plasma using minimal sample input. Starting with 400 μL of plasma, we generated a comprehensive pEV proteome using size exclusion chromatography (SEC) combined with HiRIEF prefractionation-based mass spectrometry (MS). First, we compared the performance of HiRIEF and long gradient MS workflows using control pEVs, quantifying 2076 proteins with HiRIEF. In a proof-of-concept study, we applied SEC-HiRIEF-MS to a small cohort (12) of metastatic lung adenocarcinoma (LUAD) and malignant melanoma (MM) patients. We also analyzed plasma samples from the same patients to study the relationship between plasma and pEV proteomes. We identified and quantified 1583 proteins in cancer pEVs and 1468 proteins in plasma across all samples. While there was substantial overlap, the pEV proteome included several unique EV markers and cancer-related proteins. Differential analysis revealed 30 DEPs in LUAD vs the MM group, highlighting the potential of pEVs as biomarkers. This work demonstrates the utility of a prefractionation-based MS for comprehensive pEV proteomics and EV biomarker discovery. Data are available via ProteomeXchange with the identifiers PXD039338 and PXD038528.
Collapse
Affiliation(s)
- Nidhi Sharma
- Department of Oncology-Pathology, Karolinska Institute, 171 77 Stockholm, Sweden
- Science for Life Laboratory, Solna, Tomtebodavägen 23, 171 65 Solna, Sweden
| | - Silvia Angori
- Department of Oncology-Pathology, Karolinska Institute, 171 77 Stockholm, Sweden
| | - AnnSofi Sandberg
- Department of Oncology-Pathology, Karolinska Institute, 171 77 Stockholm, Sweden
- Science for Life Laboratory, Solna, Tomtebodavägen 23, 171 65 Solna, Sweden
| | - Georgios Mermelekas
- Department of Oncology-Pathology, Karolinska Institute, 171 77 Stockholm, Sweden
- Science for Life Laboratory, Solna, Tomtebodavägen 23, 171 65 Solna, Sweden
| | - Janne Lehtiö
- Department of Oncology-Pathology, Karolinska Institute, 171 77 Stockholm, Sweden
- Science for Life Laboratory, Solna, Tomtebodavägen 23, 171 65 Solna, Sweden
| | - Oscar P B Wiklander
- Theme Cancer, Skin Cancer Center, Karolinska University Hospital, 171 77 Solna, Sweden
- Biomolecular Medicine, Clinical Research Center, Department of Laboratory Medicine, Karolinska Institute, 171 76 Solna, Sweden
| | - André Görgens
- Biomolecular Medicine, Clinical Research Center, Department of Laboratory Medicine, Karolinska Institute, 171 76 Solna, Sweden
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, 45141 Essen, Germany
| | - Samir El Andaloussi
- Biomolecular Medicine, Clinical Research Center, Department of Laboratory Medicine, Karolinska Institute, 171 76 Solna, Sweden
| | - Hanna Eriksson
- Department of Oncology-Pathology, Karolinska Institute, 171 77 Stockholm, Sweden
- Theme Cancer, Skin Cancer Center, Karolinska University Hospital, 171 77 Solna, Sweden
- Science for Life Laboratory, Solna, Tomtebodavägen 23, 171 65 Solna, Sweden
| | - Maria Pernemalm
- Department of Oncology-Pathology, Karolinska Institute, 171 77 Stockholm, Sweden
- Science for Life Laboratory, Solna, Tomtebodavägen 23, 171 65 Solna, Sweden
| |
Collapse
|
4
|
Grenhas M, Lopes R, Ferreira BV, Barahona F, João C, Carneiro EA. Size-Exclusion Chromatography: A Path to Higher Yield and Reproducibility Compared to Sucrose Cushion Ultracentrifugation for Extracellular Vesicle Isolation in Multiple Myeloma. Int J Mol Sci 2024; 25:8496. [PMID: 39126063 PMCID: PMC11313515 DOI: 10.3390/ijms25158496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 07/25/2024] [Accepted: 07/28/2024] [Indexed: 08/12/2024] Open
Abstract
Small extracellular vesicles (EVs) play a pivotal role in intercellular communication across various physiological and pathological contexts. Despite their growing significance as disease biomarkers and therapeutic targets in biomedical research, the lack of reliable isolation techniques remains challenging. This study characterizes vesicles that were isolated from conditioned culture media (CCM) sourced from three myeloma cell lines (MM.1S, ANBL-6, and ALMC-1), and from the plasma of healthy donors and multiple myeloma patients. We compared the efficacy, reproducibility, and specificity of isolating small EVs using sucrose cushion ultracentrifugation (sUC) vs. ultrafiltration combined with size-exclusion chromatography (UF-SEC). Our results demonstrate that UF-SEC emerges as a more practical, efficient, and consistent method for EV isolation, outperforming sUC in the yield of EV recovery and exhibiting lower variability. Additionally, the comparison of EV characteristics among the three myeloma cell lines revealed distinct biomarker profiles. Finally, our results suggest that HBS associated with Tween 20 improves EV recovery and preservation over PBS. Standardization of small EV isolation methods is imperative, and our comparative evaluation represents a significant step toward achieving this goal.
Collapse
Affiliation(s)
- Madalena Grenhas
- Myeloma Lymphoma Research Group, Champalimaud Experimental Clinical Research Programme, Champalimaud Foundation, 1400-038 Lisbon, Portugal; (M.G.); (R.L.); (B.V.F.); (F.B.); (C.J.)
| | - Raquel Lopes
- Myeloma Lymphoma Research Group, Champalimaud Experimental Clinical Research Programme, Champalimaud Foundation, 1400-038 Lisbon, Portugal; (M.G.); (R.L.); (B.V.F.); (F.B.); (C.J.)
- Faculty of Medicine, University of Lisbon, 1649-028 Lisbon, Portugal
| | - Bruna Velosa Ferreira
- Myeloma Lymphoma Research Group, Champalimaud Experimental Clinical Research Programme, Champalimaud Foundation, 1400-038 Lisbon, Portugal; (M.G.); (R.L.); (B.V.F.); (F.B.); (C.J.)
- Hemato-Oncology Department, Champalimaud Foundation, 1400-038 Lisbon, Portugal
| | - Filipa Barahona
- Myeloma Lymphoma Research Group, Champalimaud Experimental Clinical Research Programme, Champalimaud Foundation, 1400-038 Lisbon, Portugal; (M.G.); (R.L.); (B.V.F.); (F.B.); (C.J.)
- Faculty of Medical Sciences, NOVA Medical School, 1169-056 Lisbon, Portugal
| | - Cristina João
- Myeloma Lymphoma Research Group, Champalimaud Experimental Clinical Research Programme, Champalimaud Foundation, 1400-038 Lisbon, Portugal; (M.G.); (R.L.); (B.V.F.); (F.B.); (C.J.)
