1
|
Sun Y, Aliyari SR, Parvatiyar K, Wang L, Zhen A, Sun W, Han X, Zhang A, Kato E, Shi H, De Schutter E, McBride WH, French SW, Cheng G. STING directly interacts with PAR to promote apoptosis upon acute ionizing radiation-mediated DNA damage. Cell Death Differ 2025:10.1038/s41418-025-01457-z. [PMID: 39939798 DOI: 10.1038/s41418-025-01457-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 01/13/2025] [Accepted: 01/29/2025] [Indexed: 02/14/2025] Open
Abstract
Acute ionizing radiation (IR) causes severe DNA damage, leading to cell cycle arrest, cell death, and activation of the innate immune system. The role and signaling pathway of stimulator of interferon genes (STING) in IR-induced tissue damage and cell death are not well understood. This study revealed that STING is crucial for promoting apoptosis in response to DNA damage caused by acute IR both in vitro and in vivo. STING binds to poly (ADP‒ribose) (PAR) produced by activated poly (ADP‒ribose) polymerase-1 (PARP1) upon IR. Compared with that in WT cells, apoptosis was suppressed in Stinggt-/gt- cells. Excessive PAR production by PARP1 due to DNA damage enhances STING phosphorylation, and inhibiting PARP1 reduces cell apoptosis after IR. In vivo, IR-induced crypt cell death was significantly lower in Stinggt-/gt- mice or with low-dose PARP1 inhibitor, PJ34, resulting in substantial resistance to abdominal irradiation. STING deficiency or inhibition of PARP1 function can reduce the expression of the proapoptotic gene PUMA, decrease the localization of Bax on the mitochondrial membrane, and thus reduce cell apoptosis. Our findings highlight crucial roles for STING and PAR in the IR-mediated induction of apoptosis, which may have therapeutic implications for controlling radiation-induced apoptosis or acute radiation symptoms. STING responds to acute ionizing radiation-mediated DNA damage by directly binding to poly (ADP-ribose) (PAR) produced by activated poly (ADP-ribose) polymerase-1 (PARP1), and mainly induces cell apoptosis through Puma-Bax interaction. STING deficiency or reduced production of PAR protected mice against Acute Radiation Syndrome.
Collapse
Affiliation(s)
- Yirong Sun
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.
- Department of Microbiology, Immunology and Molecular Genetics, University of California-Los Angeles, Los Angeles, CA, USA.
| | - Saba R Aliyari
- Department of Microbiology, Immunology and Molecular Genetics, University of California-Los Angeles, Los Angeles, CA, USA
| | - Kislay Parvatiyar
- Department of Microbiology, Immunology and Molecular Genetics, University of California-Los Angeles, Los Angeles, CA, USA
- Department of Microbiology & Immunology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Lulan Wang
- Department of Microbiology, Immunology and Molecular Genetics, University of California-Los Angeles, Los Angeles, CA, USA
| | - Anjie Zhen
- Department of Microbiology, Immunology and Molecular Genetics, University of California-Los Angeles, Los Angeles, CA, USA
| | - Wei Sun
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Xiaobo Han
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Adele Zhang
- Department of Microbiology, Immunology and Molecular Genetics, University of California-Los Angeles, Los Angeles, CA, USA
| | - Ethan Kato
- Department of Microbiology, Immunology and Molecular Genetics, University of California-Los Angeles, Los Angeles, CA, USA
| | - Helen Shi
- Department of Microbiology, Immunology and Molecular Genetics, University of California-Los Angeles, Los Angeles, CA, USA
| | - Elena De Schutter
- Department of Microbiology, Immunology and Molecular Genetics, University of California-Los Angeles, Los Angeles, CA, USA
| | - William H McBride
- Department of Radiation Oncology, University of California-Los Angeles, Los Angeles, CA, USA
| | - Samuel W French
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA, USA
| | - Genhong Cheng
- Department of Microbiology, Immunology and Molecular Genetics, University of California-Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
2
|
Cui J, Wang TJ, Zhang YX, She LZ, Zhao YC. Molecular biological mechanisms of radiotherapy-induced skin injury occurrence and treatment. Biomed Pharmacother 2024; 180:117470. [PMID: 39321513 DOI: 10.1016/j.biopha.2024.117470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/03/2024] [Accepted: 09/19/2024] [Indexed: 09/27/2024] Open
Abstract
Radiotherapy-Induced Skin Injury (RISI) is radiation damage to normal skin tissue that primarily occurs during tumor Radiotherapy and occupational exposure. The risk of RISI is high due to the fact that the skin is not only the first body organ that ionizing radiation comes into contact with, but it is also highly sensitive to it, especially the basal cell layer and capillaries. Typical clinical manifestations of RISI include erythema, dry desquamation, moist desquamation, and ulcers, which have been established to significantly impact patient care and cancer treatment. Notably, our current understanding of RISI's pathological mechanisms and signaling pathways is inadequate, and no standard treatments have been established. Radiation-induced oxidative stress, inflammatory responses, fibrosis, apoptosis, and cellular senescence are among the known mechanisms that interact and promote disease progression. Additionally, radiation can damage all cellular components and induce genetic and epigenetic changes, which play a crucial role in the occurrence and progression of skin injury. A deeper understanding of these mechanisms and pathways is crucial for exploring the potential therapeutic targets for RISI. Therefore, in this review, we summarize the key mechanisms and potential treatment methods for RISI, offering a reference for future research and development of treatment strategies.
Collapse
Affiliation(s)
- Jie Cui
- Department of Radiation Oncology, The Second Hospital of Jilin University, Changchun, Jilin 130022, China.
| | - Tie-Jun Wang
- Department of Radiation Oncology, The Second Hospital of Jilin University, Changchun, Jilin 130022, China.
| | - Yu-Xuan Zhang
- Department of Radiation Oncology, The Second Hospital of Jilin University, Changchun, Jilin 130022, China.
| | - Li-Zhen She
- Department of Radiation Oncology, The Second Hospital of Jilin University, Changchun, Jilin 130022, China.
| | - Yue-Chen Zhao
- Department of Radiation Oncology, The Second Hospital of Jilin University, Changchun, Jilin 130022, China.
| |
Collapse
|
3
|
Orang A, Marri S, McKinnon RA, Petersen J, Michael MZ. Restricting Colorectal Cancer Cell Metabolism with Metformin: An Integrated Transcriptomics Study. Cancers (Basel) 2024; 16:2055. [PMID: 38893174 PMCID: PMC11171104 DOI: 10.3390/cancers16112055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/13/2024] [Accepted: 05/18/2024] [Indexed: 06/21/2024] Open
Abstract
BACKGROUND Metformin is a first-line therapy for type 2 diabetes as it disrupts cellular metabolism. Despite the association between metformin and lower cancer incidence, the anti-tumour activity of the drug in colorectal cancer (CRC) is incompletely understood. This study identifies underlying molecular mechanisms by which metformin slows colorectal cancer cell proliferation by investigating metformin-associated microRNA (miRNA) and target gene pairs implicated in signalling pathways. METHODS The present study analysed changes in miRNAs and the coding transcriptome in CRC cells treated with a sublethal dose of metformin, followed by the contextual validation of potential miRNA-target gene pairs. RESULTS Analyses of small RNA and transcriptome sequencing data revealed 104 miRNAs and 1221 mRNAs to be differentially expressed in CRC cells treated with metformin for 72 h. Interaction networks between differentially expressed miRNAs and putative target mRNAs were identified. Differentially expressed genes were mainly implicated in metabolism and signalling processes, such as the PI3K-Akt and MAPK/ERK pathways. Further validation of potential miRNA-target mRNA pairs revealed that metformin induced miR-2110 and miR-132-3p to target PIK3R3 and, consequently, regulate CRC cell proliferation, cell cycle progression and the PI3K-Akt signalling pathway. Metformin also induced miR-222-3p and miR-589-3p, which directly target STMN1 to inhibit CRC cell proliferation and cell cycle progression. CONCLUSIONS This study identified novel changes in the coding transcriptome and small non-coding RNAs associated with metformin treatment of CRC cells. Integration of these datasets highlighted underlying mechanisms by which metformin impedes cell proliferation in CRC. Importantly, it identified the post-transcriptional regulation of specific genes that impact both metabolism and cell proliferation.
Collapse
Affiliation(s)
- Ayla Orang
- Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA 5042, Australia; (A.O.); (S.M.); (R.A.M.); (J.P.)
| | - Shashikanth Marri
- Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA 5042, Australia; (A.O.); (S.M.); (R.A.M.); (J.P.)
| | - Ross A. McKinnon
- Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA 5042, Australia; (A.O.); (S.M.); (R.A.M.); (J.P.)
| | - Janni Petersen
- Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA 5042, Australia; (A.O.); (S.M.); (R.A.M.); (J.P.)
- Nutrition and Metabolism, South Australia Health and Medical Research Institute, Adelaide, SA 5000, Australia
| | - Michael Z. Michael
- Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA 5042, Australia; (A.O.); (S.M.); (R.A.M.); (J.P.)
- Department of Gastroenterology and Hepatology, Flinders Medical Centre, Bedford Park, SA 5042, Australia
- Flinders Centre for Innovation in Cancer, Flinders Medical Centre, Bedford Park, SA 5042, Australia
| |
Collapse
|
4
|
Taha RM, Abdel-Latif GA, Said RH. The Prospective Effect of Green Tea versus Pomegranate Peels Extracts on Submandibular Salivary Glands of Albino Rats after Methotrexate Administration (Histological and Immunohistochemical Study). Int J Dent 2024; 2024:3290187. [PMID: 38213552 PMCID: PMC10781530 DOI: 10.1155/2024/3290187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 12/10/2023] [Accepted: 12/12/2023] [Indexed: 01/13/2024] Open
Abstract
Background There is curiosity in the use of substances that can stop cell damage. Antioxidants are substances that can prevent free radicals from damaging cells, and they can be used to treat and avoid a wide variety of illnesses. Objectives The current investigation set out to evaluate the histological changes brought on by a single high dose of methotrexate in the submandibular glands of rats treated with green tea and pomegranate peel extract, both are well-known as antioxidants. Materials and Methods Forty-eight healthy Albino rats were used in the current study. Animals were divided into six groups. Group 1: Vehicle group which is control group, Group 2: methotrexate treated group, Group 3: green tea control group, Group 4: pomegranate peel extract control group, Group 5: green tea + methotrexate group, and Group 6: pomegranate peel extract + methotrexate group. Rats of all groups were left 1 week after the end of the treatment. Cervical dislocation was used to kill all of the rats. Samples were gained from the rats' submandibular salivary glands of different groups for histological and immunohistochemical evaluation. Results Green tea + methotrexate group showed improvement in the histological picture of the submandibular salivary gland compared to methotrexate group and the pomegranate peel extract + methotrexate group. Conclusion The antioxidant activity of green tea is more potent than that of pomegranate peels extract in blocking methotrexate that induced cytotoxicity in the submandibular salivary glands of rats. As a result, it can be administered to people undergoing cancer treatment as a safeguard for their salivary glands.
Collapse
Affiliation(s)
- Rasha M. Taha
- Oral Biology Department, Faculty of Dentistry, Suez Canal University, Ismailia, Egypt
| | - Ghada A. Abdel-Latif
- Oral and Maxillofacial Pathology Department, Faculty of Dentistry, Suez Canal University, Ismailia, Egypt
- Department of Oral and Maxillofacial Diagnostic Sciences, College of Dentistry and Hospital, Taibah University, Medina, Saudi Arabia
| | - Rania H. Said
- Oral and Maxillofacial Pathology Department, Faculty of Dentistry, Suez Canal University, Ismailia, Egypt
- Oral Pathology Department, College of Dental Medicine, Umm Alqura University, Makkah, Saudi Arabia
| |
Collapse
|
5
|
Liu Y, Gu W. The complexity of p53-mediated metabolic regulation in tumor suppression. Semin Cancer Biol 2022; 85:4-32. [PMID: 33785447 PMCID: PMC8473587 DOI: 10.1016/j.semcancer.2021.03.010] [Citation(s) in RCA: 136] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/12/2021] [Accepted: 03/15/2021] [Indexed: 02/07/2023]
Abstract
Although the classic activities of p53 including induction of cell-cycle arrest, senescence, and apoptosis are well accepted as critical barriers to cancer development, accumulating evidence suggests that loss of these classic activities is not sufficient to abrogate the tumor suppression activity of p53. Numerous studies suggest that metabolic regulation contributes to tumor suppression, but the mechanisms by which it does so are not completely understood. Cancer cells rewire cellular metabolism to meet the energetic and substrate demands of tumor development. It is well established that p53 suppresses glycolysis and promotes mitochondrial oxidative phosphorylation through a number of downstream targets against the Warburg effect. The role of p53-mediated metabolic regulation in tumor suppression is complexed by its function to promote both cell survival and cell death under different physiological settings. Indeed, p53 can regulate both pro-oxidant and antioxidant target genes for complete opposite effects. In this review, we will summarize the roles of p53 in the regulation of glucose, lipid, amino acid, nucleotide, iron metabolism, and ROS production. We will highlight the mechanisms underlying p53-mediated ferroptosis, AKT/mTOR signaling as well as autophagy and discuss the complexity of p53-metabolic regulation in tumor development.
