1
|
Kirstein E, Diebolt CM, Wagner M, Bozzato A, Federspiel JM, Schaudien D, Tschernig T, Englisch CN. Distribution of TRPC1, TRPC3, and TRPC6 in the human thyroid. Pathol Res Pract 2024; 266:155796. [PMID: 39740284 DOI: 10.1016/j.prp.2024.155796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/23/2024] [Accepted: 12/23/2024] [Indexed: 01/02/2025]
Abstract
BACKGROUND Little is known about the protein expression of the transient receptor potential canonical (TRPC) channels 1, 3, and 6 in the thyroid. Research in human tissue is insufficient. Our aim was to investigate the distribution of TRPC1, 3, and 6 in the healthy human thyroid. METHODS Healthy samples were collected from seven nitrite pickling salt-ethanol-polyethylene glycol-fixed cadavers and from one patient who had undergone neck surgery (5 males, 3 females; median = 81.0, interquartile range = 6.5 years). The protein expression profiles of TRPC1, 3, and 6 were assessed using immunohistochemistry with knockout-validated antibodies. A monoclonal calcitonin antibody was used to detect calcitonin-producing C-cells. RESULTS All samples were labeled as healthy, displaying age-appropriate signs of degeneration. TRPC1, 3, and 6 immunolabeling in thyrocytes showed irregular staining patterns leaving selected cells with intense staining, some without. The comparison of calcitonin- and TRPC1-, 3-, and 6-immunolabeled slides strongly suggested TRPC1, 3, and 6 expression in C-cells. Connective tissue showed no immunoreactivity. CONCLUSIONS This is, to the authors' knowledge, the first detailed description of the distribution of these channels in the human thyroid. We conclude that TRPC1, 3, and 6 are expressed in thyrocytes and C-cells of the human thyroid. Further studies are necessary to confirm these small-case-number results and to explore the relevance of these versatile channels in thyroidal health and disease.
Collapse
Affiliation(s)
- Emilie Kirstein
- Institute for Anatomy and Cell Biology, Saarland University, Homburg, Saar 66421, Germany
| | - Coline M Diebolt
- Institute for Anatomy and Cell Biology, Saarland University, Homburg, Saar 66421, Germany
| | - Mathias Wagner
- Department of Pathology, Saarland University, Homburg, Saar 66421, Germany
| | - Alessandro Bozzato
- Department of Otorhinolaryngology, Head and Neck Surgery, Saarland University Medical Center, Homburg, Saar 66421, Germany
| | - Jan M Federspiel
- Institute for Legal Medicine, Saarland University, Homburg, Saar 66421, Germany
| | - Dirk Schaudien
- Fraunhofer Institute for Toxicology and Experimental Medicine, Hanover 30625, Germany
| | - Thomas Tschernig
- Institute for Anatomy and Cell Biology, Saarland University, Homburg, Saar 66421, Germany
| | - Colya N Englisch
- Institute for Anatomy and Cell Biology, Saarland University, Homburg, Saar 66421, Germany.
| |
Collapse
|
2
|
Chinigò G, Ruffinatti FA, Munaron L. The potential of TRP channels as new prognostic and therapeutic targets against prostate cancer progression. Biochim Biophys Acta Rev Cancer 2024; 1879:189226. [PMID: 39586480 DOI: 10.1016/j.bbcan.2024.189226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 10/28/2024] [Accepted: 11/21/2024] [Indexed: 11/27/2024]
Abstract
Prostate cancer (PCa) is the second deadliest cancer among men worldwide. Particularly critical is its development towards metastatic androgen-independent forms for which the current therapies are ineffective. Indeed, the 5-year relative survival for PCa drops dramatically to 34 % in the presence of metastases. The superfamily of Transient Receptor Potential (TRP) channels could answer the urgent request to identify new prognostic and therapeutic tools against metastatic PCa. Indeed, this class of ion channels revealed an appealing de-regulation during PCa development and its progression towards aggressive forms. Altered expression and/or functionality of several TRPs have been associated with the PCa metastatic cascade by significantly impacting tumor growth, invasiveness, and angiogenesis. In this review, we will dissect the contribution of TRP channels in such hallmarks of PCa and then discuss their applicability as new prognostic and therapeutic agents in the fight against metastatic PCa. In particular, the great potential of TRPM8, TRPV6, and TRPA1 in opening the way to new treatment perspectives will be highlighted.
Collapse
Affiliation(s)
- Giorgia Chinigò
- University of Turin, Department of Life Sciences and Systems Biology, via Accademia Albertina 13, 10123 Turin, Italy.
| | | | - Luca Munaron
- University of Turin, Department of Life Sciences and Systems Biology, via Accademia Albertina 13, 10123 Turin, Italy.
| |
Collapse
|
3
|
Carl C, Wagner M, Linxweiler M, Schick B, Tschernig T. Immunohistochemical expression of the cation channel TRPC6 in the submandibular and lacrimal gland and in salivary gland tumors. Pathol Res Pract 2024; 261:155483. [PMID: 39098247 DOI: 10.1016/j.prp.2024.155483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 07/17/2024] [Accepted: 07/22/2024] [Indexed: 08/06/2024]
Abstract
BACKGROUND Canonical transient receptor potential channels play a crucial role in cancer cell proliferation. While TRPC6 subtype detection in submandibular glands and the relevance of some TRPC channels in this gland have been shown in animal models, its histological detection in human lacrimal and submandibular glands, as well as related tumors, lacks systematic study. Studying TRPC6 in humans could lead to new therapeutic options. This research aimed to immunohistochemically detect TRPC6 in human samples of physiological lacrimal and submandibular glands and of adenoid cystic carcinoma and mucoepidermoid carcinoma. METHODS Seven fixed body donors and samples of six cancer patients were examined. The ten tissue samples collected from the submandibular and lacrimal glands were then processed into histological slides and stained with hematoxylin-eosin. Tumor samples were provided as sections. TRPC6 presence was determined by immunohistochemistry, which was performed by indirect detection with a primary TRPC6 antibody, a secondary HRP-conjugated antibody and the chromogen diaminobenzidine. RESULTS Results confirm TRPC6 expression in all ten physiological gland samples: all samples showed a immunohistochemical signal with varying intensity. No significant gender-specific differences could be observed. TRPC6 was detected in four of six submandibular adenoid cystic carcinoma and the mucoepidermoid carcinoma samples, especially in tumor cells' cytoplasma and nuclei. Excretory ducts consistently showed TRPC6. Mucous tubules, their nuclei and the nuclei of adipocytes generally showed no signal while serous acini and their nuclei showed a weak TRPC6 signal. CONCLUSION The discovery of TRPC6 in glandular tissue indicates a role in salivary gland function and calcium homeostasis is a basis for further research into its significance for tumor development in adenoid cystic carcinoma and mucoepidermoid carcinoma of salivary glands. TRPC6 could be used as a target for treatment of these tumors. However, the correlation between TRPC6 and submandibular and lacrimal gland diseases requires further exploration.
Collapse
Affiliation(s)
- Céline Carl
- Institute for Anatomy and Cell Biology, Saarland University, Homburg 66421, Germany
| | - Mathias Wagner
- Institute of General and Surgical Pathology, Saarland University Medical Center, Homburg 66421, Germany
| | - Maximilian Linxweiler
- Department of Otorhinolaryngology, Head and Neck Surgery; Saarland University Medical Center, Homburg 66421, Germany
| | - Bernhard Schick
- Department of Otorhinolaryngology, Head and Neck Surgery; Saarland University Medical Center, Homburg 66421, Germany
| | - Thomas Tschernig
- Institute for Anatomy and Cell Biology, Saarland University, Homburg 66421, Germany.
| |
Collapse
|
4
|
Singh A, Mishra A, Meena A, Mishra N, Luqman S. Exploration of selected monoterpenes as potential TRPC channel family modulator in lung cancer, an in-silico upshot. J Biomol Struct Dyn 2024; 42:7917-7933. [PMID: 37526232 DOI: 10.1080/07391102.2023.2241900] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 07/24/2023] [Indexed: 08/02/2023]
Abstract
Lung cancer is still the most frequent cause of cancer-related death, accounting for nearly two million cases yearly. As cancer is a multifactorial disease, developing novel molecular therapeutics that can simultaneously target multiple associated cellular processes has become necessary. Ion channels are diverse regulators of cancer-related processes such as abnormal proliferation, invasion, migration, tumor progression, inhibition of apoptosis, and chemoresistance. Among the various families of ion channels, the transient receptor potential canonical channel family steps out in the context of lung cancer, as several members have been postulated as prognostic markers for lung cancer. Phytochemicals have been found to have health benefits in the treatment of a variety of diseases and disorders. Among phytochemicals, monoterpenes are effective in treating both the early and late stages of cancer. The molecular docking interaction analysis was conducted to evaluate the binding potential of selected monoterpenes with TRPC3, TRPC4, TRPC5, and TRPC6 involved in different phases of carcinogenesis. Amongst the selected monoterpenes, thymoquinone exhibited the highest binding energy of -6.7 kcal/mol against the TRPC4 channel, and all amino acid binding residues were similar to those of the known inhibitor for TRPC4. In addition, molecular-dynamic simulation results parameters, such as RMSD, RMSF, and Rg, indicated that thymoquinone did not impact the protein compactness and exhibited stability during the interaction. The average interaction energy between thymoquinone and TRPC4 protein was -26.85 kJ/mol. In-silico Drug-likeness and ADMET profiling indicated that thymoquinone is a druggable candidate with minimal toxicity. We propose further investigation and evaluation of thymoquinone for lead optimization and drug development.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Akanksha Singh
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh, India
| | - Anamika Mishra
- Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Prayagraj, Uttar Pradesh, India
| | - Abha Meena
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Nidhi Mishra
- Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Prayagraj, Uttar Pradesh, India
| | - Suaib Luqman
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| |
Collapse
|
5
|
Langthaler S, Zumpf C, Rienmüller T, Shrestha N, Fuchs J, Zhou R, Pelzmann B, Zorn-Pauly K, Fröhlich E, Weinberg SH, Baumgartner C. The bioelectric mechanisms of local calcium dynamics in cancer cell proliferation: an extension of the A549 in silico cell model. Front Mol Biosci 2024; 11:1394398. [PMID: 38770217 PMCID: PMC11102976 DOI: 10.3389/fmolb.2024.1394398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 04/09/2024] [Indexed: 05/22/2024] Open
Abstract