- Hemato-Oncology Department, Champalimaud Foundation, 1400-038 Lisbon, Portugal
- Faculty of Medical Sciences, NOVA Medical School, 1169-056 Lisbon, Portugal
| | - Emilie Arnault Carneiro
- Myeloma Lymphoma Research Group, Champalimaud Experimental Clinical Research Programme, Champalimaud Foundation, 1400-038 Lisbon, Portugal; (M.G.); (R.L.); (B.V.F.); (F.B.); (C.J.)
| |
Collapse
|
5
|
Gromek P, Senkowska Z, Płuciennik E, Pasieka Z, Zhao LY, Gielecińska A, Kciuk M, Kłosiński K, Kałuzińska-Kołat Ż, Kołat D. Revisiting the standards of cancer detection and therapy alongside their comparison to modern methods. World J Methodol 2024; 14:92982. [PMID: 38983668 PMCID: PMC11229876 DOI: 10.5662/wjm.v14.i2.92982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/15/2024] [Accepted: 04/28/2024] [Indexed: 06/13/2024] Open
Abstract
In accordance with the World Health Organization data, cancer remains at the forefront of fatal diseases. An upward trend in cancer incidence and mortality has been observed globally, emphasizing that efforts in developing detection and treatment methods should continue. The diagnostic path typically begins with learning the medical history of a patient; this is followed by basic blood tests and imaging tests to indicate where cancer may be located to schedule a needle biopsy. Prompt initiation of diagnosis is crucial since delayed cancer detection entails higher costs of treatment and hospitalization. Thus, there is a need for novel cancer detection methods such as liquid biopsy, elastography, synthetic biosensors, fluorescence imaging, and reflectance confocal microscopy. Conventional therapeutic methods, although still common in clinical practice, pose many limitations and are unsatisfactory. Nowadays, there is a dynamic advancement of clinical research and the development of more precise and effective methods such as oncolytic virotherapy, exosome-based therapy, nanotechnology, dendritic cells, chimeric antigen receptors, immune checkpoint inhibitors, natural product-based therapy, tumor-treating fields, and photodynamic therapy. The present paper compares available data on conventional and modern methods of cancer detection and therapy to facilitate an understanding of this rapidly advancing field and its future directions. As evidenced, modern methods are not without drawbacks; there is still a need to develop new detection strategies and therapeutic approaches to improve sensitivity, specificity, safety, and efficacy. Nevertheless, an appropriate route has been taken, as confirmed by the approval of some modern methods by the Food and Drug Administration.
Collapse
Affiliation(s)
- Piotr Gromek
- Department of Functional Genomics, Medical University of Lodz, Lodz 90-752, Lodzkie, Poland
| | - Zuzanna Senkowska
- Department of Functional Genomics, Medical University of Lodz, Lodz 90-752, Lodzkie, Poland
| | - Elżbieta Płuciennik
- Department of Functional Genomics, Medical University of Lodz, Lodz 90-752, Lodzkie, Poland
| | - Zbigniew Pasieka
- Department of Biomedicine and Experimental Surgery, Medical University of Lodz, Lodz 90-136, Lodzkie, Poland
| | - Lin-Yong Zhao
- Department of General Surgery & Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Adrianna Gielecińska
- Department of Molecular Biotechnology and Genetics, University of Lodz, Lodz 90-237, Lodzkie, Poland
- Doctoral School of Exact and Natural Sciences, University of Lodz, Lodz 90-237, Lodzkie, Poland
| | - Mateusz Kciuk
- Department of Molecular Biotechnology and Genetics, University of Lodz, Lodz 90-237, Lodzkie, Poland
| | - Karol Kłosiński
- Department of Biomedicine and Experimental Surgery, Medical University of Lodz, Lodz 90-136, Lodzkie, Poland
| | - Żaneta Kałuzińska-Kołat
- Department of Functional Genomics, Medical University of Lodz, Lodz 90-752, Lodzkie, Poland
- Department of Biomedicine and Experimental Surgery, Medical University of Lodz, Lodz 90-136, Lodzkie, Poland
| | - Damian Kołat
- Department of Functional Genomics, Medical University of Lodz, Lodz 90-752, Lodzkie, Poland
- Department of Biomedicine and Experimental Surgery, Medical University of Lodz, Lodz 90-136, Lodzkie, Poland
| |
Collapse
|
6
|
Larson A, Natera-Rodriguez DE, Crane A, Larocca D, Low WC, Grande AW, Lee J. Emerging Roles of Exosomes in Stroke Therapy. Int J Mol Sci 2024; 25:6507. [PMID: 38928214 PMCID: PMC11203879 DOI: 10.3390/ijms25126507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/04/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
Stroke is the number one cause of morbidity in the United States and number two cause of death worldwide. There is a critical unmet medical need for more effective treatments of ischemic stroke, and this need is increasing with the shift in demographics to an older population. Recently, several studies have reported the therapeutic potential of stem cell-derived exosomes as new candidates for cell-free treatment in stoke. This review focuses on the use of stem cell-derived exosomes as a potential treatment tool for stroke patients. Therapy using exosomes can have a clear clinical advantage over stem cell transplantation in terms of safety, cost, and convenience, as well as reducing bench-to-bed latency due to fewer regulatory milestones. In this review article, we focus on (1) the therapeutic potential of exosomes in stroke treatment, (2) the optimization process of upstream and downstream production, and (3) preclinical application in a stroke animal model. Finally, we discuss the limitations and challenges faced by exosome therapy in future clinical applications.
Collapse
Affiliation(s)
- Anthony Larson
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN 55455, USA; (A.L.); (D.E.N.-R.); (A.C.); (W.C.L.); (A.W.G.)
| | - Dilmareth E. Natera-Rodriguez
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN 55455, USA; (A.L.); (D.E.N.-R.); (A.C.); (W.C.L.); (A.W.G.)
| | - Andrew Crane
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN 55455, USA; (A.L.); (D.E.N.-R.); (A.C.); (W.C.L.); (A.W.G.)
| | - Dana Larocca
- DC Biotechnology Consulting, Alameda, CA 94501, USA;
| | - Walter C. Low
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN 55455, USA; (A.L.); (D.E.N.-R.); (A.C.); (W.C.L.); (A.W.G.)
| | - Andrew W. Grande
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN 55455, USA; (A.L.); (D.E.N.-R.); (A.C.); (W.C.L.); (A.W.G.)
- Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jieun Lee
- UniverXome Bioengineering, Inc. (Formerly Known as AgeX Therapeutics Inc.), Alameda, CA 94501, USA
| |
Collapse
|
7
|
Díaz del Arco C, Fernández Aceñero MJ, Ortega Medina L. Liquid biopsy for gastric cancer: Techniques, applications, and future directions. World J Gastroenterol 2024; 30:1680-1705. [PMID: 38617733 PMCID: PMC11008373 DOI: 10.3748/wjg.v30.i12.1680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/01/2024] [Accepted: 03/08/2024] [Indexed: 03/28/2024] Open
Abstract
After the study of circulating tumor cells in blood through liquid biopsy (LB), this technique has evolved to encompass the analysis of multiple materials originating from the tumor, such as nucleic acids, extracellular vesicles, tumor-educated platelets, and other metabolites. Additionally, research has extended to include the examination of samples other than blood or plasma, such as saliva, gastric juice, urine, or stool. LB techniques are diverse, intricate, and variable. They must be highly sensitive, and pre-analytical, patient, and tumor-related factors significantly influence the detection threshold, diagnostic method selection, and potential results. Consequently, the implementation of LB in clinical practice still faces several challenges. The potential applications of LB range from early cancer detection to guiding targeted therapy or immunotherapy in both early and advanced cancer cases, monitoring treatment response, early identification of relapses, or assessing patient risk. On the other hand, gastric cancer (GC) is a disease often diagnosed at advanced stages. Despite recent advances in molecular understanding, the currently available treatment options have not substantially improved the prognosis for many of these patients. The application of LB in GC could be highly valuable as a non-invasive method for early diagnosis and for enhancing the management and outcomes of these patients. In this comprehensive review, from a pathologist's perspective, we provide an overview of the main options available in LB, delve into the fundamental principles of the most studied techniques, explore the potential utility of LB application in the context of GC, and address the obstacles that need to be overcome in the future to make this innovative technique a game-changer in cancer diagnosis and treatment within clinical practice.
Collapse
Affiliation(s)
- Cristina Díaz del Arco
- Department of Surgical Pathology, Health Research Institute of the Hospital Clínico San Carlos, Hospital Clínico San Carlos, Madrid 28040, Spain
- Department of Legal Medicine, Psychiatry and Pathology, Universidad Complutense de Madrid, Madrid 28040, Spain
| | - M Jesús Fernández Aceñero
- Department of Surgical Pathology, Health Research Institute of the Hospital Clínico San Carlos, Hospital Clínico San Carlos, Madrid 28040, Spain
- Department of Legal Medicine, Psychiatry and Pathology, Universidad Complutense de Madrid, Madrid 28040, Spain
| | - Luis Ortega Medina
- Department of Surgical Pathology, Health Research Institute of the Hospital Clínico San Carlos, Hospital Clínico San Carlos, Madrid 28040, Spain
- Department of Legal Medicine, Psychiatry and Pathology, Universidad Complutense de Madrid, Madrid 28040, Spain
| |
Collapse
|
8
|
Zhang Q, Wang H, Liu Q, Zeng N, Fu G, Qiu Y, Yang Y, Yuan H, Wang W, Li B. Exosomes as Powerful Biomarkers in Cancer: Recent Advances in Isolation and Detection Techniques. Int J Nanomedicine 2024; 19:1923-1949. [PMID: 38435755 PMCID: PMC10906735 DOI: 10.2147/ijn.s453545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/13/2024] [Indexed: 03/05/2024] Open
Abstract
Exosomes, small extracellular vesicles derived from cells, are known to carry important bioactive molecules such as proteins, nucleic acids, and lipids. These bioactive components play crucial roles in cell signaling, immune response, and tumor metastasis, making exosomes potential diagnostic biomarkers for various diseases. However, current methods for detecting tumor exosomes face scientific challenges including low sensitivity, poor specificity, complicated procedures, and high costs. It is essential to surmount these obstacles to enhance the precision and dependability of diagnostics that rely on exosomes. Merging DNA signal amplification techniques with the signal boosting capabilities of nanomaterials presents an encouraging strategy to overcome these constraints and improve exosome detection. This article highlights the use of DNA signal amplification technology and nanomaterials' signal enhancement effect to improve the detection of exosomes. This review seeks to offer valuable perspectives for the enhancement of amplification methods applied in practical cancer diagnosis and prognosis by providing an overview of how these novel technologies are utilized in exosome-based diagnostic procedures.
Collapse
Affiliation(s)
- Qiongdan Zhang
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
| | - Huizhen Wang
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
| | - Qingyi Liu
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
| | - Ni Zeng
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
| | - Gang Fu
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
| | - Yixing Qiu
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
| | - Yupei Yang
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
| | - Hanwen Yuan
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
| | - Wei Wang
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
| | - Bin Li
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
| |
Collapse
|
9
|
Yang Q, Li S, Ou H, Zhang Y, Zhu G, Li S, Lei L. Exosome-based delivery strategies for tumor therapy: an update on modification, loading, and clinical application. J Nanobiotechnology 2024; 22:41. [PMID: 38281957 PMCID: PMC10823703 DOI: 10.1186/s12951-024-02298-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/02/2024] [Indexed: 01/30/2024] Open
Abstract
Malignancy is a major public health problem and among the leading lethal diseases worldwide. Although the current tumor treatment methods have therapeutic effect to a certain extent, they still have some shortcomings such as poor water solubility, short half-life, local and systemic toxicity. Therefore, how to deliver therapeutic agent so as to realize safe and effective anti-tumor therapy become a problem urgently to be solved in this field. As a medium of information exchange and material transport between cells, exosomes are considered to be a promising drug delivery carrier due to their nano-size, good biocompatibility, natural targeting, and easy modification. In this review, we summarize recent advances in the isolation, identification, drug loading, and modification of exosomes as drug carriers for tumor therapy alongside their application in tumor therapy. Basic knowledge of exosomes, such as their biogenesis, sources, and characterization methods, is also introduced herein. In addition, challenges related to the use of exosomes as drug delivery vehicles are discussed, along with future trends. This review provides a scientific basis for the application of exosome delivery systems in oncological therapy.
Collapse
Affiliation(s)
- Qian Yang
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Shisheng Li
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.
| | - Haibo Ou
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Yuming Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Gangcai Zhu
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Shaohong Li
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.
| | - Lanjie Lei
- Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, 310015, Zhejiang, China.
| |
Collapse
|
10
|
Amina SJ, Azam T, Dagher F, Guo B. A review on the use of extracellular vesicles for the delivery of drugs and biological therapeutics. Expert Opin Drug Deliv 2024; 21:45-70. [PMID: 38226932 DOI: 10.1080/17425247.2024.2305115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/10/2024] [Indexed: 01/17/2024]
Abstract
INTRODUCTION Exosomes, a type of extracellular vesicles, are effective tools for delivering small-molecule drugs and biological therapeutics into cells and tissues. Surface modifications with targeting ligands ensure precise delivery to specific cells, minimizing accumulation in healthy organs and reducing the side effects. This is a rapidly growing area in drug delivery research and this review aims to comprehensively discuss the recent advances in the field. AREA COVERED Recent studies have presented compelling evidence supporting the application of exosomes as efficient delivery vehicles that escape endosome trapping, achieving effective in vivo delivery in animal models. This review provides a systemic discussion on the exosome-based delivery technology, with topics covering exosome purification, surface modification, and targeted delivery of various cargos ranging from siRNAs, miRNAs, and proteins, to small molecule drugs. EXPERT OPINION Exosome-based gene and drug delivery has low toxicity and low immunogenicity. Surface modifications of the exosomes can effectively avoid endosome trapping and increase delivery efficiency. This exciting technology can be applied to improve the treatments for a wide variety of diseases.
