1
|
Li PL, Fu HM, Liu K, Liu HF, Sui MZ, Yang JW. IL-33 facilitates endoplasmic reticulum stress and pyroptosis in LPS-stimulated ARDS model in vitro. Mol Immunol 2025; 181:102-112. [PMID: 40118005 DOI: 10.1016/j.molimm.2025.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/12/2024] [Accepted: 03/14/2025] [Indexed: 03/23/2025]
Abstract
BACKGROUND Inflammatory activation of pulmonary microvascular endothelial cells (PMVECs) initiated by endoplasmic reticulum stress (ERS) contributes to acute respiratory distress syndrome (ARDS). Interleukin 33 (IL-33) has pro-inflammatory and transcriptional regulatory effects. Therefore, this study intends to investigate the effect of IL-33 on ERS and pyroptosis in the hPMVEC. METHODS The hPMVEC-associated ARDS cell model was induced with lipopolysaccharide (LPS) and treated with 4-PBA (ERS inhibitor), thapsigargin (ERS activator), or IL-33 neutralizing antibody. Western blot and IF staining were performed to analyze the expression of cell-cell junction-associated (Cx37, Cx40, Cx43, Occludin, and Zo-1), ERS-associated (ATF6, IRE1a, and p-Erk), and pyroptosis-associated (NLRP3, IL-1β, and IL-18) proteins. Bioinformatics identified differential expression of IL-33 in ARDS-related datasets and targets of thapsigargin. RESULTS IL-33 was highly expressed in serum of ARDS patients and in ARDS cohorts from multiple GEO datasets (GSE237260, GSE216635, GSE89953, GSE263867, and GSE5883), and was significantly correlated with clinical features. 4-PBA decreased permeability and IL-33 levels, and increased Cx37, Cx40 and Cx43 levels in the ARDS cell model. IL-33 neutralizing antibody effectively augmented the levels of Cx43 and Zo-1, and diminished the levels of ATF6, IRE1a, p-Erk, NLRP3, IL-1β, IL-18, ROS, and Ca2 +. The therapeutic effect of IL-33 neutralizing antibodies was reverted by thapsigargin. Moreover, the Swiss Target Prediction and Super-PRED databases obtained 140 and 122 thapsigargin targets, which had 14 intersections. These intersections were associated with immunity, inflammation, apoptosis, pyroptosis, and Ca2+ homeostasis. Notably, CASP8 and PTGS2 interacted with IL-33 in these intersections. CONCLUSION IL-33 promotes ERS and pyroptosis, thereby contributing to barrier damage in ARDS cell models. IL-33 is a promising therapeutic target for ARDS.
Collapse
Affiliation(s)
- Pei-Long Li
- Children's Hospital Affiliated to Kunming Medical University & Kunming Children's Hospital, Kunming Medical University, Kunming, P.R. China; Department of Pulmonary and Critical Care Medicine, Yunnan Key Laboratory of Children's Major Disease Research, Yunnan Medical Center for Pediatric Diseases, Kunming Children's Hospital, Kunming Medical University, Kunming, P.R. China
| | - Hong-Min Fu
- Department of Pulmonary and Critical Care Medicine, Yunnan Key Laboratory of Children's Major Disease Research, Yunnan Medical Center for Pediatric Diseases, Kunming Children's Hospital, Kunming Medical University, Kunming, P.R. China.
| | - Kai Liu
- Department of Pulmonary and Critical Care Medicine, Yunnan Key Laboratory of Children's Major Disease Research, Yunnan Medical Center for Pediatric Diseases, Kunming Children's Hospital, Kunming Medical University, Kunming, P.R. China
| | - Hai-Feng Liu
- Children's Hospital Affiliated to Kunming Medical University & Kunming Children's Hospital, Kunming Medical University, Kunming, P.R. China; Department of Pulmonary and Critical Care Medicine, Yunnan Key Laboratory of Children's Major Disease Research, Yunnan Medical Center for Pediatric Diseases, Kunming Children's Hospital, Kunming Medical University, Kunming, P.R. China
| | - Ming-Ze Sui
- Children's Hospital Affiliated to Kunming Medical University & Kunming Children's Hospital, Kunming Medical University, Kunming, P.R. China; Department of Pulmonary and Critical Care Medicine, Yunnan Key Laboratory of Children's Major Disease Research, Yunnan Medical Center for Pediatric Diseases, Kunming Children's Hospital, Kunming Medical University, Kunming, P.R. China
| | - Jia-Wu Yang
- Department of Pulmonary and Critical Care Medicine, Yunnan Key Laboratory of Children's Major Disease Research, Yunnan Medical Center for Pediatric Diseases, Kunming Children's Hospital, Kunming Medical University, Kunming, P.R. China.
