1
|
Vijayakumar A, Wang M, Kailasam S. The Senescent Heart-"Age Doth Wither Its Infinite Variety". Int J Mol Sci 2024; 25:3581. [PMID: 38612393 PMCID: PMC11011282 DOI: 10.3390/ijms25073581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/10/2024] [Accepted: 03/19/2024] [Indexed: 04/14/2024] Open
Abstract
Cardiovascular diseases are a leading cause of morbidity and mortality world-wide. While many factors like smoking, hypertension, diabetes, dyslipidaemia, a sedentary lifestyle, and genetic factors can predispose to cardiovascular diseases, the natural process of aging is by itself a major determinant of the risk. Cardiac aging is marked by a conglomerate of cellular and molecular changes, exacerbated by age-driven decline in cardiac regeneration capacity. Although the phenotypes of cardiac aging are well characterised, the underlying molecular mechanisms are far less explored. Recent advances unequivocally link cardiovascular aging to the dysregulation of critical signalling pathways in cardiac fibroblasts, which compromises the critical role of these cells in maintaining the structural and functional integrity of the myocardium. Clearly, the identification of cardiac fibroblast-specific factors and mechanisms that regulate cardiac fibroblast function in the senescent myocardium is of immense importance. In this regard, recent studies show that Discoidin domain receptor 2 (DDR2), a collagen-activated receptor tyrosine kinase predominantly located in cardiac fibroblasts, has an obligate role in cardiac fibroblast function and cardiovascular fibrosis. Incisive studies on the molecular basis of cardiovascular aging and dysregulated fibroblast function in the senescent heart would pave the way for effective strategies to mitigate cardiovascular diseases in a rapidly growing elderly population.
Collapse
Affiliation(s)
- Anupama Vijayakumar
- Cardiovascular Genetics Laboratory, Department of Biotechnology, Bhupat and Jyothi Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India;
| | - Mingyi Wang
- Laboratory of Cardiovascular Science, National Institute on Aging/National Institutes of Health, Baltimore, MD 21224, USA;
| | - Shivakumar Kailasam
- Department of Biotechnology, University of Kerala, Kariavattom, Trivandrum 695581, India
| |
Collapse
|
2
|
Belosludtseva NV, Pavlik LL, Mikheeva IB, Talanov EY, Serov DA, Khurtin DA, Belosludtsev KN, Mironova GD. Protective Effect of Uridine on Structural and Functional Rearrangements in Heart Mitochondria after a High-Dose Isoprenaline Exposure Modelling Stress-Induced Cardiomyopathy in Rats. Int J Mol Sci 2023; 24:17300. [PMID: 38139129 PMCID: PMC10744270 DOI: 10.3390/ijms242417300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/05/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
The pyrimidine nucleoside uridine and its phosphorylated derivates have been shown to be involved in the systemic regulation of energy and redox balance and promote the regeneration of many tissues, including the myocardium, although the underlying mechanisms are not fully understood. Moreover, rearrangements in mitochondrial structure and function within cardiomyocytes are the predominant signs of myocardial injury. Accordingly, this study aimed to investigate whether uridine could alleviate acute myocardial injury induced by isoprenaline (ISO) exposure, a rat model of stress-induced cardiomyopathy, and to elucidate the mechanisms of its action related to mitochondrial dysfunction. For this purpose, a biochemical analysis of the relevant serum biomarkers and ECG monitoring were performed in combination with transmission electron microscopy and a comprehensive study of cardiac mitochondrial functions. The administration of ISO (150 mg/kg, twice with an interval of 24 h, s.c.) to rats caused myocardial degenerative changes, a sharp increase in the serum cardiospecific markers troponin I and the AST/ALT ratio, and a decline in the ATP level in the left ventricular myocardium. In parallel, alterations in the organization of sarcomeres with focal disorganization of myofibrils, and ultrastructural and morphological defects in mitochondria, including disturbances in the orientation and packing density of crista membranes, were detected. These malfunctions were improved by pretreatment with uridine (30 mg/kg, twice with an interval of 24 h, i.p.). Uridine also led to the normalization of the QT interval. Moreover, uridine effectively inhibited ISO-induced ROS overproduction and lipid peroxidation in rat heart mitochondria. The administration of uridine partially recovered the protein level of the respiratory chain complex V, along with the rates of ATP synthesis and mitochondrial potassium transport, suggesting the activation of the potassium cycle through the mitoKATP channel. Taken together, these results indicate that uridine ameliorates acute ISO-induced myocardial injury and mitochondrial malfunction, which may be due to the activation of mitochondrial potassium recycling and a mild uncoupling leading to decreased ROS generation and oxidative damage.
Collapse
Affiliation(s)
- Natalia V. Belosludtseva
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, 142290 Pushchino, Russia; (L.L.P.); (I.B.M.); (E.Y.T.); (K.N.B.)
| | - Lubov L. Pavlik
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, 142290 Pushchino, Russia; (L.L.P.); (I.B.M.); (E.Y.T.); (K.N.B.)
| | - Irina B. Mikheeva
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, 142290 Pushchino, Russia; (L.L.P.); (I.B.M.); (E.Y.T.); (K.N.B.)
| | - Eugeny Yu. Talanov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, 142290 Pushchino, Russia; (L.L.P.); (I.B.M.); (E.Y.T.); (K.N.B.)
| | - Dmitriy A. Serov
- Prokhorov General Physics Institute, Russian Academy of Sciences, Vavilov St. 38, 119991 Moscow, Russia;
| | - Dmitriy A. Khurtin
- Department of Biochemistry, Cell Biology and Microbiology, Mari State University, pl. Lenina 1, 424001 Yoshkar-Ola, Russia;
| | - Konstantin N. Belosludtsev
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, 142290 Pushchino, Russia; (L.L.P.); (I.B.M.); (E.Y.T.); (K.N.B.)
- Department of Biochemistry, Cell Biology and Microbiology, Mari State University, pl. Lenina 1, 424001 Yoshkar-Ola, Russia;
| | - Galina D. Mironova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, 142290 Pushchino, Russia; (L.L.P.); (I.B.M.); (E.Y.T.); (K.N.B.)
| |
Collapse
|
3
|
Díaz-Rosas G, Cruz-Hernández M, Ortega-Camarillo C, Pedraza-Galeana A, López-Torres A, Contreras-Ramos A. The sodium borate relieves the hypertrophic damage induced during pregnancy, it improves contractibility, reduces oxidative stress and stimulates cell proliferation. J Trace Elem Med Biol 2023; 80:127269. [PMID: 37506468 DOI: 10.1016/j.jtemb.2023.127269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 07/13/2023] [Accepted: 07/23/2023] [Indexed: 07/30/2023]
Abstract
INTRODUCTION Fetal and postnatal hypertrophy develop in response to such different exposures or illnesses the mother suffers during gestation as anti-infectious and physical agents, obesity, hypertension, diabetes, and even advanced maternal age. This gives rise to high comorbidities in the newborn; therefore, looking for alternatives that contribute to cardiac homeostasis is quite necessary to inhibit the overgrowth of myocytes. Boron-derivative compounds could play a key role in exerting a repairing effect on chronic cardiac damage induced during gestation. METHODOLOGY The cardiotoxic effect of 6.4, 12 and 100 mg/kg of sodium tetraborate administered by oral delivery route to healthy pregnant mice was assessed. After that, the use of the chemical compound was tested in the treatment of pregnant mice previously subjected to isoproterenol (fetal hypertrophy model) on the fifth day post coitus. Prior to the sacrifice of the pups of mice an electrocardiography (ECG) was done. Morphological and histological changes of heart were assessed in newborn pups. As a damage marker, the concentration of p38 nitrogen-activated protein kinases were evaluated by using Western Blot and the levels of malondialdehyde (MDA) as well as glutathione antioxidants (GSH) and glutathione peroxidase (GPx) were tested by spectrometry. Moreover, the mRNA expression for early response genes (c-jun, c-fos y c-myc), late response (GATA-4, Mef2c, NFAT) and heart damage (ANP and BNP) was measured by qPCR real time. RESULTS The supply of 6,4 and 12 mg/kg-sodium tetraborate favored ventricular remodeling with histological alterations. By comparison, 100 mg/kg of sodium tetraborate administered during the fetal stage did not alter neither the cardiac morphology of six-week old pups nor the p38/P-p38MAPK ratio remained the same and no oxidative stress was observed. When pregnant females treated with isoproterenol were treated with 100 mg/kg sodium tetraborate during the fetal stage, an improvement in contractility was detected in the pups with an actual reduction in myocardial fibrosis and oxidative stress, but cardiac mass increased. In addition, the expression levels of c-jun, c-myc, GATA-4, MEF2c and ANP mRNA declined in comparison with CTR. However, the hypertrophic damage mechanism was sustained by c-fos, NFAT and BNP expressions. CONCLUSIONS The set of results achieved suggests that high concentrations of sodium tetraborate have no cardiotoxic effects. Furthermore, sodium tetraborate mitigates hypertrophy induced during pregnancy, thereby improving contractibility, reducing oxidative stress and stimulating cell proliferation. Therefore, sodium tetraborate could be an excellent prophylactic treatment administered by delivery oral route during pregnancy when there is a risk of developing fetal left ventricular hypertrophy (LVH).
Collapse
Affiliation(s)
- Guadalupe Díaz-Rosas
- Laboratory of Molecular Biology in Congenital Malformations Unit. Children's Hospital of Mexico Federico Gomez (HIMFG), Mexico City, Mexico
| | - Mayra Cruz-Hernández
- Laboratory of Molecular Biology in Congenital Malformations Unit. Children's Hospital of Mexico Federico Gomez (HIMFG), Mexico City, Mexico; Medical Research Unit in Biochemistry, Specialties Hospital, National Medical Center SXXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc 330, Col. Doctores, Del. Cuauhtémoc CP, 06720 CDMX, Mexico
| | - Clara Ortega-Camarillo
- Medical Research Unit in Biochemistry, Specialties Hospital, National Medical Center SXXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc 330, Col. Doctores, Del. Cuauhtémoc CP, 06720 CDMX, Mexico
| | - Agustín Pedraza-Galeana
- Laboratory of Molecular Biology in Congenital Malformations Unit. Children's Hospital of Mexico Federico Gomez (HIMFG), Mexico City, Mexico
| | - Adolfo López-Torres
- Center for Scientific Research, Institute of Applied Chemistry, University of Papaloapan, Central Circuit No. 200, Col. Parque Industrial, 68301 Tuxtepec, Oaxaca, Mexico
| | - Alejandra Contreras-Ramos
- Laboratory of Molecular Biology in Congenital Malformations Unit. Children's Hospital of Mexico Federico Gomez (HIMFG), Mexico City, Mexico.
| |
Collapse
|
4
|
Martin TG, Juarros MA, Leinwand LA. Regression of cardiac hypertrophy in health and disease: mechanisms and therapeutic potential. Nat Rev Cardiol 2023; 20:347-363. [PMID: 36596855 PMCID: PMC10121965 DOI: 10.1038/s41569-022-00806-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/08/2022] [Indexed: 01/05/2023]
Abstract
Left ventricular hypertrophy is a leading risk factor for cardiovascular morbidity and mortality. Although reverse ventricular remodelling was long thought to be irreversible, evidence from the past three decades indicates that this process is possible with many existing heart disease therapies. The regression of pathological hypertrophy is associated with improved cardiac function, quality of life and long-term health outcomes. However, less than 50% of patients respond favourably to most therapies, and the reversibility of remodelling is influenced by many factors, including age, sex, BMI and disease aetiology. Cardiac hypertrophy also occurs in physiological settings, including pregnancy and exercise, although in these cases, hypertrophy is associated with normal or improved ventricular function and is completely reversible postpartum or with cessation of training. Studies over the past decade have identified the molecular features of hypertrophy regression in health and disease settings, which include modulation of protein synthesis, microRNAs, metabolism and protein degradation pathways. In this Review, we summarize the evidence for hypertrophy regression in patients with current first-line pharmacological and surgical interventions. We further discuss the molecular features of reverse remodelling identified in cell and animal models, highlighting remaining knowledge gaps and the essential questions for future investigation towards the goal of designing specific therapies to promote regression of pathological hypertrophy.
Collapse
Affiliation(s)
- Thomas G Martin
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA
| | - Miranda A Juarros
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA
| | - Leslie A Leinwand
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO, USA.