Collapse
Affiliation(s)
- Sundus Jabeen Amina
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, TX, USA
| | - Tasmia Azam
- School of Chemical and Materials Engineering (SCME), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Fatima Dagher
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, TX, USA
| | - Bin Guo
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, TX, USA
| |
Collapse
|
11
|
Guarnerio S, Tempest R, Maani R, Hunt S, Cole LM, Le Maitre CL, Chapple K, Peake N. Cellular Responses to Extracellular Vesicles as Potential Markers of Colorectal Cancer Progression. Int J Mol Sci 2023; 24:16755. [PMID: 38069076 PMCID: PMC10706375 DOI: 10.3390/ijms242316755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/13/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
The development of novel screening tests aims to support early asymptomatic diagnosis and subtyping patients according to similar traits in the heterogeneous cancer cohort. Extracellular vesicles (EVs) are promising candidates for the detection of disease markers from bodily fluids, but limitations in the standardisation of isolation methods and the intrinsic EV heterogeneity obtained from liquid biopsies are currently obstacles to clinical adoption. Here, cellular responses to cancer EVs were initially explored as potential complementary biomarkers for stage separation using colorectal cancer (CRC) SW480 and SW620 cell line models. A pilot study on a small cohort of CRC patients and controls was then developed by performing a multivariate analysis of cellular responses to plasma-derived EVs. Several cell activities and markers involved in tumour microenvironment pathways were influenced by the treatment of cell line EVs in a stage-dependent manner. The multivariate analysis combining plasma EV markers and cellular responses to plasma EVs was able to separate patients according to disease stage. This preliminary study offers the potential of considering cellular responses to EVs in combination with EV biomarkers in the development of screening methods.
Collapse
Affiliation(s)
- Sonia Guarnerio
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield S1 1WB, UK; (S.G.); (R.M.)
| | | | - Rawan Maani
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield S1 1WB, UK; (S.G.); (R.M.)
| | - Stuart Hunt
- School of Clinical Dentistry, University of Sheffield, Sheffield S10 2TN, UK;
| | - Laura M. Cole
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield S1 1WB, UK; (S.G.); (R.M.)
| | | | - Keith Chapple
- Colorectal Surgical Unit, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield S10 2JF, UK;
| | - Nicholas Peake
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield S1 1WB, UK; (S.G.); (R.M.)
| |
Collapse
|
12
|
Wang K, Wang X, Pan Q, Zhao B. Liquid biopsy techniques and pancreatic cancer: diagnosis, monitoring, and evaluation. Mol Cancer 2023; 22:167. [PMID: 37803304 PMCID: PMC10557192 DOI: 10.1186/s12943-023-01870-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/25/2023] [Indexed: 10/08/2023] Open
Abstract
Pancreatic cancer (PC) is one of the most common malignancies. Surgical resection is a potential curative approach for PC, but most patients are unsuitable for operations when at the time of diagnosis. Even with surgery, some patients may still experience tumour metastasis during the operation or shortly after surgery, as precise prognosis evaluation is not always possible. If patients miss the opportunity for surgery and resort to chemotherapy, they may face the challenging issue of chemotherapy resistance. In recent years, liquid biopsy has shown promising prospects in disease diagnosis, treatment monitoring, and prognosis assessment. As a noninvasive detection method, liquid biopsy offers advantages over traditional diagnostic procedures, such as tissue biopsy, in terms of both cost-effectiveness and convenience. The information provided by liquid biopsy helps clinical practitioners understand the molecular mechanisms underlying tumour occurrence and development, enabling the formulation of more precise and personalized treatment decisions for each patient. This review introduces molecular biomarkers and detection methods in liquid biopsy for PC, including circulating tumour cells (CTCs), circulating tumour DNA (ctDNA), noncoding RNAs (ncRNAs), and extracellular vesicles (EVs) or exosomes. Additionally, we summarize the applications of liquid biopsy in the early diagnosis, treatment response, resistance assessment, and prognostic evaluation of PC.
Collapse
Affiliation(s)
- Kangchun Wang
- Department of Organ Transplantation and Hepatobiliary, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Xin Wang
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Qi Pan
- Department of Organ Transplantation and Hepatobiliary, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China.
| | - Bei Zhao
- Department of Ultrasound, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China.
| |
Collapse
|
13
|
Xiao S, Yao Y, Liao S, Xu B, Li X, Zhang Y, Zhang L, Chen Q, Tang H, Song Q, Dong M. Accurate and Convenient Lung Cancer Diagnosis through Detection of Extracellular Vesicle Membrane Proteins via Förster Resonance Energy Transfer. NANO LETTERS 2023; 23:8115-8125. [PMID: 37643406 PMCID: PMC10510723 DOI: 10.1021/acs.nanolett.3c02193] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/22/2023] [Indexed: 08/31/2023]
Abstract
Tumor-derived extracellular vesicles (EVs) are promising to monitor early stage cancer. Unfortunately, isolating and analyzing EVs from a patient's liquid biopsy are challenging. For this, we devised an EV membrane proteins detection system (EV-MPDS) based on Förster resonance energy transfer (FRET) signals between aptamer quantum dots and AIEgen dye, which eliminated the EV extraction and purification to conveniently diagnose lung cancer. In a cohort of 80 clinical samples, this system showed enhanced accuracy (100% versus 65%) and sensitivity (100% versus 55%) in cancer diagnosis as compared to the ELISA detection method. Improved accuracy of early screening (from 96.4% to 100%) was achieved by comprehensively profiling five biomarkers using a machine learning analysis system. FRET-based tumor EV-MPDS is thus an isolation-free, low-volume (1 μL), and highly accurate approach, providing the potential to aid lung cancer diagnosis and early screening.