Collapse
Affiliation(s)
- Yanqing Liu
- Institute for Cancer Genetics, Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, 1130 Nicholas Ave, New York, NY, 10032, USA
| | - Wei Gu
- Institute for Cancer Genetics, Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, 1130 Nicholas Ave, New York, NY, 10032, USA; Department of Pathology and Cell Biology, Vagelos College of Physicians & Surgeons, Columbia University, 1130 Nicholas Ave, New York, NY, 10032, USA.
| |
Collapse
|
6
|
PUMA overexpression dissociates thioredoxin from ASK1 to activate the JNK/BCL-2/BCL-XL pathway augmenting apoptosis in ovarian cancer. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166553. [PMID: 36122664 DOI: 10.1016/j.bbadis.2022.166553] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 09/13/2022] [Accepted: 09/13/2022] [Indexed: 11/23/2022]
Abstract
ASK1-JNK signaling promotes mitochondrial dysfunction-mediated apoptosis, but the bridge between JNK and apoptosis is not fully understood. PUMA induces apoptosis through BAX/BAK. Our previous study suggests a therapeutic potential of PUMA for ovarian cancer. However, whether and how PUMA activates ASK1 remains unclear. Here, we found for the first time that PUMA activated ASK1 by dissociating thioredoxin (TRX) from ASK1, however, it neither interacted with ASK1 nor TRX. Furthermore, PUMA overexpression caused ROS release from mitochondrial. H2O2 significantly impaired the interaction of ASK1 with TRX, whereas ROS scavenger NAC effectively abrogated the H2O2 effect, partly rescued PUMA-interfered interaction of ASK1 with TRX, and also abolished ASK1 phosphorylation. Interestingly, PUMA could not impair the association of ASK1 with TRX-C32S or TRX-C35S, two TRX mutants which are no longer oxidized in response to ROS. We further showed that PUMA activated ASK1-JNK axis to phosphorylate BCL-2 and BCL-XL, further augmenting apoptosis of ovarian cancer cells. In vivo, PUMA adenovirus combined with paclitaxel significantly inhibited intrinsically cisplatin-resistant ovarian cancer growth, and caused phosphorylation of BCL-2 and BCL-XL. Our results from human ovarian cancer TMA chips also revealed a positive correlation between PUMA expression and the phosphorylation of BCL-2 and BCL-XL. More importantly, all patients had no distal metastasis, implying a possibly clinical significance. Collectively, our results reveal a new pro-apoptotic signal amplification mechanism for PUMA by which PUMA overexpression first induces ROS-mediated dissociation of TRX from ASK1, and then causes JNK activation-triggering BCL-2/BCL-XL phosphorylation, ultimately augmenting apoptosis in ovarian cancer.
Collapse
|
7
|
Sahabi S, Jafari-Gharabaghlou D, Zarghami N. A new insight into cell biological and biochemical changes through aging. Acta Histochem 2022; 124:151841. [PMID: 34995929 DOI: 10.1016/j.acthis.2021.151841] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/29/2021] [Accepted: 12/29/2021] [Indexed: 12/17/2022]
Abstract
After several years of extensive research, the main cause of aging is yet elusive. There are some theories about aging, such as stem cell aging, senescent cells accumulation, and neuro-endocrine theories. None of them is able to explain all changes that happen in cells and body through aging. By finding out the main cause of aging, it will be much easier to control, prevent and even reverse the aging process. Our cells, regardless of their replicative capacity, get old through aging and they have almost the same epigenetic age. Different cell signaling pathways contribute to aging. The most important one is mTORC1 that becomes hyperactive in cells that undergo aging. Other significant changes with age are lysosome accumulation, impaired autophagy, and mitophagy. Immune system undergoes gradual changes through aging including a shift from lymphoid to myeloid lineage production as well as increased IL-6 and TNF-α which lead to age-related weight loss and meta-inflammation. Additionally, our endocrine system also experiences some changes that should be taken into consideration when looking for the main cause of aging in the human body. In this review, we planned to summarize some of the changes that happen in cells and the body through aging.
Collapse
|
8
|
Butturini E, Butera G, Pacchiana R, Carcereri de Prati A, Mariotto S, Donadelli M. Redox Sensitive Cysteine Residues as Crucial Regulators of Wild-Type and Mutant p53 Isoforms. Cells 2021; 10:cells10113149. [PMID: 34831372 PMCID: PMC8618966 DOI: 10.3390/cells10113149] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 12/25/2022] Open
Abstract
The wild-type protein p53 plays a key role in preventing the formation of neoplasms by controlling cell growth. However, in more than a half of all cancers, the TP53 gene has missense mutations that appear during tumorigenesis. In most cases, the mutated gene encodes a full-length protein with the substitution of a single amino acid, resulting in structural and functional changes and acquiring an oncogenic role. This dual role of the wild-type protein and the mutated isoforms is also evident in the regulation of the redox state of the cell, with antioxidant and prooxidant functions, respectively. In this review, we introduce a new concept of the p53 protein by discussing its sensitivity to the cellular redox state. In particular, we focus on the discussion of structural and functional changes following post-translational modifications of redox-sensitive cysteine residues, which are also responsible for interacting with zinc ions for proper structural folding. We will also discuss therapeutic opportunities using small molecules targeting cysteines capable of modifying the structure and function of the p53 mutant isoforms in view of possible anticancer therapies for patients possessing the mutation in the TP53 gene.
Collapse
Affiliation(s)
| | | | | | | | - Sofia Mariotto
- Correspondence: (S.M.); (M.D.); Tel.: +39-045-8027167 (S.M.); +39-045-8027281 (M.D.)
| | - Massimo Donadelli
- Correspondence: (S.M.); (M.D.); Tel.: +39-045-8027167 (S.M.); +39-045-8027281 (M.D.)
| |
Collapse
|
9
|
Identification of quantitative trait loci associated with upper temperature tolerance in turbot, Scophthalmus maximus. Sci Rep 2021; 11:21920. [PMID: 34753974 PMCID: PMC8578632 DOI: 10.1038/s41598-021-01062-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 10/01/2021] [Indexed: 01/12/2023] Open
Abstract
Temperature tolerance is an important trait from both an economic and evolutionary perspective in fish. Because of difficulties with measurements, genome-wide selection using quantitative trait loci (QTLs) affecting Upper temperature tolerance may be an alternative for genetic improvement. Turbot Scophthalmus maximus (L.) is a cold-water marine fish with high economic value in Europe and Asia. The genetic bases of upper temperature tolerance (UTTs) traits have been rarely studied. In this study, we constructed a genetic linkage map of turbot using simple sequence repeats (SSRs) and single nucleotide polymorphism (SNP) markers. A total of 190 SSR and 8,123 SNP were assigned to 22 linkage groups (LGs) of a consensus map, which spanned 3,648.29 cM of the turbot genome, with an average interval of 0.44 cM. Moreover, we re-anchored genome sequences, allowing 93.8% physical sequences to be clustered into 22 turbot pseudo-chromosomes. A high synteny was observed between two assemblies from the literature. QTL mapping and validation analysis identified thirteen QLTs which are major effect QTLs, of these, 206 linked SNP loci, and two linked SSR loci were considered to have significant QTL effects. Association analysis for UTTs with 129 QTL markers was performed for different families, results showed that eight SNP loci were significantly correlated with UTT, which markers could be helpful in selecting thermal tolerant breeds of turbot. 1,363 gene sequences were genomically annotated, and 26 QTL markers were annotated. We believe these genes could be valuable candidates affecting high temperatures, providing valuable genomic resources for the study of genetic mechanisms regulating thermal stress. Similarly, they may be used in marker-assisted selection (MAS) programs to improve turbot performance.
Collapse
|
10
|
Geng Y, Li L, Liu P, Chen Z, Shen A, Zhang L. TMT-Based Quantitative Proteomic Analysis Identified Proteins and Signaling Pathways Involved in the Response to Xanthatin Treatment in Human HT-29 Colon Cancer Cells. Anticancer Agents Med Chem 2021; 22:887-896. [PMID: 34488591 DOI: 10.2174/1871520621666210901101510] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 06/12/2021] [Accepted: 06/27/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Xanthatin is a plant-derived bioactive sesquiterpene lactone from the Xanthium strumarium L., and it has been used as a traditional Chinese medicine. Recently, many studies have reported that xanthatin has anticancer activity. However, a comprehensive understanding of the mechanism underlying the antitumor effects of xanthatin is still lacking. OBJECTIVE To systematically and comprehensively identify the underlying mechanisms of xanthatin on cancer cells, quantitative proteomic techniques were performed. METHODS Xanthatin induced HT-29 colon cancer cells death was detected by lactate dehydrogenase (LDH) release cell death assay. Differentially abundant proteins in two groups (control groups and xanthatin treatment groups) of human HT-29 colon cancer cells were identified using tandem mass tag (TMT) quantitative proteomic techniques. All the significant differentially abundant proteins were generally characterized by performing hierarchical clustering, Gene Ontology (GO) enrichment analyses and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. We chose Western blot analysis to validate the candidate proteins in the proteomics results. RESULTS A total of 5637 proteins were identified, of which 397 significantly differentially abundant proteins in the groups were quantified. Based on the Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses, we found that p53-related signaling played an important role in xanthatin-treated HT-29 colon cancer cells. p53-upregulated modulator of apoptosis (Puma), Sestrin-2 and p14ARF, which were selected from among p53-related signaling proteins, were further validated, and the results were consistent with the tandem mass tag quantitative proteomic results. CONCLUSION We first investigated the molecular mechanism underlying the effects of xanthatin treatment on HT-29 colon cancer cells using tandem mass tag quantitative proteomic methods and provided a global comprehensive understanding of the antitumor effects of xanthatin. However, it is necessary to further confirm the function of the differentially abundant proteins and the potentially associated signaling pathways.
Collapse
Affiliation(s)
- Yadi Geng
- Department of Pharmacy, Anhui Provincial Hospital, Anhui Medical University, Hefei, Anhui, 230001. China
| | - Lingli Li
- Department of Pharmacy, Anhui Provincial Hospital, Anhui Medical University, Hefei, Anhui, 230001. China
| | - Ping Liu
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui, 230032. China
| | - Zhaolin Chen
- Department of Pharmacy, Anhui Provincial Hospital, Anhui Medical University, Hefei, Anhui, 230001. China
| | - Aizong Shen
- Department of Pharmacy, Anhui Provincial Hospital, Anhui Medical University, Hefei, Anhui, 230001. China
| | - Lei Zhang
- Department of Pharmacy, Anhui Provincial Hospital, Anhui Medical University, Hefei, Anhui, 230001. China
| |
Collapse
|
11
|
Bouhtit F, Najar M, Moussa Agha D, Melki R, Najimi M, Sadki K, Boukhatem N, Bron D, Meuleman N, Hamal A, Lagneaux L, Lewalle P, Merimi M. New Anti-Leukemic Effect of Carvacrol and Thymol Combination through Synergistic Induction of Different Cell Death Pathways. Molecules 2021; 26:410. [PMID: 33466806 PMCID: PMC7829697 DOI: 10.3390/molecules26020410] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 12/23/2020] [Accepted: 01/07/2021] [Indexed: 02/06/2023] Open
Abstract
Acute myeloid leukemia (AML) is a cancer of the myeloid lineage of blood cells, and treatment for AML is lengthy and can be very expensive. Medicinal plants and their bioactive molecules are potential candidates for improving human health. In this work, we studied the effect of Ptychotis verticillata (PV) essential oil and its derivatives, carvacrol and thymol, in AML cell lines. We demonstrated that a combination of carvacrol and thymol induced tumor cell death with low toxicity on normal cells. Mechanistically, we highlighted that different molecular pathways, including apoptosis, oxidative, reticular stress, autophagy, and necrosis, are implicated in this potential synergistic effect. Using quantitative RT-PCR, Western blotting, and apoptosis inhibitors, we showed that cell death induced by the carvacrol and thymol combination is caspase-dependent in the HL60 cell line and caspase-independent in the other cell lines tested. Further investigations should focus on improving the manufacturing of these compounds and understanding their anti-tumoral mechanisms of action. These efforts will lead to an increase in the efficiency of the oncotherapy strategy regarding AML.
Collapse
Affiliation(s)
- Fatima Bouhtit
- Laboratory of Experimental Hematology, Jules Bordet Institute, Université Libre de Bruxelles, 1000 Brussels, Belgium; (F.B.); (D.M.A.); (D.B.); (N.M.); (P.L.)
- Genetics and Immune Cell Therapy Unit, LBBES Laboratory, Faculty of Sciences, University Mohammed Premier, Oujda 60000, Morocco; (M.N.); (R.M.); (N.B.); (A.H.)
| | - Mehdi Najar
- Genetics and Immune Cell Therapy Unit, LBBES Laboratory, Faculty of Sciences, University Mohammed Premier, Oujda 60000, Morocco; (M.N.); (R.M.); (N.B.); (A.H.)