Introduction Advances in molecular targeting of ion channels may open up new avenues for therapeutic approaches in cancer based on the cells' bioelectric properties. In addition to in-vitro or in-vivo models, in silico models can provide deeper insight into the complex role of electrophysiology in cancer and reveal the impact of altered ion channel expression and the membrane potential on malignant processes. The A549 in silico model is the first computational cancer whole-cell ion current model that simulates the bioelectric mechanisms of the human non-small cell lung cancer cell line A549 during the different phases of the cell cycle. This work extends the existing model with a detailed mathematical description of the store-operated Ca2+ entry (SOCE) and the complex local intracellular calcium dynamics, which significantly affect the entire electrophysiological properties of the cell and regulate cell cycle progression. Methods The initial model was extended by a multicompartmental approach, addressing the heterogenous calcium profile and dynamics in the ER-PM junction provoked by local calcium entry of store-operated calcium channels (SOCs) and uptake by SERCA pumps. Changes of cytosolic calcium levels due to diffusion from the ER-PM junction, release from the ER by RyR channels and IP3 receptors, as well as corresponding PM channels were simulated and the dynamics evaluated based on calcium imaging data. The model parameters were fitted to available data from two published experimental studies, showing the function of CRAC channels and indirectly of IP3R, RyR and PMCA via changes of the cytosolic calcium levels. Results The proposed calcium description accurately reproduces the dynamics of calcium imaging data and simulates the SOCE mechanisms. In addition, simulations of the combined A549-SOCE model in distinct phases of the cell cycle demonstrate how Ca2+ - dynamics influence responding channels such as KCa, and consequently modulate the membrane potential accordingly. Discussion Local calcium distribution and time evolution in microdomains of the cell significantly impact the overall electrophysiological properties and exert control over cell cycle progression. By providing a more profound description, the extended A549-SOCE model represents an important step on the route towards a valid model for oncological research and in silico supported development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Sonja Langthaler
- Institute of Health Care Engineering with European Testing Center for Medical Devices, Graz University of Technology, Graz, Austria
| | - Christian Zumpf
- Institute of Health Care Engineering with European Testing Center for Medical Devices, Graz University of Technology, Graz, Austria
| | - Theresa Rienmüller
- Institute of Health Care Engineering with European Testing Center for Medical Devices, Graz University of Technology, Graz, Austria
| | - Niroj Shrestha
- Institute of Health Care Engineering with European Testing Center for Medical Devices, Graz University of Technology, Graz, Austria
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Graz, Austria
| | - Julia Fuchs
- Institute of Health Care Engineering with European Testing Center for Medical Devices, Graz University of Technology, Graz, Austria
- Research Unit on Cell Biology, Histology and Embryology, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Graz, Austria
| | - Rui Zhou
- Institute of Health Care Engineering with European Testing Center for Medical Devices, Graz University of Technology, Graz, Austria
| | - Brigitte Pelzmann
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Graz, Austria
| | - Klaus Zorn-Pauly
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Graz, Austria
| | - Eleonore Fröhlich
- Center for Medical Research, Medical University of Graz, Graz, Austria
| | - Seth H. Weinberg
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, United States
- Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Christian Baumgartner
- Institute of Health Care Engineering with European Testing Center for Medical Devices, Graz University of Technology, Graz, Austria
| |
Collapse
|
6
|
Wei Y, Li M, Hu Y, Lu J, Wang L, Yin Q, Hong X, Tian J, Wang H. PCC0208057 as a small molecule inhibitor of TRPC6 in the treatment of prostate cancer. Front Pharmacol 2024; 15:1352373. [PMID: 38567350 PMCID: PMC10986179 DOI: 10.3389/fphar.2024.1352373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 03/05/2024] [Indexed: 04/04/2024] Open
Abstract
Prostate cancer (PCa) is a common malignant tumor, whose morbidity and mortality keep the top three in the male-related tumors in developed countries. Abnormal ion channels, such as transient receptor potential canonical 6 (TRPC6), are reported to be involved in the carcinogenesis and progress of prostate cancer and have become potential drug targets against prostate cancer. Here, we report a novel small molecule inhibitor of TRPC6, designated as PCC0208057, which can suppress the proliferation and migration of prostate cancer cells in vitro, and inhibit the formation of Human umbilical vein endothelial cells cell lumen. PCC0208057 can effectively inhibit the growth of xenograft tumor in vivo. Molecular mechanism studies revealed that PCC0208057 could directly bind and inhibit the activity of TRPC6, which then induces the prostate cancer cells arrested in G2/M phase via enhancing the phosphorylation of Nuclear Factor of Activated T Cells (NFAT) and Cdc2. Taken together, our study describes for the first time that PCC0208057, a novel TRPC6 inhibitor, might be a promising lead compound for treatment of prostate cancer.
Collapse
Affiliation(s)
- Yingjie Wei
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| | - Min Li
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| | - Yuemiao Hu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| | - Jing Lu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| | - Lin Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| | - Qikun Yin
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| | - Xuechuan Hong
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan, China
| | - Jingwei Tian
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| | - Hongbo Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| |
Collapse
|
7
|
Wang Y, Deng X, Zhang R, Lyu H, Xiao S, Guo D, Ali DW, Michalak M, Zhou C, Chen XZ, Tang J. The TRPV6 Calcium Channel and Its Relationship with Cancer. BIOLOGY 2024; 13:168. [PMID: 38534438 DOI: 0.3390/biology13030168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/22/2024] [Accepted: 02/28/2024] [Indexed: 10/14/2024]
Abstract
Transient receptor potential vanilloid-6 (TRPV6) is a cation channel belonging to the TRP superfamily, specifically the vanilloid subfamily, and is the sixth member of this subfamily. Its presence in the body is primarily limited to the skin, ovaries, kidney, testes, and digestive tract epithelium. The body maintains calcium homeostasis using the TRPV6 channel, which has a greater calcium selectivity than the other TRP channels. Several pieces of evidence suggest that it is upregulated in the advanced stages of thyroid, ovarian, breast, colon, and prostate cancers. The function of TRPV6 in regulating calcium signaling in cancer will be covered in this review, along with its potential applications as a cancer treatment target.
Collapse
Affiliation(s)
- Yifang Wang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Xiaoling Deng
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Rui Zhang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China
| | - Hao Lyu
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China
| | - Shuai Xiao
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China
| | - Dong Guo
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China
| | - Declan William Ali
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Marek Michalak
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Cefan Zhou
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China
| | - Xing-Zhen Chen
- Membrane Protein Disease Research Group, Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Jingfeng Tang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China
| |
Collapse
|
8
|
Wang Y, Deng X, Zhang R, Lyu H, Xiao S, Guo D, Ali DW, Michalak M, Zhou C, Chen XZ, Tang J. The TRPV6 Calcium Channel and Its Relationship with Cancer. BIOLOGY 2024; 13:168. [PMID: 38534438 DOI: 10.3390/biology13030168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/22/2024] [Accepted: 02/28/2024] [Indexed: 03/28/2024]
Abstract
Transient receptor potential vanilloid-6 (TRPV6) is a cation channel belonging to the TRP superfamily, specifically the vanilloid subfamily, and is the sixth member of this subfamily. Its presence in the body is primarily limited to the skin, ovaries, kidney, testes, and digestive tract epithelium. The body maintains calcium homeostasis using the TRPV6 channel, which has a greater calcium selectivity than the other TRP channels. Several pieces of evidence suggest that it is upregulated in the advanced stages of thyroid, ovarian, breast, colon, and prostate cancers. The function of TRPV6 in regulating calcium signaling in cancer will be covered in this review, along with its potential applications as a cancer treatment target.
Collapse
Affiliation(s)
- Yifang Wang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Xiaoling Deng
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Rui Zhang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China
| | - Hao Lyu
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China
| | - Shuai Xiao
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China
| | - Dong Guo
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China
| | - Declan William Ali
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Marek Michalak
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Cefan Zhou
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China
| | - Xing-Zhen Chen
- Membrane Protein Disease Research Group, Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Jingfeng Tang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China
| |
Collapse
|
9
|
Binobaid L, As Sobeai HM, Alhazzani K, AlAbdi L, Alwazae MM, Alotaibi M, Parrington J, Alhoshani A. Whole-exome sequencing identifies cancer-associated variants of the endo-lysosomal ion transport channels in the Saudi population. Saudi Pharm J 2024; 32:101961. [PMID: 38313820 PMCID: PMC10832475 DOI: 10.1016/j.jsps.2024.101961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2024] Open
Abstract
Background Although national efforts are underway to document the genomic variability of the Saudi population relative to other populations, such variability remains largely unexplored. Genetic variability is known to impact the fate of cells and increase or decrease the risk of a variety of complex diseases including cancer forms. Therefore, the identification of variants associated with cancer susceptibility in Saudi population may protect individuals from cancer or aid in patient-tailored therapies. The endo-lysosomal ion transport genes responsible for cationic ion homeostasis within the cell. We screened 703 single-nucleotide polymorphisms (SNPs) of the endo-lysosomal ion transporter genes in the Saudi population and identified cancer-associated variants that have been reported in other populations. Methods Utilizing previously derived local data of Whole-Exome Sequencing (WES), we examined SNPs of TPCN1, TPCN2, P2RX4, TRPM7, TRPV4, TRPV4, and TRPV6 genes. The SNPs were identified for those genes by our in-house database. We predicted the pathogenicity of these variants using in silico tools CADD, Polyphen-2, SIFT, PrimateAI, and FATHMM-XF. Then, we validated our findings by exploring the genetics database (VarSome, dbSNP NCB, OMIM, ClinVar, Ensembl, and GWAS Catalog) to further link cancer risk. Results The WES database yielded 703 SNPs found in TPCN2, P2RX4, TRPM7, TRPV4, and TRPV6 genes in 1,144 subjects. The number of variants that were found to be common in our population was 150 SNPs. We identified 13 coding-region non-synonymous variants of the endo-lysosomal genes that were most common with a minor allele frequency (MAF) of ≥ 1 %. Twelve of these variants are rs2376558, rs3750965, rs61746574, rs35264875, rs3829241, rs72928978, rs25644, rs8042919, rs17881456, rs4987682, rs4987667, and rs4987657 that were classified as cancer-associated genes. Conclusion Our study highlighted cancer-associated SNPs in the endo-lysosomal genes among Saudi individuals. The allelic frequencies on polymorphic variants confer susceptibility to complex diseases that are comparable to other populations. There is currently insufficient clinical data supporting the link between these SNPs and cancer risk in the Saudi population. Our data argues for initiating future cohort studies in which individuals with the identified SNPs are monitored and assessed for their likelihood of developing malignancies and therapy outcomes.