Collapse
Affiliation(s)
- Shuting Xiao
- State
Key Laboratory of Respiratory Disease, the First Affiliated Hospital
of Guangzhou Medical University, Guangzhou
Medical University, Guangzhou, Guangdong 510120, China
- Guangzhou
Laboratory, No. 9 XingDaoHuanBei Road, Guangzhou International Bio Island, Guangzhou 510005, Guangdong, China
| | - Yi Yao
- Cancer
Center, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China
| | - Shuilin Liao
- Guangzhou
Laboratory, No. 9 XingDaoHuanBei Road, Guangzhou International Bio Island, Guangzhou 510005, Guangdong, China
- Faculty
of Innovation Engineering, Macau University
of Science and Technology, Avenida Wai Long, Taipa, Macau 999078, China
| | - Bin Xu
- Cancer
Center, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China
| | - Xue Li
- Guangzhou
Laboratory, No. 9 XingDaoHuanBei Road, Guangzhou International Bio Island, Guangzhou 510005, Guangdong, China
| | - Yuxiao Zhang
- State
Key Laboratory of Respiratory Disease, the First Affiliated Hospital
of Guangzhou Medical University, Guangzhou
Medical University, Guangzhou, Guangdong 510120, China
| | - Lei Zhang
- Guangzhou
Laboratory, No. 9 XingDaoHuanBei Road, Guangzhou International Bio Island, Guangzhou 510005, Guangdong, China
| | - Qiang Chen
- MOE
Frontier Science Centre for Precision Oncology, University of Macau, Taipa, Macau SAR 999078, China
| | - Haoneng Tang
- State
Key Laboratory of Respiratory Disease, the First Affiliated Hospital
of Guangzhou Medical University, Guangzhou
Medical University, Guangzhou, Guangdong 510120, China
| | - Qibin Song
- Cancer
Center, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China
| | - Ming Dong
- State
Key Laboratory of Respiratory Disease, the First Affiliated Hospital
of Guangzhou Medical University, Guangzhou
Medical University, Guangzhou, Guangdong 510120, China
- Guangzhou
Laboratory, No. 9 XingDaoHuanBei Road, Guangzhou International Bio Island, Guangzhou 510005, Guangdong, China
| |
Collapse
|
14
|
Couch Y. Challenges associated with using extracellular vesicles as biomarkers in neurodegenerative disease. Expert Rev Mol Diagn 2023; 23:1091-1105. [PMID: 37916853 DOI: 10.1080/14737159.2023.2277373] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/26/2023] [Indexed: 11/03/2023]
Abstract
INTRODUCTION The hunt for new biomarkers - for the diagnosis of subcategories of disease, or for the monitoring of the efficacy of novel therapeutics - is an increasingly relevant challenge in the current era of precision medicine. In neurodegenerative research, the aim is to look for simple tools which can predict cognitive or motor decline early, and to determine whether these can also be used to test the efficacy of new interventions. Extracellular vesicles (EVs) are thought to play an important role in intercellular communication and have been shown to play a vital role in a number of diseases. AREAS COVERED The aim of this review is to examine what we know about EVs in neurodegeneration and to discuss their potential to be diagnostic and prognostic biomarkers in the future. It will cover the techniques used to isolate and study EVs and what is currently known about their presence in neurodegenerative diseases. In particular, we will discuss what is required for standardization in biomarker research, and the challenges associated with using EVs within this framework. EXPERT OPINION The technical challenges associated with isolating EVs consistently, combined with the complex techniques required for their efficient analysis, might preclude 'pure' EV populations from being used as effective biomarkers. Whilst biomarker discovery is important for more effective diagnosis, monitoring, prediction and prognosis in neurodegenerative disease, reproducibility and ease-of-use should be the priorities.
Collapse
Affiliation(s)
- Yvonne Couch
- Acute Stroke Program, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| |
Collapse
|
15
|
Caputo V, Ciardiello F, Corte CMD, Martini G, Troiani T, Napolitano S. Diagnostic value of liquid biopsy in the era of precision medicine: 10 years of clinical evidence in cancer. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2023; 4:102-138. [PMID: 36937316 PMCID: PMC10017193 DOI: 10.37349/etat.2023.00125] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 11/13/2022] [Indexed: 03/06/2023] Open
Abstract
Liquid biopsy is a diagnostic repeatable test, which in last years has emerged as a powerful tool for profiling cancer genomes in real-time with minimal invasiveness and tailoring oncological decision-making. It analyzes different blood-circulating biomarkers and circulating tumor DNA (ctDNA) is the preferred one. Nevertheless, tissue biopsy remains the gold standard for molecular evaluation of solid tumors whereas liquid biopsy is a complementary tool in many different clinical settings, such as treatment selection, monitoring treatment response, cancer clonal evolution, prognostic evaluation, as well as the detection of early disease and minimal residual disease (MRD). A wide number of technologies have been developed with the aim of increasing their sensitivity and specificity with acceptable costs. Moreover, several preclinical and clinical studies have been conducted to better understand liquid biopsy clinical utility. Anyway, several issues are still a limitation of its use such as false positive and negative results, results interpretation, and standardization of the panel tests. Although there has been rapid development of the research in these fields and recent advances in the clinical setting, many clinical trials and studies are still needed to make liquid biopsy an instrument of clinical routine. This review provides an overview of the current and future clinical applications and opening questions of liquid biopsy in different oncological settings, with particular attention to ctDNA liquid biopsy.
Collapse
Affiliation(s)
- Vincenza Caputo
- Medical Oncology, Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80131 Napoli, Italy
| | - Fortunato Ciardiello
- Medical Oncology, Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80131 Napoli, Italy
| | - Carminia Maria Della Corte
- Medical Oncology, Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80131 Napoli, Italy
| | - Giulia Martini
- Medical Oncology, Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80131 Napoli, Italy
| | - Teresa Troiani
- Medical Oncology, Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80131 Napoli, Italy
| | - Stefania Napolitano
- Medical Oncology, Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80131 Napoli, Italy
| |
Collapse
|
16
|
Lopez K, Lai SWT, Lopez Gonzalez EDJ, Dávila RG, Shuck SC. Extracellular vesicles: A dive into their role in the tumor microenvironment and cancer progression. Front Cell Dev Biol 2023; 11:1154576. [PMID: 37025182 PMCID: PMC10071009 DOI: 10.3389/fcell.2023.1154576] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/10/2023] [Indexed: 04/08/2023] Open
Abstract
Extracellular vesicles (EVs) encompass a diverse set of membrane-derived particles released from cells and are found in numerous biological matrices and the extracellular space. Specific classes of EVs include apoptotic bodies, exosomes, and microvesicles, which vary in their size, origin, membrane protein expression, and interior cargo. EVs provide a mechanism for shuttling cargo between cells, which can influence cell physiology by transporting proteins, DNA, and RNA. EVs are an abundant component of the tumor microenvironment (TME) and are proposed to drive tumor growth and progression by communicating between fibroblasts, macrophages, and tumor cells in the TME. The cargo, source, and type of EV influences the pro- or anti-tumoral role of these molecules. Therefore, robust EV isolation and characterization techniques are required to ensure accurate elucidation of their association with disease. Here, we summarize different EV subclasses, methods for EV isolation and characterization, and a selection of current clinical trials studying EVs. We also review key studies exploring the role and impact of EVs in the TME, including how EVs mediate intercellular communication, drive cancer progression, and remodel the TME.