- Osteoarthritis Research Unit, Department of Medicine, University of Montreal Hospital Research Center (CRCHUM), University of Montreal, Montreal, QC H2X 0A9, Canada
| | - Douâa Moussa Agha
- Laboratory of Experimental Hematology, Jules Bordet Institute, Université Libre de Bruxelles, 1000 Brussels, Belgium; (F.B.); (D.M.A.); (D.B.); (N.M.); (P.L.)
| | - Rahma Melki
- Genetics and Immune Cell Therapy Unit, LBBES Laboratory, Faculty of Sciences, University Mohammed Premier, Oujda 60000, Morocco; (M.N.); (R.M.); (N.B.); (A.H.)
| | - Mustapha Najimi
- Laboratory of Pediatric Hepatology and Cell Therapy, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, 1200 Brussels, Belgium;
| | - Khalid Sadki
- Laboratory of Human Pathologies Biology, Faculty of Sciences, Mohammed V University, Rabat, Agdal-Rabat 10090, Morocco;
| | - Noureddine Boukhatem
- Genetics and Immune Cell Therapy Unit, LBBES Laboratory, Faculty of Sciences, University Mohammed Premier, Oujda 60000, Morocco; (M.N.); (R.M.); (N.B.); (A.H.)
| | - Dominique Bron
- Laboratory of Experimental Hematology, Jules Bordet Institute, Université Libre de Bruxelles, 1000 Brussels, Belgium; (F.B.); (D.M.A.); (D.B.); (N.M.); (P.L.)
| | - Nathalie Meuleman
- Laboratory of Experimental Hematology, Jules Bordet Institute, Université Libre de Bruxelles, 1000 Brussels, Belgium; (F.B.); (D.M.A.); (D.B.); (N.M.); (P.L.)
| | - Abdellah Hamal
- Genetics and Immune Cell Therapy Unit, LBBES Laboratory, Faculty of Sciences, University Mohammed Premier, Oujda 60000, Morocco; (M.N.); (R.M.); (N.B.); (A.H.)
| | - Laurence Lagneaux
- Laboratory of Clinical Cell Therapy, Jules Bordet Institute, Université Libre de Bruxelles, 1070 Brussels, Belgium;
| | - Philippe Lewalle
- Laboratory of Experimental Hematology, Jules Bordet Institute, Université Libre de Bruxelles, 1000 Brussels, Belgium; (F.B.); (D.M.A.); (D.B.); (N.M.); (P.L.)
| | - Makram Merimi
- Laboratory of Experimental Hematology, Jules Bordet Institute, Université Libre de Bruxelles, 1000 Brussels, Belgium; (F.B.); (D.M.A.); (D.B.); (N.M.); (P.L.)
- Genetics and Immune Cell Therapy Unit, LBBES Laboratory, Faculty of Sciences, University Mohammed Premier, Oujda 60000, Morocco; (M.N.); (R.M.); (N.B.); (A.H.)
| |
Collapse
|
12
|
Nkpaa KW, Owoeye O, Amadi BA, Adedara IA, Abolaji AO, Wegwu MO, Farombi EO. Ethanol exacerbates manganese-induced oxidative/nitrosative stress, pro-inflammatory cytokines, nuclear factor-κB activation, and apoptosis induction in rat cerebellar cortex. J Biochem Mol Toxicol 2020; 35:e22681. [PMID: 33314588 DOI: 10.1002/jbt.22681] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 10/20/2020] [Accepted: 11/26/2020] [Indexed: 11/06/2022]
Abstract
Manganese (Mn) exposure is causing public health concerns as well as heavy alcohol consumption. This study investigates the mechanisms of neurotoxicity associated with Mn and ethanol (EtOH) exposure in the rat cerebellar cortex. Experimental animals received 30 mg/kg of Mn alone, 5 g/kg of EtOH alone, co-exposed with 30 mg/kg of Mn and 1.25 or 5 g/kg EtOH, while control animals received water by oral gavage for 35 days. Subsequently, alterations in the neuronal morphology of the cerebellar cortex, oxidative/nitrosative stress, acetylcholinesterase (AChE) activity, neuro-inflammation and protein expression of p53, BAX, caspase-3, and BCL-2 were investigated. The results indicate that Mn alone and EtOH alone induce neuronal alterations in the cerebellar cortex, decrease glutathione level and antioxidant enzyme activities, along with an increase in AChE activity, lipid peroxidation, and hydrogen peroxide generation. Mn alone and EtOH alone also increased neuro-inflammatory markers, namely nitric oxide, myeloperoxidase activity, interleukin-1β, tumor necrosis factor-α, and nuclear factor-κB (NF-κB) levels in the cerebellar cortex. Immunohistochemistry analysis further revealed that exposure of Mn alone and EtOH alone increases the protein expression of cyclooxygenase-2, BAX, p53, and caspase-3 and decrease BCL-2 in the rat cerebellar cortex. Furthermore, the results indicated that Mn co-exposure with EtOH at 1.25 and 5 g/kg EtOH significantly (p ≤ .05) increases the toxicity in the cerebellum when compared with the toxicity of Mn or EtOH alone. Taken together, co-exposure of Mn and EtOH exacerbates neuronal alterations, oxidative/nitrosative stress, AChE activity, pro-inflammatory cytokines, NF-κB signal transcription, and apoptosis induction in the rat cerebellar cortex.
Collapse
Affiliation(s)
- Kpobari W Nkpaa
- Environmental Toxicology Unit, Department of Biochemistry, Faculty of Science, University of Port Harcourt, Choba, Rivers State, Nigeria
| | - Olatunde Owoeye
- Department of Anatomy, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Benjamin A Amadi
- Environmental Toxicology Unit, Department of Biochemistry, Faculty of Science, University of Port Harcourt, Choba, Rivers State, Nigeria
| | - Isaac A Adedara
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Amos O Abolaji
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Matthew O Wegwu
- Environmental Toxicology Unit, Department of Biochemistry, Faculty of Science, University of Port Harcourt, Choba, Rivers State, Nigeria
| | - Ebenezer O Farombi
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
13
|
Qiang J, He J, Tao YF, Bao JW, Zhu JH, Xu P. Hypoxia-induced miR-92a regulates p53 signaling pathway and apoptosis by targeting calcium-sensing receptor in genetically improved farmed tilapia (Oreochromis niloticus). PLoS One 2020; 15:e0238897. [PMID: 33180826 PMCID: PMC7660578 DOI: 10.1371/journal.pone.0238897] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 10/27/2020] [Indexed: 12/24/2022] Open
Abstract
miR-92a miRNAs are immune molecules that regulate apoptosis (programmed cell death) during the immune response. Apoptosis helps to maintain the dynamic balance in tissues of fish under hypoxia stress. The aim of this study was to explore the role and potential mechanisms of miR-92a in the liver of tilapia under hypoxia stress. We first confirmed that CaSR (encoding a calcium-sensing receptor) is a target gene of miR-92a in genetically improved farmed tilapia (GIFT) using luciferase reporter gene assays. In GIFT under hypoxia stress, miR-92a was up-regulated and CaSR was down-regulated in a time-dependent manner. Knocked-down CaSR expression led to inhibited expression of p53, TP53INP1, and caspase-3/8, reduced the proportion of apoptotic hepatocytes, and decreased the activity of calcium ions induced by hypoxia in hepatocytes. GIFT injected in the tail vein with an miR-92a agomir showed up-regulation of miR-92a and down-regulation of CaSR, p53, TP53INP1, and caspase-3/8 genes in the liver, resulting in lower serum aspartate aminotransferase and alanine aminotransferase activities under hypoxia stress. These findings suggest that stimulation of miR-92a interferes with hypoxia-induced apoptosis in hepatocytes of GIFT by targeting CaSR, thereby alleviating liver damage. These results provide new insights into the adaptation mechanisms of GIFT to hypoxia stress.
Collapse
Affiliation(s)
- Jun Qiang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, China
| | - Jie He
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, China
| | - Yi-Fan Tao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, China
| | - Jin-Wen Bao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, China
| | - Jun-Hao Zhu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, China
| | - Pao Xu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, China
| |
Collapse
|
14
|
Li Z, Chen L, Chen C, Zhou Y, Hu D, Yang J, Chen Y, Zhuo W, Mao M, Zhang X, Xu L, Wang L, Zhou J. Targeting ferroptosis in breast cancer. Biomark Res 2020; 8:58. [PMID: 33292585 PMCID: PMC7643412 DOI: 10.1186/s40364-020-00230-3] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 09/23/2020] [Indexed: 02/06/2023] Open
Abstract
Ferroptosis is a recently discovered distinct type of regulated cell death caused by the accumulation of lipid-based ROS. Metabolism and expression of specific genes affect the occurrence of ferroptosis, making it a promising therapeutic target to manage cancer. Here, we describe the current status of ferroptosis studies in breast cancer and trace the key regulators of ferroptosis back to previous studies. We also compare ferroptosis to common regulated cell death patterns and discuss the sensitivity to ferroptosis in different subtypes of breast cancer. We propose that viewing ferroptosis-related studies from a historical angle will accelerate the development of ferroptosis-based biomarkers and therapeutic strategies in breast cancer.
Collapse
Affiliation(s)
- Zhaoqing Li
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310000 Zhejiang China
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), 2nd Affiliated Hospital, School of Medicine, Zhejiang University, 310009 Hangzhou, Zhejiang China
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, 310000 Hangzhou, Zhejiang China
| | - Lini Chen
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310000 Zhejiang China
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, 310000 Hangzhou, Zhejiang China
| | - Cong Chen
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310000 Zhejiang China
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, 310000 Hangzhou, Zhejiang China
| | - Yulu Zhou
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310000 Zhejiang China
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, 310000 Hangzhou, Zhejiang China
| | - Dengdi Hu
- Cixi People’s Hospital Medical and Health Group, 315300 Ningbo, Zhejiang China
| | - Jingjing Yang
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310000 Zhejiang China
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, 310000 Hangzhou, Zhejiang China
| | - Yongxia Chen
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310000 Zhejiang China
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, 310000 Hangzhou, Zhejiang China
| | - Wenying Zhuo
- Cixi People’s Hospital Medical and Health Group, 315300 Ningbo, Zhejiang China
| | - Misha Mao
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310000 Zhejiang China
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, 310000 Hangzhou, Zhejiang China
| | - Xun Zhang
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310000 Zhejiang China
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, 310000 Hangzhou, Zhejiang China
| | - Ling Xu
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310000 Zhejiang China
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, 310000 Hangzhou, Zhejiang China
| | - Linbo Wang
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310000 Zhejiang China
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, 310000 Hangzhou, Zhejiang China
| | - Jichun Zhou
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310000 Zhejiang China
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, 310000 Hangzhou, Zhejiang China
| |
Collapse
|
15
|
Murray D, Mirzayans R. Nonlinearities in the cellular response to ionizing radiation and the role of p53 therein. Int J Radiat Biol 2020; 97:1088-1098. [PMID: 31986075 DOI: 10.1080/09553002.2020.1721602] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 12/06/2019] [Accepted: 12/26/2019] [Indexed: 10/25/2022]
Abstract
Many aspects of the cellular response to agents such as ionizing radiation that cause genotoxic and/or oxidative stress exhibit a nonlinear relationship to the applied stress level. These include elements of the antioxidant response and of the damage-signaling pathways that determine cell fate decisions. The wild-type p53 protein, which is mutated in many cancers, coordinates these responses and is a key determinant of this nonlinearity. Indeed, p53 has been referred to as a 'cellular rheostat' that favors antioxidant/cytoprotective functions at low stress levels while switching to a pro-oxidant/cytotoxic role under high-stress conditions. For solid tumor-derived cell lines, moderate doses of radiation, typical of those used to generate clonogenic survival curves (i.e. ≤10 Gy), predominantly invoke a dose-dependent cytostatic response. For cancer cell lines with wild-type p53, cytostasis is primarily associated with features of senescence, whereas cancer cells with aberrant p53 primarily undergo endopolyploidization and enlargement. In line with a commentary by Meyn et al. [Int J Radiat Biol. 2009, 85:107-115] concluding that apoptosis is not the primary cause of radiation-induced loss of clonogenicity in solid tumor-derived cell lines, significant levels of apoptosis are typically seen only after higher doses (≥5 Gy) and this is almost all of the delayed (rather than primary) type. Nonlinearity of the oxidative/genotoxic stress response is already apparent in the early antioxidant events activated by transcription factors such as p53 and Nrf2 and the Ref1 transcription coactivator. These cytoprotective pathways serve to minimize damage to important cellular targets caused by reactive oxygen species (ROS) and other electrophiles. After high/supra-lethal levels of stress these inducible antioxidant pathways can be deactivated in a manner that would reinforce the establishment of the pro-oxidant state, resulting in elevated ROS levels and to cytostasis or apoptosis. Understanding the complex regulation of these damage-signaling pathways in relation to the stress levels is important for the optimal utilization of radiation therapy for cancer.
