1
|
Toikumo S, Jennings MV, Pham BK, Lee H, Mallard TT, Bianchi SB, Meredith JJ, Vilar-Ribó L, Xu H, Hatoum AS, Johnson EC, Pazdernik VK, Jinwala Z, Pakala SR, Leger BS, Niarchou M, Ehinmowo M, Jenkins GD, Batzler A, Pendegraft R, Palmer AA, Zhou H, Biernacka JM, Coombes BJ, Gelernter J, Xu K, Hancock DB, Cox NJ, Smoller JW, Davis LK, Justice AC, Kranzler HR, Kember RL, Sanchez-Roige S. Multi-ancestry meta-analysis of tobacco use disorder identifies 461 potential risk genes and reveals associations with multiple health outcomes. Nat Hum Behav 2024; 8:1177-1193. [PMID: 38632388 PMCID: PMC11199106 DOI: 10.1038/s41562-024-01851-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 02/21/2024] [Indexed: 04/19/2024]
Abstract
Tobacco use disorder (TUD) is the most prevalent substance use disorder in the world. Genetic factors influence smoking behaviours and although strides have been made using genome-wide association studies to identify risk variants, most variants identified have been for nicotine consumption, rather than TUD. Here we leveraged four US biobanks to perform a multi-ancestral meta-analysis of TUD (derived via electronic health records) in 653,790 individuals (495,005 European, 114,420 African American and 44,365 Latin American) and data from UK Biobank (ncombined = 898,680). We identified 88 independent risk loci; integration with functional genomic tools uncovered 461 potential risk genes, primarily expressed in the brain. TUD was genetically correlated with smoking and psychiatric traits from traditionally ascertained cohorts, externalizing behaviours in children and hundreds of medical outcomes, including HIV infection, heart disease and pain. This work furthers our biological understanding of TUD and establishes electronic health records as a source of phenotypic information for studying the genetics of TUD.
Collapse
Affiliation(s)
- Sylvanus Toikumo
- Mental Illness Research, Education and Clinical Center, Crescenz VAMC, Philadelphia, PA, USA
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Mariela V Jennings
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Benjamin K Pham
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Hyunjoon Lee
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Travis T Mallard
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Center for Precision Psychiatry, Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Boston, MA, USA
| | - Sevim B Bianchi
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - John J Meredith
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Laura Vilar-Ribó
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Heng Xu
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Alexander S Hatoum
- Psychological & Brain Sciences, Washington University in St. Louis, St. Louis, MO, USA
| | - Emma C Johnson
- Psychological & Brain Sciences, Washington University in St. Louis, St. Louis, MO, USA
| | | | - Zeal Jinwala
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Shreya R Pakala
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Brittany S Leger
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Program in Biomedical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Maria Niarchou
- Department of Medicine, Division of Genetic Medicine, Vanderbilt University, Nashville, TN, USA
| | | | - Greg D Jenkins
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Anthony Batzler
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Richard Pendegraft
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Abraham A Palmer
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Hang Zhou
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Joanna M Biernacka
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | - Brandon J Coombes
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Joel Gelernter
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Ke Xu
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | | | - Nancy J Cox
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jordan W Smoller
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Center for Precision Psychiatry, Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Boston, MA, USA
| | - Lea K Davis
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Medicine, Division of Genetic Medicine, Vanderbilt University, Nashville, TN, USA
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Amy C Justice
- Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
- Yale University School of Public Health, New Haven, CT, USA
- Yale University School of Medicine, New Haven, CT, USA
| | - Henry R Kranzler
- Mental Illness Research, Education and Clinical Center, Crescenz VAMC, Philadelphia, PA, USA
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Rachel L Kember
- Mental Illness Research, Education and Clinical Center, Crescenz VAMC, Philadelphia, PA, USA
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Sandra Sanchez-Roige
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA.
- Department of Medicine, Division of Genetic Medicine, Vanderbilt University, Nashville, TN, USA.
