1
|
Dong ZK, Wang YF, Li WP, Jin WL. Neurobiology of cancer: Adrenergic signaling and drug repurposing. Pharmacol Ther 2024:108750. [PMID: 39527999 DOI: 10.1016/j.pharmthera.2024.108750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/04/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Cancer neuroscience, as an emerging converging discipline, provides us with new perspectives on the interactions between the nervous system and cancer progression. As the sympathetic nervous system, in particular adrenergic signaling, plays an important role in the regulation of tumor activity at every hierarchical level of life, from the tumor cell to the tumor microenvironment, and to the tumor macroenvironment, it is highly desirable to dissect its effects. Considering the far-reaching implications of drug repurposing for antitumor drug development, such a large number of adrenergic receptor antagonists on the market has great potential as one of the means of antitumor therapy, either as primary or adjuvant therapy. Therefore, this review aims to summarize the impact of adrenergic signaling on cancer development and to assess the status and prospects of intervening in adrenergic signaling as a therapeutic tool against tumors.
Collapse
Affiliation(s)
- Zi-Kai Dong
- The First Clinical Medical College of Lanzhou University, Lanzhou 730000, PR China; Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, The First Clinical Medical College of Lanzhou University, Lanzhou 730000, PR China
| | - Yong-Fei Wang
- The First Clinical Medical College of Lanzhou University, Lanzhou 730000, PR China; Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, The First Clinical Medical College of Lanzhou University, Lanzhou 730000, PR China
| | - Wei-Ping Li
- The First Clinical Medical College of Lanzhou University, Lanzhou 730000, PR China; Department of Urology, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, PR China
| | - Wei-Lin Jin
- The First Clinical Medical College of Lanzhou University, Lanzhou 730000, PR China; Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, The First Clinical Medical College of Lanzhou University, Lanzhou 730000, PR China.
| |
Collapse
|
2
|
Lu X, Liu Q, Deng Y, Wu J, Mu X, Yang X, Zhang T, Luo C, Li Z, Tang S, Hu Y, Du Q, Xu J, Xie R. Research progress on the roles of dopamine and dopamine receptors in digestive system diseases. J Cell Mol Med 2024; 28:e18154. [PMID: 38494840 PMCID: PMC10945074 DOI: 10.1111/jcmm.18154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/03/2024] [Accepted: 01/12/2024] [Indexed: 03/19/2024] Open
Abstract
Dopamine (DA) is a neurotransmitter synthesized in the human body that acts on multiple organs throughout the body, reaching them through the blood circulation. Neurotransmitters are special molecules that act as messengers by binding to receptors at chemical synapses between neurons. As ligands, they mainly bind to corresponding receptors on central or peripheral tissue cells. Signalling through chemical synapses is involved in regulating the activities of various body systems. Lack of DA or a decrease in DA levels in the brain can lead to serious diseases such as Parkinson's disease, schizophrenia, addiction and attention deficit disorder. It is widely recognized that DA is closely related to neurological diseases. As research on the roles of brain-gut peptides in human physiology and pathology has deepened in recent years, the regulatory role of neurotransmitters in digestive system diseases has gradually attracted researchers' attention, and research on DA has expanded to the field of digestive system diseases. This review mainly elaborates on the research progress on the roles of DA and DRs related to digestive system diseases. Starting from the biochemical and pharmacological properties of DA and DRs, it discusses the therapeutic value of DA- and DR-related drugs for digestive system diseases.
Collapse
Affiliation(s)
- Xianmin Lu
- Department of Gastroenterology, Digestive Disease HospitalAffiliated Hospital of Zunyi Medical UniversityZunyiChina
- The Collaborative InnovAffiliated Hospital of Zunyi Medical Universityation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical UniversityZunyiChina
| | - Qi Liu
- Department of Gastroenterology, Digestive Disease HospitalAffiliated Hospital of Zunyi Medical UniversityZunyiChina
- The Collaborative InnovAffiliated Hospital of Zunyi Medical Universityation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical UniversityZunyiChina
| | - Ya Deng
- Department of Gastroenterology, Digestive Disease HospitalAffiliated Hospital of Zunyi Medical UniversityZunyiChina
- The Collaborative InnovAffiliated Hospital of Zunyi Medical Universityation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical UniversityZunyiChina
| | - Jiangbo Wu
- Department of Gastroenterology, Digestive Disease HospitalAffiliated Hospital of Zunyi Medical UniversityZunyiChina
- The Collaborative InnovAffiliated Hospital of Zunyi Medical Universityation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical UniversityZunyiChina
| | - Xingyi Mu
- Department of Gastroenterology, Digestive Disease HospitalAffiliated Hospital of Zunyi Medical UniversityZunyiChina
- The Collaborative InnovAffiliated Hospital of Zunyi Medical Universityation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical UniversityZunyiChina
| | - Xiaoxu Yang
- Department of Gastroenterology, Digestive Disease HospitalAffiliated Hospital of Zunyi Medical UniversityZunyiChina
- The Collaborative InnovAffiliated Hospital of Zunyi Medical Universityation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical UniversityZunyiChina
| | - Ting Zhang
- Department of Gastroenterology, Digestive Disease HospitalAffiliated Hospital of Zunyi Medical UniversityZunyiChina
- The Collaborative InnovAffiliated Hospital of Zunyi Medical Universityation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical UniversityZunyiChina
| | - Chen Luo
- Department of Gastroenterology, Digestive Disease HospitalAffiliated Hospital of Zunyi Medical UniversityZunyiChina
- The Collaborative InnovAffiliated Hospital of Zunyi Medical Universityation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical UniversityZunyiChina
| | - Zhuo Li
- Department of Gastroenterology, Digestive Disease HospitalAffiliated Hospital of Zunyi Medical UniversityZunyiChina
- The Collaborative InnovAffiliated Hospital of Zunyi Medical Universityation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical UniversityZunyiChina
| | - Siqi Tang
- Department of Gastroenterology, Digestive Disease HospitalAffiliated Hospital of Zunyi Medical UniversityZunyiChina
- The Collaborative InnovAffiliated Hospital of Zunyi Medical Universityation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical UniversityZunyiChina
| | - Yanxia Hu
- Department of Gastroenterology, Digestive Disease HospitalAffiliated Hospital of Zunyi Medical UniversityZunyiChina
- The Collaborative InnovAffiliated Hospital of Zunyi Medical Universityation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical UniversityZunyiChina
| | - Qian Du
- Department of Gastroenterology, Digestive Disease HospitalAffiliated Hospital of Zunyi Medical UniversityZunyiChina
- The Collaborative InnovAffiliated Hospital of Zunyi Medical Universityation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical UniversityZunyiChina
| | - Jingyu Xu
- Department of Gastroenterology, Digestive Disease HospitalAffiliated Hospital of Zunyi Medical UniversityZunyiChina
- The Collaborative InnovAffiliated Hospital of Zunyi Medical Universityation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical UniversityZunyiChina
| | - Rui Xie
- Department of Gastroenterology, Digestive Disease HospitalAffiliated Hospital of Zunyi Medical UniversityZunyiChina
- The Collaborative InnovAffiliated Hospital of Zunyi Medical Universityation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical UniversityZunyiChina
| |
Collapse
|
3
|
Shalabi S, Belayachi A, Larrivée B. Involvement of neuronal factors in tumor angiogenesis and the shaping of the cancer microenvironment. Front Immunol 2024; 15:1284629. [PMID: 38375479 PMCID: PMC10875004 DOI: 10.3389/fimmu.2024.1284629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 01/09/2024] [Indexed: 02/21/2024] Open
Abstract
Emerging evidence suggests that nerves within the tumor microenvironment play a crucial role in regulating angiogenesis. Neurotransmitters and neuropeptides released by nerves can interact with nearby blood vessels and tumor cells, influencing their behavior and modulating the angiogenic response. Moreover, nerve-derived signals may activate signaling pathways that enhance the production of pro-angiogenic factors within the tumor microenvironment, further supporting blood vessel growth around tumors. The intricate network of communication between neural constituents and the vascular system accentuates the potential of therapeutically targeting neural-mediated pathways as an innovative strategy to modulate tumor angiogenesis and, consequently, neoplastic proliferation. Hereby, we review studies that evaluate the precise molecular interplay and the potential clinical ramifications of manipulating neural elements for the purpose of anti-angiogenic therapeutics within the scope of cancer treatment.
Collapse
Affiliation(s)
- Sharif Shalabi
- Maisonneuve-Rosemont Hospital Research Center, Boulevard de l’Assomption, Montréal, QC, Canada
| | - Ali Belayachi
- Maisonneuve-Rosemont Hospital Research Center, Boulevard de l’Assomption, Montréal, QC, Canada
| | - Bruno Larrivée
- Maisonneuve-Rosemont Hospital Research Center, Boulevard de l’Assomption, Montréal, QC, Canada
- Department of Biochemistry and Molecular Medicine, Montréal, QC, Canada
- Ophthalmology, Université de Montréal, boul. Édouard-Montpetit, Montréal, QC, Canada
| |
Collapse
|
4
|
Xiao L, Li X, Fang C, Yu J, Chen T. Neurotransmitters: promising immune modulators in the tumor microenvironment. Front Immunol 2023; 14:1118637. [PMID: 37215113 PMCID: PMC10196476 DOI: 10.3389/fimmu.2023.1118637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 04/12/2023] [Indexed: 05/24/2023] Open
Abstract
The tumor microenvironment (TME) is modified by its cellular or acellular components throughout the whole period of tumor development. The dynamic modulation can reprogram tumor initiation, growth, invasion, metastasis, and response to therapies. Hence, the focus of cancer research and intervention has gradually shifted to TME components and their interactions. Accumulated evidence indicates neural and immune factors play a distinct role in modulating TME synergistically. Among the complicated interactions, neurotransmitters, the traditional neural regulators, mediate some crucial regulatory functions. Nevertheless, knowledge of the exact mechanisms is still scarce. Meanwhile, therapies targeting the TME remain unsatisfactory. It holds a great prospect to reveal the molecular mechanism by which the interplay between the nervous and immune systems regulate cancer progression for laying a vivid landscape of tumor development and improving clinical treatment.
Collapse
Affiliation(s)
- Luxi Xiao
- Department of General Surgery and Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Xunjun Li
- Department of General Surgery and Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Chuanfa Fang
- Department of Gastrointestinal and Hernia Surgery, Ganzhou Hospital-Nanfang Hospital, Southern Medical University, Ganzhou, Jiangxi, China
| | - Jiang Yu
- Department of General Surgery and Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Tao Chen
- Department of General Surgery and Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
- Department of Gastrointestinal and Hernia Surgery, Ganzhou Hospital-Nanfang Hospital, Southern Medical University, Ganzhou, Jiangxi, China
| |
Collapse
|
5
|
Allen RS, Khayat CT, Feola AJ, Win AS, Grubman AR, Chesler KC, He L, Dixon JA, Kern TS, Iuvone PM, Thule PM, Pardue MT. Diabetic rats with high levels of endogenous dopamine do not show retinal vascular pathology. Front Neurosci 2023; 17:1125784. [PMID: 37034167 PMCID: PMC10073440 DOI: 10.3389/fnins.2023.1125784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 02/21/2023] [Indexed: 04/11/2023] Open
Abstract
Purpose Limited research exists on the time course of long-term retinal and cerebral deficits in diabetic rodents. Previously, we examined short term (4-8 weeks) deficits in the Goto-Kakizaki (GK) rat model of Type II diabetes. Here, we investigated the long-term (1-8 months) temporal appearance of functional deficits (retinal, cognitive, and motor), retinal vascular pathology, and retinal dopamine levels in the GK rat. Methods In GK rats and Wistar controls, retinal neuronal function (electroretinogram), cognitive function (Y-maze), and motor function (rotarod) were measured at 1, 2, 4, 6, and 8 months of age. In addition, we evaluated retinal vascular function (functional hyperemia) and glucose and insulin tolerance. Retinas from rats euthanized at ≥8 months were assessed for vascular pathology. Dopamine and DOPAC levels were measured via HPLC in retinas from rats euthanized at 1, 2, 8, and 12 months. Results Goto-Kakizaki rats exhibited significant glucose intolerance beginning at 4 weeks and worsening over time (p < 0.001). GK rats also showed significant delays in flicker and oscillatory potential implicit times (p < 0.05 to p < 0.001) beginning at 1 month. Cognitive deficits were observed beginning at 6 months (p < 0.05), but no motor deficits. GK rats showed no deficits in functional hyperemia and no increase in acellular retinal capillaries. Dopamine levels were twice as high in GK vs. Wistar retinas at 1, 2, 8, and 12 months (p < 0.001). Conclusion As shown previously, retinal deficits were detectable prior to cognitive deficits in GK rats. While retinal neuronal function was compromised, retinal vascular pathology was not observed, even at 12+ months. High endogenous levels of dopamine in the GK rat may be acting as an anti-angiogenic and providing protection against vascular pathology.