Collapse
Affiliation(s)
- David Murray
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Canada
| | - Razmik Mirzayans
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Canada
| |
Collapse
|
16
|
Stamenkovic M, Janjetovic K, Paunovic V, Ciric D, Kravic-Stevovic T, Trajkovic V. Comparative analysis of cell death mechanisms induced by lysosomal autophagy inhibitors. Eur J Pharmacol 2019; 859:172540. [DOI: 10.1016/j.ejphar.2019.172540] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 06/18/2019] [Accepted: 07/12/2019] [Indexed: 12/21/2022]
|
17
|
ROS Generation and Antioxidant Defense Systems in Normal and Malignant Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:6175804. [PMID: 31467634 PMCID: PMC6701375 DOI: 10.1155/2019/6175804] [Citation(s) in RCA: 494] [Impact Index Per Article: 82.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 06/24/2019] [Indexed: 02/08/2023]
Abstract
Reactive oxygen species (ROS) are by-products of normal cell activity. They are produced in many cellular compartments and play a major role in signaling pathways. Overproduction of ROS is associated with the development of various human diseases (including cancer, cardiovascular, neurodegenerative, and metabolic disorders), inflammation, and aging. Tumors continuously generate ROS at increased levels that have a dual role in their development. Oxidative stress can promote tumor initiation, progression, and resistance to therapy through DNA damage, leading to the accumulation of mutations and genome instability, as well as reprogramming cell metabolism and signaling. On the contrary, elevated ROS levels can induce tumor cell death. This review covers the current data on the mechanisms of ROS generation and existing antioxidant systems balancing the redox state in mammalian cells that can also be related to tumors.
Collapse
|
18
|
Hashimoto N, Nagano H, Tanaka T. The role of tumor suppressor p53 in metabolism and energy regulation, and its implication in cancer and lifestyle-related diseases. Endocr J 2019; 66:485-496. [PMID: 31105124 DOI: 10.1507/endocrj.ej18-0565] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The tumor suppressor gene p53 is mutated in approximately more than 50% of human cancers. p53 is also referred to as the "cellular gatekeeper" or "guardian of the genome" because it protects the body from spreading mutated genome induced by various stress. When the cells receives stimuli such as DNA damage, oncogene activation, oxidative stress or undernutrition, p53 gives rise to a number of cellular responses, including cell cycle arrest, apoptosis, cellular senescence and metabolic adaptation. Related to energy metabolisms, it has been reported that p53 reduces glycolysis and enhances mitochondrial respiration. p53 is also involved in the regulation of other cellular metabolism and energy production systems: amino acid metabolism, fatty acid metabolism, nucleic acid metabolism, anti-oxidation, mitochondrial quality control, and autophagy. Moreover, recent studies have shown that p53 gene polymorphisms affect life expectancy and lifestyle-related disease such as type 2 diabetes, suggesting that there is a certain relationship between p53 function and metabolic disorders. In addition, mutant p53 protein does not only lose the tumor suppressor function, but it also gains novel oncogenic function and contributes to tumor development, involving cellular metabolism modification. Therefore, the importance of multifunctionality of p53, particularly with regard to intracellular metabolisms, arouses therapeutic interest and calls attention as the key molecule among cancer, lifestyle-related diseases and life expectancy.
Collapse
Affiliation(s)
- Naoko Hashimoto
- Department of Molecular Diagnosis, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Hidekazu Nagano
- Department of Molecular Diagnosis, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Tomoaki Tanaka
- Department of Molecular Diagnosis, Chiba University Graduate School of Medicine, Chiba, Japan
| |
Collapse
|
19
|
Wang CY, Lin CS, Hua CH, Jou YJ, Liao CR, Chang YS, Wan L, Huang SH, Hour MJ, Lin CW. Cis-3-O-p-hydroxycinnamoyl Ursolic Acid Induced ROS-Dependent p53-Mediated Mitochondrial Apoptosis in Oral Cancer Cells. Biomol Ther (Seoul) 2019; 27:54-62. [PMID: 30261716 PMCID: PMC6319548 DOI: 10.4062/biomolther.2017.237] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 07/05/2018] [Accepted: 08/08/2018] [Indexed: 11/05/2022] Open
Abstract
Cis-3-O-p-hydroxycinnamoyl ursolic acid (HCUA), a triterpenoid compound, was purified from Elaeagnus oldhamii Maxim. This traditional medicinal plant has been used for treating rheumatoid arthritis and lung disorders as well as for its anti-inflammation and anticancer activities. This study aimed to investigate the anti-proliferative and apoptotic-inducing activities of HCUA in oral cancer cells. HCUA exhibited anti-proliferative activity in oral cancer cell lines (Ca9-22 and SAS cells), but not in normal oral fibroblasts. The inhibitory concentration of HCUA that resulted in 50% viability was 24.0 µM and 17.8 µM for Ca9-22 and SAS cells, respectively. Moreover, HCUA increased the number of cells in the sub-G1 arrest phase and apoptosis in a concentration-dependent manner in both oral cancer cell lines, but not in normal oral fibroblasts. Importantly, HCUA induced p53-mediated transcriptional regulation of pro-apoptotic proteins (Bax, Bak, Bim, Noxa, and PUMA), which are associated with mitochondrial apoptosis in oral cancer cells via the loss of mitochondrial membrane potential. HCUA triggered the production of intracellular reactive oxygen species (ROS) that was ascertained to be involved in HCUA-induced apoptosis by the ROS inhibitors YCG063 and N-acetyl-L-cysteine. As a result, HCUA had potential antitumor activity to oral cancer cells through eliciting ROS-dependent and p53-mediated mitochondrial apoptosis. Overall, HCUA could be applicable for the development of anticancer agents against human oral cancer.
Collapse
Affiliation(s)
- Ching-Ying Wang
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung 40402,Division of Gastroenterology, Kuang Tien General Hospital, Taichung 43303, Taiwan
| | - Chen-Sheng Lin
- Division of Gastroenterology, Kuang Tien General Hospital, Taichung 43303, Taiwan
| | - Chun-Hung Hua
- Department of Otolaryngology, China Medical University Hospital, Taichung 40447, Taiwan
| | - Yu-Jen Jou
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung 40402,Division of Gastroenterology, Kuang Tien General Hospital, Taichung 43303, Taiwan
| | - Chi-Ren Liao
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung 40402, Taiwan
| | - Yuan-Shiun Chang
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung 40402, Taiwan
| | - Lei Wan
- Department of Medical Genetics and Medical Research, China Medical University Hospital, Taichung 40447, Taiwan
| | - Su-Hua Huang
- Department of Biotechnology, Asia University, Wufeng, Taichung 41357, Taiwan
| | - Mann-Jen Hour
- School of Pharmacy, China Medical University, Taichung 40402, Taiwan
| | - Cheng-Wen Lin
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung 40402,Division of Gastroenterology, Kuang Tien General Hospital, Taichung 43303, Taiwan.,Department of Biotechnology, Asia University, Wufeng, Taichung 41357, Taiwan
| |
Collapse
|
20
|
Liu N, Wang KS, Qi M, Zhou YJ, Zeng GY, Tao J, Zhou JD, Zhang JL, Chen X, Peng C. Vitexin compound 1, a novel extraction from a Chinese herb, suppresses melanoma cell growth through DNA damage by increasing ROS levels. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:269. [PMID: 30400954 PMCID: PMC6219156 DOI: 10.1186/s13046-018-0897-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 08/31/2018] [Indexed: 12/21/2022]
Abstract
BACKGROUND Vitex negundo L (Verbenaceae) is an aromatic shrub that is abundant in Asian countries. A series of compounds from Vitex negundo have been used in traditional Chinese medicine for the treatment of various diseases. Cutaneous melanoma is one of the most aggressive malignancies. A significant feature of melanoma is its resistance to traditional chemotherapy and radiotherapy; therefore, there is an urgent need to develop novel treatments for melanoma. METHODS We first examined the effects of VB1 (vitexin compound 1) on cell viability by CCK-8 (cell counting kit) and Colony Formation Assay; And then, we analyzed the apoptosis and cell cycle by flow cytometry, verified apoptosis by Immunoblotting. The in vivo effect of VB1 was evaluated in xenograft mouse model. Potential mechanisms of VB1's antitumor effects were explored by RNA sequencing and the key differential expression genes were validated by real-time quantitative PCR. Finally, the intracellular reactive oxygen species (ROS) level was detected by flow cytometry, and the DNA damage was revealed by Immunofluorescence and Immunoblotting. RESULTS In this study, we show that VB1, which is a compound purified from the seed of the Chinese herb Vitex negundo, blocks melanoma cells growth in vitro and in vivo, arrests the cell cycle in G2/M phase and induces apoptosis in melanoma cell lines, whereas the effects are not significantly observed in normal cells. To study the details of VB1, we analyzed the alteration of gene expression profiles after treatment with VB1 in melanoma cells. The findings showed that VB1 can affect various pathways, including p53, apoptosis and the cell cycle pathway, in a variety of melanoma cell lines. Furthermore, we confirmed that VB1 restored the P53 pathway protein level, and then we demonstrated that VB1 significantly induced the accumulation of ROS, which resulted in DNA damage in melanoma cell lines. Interestingly, our results showed that VB1 also increased the ROS levels in BRAFi (BRAF inhibitor)-resistant melanoma cells, leading to DNA cytotoxicity, which caused G2/M phase arrest and apoptosis. CONCLUSIONS Taken together, our findings indicate that vitexin compound 1 might be a promising therapeutic Chinese medicine for melanoma treatment regardless of BRAFi resistance.
Collapse
Affiliation(s)
- Nian Liu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, Hunan, China
| | - Kuan Song Wang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Department of Pathology, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Min Qi
- Department of Plastic and Cosmetic Surgery, XiangYa Hospital, Central South University, Changsha, Hunan, China
| | - Ying Jun Zhou
- School of Pharmaceutical Science,Central, South University, Changsha, Hunan, China
| | - Guang Yao Zeng
- School of Pharmaceutical Science,Central, South University, Changsha, Hunan, China
| | - Juan Tao
- Department of Dermatology, Affiliated Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jian Da Zhou
- Department of Plastic Surgery of Third Xiangya Hospital, Central South University, Changsha, China
| | - Jiang Lin Zhang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China. .,Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, Hunan, China.
| | - Xiang Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China. .,Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, Hunan, China.
| | - Cong Peng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China. .,Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, Hunan, China.
| |
Collapse
|
21
|
Kowzun MJ, Rifkin WJ, Borab ZM, Ellison T, Soares MA, Wilson SC, Lotfi P, Bandekar A, Sofou S, Saadeh PB, Ceradini DJ. Topical inhibition of PUMA signaling mitigates radiation injury. Wound Repair Regen 2018; 26:413-425. [DOI: 10.1111/wrr.12668] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 07/31/2018] [Indexed: 12/31/2022]
Affiliation(s)
- Maria J. Kowzun
- Hansjörg Wyss Department of Plastic SurgeryNew York University Langone Health New York New York
| | - William J Rifkin
- Hansjörg Wyss Department of Plastic SurgeryNew York University Langone Health New York New York
| | - Zachary M. Borab
- Hansjörg Wyss Department of Plastic SurgeryNew York University Langone Health New York New York
| | - Trevor Ellison
- Hansjörg Wyss Department of Plastic SurgeryNew York University Langone Health New York New York
| | - Marc A. Soares
- Hansjörg Wyss Department of Plastic SurgeryNew York University Langone Health New York New York
| | - Stelios C. Wilson
- Hansjörg Wyss Department of Plastic SurgeryNew York University Langone Health New York New York
| | - Philip Lotfi
- Hansjörg Wyss Department of Plastic SurgeryNew York University Langone Health New York New York
| | - Amey Bandekar
- Department of Chemical and Biochemical EngineeringRutgers University New Brunswick New Jersey
| | - Stavroula Sofou
- Department of Chemical and Biochemical EngineeringRutgers University New Brunswick New Jersey
| | - Pierre B. Saadeh
- Hansjörg Wyss Department of Plastic SurgeryNew York University Langone Health New York New York
| | - Daniel J. Ceradini
- Hansjörg Wyss Department of Plastic SurgeryNew York University Langone Health New York New York
| |
Collapse
|
22
|
Pinzón-Daza ML, Cuellar Y, Ondo A, Matheus L, Del Riesgo L, Castillo F, Garzón R. Hypoxia-inducible factor HIF-1α modulates drugs resistance in colon cancer cells. REVISTA DE LA FACULTAD DE MEDICINA 2018. [DOI: 10.15446/revfacmed.v66n4.55149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Introduction: Drug resistance mechanisms may be associated with decreased cell death and its induction may depend on the response to oxidative stress caused by hypoxia. The correlation between hypoxia-inducible factor HIF-1α, the number of reactive oxygen species and their effect on cell survival has not yet been evaluated.Objective: The purpose of this study was to evaluate the effect of HIF-1α activity and reactive oxygen species (ROS) accumulation in apoptosis of colon cancer cells.Materials and methods: HT29 colon cancer cells were treated with CoCl2 or doxorubicin and the activity of HIF-1α was determined by ELISA assay. ROS were determined using fluorescence probe carboxy-H2DFFDA. Apoptosis was assessed by caspase-3 activation analysis, and PUMA and BAX mRNA levels by qRT-PCR. The reduction of the antiapoptotic effect due to hypoxia was attenuated by use of the endonuclease APE-1 (E3330) inhibitor. The endonuclease E3330 APE-1 inhibitor allowed evaluating the effect of ROS generated by doxorubicin and CoCl2 on apoptosis.Results: Chemical hypoxia in combination with doxorubicin is an oxidative stressor in HT29 cells and induces a reduction in the apoptotic process in a time-dependent manner.Conclusion: Resistance to hypoxia and doxorubicin-mediated cell death could be controlled by a mechanism related to the activity of HIF-1α and the amount of reactive oxygen species generated.