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
2
|
Donlon J, Kumari P, Varghese SP, Bai M, Florentin OD, Frost ED, Banks J, Vadlapatla N, Kam O, Shad MU, Rahman S, Abulseoud OA, Stone TW, Koola MM. Integrative Pharmacology in the Treatment of Substance Use Disorders. J Dual Diagn 2024; 20:132-177. [PMID: 38117676 DOI: 10.1080/15504263.2023.2293854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
The detrimental physical, mental, and socioeconomic effects of substance use disorders (SUDs) have been apparent to the medical community for decades. However, it has become increasingly urgent in recent years to develop novel pharmacotherapies to treat SUDs. Currently, practitioners typically rely on monotherapy. Monotherapy has been shown to be superior to no treatment at all for most substance classes. However, many randomized controlled trials (RCTs) have revealed that monotherapy leads to poorer outcomes when compared with combination treatment in all specialties of medicine. The results of RCTs suggest that monotherapy frequently fails since multiple dysregulated pathways, enzymes, neurotransmitters, and receptors are involved in the pathophysiology of SUDs. As such, research is urgently needed to determine how various neurobiological mechanisms can be targeted by novel combination treatments to create increasingly specific yet exceedingly comprehensive approaches to SUD treatment. This article aims to review the neurobiology that integrates many pathophysiologic mechanisms and discuss integrative pharmacology developments that may ultimately improve clinical outcomes for patients with SUDs. Many neurobiological mechanisms are known to be involved in SUDs including dopaminergic, nicotinic, N-methyl-D-aspartate (NMDA), and kynurenic acid (KYNA) mechanisms. Emerging evidence indicates that KYNA, a tryptophan metabolite, modulates all these major pathophysiologic mechanisms. Therefore, achieving KYNA homeostasis by harmonizing integrative pathophysiology and pharmacology could prove to be a better therapeutic approach for SUDs. We propose KYNA-NMDA-α7nAChRcentric pathophysiology, the "conductor of the orchestra," as a novel approach to treat many SUDs concurrently. KYNA-NMDA-α7nAChR pathophysiology may be the "command center" of neuropsychiatry. To date, extant RCTs have shown equivocal findings across comparison conditions, possibly because investigators targeted single pathophysiologic mechanisms, hit wrong targets in underlying pathophysiologic mechanisms, and tested inadequate monotherapy treatment. We provide examples of potential combination treatments that simultaneously target multiple pathophysiologic mechanisms in addition to KYNA. Kynurenine pathway metabolism demonstrates the greatest potential as a target for neuropsychiatric diseases. The investigational medications with the most evidence include memantine, galantamine, and N-acetylcysteine. Future RCTs are warranted with novel combination treatments for SUDs. Multicenter RCTs with integrative pharmacology offer a promising, potentially fruitful avenue to develop novel therapeutics for the treatment of SUDs.
Collapse
Affiliation(s)
- Jack Donlon
- Cooper Medical School of Rowan University, Camden, New Jersey, USA
| | - Pooja Kumari
- Community Living Trent Highlands, Peterborough, Canada
| | - Sajoy P Varghese
- Addiction Recovery Treatment Services, Veterans Affairs Northern California Health Care System, University of California, Davis, Sacramento, California, USA
| | - Michael Bai
- Columbia University, New York, New York, USA
| | - Ori David Florentin
- Department of Psychiatry, Westchester Medical Center, Valhalla, New York, USA
| | - Emma D Frost
- Department of Neurology, Cooper University Health Care, Camden, New Jersey, USA
| | - John Banks
- Talkiatry Mental Health Clinic, New York, New York, USA
| | - Niyathi Vadlapatla
- Thomas Jefferson High School for Science and Technology, Alexandria, Virginia, USA
| | - Olivia Kam
- Stony Brook University Renaissance School of Medicine, Stony Brook, New York, USA
| | - Mujeeb U Shad
- Department of Psychiatry, University of Nevada Las Vegas, Las Vegas, Nevada, USA
| | - Shafiqur Rahman
- Department of Pharmaceutical Sciences, College of Pharmacy, South Dakota State University, Brookings, South Dakota, USA
| | - Osama A Abulseoud
- Department of Psychiatry and Psychology, Alix School of Medicine at Mayo Clinic, Phoenix, Arizona, USA
| | - Trevor W Stone
- Nuffield Department of Orthopedics, Rheumatology and Musculoskeletal Sciences (NDORMS), University of Oxford, Oxford, UK
| | - Maju Mathew Koola
- Department of Psychiatry and Behavioral Health, Cooper University Health Care, Cooper Medical School of Rowan University, Camden, New Jersey, USA
| |
Collapse
|
3
|
Sala M, Gotti C. Electronic nicotine delivery systems (ENDS): A convenient means of smoking? Pharmacol Res 2023; 195:106885. [PMID: 37634554 DOI: 10.1016/j.phrs.2023.106885] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/05/2023] [Accepted: 08/08/2023] [Indexed: 08/29/2023]
Abstract
Electronic nicotine delivery systems (ENDS), which are becoming increasingly popular in many parts of the world, have recently become more sophisticated in terms of their more active content and better controlled vaporisation. This review begins by describing how cigarette smoking led to the development of ENDS as a means of combatting nicotine addiction. ENDS are usually categorised as belonging to one of only three main generations, but a fourth has been added in order to differentiate the latest, most powerful, most advanced and innovative that have improved heating efficiency. Descriptions of the principal substances contained in ENDS are followed by considerations concerning the risk of toxicity due to the presence of albeit low concentrations of such a variety of compounds inhaled over a long time, and the increasingly widespread use of ENDS as a means of smoking illicit drugs. We also review the most widely used pharmacotherapeutic approaches to smoking cessation, and recent epidemiological data showing that ENDS can help some people to stop smoking. However, in order to ensure their appropriate regulation, there is a need for higher-quality evidence concerning the health effects and safety of ENDS, and their effectiveness in discouraging tobacco smoking.