Collapse
Affiliation(s)
- Rachael S. Allen
- Atlanta VA Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Healthcare System, Decatur, GA, United States
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States
| | - Cara T. Khayat
- Atlanta VA Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Healthcare System, Decatur, GA, United States
| | - Andrew J. Feola
- Atlanta VA Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Healthcare System, Decatur, GA, United States
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States
- Department of Ophthalmology, Emory University, Atlanta, GA, United States
| | - Alice S. Win
- Atlanta VA Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Healthcare System, Decatur, GA, United States
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States
| | - Allison R. Grubman
- Atlanta VA Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Healthcare System, Decatur, GA, United States
- Department of Ophthalmology, Emory University, Atlanta, GA, United States
| | - Kyle C. Chesler
- Atlanta VA Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Healthcare System, Decatur, GA, United States
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States
| | - Li He
- Department of Ophthalmology, Emory University, Atlanta, GA, United States
- Department of Pharmacology and Chemical Biology, Emory University, Atlanta, GA, United States
| | - Jendayi A. Dixon
- Department of Ophthalmology, Emory University, Atlanta, GA, United States
| | - Timothy S. Kern
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH, United States
- Veterans Administration Medical Center Research Service, Cleveland, OH, United States
- Gavin Herbert Eye Institute, University of California, Irvine, Irvine, CA, United States
| | - P. Michael Iuvone
- Department of Ophthalmology, Emory University, Atlanta, GA, United States
- Department of Pharmacology and Chemical Biology, Emory University, Atlanta, GA, United States
| | - Peter M. Thule
- Section Endocrinology and Metabolism, Atlanta VA Medical Center, Emory University School of Medicine, Decatur, GA, United States
| | - Machelle T. Pardue
- Atlanta VA Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Healthcare System, Decatur, GA, United States
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States
- Department of Ophthalmology, Emory University, Atlanta, GA, United States
| |
Collapse
|
6
|
Sisakht AK, Malekan M, Ghobadinezhad F, Firouzabadi SNM, Jafari A, Mirazimi SMA, Abadi B, Shafabakhsh R, Mirzaei H. Cellular Conversations in Glioblastoma Progression, Diagnosis and Treatment. Cell Mol Neurobiol 2023; 43:585-603. [PMID: 35411434 DOI: 10.1007/s10571-022-01212-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 03/07/2022] [Indexed: 12/22/2022]
Abstract
Glioblastoma (GBM) is the most frequent malignancy among primary brain tumors in adults and one of the worst 5-year survival rates (< 7%) among all human cancers. Till now, treatments that target particular cell or intracellular metabolism have not improved patients' survival. GBM recruits healthy brain cells and subverts their processes to create a microenvironment that contributes to supporting tumor progression. This microenvironment encompasses a complex network in which malignant cells interact with each other and with normal and immune cells to promote tumor proliferation, angiogenesis, metastasis, immune suppression, and treatment resistance. Communication can be direct via cell-to-cell contact, mainly through adhesion molecules, tunneling nanotubes, gap junctions, or indirect by conventional paracrine signaling by cytokine, neurotransmitter, and extracellular vesicles. Understanding these communication routes could open up new avenues for the treatment of this lethal tumor. Hence, therapeutic approaches based on glioma cells` communication have recently drawn attention. This review summarizes recent findings on the crosstalk between glioblastoma cells and their tumor microenvironment, and the impact of this conversation on glioblastoma progression. We also discuss the mechanism of communication of glioma cells and their importance as therapeutic targets and diagnostic and prognostic biomarkers. Overall, understanding the biological mechanism of specific interactions in the tumor microenvironment may help in predicting patient prognosis and developing novel therapeutic strategies to target GBM.
Collapse
Affiliation(s)
- Ali Karimi Sisakht
- Brain Cancer Research Core (BCRC), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Malekan
- Brain Cancer Research Core (BCRC), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Student Research Committee, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Farbod Ghobadinezhad
- Brain Cancer Research Core (BCRC), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Student Research Committee, Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.,USERN Office, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Seyedeh Negar Mousavi Firouzabadi
- Brain Cancer Research Core (BCRC), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Ameneh Jafari
- Advanced Therapy Medicinal Product (ATMP) Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran.,Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Mohammad Ali Mirazimi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran.,Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Banafshe Abadi
- Brain Cancer Research Core (BCRC), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Rana Shafabakhsh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran.
| |
Collapse
|
7
|
The Nervous System as a Regulator of Cancer Hallmarks: Insights into Therapeutic Implications. Cancers (Basel) 2022; 14:cancers14184372. [PMID: 36139532 PMCID: PMC9496837 DOI: 10.3390/cancers14184372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary The nervous system communicates with the whole organism, regulating several physiological pathways. The modification of nerve activity could deregulate the state of cellular and tissue homeostasis which could drive cancer development. This paper provides the current state of knowledge, in an evidence-oriented manner, that the nervous system is able to participate in the carcinogenesis process by inducing biochemical, physiological, and cellular modifications involved in the hallmarks of cancer. Abstract The involvement of the nervous system in the development of cancer is controversial. Several authors have shown opinions and conflicting evidence that support the early effect of the nervous system on the carcinogenic process. For about a century, research has not been enough, questions remain open, ideas are not discarded, and although more research is still needed to answer all the questions, there is now enough evidence to support the theories and give hope of finding one more possible form of treatment. It is clear that malignant neoplasms have endogenous characteristics that allow them to establish and progress. Some of these characteristics known as hallmarks of cancer, are damage mechanisms in the pathology but necessary during other physiological processes which show some nerve dependence. The nervous system communicates with the whole organism, regulating physiological processes necessary to respond to external stimuli and for the maintenance of homeostasis. The modification of nerve activity could generate an overload and deregulate the state of cellular and tissue homeostasis; this could drive cancer development. In this review, we will address the issue in an evidence-oriented manner that supports that the nervous system is able to participate in the initial and progressive process of carcinogenesis by inducing biochemical, physiological, and cellular modifications involved in the hallmarks of cancer.
Collapse
|
8
|
Chakroborty D, Goswami S, Fan H, Frankel WL, Basu S, Sarkar C. Neuropeptide Y, a paracrine factor secreted by cancer cells, is an independent regulator of angiogenesis in colon cancer. Br J Cancer 2022; 127:1440-1449. [PMID: 35902640 PMCID: PMC9553928 DOI: 10.1038/s41416-022-01916-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Resistance to anti-angiogenic therapies targeting vascular endothelial growth factor-A (VEGF-A) stems from VEGF-A independent angiogenesis mediated by other proangiogenic factors. Therefore identifying these factors in colon adenocarcinoma (CA) will reveal new therapeutic targets. METHODS Neuropeptide Y (NPY) and Y2 receptor (Y2R) expressions in CA were studied by immunohistochemical analysis. Orthotopic HT29 with intact VEGF-A gene and VEGF-A knockdown (by CRISPR/Cas9 gene-editing technique) HT29 colon cancer-bearing mice were treated with specific Y2R antagonists, and the effects on angiogenesis and tumour growth were studied. The direct effect of NPY on angiogenesis and the underlying molecular mechanism was elucidated by the modulation of Y2R receptors expressed on colonic endothelial cells (CEC). RESULTS The results demonstrated that NPY and Y2R are overexpressed in human CA, orthotopic HT29, and most interestingly in VEGF-A-depleted orthotopic HT29 tumours. Treatment with Y2R antagonists inhibited angiogenesis and thereby HT29 tumour growth. Blocking /silencing Y2R abrogated NPY-induced angiogenic potential of CEC. Mechanistically, NPY regulated the activation of the ERK/MAPK signalling pathway in CEC. CONCLUSIONS NPY derived from cancer cells independently regulates angiogenesis in CA by acting through Y2R present on CEC. Targeting NPY/Y2R thus emerges as a novel potential therapeutic strategy in CA.
Collapse
Affiliation(s)
- Debanjan Chakroborty
- Department of Pathology, The Ohio State University, Columbus, OH, 43210, USA.,Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA.,Department of Pathology, University of South Alabama, Mobile, AL, 36617, USA.,Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, USA.,Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, AL, 36688, USA
| | - Sandeep Goswami
- Department of Pathology, The Ohio State University, Columbus, OH, 43210, USA.,Department of Pathology, University of South Alabama, Mobile, AL, 36617, USA.,Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, USA
| | - Hao Fan
- Department of Pathology, The Ohio State University, Columbus, OH, 43210, USA
| | - Wendy L Frankel
- Department of Pathology, The Ohio State University, Columbus, OH, 43210, USA.,Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA
| | - Sujit Basu
- Department of Pathology, The Ohio State University, Columbus, OH, 43210, USA.,Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA.,Division of Medical Oncology, Department of Internal Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Chandrani Sarkar
- Department of Pathology, The Ohio State University, Columbus, OH, 43210, USA. .,Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA. .,Department of Pathology, University of South Alabama, Mobile, AL, 36617, USA. .,Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, USA. .,Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, AL, 36688, USA.
| |
Collapse
|
9
|
Sarkar C, Chakroborty D, Goswami S, Fan H, Mo X, Basu S. VEGF-A controls the expression of its regulator of angiogenic functions, dopamine D2 receptor, on endothelial cells. J Cell Sci 2022; 135:jcs259617. [PMID: 35593650 PMCID: PMC9234670 DOI: 10.1242/jcs.259617] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 05/05/2022] [Indexed: 01/08/2023] Open
Abstract
We have previously demonstrated significant upregulation of dopamine D2 (DAD2) receptor (DRD2) expression on tumor endothelial cells. The dopamine D2 receptors, upon activation, inhibit the proangiogenic actions of vascular endothelial growth factor-A (VEGF-A, also known as vascular permeability factor). Interestingly, unlike tumor endothelial cells, normal endothelial cells exhibit very low to no expression of dopamine D2 receptors. Here, for the first time, we demonstrate that through paracrine signaling, VEGF-A can control the expression of dopamine D2 receptors on endothelial cells via Krüppel-like factor 11 (KLF11)-extracellular signal-regulated kinase (ERK) 1/2 pathway. These results thus reveal a novel bidirectional communication between VEGF-A and DAD2 receptors.
Collapse
Affiliation(s)
- Chandrani Sarkar
- Department of Pathology, Ohio State University, Columbus, Ohio 43201, USA
- Comprehensive Cancer Center, Ohio State University, Columbus, Ohio 43210, USA
- Department of Pathology, University of South Alabama, Mobile, Alabama 36617, USA
- Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama 36688, USA
- Department of Biochemistry & Molecular Biology, University of South Alabama, Mobile, Alabama 36688, USA
| | - Debanjan Chakroborty
- Department of Pathology, Ohio State University, Columbus, Ohio 43201, USA
- Comprehensive Cancer Center, Ohio State University, Columbus, Ohio 43210, USA
- Department of Pathology, University of South Alabama, Mobile, Alabama 36617, USA
- Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama 36688, USA
- Department of Biochemistry & Molecular Biology, University of South Alabama, Mobile, Alabama 36688, USA
| | - Sandeep Goswami
- Department of Pathology, Ohio State University, Columbus, Ohio 43201, USA
- Department of Pathology, University of South Alabama, Mobile, Alabama 36617, USA
- Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama 36688, USA
| | - Hao Fan
- Department of Pathology, Ohio State University, Columbus, Ohio 43201, USA
| | - Xiaokui Mo
- Department of Biomedical Informatics, Ohio State University, Columbus, Ohio 43210, USA
| | - Sujit Basu
- Department of Pathology, Ohio State University, Columbus, Ohio 43201, USA
- Comprehensive Cancer Center, Ohio State University, Columbus, Ohio 43210, USA
- Division of Medical Oncology, Department of Internal Medicine, Ohio State University, Columbus, Ohio 43210, USA
| |
Collapse
|
10
|
DiVasta AD, Stamoulis C, Gallagher JS, Laufer MR, Anchan R, Hornstein MD. Nonhormonal therapy for endometriosis: a randomized, placebo-controlled, pilot study of cabergoline versus norethindrone acetate. F S Rep 2021; 2:454-461. [PMID: 34934987 PMCID: PMC8655411 DOI: 10.1016/j.xfre.2021.07.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 07/19/2021] [Accepted: 07/19/2021] [Indexed: 01/11/2023] Open
Abstract
Objective To estimate the efficacy and safety of a novel nonhormonal therapeutic agent, cabergoline, compared with that of the standard clinical therapy, norethindrone acetate (NETA), for the treatment of endometriosis-associated pain in young women with endometriosis. Design Randomized, double-blind, placebo-controlled pilot study. Setting Tertiary care center. Patient(s) Women (n = 9) with surgically confirmed endometriosis. Intervention(s) A random, double-blind assignment to either NETA (5 mg/day) + placebo twice weekly or cabergoline (0.5 mg) twice weekly + placebo daily for 6 months. Main Outcome Measure(s) We collected the measures of pelvic pain and laboratory parameters every 3 months. Result(s) We observed a decrease in pain scores and increase in pain relief in women randomized to receive cabergoline, who appeared to show similar or more improvements than women treated with NETA. The serum measures of vascular endothelial growth factor receptor 1 declined over 6 months in those who received cabergoline. Cabergoline was well tolerated, and no serious adverse events occurred. Conclusion(s) Safe, effective adjunct treatments are lacking for patients with endometriosis who do not respond to standard care. Because the growth of endometriosis requires angiogenesis, blood vessel growth is an attractive therapeutic target. This pilot study suggests that cabergoline, a vascular endothelial growth factor pathway inhibitor, is an effective therapeutic option for women with chronic pain due to endometriosis. Building upon this investigation, we will conduct larger, randomized trials of cabergoline, advancing research on the best treatments for endometriosis—particularly disease resistant to hormonal therapies. Clinical Trial Registration Number clinicaltrials.gov; registration number NCT02542410.