| |
Collapse
|
2
|
Shao Q, Zhao Y, Shi Y, Cheng F, Zhang Z, Liu Y, Li C, Ren Z, Bai H, Cheng H, Maddela R, Tian J, Wang X. Chemical characterization of Siraitia grosvenorii granules and their efficacy and mechanism of action on PM2.5-induced acute lung injury. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 290:117702. [PMID: 39823669 DOI: 10.1016/j.ecoenv.2025.117702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 01/05/2025] [Accepted: 01/05/2025] [Indexed: 01/19/2025]
Abstract
This study aimed to investigate the potential protective properties of a traditional Chinese medicine (TCM) herbal product, Siraitia grosvenorii granules (SGG) against PM2.5-induced lung injury, as well as their active constituents and underlying mechanisms. The chemical composition of SGG, such as wogonin (MOL000173), luteolin (MOL000006), nobiletin (MOL005828), naringenin (MOL004328), acacetin (MOL001689), were identified via ultra-high-performance liquid chromatography-Q Exactive (UHPLC-QE) Orbitrap/MS. The specific targets and pathways through which the compounds exert their effects on acute lung injury were then predicted via network pharmacology. The lung-protective effects of SGG against particulate matter (PM2.5) were investigated via in vivo experiments. Results showed that PM2.5-induced lung damage was associated with oxidative stress, suppression of PI3K/AKT/Nrf2 pathway, and increased levels of certain alarmins & cytokines in blood and bronchial alveolar lavage fluid (BALF). However, SGG reversed these changes, particularly tissue damage and oxidative stress, suggesting that lung protection is mediated by the antioxidant effect, which mitigates the release of alarmin and inflammation.
Collapse
Affiliation(s)
- Qi Shao
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yan Zhao
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - YuYu Shi
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Fafeng Cheng
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - ZeHan Zhang
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Ying Liu
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - ChangXiang Li
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - ZiLin Ren
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | | | | | | | | | - Xueqian Wang
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China.
| |
Collapse
|
3
|
Kumar V, Nazli Khatib M, Verma A, Lakhanpal S, Ballal S, Kumar S, Bhat M, Sharma A, Ravi Kumar M, Sinha A, Gaidhane AM, Shabil M, Pratap Singh M, Sah S, Bhopte K, Kundra K, Kumar Samal S. Tuberculosis in South Asia: A regional analysis of burden, progress, and future projections using the global burden of disease (1990-2021). J Clin Tuberc Other Mycobact Dis 2024; 37:100480. [PMID: 39507205 PMCID: PMC11539151 DOI: 10.1016/j.jctube.2024.100480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024] Open
Abstract
Background Tuberculosis (TB) is a major public health issue in South Asia and accounts for a large share of the global TB burden. Despite global efforts to curb TB incidence and mortality, progress in South Asia has been uneven, necessitating focused regional analysis to guide effective interventions. This study aims to analyse the trends in the TB burden in South Asia from 1990 to 2021 and project future TB incidence rates up to 2031. Methods This study utilized data from the Global Burden of Disease (GBD) 2021 results to analyse trends in age-standardized incidence (ASIR), prevalence (ASPR), mortality (ASMR), and disability-adjusted life years (DALYs) rates (ASDR) associated with TB in South Asia from 1990 to 2021. Joinpoint regression analysis was employed to identify significant trends, whereas ARIMA models were used to project future TB incidence rates up to 2031. Results This study revealed significant declines in the ASIR, ASPR, ASDR, and ASMR related to TB in South Asia over the past three decades. Prominent reductions were found in Bangladesh and Bhutan, whereas India, Pakistan, and Nepal continue to bear the highest TB burdens. The ARIMA model projections indicate a continued decline in TB incidence across the region, although the extent of the decline varies by country, with less favourable trends observed in Nepal and Pakistan. The analysis also highlights tobacco use, high fasting plasma glucose, and high body mass index as significant risk factors contributing to the TB burden. Conclusions Substantial progress has been made in reducing the TB burden in South Asia; however, sustained and intensified efforts are needed, particularly in countries with inconsistent progress. These findings emphasize the need for targeted interventions to meet the WHO End TB Strategy (WETS) targets by 2035. Continuous monitoring and adaptive strategies will be crucial in maintaining and accelerating progress toward TB elimination in South Asia.