Collapse
Affiliation(s)
- Lama Binobaid
- Dept. of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11454, Saudi Arabia
| | - Homood M. As Sobeai
- Dept. of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11454, Saudi Arabia
| | - Khalid Alhazzani
- Dept. of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11454, Saudi Arabia
| | - Lama AlAbdi
- Department of Zoology, College of Science, King Saud University, P.O. Box 2457, Riyadh 11454, Saudi Arabia
| | - Meshari M. Alwazae
- Computational Sciences Department, Center of Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Moureq Alotaibi
- Dept. of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11454, Saudi Arabia
| | - John Parrington
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, United Kingdom
| | - Ali Alhoshani
- Dept. of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11454, Saudi Arabia
| |
Collapse
|
10
|
Tuylu Y, Okumus S, Gul R, Erbagci I. High-throughput screening of transient receptor potential (TRP) channels in pterygium. Int Ophthalmol 2024; 44:63. [PMID: 38347388 DOI: 10.1007/s10792-024-02938-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 12/17/2023] [Indexed: 02/15/2024]
Abstract
PURPOSE Pterygium is a hyaline degenerative disease of the conjunctiva characterized by the progression of fibrovascular connective tissue from the bulbar conjunctiva to the cornea. The mechanism of pterygium formation is still not fully understood. Transient receptor potential (TRP) channels are a group of ion channels with distinct characteristics. Recent indications suggest TRP channels may play a significant regulatory role in pterygium development, but previous studies have mainly focused on in silico analysis. Accordingly, in the present study, we aimed to decipher the expression signatures and role of TRP channels in pterygium development. METHODS The study encompassed a cohort of 45 patients matched for age and gender distribution, comprising 30 individuals with primary pterygium (PP) and 15 individuals with recurrent pterygium (RP). The control group consisted of unaffected conjunctival tissue obtained from the same set of patients. High-throughput screening of differentially expressed TRP channels in pterygium tissues was achieved with the help of Fluidigm 96.96 Dynamic Array Expression Chip and reactions were held in BioMark™ HD System Real-Time PCR platform. RESULTS Statistically significant increases were found in the expression of 21 genes, mainly TRPA1 (p = 0.021), TRPC2 (p = 0.001), and TRPM8 (p = 0.003), in patients with PP, and in TRPC5 (p = 0.05), TRPM2 (p = 0.029), TRPM4 (p = 0.03), TRPM6 (p = 0.045), TRPM8 (p = 0.038), TRPV1 (p = 0.01) and TRPV4 (p = 0.025) genes in RP tissues. CONCLUSION Collectively, TRP channel proteins appear to play pivotal roles in both the development and progression of pterygium, making them promising candidates for future therapeutic interventions in patients afflicted by this condition.
Collapse
Affiliation(s)
- Yusuf Tuylu
- Ophthalmology Clinic, Bossan Hospital, Gaziantep, Turkey
| | - Seydi Okumus
- Ophthalmology Clinic, Netgoz Medical Center, 27080, Gaziantep, Turkey.
| | - Rauf Gul
- Department of Anesthesiology and Reanimation, Faculty of Medicine, Gaziantep University , Gaziantep, Turkey
| | | |
Collapse
|
11
|
Aghababaei F, Nejati M, Karami H, Darvish M, Mirzaei H. The Combination of 5-FU and Resveratrol Can Suppress the Growth of Glioblastoma Cells Through Downregulation of TRPM2 and β-Catenin. J Mol Neurosci 2024; 74:7. [PMID: 38193979 DOI: 10.1007/s12031-023-02174-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 12/05/2023] [Indexed: 01/10/2024]
Abstract
Glioblastoma multiforme (GBM) is the most common as well as the most fatal primary malignant tumor of the central nervous system (CNS), which still lacks a definitive cure. 5-FU is an anti-metabolite anti-cancer agent which has shown promising results for GBM treatment. Resveratrol (Res) is a phytochemical anti-oxidant that has also been effective in suppressing the progression of GBM. The combination of 5-FU and Res has been studied in a variety of cancers, but no study has assessed this combination in GBM. In this study, we investigated how 5-FU and Res, in combination and alone, may affect the growth and apoptosis of GBM cells and also the potential of TRPM2 and β-catenin as the mediator of their effects. U87 cells were cultured as the in vitro model. MTT assay was used for measuring cellular growth, and RT-qPCR was used to measure the level of caspase-3, TRPM2, and β-catenin; caspase-3 level served as the indicator of apoptotic rate. 5-FU and Res, in combination and alone, suppressed the growth while promoting the apoptosis of U87 cells; these effects were significantly greater when they were used in combination. RT-qPCR showed downregulation of TRPM-2 and β-catenin in response to this combination, which suggested that these two molecules may mediate the cited anti-oncogenic effects. In conclusion, our study confirmed the synergism between 5-FU and Res in suppressing the progression of GBM and suggested the putative axis of TRPM2/ β-catenin as the downstream mediator of this therapeutic regime. Future studies may be able to approve the eligibility of this therapeutic regime for GBM treatment and also the underlying mechanism.
Collapse
Affiliation(s)
- Farzaneh Aghababaei
- Department of Medical Biotechnology, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Majid Nejati
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Hadi Karami
- Department of Medical Biotechnology, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Maryam Darvish
- Department of Medical Biotechnology, School of Medicine, Arak University of Medical Sciences, Arak, Iran.
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
12
|
Saqib U, Munjuluri S, Sarkar S, Biswas S, Mukherjee O, Satsangi H, Baig MS, Obukhov AG, Hajela K. Transient Receptor Potential Canonical 6 (TRPC6) Channel in the Pathogenesis of Diseases: A Jack of Many Trades. Inflammation 2023:10.1007/s10753-023-01808-3. [PMID: 37072606 PMCID: PMC10112830 DOI: 10.1007/s10753-023-01808-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/18/2023] [Accepted: 03/23/2023] [Indexed: 04/20/2023]
Abstract
The mammalian Transient Receptor Potential Canonical (TRPC) subfamily comprises seven transmembrane proteins (TRPC1-7) forming cation channels in the plasma membrane of mammalian cells. TRPC channels mediate Ca2+ and Na+ influx into the cells. Amongst TRPCs, TRPC6 deficiency or increased activity due to gain-of-function mutations has been associated with a multitude of diseases, such as kidney disease, pulmonary disease, and neurological disease. Indeed, the TRPC6 protein is expressed in various organs and is involved in diverse signalling pathways. The last decade saw a surge in the investigative studies concerning the physiological roles of TRPC6 and describing the development of new pharmacological tools modulating TRPC6 activity. The current review summarizes the progress achieved in those investigations.
Collapse
Affiliation(s)
- Uzma Saqib
- School of Life Sciences, Devi Ahilya Vishwavidyalaya, Vigyan Bhawan, Khandwa Road Campus, Indore, 452 001, MP, India
| | - Sreepadaarchana Munjuluri
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Sutripta Sarkar
- Post Graduate Department of Food and Nutrition, Barrackpore Rastraguru Surendranath College, 85, Middle Road, Barrackpore, 700120, West Bengal, India
| | - Subir Biswas
- Ramky One Galaxia, Nallagandla, Hyderabad, 500019, Telangana, India
| | - Oyshi Mukherjee
- Post Graduate Department of Food and Nutrition, Barrackpore Rastraguru Surendranath College, 85, Middle Road, Barrackpore, 700120, West Bengal, India
| | | | - Mirza S Baig
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Indore, India
| | - Alexander G Obukhov
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| | - Krishnan Hajela
- School of Life Sciences, Devi Ahilya Vishwavidyalaya, Vigyan Bhawan, Khandwa Road Campus, Indore, 452 001, MP, India.
| |
Collapse
|
13
|
TRPC6-protein expression in the elderly and in liver disease. Ann Anat 2023; 245:152016. [DOI: 10.1016/j.aanat.2022.152016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/23/2022] [Accepted: 09/30/2022] [Indexed: 11/07/2022]
|
14
|
Llancalahuen FM, Vallejos A, Aravena D, Prado Y, Gatica S, Otero C, Simon F. α1-Adrenergic Stimulation Increases Platelet Adhesion to Endothelial Cells Mediated by TRPC6. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1408:65-82. [PMID: 37093422 DOI: 10.1007/978-3-031-26163-3_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Stimulation of a1-adrenergic nervous system is increased during systemic inflammation and other pathological conditions with the consequent adrenergic receptors (ARs) activation. It has been reported that a1-stimulation contributes to coagulation since a1-AR blockers inhibit coagulation and its organic consequences. Also, coagulation induced by a1-AR stimulation can be greatly decreased using a1-AR blockers. In health, endothelial cells (ECs) perform anticoagulant actions at cellular and molecular level. However, during inflammation, ECs turn dysfunctional promoting a procoagulant state. Endothelium-dependent coagulation progresses at cellular and molecular levels, promoting endothelial acquisition of procoagulant properties to potentiate coagulation by means of prothrombotic and antifibrinolytic proteins expression increase in ECs releasing them to circulation, the thrombus formation is strengthened. Calcium signaling is a main feature of coagulation. Inhibition of ion channels involved in Ca2+ entry severely decreases coagulation. The transient receptor potential canonical 6 (TRPC6) is a non-selective Ca2+-permeable ion channel. TRPC6 activity is induced by diacylglycerol, suggesting that is regulated by a1-ARs. Furthermore, a1-ARs stimulation elicits a TRPC-like current in rat mesenteric artery smooth muscle and mesangial cells. However, whether TRPC6 could promote an ECs-mediated platelet adhesion induced by a1-adrenergic stimulation is currently not known. Therefore, the aim of this study was to examine if the TRPC6 calcium channel mediates platelet adhesion induced by a1-adrenergic stimulation. Our results suggest that platelet adhesion to ECs is enhanced by the a1-adrenergic stimulation evoked by phenylephrine mediated by TRPC6 activity. We conclude that TRPC6 is a molecular determinant in platelet adhesion to ECs with implications in systemic inflammatory diseases treatment.
Collapse
Affiliation(s)
- Felipe M Llancalahuen
- Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Alejando Vallejos
- Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Diego Aravena
- Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Yolanda Prado
- Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Sebastian Gatica
- Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Carolina Otero
- Escuela de Química y Farmacia, Facultad de Medicina, Universidad Andres Bello, Santiago, Chile
| | - Felipe Simon
- Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile.
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile.
- Millennium Nucleus of Ion Channel-Associated Diseases, Santiago, Chile.
| |
Collapse
|
15
|
Grolez GP, Chinigò G, Barras A, Hammadi M, Noyer L, Kondratska K, Bulk E, Oullier T, Marionneau-Lambot S, Le Mée M, Rétif S, Lerondel S, Bongiovanni A, Genova T, Roger S, Boukherroub R, Schwab A, Fiorio Pla A, Gkika D. TRPM8 as an Anti-Tumoral Target in Prostate Cancer Growth and Metastasis Dissemination. Int J Mol Sci 2022; 23:ijms23126672. [PMID: 35743115 PMCID: PMC9224463 DOI: 10.3390/ijms23126672] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/05/2022] [Accepted: 06/12/2022] [Indexed: 02/04/2023] Open
Abstract
In the fight against prostate cancer (PCa), TRPM8 is one of the most promising clinical targets. Indeed, several studies have highlighted that TRPM8 involvement is key in PCa progression because of its impact on cell proliferation, viability, and migration. However, data from the literature are somewhat contradictory regarding the precise role of TRPM8 in prostatic carcinogenesis and are mostly based on in vitro studies. The purpose of this study was to clarify the role played by TRPM8 in PCa progression. We used a prostate orthotopic xenograft mouse model to show that TRPM8 overexpression dramatically limited tumor growth and metastasis dissemination in vivo. Mechanistically, our in vitro data revealed that TRPM8 inhibited tumor growth by affecting the cell proliferation and clonogenic properties of PCa cells. Moreover, TRPM8 impacted metastatic dissemination mainly by impairing cytoskeleton dynamics and focal adhesion formation through the inhibition of the Cdc42, Rac1, ERK, and FAK pathways. Lastly, we proved the in vivo efficiency of a new tool based on lipid nanocapsules containing WS12 in limiting the TRPM8-positive cells' dissemination at metastatic sites. Our work strongly supports the protective role of TRPM8 on PCa progression, providing new insights into the potential application of TRPM8 as a therapeutic target in PCa treatment.