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA.
| |
Collapse
|
5
|
Ho BX, Pang JKS, Chen Y, Loh YH, An O, Yang HH, Seshachalam VP, Koh JLY, Chan WK, Ng SY, Soh BS. Robust generation of human-chambered cardiac organoids from pluripotent stem cells for improved modelling of cardiovascular diseases. Stem Cell Res Ther 2022; 13:529. [PMID: 36544188 PMCID: PMC9773542 DOI: 10.1186/s13287-022-03215-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Tissue organoids generated from human pluripotent stem cells are valuable tools for disease modelling and to understand developmental processes. While recent progress in human cardiac organoids revealed the ability of these stem cell-derived organoids to self-organize and intrinsically formed chamber-like structure containing a central cavity, it remained unclear the processes involved that enabled such chamber formation. METHODS Chambered cardiac organoids (CCOs) differentiated from human embryonic stem cells (H7) were generated by modulation of Wnt/ß-catenin signalling under fully defined conditions, and several growth factors essential for cardiac progenitor expansion. Transcriptomic profiling of day 8, day 14 and day 21 CCOs was performed by quantitative PCR and single-cell RNA sequencing. Endothelin-1 (EDN1) known to induce oxidative stress in cardiomyocytes was used to induce cardiac hypertrophy in CCOs in vitro. Functional characterization of cardiomyocyte contractile machinery was performed by immunofluorescence staining and analysis of brightfield and fluorescent video recordings. Quantitative PCR values between groups were compared using two-tailed Student's t tests. Cardiac organoid parameters comparison between groups was performed using two-tailed Mann-Whitney U test when sample size is small; otherwise, Welch's t test was used. Comparison of calcium kinetics parameters derived from the fluorescent data was performed using two-tailed Student's t tests. RESULTS Importantly, we demonstrated that a threshold number of cardiac progenitor was essential to line the circumference of the inner cavity to ensure proper formation of a chamber within the organoid. Single-cell RNA sequencing revealed improved maturation over a time course, as evidenced from increased mRNA expression of cardiomyocyte maturation genes, ion channel genes and a metabolic shift from glycolysis to fatty acid ß-oxidation. Functionally, CCOs recapitulated clinical cardiac hypertrophy by exhibiting thickened chamber walls, reduced fractional shortening, and increased myofibrillar disarray upon treatment with EDN1. Furthermore, electrophysiological assessment of calcium transients displayed tachyarrhythmic phenotype observed as a consequence of rapid depolarization occurring prior to a complete repolarization. CONCLUSIONS Our findings shed novel insights into the role of progenitors in CCO formation and pave the way for the robust generation of cardiac organoids, as a platform for future applications in disease modelling and drug screening in vitro.
Collapse
Affiliation(s)
- Beatrice Xuan Ho
- grid.418812.60000 0004 0620 9243Disease Modelling and Therapeutics Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive Proteos, Singapore, 138673 Singapore ,grid.4280.e0000 0001 2180 6431Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore, 117543 Singapore
| | - Jeremy Kah Sheng Pang
- grid.418812.60000 0004 0620 9243Disease Modelling and Therapeutics Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive Proteos, Singapore, 138673 Singapore ,grid.4280.e0000 0001 2180 6431Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore, 117543 Singapore
| | - Ying Chen
- grid.4280.e0000 0001 2180 6431Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore, 117543 Singapore ,grid.4280.e0000 0001 2180 6431Integrative Sciences and Engineering Programme, National University of Singapore, 21 Lower Kent Ridge Road, Singapore, 119077 Singapore ,grid.418812.60000 0004 0620 9243Epigenetics and Cell Fates Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive Proteos, Singapore, 138673 Singapore
| | - Yuin-Han Loh
- grid.4280.e0000 0001 2180 6431Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore, 117543 Singapore ,grid.418812.60000 0004 0620 9243Epigenetics and Cell Fates Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive Proteos, Singapore, 138673 Singapore
| | - Omer An
- grid.4280.e0000 0001 2180 6431Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Singapore, 117599 Singapore
| | - Henry He Yang
- grid.4280.e0000 0001 2180 6431Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Singapore, 117599 Singapore
| | - Veerabrahma Pratap Seshachalam
- grid.510300.7Computational Phenomics Group, Experimental Drug Development Centre (EDDC), Agency for Science, Technology and Research (A*STAR), Singapore, 138670 Singapore
| | - Judice L. Y. Koh
- grid.510300.7Computational Phenomics Group, Experimental Drug Development Centre (EDDC), Agency for Science, Technology and Research (A*STAR), Singapore, 138670 Singapore
| | - Woon-Khiong Chan
- grid.4280.e0000 0001 2180 6431Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore, 117543 Singapore
| | - Shi Yan Ng
- grid.418812.60000 0004 0620 9243Neurotherapeutics Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive Proteos, Singapore, 138673 Singapore ,grid.4280.e0000 0001 2180 6431Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Drive, Singapore, 117456 Singapore ,grid.276809.20000 0004 0636 696XNational Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore, 308433 Singapore
| | - Boon Seng Soh
- grid.418812.60000 0004 0620 9243Disease Modelling and Therapeutics Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive Proteos, Singapore, 138673 Singapore ,grid.4280.e0000 0001 2180 6431Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore, 117543 Singapore
| |
Collapse
|
6
|
Karayiğit O, Nurkoç SG, Çelik MC. Systemic immune-inflammation index (SII) may be an effective indicator in predicting the left ventricular hypertrophy for patients diagnosed with hypertension. J Hum Hypertens 2022; 37:379-385. [PMID: 36175554 DOI: 10.1038/s41371-022-00755-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 08/24/2022] [Accepted: 09/12/2022] [Indexed: 11/09/2022]
Abstract
The development of left ventricular hypertrophy (LVH) induced by hypertension is considered a poor prognosis for patients. Similarly, high values of the systemic immune-inflammation index (SII) are correlated with high mortality and morbidity in cardiovascular events. Within this context, our study aimed to detect the association of SII with LVH caused by hypertension. The study included 150 patients diagnosed with hypertension in total and evaluated them as two separate groups with regard to left ventricular mass index (LVMI), including 56 patients (37.3%) with LVH and 94 patients (62.6%) with non-LVH. SII was calculated as platelet × neutrophil/lymphocyte counts. The SII values regarding the group with LVH were detected remarkably higher than those of the non-LVH group (p < 0.001). Additionally, the SII levels of patients with eccentric and concentric hypertrophy were detected higher than those of the normal ventricular geometry and concentric remodeling groups. About curve analysis of the receiver-operating characteristic (ROC), SII values above 869.5 predicted LVH with a sensitivity of 82.1% and specificity of 86.2% (AUC: 0.861; 95% CI: 0.792-0.930; p < 0.001). LVH can be predicted independently through the use of SII in patients diagnosed with hypertension, which may be a simple and easily calculable marker for judging LVH. Moreover, SII can serve as an accurate determinant for the prediction of LVH, in comparison to NLR and PLR.
Collapse
Affiliation(s)
- Orhan Karayiğit
- Department of Cardiology, Yozgat City Hospital, Yozgat, Turkey.
| | | | - Muhammet Cihat Çelik
- Department of Cardiology, Hitit University Erol Olçok Education and Research Hospital, Corum, Turkey.
| |
Collapse
|
7
|
Kishta MS, Ahmed HH, Ali MAM, Aglan HA, Mohamed MR. Mesenchymal stem cells seeded onto nanofiber scaffold for myocardial regeneration. Biotech Histochem 2021; 97:322-333. [PMID: 34607472 DOI: 10.1080/10520295.2021.1979251] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Cardiac disease is the leading cause of mortality and disability worldwide. We investigated the role of undifferentiated adipose tissue-derived mesenchymal stem cells (ADMSC) alone and ADMSC seeded onto the electro-spun nanofibers (NF) for reconstructing damaged cardiac tissue in isoprenaline-induced myocardial infarction (MI) in rats. ADMSC were sorted by morphological appearance and by detection of cluster of differentiation (CD) surface antigens. The therapeutic potential of ADMSC for treating MI was evaluated by electrocardiogram (ECG), biochemical analysis, molecular genetic analysis and histological examination. Treatment of MI-challenged rats with ADMSC improved ECG findings, which were corroborated by significant decreases in serum lactate dehydrogenase (LDH) and creatine kinase-MB (CK-MB) enzyme activities together with reduced serum troponin T (cTnT) and connexin 43 (Cx43) levels. MI model rats treated with ADMSC exhibited a significant increase in serum alpha sarcomeric actin (Actn) and GATA binding protein 4 (GATA4), and NK2 homeobox 5 (NKX2.5) gene expression was decreased following treatment with ADMSC. ADMSC also ameliorated damage to cardiac tissue. The effects of ADMSC seeded onto NF were superior to those of ADMSC alone. ADMSC may be useful for mitigation of MI.
Collapse
Affiliation(s)
- Mohamed S Kishta
- Hormones Department, Medical Research Division, National Research Centre, Giza, Egypt.,Stem Cell Lab, Center of Excellence for Advanced Sciences, National Research Centre, Giza, Egypt
| | - Hanaa H Ahmed
- Hormones Department, Medical Research Division, National Research Centre, Giza, Egypt.,Stem Cell Lab, Center of Excellence for Advanced Sciences, National Research Centre, Giza, Egypt
| | - Mohamed A M Ali
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Hadeer A Aglan
- Hormones Department, Medical Research Division, National Research Centre, Giza, Egypt.,Stem Cell Lab, Center of Excellence for Advanced Sciences, National Research Centre, Giza, Egypt
| | | |
Collapse
|
8
|
Changes in miR 21 and 23b expression in postnatal hypertrophic heart derived from gestational diabetes precede dilated cardiomyopathy. J Biosci 2021. [DOI: 10.1007/s12038-021-00201-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
9
|
A bioinformatics approach for identifying potential molecular mechanisms and key genes involved in COVID-19 associated cardiac remodeling. GENE REPORTS 2021; 24:101246. [PMID: 34131597 PMCID: PMC8192842 DOI: 10.1016/j.genrep.2021.101246] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 06/03/2021] [Indexed: 02/06/2023]
Abstract
In 2019 coronavirus disease (COVID-19), whose main complication is respiratory involvement, different organs may also be affected in severe cases. However, COVID-19 associated cardiovascular manifestations are limited at present. The main purpose of this study was to identify potential candidate genes involved in COVID-19-associated heart damage by bioinformatics analysis. Differently expressed genes (DEGs) were identified using transcriptome profiles (GSE150392 and GSE4172) downloaded from the GEO database. After gene and pathway enrichment analyses, PPI network visualization, module analyses, and hub gene extraction were performed using Cytoscape software. A total of 228 (136 up and 92 downregulated) overlapping DEGs were identified at these two microarray datasets. Finally, the top hub genes (FGF2, JUN, TLR4, and VEGFA) were screened out as the critical genes among the DEGs from the PPI network. Identification of critical genes and mechanisms in any disease can lead us to better diagnosis and targeted therapy. Our findings identified core genes shared by inflammatory cardiomyopathy and SARS-CoV-2. The findings of the current study support the idea that these key genes can be used in understanding and managing the long-term cardiovascular effects of COVID-19.
Collapse
|
10
|
Chen Y, Song D, Gao J, Zhang X, Chen X. Circ-Zfp644 acts as a pro-hypertrophic mediator in an Ang-II induced in vitro myocardial hypertrophy model. Cell Biol Int 2021; 45:1260-1268. [PMID: 33559936 DOI: 10.1002/cbin.11569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 12/09/2020] [Accepted: 02/07/2021] [Indexed: 12/23/2022]
Abstract
Cardiac hypertrophy (CH) is a common risk factor for heart failure and even sudden cardiac death. Molecules have emerged as vital regulators in cardiac disorders. LIM domain kinase 1 (Limk1) is reported as a pro-fibrotic mediator in patients with permanent atrial fibrillation and it has also been suggested to aggravate cardiac dysfunction in rats with chronic heart failure. The present study observed that Limk1 was significantly upregulated in the in vitro model of CH induced by angiotensin II (Ang-II). Interestingly, silencing Limk1 led to inhibition of the hypertrophic phenotypes in Ang-II-treated cardiomyocytes. Next, through a series of mechanistic assays including RIP assay, RNA pull-down assay, and luciferase reporter assay, miR-93-5p was verified to target Limk1. Furthermore, circ-Zfp644 was validated as the sponge of miR-93-5p. Circ-Zfp644 functioned as a ceRNA to upregulate Limk1 expression via sequestering miR-93-5p in Ang-II-treated cardiomyocytes. Finally, a range of rescue assays revealed that circ-Zfp644 stimulated hypertrophic effects in Ang-II-treated cardiomyocytes via upregulating Limk1 while miR-93-5p exerted the opposite effects via its inhibition on Limk1. On the whole, the present study revealed that circ-Zfp644 aggravated CH through modulating the miR-93-5p/Limk1 axis. The findings observed on the in vitro model of CH provided new potential for developing CH treatment.