Collapse
|
23
|
Abstract
SIGNIFICANCE The p53 family of transcription factors, including p53, p63, and p73, plays key roles in both biological and pathological processes, including cancer and neural development. Recent Advances: In recent years, a growing body of evidence has indicated that the entire p53 family is involved in the regulation of the central nervous system (CNS) functions as well as in the pathogenesis of several neurological disorders. Mechanistically, the p53 proteins control neuronal cell fate, terminal differentiation, and survival, via a complex interplay among the family members. CRITICAL ISSUES In this article, we discuss the involvement of the p53 family in neurobiology and in pathological conditions affecting the CNS, including neuroinflammation. FUTURE DIRECTIONS Understanding the molecular mechanism(s) underlying the function of the p53 family could improve our general knowledge of the pathogenesis of brain disorders and potentially pave the road for new therapeutic intervention. Antioxid. Redox Signal. 29, 1-14.
Collapse
Affiliation(s)
- Massimiliano Agostini
- 1 Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata," Rome, Italy .,2 Medical Research Council, Toxicology Unit, Leicester University , Leicester, United Kingdom
| | - Gerry Melino
- 1 Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata," Rome, Italy .,2 Medical Research Council, Toxicology Unit, Leicester University , Leicester, United Kingdom
| | - Francesca Bernassola
- 1 Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata," Rome, Italy
| |
Collapse
|
24
|
Yang S, Zhu Z, Zhang X, Zhang N, Yao Z. Idelalisib induces PUMA-dependent apoptosis in colon cancer cells. Oncotarget 2018; 8:6102-6113. [PMID: 28008149 PMCID: PMC5351616 DOI: 10.18632/oncotarget.14043] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 12/12/2016] [Indexed: 01/22/2023] Open
Abstract
Idelalisib, a PI3K inhibitor, specifically targeting p110δ, has been approved for the treatment of chronic lymphocytic leukemia/small lymphocytic lymphoma and follicular lymphoma. However, the mechanisms of action of idelalisib in colon cancer cells are not well understood. We investigated how idelalisib suppresses colon cancer cells growth and potentiates effects of other chemotherapeutic drugs. In this study, we found that idelalisib treatment induces PUMA in colon cancer cells irrespective of p53 status through the p65 pathway following AKT inhibition and glycogen synthase kinase 3β (GSK3β) activation. PUMA is necessary for idelalisib-induced apoptosis in colon cancer cells. Idelalisib also synergized with 5-FU or regorafenib to induce marked apoptosis via PUMA in colon cancer cells. Furthermore, PUMA deficiency suppressed apoptosis and antitumor effect of idelalisib in xenograft model. These results demonstrate a critical role of PUMA in mediating the anticancer effects of idelalisib in colon cancer cells and suggest that PUMA induction can be used as an indicator of idelalisib sensitivity, and also have important implications for it clinical applications.
Collapse
Affiliation(s)
- Shida Yang
- Department of Laboratory Medicine, The People's Hospital of Liaoning Province, Shenyang, China
| | - Zhiyong Zhu
- Department of Orthopedics, The People's Hospital of Liaoning Province, Shenyang, China
| | - Xiaobing Zhang
- Department of Laboratory Medicine, The People's Hospital of Liaoning Province, Shenyang, China
| | - Ning Zhang
- Department of Laboratory Medicine, The First Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Zhicheng Yao
- Department of Neurology, The People's Hospital of Liaoning Province, Shenyang, China
| |
Collapse
|
25
|
Luo SW, Kang H, Kong JR, Xie RC, Liu Y, Wang WN, Xie FX, Wang C, Sun ZM. Molecular cloning, characterization and expression analysis of (B-cell lymphoma-2) Bcl-2 in the orange-spotted grouper (Epinephelus coioides). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 76:150-162. [PMID: 28606801 DOI: 10.1016/j.dci.2017.06.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 06/07/2017] [Accepted: 06/07/2017] [Indexed: 06/07/2023]
Abstract
Bcl-2 is a pro-survival member of Bcl-2 like superfamily, playing an important role in regulating the apoptotic process. In this study, the full-length Bcl-2 (EcBcl-2) was obtained, consisting of a 5'UTR of 290 bp, an ORF of 699 bp and a 3'UTR of 920 bp. EcBcl-2 gene encoded a polypeptide of 232 amino acids with an estimated molecular mass of 26.12 KDa and a predicted isoelectric point (pI) of 6.93. The deduced amino acid sequence analysis showed that EcBcl-2 consisted of the conserved residues and characteristic domains known to the critical functionality for Bcl-2. qRT-PCR analysis revealed that EcBcl-2 transcript was expressed in all the examined tissues, while the strongest expression level was observed in liver, followed by the expression in blood, gill, kidney, spleen, heart, intestine and muscle. The groupers challenged with V. alginolyticus showed a significant increase of EcBcl-2 mRNA in immune tissues. In addition, western blotting analysis confirmed that the up-regulation of EcBcl-2 protein expression was detected in liver. Subcellular localization analysis revealed that EcBcl-2 was localized in both nucleus and cytoplasm. Overexpression of EcBcl-2 can inhibit the LPS-induced apoptosis and activate the transcription activity of NF-κB and AP-1, while the deletion of BH1, BH2, BH3 or BH4 domain from EcBcl-2 can impede the signaling transduction. These results indicate that EcBcl-2 may play a regulatory role in the apoptotic process.
Collapse
Affiliation(s)
- Sheng-Wei Luo
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou 510631, PR China; Division of Immunology, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Huan Kang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou 510631, PR China
| | - Jing-Rong Kong
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou 510631, PR China
| | - Ren-Chong Xie
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou 510631, PR China
| | - Yuan Liu
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou 510631, PR China.
| | - Wei-Na Wang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou 510631, PR China.
| | - Fu-Xing Xie
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou 510631, PR China
| | - Cong Wang
- Hebei Wisdom Technology Development Co., Ltd., PR China
| | - Zuo-Ming Sun
- Hebei Wisdom Technology Development Co., Ltd., PR China; Division of Immunology, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| |
Collapse
|
26
|
Yang J, Zhao X, Tang M, Li L, Lei Y, Cheng P, Guo W, Zheng Y, Wang W, Luo N, Peng Y, Tong A, Wei Y, Nie C, Yuan Z. The role of ROS and subsequent DNA-damage response in PUMA-induced apoptosis of ovarian cancer cells. Oncotarget 2017; 8:23492-23506. [PMID: 28423586 PMCID: PMC5410321 DOI: 10.18632/oncotarget.15626] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 02/14/2017] [Indexed: 02/05/2023] Open
Abstract
PUMA is a member of the "BH3-only" branch of the BCL-2 family. Our previous study suggests a therapeutic potential of PUMA in treating ovarian cancer, however, the action mechanism of PUMA remains elusive. In this work, we found that in PUMA adenovirus-infected A2780s ovarian cancer cells, exogenous PUMA was partially accumulated in the cytosol and mainly located to the mitochondria. We further showed that PUMA induces mitochondrial dysfunction-mediated apoptosis and ROS generation through functional BAX in a ROS generating enzyme- and caspase-independent manner irrespective of their p53 status, and results in activation of Nrf2/HO-1 pathway. Furthermore, PUMA induces DNA breaks in γ-H2AX staining, and causes activation of DNA damage-related kinases including ATM, ATR, DNA-PKcs, Chk1 and Chk2, which are correlated with the apoptosis. PUMA also results in ROS-triggered JNK activation. Intriguingly, JNK plays a dual role in both DNA damage response and apoptosis, and has an additional contribution to apoptosis. Taken together, we have provided new insight into the action mechanism by which elevated PUMA first induces ROS generation then results in DNA damage response and JNK activation, ultimately contributing to apoptosis in ovarian cancer cells.
Collapse
Affiliation(s)
- Jun Yang
- 1 State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xinyu Zhao
- 1 State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Mei Tang
- 1 State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lei Li
- 1 State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yi Lei
- 1 State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ping Cheng
- 1 State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wenhao Guo
- 2 Department of Abdominal Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Yu Zheng
- 1 State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wei Wang
- 1 State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Na Luo
- 3 Nankai University, School of Medicine/Collaborative Innovation Center of Biotherapy, Tianjin 300071, China
| | - Yong Peng
- 1 State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Aiping Tong
- 1 State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yuquan Wei
- 1 State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Chunlai Nie
- 1 State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhu Yuan
- 1 State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
27
|
Pérez S, Taléns-Visconti R, Rius-Pérez S, Finamor I, Sastre J. Redox signaling in the gastrointestinal tract. Free Radic Biol Med 2017; 104:75-103. [PMID: 28062361 DOI: 10.1016/j.freeradbiomed.2016.12.048] [Citation(s) in RCA: 181] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 12/20/2016] [Accepted: 12/31/2016] [Indexed: 12/16/2022]
Abstract
Redox signaling regulates physiological self-renewal, proliferation, migration and differentiation in gastrointestinal epithelium by modulating Wnt/β-catenin and Notch signaling pathways mainly through NADPH oxidases (NOXs). In the intestine, intracellular and extracellular thiol redox status modulates the proliferative potential of epithelial cells. Furthermore, commensal bacteria contribute to intestine epithelial homeostasis through NOX1- and dual oxidase 2-derived reactive oxygen species (ROS). The loss of redox homeostasis is involved in the pathogenesis and development of a wide diversity of gastrointestinal disorders, such as Barrett's esophagus, esophageal adenocarcinoma, peptic ulcer, gastric cancer, ischemic intestinal injury, celiac disease, inflammatory bowel disease and colorectal cancer. The overproduction of superoxide anion together with inactivation of superoxide dismutase are involved in the pathogenesis of Barrett's esophagus and its transformation to adenocarcinoma. In Helicobacter pylori-induced peptic ulcer, oxidative stress derived from the leukocyte infiltrate and NOX1 aggravates mucosal damage, especially in HspB+ strains that downregulate Nrf2. In celiac disease, oxidative stress mediates most of the cytotoxic effects induced by gluten peptides and increases transglutaminase levels, whereas nitrosative stress contributes to the impairment of tight junctions. Progression of inflammatory bowel disease relies on the balance between pro-inflammatory redox-sensitive pathways, such as NLRP3 inflammasome and NF-κB, and the adaptive up-regulation of Mn superoxide dismutase and glutathione peroxidase 2. In colorectal cancer, redox signaling exhibits two Janus faces: On the one hand, NOX1 up-regulation and derived hydrogen peroxide enhance Wnt/β-catenin and Notch proliferating pathways; on the other hand, ROS may disrupt tumor progression through different pro-apoptotic mechanisms. In conclusion, redox signaling plays a critical role in the physiology and pathophysiology of gastrointestinal tract.
Collapse
Affiliation(s)
- Salvador Pérez
- Department of Physiology, Faculty of Pharmacy, University of Valencia, Burjasot, 46100 Valencia, Spain
| | - Raquel Taléns-Visconti
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, Faculty of Pharmacy, University of Valencia, Burjasot, 46100 Valencia, Spain
| | - Sergio Rius-Pérez
- Department of Physiology, Faculty of Pharmacy, University of Valencia, Burjasot, 46100 Valencia, Spain
| | - Isabela Finamor
- Department of Physiology, Faculty of Pharmacy, University of Valencia, Burjasot, 46100 Valencia, Spain
| | - Juan Sastre
- Department of Physiology, Faculty of Pharmacy, University of Valencia, Burjasot, 46100 Valencia, Spain.
| |
Collapse
|
28
|
Smiles WJ, Parr EB, Coffey VG, Lacham-Kaplan O, Hawley JA, Camera DM. Protein coingestion with alcohol following strenuous exercise attenuates alcohol-induced intramyocellular apoptosis and inhibition of autophagy. Am J Physiol Endocrinol Metab 2016; 311:E836-E849. [PMID: 27677502 DOI: 10.1152/ajpendo.00303.2016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 09/20/2016] [Indexed: 01/16/2023]
Abstract
Alcohol ingestion decreases postexercise rates of muscle protein synthesis, but the mechanism(s) (e.g., increased protein breakdown) underlying this observation is unknown. Autophagy is an intracellular "recycling" system required for homeostatic substrate and organelle turnover; its dysregulation may provoke apoptosis and lead to muscle atrophy. We investigated the acute effects of alcohol ingestion on autophagic cell signaling responses to a bout of concurrent (combined resistance- and endurance-based) exercise. In a randomized crossover design, eight physically active males completed three experimental trials of concurrent exercise with either postexercise ingestion of alcohol and carbohydrate (12 ± 2 standard drinks; ALC-CHO), energy-matched alcohol and protein (ALC-PRO), or protein (PRO) only. Muscle biopsies were taken at rest and 2 and 8 h postexercise. Select autophagy-related gene (Atg) proteins decreased compared with rest with ALC-CHO (P < 0.05) but not ALC-PRO. There were parallel increases (P < 0.05) in p62 and PINK1 commensurate with a reduction in BNIP3 content, indicating a diminished capacity for mitochondria-specific autophagy (mitophagy) when alcohol and carbohydrate were coingested. DNA fragmentation increased in both alcohol conditions (P < 0.05); however, nuclear AIF accumulation preceded this apoptotic response with ALC-CHO only (P < 0.05). In contrast, increases in the nuclear content of p53, TFEB, and PGC-1α in ALC-PRO were accompanied by markers of mitochondrial biogenesis at the transcriptional (Tfam, SCO2, and NRF-1) and translational (COX-IV, ATPAF1, and VDAC1) level (P < 0.05). We conclude that alcohol ingestion following exercise triggers apoptosis, whereas the anabolic properties of protein coingestion may stimulate mitochondrial biogenesis to protect cellular homeostasis.