Collapse
Affiliation(s)
- Guillaume P. Grolez
- Laboratoire de Physiologie Cellulaire, INSERM U1003, Laboratory of Excellence, Ion Channels Science and Therapeutics, University of Lille, 59000 Villeneuve d’Ascq, France; (G.P.G.); (G.C.); (L.N.); (K.K.); (A.F.P.)
| | - Giorgia Chinigò
- Laboratoire de Physiologie Cellulaire, INSERM U1003, Laboratory of Excellence, Ion Channels Science and Therapeutics, University of Lille, 59000 Villeneuve d’Ascq, France; (G.P.G.); (G.C.); (L.N.); (K.K.); (A.F.P.)
- Department of Life Science and Systems Biology, University of Turin, 10123 Turin, Italy;
| | - Alexandre Barras
- CNRS, Centrale Lille, Univ. Lille, Univ. Polytechnique Hauts-de-France, UMR 8520—IEMN, 59000 Lille, France; (A.B.); (M.H.); (R.B.)
| | - Mehdi Hammadi
- CNRS, Centrale Lille, Univ. Lille, Univ. Polytechnique Hauts-de-France, UMR 8520—IEMN, 59000 Lille, France; (A.B.); (M.H.); (R.B.)
| | - Lucile Noyer
- Laboratoire de Physiologie Cellulaire, INSERM U1003, Laboratory of Excellence, Ion Channels Science and Therapeutics, University of Lille, 59000 Villeneuve d’Ascq, France; (G.P.G.); (G.C.); (L.N.); (K.K.); (A.F.P.)
| | - Kateryna Kondratska
- Laboratoire de Physiologie Cellulaire, INSERM U1003, Laboratory of Excellence, Ion Channels Science and Therapeutics, University of Lille, 59000 Villeneuve d’Ascq, France; (G.P.G.); (G.C.); (L.N.); (K.K.); (A.F.P.)
| | - Etmar Bulk
- Institute of Physiology II, University of Münster, 48149 Münster, Germany; (E.B.); (A.S.)
| | - Thibauld Oullier
- Cancéropôle du Grand Ouest, Plateforme In Vivo, 44000 Nantes, France; (T.O.); (S.M.-L.)
| | | | - Marilyne Le Mée
- CNRS UAR44, PHENOMIN-TAAM, 45071 Orléans, France; (M.L.M.); (S.R.); (S.L.)
| | - Stéphanie Rétif
- CNRS UAR44, PHENOMIN-TAAM, 45071 Orléans, France; (M.L.M.); (S.R.); (S.L.)
| | - Stéphanie Lerondel
- CNRS UAR44, PHENOMIN-TAAM, 45071 Orléans, France; (M.L.M.); (S.R.); (S.L.)
| | - Antonino Bongiovanni
- CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US 41—UMS 2014—PLBS, University of Lille, 59000 Lille, France;
| | - Tullio Genova
- Department of Life Science and Systems Biology, University of Turin, 10123 Turin, Italy;
- Nanostructured Interfaces and Surfaces Centre of Excellence (NIS), University of Turin, 10123 Turin, Italy
| | - Sébastien Roger
- Transplantation, Immunologie et Inflammation T2I-EA 4245, Université de Tours, 37044 Tours, France;
| | - Rabah Boukherroub
- CNRS, Centrale Lille, Univ. Lille, Univ. Polytechnique Hauts-de-France, UMR 8520—IEMN, 59000 Lille, France; (A.B.); (M.H.); (R.B.)
| | - Albrecht Schwab
- Institute of Physiology II, University of Münster, 48149 Münster, Germany; (E.B.); (A.S.)
| | - Alessandra Fiorio Pla
- Laboratoire de Physiologie Cellulaire, INSERM U1003, Laboratory of Excellence, Ion Channels Science and Therapeutics, University of Lille, 59000 Villeneuve d’Ascq, France; (G.P.G.); (G.C.); (L.N.); (K.K.); (A.F.P.)
- Department of Life Science and Systems Biology, University of Turin, 10123 Turin, Italy;
- CNRS UAR44, PHENOMIN-TAAM, 45071 Orléans, France; (M.L.M.); (S.R.); (S.L.)
| | - Dimitra Gkika
- CNRS, INSERM, CHU Lille, Centre Oscar Lambret, UMR 9020-UMR 1277-Canther-Cancer Heterogeneity, Plasticity and Resistance to Therapies, University Lille, 59000 Villeneuve d’Ascq, France
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
- Institut Universitaire de France (IUF), 75231 Paris, France
- Correspondence:
| |
Collapse
|
16
|
Marchetti C. Calcium signaling in prostate cancer cells of increasing malignancy. Biomol Concepts 2022; 13:156-163. [PMID: 35334188 DOI: 10.1515/bmc-2022-0012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/04/2022] [Indexed: 12/16/2022] Open
Abstract
Calcium signaling controls a large variety of cell functions, including proliferation and apoptosis, and plays a major role in neoplastic transformation. Prostate cancer (PCa) is one of the most common malignancies in men. The transition to castration-resistant prostate cancer (CRPC), a lethal form that is still lacking an effective cure, could be influenced by fine tuning intracellular calcium ([Ca2+]i) homeostasis. This study investigates [Ca2+]i dynamics in metastatic PCa cell lines that mimic the progression of PCa to CRPC: (i) well differentiated LNCaP cells that require androgen for survival, and (ii) poorly differentiated, highly aggressive androgen-insensitive prostate cancer (AIPC) PC3 and DU145 cells. In AIPC cells, ATP induces a fast rise in [Ca2+]i, due to release from intracellular stores and sensitive to phospholipase C inhibitors, while LNCaP cells do not respond to ATP challenge. Moreover, AIPC cells showed a reduced capacity to store Ca2+ in thapsigargin-sensitive stores and limited store-operated calcium entry, with respect to androgen-dependent LNCaP cells. Finally, green tea extract causes [Ca2+]i elevation and inhibits proliferation in PC3 and DU145 cells, but is ineffective in LNCaP cells. The consequences of these differences are discussed and interpreted in this study with reference to previously proposed models for Ca2+ dependence of prostate carcinogenesis.
Collapse
Affiliation(s)
- Carla Marchetti
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, via De Marini, 6, 16149 Genova, Italy
| |
Collapse
|
17
|
Lai HT, Canoy RJ, Campanella M, Vassetzky Y, Brenner C. Ca2+ Transportome and the Interorganelle Communication in Hepatocellular Carcinoma. Cells 2022; 11:cells11050815. [PMID: 35269437 PMCID: PMC8909868 DOI: 10.3390/cells11050815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a type of liver cancer with a poor prognosis for survival given the complications it bears on the patient. Though damages to the liver are acknowledged prodromic factors, the precise molecular aetiology remains ill-defined. However, many genes coding for proteins involved in calcium (Ca2+) homeostasis emerge as either mutated or deregulated. Ca2+ is a versatile signalling messenger that regulates functions that prime and drive oncogenesis, favouring metabolic reprogramming and gene expression. Ca2+ is present in cell compartments, between which it is trafficked through a network of transporters and exchangers, known as the Ca2+ transportome. The latter regulates and controls Ca2+ dynamics and tonicity. In HCC, the deregulation of the Ca2+ transportome contributes to tumorigenesis, the formation of metastasizing cells, and evasion of cell death. In this review, we reflect on these aspects by summarizing the current knowledge of the Ca2+ transportome and overviewing its composition in the plasma membrane, endoplasmic reticulum, and the mitochondria.
Collapse
Affiliation(s)
- Hong-Toan Lai
- CNRS, Institut Gustave Roussy, Aspects Métaboliques et Systémiques de l’Oncogénèse pour de Nouvelles Approches Thérapeutiques, Université Paris-Saclay, 94805 Villejuif, France; (H.-T.L.); (R.J.C.); (M.C.); (Y.V.)
| | - Reynand Jay Canoy
- CNRS, Institut Gustave Roussy, Aspects Métaboliques et Systémiques de l’Oncogénèse pour de Nouvelles Approches Thérapeutiques, Université Paris-Saclay, 94805 Villejuif, France; (H.-T.L.); (R.J.C.); (M.C.); (Y.V.)
- Institute of Human Genetics, National Institutes of Health, University of the Philippines, Manila 1000, Philippines
| | - Michelangelo Campanella
- CNRS, Institut Gustave Roussy, Aspects Métaboliques et Systémiques de l’Oncogénèse pour de Nouvelles Approches Thérapeutiques, Université Paris-Saclay, 94805 Villejuif, France; (H.-T.L.); (R.J.C.); (M.C.); (Y.V.)
- Department of Comparative Biomedical Sciences, The Royal Veterinary College, University of London, London NW1 0TU, UK
- Consortium for Mitochondrial Research, University College London, London WC1 0TU, UK
- Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Yegor Vassetzky
- CNRS, Institut Gustave Roussy, Aspects Métaboliques et Systémiques de l’Oncogénèse pour de Nouvelles Approches Thérapeutiques, Université Paris-Saclay, 94805 Villejuif, France; (H.-T.L.); (R.J.C.); (M.C.); (Y.V.)
| | - Catherine Brenner
- CNRS, Institut Gustave Roussy, Aspects Métaboliques et Systémiques de l’Oncogénèse pour de Nouvelles Approches Thérapeutiques, Université Paris-Saclay, 94805 Villejuif, France; (H.-T.L.); (R.J.C.); (M.C.); (Y.V.)
- Correspondence:
| |
Collapse
|
18
|
Hirata N, Yamada S, Yanagida S, Ono A, Yasuhiko Y, Nishida M, Kanda Y. Lysophosphatidic Acid Promotes the Expansion of Cancer Stem Cells via TRPC3 Channels in Triple-Negative Breast Cancer. Int J Mol Sci 2022; 23:ijms23041967. [PMID: 35216080 PMCID: PMC8877950 DOI: 10.3390/ijms23041967] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 01/27/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is a highly aggressive cancer for which targeted therapeutic agents are limited. Growing evidence suggests that TNBC originates from breast cancer stem cells (BCSCs), and elucidation of the molecular mechanisms controlling BCSC proliferation will be crucial for new drug development. We have previously reported that the lysosphingolipid sphingosine-1-phosphate mediates the CSC phenotype, which can be identified as the ALDH-positive cell population in several types of human cancer cell lines. In this study, we have investigated additional lipid receptors upregulated in BCSCs. We found that lysophosphatidic acid (LPA) receptor 3 was highly expressed in ALDH-positive TNBC cells. The LPAR3 antagonist inhibited the increase in ALDH-positive cells after LPA treatment. Mechanistically, the LPA-induced increase in ALDH-positive cells was dependent on intracellular calcium ion (Ca2+), and the increase in Ca2+ was suppressed by a selective inhibitor of transient receptor potential cation channel subfamily C member 3 (TRPC3). Moreover, IL-8 production was involved in the LPA response via the activation of the Ca2+-dependent transcriptional factor nuclear factor of activated T cells. Taken together, our findings provide new insights into the lipid-mediated regulation of BCSCs via the LPA-TRPC3 signaling axis and suggest several potential therapeutic targets for TNBC.