Collapse
Affiliation(s)
- Yongquan Chen
- Department of Cardiology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Daifu Song
- Department of Cardiology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jiaxin Gao
- Department of Cardiology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xuehuang Zhang
- Department of Cardiology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Ximing Chen
- Department of Cardiology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
11
|
Kang KW, Ok M, Lee SK. Leptin as a Key between Obesity and Cardiovascular Disease. J Obes Metab Syndr 2020; 29:248-259. [PMID: 33342767 PMCID: PMC7789022 DOI: 10.7570/jomes20120] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/03/2020] [Accepted: 12/13/2020] [Indexed: 12/14/2022] Open
Abstract
Obesity increases the risk of cardiovascular disease through various influencing factors. Leptin, which is predominantly secreted by adipose tissue, regulates satiety homeostasis and energy balance, and influences cardiovascular functions directly and indirectly. Leptin appears to play a role in heart protection in leptin-deficient and leptin-receptor-deficient rodent model experiments. Hyperleptinemia or leptin resistance in human obesity influences the vascular endothelium, cardiovascular structure and functions, inflammation, and sympathetic activity, which may lead to cardiovascular disease. Leptin is involved in many processes, including signal transduction, vascular endothelial function, and cardiac structural remodeling. However, the dual (positive and negative) regulator effect of leptin and its receptor on cardiovascular disease has not been completely understood. The protective role of leptin signaling in cardiovascular disease could be a promising target for cardiovascular disease prevention in obese patients.
Collapse
Affiliation(s)
- Ki-Woon Kang
- Division of Cardiology, Department of Internal Medicine, Eulji University School of Medicine, Daejeon, Korea
| | - Minho Ok
- Department of Cardiovascular Pharmacology, Mokpo National University, Mokpo, Korea
| | - Seong-Kyu Lee
- Division of Endocrinology, Department of Internal Medicine, Daejeon, Korea.,Department of Biochemistry-Molecular Biology, Eulji University School of Medicine, Daejeon, Korea
| |
Collapse
|
12
|
Hernández-Gutiérrez S, Roque-Jorge J, López-Torres A, Díaz-Rosas G, García-Chequer AJ, Contreras-Ramos A. Role of sodium tetraborate as a cardioprotective or competitive agent: Modulation of hypertrophic intracellular signals. J Trace Elem Med Biol 2020; 62:126569. [PMID: 32563862 DOI: 10.1016/j.jtemb.2020.126569] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 05/14/2020] [Accepted: 05/25/2020] [Indexed: 11/20/2022]
Abstract
Boron is an essential trace element in cellular metabolism; however, the molecular mechanism of boron in the heart is unclear. In this study, we examined the effect of sodium tetraborate (as boron source) as a possible protective agent or competitive inhibitor of cardiac hypertrophy in an in vitro murine model. We evaluated different previously reported sodium tetraborate concentrations and it was found that 13 μM improves viability without affecting the cellular structure. We demonstrated that cardiomyocytes pretreated with sodium tetraborate prevents cellular damage induced by isoproterenol (cardioprotective effect) by increasing proliferation rate and inhibiting apoptosis. In addition, the reduction of the expression of the α1AR and β1AR adrenergic receptors as well as Erk1/2 was notable. Consequently, the expression of the early response genes c-myc, c-fos and c-jun was delayed. Also, the expression of GATA-4, NFAT, NKx2.5 and myogenin transcription factors involved in sarcomere synthesis declined. In contrast, cardiomyocytes, when treated simultaneously with sodium tetraborate and isoproterenol, did not increase their size (cytoplasmic gain), but an increase in apoptosis levels was observed; therefore, the proliferation rate was reduced. Although the mRNA levels of α1AR and β1AR as well as Erk1/2 and Akt1 were low at 24 h, their expression increased to 48 h. Notably, the mRNA of expression levels of c-myc, c-fos and c-jun were lower than those determined in the control, while the transcription factors GATA-4, MEF2c, Nkx2.5, NFAT and CDk9 were determined in most cells. These results suggest that pretreatment with sodium tetraborate in cardiomyocytes inhibits the hypertrophic effect. However, sodium tetraborate attenuates isoproterenol induced hypertrophy damage in cardiomyocytes when these two compounds are added simultaneously.
Collapse
Affiliation(s)
| | | | | | - G Díaz-Rosas
- Laboratory of Developmental Biology Research and Experimental Teratogenicity. Children's Hospital of Mexico Federico Gomez (HIMFG), Mexico City, Mexico
| | - A J García-Chequer
- Laboratory of Developmental Biology Research and Experimental Teratogenicity. Children's Hospital of Mexico Federico Gomez (HIMFG), Mexico City, Mexico
| | - A Contreras-Ramos
- Laboratory of Developmental Biology Research and Experimental Teratogenicity. Children's Hospital of Mexico Federico Gomez (HIMFG), Mexico City, Mexico.
| |
Collapse
|
13
|
Matesic LE, Freeburg LA, Snyder LB, Duncan LA, Moore A, Perreault PE, Zellars KN, Goldsmith EC, Spinale FG. The ubiquitin ligase WWP1 contributes to shifts in matrix proteolytic profiles and a myocardial aging phenotype with diastolic heart. Am J Physiol Heart Circ Physiol 2020; 319:H765-H774. [PMID: 32822210 DOI: 10.1152/ajpheart.00620.2019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Ubiquitylation is a key event that regulates protein turnover, and induction of the ubiquitin ligase E3 WWP1 has been associated with age. Left ventricular hypertrophy (LVH) commonly occurs as a function of age and can cause heart failure (HF) with a preserved ejection fraction (EF; HFpEF). We hypothesized that overexpression (O/E) of WWP1 in the heart would cause LVH as well as functional and structural changes consistent with the aging HFpEF phenotype. Global WWP1 O/E was achieved in mice (n = 11) and echocardiography (40 MHz) performed to measure LV mass, EF, Doppler velocities (early E, late/atrial A), myocardial relaxation (E'), and isovolumetric relaxation time (IVRT) at 4, 6, and 8 wk. Age-matched wild-type animals (n = 15) were included as referent controls. LV EF was identical (60 ± 1 vs. 60 ± 1%, P > 0.90) with no difference in LV mass (67 ± 3 vs. 75 ± 5, P > 0.25) at 4 wk. However, at 8 wk of age, LV mass increased over twofold, E/A fell (impaired passive filling), and E/E' was lower and IVRT prolonged (impaired LV relaxation) - all P < 0.05. Collagen percent area increased by over twofold and fibrillar collagen expression (RT-PCR) over 1.5-fold (P < 0.05) with WWP1 O/E. WWP1 with an anti-WWP1 antibody could be identified in isolated cardiac fibroblasts, with WWP1 increased over twofold in O/E fibroblasts (P < 0.05). Inducing WWP1 expression caused LVH and preserved systolic function but impaired diastolic dysfunction, consistent with the HFpEF phenotype. Targeting the WWP1 pathway may be a novel therapeutic target for this intractable form of HF associated with aging.NEW & NOTEWORTHY Heart failure (HF) with a preserved ejection fraction (HFpEF) is a growing cause of HF and commonly afflicts the elderly. Milestones for HFpEF include diastolic dysfunction and an abnormal extracelluar matrix (ECM). The ubiquitin ligases, such as WWP1, change with aging and regulate critical protein turnover/stability processes, such as the ECM. The present study demonstrated that induction of WWP1 in mice induced LV hypertrophy, diastolic dysfunction, and ECM accumulation, consistent with the HFpEF phenotype, and thus may identify a new therapeutic pathway.
Collapse
Affiliation(s)
- Lydia E Matesic
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina
| | - Lisa A Freeburg
- Cardiovascular Translational Research Center, University of South Carolina School of Medicine and the William Jennings Bryan Dorn Veteran Affairs Medical Center, Columbia, South Carolina
| | - Laura B Snyder
- Cardiovascular Translational Research Center, University of South Carolina School of Medicine and the William Jennings Bryan Dorn Veteran Affairs Medical Center, Columbia, South Carolina
| | - Lauren-Ashley Duncan
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina
| | - Amber Moore
- Cardiovascular Translational Research Center, University of South Carolina School of Medicine and the William Jennings Bryan Dorn Veteran Affairs Medical Center, Columbia, South Carolina
| | - Paige E Perreault
- Cardiovascular Translational Research Center, University of South Carolina School of Medicine and the William Jennings Bryan Dorn Veteran Affairs Medical Center, Columbia, South Carolina
| | - Kia N Zellars
- Cardiovascular Translational Research Center, University of South Carolina School of Medicine and the William Jennings Bryan Dorn Veteran Affairs Medical Center, Columbia, South Carolina
| | - Edie C Goldsmith
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, South Carolina
| | - Francis G Spinale
- Cardiovascular Translational Research Center, University of South Carolina School of Medicine and the William Jennings Bryan Dorn Veteran Affairs Medical Center, Columbia, South Carolina
| |
Collapse
|
14
|
Jaén RI, Fernández-Velasco M, Terrón V, Sánchez-García S, Zaragoza C, Canales-Bueno N, Val-Blasco A, Vallejo-Cremades MT, Boscá L, Prieto P. BML-111 treatment prevents cardiac apoptosis and oxidative stress in a mouse model of autoimmune myocarditis. FASEB J 2020; 34:10531-10546. [PMID: 32543747 DOI: 10.1096/fj.202000611r] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 05/27/2020] [Accepted: 05/27/2020] [Indexed: 02/05/2023]
Abstract
Myocarditis is an inflammation of the myocardium that can progress to a more severe phenotype of dilated cardiomyopathy (DCM). Three main harmful factors determine this progression: inflammation, cell death, and oxidative stress. Lipoxins and their derivatives are endogenous proresolving mediators that induce the resolution of the inflammatory process. This study aims to determine whether these mediators play a protective role in a murine model of experimental autoimmune myocarditis (EAM) by treating with the lipoxin A4 analog BML-111. We observed that EAM mice presented extensive infiltration areas that correlated with higher levels of inflammatory and cardiac damage markers. Both parameters were significantly reduced in BML-treated EAM mice. Consistently, cardiac dysfunction, hypertrophy, and emerging fibrosis detected in EAM mice was prevented by BML-111 treatment. At the molecular level, we demonstrated that treatment with BML-111 hampered apoptosis and oxidative stress induction by EAM. Moreover, both in vivo and in vitro studies revealed that these beneficial effects were mediated by activation of Nrf2 pathway through CaMKK2-AMPKα kinase pathway. Altogether, our data indicate that treatment with the lipoxin derivative BML-111 effectively alleviates EAM outcome and prevents cardiac dysfunction, thus, underscoring the therapeutic potential of lipoxins and their derivatives to treat myocarditis and other inflammatory cardiovascular diseases.