Collapse
Affiliation(s)
- Vijay Kumar
- Evidence for Policy and Learning, Global Center for Evidence Synthesis, Chandigarh, India
| | - Mahalaqua Nazli Khatib
- Division of Evidence Synthesis, Global Consortium of Public Health and Research, Datta Meghe Institute of Higher Education, Wardha, India
| | - Amit Verma
- Department of Medicine, Graphic Era Institute of Medical Sciences, Graphic Era (Deemed to be University), Clement Town, Dehradun, India
| | - Sorabh Lakhanpal
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Suhas Ballal
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Sanjay Kumar
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan 303012, India
| | - Mahakshit Bhat
- Department of Medicine, National Institute of Medical Sciences, NIMS University Rajasthan, Jaipur, India
| | - Aryantika Sharma
- Chandigarh Pharmacy College, Chandigarh Group of Colleges-Jhanjeri, Mohali 140307, Punjab, India
| | - M. Ravi Kumar
- Department of Chemistry, Raghu Engineering College, Visakhapatnam, Andhra Pradesh 531162, India
| | - Aashna Sinha
- Uttaranchal Institute of Pharmaceutical Sciences, Division of Research and Innovation, Uttaranchal University, India
| | - Abhay M. Gaidhane
- Jawaharlal Nehru Medical College, and Global Health Academy, School of Epidemiology and Public Health, Datta Meghe Institute of Higher Education, Wardha, India
| | - Muhammed Shabil
- University Center for Research and Development, Chandigarh University, Mohali 140413 Punjab, India
- Medical Laboratories Techniques Department, AL-Mustaqbal University, 51001 Hillah, Babil, Iraq
| | - Mahendra Pratap Singh
- Evidence for Policy and Learning, Global Center for Evidence Synthesis, Chandigarh, India
- Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Sanjit Sah
- SR Sanjeevani Hospital, Kalyanpur, Siraha 56517, Nepal
- Department of Paediatrics, Dr. D. Y. Patil Medical College, Hospital and Research Centre, Dr. D. Y. Patil Vidyapeeth, Pune 411018, Maharashtra, India
- Department of Public Health Dentistry, Dr. D.Y. Patil Dental College and Hospital, Dr. D.Y. Patil Vidyapeeth, Pune 411018, Maharashtra, India
| | - Kiran Bhopte
- IES Institute of Pharmacy, IES University, Bhopal, Madhya Pradesh 462044, India
| | | | - Shailesh Kumar Samal
- Unit of Immunology and Chronic Disease, Institute of Environmental Medicine, Karolinska Institutet, 17177 Stockholm, Sweden
| |
Collapse
|
4
|
Zhou K, Lu J. Progress in cytokine research for ARDS: A comprehensive review. Open Med (Wars) 2024; 19:20241076. [PMID: 39479463 PMCID: PMC11524396 DOI: 10.1515/med-2024-1076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 09/16/2024] [Accepted: 10/06/2024] [Indexed: 11/02/2024] Open
Abstract
Introduction Acute respiratory distress syndrome (ARDS) is a critical form of acute respiratory failure characterized by diffuse alveolar damage, refractory hypoxemia, and non-cardiogenic pulmonary edema, resulting in high mortality. Dysregulated inflammation, driven by cytokines, is central to ARDS pathogenesis, progression, and prognosis. Objective This review synthesizes current knowledge on the role of cytokines in ARDS and evaluates their potential as therapeutic targets, offering new insights for clinical management. Methods A comprehensive analysis of recent studies was conducted to explore the roles of pro-inflammatory cytokines (e.g., IL-1β, IL-6, IL-8) and anti-inflammatory cytokines (e.g., IL-10, IL-22) in ARDS pathogenesis and to