Collapse
Affiliation(s)
- Amy D DiVasta
- Division of Adolescent Medicine, Boston Children's Hospital, Boston, Massachusetts.,Boston Center for Endometriosis, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | - Catherine Stamoulis
- Division of Adolescent Medicine, Boston Children's Hospital, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | - Jenny Sadler Gallagher
- Division of Adolescent Medicine, Boston Children's Hospital, Boston, Massachusetts.,Boston Center for Endometriosis, Boston, Massachusetts
| | - Marc R Laufer
- Boston Center for Endometriosis, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts.,Division of Gynecology, Department of Surgery, Boston Children's Hospital, Boston, Massachusetts.,Division of Fertility and Reproductive Surgery, Department of Obstetrics and Gynecology, Brigham and Women's Hospital, Boston, Massachusetts
| | - Raymond Anchan
- Boston Center for Endometriosis, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts.,Division of Fertility and Reproductive Surgery, Department of Obstetrics and Gynecology, Brigham and Women's Hospital, Boston, Massachusetts
| | - Mark D Hornstein
- Boston Center for Endometriosis, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts.,Division of Fertility and Reproductive Surgery, Department of Obstetrics and Gynecology, Brigham and Women's Hospital, Boston, Massachusetts
| |
Collapse
|
11
|
Roda N, Blandano G, Pelicci PG. Blood Vessels and Peripheral Nerves as Key Players in Cancer Progression and Therapy Resistance. Cancers (Basel) 2021; 13:cancers13174471. [PMID: 34503281 PMCID: PMC8431382 DOI: 10.3390/cancers13174471] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/31/2021] [Accepted: 09/02/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary The interactions between cancer cells and the surrounding blood vessels and peripheral nerves are critical in all the phases of tumor development. Accordingly, therapies that specifically target vessels and nerves represent promising anticancer approaches. The first aim of this review is to document the importance of blood vessels and peripheral nerves in both cancer onset and local or distant growth of tumoral cells. We then focus on the state-of-the-art therapies that limit cancer progression through the impairment of blood vessels and peripheral nerves. The mentioned literature is helpful for the scientific community to appreciate the recent advances in these two fundamental components of tumors. Abstract Cancer cells continuously interact with the tumor microenvironment (TME), a heterogeneous milieu that surrounds the tumor mass and impinges on its phenotype. Among the components of the TME, blood vessels and peripheral nerves have been extensively studied in recent years for their prominent role in tumor development from tumor initiation. Cancer cells were shown to actively promote their own vascularization and innervation through the processes of angiogenesis and axonogenesis. Indeed, sprouting vessels and axons deliver several factors needed by cancer cells to survive and proliferate, including nutrients, oxygen, and growth signals, to the expanding tumor mass. Nerves and vessels are also fundamental for the process of metastatic spreading, as they provide both the pro-metastatic signals to the tumor and the scaffold through which cancer cells can reach distant organs. Not surprisingly, continuously growing attention is devoted to the development of therapies specifically targeting these structures, with promising initial results. In this review, we summarize the latest evidence that supports the importance of blood vessels and peripheral nerves in cancer pathogenesis, therapy resistance, and innovative treatments.
Collapse
Affiliation(s)
- Niccolò Roda
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, 20139 Milan, Italy; (N.R.); (G.B.)
| | - Giada Blandano
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, 20139 Milan, Italy; (N.R.); (G.B.)
| | - Pier Giuseppe Pelicci
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, 20139 Milan, Italy; (N.R.); (G.B.)
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy
- Correspondence:
| |
Collapse
|
12
|
Pellicer N, Galliano D, Herraiz S, Bagger YZ, Arce JC, Pellicer A. Use of dopamine agonists to target angiogenesis in women with endometriosis. Hum Reprod 2021; 36:850-858. [PMID: 33355352 DOI: 10.1093/humrep/deaa337] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 09/10/2020] [Indexed: 12/20/2022] Open
Abstract
Endometriosis requires medical management during a woman's reproductive years. Most treatments aim to create a hypoestrogenic milieu, but for patients wishing to conceive, drugs that allow normal ovarian function are needed. Targeting angiogenesis, a hallmark of the disease, using dopamine agonists (DAs) is a promising strategy for endometriosis treatment. Herein, we review experimental and clinical data that investigate this concept. In experimental models of endometriosis, DAs (bromocriptine, cabergoline, quinagolide) downregulate proangiogenic and upregulate antiangiogenic pathways in inflammatory, endothelial and endometrial cells, blocking cellular proliferation and reducing lesion size. Impaired secretion of vascular endothelial growth factor (VEGF) and inactivation of its receptor type-2 are key events. VEGF inhibition also reduces nerve fiber density in lesions. In humans, quinagolide shows similar effects on lesions, and DAs reduce pain and endometrioma size. Moreover, a 20-fold downregulation of Serpin-1, the gene that encodes for plasminogen activator inhibitor 1 (PAI-1), has been observed after DAs treatment. Pentoxifylline, a PAI-1, increases pregnancy rates in women with endometriosis. Thus, the data support the use of DAs in the medical management of endometriosis to reduce lesion size and pain while maintaining ovulation. A combined approach of DAs and pentoxifylline is perhaps a smart way of targeting the disease from a completely different angle than current medical treatments.
Collapse
Affiliation(s)
- Nuria Pellicer
- Women's Health Area, La Fe University Hospital, 46026 Valencia, Spain.,IVI Foundation, 46026 Valencia, Spain.,Reproductive Medicine Research Group; Biomedical Research Institute la Fe, 46026 Valencia, Spain
| | - Daniela Galliano
- IVI Foundation, 46026 Valencia, Spain.,IVI-RMA Rome, 00197 Rome, Italy
| | - Sonia Herraiz
- IVI Foundation, 46026 Valencia, Spain.,Reproductive Medicine Research Group; Biomedical Research Institute la Fe, 46026 Valencia, Spain
| | - Yu Z Bagger
- Ferring Pharmaceuticals, 2300 Copenhagen, Denmark
| | | | - Antonio Pellicer
- IVI Foundation, 46026 Valencia, Spain.,Reproductive Medicine Research Group; Biomedical Research Institute la Fe, 46026 Valencia, Spain.,IVI-RMA Rome, 00197 Rome, Italy
| |
Collapse
|
13
|
Lu K, Bhat M, Peters S, Mitra R, Mo X, Oberyszyn TM, Dasgupta PS, Basu S. Dopamine Prevents Ultraviolet B-induced Development and Progression of Premalignant Cutaneous Lesions through its D 2 Receptors. Cancer Prev Res (Phila) 2021; 14:687-696. [PMID: 33846213 DOI: 10.1158/1940-6207.capr-21-0052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/16/2021] [Accepted: 04/06/2021] [Indexed: 01/11/2023]
Abstract
Although the role of dopamine (DA) in malignant tumors has been reported, its function in premalignant lesions is unknown. Herein we report that the stimulation of DA D2 receptors in endothelial cells in ultraviolet B (UVB)-induced cutaneous lesions in mice significantly reduced the tumor number, tumor burden, and malignant squamous cell carcinoma in these animals. DA D2 receptor agonist inhibited VEGFA-dependent proangiogenic genes in vitro and in vivo. However, the mice pretreated with selective DA D2 receptor antagonist inhibited the actions of the agonist, thereby suggesting that the action of DA was through its D2 receptors in the endothelial cells. To our knowledge, this study is the first to report DA-mediated regulation of pathogenesis and progression of UVB-induced premalignant skin lesions. PREVENTION RELEVANCE: This investigation demonstrates the role of dopamine and its D2 receptors in UVB induced premalignant squamous cell skin lesions and how DA through its D2 receptors inhibits the development and progression of these lesions and subsequently prevents squamous cell carcinoma of the skin.
Collapse
Affiliation(s)
- Kai Lu
- Department of Pathology, Ohio State University, Columbus, Ohio
| | - Madhavi Bhat
- Department of Pathology, Ohio State University, Columbus, Ohio
| | - Sara Peters
- Department of Pathology, Ohio State University, Columbus, Ohio
| | - Rita Mitra
- Department of Pathology, KPC Medical College, Kolkata, India
| | - Xiaokui Mo
- Department of SBS-Biomedical Informatics, Ohio State University, Columbus, Ohio
| | | | | | - Sujit Basu
- Department of Pathology, Ohio State University, Columbus, Ohio. .,Division of Medical Oncology, Department of Internal Medicine, Ohio State University, Columbus, Ohio
| |
Collapse
|
14
|
Feng Y, Lu Y. Immunomodulatory Effects of Dopamine in Inflammatory Diseases. Front Immunol 2021; 12:663102. [PMID: 33897712 PMCID: PMC8063048 DOI: 10.3389/fimmu.2021.663102] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 03/12/2021] [Indexed: 12/17/2022] Open
Abstract
Dopamine (DA) receptor, a significant G protein-coupled receptor, is classified into two families: D1-like (D1 and D5) and D2-like (D2, D3, and D4) receptor families, with further formation of homodimers, heteromers, and receptor mosaic. Increasing evidence suggests that the immune system can be affected by the nervous system and neurotransmitters, such as dopamine. Recently, the role of the DA receptor in inflammation has been widely studied, mainly focusing on NLRP3 inflammasome, NF-κB pathway, and immune cells. This article provides a brief review of the structures, functions, and signaling pathways of DA receptors and their relationships with inflammation. With detailed descriptions of their roles in Parkinson disease, inflammatory bowel disease, rheumatoid arthritis, systemic lupus erythematosus, and multiple sclerosis, this article provides a theoretical basis for drug development targeting DA receptors in inflammatory diseases.
Collapse
Affiliation(s)
- Yifei Feng
- Department of Dermatology, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Yan Lu
- Department of Dermatology, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
15
|
Dicitore A, Cantone MC, Gaudenzi G, Saronni D, Carra S, Borghi MO, Albertelli M, Ferone D, Hofland LJ, Persani L, Vitale G. Efficacy of a Novel Second-Generation Somatostatin-Dopamine Chimera (TBR-065) in Human Medullary Thyroid Cancer: A Preclinical Study. Neuroendocrinology 2021; 111:937-950. [PMID: 33075795 DOI: 10.1159/000512366] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 10/18/2020] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Somatostatin and dopamine (DA) receptors have a pivotal role in controlling hormone secretion and cell proliferation in different neuroendocrine neoplasms, including medullary thyroid cancer (MTC). In the present preclinical study, we evaluated the anti-tumor activity of TBR-065 (formerly BIM-23B065), a second-generation somatostatin-DA chimera, in 2 human MTC cell lines. METHODS The effects of lanreotide (LAN) and TBR-065 on cell growth and proliferation, calcitonin (CT) secretion, cell cycle, apoptosis, cell migration, and tumor-induced angiogenesis have been evaluated through 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, DNA flow cytometry with propidium iodide (PI), Annexin V-FITC/PI staining, electrochemiluminescence immuno assay, wound-healing assay, and zebrafish platform, respectively. RESULTS TBR-065 exerted a more prominent anti-tumor activity than LAN in both MTC cell lines, as shown by inhibition of cell proliferation (maximal inhibition in TT: -50.3 and -37.6%, respectively; in MZ-CRC-1: -58.8 and -27%, respectively) and migration (in TT: -42.7 and -22.9%, respectively; in MZ-CRC-1: -75.5 and -58.2%, respectively). Only the new chimera decreased significantly the fraction of cells in S phase (TT: -33.8%; MZ-CRC-1: -18.8%) and increased cells in G2/M phase (TT: +13%; MZ-CRC-1: +30.5%). In addition, TBR-065 exerted a more prominent pro-apoptotic effect than LAN in TT cells. A concomitant decrease in CT secretion was observed after 2 days of incubation with both drugs, with a more relevant effect of TBR-065. However, neither LAN nor TBR-065 showed any effect on tumor-induced angiogenesis, as evaluated using a zebrafish/tumor xenograft model. DISCUSSION/CONCLUSION In MTC cell lines, a second-generation somatostatin-DA analog, TBR-065, exerts a more relevant anti-tumor activity than LAN, through modulation of cell cycle, induction of apoptosis, and reduction in migration. Further studies are required to establish whether TBR-065 has comparable potent inhibitory effects on tumor growth in vivo.