Collapse
Affiliation(s)
- Rafael I Jaén
- Instituto de Investigaciones Biomédicas Alberto Sols (Centro Mixto CSIC-UAM), Madrid, Spain
- CIBER de enfermedades Cardiovasculares (CIBER-CV), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - María Fernández-Velasco
- CIBER de enfermedades Cardiovasculares (CIBER-CV), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Instituto de Investigación, Hospital Universitario La Paz (IdiPAZ), Madrid, Spain
| | - Verónica Terrón
- Instituto de Investigaciones Biomédicas Alberto Sols (Centro Mixto CSIC-UAM), Madrid, Spain
- Instituto de Investigación, Hospital Universitario La Paz (IdiPAZ), Madrid, Spain
| | - Sergio Sánchez-García
- Instituto de Investigaciones Biomédicas Alberto Sols (Centro Mixto CSIC-UAM), Madrid, Spain
| | - Carlos Zaragoza
- CIBER de enfermedades Cardiovasculares (CIBER-CV), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Servicio de cardiología, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación sanitaria (IRYCIS)/Universidad Francisco de Vitoria, Madrid, Spain
| | | | - Almudena Val-Blasco
- Instituto de Investigación, Hospital Universitario La Paz (IdiPAZ), Madrid, Spain
| | - María Teresa Vallejo-Cremades
- Instituto de Investigación, Hospital Universitario La Paz (IdiPAZ), Madrid, Spain
- Unidad de Imagen e inmunohistoquímica de la Fundación para la Investigación Biomédica del Hospital Universitario La Paz, Madrid, Spain
| | - Lisardo Boscá
- Instituto de Investigaciones Biomédicas Alberto Sols (Centro Mixto CSIC-UAM), Madrid, Spain
- CIBER de enfermedades Cardiovasculares (CIBER-CV), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Patricia Prieto
- Instituto de Investigaciones Biomédicas Alberto Sols (Centro Mixto CSIC-UAM), Madrid, Spain
- CIBER de enfermedades Cardiovasculares (CIBER-CV), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Departamento de Farmacología, Farmacognosia y Botánica, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
15
|
Das Ghosh L, Hasan J, Jain A, Sundaresan NR, Chatterjee K. A nanopillar array on black titanium prepared by reactive ion etching augments cardiomyogenic commitment of stem cells. NANOSCALE 2019; 11:20766-20776. [PMID: 31651003 DOI: 10.1039/c9nr03424b] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A major impediment in the clinical translation of stem cell therapy has been the inability to efficiently and reproducibly direct differentiation of a large population of stem cells. Thus, we aimed to engineer a substrate for culturing stem cells to efficiently induce cardiomyogenic lineage commitment. In this work, we present a nanopillar array on the surface of titanium that was prepared by mask-less reactive ion etching. Scanning electron and atomic force microscopy revealed that the surface was covered by vertically aligned nanopillars each of ≈1 μm with a diameter of ≈80 nm. The nanopillars supported the attachment and proliferation of human mesenchymal stem cells (hMSCs). Cardiomyogenic lineage commitment of the stem cells was more enhanced on the nanopillars than on the smooth surface. When co-cultured with neonatal rat cardiomyocytes, the cyclic pattern of calcium transport observed distinctly in cells differentiated on the arrays compared to the cells cultured on the smooth surface was the functional validation of differentiation. The use of small molecule inhibitors revealed that integrins namely, α2β1 and αvβ3, are essential for cardiomyogenesis on the nanostructured surface, which is further mediated by FAK, Erk and Akt cell signaling pathways. This study demonstrates that the nanopillar array efficiently promotes the cardiomyogenic lineage commitment of stem cells via integrin-mediated signaling and can potentially serve as a platform for the ex vivo differentiation of stem cells toward cell therapy in cardiac tissue repair and regeneration.
Collapse
Affiliation(s)
- Lopamudra Das Ghosh
- Department of Materials Engineering, Indian Institute of Science, Bangalore 560012, India.
| | - Jafar Hasan
- Department of Materials Engineering, Indian Institute of Science, Bangalore 560012, India.
| | - Aditi Jain
- Centre for Biosystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India.
| | - Nagalingam R Sundaresan
- Centre for Biosystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India. and Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | - Kaushik Chatterjee
- Department of Materials Engineering, Indian Institute of Science, Bangalore 560012, India. and Centre for Biosystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India.
| |
Collapse
|
16
|
Yang YF, Liang YJ. Adenine decreases hypertrophic effects through interleukin-18 receptor. CHINESE J PHYSIOL 2019; 62:139-147. [PMID: 31535629 DOI: 10.4103/cjp.cjp_18_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Cardiac hypertrophy is the main cause of heart failure. Levels of circulating interleukin-18 (IL-18) have been reported to increase in congestive heart disease and cardiac hypertrophy. Relationships among IL-18 levels, IL-18 receptor (IL-18R) expression, and cardiac hypertrophy remain unclear. IL-18 can induce cardiac hypertrophy in cardiomyoblasts. We also studied IL-18R messenger RNA (mRNA) and protein expression through quantitative-polymerase chain reaction and Western blotting. Furthermore, we treated cardiomyoblasts with adenine, gold nanoparticles (AuNPs), and inhibitors to analyze the morphology and identify signaling pathways involved in cardiac hypertrophy. Moreover, we studied the effects of IL-18R small interfering RNA (siRNA) on signaling pathways through Western blotting. The mRNA expression of IL-18R in H9c2 cardiomyoblasts, which was induced by IL-18, increased significantly after 8 h, and the protein level increased significantly after 15 h. Morphological examination of H9c2 cardiomyoblasts showed that cell volume and cell diameter decreased after adenine pretreatment. Both p38 MAPK and PI3 kinase are biomarkers in the pathway correlated with cardiac hypertrophy. After treatment with inhibitors SB203580 and LY294002, the levels of p38 MAPK and PI3 kinase, respectively, decreased along with cell size and IL-18R expression. Treatment with adenine, but not AuNPs, reduced the levels of phosphorylated p38 and PI3 kinase expression more effectively than did treatment with the respective inhibitors alone. IL-18R siRNA significantly reduced cell size but not PI3 kinase expression and phosphorylation of p38 MAPK. However, adenine treatment reduced PI3 kinase expression after treatment with IL-18R siRNA. In this study, IL-18 induced cardiomyoblast hypertrophy through IL-18R upregulation, which was found to be related to p38 MAPK and PI3 kinase signaling. Adenine, but not AuNPs, showed antihypertrophic effects possibly because of decreased levels of signaling.
Collapse
Affiliation(s)
- Yi-Feng Yang
- Graduate Institute of Applied Science and Engineering; Department and Institute of Life Science, Fu-Jen Catholic University, Taipei, Taiwan
| | - Yao-Jen Liang
- Graduate Institute of Applied Science and Engineering; Department and Institute of Life Science, Fu-Jen Catholic University, Taipei, Taiwan
| |
Collapse
|
17
|
Zhang M, Jiang Y, Guo X, Zhang B, Wu J, Sun J, Liang H, Shan H, Zhang Y, Liu J, Wang Y, Wang L, Zhang R, Yang B, Xu C. Long non-coding RNA cardiac hypertrophy-associated regulator governs cardiac hypertrophy via regulating miR-20b and the downstream PTEN/AKT pathway. J Cell Mol Med 2019; 23:7685-7698. [PMID: 31465630 PMCID: PMC6815784 DOI: 10.1111/jcmm.14641] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 07/03/2019] [Accepted: 07/30/2019] [Indexed: 12/28/2022] Open
Abstract
Pathological cardiac hypertrophy (CH) is a key factor leading to heart failure and ultimately sudden death. Long non‐coding RNAs (lncRNAs) are emerging as a new player in gene regulation relevant to a wide spectrum of human disease including cardiac disorders. Here, we characterize the role of a specific lncRNA named cardiac hypertrophy‐associated regulator (CHAR) in CH and delineate the underlying signalling pathway. CHAR was found markedly down‐regulated in both in vivo mouse model of cardiac hypertrophy induced by pressure overload and in vitro cellular model of cardiomyocyte hypertrophy induced by angiotensin II (AngII) insult. CHAR down‐regulation alone was sufficient to induce hypertrophic phenotypes in healthy mice and neonatal rat ventricular cells (NRVCs). Overexpression of CHAR reduced the hypertrophic responses. CHAR was found to act as a competitive endogenous RNA (ceRNA) to down‐regulate miR‐20b that we established as a pro‐hypertrophic miRNA. We experimentally established phosphatase and tensin homolog (PTEN), an anti‐hypertrophic signalling molecule, as a target gene for miR‐20b. We found that miR‐20b induced CH by directly repressing PTEN expression and indirectly increasing AKT activity. Moreover, CHAR overexpression mitigated the repression of PTEN and activation of AKT by miR‐20b, and as such, it abrogated the deleterious effects of miR‐20b on CH. Collectively, this study characterized a new lncRNA CHAR and unravelled a new pro‐hypertrophic signalling pathway: lncRNA‐CHAR/miR‐20b/PTEN/AKT. The findings therefore should improve our understanding of the cellular functionality and pathophysiological role of lncRNAs in the heart.
Collapse
Affiliation(s)
- Mingyu Zhang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Yuan Jiang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Xiaofei Guo
- Department of Pharmacy, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Bowen Zhang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Jiangjiao Wu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Jiabin Sun
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Haihai Liang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Hongli Shan
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Yong Zhang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Jiaqi Liu
- Center of Chronic Diseases and Drug Research of Mudanjiang Medical, University of Alliance of Sino-Russian Medical Universities, Mudanjiang Medical University, Mudanjiang, China
| | - Ying Wang
- Center of Chronic Diseases and Drug Research of Mudanjiang Medical, University of Alliance of Sino-Russian Medical Universities, Mudanjiang Medical University, Mudanjiang, China
| | - Lu Wang
- Department of Urology, The Fourth Hospital of Harbin Medical University, Harbin, China
| | - Rong Zhang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Baofeng Yang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Chaoqian Xu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China.,Center of Chronic Diseases and Drug Research of Mudanjiang Medical, University of Alliance of Sino-Russian Medical Universities, Mudanjiang Medical University, Mudanjiang, China
| |
Collapse
|
18
|
Gupta S, Li L. The role of Thymosin β4 in angiotensin II-induced cardiomyocytes growth. Expert Opin Biol Ther 2019; 18:105-110. [PMID: 30063846 DOI: 10.1080/14712598.2018.1494718] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
INTRODUCTION Thymosin beta-4 (Tβ4) is an actin sequestering protein and is furthermore involved in diverse biological processes including cell proliferation, differentiation, wound healing, stem- or progenitor cell differentiation, and modulates inflammatory mediators. Tβ4 also attenuates fibrosis. However, the role of Tβ4 in cardiomyocytes hypertrophy is unknown. AREAS COVERED In this review, we will discuss the role of Tβ4 in cardiac remodeling that specifically includes cardiac hypertrophy and fibrosis only. Our review will further cover a new signaling pathway, the wingless and integrated-1 (Wnt) pathway in cardiac remodeling. In rat neonatal and adult cardiomyocytes stimulated with angiotensin II (Ang II), we showed that Tβ4 has the ability to reduce cell sizes, attenuate hypertrophy marker genes expression, along with a panel of WNT-associated gene expressions induced by Ang II. Selected target gene WNT1-inducible-signaling pathway protein 1 (WISP-1) was identified by Tβ4. Data further confirmed that WISP-1 overexpression promoted cardiomyocytes growth and was reversed by Tβ4 pretreatment. EXPERT OPINION Our data suggested that Tβ4 protects cardiomyocytes from hypertrophic response by targeting WISP-1. The new role of Tβ4 in cardiac hypertrophy advances our understanding, and the mechanism of action of Tβ4 may provide a solid foundation for the treatment of cardiac disease.
Collapse
Affiliation(s)
- Sudhiranjan Gupta
- a Department of Medical Physiology , Texas A&M University; Central Texas Veterans Health Care System , Temple , TX , USA
| | - Li Li
- a Department of Medical Physiology , Texas A&M University; Central Texas Veterans Health Care System , Temple , TX , USA
| |
Collapse
|
19
|
Ahmed AA, Ahmed AAE, El Morsy EM, Nofal S. Dimethyl fumarate interferes with MyD88-dependent toll-like receptor signalling pathway in isoproterenol-induced cardiac hypertrophy model. J Pharm Pharmacol 2018; 70:1521-1530. [DOI: 10.1111/jphp.13000] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 08/04/2018] [Indexed: 01/17/2023]
Abstract
Abstract
Objectives
To investigate the effect of dimethyl fumarate (DMF) on Toll-like receptor (TLR) signalling pathway in isoproterenol (ISO)-induced cardiac hypertrophy in rats.
Methods
Sixty adult male Sprague-Dawley rats were randomly allocated into three groups. group I: rats received the vehicles only; group II: rats were treated with ISO (5 mg/kg per day S.C.) to induce cardiac hypertrophy for 7 days; and group III: rats were given DMF (25 mg/kg per 12 h P.O.) for 28 days, and at the last 7 days, they were treated with ISO (5 mg/kg per day S.C.).
Key findings
Pretreatment with DMF decreased heart-to-body weight ratio, heart rate and blood pressure and improved the electrocardiographic patterns when compared with ISO group. DMF exhibited cardioprotective effect as evidenced by the reduction in cardiac troponin I, creatine kinase-MB and atrial natriuretic peptide levels. Moreover, DMF alleviated the changed oxidative stress and inflammatory biochemical markers through its anti-inflammatory and antioxidant effects. DMF interfered with TLR signalling pathway, evidenced by decreased levels of the TLR adaptor protein MyD88 and p-ERK1/2 and increased p-Akt level.
Conclusions
Dimethyl fumarate exerted cardioprotective effect against ISO-induced cardiac hypertrophy. This effect is suggested to be through interfering with TLR signalling pathway.