assess current and emerging therapies targeting these cytokines. Results Pro-inflammatory cytokines are crucial in initiating inflammatory responses and lung injury in early ARDS, while anti-inflammatory cytokines help regulate and resolve inflammation. Targeted therapies, such as IL-1 and IL-6 inhibitors, show potential in managing ARDS, particularly in COVID-19, but their clinical efficacy is still debated. Combination therapy strategies may enhance outcomes, but further large-scale, multicenter randomized controlled trials are required to establish their safety and efficacy. Conclusion Understanding cytokine regulation in ARDS could lead to innovative therapeutic approaches. Future research should focus on cytokine roles across ARDS subtypes and stages and develop biomarker-driven, individualized treatments.
Collapse
Affiliation(s)
- Kaihuan Zhou
- Intensive Care Unit, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530007, China
| | - Junyu Lu
- Intensive Care Unit, The Second Affiliated Hospital of Guangxi Medical University, No. 166 Daxuedong Road, Nanning, Guangxi 530007, China
| |
Collapse
|
5
|
Zhu X, Meng L, Xu L, Hua Y, Feng J. Novel Therapeutic Target for ALI/ARDS: Forkhead Box Transcription Factors. Lung 2024; 202:513-522. [PMID: 39259274 DOI: 10.1007/s00408-024-00740-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/17/2024] [Indexed: 09/12/2024]
Abstract
ALI/ARDS can be a pulmonary manifestation of a systemic inflammatory response or a result of overexpression of the body's normal inflammatory response involving various effector cells, cytokines, and inflammatory mediators, which regulate the body's immune response through different signalling pathways. Forkhead box transcription factors are evolutionarily conserved transcription factors that play a crucial role in various cellular processes, such as cell cycle progression, proliferation, differentiation, migration, metabolism, and DNA damage response. Transcription factors control protein synthesis by regulating gene transcription levels, resulting in diverse biological outcomes. The Fox family plays a role in activating or inhibiting the expression of various molecules related to ALI/ARDS through phosphorylation, acetylation/deacetylation, and control of multiple signalling pathways. An in-depth analysis of the integrated Fox family's role in ALI/ARDS can aid in the development of potential diagnostic and therapeutic targets for the condition.
Collapse
Affiliation(s)
- Xi Zhu
- Department of Respiratory and Critical Care Medicine, Respiratory Disease Key Laboratory of Nantong, Affiliated Hospital of Nantong University, 20 Xi-Si Road, Nantong, 226001, Jiangsu, China
| | - Leyuan Meng
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital and Medical School of Nantong University, Nantong, 226001, Jiangsu, China
| | - Liqin Xu
- Department of Respiratory and Critical Care Medicine, Respiratory Disease Key Laboratory of Nantong, Affiliated Hospital of Nantong University, 20 Xi-Si Road, Nantong, 226001, Jiangsu, China
| | - Yun Hua
- Department of Respiratory and Critical Care Medicine, Respiratory Disease Key Laboratory of Nantong, Affiliated Hospital of Nantong University, 20 Xi-Si Road, Nantong, 226001, Jiangsu, China
| | - Jian Feng
- Department of Respiratory and Critical Care Medicine, Respiratory Disease Key Laboratory of Nantong, Affiliated Hospital of Nantong University, 20 Xi-Si Road, Nantong, 226001, Jiangsu, China.