Collapse
Affiliation(s)
- Alessandra Dicitore
- Department of Clinical Sciences and Community Health (DISCCO), University of Milan, Milan, Italy
| | - Maria Celeste Cantone
- Department of Medical Biotechnologies and Translational Medicine (BIOMETRA), University of Milan, Milan, Italy
| | - Germano Gaudenzi
- Istituto Auxologico Italiano, IRCCS, Laboratory of Geriatric and Oncologic Neuroendocrinology Research, Cusano Milanino, Italy
| | - Davide Saronni
- Department of Medical Biotechnologies and Translational Medicine (BIOMETRA), University of Milan, Milan, Italy
| | - Silvia Carra
- Istituto Auxologico Italiano, IRCCS, Laboratory of Endocrine and Metabolic Research, Milan, Italy
| | - Maria Orietta Borghi
- Department of Clinical Sciences and Community Health (DISCCO), University of Milan, Milan, Italy
- Istituto Auxologico Italiano, IRCCS, Experimental Laboratory of Immuno-Rheumatology, Cusano Milanino, Italy
| | - Manuela Albertelli
- Endocrinology Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Endocrinology Unit, Department of Internal Medicine and Medical Specialties (DIMI) and Centre of Excellence for Biomedical Research (CEBR), University of Genoa, Genoa, Italy
| | - Diego Ferone
- Endocrinology Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Endocrinology Unit, Department of Internal Medicine and Medical Specialties (DIMI) and Centre of Excellence for Biomedical Research (CEBR), University of Genoa, Genoa, Italy
| | - Leo J Hofland
- Division of Endocrinology, Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Luca Persani
- Department of Medical Biotechnologies and Translational Medicine (BIOMETRA), University of Milan, Milan, Italy
- Istituto Auxologico Italiano, IRCCS, Laboratory of Endocrine and Metabolic Research, Milan, Italy
| | - Giovanni Vitale
- Department of Medical Biotechnologies and Translational Medicine (BIOMETRA), University of Milan, Milan, Italy,
- Istituto Auxologico Italiano, IRCCS, Laboratory of Geriatric and Oncologic Neuroendocrinology Research, Cusano Milanino, Italy,
| |
Collapse
|
16
|
Sobczuk P, Łomiak M, Cudnoch-Jędrzejewska A. Dopamine D1 Receptor in Cancer. Cancers (Basel) 2020; 12:cancers12113232. [PMID: 33147760 PMCID: PMC7693420 DOI: 10.3390/cancers12113232] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 10/18/2020] [Accepted: 10/29/2020] [Indexed: 12/18/2022] Open
Abstract
Simple Summary Circulating hormones and their specific receptors play a significant role in the development and progression of various cancers. This review aimed to summarize current knowledge about the dopamine D1 receptor’s biological role in different cancers, including breast cancer, central nervous system tumors, lymphoproliferative disorders, and other neoplasms. Treatment with dopamine D1 receptor agonists was proven to exert a major anti-cancer effect in many preclinical models. We highlight this receptor’s potential as a target for the adjunct therapy of tumors and discuss possibilities and necessities for further research in this area. Abstract Dopamine is a biologically active compound belonging to catecholamines. It plays its roles in the human body, acting both as a circulating hormone and neurotransmitter. It acts through G-protein-coupled receptors divided into two subgroups: D1-like receptors (D1R and D5R) and D2-like receptors (D2R, D3R, D4R). Physiologically, dopamine receptors are involved in central nervous system functions: motivation or cognition, and peripheral actions such as blood pressure and immune response modulation. Increasing evidence indicates that the dopamine D1 receptor may play a significant role in developing different human neoplasms. This receptor’s value was presented in the context of regulating various signaling pathways important in tumor development, including neoplastic cell proliferation, apoptosis, autophagy, migration, invasiveness, or the enrichment of cancer stem cells population. Recent studies proved that its activation by selective or non-selective agonists is associated with significant tumor growth suppression, metastases prevention, and tumor microvasculature maturation. It may also exert a synergistic anti-cancer effect when combined with tyrosine kinase inhibitors or temozolomide. This review provides a comprehensive insight into the heterogeneity of dopamine D1 receptor molecular roles and signaling pathways in human neoplasm development and discusses possible perspectives of its therapeutic targeting as an adjunct anti-cancer strategy of treatment. We highlight the priorities for further directions in this research area.
Collapse
Affiliation(s)
- Paweł Sobczuk
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, 02-097 Warsaw, Poland; (M.Ł.); (A.C.-J.)
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, 02-097 Warsaw, Poland
- Correspondence: ; Tel.: +48-221166113
| | - Michał Łomiak
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, 02-097 Warsaw, Poland; (M.Ł.); (A.C.-J.)
| | - Agnieszka Cudnoch-Jędrzejewska
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, 02-097 Warsaw, Poland; (M.Ł.); (A.C.-J.)
| |
Collapse
|
17
|
Chakroborty D, Goswami S, Basu S, Sarkar C. Catecholamines in the regulation of angiogenesis in cutaneous wound healing. FASEB J 2020; 34:14093-14102. [PMID: 32949437 DOI: 10.1096/fj.202001701r] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/04/2020] [Accepted: 08/24/2020] [Indexed: 12/13/2022]
Abstract
Angiogenesis involves the formation of new blood vessels from preexisting ones, and it is an essential step during cutaneous wound healing, which supports cells at the wound site with nutrition and oxygen. Impaired angiogenesis in the wound tissues results in delayed wound closure and healing. Among the regulators of angiogenesis, the role of catecholamines (epinephrine, norepinephrine, and dopamine) is of interest due to their diverse roles in the process of wound healing. While both norepinephrine and epinephrine mostly inhibit the angiogenic process in cutaneous wounds, dopamine, the other member of the catecholamine family, has interesting and contradictory roles in the regulation of angiogenesis in the wound beds, depending on the type of dopamine receptor involved. The stimulation of dopamine D2 receptors negatively regulates the angiogenic process in normal dermal wounds and thereby delays healing, whereas the stimulation of dopamine D1 receptors promotes angiogenesis and expedites healing in diabetic wounds. Importantly, catecholamines also play important roles in other pathological conditions, and specific agonists and antagonists of catecholamines are available for the treatment of some disorders. Therefore, such drugs may be utilized for the management of angiogenesis to promote the healing of dermal wounds. This review provides a broad overview of the angiogenic process during cutaneous wound healing and the regulatory roles played by catecholamines during the process.
Collapse
Affiliation(s)
| | - Sandeep Goswami
- Department of Pathology, Ohio State University, Columbus, OH, USA
| | - Sujit Basu
- Department of Pathology, Ohio State University, Columbus, OH, USA.,Comprehensive Cancer Center, Ohio State University, Columbus, OH, USA.,Department of Medical Oncology, Ohio State University, Columbus, OH, USA
| | - Chandrani Sarkar
- Department of Pathology, Ohio State University, Columbus, OH, USA.,Comprehensive Cancer Center, Ohio State University, Columbus, OH, USA
| |
Collapse
|
18
|
Kachuri L, Helby J, Bojesen SE, Christiani DC, Su L, Wu X, Tardón A, Fernández-Tardón G, Field JK, Davies MP, Chen C, Goodman GE, Shepherd FA, Leighl NB, Tsao MS, Brhane Y, Brown MC, Boyd K, Shepshelovich D, Sun L, Amos CI, Liu G, Hung RJ. Investigation of Leukocyte Telomere Length and Genetic Variants in Chromosome 5p15.33 as Prognostic Markers in Lung Cancer. Cancer Epidemiol Biomarkers Prev 2020; 28:1228-1237. [PMID: 31263055 DOI: 10.1158/1055-9965.epi-18-1215] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 01/15/2019] [Accepted: 03/29/2019] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Lung cancer remains the leading cause of cancer mortality with relatively few prognostic biomarkers. We investigated associations with overall survival for telomere length (TL) and genetic variation in chromosome 5p15.33, an established telomere maintenance locus. METHODS Leukocyte TL was measured after diagnosis in 807 patients with non-small cell lung cancer (NSCLC) from the Princess Margaret Cancer Center in Toronto and assessed prospectively in 767 NSCLC cases from the Copenhagen City Heart Study and the Copenhagen General Population Study. Associations with all-cause mortality were tested for 723 variants in 5p15.33, genotyped in 4,672 NSCLC cases. RESULTS Short telomeres (≤10th percentile) were associated with poor prognosis for adenocarcinoma in both populations: TL measured 6 months after diagnosis [HR = 1.65; 95% confidence intervals (CI), 1.04-2.64] and for those diagnosed within 5 years after blood sampling (HR = 2.42; 95% CI, 1.37-4.28). Short TL was associated with mortality in never smokers with NSCLC (HR = 10.29; 95% CI, 1.86-56.86) and adenocarcinoma (HR = 11.31; 95% CI, 1.96-65.24). Analyses in 5p15.33 identified statistically significant prognostic associations for rs56266421-G in LPCAT1 (HR = 1.86; 95% CI, 1.38-2.52; P = 4.5 × 10-5) in stage I-IIIA NSCLC, and for the SLC6A3 gene with OS in females with NSCLC (P = 1.6 × 10-3). CONCLUSIONS Our findings support the potential clinical utility of TL, particularly for adenocarcinoma patients, while associations in chromosome 5p15.33 warrant further exploration. IMPACT This is the largest lung cancer study of leukocyte TL and OS, and the first to examine the impact of the timing of TL measurement. Our findings suggest that extremely short telomeres are indicative of poor prognosis in NSCLC.
Collapse
Affiliation(s)
- Linda Kachuri
- Prosserman Centre for Population Health Research, Lunenfeld-Tanenbaum Research Institute of Sinai Health System, Toronto, Ontario, Canada.,Division of Epidemiology, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada.,Department of Epidemiology & Biostatistics, University of California San Francisco, San Francisco, California
| | - Jens Helby
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Copenhagen, Denmark
| | - Stig Egil Bojesen
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Copenhagen, Denmark.,Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - David C Christiani
- Departments of Epidemiology and Environmental Health, Harvard TH Chan School of Public Health, Boston, Massachusetts.,Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Li Su
- Departments of Epidemiology and Environmental Health, Harvard TH Chan School of Public Health, Boston, Massachusetts
| | - Xifeng Wu
- Department of Epidemiology, Division of Cancer Prevention and Population Sciences, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Adonina Tardón
- University of Oviedo and CIBERESP, Faculty of Medicine, Campus del Cristo, Oviedo, Spain
| | | | - John K Field
- Roy Castle Lung Cancer Research Programme, Institute of Translational Medicine, Department of Molecular & Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Michael P Davies
- Roy Castle Lung Cancer Research Programme, Institute of Translational Medicine, Department of Molecular & Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Chu Chen
- Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Gary E Goodman
- Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Frances A Shepherd
- Cancer Clinical Research Unit, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Natasha B Leighl
- Cancer Clinical Research Unit, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Ming S Tsao
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Yonathan Brhane
- Prosserman Centre for Population Health Research, Lunenfeld-Tanenbaum Research Institute of Sinai Health System, Toronto, Ontario, Canada
| | - M Catherine Brown
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
| | - Kevin Boyd
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
| | - Daniel Shepshelovich
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada.,The Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Lei Sun
- Department of Statistical Sciences, University of Toronto, Toronto, Ontario, Canada.,Division of Biostatistics, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Christopher I Amos
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, Texas
| | - Geoffrey Liu
- Division of Epidemiology, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada.,Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Rayjean J Hung
- Prosserman Centre for Population Health Research, Lunenfeld-Tanenbaum Research Institute of Sinai Health System, Toronto, Ontario, Canada. .,Division of Epidemiology, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
19
|
Liu L, Dana R, Yin J. Sensory neurons directly promote angiogenesis in response to inflammation via substance P signaling. FASEB J 2020; 34:6229-6243. [PMID: 32162744 DOI: 10.1096/fj.201903236r] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/26/2020] [Accepted: 02/27/2020] [Indexed: 12/14/2022]
Abstract
Blood vessels and nerves travel together to supply most tissues in the body. However, there is a knowledge gap in the mechanisms underlying the direct regulation of angiogenesis by nerves. In the current study, we examined the regulation of angiogenesis by sensory nerves in response to inflammation using the cornea, a normally avascular and densely innervated ocular tissue, as a model. We used desiccating stress as an inflammatory stimulus in vivo and found that sub-basal and epithelial nerve densities in the cornea were reduced in dry eye disease (DED). We established a co-culture system of trigeminal ganglion sensory neurons and vascular endothelial cells (VEC) and found that neurons isolated from mice with DED directly promoted VEC proliferation and tube formation compared with normal controls. In addition, these neurons expressed and secreted higher levels of substance P (SP), a proinflammatory neuropeptide. SP potently promoted VEC activation in vitro and blockade of SP signaling with spantide I, an antagonist of SP receptor Neurokinin-1, significantly reduced corneal neovascularization in vivo. Spantide I and siRNA knockdown of SP abolished the promotion of VEC activation by DED neurons in vitro. Taken together, our data suggested that sensory neurons directly promote angiogenesis via SP signaling in response to inflammation in the cornea.
Collapse
Affiliation(s)
- Lingjia Liu
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA.,School of Medicine, Nankai University, Tianjin, China
| | - Reza Dana
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Jia Yin
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
20
|
Myeloid-derived suppressor cells-new and exciting players in lung cancer. J Hematol Oncol 2020; 13:10. [PMID: 32005273 PMCID: PMC6995114 DOI: 10.1186/s13045-020-0843-1] [Citation(s) in RCA: 120] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 01/15/2020] [Indexed: 12/11/2022] Open
Abstract
Lung cancer (LC) is the leading cause of cancer-related death worldwide due to its late diagnosis and poor outcomes. As has been found for other types of tumors, there is increasing evidence that myeloid-derived suppressor cells (MDSCs) play important roles in the promotion and progression of LC. Here, we briefly introduce the definition of MDSCs and their immunosuppressive functions. We next specifically discuss the multiple roles of MDSCs in the lung tumor microenvironment, including those in tumor growth and progression mediated by inhibiting antitumor immunity, and the associations of MDSCs with a poor prognosis and increased resistance to chemotherapy and immunotherapy. Finally, we also discuss preclinical and clinical treatment strategies targeting MDSCs, which may have the potential to enhance the efficacy of immunotherapy.