Collapse
Affiliation(s)
- Mariaelvina Sala
- Institute of Neuroscience, CNR-Milan Unit, c/o Bldg. U28, University of Milano-Bicocca, Via Follereau 3, 20854 Vedano al Lambro, MB, Italy; NeuroMi Milan Center for Neuroscience University of Milano Bicocca,Italy.
| | - Cecilia Gotti
- Institute of Neuroscience, CNR-Milan Unit, c/o Bldg. U28, University of Milano-Bicocca, Via Follereau 3, 20854 Vedano al Lambro, MB, Italy; NeuroMi Milan Center for Neuroscience University of Milano Bicocca,Italy
| |
Collapse
|
4
|
Tryptophan and Substance Abuse: Mechanisms and Impact. Int J Mol Sci 2023; 24:ijms24032737. [PMID: 36769059 PMCID: PMC9917371 DOI: 10.3390/ijms24032737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/22/2023] [Accepted: 01/28/2023] [Indexed: 02/04/2023] Open
Abstract
Addiction, the continuous misuse of addictive material, causes long-term dysfunction in the neurological system. It substantially affects the control strength of reward, memory, and motivation. Addictive substances (alcohol, marijuana, caffeine, heroin, methamphetamine (METH), and nicotine) are highly active central nervous stimulants. Addiction leads to severe health issues, including cardiovascular diseases, serious infections, and pulmonary/dental diseases. Drug dependence may result in unfavorable cognitive impairments that can continue during abstinence and negatively influence recovery performance. Although addiction is a critical global health challenge with numerous consequences and complications, currently, there are no efficient options for treating drug addiction, particularly METH. Currently, novel treatment approaches such as psychological contingency management, cognitive behavioral therapy, and motivational enhancement strategies are of great interest. Herein, we evaluate the devastating impacts of different addictive substances/drugs on users' mental health and the role of tryptophan in alleviating unfavorable side effects. The tryptophan metabolites in the mammalian brain and their potential to treat compulsive abuse of addictive substances are investigated by assessing the functional effects of addictive substances on tryptophan. Future perspectives on developing promising modalities to treat addiction and the role of tryptophan and its metabolites to alleviate drug dependency are discussed.
Collapse
|
5
|
Chen H, Yang Y, Miyai H, Yi C, Oliver BG. The effects of exercise with nicotine replacement therapy for smoking cessation in adults: A systematic review. Front Psychiatry 2022; 13:1053937. [PMID: 36506415 PMCID: PMC9730281 DOI: 10.3389/fpsyt.2022.1053937] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/08/2022] [Indexed: 11/25/2022] Open
Abstract
Objective This systematic review aimed to evaluate the efficacy of exercise programmes with nicotine replacement therapy (NRT) for smoking cessation in adults. Introduction Nicotine addiction is mediated by dopamine. Exercise can also activate the dopamine reward system. Therefore, exercise may effectively facilitate NRT to reduce cigarette cravings and withdrawal symptoms. Inclusion criteria Clinical trials between 2000 and 2022 used exercise protocols of any intensity for smoking cessation, in current smokers or recent quitters of both genders, aged 18-70, without severe diseases and pregnancy. Mental disorders were not excluded, as exercise can improve mental health status. Therefore, it may be as effective among people with mental health issues as the general population in preventing nicotine cravings and supporting abstinence. Methods Four databases (PubMed, Embase, Cochrane, and Medline) were searched for papers in English using the terms "nicotine replacement therapy', "exercise," and "smoking cessation." Titles and abstracts were screened for potentially eligibility before full texts were reviewed. Sample size, gender, study duration, and age was then extracted. The certainty of the evidence was assessed using Joanna Briggs Institute's (JBI's) GRADE approach. Results Seventeen studies were identified with a total of 3,191 participants. Three studies are not a randomised control study. There was moderate-high quality evidence that exercise can aid NRT in promoting smoking cessation in the short term. Several studies reported temporary reductions in cravings; however, only one trial reported a decrease in cigarette consumption due to exercise intervention and one demonstrated increased smoking abstinence at 1 year of the intervention. Conclusion Exercise with NRT aids smoking cessation in the short term, but no evidence suggests its efficacy in the long term when combined. Future trials should include larger sample sizes and strategies to increase exercise adherence.
Collapse
Affiliation(s)
- Hui Chen
- Research Centre, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
- Faculty of Science, School of Life Sciences, University of Technology Sydney, Ultimo, NSW, Australia
| | - Yang Yang
- Research Centre, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Hanna Miyai
- Faculty of Science, School of Life Sciences, University of Technology Sydney, Ultimo, NSW, Australia
| | - Chenju Yi
- Research Centre, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Brian G. Oliver
- Faculty of Science, School of Life Sciences, University of Technology Sydney, Ultimo, NSW, Australia
- Respiratory Cellular and Molecular Biology, Woolcock Institute of Medical Research, The University of Sydney, Glebe, NSW, Australia
| |
Collapse
|