| |
Collapse
|
6
|
Derrick SC, Yang A, Cowley S. Enhanced efficacy of BCG vaccine formulated in adjuvant is dependent on IL-17A expression. Tuberculosis (Edinb) 2024; 148:102540. [PMID: 39002310 DOI: 10.1016/j.tube.2024.102540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/26/2024] [Accepted: 07/05/2024] [Indexed: 07/15/2024]
Abstract
A new, more effective vaccine against tuberculosis (TB) is urgently needed to curtail the current TB problem. The only licensed vaccine, BCG, has been shown to have highly variable protective efficacy in several clinical trials ranging from zero to 80 % against TB disease. We have previously reported that BCG formulated in dimethyl dioctadecyl-ammonium bromide (DDA) with D-(+)-Trehalose 6,6'-Dibehenate (TDB) adjuvant (BCG + Adj) is significantly more protective than BCG alone following murine aerosol Mycobacterium tuberculosis infection. Here we investigate the immunological basis for this improved efficacy by examining expression of different immune markers and cytokines in the lungs of vaccinated mice after M. tuberculosis aerosol challenge. We found significantly greater numbers of pulmonary IL-17A-expressing CD4+ T cells in mice immunized with BCG+Adj as compared to nonvaccinated and BCG-immunized mice at one-month post-challenge and that the enhanced protection was abrogated in IL-17A-deficient mice. Furthermore, we found significantly higher levels of IL-17A, IL-12p40 and IL-33 expression in the lungs of BCG + Adj immunized animals relative to nonvaccinated mice after M. tuberculosis challenge. These results demonstrate that the DDA/TDB adjuvant increases expression of IL-17A in response to the BCG vaccine and that these augmented IL-17A levels enhance control of M. tuberculosis infection.
Collapse
Affiliation(s)
- Steven C Derrick
- Center for Biologics Evaluation and Research, United States Food and Drug Administration, Silver Spring, MD, USA.
| | - Amy Yang
- Center for Biologics Evaluation and Research, United States Food and Drug Administration, Silver Spring, MD, USA
| | - Siobhan Cowley
- Center for Biologics Evaluation and Research, United States Food and Drug Administration, Silver Spring, MD, USA
| |
Collapse
|
7
|
Ziaka M, Exadaktylos A. Gut-derived immune cells and the gut-lung axis in ARDS. Crit Care 2024; 28:220. [PMID: 38965622 PMCID: PMC11225303 DOI: 10.1186/s13054-024-05006-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 06/26/2024] [Indexed: 07/06/2024] Open
Abstract
The gut serves as a vital immunological organ orchestrating immune responses and influencing distant mucosal sites, notably the respiratory mucosa. It is increasingly recognized as a central driver of critical illnesses, with intestinal hyperpermeability facilitating bacterial translocation, systemic inflammation, and organ damage. The "gut-lung" axis emerges as a pivotal pathway, where gut-derived injurious factors trigger acute lung injury (ALI) through the systemic circulation. Direct and indirect effects of gut microbiota significantly impact immune responses. Dysbiosis, particularly intestinal dysbiosis, termed as an imbalance of microbial species and a reduction in microbial diversity within certain bodily microbiomes, influences adaptive immune responses, including differentiating T regulatory cells (Tregs) and T helper 17 (Th17) cells, which are critical in various lung inflammatory conditions. Additionally, gut and bone marrow immune cells impact pulmonary immune activity, underscoring the complex gut-lung interplay. Moreover, lung microbiota alterations are implicated in diverse gut pathologies, affecting local and systemic immune landscapes. Notably, lung dysbiosis can reciprocally influence gut microbiota composition, indicating bidirectional gut-lung communication. In this review, we investigate the pathophysiology of ALI/acute respiratory distress syndrome (ARDS), elucidating the role of immune cells in the gut-lung axis based on recent experimental and clinical research. This exploration aims to enhance understanding of ALI/ARDS pathogenesis and to underscore the significance of gut-lung interactions in respiratory diseases.
Collapse
Affiliation(s)
- Mairi Ziaka
- Clinic of Geriatric Medicine, Center of Geriatric Medicine and Rehabilitation, Kantonsspital Baselland, Bruderholz, Switzerland.