Collapse
Affiliation(s)
- William J Smiles
- Mary MacKillop Institute for Health Research, Centre for Exercise and Nutrition, Australian Catholic University, Melbourne, Victoria, Australia
| | - Evelyn B Parr
- Mary MacKillop Institute for Health Research, Centre for Exercise and Nutrition, Australian Catholic University, Melbourne, Victoria, Australia
| | - Vernon G Coffey
- Bond Institute of Health and Sport and Faculty of Health Sciences and Medicine, Bond University, Robina, Queensland, Australia; and
| | - Orly Lacham-Kaplan
- Mary MacKillop Institute for Health Research, Centre for Exercise and Nutrition, Australian Catholic University, Melbourne, Victoria, Australia
| | - John A Hawley
- Mary MacKillop Institute for Health Research, Centre for Exercise and Nutrition, Australian Catholic University, Melbourne, Victoria, Australia
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Donny M Camera
- Mary MacKillop Institute for Health Research, Centre for Exercise and Nutrition, Australian Catholic University, Melbourne, Victoria, Australia;
| |
Collapse
|
29
|
Sun S, Gu Z, Fu H, Zhu J, Ge X, Xuan F. Molecular cloning, characterization, and expression analysis of p53 from the oriental river prawn, Macrobrachium nipponense, in response to hypoxia. FISH & SHELLFISH IMMUNOLOGY 2016; 54:68-76. [PMID: 27044329 DOI: 10.1016/j.fsi.2016.03.167] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 03/04/2016] [Accepted: 03/31/2016] [Indexed: 06/05/2023]
Abstract
The tumor suppressor gene p53 plays a critical role in safeguarding the integrity of the genome in mammalian cells. It acts as a sequence-specific transcription factor. Once p53 is activated by a variety of cellular stresses, it transactivates downstream target genes and regulates the cell cycle and apoptosis. However, little is known about the functions of the p53 pathway in prawns in response to hypoxia. In this study, the cDNA of p53 from the oriental river prawn, Macrobrachium nipponense, (Mnp53) was cloned using a combination of homology cloning and rapid amplification of cDNA ends. The full-length cDNA of Mnp53 has 2130 bp, including an open reading frame of 1125 bp that encodes a polypeptide of 374 amino acids with a predicted molecular weight of 41.9 kDa and a theoretical isoelectric point of 6.9. Quantitative real-time (qRT)-PCR assays revealed that Mnp53 was ubiquitously expressed in all examined tissues, but at high levels in the hepatopancreas. In addition, we studied respiratory bursts and reactive oxygen species (ROS) production in the hepatopancreas of M. nipponense. Our results suggest that oxidative stress occurred in prawns in response to hypoxia and that apoptosis was associated with an increase in caspase-3 mRNA expression. qRT-PCR and western blot results confirmed that hypoxic stress induced the upregulation of Mnp53 at mRNA and protein levels. Furthermore, immunohistochemistry showed remarkable changes in immunopositive staining after the same hypoxic treatment. These results suggest that hypoxia-induced oxidative stress may cause apoptosis and cooperatively stimulate the expression of Mnp53.
Collapse
Affiliation(s)
- Shengming Sun
- Key Laboratory of Genetic Breeding and Aquaculture Biology of Freshwater Fishes, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, PR China
| | - Zhimin Gu
- Agriculture Ministry Key Laboratory of Healthy Freshwater Aquaculture, Zhejiang Institute of Freshwater Fisheries, Huzhou 313001, PR China
| | - Hongtuo Fu
- Key Laboratory of Genetic Breeding and Aquaculture Biology of Freshwater Fishes, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, PR China.
| | - Jian Zhu
- Key Laboratory of Genetic Breeding and Aquaculture Biology of Freshwater Fishes, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, PR China.
| | - Xianping Ge
- Key Laboratory of Genetic Breeding and Aquaculture Biology of Freshwater Fishes, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, PR China
| | - Fujun Xuan
- Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, Yancheng Teachers University, Yancheng 224051, PR China
| |
Collapse
|
30
|
Abstract
The p53 protein is essential for the implementation of the cellular response to challenging environmental conditions. Reacting to stochastic nutrient stress, p53 integrates the activity of key metabolite-sensing pathways to coordinate an appropriate cell response. During starvation, p53 activity augments cell survival pathways, inhibits unnecessary growth, and promotes efficient nutrient generation, utilization, and conservation. Similarly, during oxygen stress, p53 facilitates redirection of cellular metabolism toward energy generation through nonoxidative means, the suppression of reactive oxygen species (ROS) generation, and ROS detoxification-promoting cell survival. However, if adverse conditions are too acute or persistent, p53 can switch roles to implement canonical cell killing. The ability of p53 to regulate metabolism is a powerful feature of p53 biology that can both promote cell survival and act as a check on the inappropriate proliferation of cancer cells.
Collapse
|
31
|
Luo SW, Wang WN, Sun ZM, Xie FX, Kong JR, Liu Y, Cheng CH. Molecular cloning, characterization and expression analysis of (B-cell lymphoma-2 associated X protein) Bax in the orange-spotted grouper (Epinephelus coioides) after the Vibrio alginolyticus challenge. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 60:66-79. [PMID: 26905633 DOI: 10.1016/j.dci.2016.02.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 02/13/2016] [Accepted: 02/15/2016] [Indexed: 06/05/2023]
Abstract
Bax is a pro-apoptotic member of Bcl-2 like superfamily, playing an important role in regulating the apoptosis. In this study, the full-length Bax (EcBax) was obtained, containing a 5'UTR of 64 bp, an ORF of 579 bp and a 3'UTR of 1021 bp. The EcBax gene encoded a polypeptide of 192 amino acids with an estimated molecular mass of 21.55 KDa and a predicted isoelectric point (pI) of 6.75. The deduced amino acid sequence analysis showed that EcBax comprised the conserved residues and the characteristic domains known to the critical function of Bax. qRT-PCR analysis revealed that EcBax mRNA was broadly expressed in all of the examined tissues, while the highest expression level was observed in blood, followed by the expression in liver, gill, spleen, kidney, heart, muscle and intestine. A sharp increase of EcBax expression was observed in the vibrio challenge group by comparing with those in the control. Subcellular localization analysis revealed that EcBax was predominantly localized in the cytoplasm. EcBax exerted a regulatory role in modulating the mitochondrial membrane potential, promoting the cytochrome c release, and then activating the downstream caspase signaling. Moreover, the overexpression of EcBax can decrease the cell viability and antagonize NF-kB, AP-1, Stat3 promoter activity in Hela cells. These results indicate that EcBax containing the conserved domain of pro-apoptotic member of Bcl-2 family may disrupt the mammalian signaling and play a regulative role in the apoptotic process.
Collapse
Affiliation(s)
- Sheng-Wei Luo
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou 510631, PR China
| | - Wei-Na Wang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou 510631, PR China.
| | - Zuo-Ming Sun
- Division of Immunology, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Fu-Xing Xie
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou 510631, PR China
| | - Jing-Rong Kong
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou 510631, PR China
| | - Yuan Liu
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou 510631, PR China
| | - Chang-Hong Cheng
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou 510631, PR China
| |
Collapse
|
32
|
Midline2 is overexpressed and a prognostic indicator in human breast cancer and promotes breast cancer cell proliferation in vitro and in vivo. Front Med 2016; 10:41-51. [PMID: 26791755 DOI: 10.1007/s11684-016-0429-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 10/27/2015] [Indexed: 12/21/2022]
Abstract
Midline2 (MID2) is an ubiquitin-conjugating E2 enzyme linked to tumor progression and a novel interacting partner of breast cancer 1, early-onset (BRCA1). However, the role of MID2 in breast cancer remains unknown. This study investigated the expression, prognostic value, and role of MID2 in breast cancer. The expression of MID2 mRNA and protein was significantly upregulated in breast cancer tissue and established cell lines compared with that in normal breast epithelial cells and paired adjacent non-tumor tissue (P < 0.001). Immunohistochemical analysis demonstrated that MID2 was overexpressed in 272 of 284 (95.8%) paraffinembedded, archived breast cancer tissue. Moreover, MID2 expression increased with advanced clinical stage (P < 0.001). High MID2 expression was significantly associated with advanced clinical stages and T, N, and M staging (all P < 0.05). Univariate and multivariate analyses indicated that high MID2 expression was an independent prognostic factor for poor overall survival in the entire cohort (93.73 vs. 172.1 months; P < 0.001, logrank test) and in subgroups with stages Tis + I + II and III + IV. Furthermore, 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide colony formation, and anchorage-independent growth ability assays were conducted. Results showed that siRNA silencing of MID2 expression significantly reduced MCF-7 and MDA-MB-231 cell proliferation in vitro and blocked the growth of MDA-MB-231 cell xenograft tumors in vivo (P < 0.05). This study indicated that MID2 may be a novel prognostic marker and interventional target in breast cancer.
Collapse
|
33
|
Phua YL, Chu JYS, Marrone AK, Bodnar AJ, Sims-Lucas S, Ho J. Renal stromal miRNAs are required for normal nephrogenesis and glomerular mesangial survival. Physiol Rep 2015; 3:3/10/e12537. [PMID: 26438731 PMCID: PMC4632944 DOI: 10.14814/phy2.12537] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs are small noncoding RNAs that post-transcriptionally regulate mRNA levels. While previous studies have demonstrated that miRNAs are indispensable in the nephron progenitor and ureteric bud lineage, little is understood about stromal miRNAs during kidney development. The renal stroma (marked by expression of FoxD1) gives rise to the renal interstitium, a subset of peritubular capillaries, and multiple supportive vascular cell types including pericytes and the glomerular mesangium. In this study, we generated FoxD1GC;Dicerfl/fl transgenic mice that lack miRNA biogenesis in the FoxD1 lineage. Loss of Dicer activity resulted in multifaceted renal anomalies including perturbed nephrogenesis, expansion of nephron progenitors, decreased renin-expressing cells, fewer smooth muscle afferent arterioles, and progressive mesangial cell loss in mature glomeruli. Although the initial lineage specification of FoxD1+ stroma was not perturbed, both the glomerular mesangium and renal interstitium exhibited ectopic apoptosis, which was associated with increased expression of Bcl2l11 (Bim) and p53 effector genes (Bax, Trp53inp1, Jun, Cdkn1a, Mmp2, and Arid3a). Using a combination of high-throughput miRNA profiling of the FoxD1+-derived cells and mRNA profiling of differentially expressed transcripts in FoxD1GC;Dicerfl/fl kidneys, at least 72 miRNA:mRNA target interactions were identified to be suppressive of the apoptotic program. Together, the results support an indispensable role for stromal miRNAs in the regulation of apoptosis during kidney development.
Collapse
Affiliation(s)
- Yu Leng Phua
- Rangos Research Center, School of Medicine, Children's Hospital of Pittsburgh of UPMC University of Pittsburgh, Pittsburgh, Pennsylvania Department of Pediatrics, Division of Nephrology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Jessica Y S Chu
- Rangos Research Center, School of Medicine, Children's Hospital of Pittsburgh of UPMC University of Pittsburgh, Pittsburgh, Pennsylvania Department of Pediatrics, Division of Nephrology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - April K Marrone
- Rangos Research Center, School of Medicine, Children's Hospital of Pittsburgh of UPMC University of Pittsburgh, Pittsburgh, Pennsylvania Department of Pediatrics, Division of Nephrology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Andrew J Bodnar
- Rangos Research Center, School of Medicine, Children's Hospital of Pittsburgh of UPMC University of Pittsburgh, Pittsburgh, Pennsylvania Department of Pediatrics, Division of Nephrology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Sunder Sims-Lucas
- Rangos Research Center, School of Medicine, Children's Hospital of Pittsburgh of UPMC University of Pittsburgh, Pittsburgh, Pennsylvania Department of Pediatrics, Division of Nephrology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Jacqueline Ho
- Rangos Research Center, School of Medicine, Children's Hospital of Pittsburgh of UPMC University of Pittsburgh, Pittsburgh, Pennsylvania Department of Pediatrics, Division of Nephrology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
34
|
High temperature induces apoptosis and oxidative stress in pufferfish (Takifugu obscurus) blood cells. J Therm Biol 2015; 53:172-9. [DOI: 10.1016/j.jtherbio.2015.08.002] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 07/25/2015] [Accepted: 08/03/2015] [Indexed: 01/20/2023]
|
35
|
Xu K, Harrison RE. Down-regulation of Stathmin Is Required for the Phenotypic Changes and Classical Activation of Macrophages. J Biol Chem 2015; 290:19245-60. [PMID: 26082487 PMCID: PMC4521045 DOI: 10.1074/jbc.m115.639625] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 06/01/2015] [Indexed: 12/19/2022] Open
Abstract
Macrophages are important cells of innate immunity with specialized capacity for recognition and elimination of pathogens and presentation of antigens to lymphocytes for adaptive immunity. Macrophages become activated upon exposure to pro-inflammatory cytokines and pathogenic stimuli. Classical activation of macrophages with interferon-γ (IFNγ) and lipopolysaccharide (LPS) triggers a wide range of signaling events and morphological changes to induce the immune response. Our previous microtubule (MT) proteomic work revealed that the stathmin association with MTs is considerably reduced in activated macrophages, which contain significantly more stabilized MTs. Here, we show that there is a global decrease in stathmin levels, an MT catastrophe protein, in activated macrophages using both immunoblotting and immunofluorescent microscopy. This is an LPS-specific response that induces proteasome-mediated degradation of stathmin. We explored the functions of stathmin down-regulation in activated macrophages by generating a stable cell line overexpressing stathmin-GFP. We show that stathmin-GFP overexpression impacts MT stability, impairs cell spreading, and reduces activation-associated phenotypes. Furthermore, overexpressing stathmin reduces complement receptor 3-mediated phagocytosis and cellular activation, implicating a pivotal inhibitory role for stathmin in classically activated macrophages.