Collapse
|
21
|
Lin S, Zhang A, Zhang X, Wu ZB. Treatment of Pituitary and Other Tumours with Cabergoline: New Mechanisms and Potential Broader Applications. Neuroendocrinology 2020; 110:477-488. [PMID: 31597135 DOI: 10.1159/000504000] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 10/09/2019] [Indexed: 11/19/2022]
Abstract
Cabergoline is a dopamine agonist that has been used as the first-line treatment option for prolactin-secreting pituitary adenomas for several decades. It not only suppresses hormone production from these prolactinomas, but also causes tumour shrinkage. Recent studies revealed some novel mechanisms by which cabergoline suppresses tumour cell proliferation and induces cell death. In this article, we review the most recent findings in cabergoline studies, focusing on its anti-tumour function. These studies suggest the potential broader clinical use of cabergoline in the treatment of other tumours such as breast cancer, pancreatic neuroendocrine tumours, and lung cancer.
Collapse
Affiliation(s)
- Shaojian Lin
- Center of Pituitary Tumour, Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Neurosurgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Anke Zhang
- Department of Neurosurgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xun Zhang
- Neuroendocrine Research Laboratory, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Zhe Bao Wu
- Center of Pituitary Tumour, Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,
| |
Collapse
|
22
|
Caragher SP, Hall RR, Ahsan R, Ahmed AU. Monoamines in glioblastoma: complex biology with therapeutic potential. Neuro Oncol 2019; 20:1014-1025. [PMID: 29126252 DOI: 10.1093/neuonc/nox210] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Glioblastoma (GBM) is characterized by extremely poor prognoses, despite the use of gross surgical resection, alkylating chemotherapeutic agents, and radiotherapy. Evidence increasingly highlights the role of the tumor microenvironment in enabling this aggressive phenotype. Despite this interest, the role of neurotransmitters, brain-specific messengers underlying synaptic transmission, remains murky. These signaling molecules influence a complex network of molecular pathways and cellular behaviors in many CNS-resident cells, including neural stem cells and progenitor cells, neurons, and glia cells. Critically, available data convincingly demonstrate that neurotransmitters can influence proliferation, quiescence, and differentiation status of these cells. This ability to affect progenitors and glia-GBM-initiating cells-and their availability in the CNS strongly support the notion that neurotransmitters participate in the onset and progression of GBM. This review will focus on dopamine and serotonin, as studies indicate they contribute to gliomagenesis. Particular attention will be paid to how these neurotransmitters and their receptors can be utilized as novel therapeutic targets. Overall, this review will analyze the complex biology governing the interaction of GBM with neurotransmitter signaling and highlight how this interplay shapes the aggressive nature of GBM.
Collapse
Affiliation(s)
- Seamus Patrick Caragher
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | | | - Riasat Ahsan
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Atique U Ahmed
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| |
Collapse
|
23
|
Role of monoamine-oxidase-A-gene variation in the development of glioblastoma in males: a case control study. J Neurooncol 2019; 145:287-294. [PMID: 31556016 PMCID: PMC6856259 DOI: 10.1007/s11060-019-03294-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 09/16/2019] [Indexed: 12/23/2022]
Abstract
Background The Mono-amine oxidase-A (MAO-A) enzyme is involved in the degradation and regulation of catecholamines such as serotonin, dopamine, epinephrine and nor-epinephrine. Preclinical studies suggest that this enzyme may contribute to an environment favorable for growth of malignant glioma. The MAO-A gene is located on the X-chromosome and has at least one functional genetic polymorphism. The aim of the present study was to explore possible effects of MAO-A genotype on development of glioblastoma in males. Methods Genotypes for 437 glioma cases and 876 population-based controls from the Swedish Glioma International Case–Control study (GICC) were compared. We analyzed the germline DNA using the Illumina Oncoarray. We selected seven single nucleotide polymorphisms (SNPs) located in the MAO-A gene, and imputed genotypes based on data from the 1000 genomes project. We used 1579 male glioblastoma cases and 1875 controls comprising the whole GICC cohort for subsequent validation of findings. Results The rs144551722 SNP was a significant predictor of development of glioblastoma in males (p-value = 0.0056) but not in females even after correction for multiple testing. We conducted haplotype analysis to confirm an association between MAO-A gene and risk of glioblastoma (p-value = 0.016). We found similar results in the validation sample. Conclusions These results suggest the possibility of a role for the MAO-A enzyme and the MAO-A gene in the development of glioblastoma in males.
Collapse
|
24
|
Abstract
Cancer is a systemic disease. In order to fully understand it, we must take a holistic view on how cancer interacts with its host. The brain monitors and responds to natural and aberrant signals arriving from the periphery, particularly those of metabolic or immune origin. As has been well described, a hallmark of cancer is marked disruption of metabolic and inflammatory processes. Depending on the salience and timing of these inputs, the brain responds via neural and humoral routes to alter whole-body physiology. These responses have consequences for tumor growth and metastasis, directly influencing patient quality of life and subsequent mortality. Additionally, environmental inputs such as light, diet, and stress, can promote inappropriate neural activity that benefits cancer. Here, I discuss evidence for brain-tumor interactions, with special emphasis on subcortical neuromodulator neural populations, and potential ways of harnessing this cross-talk as a novel approach for cancer treatment.
Collapse
Affiliation(s)
- Jeremy C Borniger
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, P154 MSLS Building, 1201 Welch Rd., Stanford, CA 94305, USA
| |
Collapse
|
25
|
Nasi G, Ahmed T, Rasini E, Fenoglio D, Marino F, Filaci G, Cosentino M. Dopamine inhibits human CD8+ Treg function through D 1-like dopaminergic receptors. J Neuroimmunol 2019; 332:233-241. [PMID: 30954278 DOI: 10.1016/j.jneuroim.2019.02.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 02/06/2019] [Accepted: 02/15/2019] [Indexed: 01/01/2023]
Abstract
CD8+ T regulatory/suppressor cells (Treg) affect peripheral tolerance and may be involved in autoimmune diseases as well as in cancer. In view of our previous data showing the ability of DA to affect adaptive immune responses, we investigated the dopaminergic phenotype of human CD8+ Treg as well as the ability of DA to affect their generation and activity. Results show that CD8+ T cells express both D1-like and D2-like dopaminergic receptors (DR), tyrosine hydroxylase (TH), the rate-limiting enzyme in the synthesis of DA, and vesicular monoamine transporter (VMAT) 2 and contain high levels of intracellular DA. Preferential upregulation of DR mRNA levels in the CD8+CD28- T cell compartment occurs during generation of CD8+ Treg, which is reduced by DA and by the D1-like DR agonist SKF-38393. DA and SKF-38393 also reduce the suppressive activity of CD8+ Treg on human peripheral blood mononuclear cells. Treg are crucial for tumor escape from the host immune system, thus the ability of DA to inhibits Treg function supports dopaminergic pathways as a druggable targets to develop original and innovative antitumor strategies.
Collapse
Affiliation(s)
- Giorgia Nasi
- Center of Excellence for Biomedical Research/Department of Internal Medicine, Clinical Immunology Unit, Clinical Immunology Unit, University of Genoa, Genoa, Italy; Biotherapy Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy.
| | - Tanzeel Ahmed
- Center for Research in Medical Pharmacology, University of Insubria, Varese, Italy
| | - Emanuela Rasini
- Center for Research in Medical Pharmacology, University of Insubria, Varese, Italy
| | - Daniela Fenoglio
- Center of Excellence for Biomedical Research/Department of Internal Medicine, Clinical Immunology Unit, Clinical Immunology Unit, University of Genoa, Genoa, Italy; Biotherapy Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Franca Marino
- Center for Research in Medical Pharmacology, University of Insubria, Varese, Italy.
| | - Gilberto Filaci
- Center of Excellence for Biomedical Research/Department of Internal Medicine, Clinical Immunology Unit, Clinical Immunology Unit, University of Genoa, Genoa, Italy; Biotherapy Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Marco Cosentino
- Center for Research in Medical Pharmacology, University of Insubria, Varese, Italy.
| |
Collapse
|
26
|
Wang X, Wang ZB, Luo C, Mao XY, Li X, Yin JY, Zhang W, Zhou HH, Liu ZQ. The Prospective Value of Dopamine Receptors on Bio-Behavior of Tumor. J Cancer 2019; 10:1622-1632. [PMID: 31205518 PMCID: PMC6548012 DOI: 10.7150/jca.27780] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Accepted: 02/07/2019] [Indexed: 12/11/2022] Open
Abstract
Dopamine receptors are belong to the family of G protein-coupled receptor. There are five types of dopamine receptor (DR), including DRD1, DRD2, DRD3, DRD4, and DRD5, which are divided into two major groups: the D1-like receptors (DRD1 and DRD5), and the D2-like receptors (DRD2, DRD3, and DRD4). Dopamine receptors are involved in all of the physiological functions of dopamine, including the autonomic movement, emotion, hormonal regulation, dopamine-induced immune effects, and tumor behavior, and so on. Increasing evidence shows that dopamine receptors are associated with the regulation of tumor behavior, such as tumor cell death, proliferation, invasion, and migration. Recently, some studies showed that dopamine receptors could regulate several ways of death of the tumor cell, including apoptosis, autophagy-induced death, and ferroptosis, which cannot only directly affect tumor behavior, but also limit tumor progress via activating tumor immunity. In this review, we focus mainly on the function of the dopamine receptor on Bio-behavior of tumor as a potential therapeutic target.
Collapse
Affiliation(s)
- Xu Wang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, P. R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, P. R. China
| | - Zhi-Bin Wang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, P. R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, P. R. China
| | - Chao Luo
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, P. R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, P. R. China.,School of Life Sciences, Central South University, Changsha, Hunan 410078
| | - Xiao-Yuan Mao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, P. R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, P. R. China
| | - Xi Li
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, P. R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, P. R. China
| | - Ji-Ye Yin
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, P. R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, P. R. China
| | - Wei Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, P. R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, P. R. China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, P. R. China
| | - Hong-Hao Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, P. R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, P. R. China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, P. R. China
| | - Zhao-Qian Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, P. R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, P. R. China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, P. R. China
| |
Collapse
|
27
|
Suslova EV, Yarmolinskaya MI, Tkachenko NN, Kleymenova TS, Netreba EA. Features of proteome in the blood and peritoneal fluid in patients with endometriosis of different localization. ACTA ACUST UNITED AC 2019. [DOI: 10.17116/repro20192506186] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
28
|
Ferrero S, Evangelisti G, Barra F. Current and emerging treatment options for endometriosis. Expert Opin Pharmacother 2018; 19:1109-1125. [DOI: 10.1080/14656566.2018.1494154] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Simone Ferrero
- Academic Unit of Obstetrics and Gynecology, Ospedale Policlinico San Martino, Genoa, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Genoa, Italy
| | - Giulio Evangelisti
- Academic Unit of Obstetrics and Gynecology, Ospedale Policlinico San Martino, Genoa, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Genoa, Italy
| | - Fabio Barra
- Academic Unit of Obstetrics and Gynecology, Ospedale Policlinico San Martino, Genoa, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Genoa, Italy
| |
Collapse
|
29
|
Barra F, Scala C, Mais V, Guerriero S, Ferrero S. Investigational drugs for the treatment of endometriosis, an update on recent developments. Expert Opin Investig Drugs 2018; 27:445-458. [PMID: 29708812 DOI: 10.1080/13543784.2018.1471135] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Endometriosis is a hormone-dependent benign chronic disease that requires a chronic medical therapy. Although currently available drugs are efficacious in treating endometriosis-related pain, some women experience partial or no improvement. Moreover, the recurrence of symptoms is expected after discontinuation of the therapies. Currently, new drugs are under intense clinical investigation for the treatment of endometriosis. AREAS COVERED This review aims to offer the reader a complete and updated overview on new investigational drugs and early molecular targets for the treatment of endometriosis. The authors describe the pre-clinical and clinical development of these agents. EXPERT OPINION Among the drugs under investigation, late clinical trials on gonadotropin-releasing hormone antagonists (GnRH-ant) showed the most promising results for the treatment of endometriosis. Aromatase inhibitors (AIs) are efficacious in treating endometriosis related pain symptoms but they cause significant adverse effects that limit their long-term use. New targets have been identified to produce drugs for the treatment of endometriosis, but the majority of these new compounds have only been investigated in laboratory studies or early clinical trials. Thus, further clinical research is required in order to elucidate their efficacy and safety in human.