- Department of Emergency Medicine, Inselspital, University Hospital, University of Bern, Bern, Switzerland.
| | - Aristomenis Exadaktylos
- Department of Emergency Medicine, Inselspital, University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
8
|
Song J, Dai J, Chen X, Ding F, Ding Y, Ma L, Zhang L. Bifidobacterium mitigates autoimmune hepatitis by regulating IL-33-induced Treg/Th17 imbalance via the TLR2/4 signaling pathway. Histol Histopathol 2024; 39:623-632. [PMID: 37916940 DOI: 10.14670/hh-18-669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
The present work aims to evaluate the efficacy of Live Combined Bifidobacterium, Lactobacillus and Enterococcus Capsules (LCBLECs), a probiotic drug containing Bifidobacterium, in the treatment of autoimmune hepatitis (AIH). In this study, a mouse model of experimental autoimmune hepatitis (EAH) was established to investigate the effects of LCBLECs on AIH. The results showed that LCBLECs improved dysbiosis of gut microbiota, reduced liver injury, restored liver function, and maintained Treg/Th17 balance in EAH mice. In addition, LCBLECs restored Treg/Th17 balance in EAH mice by downregulating IL-33 production. Besides, LCBLECs also suppress IL-33 upregulation in EAH mice by inhibiting the TLR2/4 signaling pathway. Furthermore, LCBLECs also mitigated dysbiosis of gut microbiota and enhanced the efficacy of conventional treatment for AIH patients. To sum up, our findings revealed that LCBLECs exerted therapeutic effects on EAH mice by improving Treg/Th17 imbalance in an IL-33-dependent manner via the TLR2/4 signaling pathway and relieved the clinical symptoms of AIH patients, indicating Bifidobacterium supplementation with LCBLECs might be a potential adjuvant therapy for AIH treatment.
Collapse
Affiliation(s)
- Jianguo Song
- Department of Gastroenterology, The Fifth People's Hospital of Xinjiang Uygur Autonomous Region, Xin Jiang, China
- Department of Gastroenterology, The First People's Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Juan Dai
- Department of Gastroenterology, The First People's Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Xueping Chen
- Department of Gastroenterology, The People's Hospital of Wuqia, Xinjiang, China
| | - Fei Ding
- Department of Gastroenterology, The First People's Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Yanbo Ding
- Department of Gastroenterology, The First People's Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Liang Ma
- Department of Gastroenterology, The First People's Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Department of Gastroenterology, The Fifth People's Hospital of Xinjiang Uygur Autonomous Region, Xin Jiang, China.
| | - Liwen Zhang
- Department of Pediatrics, the Second People's Hospital of Changzhou, Affiliated Hospital of Nanjing Medical University, Changzhou, Jiangsu, China.
| |
Collapse
|
9
|
Wei S, Ling D, Zhong J, Chang R, Ling X, Chen Z, Duan R. Elk1 enhances inflammatory cell infiltration and exacerbates acute lung injury/acute respiratory distress syndrome by suppressing Fcgr2b transcription. Mol Med 2024; 30:53. [PMID: 38649840 PMCID: PMC11034135 DOI: 10.1186/s10020-024-00820-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 04/16/2024] [Indexed: 04/25/2024] Open
Abstract
OBJECTIVE Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are associated with significant mortality rates. The role of Fcgr2b in the pathogenesis of ALI/ARDS is not fully elucidated. This study aimed to investigate the functions of Fcgr2b in ALI/ARDS and explore its underlying mechanisms. METHODS Methods: In this study, rat models of ARDS and pulmonary microvascular endothelial cell (PMVEC) injury models were established through the administration of lipopolysaccharide (LPS). The expression levels of Fcgr2b and Elk1 were quantified in both LPS-induced ARDS rats and PMVECs. Subsequent gain- and loss-of-function experiments were conducted, followed by comprehensive assessments of lung tissue for pathomorphological changes, edema, glycogen storage, fibrosis, and infiltration of inflammatory cells. Additionally, bronchoalveolar lavage fluid was analyzed for T-helper 17 (Th17) cell infiltration, inflammatory response, and microvascular permeability to evaluate lung injury severity in ARDS models. Furthermore, the activity, cytotoxicity, apoptosis, and angiogenic potential of PMVECs were assessed to gauge cell injury. The interaction between Elk1 and Fcgr2b was also examined to confirm their regulatory relationship. RESULTS In the context of LPS-induced ARDS and PMVEC injury, Fcgr2b expression was markedly reduced, whereas Elk1 expression was elevated. Overexpression of Fcgr2b led to a decrease in Th17 cell infiltration and mitigated lung tissue damage in ARDS models, in addition to reducing LPS-induced injury in PMVECs. Elk1 was found to suppress Fcgr2b transcription through the recruitment of histone 3 lysine 9 trimethylation (H3K9me3). Knockdown of Elk1 diminished Th17 cell infiltration and lung tissue damage in ARDS models, and alleviated LPS-induced injury in PMVECs, effects that were reversed upon Fcgr2b upregulation. CONCLUSION Elk1 negatively regulates Fcgr2b transcription, thereby augmenting the inflammatory response and exacerbating lung injury in LPS-induced ALI/ARDS.