Collapse
Affiliation(s)
- Kewei Xu
- From the Departments of Cell and Systems Biology and Biological Sciences, University of Toronto Scarborough, Toronto, Ontario M1C 1A4, Canada
| | - Rene E Harrison
- From the Departments of Cell and Systems Biology and Biological Sciences, University of Toronto Scarborough, Toronto, Ontario M1C 1A4, Canada
| |
Collapse
|
36
|
Abstract
Oxygen is the basic molecule which supports life and it truly is "god's gift to life." Despite its immense importance, research on "oxygen biology" has never received the light of the day and has been limited to physiological and biochemical studies. It seems that in modern day biology, oxygen research is summarized in one word "hypoxia." Scientists have focused on hypoxia-induced transcriptomics and molecular-cellular alterations exclusively in disease models. Interestingly, the potential of oxygen to control the basic principles of biology like homeostatic maintenance, transcription, replication, and protein folding among many others, at the molecular level, has been completely ignored. Here, we present a perspective on the crucial role played by oxygen in regulation of basic biological phenomena. Our conclusion highlights the importance of establishing novel research areas like oxygen biology, as there is great potential in this field for basic science discoveries and clinical benefits to the society.
Collapse
|
37
|
Thiopurines induce oxidative stress in T-lymphocytes: a proteomic approach. Mediators Inflamm 2015; 2015:434825. [PMID: 25873760 PMCID: PMC4385670 DOI: 10.1155/2015/434825] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 09/06/2014] [Accepted: 09/09/2014] [Indexed: 01/24/2023] Open
Abstract
Thiopurines are extensively used immunosuppressants for the treatment of inflammatory bowel disease (IBD). The polymorphism of thiopurine S-methyltransferase (TPMT) influences thiopurine metabolism and therapy outcome. We used a TPMT knockdown (kd) model of human Jurkat T-lymphocytes cells to study the effects of treatment with 6-mercaptopurine (6-MP) and 6-thioguanine (6-TG) on proteome and phosphoproteome. We identified thirteen proteins with altered expression and nine proteins with altered phosphorylation signals. Three proteins (THIO, TXD17, and GSTM3) with putative functions in cellular oxidative stress responses were altered by 6-TG treatment and another protein PRDX3 was differentially phosphorylated in TPMT kd cells. Furthermore, reactive oxygen species (ROS) assay results were consistent with a significant induction of oxidative stress by both TPMT knockdown and thiopurine treatments. Immunoblot analyses showed treatment altered expression of key antioxidant enzymes (i.e., SOD2 and catalase) in both wt and kd groups, while SOD1 was downregulated by 6-TG treatment and TPMT knockdown. Collectively, increased oxidative stress might be a mechanism involved in thiopurine induced cytotoxicity and adverse effects (i.e., hepatotoxicity) and an antioxidant cotherapy might help to combat this. Results highlight the significance of oxidative stress in thiopurines' actions and could have important implications for the treatment of IBD patients.
Collapse
|
38
|
Guo H, Kong S, Chen W, Dai Z, Lin T, Su J, Li S, Xie Q, Su Z, Xu Y, Lai X. Apigenin Mediated Protection of OGD-Evoked Neuron-Like Injury in Differentiated PC12 Cells. Neurochem Res 2014; 39:2197-210. [DOI: 10.1007/s11064-014-1421-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 08/05/2014] [Accepted: 08/19/2014] [Indexed: 12/17/2022]
|
39
|
Klammer H, Mladenov E, Li F, Iliakis G. Bystander effects as manifestation of intercellular communication of DNA damage and of the cellular oxidative status. Cancer Lett 2013; 356:58-71. [PMID: 24370566 DOI: 10.1016/j.canlet.2013.12.017] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 12/13/2013] [Accepted: 12/14/2013] [Indexed: 12/30/2022]
Abstract
It is becoming increasingly clear that cells exposed to ionizing radiation (IR) and other genotoxic agents (targeted cells) can communicate their DNA damage response (DDR) status to cells that have not been directly irradiated (bystander cells). The term radiation-induced bystander effects (RIBE) describes facets of this phenomenon, but its molecular underpinnings are incompletely characterized. Consequences of DDR in bystander cells have been extensively studied and include transformation and mutation induction; micronuclei, chromosome aberration and sister chromatid exchange formation; as well as modulations in gene expression, proliferation and differentiation patterns. A fundamental question arising from such observations is why targeted cells induce DNA damage in non-targeted, bystander cells threatening thus their genomic stability and risking the induction of cancer. Here, we review and synthesize available literature to gather support for a model according to which targeted cells modulate as part of DDR their redox status and use it as a source to generate signals for neighboring cells. Such signals can be either small molecules transported to adjacent non-targeted cells via gap-junction intercellular communication (GJIC), or secreted factors that can reach remote, non-targeted cells by diffusion or through the circulation. We review evidence that such signals can induce in the recipient cell modulations of redox status similar to those seen in the originating targeted cell - occasionally though self-amplifying feedback loops. The resulting increase of oxidative stress in bystander cells induces, often in conjunction with DNA replication, the observed DDR-like responses that are at times strong enough to cause apoptosis. We reason that RIBE reflect the function of intercellular communication mechanisms designed to spread within tissues, or the entire organism, information about DNA damage inflicted to individual, constituent cells. Such responses are thought to protect the organism by enhancing repair in a community of cells and by eliminating severely damaged cells.
Collapse
Affiliation(s)
- Holger Klammer
- Institute of Medical Radiation Biology, University of Duisburg-Essen Medical School, Essen, Germany
| | - Emil Mladenov
- Institute of Medical Radiation Biology, University of Duisburg-Essen Medical School, Essen, Germany
| | - Fanghua Li
- Institute of Medical Radiation Biology, University of Duisburg-Essen Medical School, Essen, Germany
| | - George Iliakis
- Institute of Medical Radiation Biology, University of Duisburg-Essen Medical School, Essen, Germany.
| |
Collapse
|
40
|
Vakifahmetoglu-Norberg H, Norberg E, Perdomo AB, Olsson M, Ciccosanti F, Orrenius S, Fimia GM, Piacentini M, Zhivotovsky B. Caspase-2 promotes cytoskeleton protein degradation during apoptotic cell death. Cell Death Dis 2013; 4:e940. [PMID: 24309927 PMCID: PMC3877538 DOI: 10.1038/cddis.2013.463] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 10/23/2013] [Accepted: 10/24/2013] [Indexed: 01/28/2023]
Abstract
The caspase family of proteases cleaves large number of proteins resulting in major morphological and biochemical changes during apoptosis. Yet, only a few of these proteins have been reported to selectively cleaved by caspase-2. Numerous observations link caspase-2 to the disruption of the cytoskeleton, although it remains elusive whether any of the cytoskeleton proteins serve as bona fide substrates for caspase-2. Here, we undertook an unbiased proteomic approach to address this question. By differential proteome analysis using two-dimensional gel electrophoresis, we identified four cytoskeleton proteins that were degraded upon treatment with active recombinant caspase-2 in vitro. These proteins were degraded in a caspase-2-dependent manner during apoptosis induced by DNA damage, cytoskeleton disruption or endoplasmic reticulum stress. Hence, degradation of these cytoskeleton proteins was blunted by siRNA targeting of caspase-2 and when caspase-2 activity was pharmacologically inhibited. However, none of these proteins was cleaved directly by caspase-2. Instead, we provide evidence that in cells exposed to apoptotic stimuli, caspase-2 probed these proteins for proteasomal degradation. Taken together, our results depict a new role for caspase-2 in the regulation of the level of cytoskeleton proteins during apoptosis.
Collapse
Affiliation(s)
- H Vakifahmetoglu-Norberg
- Division of Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm 171 77, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Ugarte N, Ladouce R, Radjei S, Gareil M, Friguet B, Petropoulos I. Proteome alteration in oxidative stress-sensitive methionine sulfoxide reductase-silenced HEK293 cells. Free Radic Biol Med 2013; 65:1023-1036. [PMID: 23988788 DOI: 10.1016/j.freeradbiomed.2013.08.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 07/18/2013] [Accepted: 08/08/2013] [Indexed: 12/29/2022]
Abstract
Methionine sulfoxide reductases (Msr's) are key enzymes proficient in catalyzing the reduction of oxidized methionines. This reductive trait is essential to maintaining cellular redox homeostasis from bacteria to mammals and is also regarded as a potential mechanism to regulate protein activities and signaling pathways, considering the inactivating effects that can be induced by methionine oxidation. In this study, we have generated stable human embryonic kidney HEK293 clones with an altered Msr system by silencing the expression of the main Msr elements-MsrA, MsrB1, or MsrB2. The isolated clones--the single mutants MsrA, MsrB1, and MsrB2 and double mutant MsrA/B1-show a reduced Msr activity and an exacerbated sensitivity toward oxidative stress. A two-dimensional difference in-gel electrophoresis analysis was performed on the Msr-silenced cells grown under basal conditions or submitted to oxidative stress. This proteomic analysis revealed that the disruption of the Msr system mainly affects proteins with redox, cytoskeletal or protein synthesis, and maintenance roles. Interestingly, most of the proteins found altered in the Msr mutants were also identified as potential Msr substrates and have been associated with redox or aging processes in previous studies. This study, through an extensive analysis of Msr-inhibited mutants, offers valuable input on the cellular network of a crucial maintenance system such as methionine sulfoxide reductases.
Collapse
Affiliation(s)
- Nicolas Ugarte
- Laboratoire de Biologie Cellulaire du Vieillissement, UR4, IFR83, Université Pierre et Marie Curie-Paris 6, 75005 Paris, France.
| | - Romain Ladouce
- Laboratoire de Biologie Cellulaire du Vieillissement, UR4, IFR83, Université Pierre et Marie Curie-Paris 6, 75005 Paris, France
| | - Sabrina Radjei
- Laboratoire de Biologie Cellulaire du Vieillissement, UR4, IFR83, Université Pierre et Marie Curie-Paris 6, 75005 Paris, France
| | - Monique Gareil
- Laboratoire de Biologie Cellulaire du Vieillissement, UR4, IFR83, Université Pierre et Marie Curie-Paris 6, 75005 Paris, France
| | - Bertrand Friguet
- Laboratoire de Biologie Cellulaire du Vieillissement, UR4, IFR83, Université Pierre et Marie Curie-Paris 6, 75005 Paris, France
| | - Isabelle Petropoulos
- Laboratoire de Biologie Cellulaire du Vieillissement, UR4, IFR83, Université Pierre et Marie Curie-Paris 6, 75005 Paris, France.
| |
Collapse
|
42
|
Leung T, Rajendran R, Singh S, Garva R, Krstic-Demonacos M, Demonacos C. Cytochrome P450 2E1 (CYP2E1) regulates the response to oxidative stress and migration of breast cancer cells. Breast Cancer Res 2013; 15:R107. [PMID: 24207099 PMCID: PMC3979157 DOI: 10.1186/bcr3574] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 10/29/2013] [Indexed: 12/14/2022] Open
Abstract
Introduction The cytochrome P450 (CYP) enzymes are a class of heme-containing enzymes involved in phase I metabolism of a large number of xenobiotics. The CYP family member CYP2E1 metabolises many xenobiotics and pro-carcinogens, it is not just expressed in the liver but also in many other tissues such as the kidney, the lung, the brain, the gastrointestinal tract and the breast tissue. It is induced in several pathological conditions including cancer, obesity, and type II diabetes implying that this enzyme is implicated in other biological processes beyond its role in phase I metabolism. Despite the detailed description of the role of CYP2E1 in the liver, its functions in other tissues have not been extensively studied. In this study, we investigated the functional significance of CYP2E1 in breast carcinogenesis. Methods Cellular levels of reactive oxygen species (ROS) were measured by H2DCFDA (2 2.9.2 2′,7′-dichlorodihydrofluorescein diacetate) staining and autophagy was assessed by tracing the cellular levels of autophagy markers using western blot assays. The endoplasmic reticulum stress and the unfolded protein response (UPR) were detected by luciferase assays reflecting the splicing of mRNA encoding the X-box binding protein 1 (XBP1) transcription factor and cell migration was evaluated using the scratch wound assay. Gene expression was recorded with standard transcription assays including luciferase reporter and chromatin immunoprecipitation. Results Ectopic expression of CYP2E1 induced ROS generation, affected autophagy, stimulated endoplasmic reticulum stress and inhibited migration in breast cancer cells with different metastatic potential and p53 status. Furthermore, evidence is presented indicating that CYP2E1 gene expression is under the transcriptional control of the p53 tumor suppressor. Conclusions These results support the notion that CYP2E1 exerts an important role in mammary carcinogenesis, provide a potential link between ethanol metabolism and breast cancer and suggest that progression, and metastasis, of advanced stages of breast cancer can be modulated by induction of CYP2E1 activity.