Collapse
Affiliation(s)
- Naoya Hirata
- Division of Pharmacology, National Institute of Health Sciences, Kanagawa 210-9501, Japan; (N.H.); (S.Y.); (S.Y.); (Y.Y.)
- Pharmacological Evaluation Institute of Japan (PEIJ), Ibaraki 305-0031, Japan
| | - Shigeru Yamada
- Division of Pharmacology, National Institute of Health Sciences, Kanagawa 210-9501, Japan; (N.H.); (S.Y.); (S.Y.); (Y.Y.)
- Pharmacological Evaluation Institute of Japan (PEIJ), Ibaraki 305-0031, Japan
| | - Shota Yanagida
- Division of Pharmacology, National Institute of Health Sciences, Kanagawa 210-9501, Japan; (N.H.); (S.Y.); (S.Y.); (Y.Y.)
- Division of Pharmaceutical Sciences, Graduated School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan;
| | - Atsushi Ono
- Division of Pharmaceutical Sciences, Graduated School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan;
| | - Yukuto Yasuhiko
- Division of Pharmacology, National Institute of Health Sciences, Kanagawa 210-9501, Japan; (N.H.); (S.Y.); (S.Y.); (Y.Y.)
| | - Motohiro Nishida
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan;
- Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Aichi 444-8787, Japan
- National Institute for Physiological Sciences, National Institutes of Natural Sciences, Aichi 444-8787, Japan
| | - Yasunari Kanda
- Division of Pharmacology, National Institute of Health Sciences, Kanagawa 210-9501, Japan; (N.H.); (S.Y.); (S.Y.); (Y.Y.)
- Correspondence:
| |
Collapse
|
19
|
Xu X, Li N, Wang Y, Yu J, Mi J. Calcium channel TRPV6 promotes breast cancer metastasis by NFATC2IP. Cancer Lett 2021; 519:150-160. [PMID: 34265397 DOI: 10.1016/j.canlet.2021.07.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/07/2021] [Accepted: 07/10/2021] [Indexed: 12/18/2022]
Abstract
Calcium channel TRPV6 upregulation is associated with poor prognosis of breast cancer by promoting invasion and metastasis, and TRPV6 is a potential target for breast cancer therapy. However, the mechanism by which TRPV6 promotes breast metastasis remains unclear. Here, we report that TRPV6 expression is upregulated in metastatic breast cancers and that TRPV6 overexpression or upregulation accelerates primary breast cancer cell migration. In contrast, TRPV6 suppression decreases cell migration. Mechanistically, TRPV6 activates NFATC2 by increasing NFATC2IP phosphorylation at Ser204, and CDK5 is a candidate kinase that may perform this phosphorylation. Consequently, activated NFATC2 increases breast cancer metastasis by upregulating ADAMTS6 expression. These observations suggest that TRPV6 increases NFATC2 transcriptional activity by increasing NFATC2IP phosphorylation, which consequently upregulates ADAMTS6 expression to promote breast cancer metastasis.
Collapse
Affiliation(s)
- Xiang Xu
- Basic Medical Institute, Hongqiao International Institute of Medicine, Tongren Hospital, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China; Department of Laboratory Medicine, Shanghai General Hospital Jiading Branch, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Na Li
- Basic Medical Institute, Hongqiao International Institute of Medicine, Tongren Hospital, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yugang Wang
- Department of Gastroenterology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Jinming Yu
- Department of Radiation Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, Shandong, 250117, China.
| | - Jun Mi
- Basic Medical Institute, Hongqiao International Institute of Medicine, Tongren Hospital, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China; Department of Laboratory Medicine, Shanghai General Hospital Jiading Branch, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
20
|
Gholizadeh N, Mohebbi AH, Mirzaii-Dizgah I, Sheykhbahaei N. α1 adrenergic receptors in serum and saliva of patients with oral squamous cell carcinoma. Clin Transl Oncol 2021; 23:1705-1710. [PMID: 33644847 DOI: 10.1007/s12094-021-02571-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 02/08/2021] [Indexed: 10/22/2022]
Abstract
BACKGROUND Neurotransmitters released from the sympathetic nervous system attach to the adrenergic receptors on the surface of tumoral cells in response to stress, and alter the expression of genes programming cellular activity. This study aimed to assess the expression of α1 adrenergic receptors in the serum and saliva of patients with oral squamous cell carcinoma (OSCC) compared with healthy controls. MATERIALS AND METHODS In this case-control study, serum and stimulated and unstimulated saliva samples were collected from 26 OSCC patients and 26 healthy controls. ELISA kits were used for measurement of the serum and salivary levels of α1 adrenergic receptors. RESULTS The level of α1 adrenergic receptors was significantly higher in the stimulated and unstimulated saliva of OSCC patients than healthy controls (P = 0.000). However, their serum level was not significantly different between the two groups (P = 0.389). The serum level of α1 adrenergic receptors significantly increased by an increase in OSCC grade. No significant correlation was noted between the serum and salivary levels of α1 adrenergic receptors in OSCC patients. The salivary level of α1 adrenergic receptors was significantly higher in patients with tumors located in the gingiva, compared with other sites. CONCLUSION Significantly higher salivary level of α1 adrenergic receptors in OSCC patients compared with healthy controls, and no significant difference in their serum level between the two groups may indirectly indicate the over-expression of these receptors in OSCC cells, compared with normal oral mucosa. Further studies and particularly histological analyses are required to confirm this finding.
Collapse
Affiliation(s)
- Narges Gholizadeh
- Department of Oral and Maxillofacial Medicine, School of Dentistry, Tehran University of Medical Science, Tehran, Iran
| | - Amir-Hossein Mohebbi
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Iraj Mirzaii-Dizgah
- Department of Physiology, School of Medicine, Aja University of Medical Sciences, Tehran, Iran
| | - Nafiseh Sheykhbahaei
- Department of Oral and Maxillofacial Medicine, School of Dentistry, Tehran University of Medical Science, Tehran, Iran.
| |
Collapse
|
21
|
Vanneste M, Segal A, Voets T, Everaerts W. Transient receptor potential channels in sensory mechanisms of the lower urinary tract. Nat Rev Urol 2021; 18:139-159. [PMID: 33536636 DOI: 10.1038/s41585-021-00428-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/08/2021] [Indexed: 01/30/2023]
Abstract
Disruptions to sensory pathways in the lower urinary tract commonly occur and can give rise to lower urinary tract symptoms (LUTS). The unmet clinical need for treatment of LUTS has stimulated research into the molecular mechanisms that underlie neuronal control of the bladder and transient receptor potential (TRP) channels have emerged as key regulators of the sensory processes that regulate bladder function. TRP channels function as molecular sensors in urothelial cells and afferent nerve fibres and can be considered the origin of bladder sensations. TRP channels in the lower urinary tract contribute to the generation of normal and abnormal bladder sensations through a variety of mechanisms, and have demonstrated potential as targets for the treatment of LUTS in functional disorders of the lower urinary tract.
Collapse
Affiliation(s)
- Matthias Vanneste
- Laboratory of Ion Channel Research, VIB Center for Brain & Disease Research, Leuven, and Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Andrei Segal
- Laboratory of Ion Channel Research, VIB Center for Brain & Disease Research, Leuven, and Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Thomas Voets
- Laboratory of Ion Channel Research, VIB Center for Brain & Disease Research, Leuven, and Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Wouter Everaerts
- Laboratory of Experimental Urology, Department of Development and Regeneration, KU Leuven, Leuven, Belgium.
| |
Collapse
|
22
|
Zeng YZ, Zhang YQ, Chen JY, Zhang LY, Gao WL, Lin XQ, Huang SM, Zhang F, Wei XL. TRPC1 Inhibits Cell Proliferation/Invasion and Is Predictive of a Better Prognosis of Esophageal Squamous Cell Carcinoma. Front Oncol 2021; 11:627713. [PMID: 33854967 PMCID: PMC8039442 DOI: 10.3389/fonc.2021.627713] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 03/08/2021] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND AND OBJECTIVES In China, over 90% of esophageal cancer (EC) cases are esophageal squamous cell carcinoma (ESCC). ESCC is a frequently malignant tumor with poor prognosis despite the development of comprehensive therapeutic strategies, for which there is still a lack of effective prognostic factors. Previous studies found that the abnormal expression of TRPC1 is closely related to the proliferation, invasion, metastasis, and differentiation of various tumors. However, the relationship between TRPC1 and ESCC is currently unclear. The present study aimed to clarify the clinical significance of TRPC1 and to preliminarily assess the molecular mechanism by which TRPC1 regulates cell proliferation, migration, and invasion in ESCC. MATERIALS AND METHODS Immunohistochemistry (IHC) was used to determine the expression of TRPC1 and Ki-67 in 165 cases of ESCC. The correlations between TRPC1 expression and clinicopathological characteristics were determined, and both univariate and multivariate analyses were utilized to quantify the impact of TRPC1 expression on patient survival. Cell Counting Kit-8, scratch wound healing, and transwell assays were used to determine the effects of TRPC1 on proliferation, migration, and invasion in ESCC in vitro, respectively. RESULTS The positive expression rate of TRPC1 showed significantly decreased in ESCC (45.50%) compared with the levels in normal esophageal mucosa (NEM; 80.80%) and high-grade intraepithelial neoplasia (HGIEN; 63.20%) (P<0.001). Higher expression rate of TRPC1 was associated with low lymph node metastasis (P<0.001), high differentiation (rs = 0.232, P=0.003), and low Ki-67 (rs = -0.492, P<0.001). We further revealed that low expression of TRPC1 was associated with poor prognosis (Disease-free survival, DFS: 95% CI=0.545-0.845, P=0.001; Overall survival, OS: 95% CI=0.553-0.891, P=0.004). Furthermore, we showed that downregulation of TRPC1 promoted the proliferation, migration, and invasion of human esophageal squamous cell carcinoma cell line EC9706 in vitro. In contrast, overexpression of TRPC1 inhibited the proliferation, migration, and invasion of human esophageal squamous cell carcinoma cell line KYSE150 (P<0.01), in a manner at least in part mediated through the AKT/p27 pathway. CONCLUSION TRPC1 inhibited the proliferation, migration, and invasion of EC9706 and KYSE150 cells, at least, in part mediated through the AKT/p27 pathway in vitro. The downregulation of TRPC1 may be one of the most important molecular events in the malignant progression of ESCC. TRPC1 could be a new candidate tumor suppressor gene and a new prognostic factor of ESCC.