Collapse
|
17
|
Crescitelli R, Filges S, Karimi N, Urzì O, Alonso-Agudo T, Ståhlberg A, Lötvall J, Lässer C, Olofsson Bagge R. Extracellular vesicle DNA from human melanoma tissues contains cancer-specific mutations. Front Cell Dev Biol 2022; 10:1028854. [PMID: 36531960 PMCID: PMC9751452 DOI: 10.3389/fcell.2022.1028854] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 11/18/2022] [Indexed: 10/19/2023] Open
Abstract
Liquid biopsies are promising tools for early diagnosis and residual disease monitoring in patients with cancer, and circulating tumor DNA isolated from plasma has been extensively studied as it has been shown to contain tumor-specific mutations. Extracellular vesicles (EVs) present in tumor tissues carry tumor-derived molecules such as proteins and nucleic acids, and thus EVs can potentially represent a source of cancer-specific DNA. Here we identified the presence of tumor-specific DNA mutations in EVs isolated from six human melanoma metastatic tissues and compared the results with tumor tissue DNA and plasma DNA. Tumor tissue EVs were isolated using enzymatic treatment followed by ultracentrifugation and iodixanol density cushion isolation. A panel of 34 melanoma-related genes was investigated using ultra-sensitive sequencing (SiMSen-seq). We detected mutations in six genes in the EVs (BRAF, NRAS, CDKN2A, STK19, PPP6C, and RAC), and at least one mutation was detected in all melanoma EV samples. Interestingly, the mutant allele frequency was higher in DNA isolated from tumor-derived EVs compared to total DNA extracted directly from plasma DNA, supporting the potential role of tumor EVs as future biomarkers in melanoma.
Collapse
Affiliation(s)
- Rossella Crescitelli
- Sahlgrenska Center for Cancer Research and Wallenberg Centre for Molecular and Translational Medicine, Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Stefan Filges
- Sahlgrenska Center for Cancer Research and Wallenberg Centre for Molecular and Translational Medicine, Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Nasibeh Karimi
- Krefting Research Centre, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ornella Urzì
- Sahlgrenska Center for Cancer Research and Wallenberg Centre for Molecular and Translational Medicine, Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (Bi.N.D), University of Palermo, Gothenburg, Italy
| | - Tamara Alonso-Agudo
- Sahlgrenska Center for Cancer Research and Wallenberg Centre for Molecular and Translational Medicine, Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anders Ståhlberg
- Sahlgrenska Center for Cancer Research and Wallenberg Centre for Molecular and Translational Medicine, Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden
| | - Jan Lötvall
- Krefting Research Centre, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Cecilia Lässer
- Krefting Research Centre, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Roger Olofsson Bagge
- Sahlgrenska Center for Cancer Research and Wallenberg Centre for Molecular and Translational Medicine, Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Surgery, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden
| |
Collapse
|
18
|
Tenchov R, Sasso JM, Wang X, Liaw WS, Chen CA, Zhou QA. Exosomes─Nature's Lipid Nanoparticles, a Rising Star in Drug Delivery and Diagnostics. ACS NANO 2022; 16:17802-17846. [PMID: 36354238 PMCID: PMC9706680 DOI: 10.1021/acsnano.2c08774] [Citation(s) in RCA: 165] [Impact Index Per Article: 82.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 10/21/2022] [Indexed: 05/03/2023]
Abstract
Exosomes are a subgroup of nanosized extracellular vesicles enclosed by a lipid bilayer membrane and secreted by most eukaryotic cells. They represent a route of intercellular communication and participate in a wide variety of physiological and pathological processes. The biological roles of exosomes rely on their bioactive cargos, including proteins, nucleic acids, and lipids, which are delivered to target cells. Their distinctive properties─innate stability, low immunogenicity, biocompatibility, and good biomembrane penetration capacity─allow them to function as superior natural nanocarriers for efficient drug delivery. Another notably favorable clinical application of exosomes is in diagnostics. They hold various biomolecules from host cells, which are indicative of pathophysiological conditions; therefore, they are considered vital for biomarker discovery in clinical diagnostics. Here, we use data from the CAS Content Collection and provide a landscape overview of the current state and delineate trends in research advancement on exosome applications in therapeutics and diagnostics across time, geography, composition, cargo loading, and development pipelines. We discuss exosome composition and pathway, from their biogenesis and secretion from host cells to recipient cell uptake. We assess methods for exosome isolation and purification, their clinical applications in therapy and diagnostics, their development pipelines, the exploration goals of the companies, the assortment of diseases they aim to treat, development stages of their research, and publication trends. We hope this review will be useful for understanding the current knowledge in the field of medical applications of exosomes, in an effort to further solve the remaining challenges in fulfilling their potential.
Collapse
Affiliation(s)
- Rumiana Tenchov
- CAS, a Division of the American Chemical
Society, 2540 Olentangy River Rd, Columbus, Ohio 43202, United
States
| | - Janet M. Sasso
- CAS, a Division of the American Chemical
Society, 2540 Olentangy River Rd, Columbus, Ohio 43202, United
States
| | - Xinmei Wang
- CAS, a Division of the American Chemical
Society, 2540 Olentangy River Rd, Columbus, Ohio 43202, United
States
| | - Wen-Shing Liaw
- CAS, a Division of the American Chemical
Society, 2540 Olentangy River Rd, Columbus, Ohio 43202, United
States
| | - Chun-An Chen
- CAS, a Division of the American Chemical
Society, 2540 Olentangy River Rd, Columbus, Ohio 43202, United
States
| | - Qiongqiong Angela Zhou
- CAS, a Division of the American Chemical
Society, 2540 Olentangy River Rd, Columbus, Ohio 43202, United
States
| |
Collapse
|
19
|
Hallal S, Tűzesi Á, Grau GE, Buckland ME, Alexander KL. Understanding the extracellular vesicle surface for clinical molecular biology. J Extracell Vesicles 2022; 11:e12260. [PMID: 36239734 PMCID: PMC9563386 DOI: 10.1002/jev2.12260] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 07/26/2022] [Accepted: 07/26/2022] [Indexed: 12/17/2022] Open
Abstract
Extracellular vesicles (EVs) are lipid-membrane enclosed nanoparticles that play significant roles in health and disease. EVs are abundant in body fluids and carry an array of molecules (proteins, lipids, nucleic acids and glycans) that reflect the identity and activity of their cell-of-origin. While the advent of high throughput omics technologies has allowed in-depth characterisation of EV compositions, how these molecular species are spatially distributed within EV structures is not well appreciated. This is particularly true of the EV surface where a plethora of molecules are reported to be both integral and peripherally associated to the EV membrane. This coronal layer or 'atmosphere' that surrounds the EV membrane contributes to a large, highly interactive and dynamic surface area that is responsible for facilitating EV interactions with the extracellular environment. The EV coronal layer harbours surface molecules that reflect the identity of parent cells, which is likely a highly valuable property in the context of diagnostic liquid biopsies. In this review, we describe the current understanding of the mechanical, electrostatic and molecular properties of the EV surface that offer significant biomarker potential and contribute to a highly dynamic interactome.