Collapse
Affiliation(s)
- Asmaa A Ahmed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Helwan University, Ein Helwan, Egypt
| | - Amany A E Ahmed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Helwan University, Ein Helwan, Egypt
| | - Engy M El Morsy
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Helwan University, Ein Helwan, Egypt
| | - Shahira Nofal
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Helwan University, Ein Helwan, Egypt
| |
Collapse
|
20
|
Mohan N, Kumar V, Kandala DT, Kartha CC, Laishram RS. A Splicing-Independent Function of RBM10 Controls Specific 3′ UTR Processing to Regulate Cardiac Hypertrophy. Cell Rep 2018; 24:3539-3553. [DOI: 10.1016/j.celrep.2018.08.077] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 06/09/2018] [Accepted: 08/24/2018] [Indexed: 10/28/2022] Open
|
21
|
Gupta I, Varshney NK, Khan S. Emergence of Members of TRAF and DUB of Ubiquitin Proteasome System in the Regulation of Hypertrophic Cardiomyopathy. Front Genet 2018; 9:336. [PMID: 30186311 PMCID: PMC6110912 DOI: 10.3389/fgene.2018.00336] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 08/03/2018] [Indexed: 01/10/2023] Open
Abstract
The ubiquitin proteasome system (UPS) plays an imperative role in many critical cellular processes, frequently by mediating the selective degradation of misfolded and damaged proteins and also by playing a non-degradative role especially important as in many signaling pathways. Over the last three decades, accumulated evidence indicated that UPS proteins are primal modulators of cell cycle progression, DNA replication, and repair, transcription, immune responses, and apoptosis. Comparatively, latest studies have demonstrated a substantial complexity by the UPS regulation in the heart. In addition, various UPS proteins especially ubiquitin ligases and proteasome have been identified to play a significant role in the cardiac development and dynamic physiology of cardiac pathologies such as ischemia/reperfusion injury, hypertrophy, and heart failure. However, our understanding of the contribution of UPS dysfunction in the plausible development of cardiac pathophysiology and the complete list of UPS proteins regulating these afflictions is still in infancy. The recent emergence of the roles of TNF receptor-associated factor (TRAFs) and deubiquitinating enzymes (DUBs) superfamily in hypertrophic cardiomyopathy has enhanced our knowledge. In this review, we have mainly compiled the TRAF superfamily of E3 ligases and few DUBs proteins with other well-documented E3 ligases such as MDM2, MuRF-1, Atrogin-I, and TRIM 32 that are specific to myocardial hypertrophy. In this review, we also aim to highlight their expression profile following physiological and pathological stimulation leading to the onset of hypertrophic phenotype in the heart that can serve as biomarkers and the opportunity for the development of novel therapies.
Collapse
Affiliation(s)
- Ishita Gupta
- Structural Immunology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India.,Drug Discovery Research Center, Translational Health Science and Technology Institute, Faridabad, India
| | - Nishant K Varshney
- Drug Discovery Research Center, Translational Health Science and Technology Institute, Faridabad, India
| | - Sameena Khan
- Drug Discovery Research Center, Translational Health Science and Technology Institute, Faridabad, India
| |
Collapse
|
22
|
Elucidating molecular events underlying topography mediated cardiomyogenesis of stem cells on 3D nanofibrous scaffolds. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 88:104-114. [DOI: 10.1016/j.msec.2018.03.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 01/27/2018] [Accepted: 03/14/2018] [Indexed: 12/28/2022]
|
23
|
Rapamycin attenuates pathological hypertrophy caused by an absence of trabecular formation. Sci Rep 2018; 8:8584. [PMID: 29872120 PMCID: PMC5988815 DOI: 10.1038/s41598-018-26843-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 05/15/2018] [Indexed: 12/29/2022] Open
Abstract
Cardiac trabeculae are mesh-like muscular structures within ventricular walls. Subtle perturbations in trabeculation are associated with many congenital heart diseases (CHDs), and complete failure to form trabeculae leads to embryonic lethality. Despite the severe consequence of an absence of trabecular formation, the exact function of trabeculae remains unclear. Since ErbB2 signaling plays a direct and essential role in trabecular initiation, in this study, we utilized the erbb2 zebrafish mutant as a model to address the function of trabeculae in the heart. Intriguingly, we found that the trabeculae-deficient erbb2 mutant develops a hypertrophic-like (HL) phenotype that can be suppressed by inhibition of Target of Rapamycin (TOR) signaling in a similar fashion to adult mammalian hearts subjected to mechanical overload. Further, cell transplantation experiments demonstrated that erbb2 mutant cells in an otherwise wildtype heart did not undergo hypertrophy, indicating that erbb2 mutant HL phenotypes are due to a loss of trabeculae. Together, we propose that trabeculae serve to enhance contractility and that defects in this process lead to wall-stress induced hypertrophic remodeling.
Collapse
|
24
|
Urmaliya V, Franchelli G. A multidimensional sight on cardiac failure: uncovered from structural to molecular level. Heart Fail Rev 2018; 22:357-370. [PMID: 28474325 DOI: 10.1007/s10741-017-9610-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Heart failure is one of the leading causes of death, with high mortality rate within 5 years after diagnosis. Treatment and prognosis options for heart failure primarily targeted on hemodynamic and neurohumoral components that drive progressive deterioration of the heart. However, given the multifactorial background that eventually leads to the "phenotype" named heart failure, better insight into the various components may lead to personalized treatment opportunities. Indeed, currently used criteria to diagnose and/or classify heart failure are possibly too focused on phenotypic improvement rather than the molecular driver of the disease and could therefore be further refined by integrating the leap of molecular and cellular knowledge. The ambiguity of the ejection fraction-based classification criteria became evident with development of advanced molecular techniques and the dawn of omics disciplines which introduced the idea that disease is caused by a myriad of cellular and molecular processes rather than a single event or pathway. The fact that different signaling pathways may underlie similar clinical manifestations calls for a more holistic study of heart failure. In this context, the systems biology approach can offer a better understanding of how different components of a system are altered during disease and how they interact with each other, potentially leading to improved diagnosis and classification of this condition. This review is aimed at addressing heart failure through a multilayer approach that covers individually some of the anatomical, morphological, functional, and tissue aspects, with focus on cellular and subcellular features as an alternative insight into new therapeutic opportunities.
Collapse
Affiliation(s)
- Vijay Urmaliya
- Discovery Sciences, Janssen Research & Development, Beerse, Belgium.
| | | |
Collapse
|
25
|
Parsa H, Wang BZ, Vunjak-Novakovic G. A microfluidic platform for the high-throughput study of pathological cardiac hypertrophy. LAB ON A CHIP 2017; 17:3264-3271. [PMID: 28832065 DOI: 10.1039/c7lc00415j] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Current in vitro models fall short in deciphering the mechanisms of cardiac hypertrophy induced by volume overload. We developed a pneumatic microfluidic platform for high-throughput studies of cardiac hypertrophy that enables repetitive (hundreds of thousands of times) and robust (over several weeks) manipulation of cardiac μtissues. The platform is reusable for stable and reproducible mechanical stimulation of cardiac μtissues (each containing only 5000 cells). Heterotypic and homotypic μtissues produced in the device were pneumatically loaded in a range of regimes, with real-time on-chip analysis of tissue phenotypes. Concentrated loading of the three-dimensional cardiac tissue faithfully recapitulated the pathology of volume overload seen in native heart tissue. Sustained volume overload of μtissues was sufficient to induce pathological cardiac remodeling associated with upregulation of the fetal gene program, in a dose-dependent manner.
Collapse
Affiliation(s)
- Hesam Parsa
- Department of Biomedical Engineering, Columbia University, 622 west 168th St., New York, NY 10032, USA.
| | | | | |
Collapse
|
26
|
He N, Gong QH, Zhang F, Zhang JY, Lin SX, Hou HH, Wu Q, Sun AS. Evodiamine Inhibits Angiotensin II-Induced Rat Cardiomyocyte Hypertrophy. Chin J Integr Med 2017; 24:359-365. [DOI: 10.1007/s11655-017-2818-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2014] [Indexed: 11/29/2022]
|
27
|
Correia C, Koshkin A, Duarte P, Hu D, Teixeira A, Domian I, Serra M, Alves PM. Distinct carbon sources affect structural and functional maturation of cardiomyocytes derived from human pluripotent stem cells. Sci Rep 2017; 7:8590. [PMID: 28819274 PMCID: PMC5561128 DOI: 10.1038/s41598-017-08713-4] [Citation(s) in RCA: 160] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 07/12/2017] [Indexed: 12/15/2022] Open
Abstract
The immature phenotype of human pluripotent stem cell derived cardiomyocytes (hPSC-CMs) constrains their potential in cell therapy and drug testing. In this study, we report that shifting hPSC-CMs from glucose-containing to galactose- and fatty acid-containing medium promotes their fast maturation into adult-like CMs with higher oxidative metabolism, transcriptional signatures closer to those of adult ventricular tissue, higher myofibril density and alignment, improved calcium handling, enhanced contractility, and more physiological action potential kinetics. Integrated "-Omics" analyses showed that addition of galactose to culture medium improves total oxidative capacity of the cells and ameliorates fatty acid oxidation avoiding the lipotoxicity that results from cell exposure to high fatty acid levels. This study provides an important link between substrate utilization and functional maturation of hPSC-CMs facilitating the application of this promising cell type in clinical and preclinical applications.
Collapse
Affiliation(s)
- Cláudia Correia
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, Oeiras, 2780-901, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB-NOVA), Oeiras, 2780-157, Portugal
| | - Alexey Koshkin
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, Oeiras, 2780-901, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB-NOVA), Oeiras, 2780-157, Portugal
| | - Patrícia Duarte
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, Oeiras, 2780-901, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB-NOVA), Oeiras, 2780-157, Portugal
| | - Dongjian Hu
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, 02114, USA
- Harvard Medical School, Boston, MA 02115, USA, Harvard Stem Cell Institute, Cambridge, MA, 02138, USA
| | - Ana Teixeira
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, Oeiras, 2780-901, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB-NOVA), Oeiras, 2780-157, Portugal
- ETH Zurich, Department of Biosystems Science and Engineering, Mattenstrasse 26, 4058, Basel, Switzerland
| | - Ibrahim Domian
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, 02114, USA
- Harvard Medical School, Boston, MA 02115, USA, Harvard Stem Cell Institute, Cambridge, MA, 02138, USA
| | - Margarida Serra
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, Oeiras, 2780-901, Portugal.
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB-NOVA), Oeiras, 2780-157, Portugal.
| | - Paula M Alves
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, Oeiras, 2780-901, Portugal.
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB-NOVA), Oeiras, 2780-157, Portugal.
| |
Collapse
|
28
|
Mendes de Almeida R, Tavares J, Martins S, Carvalho T, Enguita FJ, Brito D, Carmo-Fonseca M, Lopes LR. Whole gene sequencing identifies deep-intronic variants with potential functional impact in patients with hypertrophic cardiomyopathy. PLoS One 2017; 12:e0182946. [PMID: 28797094 PMCID: PMC5552324 DOI: 10.1371/journal.pone.0182946] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 07/27/2017] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND High throughput sequencing technologies have revolutionized the identification of mutations responsible for genetic diseases such as hypertrophic cardiomyopathy (HCM). However, approximately 50% of individuals with a clinical diagnosis of HCM have no causal mutation identified. This may be due to the presence of pathogenic mutations located deep within the introns, which are not detected by conventional sequencing analysis restricted to exons and exon-intron boundaries. OBJECTIVE The aim of this study was to develop a whole-gene sequencing strategy to prioritize deep intronic variants that may play a role in HCM pathogenesis. METHODS AND RESULTS The full genomic DNA sequence of 26 genes previously associated with HCM was analysed in 16 unrelated patients. We identified likely pathogenic deep intronic variants in VCL, PRKAG2 and TTN genes. These variants, which are predicted to act through disruption of either splicing or transcription factor binding sites, are 3-fold more frequent in our cohort of probands than in normal European populations. Moreover, we found a patient that is compound heterozygous for a splice site mutation in MYBPC3 and the deep intronic VCL variant. Analysis of family members revealed that carriers of the MYBPC3 mutation alone do not manifest the disease, while family members that are compound heterozygous are clinically affected. CONCLUSION This study provides a framework for scrutinizing variation along the complete intronic sequence of HCM-associated genes and prioritizing candidates for mechanistic and functional analysis. Our data suggest that deep intronic variation contributes to HCM phenotype.