Collapse
Affiliation(s)
- Yun-Zhu Zeng
- Department of Pathology, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Yong-Qu Zhang
- Department of Breast-Thyroid-Surgery and Cancer Research Center, Xiang’an Hospital of Xiamen University, Xiamen, China
| | - Jiong-Yu Chen
- Oncological Research Laboratory, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Li-Ying Zhang
- Department of Pathology, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Wen-Liang Gao
- Department of Breast-Thyroid-Surgery and Cancer Research Center, Xiang’an Hospital of Xiamen University, Xiamen, China
| | - Xue-Qiong Lin
- Clinical Laboratory, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Shao-Min Huang
- Department of Pathology, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Fan Zhang
- Guangdong Provincial Key Laboratory for Breast Cancer Diagnosis and Treatment, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Xiao-Long Wei
- Department of Pathology, Cancer Hospital of Shantou University Medical College, Shantou, China
- *Correspondence: Xiao-Long Wei,
| |
Collapse
|
23
|
Huang Y, Li S, Jia Z, Zhao W, Zhou C, Zhang R, Ali DW, Michalak M, Chen XZ, Tang J. Transient Receptor Potential Melastatin 8 (TRPM8) Channel Regulates Proliferation and Migration of Breast Cancer Cells by Activating the AMPK-ULK1 Pathway to Enhance Basal Autophagy. Front Oncol 2020; 10:573127. [PMID: 33344232 PMCID: PMC7746826 DOI: 10.3389/fonc.2020.573127] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 10/29/2020] [Indexed: 12/12/2022] Open
Abstract
The calcium-permeable cation channel TRPM8 (transient receptor potential melastatin 8) is a member of the TRP superfamily of cation channels that is upregulated in various types of cancer with high levels of autophagy, including prostate, pancreatic, breast, lung, and colon cancers. Autophagy is closely regulated by AMP-activated protein kinase (AMPK) and plays an important role in tumor growth by generating nutrients through degradation of intracellular structures. Additionally, AMPK activity is regulated by intracellular Ca2+ concentration. Considering that TRPM8 is a non-selective Ca2+-permeable cation channel and plays a key role in calcium homoeostasis, we hypothesized that TRPM8 may control AMPK activity thus modulating cellular autophagy to regulate the proliferation and migration of breast cancer cells. In this study, overexpression of TRPM8 enhanced the level of basal autophagy, whereas TRPM8 knockdown reduced the level of basal autophagy in several types of mammalian cancer cells. Moreover, the activity of the TRPM8 channel modulated the level of basal autophagy. The mechanism of regulation of autophagy by TRPM8 involves autophagy-associated signaling pathways for activation of AMPK and ULK1 and phagophore formation. Impaired AMPK abolished TRPM8-dependent regulation of autophagy. TRPM8 interacts with AMPK in a protein complex, and cytoplasmic C-terminus of TRPM8 mediates the TRPM8–AMPK interaction. Finally, basal autophagy mediates the regulatory effects of TRPM8 on the proliferation and migration of breast cancer cells. Thus, this study identifies TRPM8 as a novel regulator of basal autophagy in cancer cells acting by interacting with AMPK, which in turn activates AMPK to activate ULK1 in a coordinated cascade of TRPM8-mediated breast cancer progression.
Collapse
Affiliation(s)
- Yuan Huang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, China
| | - Shi Li
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, China
| | - Zhenhua Jia
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, China
| | - Weiwei Zhao
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, China
| | - Cefan Zhou
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, China
| | - Rui Zhang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, China
| | - Declan William Ali
- Membrane Protein Disease Research Group, Department of Physiology, Faculty of Medicine and Dentistry of Alberta, Edmonton, AB, Canada
| | - Marek Michalak
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | - Xing-Zhen Chen
- Membrane Protein Disease Research Group, Department of Physiology, Faculty of Medicine and Dentistry of Alberta, Edmonton, AB, Canada
| | - Jingfeng Tang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, China
| |
Collapse
|
24
|
Jimenez I, Prado Y, Marchant F, Otero C, Eltit F, Cabello-Verrugio C, Cerda O, Simon F. TRPM Channels in Human Diseases. Cells 2020; 9:E2604. [PMID: 33291725 PMCID: PMC7761947 DOI: 10.3390/cells9122604] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 12/11/2022] Open
Abstract
The transient receptor potential melastatin (TRPM) subfamily belongs to the TRP cation channels family. Since the first cloning of TRPM1 in 1989, tremendous progress has been made in identifying novel members of the TRPM subfamily and their functions. The TRPM subfamily is composed of eight members consisting of four six-transmembrane domain subunits, resulting in homomeric or heteromeric channels. From a structural point of view, based on the homology sequence of the coiled-coil in the C-terminus, the eight TRPM members are clustered into four groups: TRPM1/M3, M2/M8, M4/M5 and M6/M7. TRPM subfamily members have been involved in several physiological functions. However, they are also linked to diverse pathophysiological human processes. Alterations in the expression and function of TRPM subfamily ion channels might generate several human diseases including cardiovascular and neurodegenerative alterations, organ dysfunction, cancer and many other channelopathies. These effects position them as remarkable putative targets for novel diagnostic strategies, drug design and therapeutic approaches. Here, we review the current knowledge about the main characteristics of all members of the TRPM family, focusing on their actions in human diseases.
Collapse
Affiliation(s)
- Ivanka Jimenez
- Faculty of Life Science, Universidad Andrés Bello, Santiago 8370186, Chile; (I.J.); (Y.P.); (F.M.); (C.C.-V.)
- Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Universidad de Chile, Santiago 8380453, Chile;
| | - Yolanda Prado
- Faculty of Life Science, Universidad Andrés Bello, Santiago 8370186, Chile; (I.J.); (Y.P.); (F.M.); (C.C.-V.)
- Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Universidad de Chile, Santiago 8380453, Chile;
| | - Felipe Marchant
- Faculty of Life Science, Universidad Andrés Bello, Santiago 8370186, Chile; (I.J.); (Y.P.); (F.M.); (C.C.-V.)
- Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Universidad de Chile, Santiago 8380453, Chile;
| | - Carolina Otero
- Faculty of Medicine, School of Chemistry and Pharmacy, Universidad Andrés Bello, Santiago 8370186, Chile;
| | - Felipe Eltit
- Vancouver Prostate Centre, Vancouver, BC V6Z 1Y6, Canada;
- Department of Urological Sciences, University of British Columbia, Vancouver, BC V6Z 1Y6, Canada
| | - Claudio Cabello-Verrugio
- Faculty of Life Science, Universidad Andrés Bello, Santiago 8370186, Chile; (I.J.); (Y.P.); (F.M.); (C.C.-V.)
- Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago 7560484, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago 8370146, Chile
| | - Oscar Cerda
- Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Universidad de Chile, Santiago 8380453, Chile;
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile
| | - Felipe Simon
- Faculty of Life Science, Universidad Andrés Bello, Santiago 8370186, Chile; (I.J.); (Y.P.); (F.M.); (C.C.-V.)
- Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Universidad de Chile, Santiago 8380453, Chile;
- Millennium Institute on Immunology and Immunotherapy, Santiago 8370146, Chile
| |
Collapse
|
25
|
Cantonero C, Salido GM, Rosado JA, Redondo PC. PGRMC1 Inhibits Progesterone-Evoked Proliferation and Ca 2+ Entry Via STIM2 in MDA-MB-231 Cells. Int J Mol Sci 2020; 21:ijms21207641. [PMID: 33076541 PMCID: PMC7589959 DOI: 10.3390/ijms21207641] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 10/09/2020] [Accepted: 10/12/2020] [Indexed: 12/11/2022] Open
Abstract
Progesterone receptor membrane component 1 (PGRMC1) has been shown to regulate some cancer hallmarks. Progesterone (P4) evokes intracellular calcium (Ca2+) changes in the triple-negative breast cancer cell lines (MDA-MB-231, MDA-MB-468, and BT-20) and in other breast cancer cell lines like the luminal MCF7 cells. PGRMC1 expression is elevated in MDA-MB-231 and MCF7 cells as compared to non-tumoral MCF10A cell line, and PGRMC1 silencing enhances P4-evoked Ca2+ mobilization. Here, we found a new P4-dependent Ca2+ mobilization pathway in MDA-MB-231 cells and other triple-negative breast cancer cells, as well as in MCF7 cells that involved Stromal interaction molecule 2 (STIM2), Calcium release-activated calcium channel protein 1 (Orai1), and Transient Receptor Potential Channel 1 (TRPC1). Stromal interaction molecule 1 (STIM1) was not involved in this novel Ca2+ pathway, as evidenced by using siRNA STIM1. PGRMC1 silencing reduced the negative effect of P4 on cell proliferation and cell death in MDA-MB-231 cells. In line with the latter observation, Nuclear Factor of Activated T-Cells 1 (NFAT1) nuclear accumulation due to P4 incubation for 48 h was enhanced in cells transfected with the small hairpin siRNA against PGRMC1 (shPGRMC1). These results provide evidence for a novel P4-evoked Ca2+ entry pathway that is downregulated by PGRMC1.
Collapse
|
26
|
De Logu F, Ugolini F, Caporalini C, Palomba A, Simi S, Portelli F, Campanacci DA, Beltrami G, Massi D, Nassini R. TRPA1 Expression in Synovial Sarcoma May Support Neural Origin. Biomolecules 2020; 10:biom10101446. [PMID: 33076385 PMCID: PMC7602570 DOI: 10.3390/biom10101446] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 10/13/2020] [Indexed: 12/16/2022] Open
Abstract
Synovial sarcoma (SS) is a malignant mesenchymal soft tissue neoplasm. Despite its name, the cells of origin are not synovial cells, but rather neural, myogenic, or multipotent mesenchymal stem cells have been proposed as possible cells originators. Unlike other sarcomas, an unusual presentation of long-term pain at the tumor site has been documented, but the exact mechanisms have not been fully clarified yet. The transient receptor potential ankyrin 1 (TRPA1) is a nonselective cation channel mainly expressed in primary sensory neurons, where it functions as a pain sensor. TRPA1 have also been described in multiple non-excitable cells, including those derived from neural crest stem cells such as glial cells and, in particular, Schwann cell oligodendrocytes and astrocytes. We evaluated TRPA1 expression in SS. We selected a cohort of 41 SSs, and by immunohistochemistry, we studied TRPA1 expression. TRPA1 was found in 92.6% of cases. Triple TRPA1/pS100/SOX10 and TRPA1/SLUG/SNAIL staining strongly supports a neural origin of SS. TRPA1 positivity was also observed in a subset of cases negative with pS100, SOX10 and/or SLUG/SNAIL, and these divergent phenotypes may reflect a process of tumor plasticity and dedifferentiation of neural-derived SSs. Given the functional diversity of TRPA1 and its expression in neuronal and non-neuronal multipotent neural crest stem cells, it remains to be determined whether TRPA1 expression in SSs neoplastic cells plays a role in the molecular mechanism associated with premonitory pain symptoms and tumor progression.