Collapse
Affiliation(s)
- Susannah Hallal
- Neurosurgery DepartmentChris O'Brien LifehouseCamperdownNSWAustralia,Brainstorm Brain Cancer Research, Brain and Mind CentreThe University of SydneyNSWAustralia,Neuropathology DepartmentRoyal Prince Alfred HospitalCamperdownNSWAustralia
| | - Ágota Tűzesi
- Brainstorm Brain Cancer Research, Brain and Mind CentreThe University of SydneyNSWAustralia,Neuropathology DepartmentRoyal Prince Alfred HospitalCamperdownNSWAustralia,School of Medical SciencesFaculty of Medicine & HealthThe University of SydneyCamperdownNSWAustralia
| | - Georges E. Grau
- School of Medical SciencesFaculty of Medicine & HealthThe University of SydneyCamperdownNSWAustralia
| | - Michael E. Buckland
- Brainstorm Brain Cancer Research, Brain and Mind CentreThe University of SydneyNSWAustralia,Neuropathology DepartmentRoyal Prince Alfred HospitalCamperdownNSWAustralia,School of Medical SciencesFaculty of Medicine & HealthThe University of SydneyCamperdownNSWAustralia
| | - Kimberley L. Alexander
- Neurosurgery DepartmentChris O'Brien LifehouseCamperdownNSWAustralia,Brainstorm Brain Cancer Research, Brain and Mind CentreThe University of SydneyNSWAustralia,Neuropathology DepartmentRoyal Prince Alfred HospitalCamperdownNSWAustralia,School of Medical SciencesFaculty of Medicine & HealthThe University of SydneyCamperdownNSWAustralia
| |
Collapse
|
20
|
Gong X, Zhang H, Liu X, Liu Y, Liu J, Fapohunda FO, Lü P, Wang K, Tang M. Is liquid biopsy mature enough for the diagnosis of Alzheimer's disease? Front Aging Neurosci 2022; 14:977999. [PMID: 35992602 PMCID: PMC9389010 DOI: 10.3389/fnagi.2022.977999] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 07/18/2022] [Indexed: 01/10/2023] Open
Abstract
The preclinical diagnosis and clinical practice for Alzheimer's disease (AD) based on liquid biopsy have made great progress in recent years. As liquid biopsy is a fast, low-cost, and easy way to get the phase of AD, continual efforts from intense multidisciplinary studies have been made to move the research tools to routine clinical diagnostics. On one hand, technological breakthroughs have brought new detection methods to the outputs of liquid biopsy to stratify AD cases, resulting in higher accuracy and efficiency of diagnosis. On the other hand, diversiform biofluid biomarkers derived from cerebrospinal fluid (CSF), blood, urine, Saliva, and exosome were screened out and biologically verified. As a result, more detailed knowledge about the molecular pathogenesis of AD was discovered and elucidated. However, to date, how to weigh the reports derived from liquid biopsy for preclinical AD diagnosis is an ongoing question. In this review, we briefly introduce liquid biopsy and the role it plays in research and clinical practice. Then, we summarize the established fluid-based assays of the current state for AD diagnostic such as ELISA, single-molecule array (Simoa), Immunoprecipitation-Mass Spectrometry (IP-MS), liquid chromatography-MS, immunomagnetic reduction (IMR), multimer detection system (MDS). In addition, we give an updated list of fluid biomarkers in the AD research field. Lastly, the current outstanding challenges and the feasibility to use a stand-alone biomarker in the joint diagnostic strategy are discussed.
Collapse
Affiliation(s)
- Xun Gong
- Department of Rheumatology and Immunology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Hantao Zhang
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Xiaoyan Liu
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Yi Liu
- School of Life Sciences, Jiangsu University, Zhenjiang, China
- Institute of Animal Husbandry, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Junlin Liu
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | | | - Peng Lü
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Kun Wang
- Children’s Center, The Affiliated Taian City Central Hospital of Qingdao University, Taian, China
| | - Min Tang
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| |
Collapse
|
21
|
Therapeutic Strategy of Mesenchymal-Stem-Cell-Derived Extracellular Vesicles as Regenerative Medicine. Int J Mol Sci 2022; 23:ijms23126480. [PMID: 35742923 PMCID: PMC9224400 DOI: 10.3390/ijms23126480] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 12/11/2022] Open
Abstract
Extracellular vesicles (EVs) are lipid bilayer membrane particles that play critical roles in intracellular communication through EV-encapsulated informative content, including proteins, lipids, and nucleic acids. Mesenchymal stem cells (MSCs) are pluripotent stem cells with self-renewal ability derived from bone marrow, fat, umbilical cord, menstruation blood, pulp, etc., which they use to induce tissue regeneration by their direct recruitment into injured tissues, including the heart, liver, lung, kidney, etc., or secreting factors, such as vascular endothelial growth factor or insulin-like growth factor. Recently, MSC-derived EVs have been shown to have regenerative effects against various diseases, partially due to the post-transcriptional regulation of target genes by miRNAs. Furthermore, EVs have garnered attention as novel drug delivery systems, because they can specially encapsulate various target molecules. In this review, we summarize the regenerative effects and molecular mechanisms of MSC-derived EVs.
Collapse
|
22
|
Patel A, Patel S, Patel P, Tanavde V. Saliva Based Liquid Biopsies in Head and Neck Cancer: How Far Are We From the Clinic? Front Oncol 2022; 12:828434. [PMID: 35387114 PMCID: PMC8977527 DOI: 10.3389/fonc.2022.828434] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/25/2022] [Indexed: 12/24/2022] Open
Abstract
Head and neck cancer (HNC) remains to be a major cause of mortality worldwide because of confounding factors such as late-stage tumor diagnosis, loco-regional aggressiveness and distant metastasis. The current standardized diagnostic regime for HNC is tissue biopsy which fails to determine the thorough tumor dynamics. Therefore, due to the ease of collection, recent studies have focused on the utility of saliva based liquid biopsy approach for serial sampling, early diagnosis, prognosis, longitudinal monitoring of disease progression and treatment response in HNC patients. Saliva collection is convenient, non-invasive, and pain-free and offers repetitive sampling along with real time monitoring of the disease. Moreover, the detection, isolation and analysis of tumor-derived components such as Circulating Tumor Nucleic Acids (CTNAs), Extracellular Vesicles (EVs), Circulating Tumor Cells (CTCs) and metabolites from saliva can be used for genomic and proteomic examination of HNC patients. Although, these circulatory biomarkers have a wide range of applications in clinical settings, no validated data has yet been established for their usage in clinical practice for HNC. Improvements in isolation and detection technologies and next-generation sequencing analysis have resolved many technological hurdles, allowing a wide range of saliva based liquid biopsy application in clinical backgrounds. Thus, in this review, we discussed the rationality of saliva as plausible biofluid and clinical sample for diagnosis, prognosis and therapeutics of HNC. We have described the molecular components of saliva that could mirror the disease status, recent outcomes of salivaomics associated with HNC and current technologies which have the potential to improve the clinical value of saliva in HNC.