Collapse
|
43
|
Qi ZH, Liu YF, Luo SW, Chen CX, Liu Y, Wang WN. Molecular cloning, characterization and expression analysis of tumor suppressor protein p53 from orange-spotted grouper, Epinephelus coioides in response to temperature stress. FISH & SHELLFISH IMMUNOLOGY 2013; 35:1466-1476. [PMID: 24012751 DOI: 10.1016/j.fsi.2013.08.011] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2013] [Revised: 07/09/2013] [Accepted: 08/14/2013] [Indexed: 06/02/2023]
Abstract
The tumor suppressor protein p53 is a critical component of cell cycle checkpoint responses. It upregulates the expression of cyclin-dependent kinase inhibitors in response to DNA damage and other cellular perturbations, and promotes apoptosis when DNA repair pathways are overwhelmed. In the present study, the cDNA of p53 from the orange-spotted grouper (Epinephelus coioides) (Ec-p53) was cloned by the combination of homology cloning and rapid amplification of cDNA ends (RACE) approaches. The full-length cDNA of Ec-p53 was of 1921 bp, including an open reading frame (ORF) of 1143 bp encoding a polypeptide of 380 amino acids with predicted molecular weight of 42.3 kDa and theoretical isoelectric point of 7.0. Quantitative real-time PCR (qRT-PCR) assays revealed that Ec-p53 was ubiquitously expressed in all the examined tissues but with high levels in intestine and liver of the orange-spotted grouper. In addition, we measured the DNA damage and apoptosis in the blood cells and the percentage of dead and damaged blood cells. Our results suggest that oxidative stress and DNA damage occurred in grouper in conditions where the temperature was 15 ± 0.5 °C. Furthermore, qRT-PCR and western blot confirmed that low temperature stress induced upregulation of Ec-p53 in the mRNA and protein levels. These results suggest that low temperature-induced oxidative stress may cause DNA damage or apoptosis, and cooperatively stimulate the expression of Ec-p53, which plays a critical role in immune defense and antioxidant responses.
Collapse
Affiliation(s)
- Zeng-Hua Qi
- Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou 510631, PR China
| | | | | | | | | | | |
Collapse
|
44
|
|
45
|
TXNIP maintains the hematopoietic cell pool by switching the function of p53 under oxidative stress. Cell Metab 2013; 18:75-85. [PMID: 23823478 DOI: 10.1016/j.cmet.2013.06.002] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Revised: 12/12/2012] [Accepted: 05/31/2013] [Indexed: 01/24/2023]
Abstract
Reactive oxygen species (ROS) are critical determinants of the fate of hematopoietic stem cells (HSCs) and hematopoiesis. Thioredoxin-interacting protein (TXNIP), which is induced by oxidative stress, is a known regulator of intracellular ROS. Txnip(-/-) old mice exhibited elevated ROS levels in hematopoietic cells and showed a reduction in hematopoietic cell population. Loss of TXNIP led to a dramatic reduction of mouse survival under oxidative stress. TXNIP directly regulated p53 protein by interfering with p53- mouse double minute 2 (MDM2) interactions and increasing p53 transcriptional activity. Txnip(-/-) mice showed downregulation of the antioxidant genes induced by p53. Introduction of TXNIP or p53 into Txnip(-/-) bone marrow cells rescued the HSC frequency and greatly increased survival in mice following oxidative stress. Overall, these data indicate that TXNIP is a regulator of p53 and plays a pivotal role in the maintenance of the hematopoietic cells by regulating intracellular ROS during oxidative stress.
Collapse
|
46
|
Liu F, Sun YL, Xu Y, Liu F, Wang LS, Zhao XH. Expression and phosphorylation of stathmin correlate with cell migration in esophageal squamous cell carcinoma. Oncol Rep 2012; 29:419-24. [PMID: 23229199 PMCID: PMC3583596 DOI: 10.3892/or.2012.2157] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Accepted: 05/21/2012] [Indexed: 01/30/2023] Open
Abstract
Microtubules play extensive roles in cellular processes, including cell motility. Stathmin is an important protein which destabilizes microtubules. The essential function of stathmin is closely associated with its phosphorylation status. Stathmin is overexpressed in many human cancers and has a significant relationship with clinical characteristics such as grade, tumor size and prognosis. We demonstrated that stathmin was overexpressed in ESCC tissues using both 2-DE and immunohistochemistry analysis. In addition, overexpression of stathmin was significantly correlated with histological grade in ESCC. However, no correlation was found with age, gender and lymph node metastasis. Knockdown of stathmin with siRNA impaired cell migration in KYSE30 and KYSE410 cells. When EC0156 cells were treated with paclitaxel, stathmin was stably phosphorylated and migration was impaired. These observations suggest that stathmin may have a more important function in ESCC development and migration. The present study provides further understanding of the importance of stathmin in ESCC therapy or diagnosis.
Collapse
Affiliation(s)
- Fei Liu
- State Key Laboratory of Molecular Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, PR China
| | | | | | | | | | | |
Collapse
|
47
|
Kaini RR, Sillerud LO, Zhaorigetu S, Hu CAA. Autophagy regulates lipolysis and cell survival through lipid droplet degradation in androgen-sensitive prostate cancer cells. Prostate 2012; 72:1412-22. [PMID: 22294520 PMCID: PMC3418419 DOI: 10.1002/pros.22489] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2011] [Accepted: 01/02/2012] [Indexed: 12/30/2022]
Abstract
BACKGROUND Androgen deprivation therapy, one of the standard treatments for prostate cancer (PCa) induces apoptosis, as well as autophagy in androgen-responsive PCa cells. As autophagy can promote either cell survival or death, it is important to understand its role in PCa treatment. The objective of this study was to elucidate the function of autophagy in lipid droplet (LD) homeostasis and survival in androgen-sensitive PCa cells. METHODS To produce androgen deprivation, charcoal filtered serum or the androgen inhibitor casodex were used in LNCaP and LAPC4 cells. Autophagy was monitored by immunofluorescence/confocal microscopy and immunoblot analysis. Levels of intracellular LDs and triacyglycerols after the inhibition of autophagy by 3-methyladenine, bafilomycin A(1) , or si-ATG5 were quantified by three independent methods, Oil Red O staining, triacyglycerols lipase assay, and nuclear magnetic resonance. RESULTS Androgen deprivation induced autophagy and the depletion of LDs in both of the androgen-sensitive PCa cell lines examined, whereas the blockage of autophagy by pharmacological or genetic means inhibited LD degradation and therefore lipolysis and cell growth. In addition, under androgen deprivation, increased colocalization of LDs and autophagic vesicles was observed in LNCaP cells, which can be further enhanced by blocking the autophagic flux. CONCLUSION Autophagy mediates LD degradation and lipolysis in androgen-sensitive PCa cells during androgen deprivation which aids the survival of PCa cells during hormone therapy.
Collapse
Affiliation(s)
- Ramesh R. Kaini
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Laurel O. Sillerud
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
- UNM Cancer Center, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Siqin Zhaorigetu
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Chien-An A. Hu
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
- UNM Cancer Center, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
- To whom correspondence should be addressed: Chien-An A. Hu, PhD, Department of Biochemistry and Molecular Biology, University of New Mexico School of Medicine, MSC08 4670, 1 University of New Mexico, Albuquerque, NM, 87131-001, USA, Tel: 505-272-8816, Fax: 505-272-6587,
| |
Collapse
|
48
|
The Bcl-2 proteins Noxa and Bcl-xL co-ordinately regulate oxidative stress-induced apoptosis. Biochem J 2012; 444:69-78. [PMID: 22380599 DOI: 10.1042/bj20112023] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Because the detailed molecular mechanisms by which oxidative stress induces apoptosis are not completely known, we investigated how the complex Bcl-2 protein network might regulate oxidative stress-induced apoptosis. Using MEFs (mouse embryonic fibroblasts), we found that the endogenous anti-apoptotic Bcl-2 protein Bcl-xL prevented apoptosis initiated by H(2)O(2). The BH3 (Bcl-2 homology 3)-only Bcl-2 protein Noxa was required for H(2)O(2)-induced cell death and was the single BH3-only Bcl-2 protein whose pro-apoptotic activity was completely antagonized by endogenous Bcl-xL. Upon H(2)O(2) treatment, Noxa mRNA displayed the greatest increase among BH3-only Bcl-2 proteins. Expression levels of the anti-apoptotic Bcl-2 protein Mcl-1 (myeloid cell leukaemia sequence 1), the primary binding target of Noxa, were reduced in H(2)O(2)-treated cells in a Noxa-dependent manner, and Mcl-1 overexpression was able to prevent H(2)O(2)-induced cell death in Bcl-xL-deficient MEF cells. Importantly, reduction of the expression of both Mcl-1 and Bcl-xL caused spontaneous cell death. These studies reveal a signalling pathway in which H(2)O(2) activates Noxa, leading to a decrease in Mcl-1 and subsequent cell death in the absence of Bcl-xL expression. The results of the present study indicate that both anti- and pro-apoptotic Bcl-2 proteins co-operate to regulate oxidative stress-induced apoptosis.
Collapse
|
49
|
Liu L, Zhou J, Wang Y, Mason RJ, Funk CJ, Du Y. Proteome alterations in primary human alveolar macrophages in response to influenza A virus infection. J Proteome Res 2012; 11:4091-101. [PMID: 22709384 DOI: 10.1021/pr3001332] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
To obtain a global picture of how alveolar macrophages respond to influenza A virus (IAV) infection, we used a quantitative proteomics method to systematically examine protein expression in the IAV-infected primary human alveolar macrophages. Of the 1214 proteins identified, 43 were significantly up-regulated and 63 significantly down-regulated at >95% confidence. The expression of an array of interferon (IFN)-induced proteins was significantly increased in the IAV-infected macrophages. The protein with the greatest expression increase was ISG15, an IFN-induced protein that has been shown to play an important role in antiviral defense. Concomitantly, quantitative real-time PCR analysis revealed that the gene expression of type I IFNs increased substantially following virus infection. Our results are consistent with the notion that type I IFNs play a vital role in the response of human alveolar macrophages to IAV infection. In addition to the IFN-mediated responses, inflammatory response, apoptosis, and redox state rebalancing appeared also to be major pathways that were affected by IAV infection. Furthermore, our data suggest that alveolar macrophages may play a crucial role in regenerating alveolar epithelium during IAV infection.
Collapse
Affiliation(s)
- Lin Liu
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | | | | | | | | | | |
Collapse
|
50
|
Shu GS, Lv F, Yang ZL, Miao XY. Immunohistochemical study of PUMA, c-Myb and p53 expression in the benign and malignant lesions of gallbladder and their clinicopathological significances. Int J Clin Oncol 2012; 18:641-50. [PMID: 22714709 DOI: 10.1007/s10147-012-0431-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Accepted: 05/21/2012] [Indexed: 02/01/2023]
Abstract
BACKGROUND Gallbladder cancers have a very poor prognosis without specific molecular marker being identified. In this study we studied PUMA, c-Myb and p53 expression in benign and malignant lesions of gallbladder and analyzed their clinicopathological significance. METHOD Immunohistochemical staining of PUMA, c-Myb and p53 protein was performed in 108 gallbladder adenocarcinomas, 46 peritumoral tissues, 15 polyps, and 35 chronic cholecystitis. RESULTS We demonstrated that the percent of positive PUMA, c-Myb and p53 expression was significantly higher in gallbladder adenocarcinomas than in peritumoral tissues, polyps and chronic cholecystitis (p < 0.05 or 0.01). Benign gallbladder epithelium with positive PUMA, c-Myb or p53 expression showed moderately or severely atypical hyperplasia. The percent of positive PUMA, c-Myb and p53 expression was significantly higher in the cases having poorly differentiated adenocarcinoma with large tumor mass, lymph node metastasis and high invasiveness than cases with well-differentiated adenocarcinoma with small tumor mass and without metastasis and invasiveness (p < 0.05 or p < 0.01). The percent of positive PUMA, c-Myb and p53 expression was significantly higher in cases with radical resection than without resection (p < 0.05). Univariate Kaplan-Meier analysis showed that PUMA, c-Myb and p53 expression was associated with decreased overall survival (p < 0.05 or p < 0.01). Multivariate Cox regression analysis showed that PUMA, c-Myb or p53 expression was a poor-prognostic predictor in gallbladder adenocarcinoma. CONCLUSION PUMA, c-Myb and p53 expression closely relates to the carcinogenesis, fast-progression, easy-metastasis, high-invasion, and poor-prognosis in gallbladder adenocarcinoma.
Collapse
Affiliation(s)
- Guo-shun Shu
- Department of Geriatric Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | | | | | | |
Collapse
|