Collapse
Affiliation(s)
- Francesco De Logu
- Section of Clinical Pharmacology and Oncology, Department of Health Sciences, University of Florence, 50139 Florence, Italy; (F.D.L.); (R.N.)
| | - Filippo Ugolini
- Section of Pathological Anatomy, Department of Health Sciences, University of Florence, 50139 Florence, Italy; (F.U.); (A.P.); (S.S.); (F.P.)
| | | | - Annarita Palomba
- Section of Pathological Anatomy, Department of Health Sciences, University of Florence, 50139 Florence, Italy; (F.U.); (A.P.); (S.S.); (F.P.)
| | - Sara Simi
- Section of Pathological Anatomy, Department of Health Sciences, University of Florence, 50139 Florence, Italy; (F.U.); (A.P.); (S.S.); (F.P.)
| | - Francesca Portelli
- Section of Pathological Anatomy, Department of Health Sciences, University of Florence, 50139 Florence, Italy; (F.U.); (A.P.); (S.S.); (F.P.)
| | - Domenico Andrea Campanacci
- Orthopedics and Traumatology Section, Department of Health Sciences, University of Florence, 50139 Florence, Italy; (D.A.C.); (G.B.)
| | - Giovanni Beltrami
- Orthopedics and Traumatology Section, Department of Health Sciences, University of Florence, 50139 Florence, Italy; (D.A.C.); (G.B.)
| | - Daniela Massi
- Section of Pathological Anatomy, Department of Health Sciences, University of Florence, 50139 Florence, Italy; (F.U.); (A.P.); (S.S.); (F.P.)
- Correspondence: ; Tel.: +39-055-794-9082
| | - Romina Nassini
- Section of Clinical Pharmacology and Oncology, Department of Health Sciences, University of Florence, 50139 Florence, Italy; (F.D.L.); (R.N.)
| |
Collapse
|
27
|
Epigallocatechin-3-gallate mobilizes intracellular Ca 2+ in prostate cancer cells through combined Ca 2+ entry and Ca 2+-induced Ca 2+ release. Life Sci 2020; 258:118232. [PMID: 32781066 DOI: 10.1016/j.lfs.2020.118232] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/31/2020] [Accepted: 08/05/2020] [Indexed: 12/28/2022]
Abstract
AIMS To elucidate the mechanism by which (-)-epigallocatechin-3-gallate (EGCG) mediates intracellular Ca2+ increase in androgen-independent prostate cancer (PCa) cells. MAIN METHODS Following exposure to different doses of EGCG, viability of DU145 and PC3 PCa cells was evaluated by MTT assay and the intracellular Ca2+ dynamics by the fluorescent Ca2+ chelator Fura-2. The expression of different channels was investigated by qPCR analysis and sulfhydryl bonds by Ellman's assay. KEY FINDINGS EGCG inhibited DU145 and PC3 proliferation with IC50 = 46 and 56 μM, respectively, and induced dose-dependent peaks of internal Ca2+ that were dependent on extracellular Ca2+. The expression of TRPC4 and TRPC6 channels was revealed by qPCR in PC3 cells, but lack of effect by modulators and blockers ruled out an exclusive role for these, as well as for voltage-dependent T-type Ca2+ channels. Application of dithiothreitol and catalase and sulfhydryl (SH) measurements showed that EGCG-induced Ca2+ rise depends on SH oxidation, while the effect of EGTA, dantrolene, and the PLC inhibitor U73122 suggested that EGCG-induced Ca2+ influx acts as a trigger for Ca2+-induced Ca2+ release, involving both ryanodine and IP3 receptors. Different from EGCG, ATP caused a rapid Ca2+ increase, which was independent of external Ca2+, but sensitive to U73122. SIGNIFICANCE EGCG induces an internal Ca2+ increase in PCa cells by a multi-step mechanism. As dysregulation of cytosolic Ca2+ is directly linked to apoptosis in PCa cells, these data confirm the possibility of using EGCG as a synergistic adjuvant in combined therapies for recalcitrant malignancies like androgen-independent PCa.
Collapse
|
28
|
Wallukat G, Jandrig B, Becker NP, Wendler JJ, Göttel P, Müller J, Schostak M, Schimke I. Autoantibodies directed against α1-adrenergic receptor and endothelin receptor A in patients with prostate cancer. AUTOIMMUNITY HIGHLIGHTS 2020; 11:13. [PMID: 32977857 PMCID: PMC7519497 DOI: 10.1186/s13317-020-00136-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 07/20/2020] [Indexed: 01/12/2023]
Abstract
BACKGROUND For prostate cancer, signaling pathways induced by over-boarding stimulation of G-protein coupled receptors (GPCR) such as the endothelin, α1- and β-adrenergic, muscarinic and angiotensin 1 receptors were accused to support the carcinogenesis. However, excessive receptor stimulation by physiological receptor ligands is minimized by a control system that induces receptor sensitization and down-regulation. This system is missing when so-called "functional autoantibodies" bind to the GPCR (GPCR-AAB). If GPCR-AAB were found in patients with prostate cancer, uncontrolled GPCR stimulation could make these autoantibodies an additional supporter in prostate cancer. METHODS Using the bioassay of spontaneously beating cultured rat neonatal cardiomyocytes, GPCR-AAB were identified, quantified and characterized in the serum of 25 patients (aged 56-78 years, median 70 years) with prostate cancer compared to 10 male patients (aged 48-82 years, median 64) with urinary stone disorders (controls). RESULTS Of the cancer patients, 24 (96%) and 17 (68%), respectively, carried autoantibodies directed against the α1-adrenergic receptor (α1-AAB) and endothelin receptor A (ETA-AAB). No patient was negative for both GPCR-AAB. In contrast, ETA-AAB and α1-AAB were absent in all (100%) and 9 (90%) of the 10 control patients, respectively. While α1-AAB targeted a specific epitope of the first extracellular loop of the α1-adrenergic receptor subtype A, an epitope of the second extracellular loop of the ETA receptor was identified as a target of ETA-AAB. As demonstrated in vitro, the functional activity of both autoantibodies found in prostate cancer can be neutralized by the aptamer BC007. CONCLUSIONS We hypothesized that α1-AAB and ETA-AAB, which are highly present in prostate cancer patients, could by their functional activity support carcinogenesis by excessive receptor stimulation. The in vitro demonstrated neutralization of α1- and ETA-AAB by the aptamer BC007 could open the door to complement the treatments already available for prostate cancer.
Collapse
Affiliation(s)
- Gerd Wallukat
- Berlin Cures GmbH, Knesebeckstraße 59-61, 10719, Berlin, Germany
| | - Burkhard Jandrig
- Universitätsklinik für Urologie, Uroonkologie, robotergestützte und fokale Therapie, Otto von Guericke Universität, Magdeburg, Germany
| | | | - Johann J Wendler
- Universitätsklinik für Urologie, Uroonkologie, robotergestützte und fokale Therapie, Otto von Guericke Universität, Magdeburg, Germany
| | - Peter Göttel
- Berlin Cures GmbH, Knesebeckstraße 59-61, 10719, Berlin, Germany
| | - Johannes Müller
- Berlin Cures GmbH, Knesebeckstraße 59-61, 10719, Berlin, Germany
| | - Martin Schostak
- Universitätsklinik für Urologie, Uroonkologie, robotergestützte und fokale Therapie, Otto von Guericke Universität, Magdeburg, Germany
| | - Ingolf Schimke
- Berlin Cures GmbH, Knesebeckstraße 59-61, 10719, Berlin, Germany.
| |
Collapse
|
29
|
Capatina AL, Lagos D, Brackenbury WJ. Targeting Ion Channels for Cancer Treatment: Current Progress and Future Challenges. Rev Physiol Biochem Pharmacol 2020; 183:1-43. [PMID: 32865696 DOI: 10.1007/112_2020_46] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Ion channels are key regulators of cancer cell pathophysiology. They contribute to a variety of processes such as maintenance of cellular osmolarity and membrane potential, motility (via interactions with the cytoskeleton), invasion, signal transduction, transcriptional activity and cell cycle progression, leading to tumour progression and metastasis. Ion channels thus represent promising targets for cancer therapy. Ion channels are attractive targets because many of them are expressed at the plasma membrane and a broad range of existing inhibitors are already in clinical use for other indications. However, many of the ion channels identified in cancer cells are also active in healthy normal cells, so there is a risk that certain blockers may have off-target effects on normal physiological function. This review describes recent research advances into ion channel inhibitors as anticancer therapeutics. A growing body of evidence suggests that a range of existing and novel Na+, K+, Ca2+ and Cl- channel inhibitors may be effective for suppressing cancer cell proliferation, migration and invasion, as well as enhancing apoptosis, leading to suppression of tumour growth and metastasis, either alone or in combination with standard-of-care therapies. The majority of evidence to date is based on preclinical in vitro and in vivo studies, although there are several examples of ion channel-targeting strategies now reaching early phase clinical trials. Given the strong links between ion channel function and regulation of tumour growth, metastasis and chemotherapy resistance, it is likely that further work in this area will facilitate the development of new therapeutic approaches which will reach the clinic in the future.
Collapse
Affiliation(s)
| | - Dimitris Lagos
- Hull York Medical School, York, UK
- York Biomedical Research Institute, University of York, York, UK
| | - William J Brackenbury
- Department of Biology, University of York, York, UK.
- York Biomedical Research Institute, University of York, York, UK.
| |
Collapse
|
30
|
Bruce JIE, James AD. Targeting the Calcium Signalling Machinery in Cancer. Cancers (Basel) 2020; 12:cancers12092351. [PMID: 32825277 PMCID: PMC7565467 DOI: 10.3390/cancers12092351] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/30/2020] [Accepted: 08/08/2020] [Indexed: 12/13/2022] Open
Abstract
Cancer is caused by excessive cell proliferation and a propensity to avoid cell death, while the spread of cancer is facilitated by enhanced cellular migration, invasion, and vascularization. Cytosolic Ca2+ is central to each of these important processes, yet to date, there are no cancer drugs currently being used clinically, and very few undergoing clinical trials, that target the Ca2+ signalling machinery. The aim of this review is to highlight some of the emerging evidence that targeting key components of the Ca2+ signalling machinery represents a novel and relatively untapped therapeutic strategy for the treatment of cancer.