Collapse
Affiliation(s)
- Aditi Patel
- Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Ahmedabad, India
| | - Shanaya Patel
- Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Ahmedabad, India
| | - Parina Patel
- Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Ahmedabad, India
| | - Vivek Tanavde
- Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Ahmedabad, India.,Bioinformatics Institute, Agency for Science Technology and Research (ASTAR), Singapore, Singapore
| |
Collapse
|
23
|
Chen J, Li P, Zhang T, Xu Z, Huang X, Wang R, Du L. Review on Strategies and Technologies for Exosome Isolation and Purification. Front Bioeng Biotechnol 2022; 9:811971. [PMID: 35071216 PMCID: PMC8766409 DOI: 10.3389/fbioe.2021.811971] [Citation(s) in RCA: 219] [Impact Index Per Article: 109.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 12/09/2021] [Indexed: 12/13/2022] Open
Abstract
Exosomes, a nano-sized subtype of extracellular vesicles secreted from almost all living cells, are capable of transferring cell-specific constituents of the source cell to the recipient cell. Cumulative evidence has revealed exosomes play an irreplaceable role in prognostic, diagnostic, and even therapeutic aspects. A method that can efficiently provide intact and pure exosomes samples is the first step to both exosome-based liquid biopsies and therapeutics. Unfortunately, common exosomal separation techniques suffer from operation complexity, time consumption, large sample volumes and low purity, posing significant challenges for exosomal downstream analysis. Efficient, simple, and affordable methods to isolate exosomes are crucial to carrying out relevant researches. In the last decade, emerging technologies, especially microfluidic chips, have proposed superior strategies for exosome isolation and exhibited fascinating performances. While many excellent reviews have overviewed various methods, a compressive review including updated/improved methods for exosomal isolation is indispensable. Herein, we first overview exosomal properties, biogenesis, contents, and functions. Then, we briefly outline the conventional technologies and discuss the challenges of clinical applications of these technologies. Finally, we review emerging exosomal isolation strategies and large-scale GMP production of engineered exosomes to open up future perspectives of next-generation Exo-devices for cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Jiaci Chen
- State Key Laboratory of Biobased Material and Green Papermaking, Department of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Peilong Li
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Taiyi Zhang
- State Key Laboratory of Biobased Material and Green Papermaking, Department of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Zhipeng Xu
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Xiaowen Huang
- State Key Laboratory of Biobased Material and Green Papermaking, Department of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Ruiming Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Department of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Lutao Du
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
24
|
Sun Y, Saito K, Saito Y. Lipidomic Analysis of Extracellular Vesicles Isolated from Human Plasma and Serum. Methods Mol Biol 2022; 2504:157-173. [PMID: 35467286 DOI: 10.1007/978-1-0716-2341-1_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Lipidomics is an omics approach to comprehensively study lipid profiles in biological samples, such as plasma, serum, urine, and tissue specimens. Moreover, lipidomic analyses are useful for identifying novel lipid biomarkers, especially for various metabolic and malignant diseases in humans. Extracellular vesicles (EVs) are lipid bilayer-encapsulated nanoparticles secreted from various cells into the extracellular space. In particular, circulating EVs in the blood stream have attracted considerable research interest as they are considered the fingerprint of the cells from which they are secreted and are a promising source for less-invasive biomarker screening. Here, we describe the entire workflow for the lipidomic analysis of circulating EVs, including the methods for their purification from human plasma and serum, liquid chromatography coupled with high-resolution mass spectrometry-based lipid measurement, and data analyses for profiling EV lipids. Using this methodological workflow, over 260 lipid molecules belonging to the glycerophospholipid and sphingolipid groups can be detected.
Collapse
Affiliation(s)
- Yuchen Sun
- Division of Medicinal Safety Science, National Institute of Health Sciences, Kawasaki City, Kanagawa, Japan
| | - Kosuke Saito
- Division of Medicinal Safety Science, National Institute of Health Sciences, Kawasaki City, Kanagawa, Japan
| | - Yoshiro Saito
- Division of Medicinal Safety Science, National Institute of Health Sciences, Kawasaki City, Kanagawa, Japan.
| |
Collapse
|
25
|
Identification of Exosomal MicroRNA Signature by Liquid Biopsy in Hereditary Hemorrhagic Telangiectasia Patients. Int J Mol Sci 2021; 22:ijms22179450. [PMID: 34502358 PMCID: PMC8431573 DOI: 10.3390/ijms22179450] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 12/13/2022] Open
Abstract
Hereditary hemorrhagic telangiectasia (HHT) is a rare autosomal dominant vascular dysplasia characterized by epistaxis, mucocutaneous telangiectases, and arteriovenous malformations (AVM) in the visceral organs. The diagnosis of HHT is based on clinical Curaçao criteria, which show limited sensitivity in children and young patients. Here, we carried out a liquid biopsy by which we isolated total RNA from plasma exosome samples. A cohort of 15 HHT type 1 patients, 15 HHT type 2 patients, and 10 healthy relatives were analyzed. Upon gene expression data processing and normalization, a statistical analysis was performed to explore similarities in microRNA expression patterns among samples and detect differentially expressed microRNAs between HHT samples and the control group. We found a disease-associated molecular fingerprint of 35 miRNAs over-represented in HHT vs. controls, with eight being specific for HHT1 and 11 for HHT2; we also found 30 under-represented, including nine distinct for HHT1 and nine for HHT2. The analysis of the receiver operating characteristic (ROC) curves showed that eight miRNAs had good (AUC > 75%) or excellent (AUC > 90%) diagnosis value for HHT and even for type HHT1 and HHT2. In addition, we identified the cellular origin of these miRNAs among the cell types involved in the vascular malformations. Interestingly, we found that only some of them were incorporated into exosomes, which suggests a key functional role of these exosomal miRNAs in the pathophysiology of HHT.
Collapse
|
26
|
Urinary Extracellular Vesicle Protein Profiles Discriminate Different Clinical Subgroups of Children with Idiopathic Nephrotic Syndrome. Diagnostics (Basel) 2021; 11:diagnostics11030456. [PMID: 33800879 PMCID: PMC7998527 DOI: 10.3390/diagnostics11030456] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 12/12/2022] Open
Abstract
Idiopathic nephrotic syndrome (INS) is the most frequent primary glomerular disease in children, displaying high grade proteinuria and oedema. The mainstay of therapy are steroids, and patients are usually classified according to the treatment response (sensitive vs. resistant). The mechanisms involved in INS pathogenesis and treatment responsiveness have not yet been identified. In this context, the analysis of urinary extracellular vesicles (UEv) is interesting, since they represent a molecular snapshot of the parental cells, offering a “fingerprint” for monitoring their status. Therefore, the aim of this study is to verify the feasibility of using UEv of INS patients as indicators of therapy response and its prediction. UEv were isolated from the urine of pediatric patients in remission after therapy; they showed characteristic electrophoresis profiles that matched specific patient subgroups. We then built a statistical model to interpret objectively each patient UEv protein profile: in particular, steroid-resistant patients cluster together with a very distinct pattern from other INS patients and controls. In conclusion, the evaluation of the UEv protein profile looks promising in the investigation of INS, showing a disease signature that might predict clinical evolution.
Collapse
|