Collapse
Affiliation(s)
- Rita Mendes de Almeida
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Joana Tavares
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Sandra Martins
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Teresa Carvalho
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Francisco J. Enguita
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Dulce Brito
- Departamento de Cardiologia, Hospital de Santa Maria, Centro Hospitalar Lisboa Norte, Centro Académico de Medicina de Lisboa, Lisbon, Portugal
- Centro Cardiovascular da Universidade de Lisboa, Lisbon, Portugal
| | - Maria Carmo-Fonseca
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Luís Rocha Lopes
- Centro Cardiovascular da Universidade de Lisboa, Lisbon, Portugal
- Institute of Cardiovascular Science, University College London, London, United Kingdom
| |
Collapse
|
29
|
Chang YM, Ling L, Chang YT, Chang YW, Li WH, Shih ACC, Chen CC. Three TF Co-expression Modules Regulate Pressure-Overload Cardiac Hypertrophy in Male Mice. Sci Rep 2017; 7:7560. [PMID: 28790436 PMCID: PMC5548763 DOI: 10.1038/s41598-017-07981-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 07/03/2017] [Indexed: 12/22/2022] Open
Abstract
Pathological cardiac hypertrophy, a dynamic remodeling process, is a major risk factor for heart failure. Although a number of key regulators and related genes have been identified, how the transcription factors (TFs) dynamically regulate the associated genes and control the morphological and electrophysiological changes during the hypertrophic process are still largely unknown. In this study, we obtained the time-course transcriptomes at five time points in four weeks from male murine hearts subjected to transverse aorta banding surgery. From a series of computational analyses, we identified three major co-expression modules of TF genes that may regulate the gene expression changes during the development of cardiac hypertrophy in mice. After pressure overload, the TF genes in Module 1 were up-regulated before the occurrence of significant morphological changes and one week later were down-regulated gradually, while those in Modules 2 and 3 took over the regulation as the heart size increased. Our analyses revealed that the TF genes up-regulated at the early stages likely initiated the cascading regulation and most of the well-known cardiac miRNAs were up-regulated at later stages for suppression. In addition, the constructed time-dependent regulatory network reveals some TFs including Egr2 as new candidate key regulators of cardiovascular-associated (CV) genes.
Collapse
Affiliation(s)
- Yao-Ming Chang
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Li Ling
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Ya-Ting Chang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yu-Wang Chang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Wen-Hsiung Li
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, 60637, USA
| | | | - Chien-Chang Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
30
|
The role of cytochrome P450 1B1 and its associated mid-chain hydroxyeicosatetraenoic acid metabolites in the development of cardiac hypertrophy induced by isoproterenol. Mol Cell Biochem 2017; 429:151-165. [DOI: 10.1007/s11010-017-2943-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 01/17/2017] [Indexed: 10/20/2022]
|
31
|
Naringin Mitigates Cardiac Hypertrophy by Reducing Oxidative Stress and Inactivating c-Jun Nuclear Kinase-1 Protein in Type I Diabetes. J Cardiovasc Pharmacol 2016; 67:136-44. [PMID: 26421421 DOI: 10.1097/fjc.0000000000000325] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cardiac hypertrophy (CH) in type 1 diabetes mellitus is attributed to increased oxidative stress-associated activation of c-Jun Nuclear Kinase (JNK). We investigated the effects of naringin on hyperglycemia-associated oxidative stress, activation of JNK-1, and CH. Male Sprague-Dawley rats (225-250 g) (n = 7) were divided into 6 groups. Groups I and II were orally treated with distilled water [3.0 mL/kg body weight/day (BW)] and naringin (50 mg/kg BW), respectively. Groups III-VI were rendered diabetic by a single intraperitoneal injection of 65 mg/kg BW of streptozotocin. Groups III, IV, and V were further treated with insulin (4.0 I.U, s.c, twice daily), naringin (50 mg/kg BW), and ramipril (3.0 mg/kg BW), respectively. After 56 days, the animals were sacrificed and then plasma and cardiac tissues obtained for further analysis. Naringin treatment of diabetic rats significantly reversed oxidative stress, lipid peroxidation, proteins oxidation, CH indices, and JNK protein activation compared with untreated diabetic animals. Our results do suggest that naringin mitigates CH by inhibiting oxidative stress leading to inactivation of JNK-1. Naringin supplements could therefore ameliorate CH in diabetic patients.
Collapse
|
32
|
Hsu YJ, Hsu SC, Hsu CP, Chen YH, Chang YL, Sadoshima J, Huang SM, Tsai CS, Lin CY. Sirtuin 1 protects the aging heart from contractile dysfunction mediated through the inhibition of endoplasmic reticulum stress-mediated apoptosis in cardiac-specific Sirtuin 1 knockout mouse model. Int J Cardiol 2016; 228:543-552. [PMID: 27875732 DOI: 10.1016/j.ijcard.2016.11.247] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 11/08/2016] [Accepted: 11/10/2016] [Indexed: 11/19/2022]
Abstract
BACKGROUND The longevity regulator Sirtuin 1 is an NAD+-dependent histone deacetylase that regulates endoplasmic reticulum stress and influences cardiomyocyte apoptosis during cardiac contractile dysfunction induced by aging. The mechanism underlying Sirtuin 1 function in cardiac contractile dysfunction related to aging has not been completely elucidated. METHODS We evaluated cardiac contractile function, endoplasmic reticulum stress, apoptosis, and oxidative stress in 6- and 12month-old cardiac-specific Sirtuin 1 knockout (Sirt1-/-) and control (Sirt1f/f) mice using western blotting and immunohistochemistry. Mice were injected with a protein disulphide isomerase inhibitor. For in vitro analysis, cultured H9c2 cardiomyocytes were exposed to either a Sirtuin 1 inhibitor or activator, with or without a mitochondrial inhibitor, to evaluate the effects of Sirtuin 1 on endoplasmic reticulum stress, nitric oxide synthase expression, and apoptosis. The effects of protein disulphide isomerase inhibition on oxidative stress and ER stress-related apoptosis were also investigated. RESULTS Compared with 6-month-old Sirt1f/f mice, marked impaired contractility was observed in 12-month-old Sirt1-/- mice. These findings were consistent with increased endoplasmic reticulum stress and apoptosis in the myocardium. Measures of oxidative stress and nitric oxide synthase expression were significantly higher in Sirt1-/- mice compared with those in Sirt1f/f mice at 6months. In vitro experiments revealed increased endoplasmic reticulum stress-mediated apoptosis in H9c2 cardiomyocytes treated with a Sirtuin 1 inhibitor; the effects were ameliorated by a Sirtuin 1 activator. Moreover, consistent with the in vitro findings, impaired cardiac contractility was demonstrated in Sirt1-/- mice injected with a protein disulphide isomerase inhibitor. CONCLUSION The present study demonstrates that the aging heart is characterized by contractile dysfunction associated with increased oxidative stress and endoplasmic reticulum stress and Sirtuin 1 might have the ability to protect the aging hearts from the inhibition of endoplasmic reticulum-mediated apoptosis.
Collapse
Affiliation(s)
- Yu-Juei Hsu
- Division of Nephrology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan; Department of Biochemistry, National Defense Medical Center, Taipei, Taiwan
| | - Shih-Che Hsu
- Department of Biochemistry, National Defense Medical Center, Taipei, Taiwan
| | - Chiao-Po Hsu
- Division of Cardiovascular Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yen-Hui Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yung-Lung Chang
- Department of Biochemistry, National Defense Medical Center, Taipei, Taiwan
| | - Junichi Sadoshima
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, University of Medicine and Dentistry of New Jersey, New Jersey Medical School, Newark, NJ, USA
| | - Shih-Ming Huang
- Department of Biochemistry, National Defense Medical Center, Taipei, Taiwan
| | - Chien-Sung Tsai
- Superintendent's Office, Taoyuan Armed Forces General Hospital, Taoyuan, Taiwan; Division of Cardiovascular Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chih-Yuan Lin
- Division of Cardiovascular Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.
| |
Collapse
|
33
|
Samak M, Fatullayev J, Sabashnikov A, Zeriouh M, Schmack B, Farag M, Popov AF, Dohmen PM, Choi YH, Wahlers T, Weymann A. Cardiac Hypertrophy: An Introduction to Molecular and Cellular Basis. Med Sci Monit Basic Res 2016; 22:75-9. [PMID: 27450399 PMCID: PMC4976758 DOI: 10.12659/msmbr.900437] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Ventricular hypertrophy is an ominous escalation of hemodynamically stressful conditions such as hypertension and valve disease. The pathophysiology of hypertrophy is complex and multifactorial, as it touches on several cellular and molecular systems. Understanding the molecular background of cardiac hypertrophy is essential in order to protect the myocardium from pathological remodeling, or slow down the destined progression to heart failure. In this review we highlight the most important molecular aspects of cardiac hypertrophic growth in light of the currently available published research data.
Collapse
Affiliation(s)
- Mostafa Samak
- Department of Cardiothoracic Surgery, Royal Brompton and Harefield NHS Foundation Trust, Harefield, Middlesex, London, United Kingdom
| | - Javid Fatullayev
- Department of Cardiothoracic Surgery, Royal Brompton and Harefield NHS Foundation Trust, Harefield, Middlesex, London, United Kingdom
| | - Anton Sabashnikov
- Department of Cardiothoracic Surgery, Royal Brompton and Harefield NHS Foundation Trust, Harefield, Middlesex, London, United Kingdom
| | - Mohamed Zeriouh
- Department of Cardiothoracic Surgery, Royal Brompton and Harefield NHS Foundation Trust, Harefield, Middlesex, London, United Kingdom
| | - Bastian Schmack
- Department of Cardiothoracic Surgery, Royal Brompton and Harefield NHS Foundation Trust, Harefield, Middlesex, London, United Kingdom
| | - Mina Farag
- Department of Cardiac Surgery, Heart and Marfan Center - University of Heidelberg, Heidelberg, Germany
| | - Aron-Frederik Popov
- Department of Cardiothoracic Surgery, Royal Brompton and Harefield NHS Foundation Trust, Harefield, Middlesex, London, United Kingdom
| | - Pascal M Dohmen
- Department of Cardiovascular Surgery, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Yeong-Hoon Choi
- Department of Cardiothoracic Surgery, Heart Center, University of Cologne, Cologne, Germany
| | - Thorsten Wahlers
- Department of Cardiothoracic Surgery, Heart Center, University of Cologne, Cologne, Germany
| | - Alexander Weymann
- Department of Cardiac Surgery, Heart and Marfan Center - University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
34
|
West JD, Voss BM, Pavliv L, de Caestecker M, Hemnes AR, Carrier EJ. Antagonism of the thromboxane-prostanoid receptor is cardioprotective against right ventricular pressure overload. Pulm Circ 2016; 6:211-23. [PMID: 27252848 DOI: 10.1086/686140] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Right ventricular (RV) failure is the primary cause of death in pulmonary arterial hypertension (PAH) and is a significant cause of morbidity and mortality in other forms of pulmonary hypertension. There are no approved therapies directed at preserving RV function. F-series and E-series isoprostanes are increased in heart failure and PAH, correlate to the severity of disease, and can signal through the thromboxane-prostanoid (TP) receptor, with effects from vasoconstriction to fibrosis. The goal of these studies was to determine whether blockade of the TP receptor with the antagonist CPI211 was beneficial therapeutically in PAH-induced RV dysfunction. Mice with RV dysfunction due to pressure overload by pulmonary artery banding (PAB) were given vehicle or CPI211. Two weeks after PAB, CPI211-treated mice were protected from fibrosis with pressure overload. Gene expression arrays and immunoblotting, quantitative histology and morphometry, and flow cytometric analysis were used to determine the mechanism of CPI211 protection. TP receptor inhibition caused a near normalization of fibrotic area, prevented cellular hypertrophy while allowing increased RV mass, increased expression of antifibrotic thrombospondin-4, and blocked induction of the profibrotic transforming growth factor β (TGF-β) pathway. A thromboxane synthase inhibitor or low-dose aspirin failed to replicate these results, which suggests that a ligand other than thromboxane mediates fibrosis through the TP receptor after pressure overload. This study suggests that TP receptor antagonism may improve RV adaptation in situations of pressure overload by decreasing fibrosis and TGF-β signaling.