Collapse
Affiliation(s)
- Shiyou Wei
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
- Outcomes Research Consortium, Cleveland, OH, USA
| | - Dandan Ling
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Outcomes Research Consortium, Cleveland, OH, USA
| | - Jingui Zhong
- Department of General Surgery, Zhabei Central Hospital of Jing'an District, Shanghai, 200070, China
| | - Rui Chang
- Medical department, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Xinyu Ling
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Zhigang Chen
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Ruowang Duan
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China.
| |
Collapse
|
10
|
Liu X, Chen L, Peng W, Deng H, Ni H, Tong H, Hu H, Wang S, Qian J, Liang A, Chen K. Th17/Treg balance: the bloom and wane in the pathophysiology of sepsis. Front Immunol 2024; 15:1356869. [PMID: 38558800 PMCID: PMC10978743 DOI: 10.3389/fimmu.2024.1356869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 02/20/2024] [Indexed: 04/04/2024] Open
Abstract
Sepsis is a multi-organ dysfunction characterized by an unregulated host response to infection. It is associated with high morbidity, rapid disease progression, and high mortality. Current therapies mainly focus on symptomatic treatment, such as blood volume supplementation and antibiotic use, but their effectiveness is limited. Th17/Treg balance, based on its inflammatory property, plays a crucial role in determining the direction of the inflammatory response and the regression of organ damage in sepsis patients. This review provides a summary of the changes in T-helper (Th) 17 cell and regulatory T (Treg) cell differentiation and function during sepsis, the heterogeneity of Th17/Treg balance in the inflammatory response, and the relationship between Th17/Treg balance and organ damage. Th17/Treg balance exerts significant control over the bloom and wanes in host inflammatory response throughout sepsis.
Collapse
Affiliation(s)
- Xinyong Liu
- Department of Critical Care Medicine, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Longwang Chen
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wei Peng
- Department of Critical Care Medicine, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Hongsheng Deng
- Department of Critical Care Medicine, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Hongying Ni
- Department of Critical Care Medicine, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Hongjie Tong
- Department of Critical Care Medicine, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Hangbo Hu
- Department of Critical Care Medicine, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Shengchao Wang
- Department of Critical Care Medicine, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Jin Qian
- Department of Critical Care Medicine, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Andong Liang
- Nursing Faculty, School of Medicine, Jinhua Polytechnic, Jinhua, China
| | - Kun Chen
- Department of Critical Care Medicine, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| |
Collapse
|
11
|
Loinjak D, Mihić D, Smolić R, Maričić L, Šahinović I, Smolić M, Sikora R, Loinjak S, Dinjar K, Včev A. The Correlation of Serum Calpain 1 Activity and Concentrations of Interleukin 33 in COVID-19 Acute Respiratory Distress Syndrome. Biomedicines 2023; 11:1847. [PMID: 37509486 PMCID: PMC10376760 DOI: 10.3390/biomedicines11071847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 06/24/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
Acute respiratory distress syndrome (ARDS) is one of the most severe complications of the COVID-19 disease. The role of IL-33 and calpain 1 was previously described in lung infections and lung tissue damage. Our study examined the association between serum calpain 1 activity and IL-33 concentration in patients with COVID-19 ARDS. In the research, we included 80 subjects who had COVID-19 pneumonia and divided them into 2 groups: 40 subjects with ARDS and 40 subjects without ARDS. The basis of the research was the collection of subjects' data and the sampling of peripheral venous blood. The concentration of IL-33 was determined by the ELISA method and the activity of calpain 1 by the fluorometry method. Our research showed elevated calpain 1 activity and IL-33 concentration in the serum of COVID-19 patients who developed ARDS compared to those who did not develop ARDS and a positive correlation between them was established. Further, a positive correlation was established between the examined parameters and the severity of the disease, proinflammatory markers, and the use of mechanical ventilation. These results indicate a possible association and role of calpain 1 and IL-33 with the development of ARDS in COVID-19 patients.