Collapse
Affiliation(s)
- Fabio Barra
- a Academic Unit of Obstetrics and Gynecology , Ospedale Policlinico San Martino , Genoa , Italy.,b Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI) , University of Genoa , Genoa , Italy
| | - Carolina Scala
- a Academic Unit of Obstetrics and Gynecology , Ospedale Policlinico San Martino , Genoa , Italy.,b Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI) , University of Genoa , Genoa , Italy
| | - Valerio Mais
- c Department of Obstetrics and Gynecology , University of Cagliari, Policlinico Universitario Duilio Casula, Monserrato , Cagliari , Italy
| | - Stefano Guerriero
- c Department of Obstetrics and Gynecology , University of Cagliari, Policlinico Universitario Duilio Casula, Monserrato , Cagliari , Italy
| | - Simone Ferrero
- a Academic Unit of Obstetrics and Gynecology , Ospedale Policlinico San Martino , Genoa , Italy.,b Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI) , University of Genoa , Genoa , Italy
| |
Collapse
|
30
|
Nucleus Accumbens Microcircuit Underlying D2-MSN-Driven Increase in Motivation. eNeuro 2018; 5:eN-NWR-0386-17. [PMID: 29780881 PMCID: PMC5957524 DOI: 10.1523/eneuro.0386-18.2018] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 02/23/2018] [Accepted: 02/28/2018] [Indexed: 01/11/2023] Open
Abstract
The nucleus accumbens (NAc) plays a central role in reinforcement and motivation. Around 95% of the NAc neurons are medium spiny neurons (MSNs), divided into those expressing dopamine receptor D1 (D1R) or dopamine receptor D2 (D2R). Optogenetic activation of D2-MSNs increased motivation, whereas inhibition of these neurons produced the opposite effect. Yet, it is still unclear how activation of D2-MSNs affects other local neurons/interneurons or input terminals and how this contributes for motivation enhancement. To answer this question, in this work we combined optogenetic modulation of D2-MSNs with in loco pharmacological delivery of specific neurotransmitter antagonists in rats. First, we showed that optogenetic activation of D2-MSNs increases motivation in a progressive ratio (PR) task. We demonstrated that this behavioral effect relies on cholinergic-dependent modulation of dopaminergic signalling of ventral tegmental area (VTA) terminals, which requires D1R and D2R signalling in the NAc. D2-MSN optogenetic activation decreased ventral pallidum (VP) activity, reducing the inhibitory tone to VTA, leading to increased dopaminergic activity. Importantly, optogenetic activation of D2-MSN terminals in the VP was sufficient to recapitulate the motivation enhancement. In summary, our data suggests that optogenetic stimulation of NAc D2-MSNs indirectly modulates VTA dopaminergic activity, contributing for increased motivation. Moreover, both types of dopamine receptors signalling in the NAc are required in order to produce the positive behavioral effects.
Collapse
|
31
|
Vellaisamy K, Li G, Ko CN, Zhong HJ, Fatima S, Kwan HY, Wong CY, Kwong WJ, Tan W, Leung CH, Ma DL. Cell imaging of dopamine receptor using agonist labeling iridium(iii) complex. Chem Sci 2017; 9:1119-1125. [PMID: 29675156 PMCID: PMC5885777 DOI: 10.1039/c7sc04798c] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 12/09/2017] [Indexed: 12/21/2022] Open
Abstract
A long-lived complex 13 could selectively bind to dopamine receptors (D1R/D2R) and monitor their internalization in living cells.
Dopamine receptor expression is correlated with certain types of cancers, including lung, breast and colon cancers. In this study, we report luminescent iridium(iii) complexes (11–14) as intracellular dopamine receptor (D1R/D2R) cell imaging agents. Complexes 11 and 13, which are conjugated with a dopamine receptor agonist, showed superior cell imaging characteristics, high stability and low cytotoxicity (>100 μM) in A549 lung cancer cells. siRNA knockdown and dopamine competitive assays indicated that complexes 11 and 13 could selectively bind to dopamine receptors (D1R/D2R) in A549 cells. Fluorescence lifetime microscopy demonstrated that complex 13 has a longer luminescence lifetime at the wavelength of 560–650 nm than DAPI and other chromophores in biological fluids. The long luminescence lifetime of complex 13 not only provides an opportunity for efficient dopamine receptor tracking in biological media, but also enables the temporal separation of the probe signal from the intense background signal by fluorescence lifetime microscopy for efficient analysis. Complex 13 also shows high photostability, which could allow it to be employed for long-term cellular imaging. Furthermore, complex 13 could selectively track the internalization process of dopamine receptors (D1R/D2R) in living cells. To the best of our knowledge, complex 13 is the first metal-based compound that has been used to monitor intracellular dopamine receptors in living cells.
Collapse
Affiliation(s)
- Kasipandi Vellaisamy
- Department of Chemistry , Hong Kong Baptist University , Kowloon Tong , Hong Kong , China . ;
| | - Guodong Li
- State Key Laboratory of Quality Research in Chinese Medicine , Institute of Chinese Medical Sciences , University of Macau , Macau , China .
| | - Chung-Nga Ko
- Department of Chemistry , Hong Kong Baptist University , Kowloon Tong , Hong Kong , China . ;
| | - Hai-Jing Zhong
- State Key Laboratory of Quality Research in Chinese Medicine , Institute of Chinese Medical Sciences , University of Macau , Macau , China .
| | - Sarwat Fatima
- School of Chinese Medicine , Hong Kong Baptist University , Kowloon Tong , Hong Kong , China
| | - Hiu-Yee Kwan
- School of Chinese Medicine , Hong Kong Baptist University , Kowloon Tong , Hong Kong , China
| | - Chun-Yuen Wong
- Department of Biology and Chemistry , City University of Hong Kong , Kowloon Tong , Hong Kong , China
| | - Wai-Jing Kwong
- Department of Chemistry , Hong Kong Baptist University , Kowloon Tong , Hong Kong , China . ;
| | - Weihong Tan
- Department of Chemistry , Department of Physiology and Functional Genomics , Center for Research at the Bio/Nano Interface , Shands Cancer Center , UF Genetics Institute , McKnight Brain Institute , University of Florida , Gainesville , USA . .,Molecular Sciences and Biomedicine Laboratory , State Key Laboratory for Chemo/Biosensing and Chemometrics , College of Chemistry and Chemical Engineering , College of Biology , Hunan University , Changsha , China
| | - Chung-Hang Leung
- State Key Laboratory of Quality Research in Chinese Medicine , Institute of Chinese Medical Sciences , University of Macau , Macau , China .
| | - Dik-Lung Ma
- Department of Chemistry , Hong Kong Baptist University , Kowloon Tong , Hong Kong , China . ;
| |
Collapse
|
32
|
Lan YL, Wang X, Xing JS, Lou JC, Ma XC, Zhang B. The potential roles of dopamine in malignant glioma. Acta Neurol Belg 2017; 117:613-621. [PMID: 27995487 DOI: 10.1007/s13760-016-0730-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 11/26/2016] [Indexed: 12/24/2022]
Abstract
Despite the numerous promising discoveries in contemporary cancer research and the emerging innovative cancer treatment strategies, the global burden of malignant glioma is expected to increase, partially due to its poor prognosis and human aging. Dopamine, a monoamine catecholamine neurotransmitter, is currently regarded as an important endogenous regulator of tumor growth. Dopamine may be an important treatment for brain tumors and could impact the pathogenesis of glioma by regulating tumor angiogenesis and vasculogenesis. Additionally, dopamine might exert an anti-glioma, cytotoxic effect by modulating apoptosis and autophagy. Dopamine and its receptors are also known to influence the immune system, as it is related to the pathogenesis of glioma. Dopamine may also increase the efficacy of anti-cancer drugs. Here, we review the potential roles of dopamine in malignant glioma and further identify the previously unknown function of dopamine as a potent regulator in the pathogenesis of glioma. Currently, the precise mechanisms regarding the protective effect of dopamine on glioma are poorly understood. However, our experimental results strongly emphasize the importance of this topic in future investigations.
Collapse
|
33
|
Sun X, Zhang W, Li H, Niu C, Ou Y, Song L, Zhang Y. Stonin 2 Overexpression is Correlated with Unfavorable Prognosis and Tumor Invasion in Epithelial Ovarian Cancer. Int J Mol Sci 2017; 18:ijms18081653. [PMID: 28758939 PMCID: PMC5578043 DOI: 10.3390/ijms18081653] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 07/19/2017] [Accepted: 07/23/2017] [Indexed: 01/11/2023] Open
Abstract
Stonin 2 (STON2), which functions in adjusting endocytotic complexes, is probably involved in the monitoring of the internalization of dopamine D2 receptors which have an inhibitory action of dopamine on tumor progression. However, its clinical significance in tumor progression and prognosis remains unclear. We explored the association between STON2 and the clinicopathological characteristics of epithelial ovarian cancer (EOC). The STON2 levels in ovarian cancer and normal cell lines and tissues were detected by real-time PCR and Western blot analyses. STON2 protein expression was also detected by an immunohistochemical analysis. The clinical significance of STON2 expression in ovarian cancer was statistically analyzed. STON2 significantly increased in the ovarian cancer cell lines and tissues compared to the normal ones. In the 89 EOC samples tested, STON2 expression was significantly correlated with intraperitoneal metastasis, intestinal metastasis, intraperitoneal recurrence, ascites containing tumor cells, and CA153 level. Moreover, patients with STON2 protein overexpression were more likely to exhibit platinum resistance and to have undergone neoadjuvant chemotherapy. Patients with high STON2 protein expression had a tendency to have a shorter overall survival and a poor prognosis. A multivariate analysis showed that STON2 was an independent prognostic predictor for EOC patients. In conclusion, STON2 plays an important role in the progression and prognosis of ovarian carcinoma, especially in platinum resistance, intraperitoneal metastasis, and recurrence. STON2 can be a novel antitumor drug target and biomarker which predicts an unfavorable prognosis for EOC patients.
Collapse
Affiliation(s)
- Xiaoying Sun
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Gynecologic Oncology, Cancer Center, Sun Yat-Sen University, No. 651, Dongfeng Road East, Guangzhou 510060, China.
| | - Weijing Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Gynecologic Oncology, Cancer Center, Sun Yat-Sen University, No. 651, Dongfeng Road East, Guangzhou 510060, China.
| | - Han Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Gynecologic Oncology, Cancer Center, Sun Yat-Sen University, No. 651, Dongfeng Road East, Guangzhou 510060, China.
| | - Chunhao Niu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Gynecologic Oncology, Cancer Center, Sun Yat-Sen University, No. 651, Dongfeng Road East, Guangzhou 510060, China.
| | - Yulan Ou
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Gynecologic Oncology, Cancer Center, Sun Yat-Sen University, No. 651, Dongfeng Road East, Guangzhou 510060, China.
| | - Libing Song
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Gynecologic Oncology, Cancer Center, Sun Yat-Sen University, No. 651, Dongfeng Road East, Guangzhou 510060, China.
| | - Yanna Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Gynecologic Oncology, Cancer Center, Sun Yat-Sen University, No. 651, Dongfeng Road East, Guangzhou 510060, China.
| |
Collapse
|
34
|
Role of peripheral dopaminergic system in the pathogenesis of experimental colitis in rats. UKRAINIAN BIOCHEMICAL JOURNAL 2017. [DOI: 10.15407/ubj89.04.056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
35
|
Horvathova L, Tillinger A, Padova A, Mravec B. Sympathectomized tumor-bearing mice survive longer but develop bigger melanomas. Endocr Regul 2017; 50:207-214. [PMID: 27941180 DOI: 10.1515/enr-2016-0022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVES Previously we have shown that 20 days after the tumor cells injection smaller melanomas have been developed in chemically sympathectomized mice in comparison with animals having intact sympathetic nervous system. However, it is known that chemical sympathectomy reduces the sympathetic neurotransmission only temporarily. In the present study, we monitored the survival of the sympathectomized mice with melanoma with an attempt to find out how long the suppressing effect of sympathectomy on the melanoma growth may endure. METHODS The chemical sympathectomy was performed by intraperitoneal injection of neurotoxin 6-hydroxydopamine in male C57BL/6J mice. Seven days later, the animals were injected subcutaneously with B16-F10 melanoma cells. Then, melanoma development, survival of the tumor-bearing mice and weight of the developed tumor mass were analyzed. RESULTS Sympathectomy delayed the development of the palpable tumors (18th day vs.14th day) and significantly prolonged the survival of the tumor-bearing mice (median 34 days vs. 29 days). However, the weight of the developed melanoma was significantly increased in the sympathectomized mice in comparison with the animals having intact sympathetic nervous system. CONCLUSIONS The data of the present study showed that effect of the chemical sympathectomy, performed before the tumor growth induction, persisted even at the time when sympathetic nerves started to regenerate that resulted in a prolonged survival of the mice with melanoma. However, comparing to our previous study, in which we have shown a reduced tumor mass in earlier stages of the tumor growth, specifically 20 days after melanoma cells injection, now we indicate that in later stages of the melanoma progression, the tumor mass was significantly increased in sympathectomized animals. These contra-intuitive findings may indicate that interventions affecting the sympathetic nervous system may exert complex effect on the tumor progression. Based on these data we may suggest that the potential therapeutic interventions affecting the sympathetic signaling in the tumor tissue and its microenvironment should attenuate the sympathetic neurotransmission not only temporarily but till the complete regression of the tumor tissue.