Collapse
Affiliation(s)
- James D West
- Division of Allergy, Pulmonary, and Critical Care, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Bryan M Voss
- Cumberland Pharmaceuticals, Nashville, Tennessee, USA
| | - Leo Pavliv
- Cumberland Pharmaceuticals, Nashville, Tennessee, USA
| | - Mark de Caestecker
- Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Anna R Hemnes
- Division of Allergy, Pulmonary, and Critical Care, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Erica J Carrier
- Division of Allergy, Pulmonary, and Critical Care, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
35
|
Jiang F, Zhou X, Huang J. Long Non-Coding RNA-ROR Mediates the Reprogramming in Cardiac Hypertrophy. PLoS One 2016; 11:e0152767. [PMID: 27082978 PMCID: PMC4833345 DOI: 10.1371/journal.pone.0152767] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Accepted: 03/18/2016] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Cardiac hypertrophy associated with various cardiovascular diseases results in heart failure and sudden death. A clear understanding of the mechanisms of hypertrophy will benefit the development of novel therapies. Long non-coding RNAs (lncRNAs) have been shown to play essential roles in many biological process, however, whether lncRNA-ROR plays functional roles in the reprogramming of cardiomyocyte remains unclear. METHODOLOGY/PRINCIPAL FINDINGS Here we show that lncRNA-ROR plays important roles in the pathogenesis of cardiac hypertrophy. In hypertrophic heart and cardiomyocytes, the expression of lncRNA-ROR is dramatically increased, downregulation of which attenuates the hypertrophic responses. Furthermore, the expression of lncRNA-ROR negatively correlates with miR-133, whose expression is increased when lncRNA-ROR is knocked down. In line with this, overexpression of miR-133 prevents the elevation of lncRNA-ROR and re-expression of ANP and BNP in cardiomyocytes subject to phenylephrine treatment. CONCLUSIONS/SIGNIFICANCE Taken together, our study demonstrates that lncRNA-ROR promotes cardiac hypertrophy via interacting with miR-133, indicating that lncRNA-ROR could be targeted for developing novel antihypertrophic therapeutics.
Collapse
Affiliation(s)
- Feng Jiang
- Department of Cardiology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiangyu Zhou
- Department of Vascular and Thyroid Surgery, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Jing Huang
- Department of Cardiology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- * E-mail:
| |
Collapse
|
36
|
Bin-Dayel AF, Abdel Baky NA, Fadda LM, Mohammad RA, Al-Mohanna F. Effect of aliskiren and carvedilol on expression of Ca2+/calmodulin-dependent protein kinase II δ-subunit isoforms in cardiac hypertrophy rat model. Toxicol Mech Methods 2016; 26:122-31. [DOI: 10.3109/15376516.2015.1128035] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Anfal Fahad Bin-Dayel
- Department of Pharmacology, Faculty of Pharmacy, King Saud University, Riyadh, Saudi Arabia,
| | - Nayira A. Abdel Baky
- Department of Pharmacology, Faculty of Pharmacy, King Saud University, Riyadh, Saudi Arabia,
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt,
| | - L. M. Fadda
- Department of Pharmacology, Faculty of Pharmacy, King Saud University, Riyadh, Saudi Arabia,
| | - Raeesa A. Mohammad
- Anatomy Department, Faculty of Medicine, King Saud University, Riyadh, Saudi Arabia, and
| | - Futwan Al-Mohanna
- Department of Cell Biology, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia
| |
Collapse
|
37
|
Silva-Palacios A, Königsberg M, Zazueta C. Nrf2 signaling and redox homeostasis in the aging heart: A potential target to prevent cardiovascular diseases? Ageing Res Rev 2016; 26:81-95. [PMID: 26732035 DOI: 10.1016/j.arr.2015.12.005] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 12/09/2015] [Accepted: 12/21/2015] [Indexed: 10/22/2022]
Abstract
Aging process is often accompanied with a high incidence of cardiovascular diseases (CVD) due to the synergistic effects of age-related changes in heart morphology/function and prolonged exposure to injurious effects of CVD risk factors. Oxidative stress, considered a hallmark of aging, is also an important feature in pathologies that predispose to CVD development, like hypertension, diabetes and obesity. Approaches directed to prevent the occurrence of CVD during aging have been explored both in experimental models and in controlled clinical trials, in order to improve health span, reduce hospitalizations and increase life quality during elderly. In this review we discuss oxidative stress role as a main risk factor that relates CVD with aging. As well as interventions that aim to reduce oxidative stress by supplementing with exogenous antioxidants. In particular, strategies of improving the endogenous antioxidant defenses through activating the nuclear factor related-2 factor (Nrf2) pathway; one of the best studied molecules in cellular redox homeostasis and a master regulator of the antioxidant and phase II detoxification response.
Collapse
|
38
|
Liu P, Cheng GC, Ye QH, Deng YZ, Wu L. LKB1/AMPK pathway mediates resistin-induced cardiomyocyte hypertrophy in H9c2 embryonic rat cardiomyocytes. Biomed Rep 2016; 4:387-391. [PMID: 26998282 DOI: 10.3892/br.2016.593] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 01/27/2016] [Indexed: 12/11/2022] Open
Abstract
Resistin has been previously demonstrated to induce cardiac hypertrophy, however, the underlying molecular mechanisms of resistin-induced cardiac hypertrophy remain unclear. Using H9c2 cells, the present study investigated the liver kinase B1 (LKB1)/adenosine monophosphate-activated protein kinase (AMPK) signaling pathway for a potential role in mediating resistin-induced cardiomyocyte hypertrophy. Treatment of H9c2 cells with resistin increased cell surface area, protein synthesis, and expression of hypertrophic marker brain natriuretic peptide and β-myosin heavy chain. Treatment with metformine attenuated these effects of resistin. Furthermore, treatment with resistin decreased phosphorylation of LKB1 and AMPK, whereas pretreatment with metformin increased phosphorylation of LKB1 and AMPK that is reduced by resistin. These results suggest that resistin induces cardiac hypertrophy through the inactivation of the LKB1/AMPK cell signaling pathway.
Collapse
Affiliation(s)
- Peng Liu
- Department of Cardiovascular Surgery, The Affiliated Cardiovascular Hospital of Shanxi Medical University, and Shanxi Cardiovascular Hospital (Institute), Taiyuan, Shanxi 030024, P.R. China
| | - Guan-Chang Cheng
- Department of Cardiology, Huaihe Hospital of Henan University, Kaifeng, Henan 475000, P.R. China
| | - Qun-Hui Ye
- Department of Cardiology, Huaihe Hospital of Henan University, Kaifeng, Henan 475000, P.R. China
| | - Yong-Zhi Deng
- Department of Cardiovascular Surgery, The Affiliated Cardiovascular Hospital of Shanxi Medical University, and Shanxi Cardiovascular Hospital (Institute), Taiyuan, Shanxi 030024, P.R. China
| | - Lin Wu
- Department of Cardiology, Huaihe Hospital of Henan University, Kaifeng, Henan 475000, P.R. China
| |
Collapse
|
39
|
Maturing human pluripotent stem cell-derived cardiomyocytes in human engineered cardiac tissues. Adv Drug Deliv Rev 2016; 96:110-34. [PMID: 25956564 DOI: 10.1016/j.addr.2015.04.019] [Citation(s) in RCA: 167] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 04/24/2015] [Accepted: 04/25/2015] [Indexed: 12/19/2022]
Abstract
Engineering functional human cardiac tissue that mimics the native adult morphological and functional phenotype has been a long held objective. In the last 5 years, the field of cardiac tissue engineering has transitioned from cardiac tissues derived from various animal species to the production of the first generation of human engineered cardiac tissues (hECTs), due to recent advances in human stem cell biology. Despite this progress, the hECTs generated to date remain immature relative to the native adult myocardium. In this review, we focus on the maturation challenge in the context of hECTs, the present state of the art, and future perspectives in terms of regenerative medicine, drug discovery, preclinical safety testing and pathophysiological studies.
Collapse
|
40
|
Shradhanjali A, Riehl BD, Kwon IK, Lim JY. Cardiomyocyte stretching for regenerative medicine and hypertrophy study. Tissue Eng Regen Med 2015. [DOI: 10.1007/s13770-015-0010-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
41
|
The role of mid-chain hydroxyeicosatetraenoic acids in the pathogenesis of hypertension and cardiac hypertrophy. Arch Toxicol 2015; 90:119-36. [PMID: 26525395 DOI: 10.1007/s00204-015-1620-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 10/19/2015] [Indexed: 12/16/2022]
Abstract
The incidence, prevalence, and hospitalization rates associated with cardiovascular diseases (CVDs) are projected to increase substantially in the world. Understanding of the biological and pathophysiological mechanisms of survival can help the researchers to develop new management modalities. Numerous experimental studies have demonstrated that mid-chain HETEs are strongly involved in the pathogenesis of the CVDs. Mid-chain HETEs are biologically active eicosanoids that result from the metabolism of arachidonic acid (AA) by both lipoxygenase and CYP1B1 (lipoxygenase-like reaction). Therefore, identifying the localizations and expressions of the lipoxygenase and CYP1B1 and their associated AA metabolites in the cardiovascular system is of major importance in understanding their pathological roles. Generally, the expression of these enzymes is shown to be induced during several CVDs, including hypertension and cardiac hypertrophy. The induction of these enzymes is associated with the generation of mid-chain HETEs and subsequently causation of cardiovascular events. Of interest, inhibiting the formation of mid-chain HETEs has been reported to confer a protection against different cardiac hypertrophy and hypertension models such as angiotensin II, Goldblatt, spontaneously hypertensive rat and deoxycorticosterone acetate (DOCA)-salt-induced models. Although the exact mechanisms of mid-chain HETEs-mediated cardiovascular dysfunction are not fully understood, the present review proposes several mechanisms which include activating G-protein-coupled receptor, protein kinase C, mitogen-activated protein kinases, and nuclear factor kappa B. This review provides a clear understanding of the role of mid-chain HETEs in the pathogenesis of cardiovascular diseases and their importance as novel targets in the treatment for hypertension and cardiac hypertrophy.
Collapse
|
42
|
Zhang N, Yang Z, Yuan Y, Li F, Liu Y, Ma Z, Liao H, Bian Z, Zhang Y, Zhou H, Deng W, Zhou M, Tang Q. Naringenin attenuates pressure overload-induced cardiac hypertrophy. Exp Ther Med 2015; 10:2206-2212. [PMID: 26668617 DOI: 10.3892/etm.2015.2816] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 09/01/2015] [Indexed: 01/09/2023] Open
Abstract
Cardiac hypertrophy is characterized by abnormal enlargement of cardiomyocytes and disproportionate accumulation of extracellular interstitial fibrosis, which are major predictors of the development of coronary artery disease and heart failure. Naringenin is a bitter principle component of grapefruit that has numerous pharmacological effects, including anti-inflammatory, hypolipidemic, antithrombotic and antiatherogenic properties. In order to investigate whether naringenin is able to exert a protective effect against cardiac hypertrophy induced by pressure overload, aortic banding (AB) was performed to induce cardiac hypertrophy in mice, and naringenin was administered for 7 weeks. A total of 60 mice were allocated into four groups: Sham + vehicle, AB + vehicle, sham + naringenin and AB + naringenin. Naringenin treatment attenuated cardiac dysfunction, as indicated by the results of echocardiography and catheter-based measurements at 8 weeks post-surgery. The extent of cardiac hypertrophy was assessed by the heart weight/body weight, heart weight/tibial length and lung weight/body weight ratios, in addition to the cardiomyocyte cross-sectional area and the mRNA expression levels of hypertrophic maker, all of which were mitigated by naringenin administration. Naringenin also inhibited the expression of transforming growth factor-β1, connective tissue growth factor, collagen Iα and collagen IIIα, and attenuated interstitial fibrosis. In addition, naringenin downregulated the activation of the extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK) and phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) signaling pathways. In conclusion, naringenin attenuated cardiac hypertrophy and interstitial fibrosis, in addition to improving left ventricular function in pressure-overloaded mice. The cardioprotective effect exerted by naringenin may be associated with the inhibition of PI3K/Akt, ERK and JNK signaling pathways.