Collapse
Affiliation(s)
- Domagoj Loinjak
- Faculty of Medicine, University J. J. Strossmayer in Osijek, 31000 Osijek, Croatia
- Department of Pulmology and Intensive Care Medicine, University Hospital Centre Osijek, 31000 Osijek, Croatia
| | - Damir Mihić
- Faculty of Medicine, University J. J. Strossmayer in Osijek, 31000 Osijek, Croatia
- Department of Pulmology and Intensive Care Medicine, University Hospital Centre Osijek, 31000 Osijek, Croatia
| | - Robert Smolić
- Faculty of Dental Medicine and Health Osijek, University J. J. Strossmayer in Osijek, 31000 Osijek, Croatia
| | - Lana Maričić
- Faculty of Medicine, University J. J. Strossmayer in Osijek, 31000 Osijek, Croatia
- Department of Heart and Vascular Diseases, University Hospital Centre Osijek, 31000 Osijek, Croatia
| | - Ines Šahinović
- Faculty of Medicine, University J. J. Strossmayer in Osijek, 31000 Osijek, Croatia
- Department of Clinical Laboratory Diagnostics, University Hospital Centre Osijek, 31000 Osijek, Croatia
| | - Martina Smolić
- Faculty of Dental Medicine and Health Osijek, University J. J. Strossmayer in Osijek, 31000 Osijek, Croatia
| | - Renata Sikora
- Faculty of Dental Medicine and Health Osijek, University J. J. Strossmayer in Osijek, 31000 Osijek, Croatia
| | - Sanja Loinjak
- Faculty of Dental Medicine and Health Osijek, University J. J. Strossmayer in Osijek, 31000 Osijek, Croatia
- Department of Maxillofacial and Oral Surgery, University Hospital Centre Osijek, 31000 Osijek, Croatia
| | - Kristijan Dinjar
- Faculty of Medicine, University J. J. Strossmayer in Osijek, 31000 Osijek, Croatia
- Department of Maxillofacial and Oral Surgery, University Hospital Centre Osijek, 31000 Osijek, Croatia
| | - Aleksandar Včev
- Faculty of Dental Medicine and Health Osijek, University J. J. Strossmayer in Osijek, 31000 Osijek, Croatia
| |
Collapse
|
12
|
Th17/Treg Imbalance: Implications in Lung Inflammatory Diseases. Int J Mol Sci 2023; 24:ijms24054865. [PMID: 36902294 PMCID: PMC10003150 DOI: 10.3390/ijms24054865] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
Regulatory T cells (Tregs) and T helper 17 cells (Th17) are two CD4+ T cell subsets with antagonist effects. Th17 cells promote inflammation, whereas Tregs are crucial in maintaining immune homeostasis. Recent studies suggest that Th17 cells and Treg cells are the foremost players in several inflammatory diseases. In this review, we explore the present knowledge on the role of Th17 cells and Treg cells, focusing on lung inflammatory diseases, such as chronic obstructive pulmonary disease (COPD), acute respiratory distress syndrome (ARDS), sarcoidosis, asthma, and pulmonary infectious diseases.
Collapse
|