Collapse
|
36
|
Osinga TE, Links TP, Dullaart RPF, Pacak K, van der Horst-Schrivers ANA, Kerstens MN, Kema IP. Emerging role of dopamine in neovascularization of pheochromocytoma and paraganglioma. FASEB J 2017; 31:2226-2240. [PMID: 28264974 DOI: 10.1096/fj.201601131r] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 02/07/2017] [Indexed: 01/11/2023]
Abstract
Dopamine is a catecholamine that acts both as a neurotransmitter and as a hormone, exerting its functions via dopamine (DA) receptors that are present in a broad variety of organs and cells throughout the body. In the circulation, DA is primarily stored in and transported by blood platelets. Recently, the important contribution of DA in the regulation of angiogenesis has been recognized. In vitro and in vivo studies have shown that DA inhibits angiogenesis through activation of the DA receptor type 2. Overproduction of catecholamines is the biochemical hallmark of pheochromocytoma (PCC) and paraganglioma (PGL). The increased production of DA has been shown to be an independent predictor of malignancy in these tumors. The precise relationship underlying the association between DA production and PCC and PGL behavior needs further clarification. Herein, we review the biochemical and physiologic aspects of DA with a focus on its relations with VEGF and hypoxia inducible factor related angiogenesis pathways, with special emphasis on DA producing PCC and PGL.-Osinga, T. E., Links, T. P., Dullaart, R. P. F., Pacak, K., van der Horst-Schrivers, A. N. A., Kerstens, M. N., Kema, I. P. Emerging role of dopamine in neovascularization of pheochromocytoma and paraganglioma.
Collapse
Affiliation(s)
- Thamara E Osinga
- Department of Endocrinology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Thera P Links
- Department of Endocrinology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Robin P F Dullaart
- Department of Endocrinology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Karel Pacak
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | | | - Michiel N Kerstens
- Department of Endocrinology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Ido P Kema
- Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
37
|
Parrado AC, Salaverry LS, Mangone FM, Apicella CE, Gentile T, Canellada A, Rey-Roldán EB. Differential Response of Dopamine Mediated by β-Adrenergic Receptors in Human Keratinocytes and Macrophages: Potential Implication in Wound Healing. Neuroimmunomodulation 2017. [PMID: 29514151 DOI: 10.1159/000486241] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVE Dopamine is an immunomodulatory neurotransmitter. In the skin, keratinocytes and macrophages produce proinflammatory cytokines and metalloproteinases (MMPs) which participate in wound healing. These cells have a catecholaminergic system that modulates skin pathophysiologic processes. We have demonstrated that dopamine modulates cytokine production in keratinocytes via dopaminergic and adrenergic receptors (ARs). The aim of this study was to evaluate the effect of dopamine and its interaction with β-ARs in human HaCaT keratinocytes and THP-1 macrophages. We evaluated the production of inflammatory mediators implicated in wound healing. METHODS Cells were stimulated with dopamine in the absence or presence of the β-adrenergic antagonist propranolol. Wound closure, MMP activity, and the production of IL-8, IL-1β, and IκB/NFκB pathway activation were determined in stimulated cells. RESULTS Dopamine did not affect the wound closure in human keratinocytes, but diminished the propranolol stimulatory effect, thus delaying cell migration. Similarly, dopamine significantly decreased MMP-9 activity and the propranolol-induced MMP activity. Dopamine significantly increased the p65-NFκB subunit levels in the nuclear extracts, which were reduced in the presence of propranolol in keratinocytes. On the other hand, dopamine significantly increased MMP-9 activity in THP-1 macrophages, but did not modify the propranolol-increased enzymatic activity. Dopamine significantly increased IL-8 production in human macrophages, an effect that was partially reduced by propranolol. Dopamine did not modify the p65-NFκB levels in the nuclear extracts in THP-1 macrophages. CONCLUSION We suggest that the effect of dopamine via β-ARs depends on the physiological condition and the cell type involved, thus contributing to either improve or interfere with the healing process.
Collapse
Affiliation(s)
- Andrea Cecilia Parrado
- Instituto de Estudios de la Inmunidad Humoral R.A. Margni (UBA-CONICET), Buenos Aires, Argentina
- Cátedra de Inmunología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - Luciana Soledad Salaverry
- Instituto de Estudios de la Inmunidad Humoral R.A. Margni (UBA-CONICET), Buenos Aires, Argentina
- Cátedra de Inmunología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - Franco Mauricio Mangone
- Instituto de Estudios de la Inmunidad Humoral R.A. Margni (UBA-CONICET), Buenos Aires, Argentina
- Cátedra de Inmunología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - Carolina Eugenia Apicella
- Cátedra de Inmunología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - Teresa Gentile
- Cátedra de Inmunología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - Andrea Canellada
- Instituto de Estudios de la Inmunidad Humoral R.A. Margni (UBA-CONICET), Buenos Aires, Argentina
- Cátedra de Inmunología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - Estela Beatriz Rey-Roldán
- Instituto de Estudios de la Inmunidad Humoral R.A. Margni (UBA-CONICET), Buenos Aires, Argentina
- Cátedra de Inmunología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| |
Collapse
|
38
|
Sarkar C, Ganju RK, Pompili VJ, Chakroborty D. Enhanced peripheral dopamine impairs post-ischemic healing by suppressing angiotensin receptor type 1 expression in endothelial cells and inhibiting angiogenesis. Angiogenesis 2016; 20:97-107. [DOI: 10.1007/s10456-016-9531-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 11/02/2016] [Indexed: 01/11/2023]
|
39
|
Immunomodulatory Effects Mediated by Dopamine. J Immunol Res 2016; 2016:3160486. [PMID: 27795960 PMCID: PMC5067323 DOI: 10.1155/2016/3160486] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 07/29/2016] [Accepted: 08/08/2016] [Indexed: 01/11/2023] Open
Abstract
Dopamine (DA), a neurotransmitter in the central nervous system (CNS), has modulatory functions at the systemic level. The peripheral and central nervous systems have independent dopaminergic system (DAS) that share mechanisms and molecular machinery. In the past century, experimental evidence has accumulated on the proteins knowledge that is involved in the synthesis, reuptake, and transportation of DA in leukocytes and the differential expression of the D1-like (D1R and D5R) and D2-like receptors (D2R, D3R, and D4R). The expression of these components depends on the state of cellular activation and the concentration and time of exposure to DA. Receptors that are expressed in leukocytes are linked to signaling pathways that are mediated by changes in cAMP concentration, which in turn triggers changes in phenotype and cellular function. According to the leukocyte lineage, the effects of DA are associated with such processes as respiratory burst, cytokine and antibody secretion, chemotaxis, apoptosis, and cytotoxicity. In clinical conditions such as schizophrenia, Parkinson disease, Tourette syndrome, and multiple sclerosis (MS), there are evident alterations during immune responses in leukocytes, in which changes in DA receptor density have been observed. Several groups have proposed that these findings are useful in establishing clinical status and clinical markers.
Collapse
|
40
|
Chakroborty D, Sarkar C, Lu K, Bhat M, Dasgupta PS, Basu S. Activation of Dopamine D1 Receptors in Dermal Fibroblasts Restores Vascular Endothelial Growth Factor-A Production by These Cells and Subsequent Angiogenesis in Diabetic Cutaneous Wound Tissues. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:2262-70. [PMID: 27422612 DOI: 10.1016/j.ajpath.2016.05.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 04/28/2016] [Accepted: 05/04/2016] [Indexed: 01/11/2023]
Abstract
In wound beds, fibroblasts are rich sources of vascular endothelial growth factor A, a cytokine necessary for promoting angiogenesis and thereby the healing of wound tissues. However, in diabetes mellitus, these cells are functionally impaired and produce reduced amounts of vascular endothelial growth factor A, resulting in deficient angiogenesis and delayed wound healing. We here for the first time demonstrate that stimulation of D1 dopamine receptors present in dermal fibroblasts restores vascular endothelial growth factor A production by these cells, resulting in adequate angiogenesis and subsequent healing of cutaneous wounds in both type 1 and type 2 diabetic mice. This action of D1 dopamine receptors was mediated through the protein kinase A pathway. As delayed wound healing or chronic wounds are one of the major health problems in diabetic patients, D1 dopamine receptor agonists, which are already in clinical use for the treatment of other disorders, may be of translational value in the treatment of chronic, nonhealing diabetic wounds.
Collapse
Affiliation(s)
| | | | - Kai Lu
- Department of Pathology, Ohio State University, Columbus, Ohio
| | - Madhavi Bhat
- Department of Pathology, Ohio State University, Columbus, Ohio
| | | | - Sujit Basu
- Department of Pathology, Ohio State University, Columbus, Ohio; Division of Medical Oncology, Department of Internal Medicine, Ohio State University, Columbus, Ohio.
| |
Collapse
|
41
|
Leone Roberti Maggiore U, Ferrero S. An overview of early drug development for endometriosis. Expert Opin Investig Drugs 2015; 25:227-47. [DOI: 10.1517/13543784.2016.1126579] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
42
|
Borcherding DC, Tong W, Hugo ER, Barnard DF, Fox S, LaSance K, Shaughnessy E, Ben-Jonathan N. Expression and therapeutic targeting of dopamine receptor-1 (D1R) in breast cancer. Oncogene 2015; 35:3103-13. [PMID: 26477316 DOI: 10.1038/onc.2015.369] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 07/31/2015] [Accepted: 08/28/2015] [Indexed: 12/21/2022]
Abstract
Patients with advanced breast cancer often fail to respond to treatment, creating a need to develop novel biomarkers and effective therapeutics. Dopamine (DA) is a catecholamine that binds to five G protein-coupled receptors. We discovered expression of DA type-1 receptors (D1Rs) in breast cancer, thereby identifying these receptors as novel therapeutic targets in this disease. Strong to moderate immunoreactive D1R expression was found in 30% of 751 primary breast carcinomas, and was associated with larger tumors, higher tumor grades, node metastasis and shorter patient survival. DA and D1R agonists, signaling through the cGMP/protein kinase G (PKG) pathway, suppressed cell viability, inhibited invasion and induced apoptosis in multiple breast cancer cell lines. Fenoldopam, a peripheral D1R agonist that does not penetrate the brain, dramatically suppressed tumor growth in two mouse models with D1R-expressing xenografts by increasing both necrosis and apoptosis. D1R-expressing primary tumors and metastases in mice were detected by fluorescence imaging. In conclusion, D1R overexpression is associated with advanced breast cancer and poor prognosis. Activation of the D1R/cGMP/PKG pathway induces apoptosis in vitro and causes tumor shrinkage in vivo. Fenoldopam, which is FDA (Food and Drug Administration) approved to treat renal hypertension, could be repurposed as a novel therapeutic agent for patients with D1R-expressing tumors.
Collapse
Affiliation(s)
- D C Borcherding
- Department of Cancer Biology, University of Cincinnati, Cincinnati, OH, USA
| | - W Tong
- Department of Pathology, University of Cincinnati, Cincinnati, OH, USA
| | - E R Hugo
- Department of Cancer Biology, University of Cincinnati, Cincinnati, OH, USA
| | - D F Barnard
- Department of Cancer Biology, University of Cincinnati, Cincinnati, OH, USA
| | - S Fox
- Department of Cancer Biology, University of Cincinnati, Cincinnati, OH, USA
| | - K LaSance
- Department of Radiology, University of Cincinnati, Cincinnati, OH, USA
| | - E Shaughnessy
- Department of Surgery, University of Cincinnati, Cincinnati, OH, USA
| | - N Ben-Jonathan
- Department of Cancer Biology, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
43
|
Tolstanova G, Deng X, Ahluwalia A, Paunovic B, Prysiazhniuk A, Ostapchenko L, Tarnawski A, Sandor Z, Szabo S. Role of Dopamine and D2 Dopamine Receptor in the Pathogenesis of Inflammatory Bowel Disease. Dig Dis Sci 2015; 60:2963-75. [PMID: 25972152 DOI: 10.1007/s10620-015-3698-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 04/29/2015] [Indexed: 02/06/2023]
Abstract
BACKGROUND VEGF-induced vascular permeability and blood vessels remodeling are key features of inflammatory bowel disease (IBD) pathogenesis. Dopamine through D2 receptor (D2R) inhibits VEGF/VPF-mediated vascular permeability and angiogenesis in tumor models. In this study, we tested the hypothesis that pathogenesis of IBD is characterized by the disturbance of dopaminergic system and D2R activity. METHODS IL-10 knockout (KO) mice and rats with iodoacetamide-induced ulcerative colitis (UC) were treated intragastrically with D2R agonists quinpirole (1 mg/100 g) or cabergoline (1 or 5 µg/100 g). Macroscopic, histologic, and clinical features of IBD, colonic vascular permeability, and angiogenesis were examined. RESULTS Although colonic D2R protein increased, levels of tyrosine hydroxylase and dopamine transporter DAT decreased in both models of IBD. Treatment with quinpirole decreased the size of colonic lesions in rats with iodoacetamide-induced UC (p < 0.01) and reduced colon wet weight in IL-10 KO mice (p < 0.05). Quinpirole decreased colonic vascular permeability (p < 0.001) via downregulation of c-Src and Akt phosphorylation. Cabergoline (5 µg/100 g) reduced vascular permeability but did not affect angiogenesis and improved signs of iodoacetamide-induced UC in rats (p < 0.05). CONCLUSIONS Treatment with D2R agonists decreased the severity of UC in two animal models, in part, by attenuation of enhanced vascular permeability and prevention of excessive vascular leakage. Hence, the impairment dopaminergic system seems to be a feature of IBD pathogenesis.