Collapse
Affiliation(s)
- Ning Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China ; Cardiovascular Research Institute, Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Zheng Yang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China ; Cardiovascular Research Institute, Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Yuan Yuan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China ; Cardiovascular Research Institute, Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Fangfang Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China ; Cardiovascular Research Institute, Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Yuan Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China ; Cardiovascular Research Institute, Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Zhenguo Ma
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China ; Cardiovascular Research Institute, Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Haihan Liao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China ; Cardiovascular Research Institute, Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Zhouyan Bian
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China ; Cardiovascular Research Institute, Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Yao Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China ; Cardiovascular Research Institute, Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Heng Zhou
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China ; Cardiovascular Research Institute, Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Wei Deng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China ; Cardiovascular Research Institute, Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Mengqiao Zhou
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China ; Cardiovascular Research Institute, Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Qizhu Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China ; Cardiovascular Research Institute, Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
43
|
Althurwi HN, Tse MMY, Abdelhamid G, Zordoky BNM, Hammock BD, El-Kadi AOS. Soluble epoxide hydrolase inhibitor, TUPS, protects against isoprenaline-induced cardiac hypertrophy. Br J Pharmacol 2015; 168:1794-807. [PMID: 23176298 DOI: 10.1111/bph.12066] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Revised: 09/12/2012] [Accepted: 11/13/2012] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND AND PURPOSE We have previously shown that isoprenaline-induced cardiac hypertrophy causes significant changes in the expression of cytochromes P450 (CYP) and soluble epoxide hydrolase (sEH) genes. Therefore, it is important to examine whether the inhibition of sEH by 1-(1-methanesulfonyl-piperidin-4-yl)-3-(4-trifluoromethoxy-phenyl)-urea (TUPS) will protect against isoprenaline-induced cardiac hypertrophy. EXPERIMENTAL APPROACH Male Sprague-Dawley rats were treated with TUPS (0.65 mg kg(-1) day(-1), p.o.), isoprenaline (5 mg kg(-1) day(-1), i.p.) or the combination of both. In vitro H9c2 cells were treated with isoprenaline (100 μM) in the presence and absence of either TUPS (1 μM) or 11,12 EET (1 μM). The expression of hypertrophic, fibrotic markers and different CYP genes were determined by real-time PCR. KEY RESULTS Isoprenaline significantly induced the hypertrophic, fibrotic markers as well as the heart to body weight ratio, which was significantly reversed by TUPS. Isoprenaline also caused an induction of CYP1A1, CYP1B1, CYP2B1, CYP2B2, CYP4A3 and CYP4F4 gene expression and TUPS significantly inhibited this isoprenaline-mediated effect. Moreover, isoprenaline significantly reduced 5,6-, 8,9-, 11,12- and 14,15-EET and increased their corresponding 8,9-, 11,12- and 14,15-dihydroxyeicosatrienoic acid (DHET) and the 20-HETE metabolites. TUPS abolished these isoprenaline-mediated changes in arachidonic acid (AA) metabolites. In H9c2 cells, isoprenaline caused a significant induction of ANP, BNP and EPHX2 mRNA levels. Both TUPS and 11,12-EET significantly decreased this isoprenaline-mediated induction of ANP, BNP and EPHX2. CONCLUSIONS AND IMPLICATIONS TUPS partially protects against isoprenaline-induced cardiac hypertrophy, which confirms the role of sEH and CYP enzymes in the development of cardiac hypertrophy.
Collapse
Affiliation(s)
- Hassan N Althurwi
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | | | | | | | | | | |
Collapse
|
44
|
Althurwi HN, Maayah ZH, Elshenawy OH, El-Kadi AOS. Early Changes in Cytochrome P450s and Their Associated Arachidonic Acid Metabolites Play a Crucial Role in the Initiation of Cardiac Hypertrophy Induced by Isoproterenol. Drug Metab Dispos 2015; 43:1254-66. [DOI: 10.1124/dmd.115.063776] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 06/01/2015] [Indexed: 01/08/2023] Open
|
45
|
Abdelhamid G, El-Kadi AOS. Buthionine sulfoximine, an inhibitor of glutathione biosynthesis, induces expression of soluble epoxide hydrolase and markers of cellular hypertrophy in a rat cardiomyoblast cell line: roles of the NF-κB and MAPK signaling pathways. Free Radic Biol Med 2015; 82:1-12. [PMID: 25614461 DOI: 10.1016/j.freeradbiomed.2015.01.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 01/09/2015] [Accepted: 01/10/2015] [Indexed: 01/04/2023]
Abstract
Evidence suggests that upregulation of soluble epoxide hydrolase (sEH) is associated with the development of myocardial infarction, dilated cardiomyopathy, cardiac hypertrophy, and heart failure. However, the upregulation mechanism is still unknown. In this study, we treated H9C2 cells with buthionine sulfoximine (BSO) to explore whether oxidative stress upregulates sEH gene expression and to identify the molecular and cellular mechanisms behind this upregulatory response. Real-time PCR and Western blot analyses were used to measure mRNA and protein expression, respectively. We demonstrated that BSO significantly upregulated sEH at mRNA levels in a concentration- and time-dependent manner, leading to a significant increase in the cellular hypertrophic markers, atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP). Furthermore, BSO significantly increased the cytosolic phosphorylated IκB-α and translocation of NF-κB p50 subunits, as measured by Western blot analysis. This level of translocation was paralleled by an increase in the DNA-binding activity of NF-κB P50 subunits. Moreover, our results demonstrated that pretreatment with the NF-κB inhibitor PDTC significantly inhibited BSO-mediated induction of sEH and cellular hypertrophic marker gene expression in a dose-dependent manner. Additionally, mitogen-activated protein kinases (MAPKs) were transiently phosphorylated by BSO treatment. To understand further the role of MAPKs pathway in BSO-mediated induction of sEH mRNA, we examined the role of extracellular signal-regulated kinase (ERK), c-JunN-terminal kinase (JNK), and p38 MAPK. Indeed, treatment with the MEK/ERK signal transduction inhibitor, PD98059, partially blocked the activation of IκB-α and translocation of NF-κB p50 subunits induced by BSO. Moreover, pretreatment with MEK/ERK signal transduction inhibitors, PD98059 and U0126, significantly inhibited BSO-mediated induction of sEH and cellular hypertrophic marker gene expression. These results clearly demonstrated that the NF-κB signaling pathway is involved in BSO-mediated induction of sEH gene expression, and appears to be associated with the activation of the MAPK pathway. Furthermore, our findings provide a strong link between sEH-induced cardiac dysfunction and involvement of NF-κB in the development of cellular hypertrophy.
Collapse
Affiliation(s)
- Ghada Abdelhamid
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2N8
| | - Ayman O S El-Kadi
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2N8.
| |
Collapse
|
46
|
Kesherwani V, Nandi SS, Sharawat SK, Shahshahan HR, Mishra PK. Hydrogen sulfide mitigates homocysteine-mediated pathological remodeling by inducing miR-133a in cardiomyocytes. Mol Cell Biochem 2015; 404:241-50. [PMID: 25763715 DOI: 10.1007/s11010-015-2383-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 03/05/2015] [Indexed: 12/13/2022]
Abstract
An elevated level of homocysteine called hyperhomocysteinemia (HHcy) is associated with pathological cardiac remodeling. Hydrogen sulfide (H2S) acts as a cardioprotective gas; however, the mechanism by which H2S mitigates homocysteine-mediated pathological remodeling in cardiomyocytes is unclear. We hypothesized that H2S ameliorates HHcy-mediated hypertrophy by inducing cardioprotective miR-133a in cardiomyocytes. To test the hypothesis, HL1 cardiomyocytes were treated with (1) plain medium (control, CT), (2) 100 µM of homocysteine (Hcy), (3) Hcy with 30 µM of H2S (Hcy + H2S), and (4) H2S for 24 h. The levels of hypertrophy markers: c-fos, atrial natriuretic peptide (ANP), and beta-myosin heavy chain (β-MHC), miR-133a, and its transcriptional inducer myosin enhancer factor-2C (MEF2C) were determined by Western blotting, RT-qPCR, and immunofluorescence. The activity of MEF2C was assessed by co-immunoprecipitation of MEF2C with histone deacetylase-1(HDAC1). Our results show that H2S ameliorates homocysteine-mediated up-regulation of c-fos, ANP, and β-MHC, and down-regulation of MEF2C and miR-133a. HHcy induces the binding of MEF2C with HDAC1, whereas H2S releases MEF2C from MEF2C-HDAC1 complex causing activation of MEF2C. These findings elicit that HHcy induces cardiac hypertrophy by promoting MEF2C-HDAC1 complex formation that inactivates MEF2C causing suppression of anti-hypertrophy miR-133a in cardiomyocytes. H2S mitigates hypertrophy by inducing miR-133a through activation of MEF2C in HHcy cardiomyocytes. To our knowledge, this is a novel mechanism of H2S-mediated activation of MEF2C and induction of miR-133a and inhibition of hypertrophy in HHcy cardiomyocytes.
Collapse
Affiliation(s)
- Varun Kesherwani
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, 668 S 41st Street, DRC1, Room 5047, Omaha, NE, 68198-5850, USA
| | | | | | | | | |
Collapse
|
47
|
20 years of leptin: Role of leptin in cardiomyocyte physiology and physiopathology. Life Sci 2015; 140:10-8. [PMID: 25748420 DOI: 10.1016/j.lfs.2015.02.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 02/14/2015] [Indexed: 02/08/2023]
Abstract
Since the discovery of leptin in 1994 by Zhang et al., there have been a number of reports showing its implication in the development of a wide range of cardiovascular diseases. However, there exists some controversy about how leptin can induce or preserve cardiovascular function, as different authors have found contradictory results about leptin beneficial or detrimental effects in leptin deficient/resistant murine models and in wild type tissue and cardiomyocytes. Here, we will focus on the main discoveries about the leptin functions at cardiac level within the last two decades, focusing on its role in cardiac metabolism, remodeling and contractile function.
Collapse
|
48
|
Magi S, Nasti AA, Gratteri S, Castaldo P, Bompadre S, Amoroso S, Lariccia V. Gram-negative endotoxin lipopolysaccharide induces cardiac hypertrophy: Detrimental role of Na+–Ca2+ exchanger. Eur J Pharmacol 2015; 746:31-40. [DOI: 10.1016/j.ejphar.2014.10.054] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 10/22/2014] [Accepted: 10/25/2014] [Indexed: 01/18/2023]
|
49
|
Xie YY, Sun MM, Lou XF, Zhang C, Han F, Zhang BY, Wang P, Lu YM. Overexpression of PEP-19 Suppresses Angiotensin II–Induced Cardiomyocyte Hypertrophy. J Pharmacol Sci 2014; 125:274-82. [DOI: 10.1254/jphs.13208fp] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
50
|
D'Argenio V, Frisso G, Precone V, Boccia A, Fienga A, Pacileo G, Limongelli G, Paolella G, Calabrò R, Salvatore F. DNA sequence capture and next-generation sequencing for the molecular diagnosis of genetic cardiomyopathies. J Mol Diagn 2013; 16:32-44. [PMID: 24183960 DOI: 10.1016/j.jmoldx.2013.07.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Revised: 07/03/2013] [Accepted: 07/30/2013] [Indexed: 12/15/2022] Open
Abstract
Hypertrophic cardiomyopathy is a relatively frequent disease with a prevalence of 0.2% worldwide and a remarkable genetic heterogeneity, with more than 30 causative genes reported to date. Current PCR-based strategies are inadequate for genomic investigations involving many candidate genes. Here, we report a next-generation sequencing procedure associated with DNA sequence capture that is able to sequence 202 cardiomyopathy-related genes simultaneously. We developed a complementary data analysis pipeline to select and prioritize genetic variants. The overall procedure can screen a large number of target genes simultaneously, thereby potentially revealing new disease-causing and modifier genes. By using this procedure, we analyzed hypertrophic cardiomyopathy patients in a shorter time and at a lower cost than with current procedures. The specificity of the next-generation sequencing-based procedure is at least as good as other techniques routinely used for mutation searching, and the sensitivity is much better. Analysis of the results showed some novel variants potentially involved in the pathogenesis of hypertrophic cardiomyopathy: a missense mutation in MYH7 and a nonsense variant in INS-IGF2 (patient 1), a splicing variant in MYBPC3 and an indel/frameshift variant in KCNQ1 (patient 2), and two concomitant variations in CACNA1C (patient 3). Sequencing of DNA from the three patients within a pool allowed detection of most variants identified in each individual patient, indicating that this approach is a feasible and cost-effective procedure.
Collapse
Affiliation(s)
- Valeria D'Argenio
- CEINGE-Biotecnologie Avanzate, Naples, Italy; Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy
| | - Giulia Frisso
- CEINGE-Biotecnologie Avanzate, Naples, Italy; Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy
| | - Vincenza Precone
- CEINGE-Biotecnologie Avanzate, Naples, Italy; Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy
| | | | - Antonella Fienga
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy
| | - Giuseppe Pacileo
- Cardiomyopathy and Inherited Heart Disease Clinic, UOC Cardiology, Second University of Naples, Naples, Italy
| | - Giuseppe Limongelli
- Cardiomyopathy and Inherited Heart Disease Clinic, UOC Cardiology, Second University of Naples, Naples, Italy
| | - Giovanni Paolella
- CEINGE-Biotecnologie Avanzate, Naples, Italy; Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy
| | - Raffaele Calabrò
- Cardiomyopathy and Inherited Heart Disease Clinic, UOC Cardiology, Second University of Naples, Naples, Italy
| | - Francesco Salvatore
- CEINGE-Biotecnologie Avanzate, Naples, Italy; IRCCS-Fondazione SDN, Naples, Italy.
| |
Collapse
|