Collapse
MESH Headings
- Animals
- Biopsy, Needle
- Blotting, Western
- Cabergoline
- Capillary Permeability/drug effects
- Colitis, Ulcerative/chemically induced
- Colitis, Ulcerative/drug therapy
- Colitis, Ulcerative/pathology
- Disease Models, Animal
- Dopamine/metabolism
- Ergolines/pharmacology
- Female
- Humans
- Immunohistochemistry
- Inflammation Mediators/metabolism
- Inflammatory Bowel Diseases/chemically induced
- Inflammatory Bowel Diseases/drug therapy
- Inflammatory Bowel Diseases/pathology
- Interleukin-10/metabolism
- Iodoacetamide/pharmacology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Quinpirole/pharmacology
- Random Allocation
- Rats
- Rats, Sprague-Dawley
- Receptors, Dopamine D2/metabolism
- Statistics, Nonparametric
Collapse
Affiliation(s)
- Ganna Tolstanova
- VA Long Beach Healthcare System, Departments of Medicine, Pathology and Pharmacology, VA Medical Center (05/113), University of California-Irvine, 5901 East 7th Street, Long Beach, CA, 90822, USA.
- Educational-Scientific Center "Institute of Biology", Taras Shevchenko National University of Kyiv, Kiev, Ukraine.
| | - Xiaoming Deng
- VA Long Beach Healthcare System, Departments of Medicine, Pathology and Pharmacology, VA Medical Center (05/113), University of California-Irvine, 5901 East 7th Street, Long Beach, CA, 90822, USA
| | - Amrita Ahluwalia
- VA Long Beach Healthcare System, Departments of Medicine, Pathology and Pharmacology, VA Medical Center (05/113), University of California-Irvine, 5901 East 7th Street, Long Beach, CA, 90822, USA
| | - Brankica Paunovic
- VA Long Beach Healthcare System, Departments of Medicine, Pathology and Pharmacology, VA Medical Center (05/113), University of California-Irvine, 5901 East 7th Street, Long Beach, CA, 90822, USA
| | - Alona Prysiazhniuk
- Educational-Scientific Center "Institute of Biology", Taras Shevchenko National University of Kyiv, Kiev, Ukraine
| | - Lyudmyla Ostapchenko
- Educational-Scientific Center "Institute of Biology", Taras Shevchenko National University of Kyiv, Kiev, Ukraine
| | - Andrzej Tarnawski
- VA Long Beach Healthcare System, Departments of Medicine, Pathology and Pharmacology, VA Medical Center (05/113), University of California-Irvine, 5901 East 7th Street, Long Beach, CA, 90822, USA
| | - Zsuzsanna Sandor
- VA Long Beach Healthcare System, Departments of Medicine, Pathology and Pharmacology, VA Medical Center (05/113), University of California-Irvine, 5901 East 7th Street, Long Beach, CA, 90822, USA
| | - Sandor Szabo
- VA Long Beach Healthcare System, Departments of Medicine, Pathology and Pharmacology, VA Medical Center (05/113), University of California-Irvine, 5901 East 7th Street, Long Beach, CA, 90822, USA.
| |
Collapse
|
44
|
Hanoun M, Maryanovich M, Arnal-Estapé A, Frenette PS. Neural regulation of hematopoiesis, inflammation, and cancer. Neuron 2015; 86:360-73. [PMID: 25905810 DOI: 10.1016/j.neuron.2015.01.026] [Citation(s) in RCA: 176] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Although the function of the autonomic nervous system (ANS) in mediating the flight-or-fight response was recognized decades ago, the crucial role of peripheral innervation in regulating cell behavior and response to the microenvironment has only recently emerged. In the hematopoietic system, the ANS regulates stem cell niche homeostasis and regeneration and fine-tunes the inflammatory response. Additionally, emerging data suggest that cancer cells take advantage of innervating neural circuitry to promote their progression. These new discoveries outline the need to redesign therapeutic strategies to target this underappreciated stromal constituent. Here, we review the importance of neural signaling in hematopoietic homeostasis, inflammation, and cancer.
Collapse
Affiliation(s)
- Maher Hanoun
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Maria Maryanovich
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Anna Arnal-Estapé
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Paul S Frenette
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
45
|
Che XH, Chen YC, Chen CL, Ye XL, Zhu H. Non-hormonal targets underlying endometriosis: A focus on molecular mechanisms. Mol Reprod Dev 2015; 82:410-31. [PMID: 25982890 DOI: 10.1002/mrd.22493] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 04/14/2015] [Indexed: 11/10/2022]
Affiliation(s)
- Xiao-hang Che
- Division of Drugs and Pharmacology; Ningbo Institute of Medical Sciences; Ningbo China
- College of Chemistry and Bio-engineering; Yichun University; Yichun China
- Cancer Institute; Yinzhou People's Hospital; Ningbo China
| | - Yi-chen Chen
- Division of Drugs and Pharmacology; Ningbo Institute of Medical Sciences; Ningbo China
| | - Chun-lin Chen
- College of Chemistry and Bio-engineering; Yichun University; Yichun China
| | - Xiao-lei Ye
- Division of Drugs and Pharmacology; Ningbo Institute of Medical Sciences; Ningbo China
- Cancer Institute; Yinzhou People's Hospital; Ningbo China
| | - Hong Zhu
- Division of Obstetrics and Gynecology; Affiliated Hospital of Ningbo University School of Medicine; Ningbo China
| |
Collapse
|
46
|
Huang Y, Luo X, Li X, Song X, Wei L, Li Z, You Q, Guo Q, Lu N. Wogonin inhibits LPS-induced vascular permeability via suppressing MLCK/MLC pathway. Vascul Pharmacol 2015; 72:43-52. [PMID: 25956732 DOI: 10.1016/j.vph.2015.04.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 04/09/2015] [Accepted: 04/20/2015] [Indexed: 10/24/2022]
Abstract
Wogonin, a naturally occurring monoflavonoid extracted from the root of Scutellaria baicalensis Georgi, has been shown to have anti-inflammatory and anti-tumor activities and inhibits oxidant stress-induced vascular permeability. However, the influence of wogonin on vascular hyperpermeability induced by overabounded inflammatory factors often appears in inflammatory diseases and tumor is not well known. In this study, we evaluate the effects of wogonin on LPS induced vascular permeability in human umbilical vein endothelial cells (HUVECs) and investigate the underlying mechanisms. We find that wogonin suppresses the LPS-stimulated hyperactivity and cytoskeleton remodeling of HUVECs, promotes the expression of junctional proteins including VE-Cadherin, Claudin-5 and ZO-1, as well as inhibits the invasion of MDA-MB-231 across EC monolayer. Miles vascular permeability assay proves that wogonin can restrain the extravasated Evans in vivo. The mechanism studies reveal that the expressions of TLR4, p-PLC, p-MLCK and p-MLC are decreased by wogonin without changing the total steady state protein levels of PLC, MLCK and MLC. Moreover, wogonin can also inhibit KCl-activated MLCK/MLC pathway, and further affect vascular permeability. Significantly, compared with wortmannin, the inhibitor of MLCK/MLC pathway, wogonin exhibits similar inhibition effects on the expression of p-MLCK, p-MLC and LPS-induced vascular hyperpermeability. Taken together, wogonin can inhibit LPS-induced vascular permeability by suppressing the MLCK/MLC pathway, suggesting a therapeutic potential for the diseases associated with the development of both inflammatory and tumor.
Collapse
Affiliation(s)
- Yujie Huang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China
| | - Xuwei Luo
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China
| | - Xiaorui Li
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China
| | - Xiuming Song
- Chia Tai Tianqing Pharmaceutical Group Co., Ltd., PR China
| | - Libin Wei
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China
| | - Zhiyu Li
- Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China
| | - Qidong You
- JiangSu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China
| | - Qinglong Guo
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China.
| | - Na Lu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China
| |
Collapse
|
47
|
Hao L, Zou Z, Tian H, Zhang Y, Song C, Zhou H, Liu L. Novel roles of perivascular nerves on neovascularization. Neurol Sci 2014; 36:353-60. [DOI: 10.1007/s10072-014-2016-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 11/18/2014] [Indexed: 12/20/2022]
|
48
|
Horvathova L, Tillinger A, Sivakova I, Mikova L, Mravec B, Bucova M. Chemical sympathectomy increases neutrophil-to-lymphocyte ratio in tumor-bearing rats but does not influence cancer progression. J Neuroimmunol 2014; 278:255-61. [PMID: 25468774 DOI: 10.1016/j.jneuroim.2014.11.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 11/12/2014] [Accepted: 11/14/2014] [Indexed: 12/17/2022]
Abstract
The sympathetic nervous system regulates many immune functions and modulates the anti-tumor immune defense response, too. Therefore, we studied the effect of 6-hydroxydopamine induced sympathectomy on selected hematological parameters and inflammatory markers in rats with Yoshida AH130 ascites hepatoma. We found that chemically sympathectomized tumor-bearing rats had significantly increased neutrophil-to-lymphocyte ratio, leukocyte-to-lymphocyte ratio, and plasma levels of tumor necrosis factor alpha. Although our findings showed that sympathetic denervation in tumor-bearing rats led to increased neutrophil-to-lymphocyte ratio, that is an indicator of the disease progression, we found no significant changes in tumor growth and survival of sympathectomized tumor-bearing rats.
Collapse
Affiliation(s)
- Lubica Horvathova
- Institute of Experimental Endocrinology, Slovak Academy of Sciences, Vlarska 3, 833 06 Bratislava, Slovakia.
| | - Andrej Tillinger
- Institute of Experimental Endocrinology, Slovak Academy of Sciences, Vlarska 3, 833 06 Bratislava, Slovakia
| | - Ivana Sivakova
- Institute of Anatomy, Faculty of Medicine, Comenius University, Sasinkova 2, 811 08 Bratislava, Slovakia
| | - Lucia Mikova
- Institute of Experimental Endocrinology, Slovak Academy of Sciences, Vlarska 3, 833 06 Bratislava, Slovakia; Institute of Physiology, Faculty of Medicine, Comenius University, Sasinkova 2, 811 08 Bratislava, Slovakia
| | - Boris Mravec
- Institute of Experimental Endocrinology, Slovak Academy of Sciences, Vlarska 3, 833 06 Bratislava, Slovakia; Institute of Physiology, Faculty of Medicine, Comenius University, Sasinkova 2, 811 08 Bratislava, Slovakia
| | - Maria Bucova
- Institute of Immunology, Faculty of Medicine, Comenius University, Odborarske namestie 14, 811 08 Bratislava, Slovakia
| |
Collapse
|
49
|
Abstract
Central and sympathetic nervous systems govern functional activities of many organs. Solid tumors like organs are also innervated by sympathetic nerve fibers. Neurotransmitters released from sympathetic nerve fibers can modulate biological behaviors of tumor cells. Multiple physiologic processes of tumor development may be dominated by central and sympathetic nervous systems as well. Recent studies suggest that dysfunction of central and sympathetic nervous systems and disorder of the hormone network induced by psychological stress may influence malignant progression of cancer by inhibiting the functions of immune system, regulating metabolic reprogramming of tumor cells, and inducing interactions between tumor and stromal cells. Over-release of inflammatory cytokines by tumors may aggravate emotional disorder, triggering the vicious cycles in tumor microenvironment and host macroenvironment. It is reasonable to hypothesize that cancer progression may be controlled by central and sympathetic nervous systems. In this review, we will focus on the recent information about the impacts of central and sympathetic nervous systems on tumor invasion and metastasis.
Collapse
|
50
|
Peters MAM, Walenkamp AME, Kema IP, Meijer C, de Vries EGE, Oosting SF. Dopamine and serotonin regulate tumor behavior by affecting angiogenesis. Drug Resist Updat 2014; 17:96-104. [PMID: 25269824 DOI: 10.1016/j.drup.2014.09.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The biogenic amines dopamine and serotonin are neurotransmitters and hormones, which are mainly produced in the central nervous system and in the gastro-intestinal tract. They execute local and systemic functions such as intestinal motility and tissue repair. Dopamine and serotonin are primarily stored in and transported by platelets. This review focuses on the recently recognized role of dopamine and serotonin in the regulation of tumor behavior by affecting angiogenesis and tumor cell proliferation. Preclinical studies demonstrate that dopamine inhibits tumor growth via activation of dopamine receptor D2 on endothelial and tumor cells. Serotonin stimulates tumor growth via activation of serotonin receptor 2B on endothelial cells and serotonin receptors on tumor cells. Drugs that stimulate dopamine receptor D2 or inhibit serotonin receptors are available and therefore clinical intervention studies for cancer patients are within reach.
Collapse
Affiliation(s)
- Marloes A M Peters
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Annemiek M E Walenkamp
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Ido P Kema
- Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Coby Meijer
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Elisabeth G E de Vries
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Sjoukje F Oosting
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|