Collapse
Affiliation(s)
- Jason I. E. Bruce
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
- Correspondence: ; Tel.: +44-(0)-161-275-5484
| | - Andrew D. James
- Department of Biology, University of York, Heslington, York YO10 5DD, UK;
| |
Collapse
|
31
|
Stokłosa P, Borgström A, Kappel S, Peinelt C. TRP Channels in Digestive Tract Cancers. Int J Mol Sci 2020; 21:E1877. [PMID: 32182937 PMCID: PMC7084354 DOI: 10.3390/ijms21051877] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/03/2020] [Accepted: 03/06/2020] [Indexed: 12/24/2022] Open
Abstract
Cancers of the digestive tract are among the most prevalent types of cancer. These types of cancers are often diagnosed at a late stage, which results in a poor prognosis. Currently, many biomedical studies focus on the role of ion channels, in particular transient receptor potential (TRP) channels, in cancer pathophysiology. TRP channels show mostly non-selective permeability to monovalent and divalent cations. TRP channels are often dysregulated in digestive tract cancers, which can result in alterations of cancer hallmark functions, such as enhanced proliferation, migration, invasion and the inability to induce apoptosis. Therefore, TRP channels could serve as potential diagnostic biomarkers. Moreover, TRP channels are mostly expressed on the cell surface and ion channel targeting drugs do not need to enter the cell, making them attractive candidate drug targets. In this review, we summarize the current knowledge about TRP channels in connection to digestive tract cancers (oral cancer, esophageal cancer, liver cancer, pancreatic cancer, gastric cancer and colorectal cancer) and give an outlook on the potential of TRP channels as cancer biomarkers or therapeutic targets.
Collapse
Affiliation(s)
- Paulina Stokłosa
- Institute of Biochemistry and Molecular Medicine, National Center of Competence in Research NCCR TransCure, University of Bern, 3012 Bern, Switzerland; (A.B.); (S.K.); (C.P.)
| | | | | | | |
Collapse
|
32
|
Asghar MY, Törnquist K. Transient Receptor Potential Canonical (TRPC) Channels as Modulators of Migration and Invasion. Int J Mol Sci 2020; 21:E1739. [PMID: 32138386 PMCID: PMC7084769 DOI: 10.3390/ijms21051739] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 02/25/2020] [Accepted: 02/26/2020] [Indexed: 12/13/2022] Open
Abstract
Calcium (Ca2+) is perhaps the most versatile signaling molecule in cells. Ca2+ regulates a large number of key events in cells, ranging from gene transcription, motility, and contraction, to energy production and channel gating. To accomplish all these different functions, a multitude of channels, pumps, and transporters are necessary. A group of channels participating in these processes is the transient receptor potential (TRP) family of cation channels. These channels are divided into 29 subfamilies, and are differentially expressed in man, rodents, worms, and flies. One of these subfamilies is the transient receptor potential canonical (TRPC) family of channels. This ion channel family comprises of seven isoforms, labeled TRPC1-7. In man, six functional forms are expressed (TRPC1, TRPC3-7), whereas TRPC2 is a pseudogene; thus, not functionally expressed. In this review, we will describe the importance of the TRPC channels and their interacting molecular partners in the etiology of cancer, particularly in regard to regulating migration and invasion.
Collapse
Affiliation(s)
- Muhammad Yasir Asghar
- Minerva Foundation Institute for Medical Research, Biomedicum Helsinki 2U, Tukholmankatu 8, 00290 Helsinki, Finland;
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Tykistökatu 6A, 20520 Turku, Finland
| | - Kid Törnquist
- Minerva Foundation Institute for Medical Research, Biomedicum Helsinki 2U, Tukholmankatu 8, 00290 Helsinki, Finland;
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Tykistökatu 6A, 20520 Turku, Finland
| |
Collapse
|
33
|
Irnaten M, O'Malley G, Clark AF, O'Brien CJ. Transient receptor potential channels TRPC1/TRPC6 regulate lamina cribrosa cell extracellular matrix gene transcription and proliferation. Exp Eye Res 2020; 193:107980. [PMID: 32088241 DOI: 10.1016/j.exer.2020.107980] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 01/13/2020] [Accepted: 02/17/2020] [Indexed: 02/06/2023]
Abstract
The lamina cribrosa (LC) in glaucoma is with augmented production of extracellular matrix proteins (ECM) and connective tissue fibrosis. Fundamental pathological mechanisms for this fibrosis comprise fibrotic growth factors and oxidative stress. Transient receptor potential canonical channels (TRPC) channels play a key role in ECM fibrosis. Here, we study TRPC expression in glaucomatous LC cells, and investigate the role of TRPC in oxidative stress induced-profibrotic ECM gene transcription and cell proliferation in normal LC cells. Age-matched human LC cells (normal, n = 3 donors; glaucoma, n = 3 donors) were used. Hydrogen peroxide (H2O2, 100 μM), was used to induce oxidative stress in LC cells in the presence or absence of the pan TRPC inhibitor SKF96365 (10 μM) or knockdown of TRPC1/6 with siRNA. After treatments, ECM gene transcription, LC cell viability and proliferation and the phosphorylation of the transcription factor NFATc3, were measured using real time RT-PCR, colorimetric cell counting with the methyl-thiazolyl tetrazolium salt (MTS) assay, and Western immunoblotting, respectively. Results showed that TRPC1/C6 transcript and protein expression levels were significantly (p < 0.05) enhanced in glaucoma LC cells. Both SKF96365 and siRNA-TRPC1/C6 treatments significantly reduced the oxidative stress induced-ECM gene expression (transforming growth factor-β1 (TGFβ1), alpha smooth muscle actin (α-SMA), and collagen type 1A1 (Col1A1)), and cell proliferation in normal and glaucoma LC cells. Also, SKF96365 treatment inhibited the H2O2-induced NFATc3 protein dephosphorylation in LC cells. In conclusion, TRPC1/C6 expression is enhanced in glaucoma LC cells. These channels may contribute to oxidative stress-induced ECM gene transcription and cell proliferation in normal and glaucoma LC cells through Ca2+-NFATc3 signaling pathway mechanism. TRPC1 and TRPC6 channels could be important therapeutic targets to prevent ECM remodeling and fibrosis development in glaucoma optic neuropathy.
Collapse
Affiliation(s)
- M Irnaten
- Department of Ophthalmology, Mater Misericordiae Hospital, Dublin 7, Ireland; School of Medicine, University College Dublin, Dublin 4, Ireland.
| | - G O'Malley
- School of Medicine, University College Dublin, Dublin 4, Ireland
| | - A F Clark
- Dept. Pharmacology & Neuroscience and the North Texas Eye Research Institute, U. North Texas, Health Science Centre, Ft Worth, TX, USA
| | - C J O'Brien
- Department of Ophthalmology, Mater Misericordiae Hospital, Dublin 7, Ireland; School of Medicine, University College Dublin, Dublin 4, Ireland
| |
Collapse
|
34
|
Wypych D, Pomorski P. Calcium Signaling in Glioma Cells: The Role of Nucleotide Receptors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1202:67-86. [PMID: 32034709 DOI: 10.1007/978-3-030-30651-9_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Calcium signaling is probably one of the evolutionary oldest and the most common way by which the signal can be transmitted from the cell environment to the cytoplasmic calcium binding effectors. Calcium signal is fast and due to diversity of calcium binding proteins it may have a very broad effect on cell behavior. Being a crucial player in neuronal transmission it is also very important for glia physiology. It is responsible for the cross-talk between neurons and astrocytes, for microglia activation and motility. Changes in calcium signaling are also crucial for the behavior of transformed glioma cells. The present chapter summarizes molecular mechanisms of calcium signal formation present in glial cells with a strong emphasis on extracellular nucleotide-evoked signaling pathways. Some aspects of glioma C6 signaling such as the cross-talk between P2Y1 and P2Y12 nucleotide receptors in calcium signal generation will be discussed in-depth, to show complexity of machinery engaged in formation of this signal. Moreover, possible mechanisms of modulation of the calcium signal in diverse environments there will be presented herein. Finally, the possible role of calcium signal in glioma motility is also discussed. This is a very important issue, since glioma cells, contrary to the vast majority of neoplastic cells, cannot spread in the body with the bloodstream and, at least in early stages of tumor development, may expand only by means of sheer motility.
Collapse
Affiliation(s)
- Dorota Wypych
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Paweł Pomorski
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|
35
|
Abstract
Two decades ago a class of ion channels, hitherto unsuspected, was discovered. In mammals these Transient Receptor Potential channels (TRPs) have not only expanded in number (to 26 functional channels) but also expanded the view of our interface with the physical and chemical environment. Some are heat and cold sensors while others monitor endogenous and/or exogenous chemical signals. Some TRP channels monitor osmotic potential, and others measure cell movement, stretching, and fluid flow. Many TRP channels are major players in nociception and integration of pain signals. One member of the vanilloid sub-family of channels is TRPV6. This channel is highly selective for divalent cations, particularly calcium, and plays a part in general whole-body calcium homeostasis, capturing calcium in the gut from the diet. TRPV6 can be greatly elevated in a number of cancers deriving from epithelia and considerable study has been made of its role in the cancer phenotype where calcium control is dysfunctional. This review compiles and updates recent published work on TRPV6 as a promising drug target in a number of cancers including those afflicting breast, ovarian, prostate and pancreatic tissues.
Collapse
Affiliation(s)
- John M. Stewart
- Soricimed Biopharma Inc. 18 Botsford Street, Moncton, NB, Canada, E1C 4W7
| |
Collapse
|
36
|
Perrouin-Verbe MA, Schoentgen N, Talagas M, Garlantezec R, Uguen A, Doucet L, Rosec S, Marcorelles P, Potier-Cartereau M, Vandier C, Ferec C, Fromont G, Fournier G, Valeri A, Mignen O. Overexpression of certain transient receptor potential and Orai channels in prostate cancer is associated with decreased risk of systemic recurrence after radical prostatectomy. Prostate 2019; 79:1793-1804. [PMID: 31475744 DOI: 10.1002/pros.23904] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Accepted: 08/16/2019] [Indexed: 12/24/2022]
Abstract
BACKGROUND Several studies had suggested the potential role of calcium signaling in prostate cancer (PCa) prognosis and agressiveness. We aimed to investigate selected proteins contributing to calcium (Ca2+ ) signaling, (Orai, stromal interaction molecule (STIM), and transient receptor potential (TRP) channels) and involved in cancer hallmarks, as independent predictors of systemic recurrence after radical prostatectomy (RP). METHODS A case-control study including 112 patients with clinically localized PCa treated by RP between 2002 and 2009 and with at least 6-years' follow-up. Patients were divided into two groups according to the absence or presence of systemic recurrence. Expression levels of 10 proteins involved in Ca2+ signaling (TRPC1, TRPC4, TRPV5, TRPV6, TRPM8, STIM1, STIM2, Orai1, Orai2, and Orai3), were assessed by immunohistochemistry using tissue microarrays (TMAs) constructed from paraffin-embedded PCa specimens. The level of expression of the various transcripts in PCa was assessed using quantitative polymerase chain reaction (qPCR) analysis. RNA samples for qPCR were obtained from fresh frozen tissue samples of PCa after laser capture microdissection on RP specimens. Relative gene expression was analyzed using the 2-▵▵Ct method. RESULTS Multivariate analysis showed that increased expression of TRPC1, TRPC4, TRPV5, TRPV6, TRPM8, and Orai2 was significantly associated with a lower risk of systemic recurrence after RP, independently of the prostate-specific antigen (PSA) level, percentage of positive biopsies, and surgical margin (SM) status (P = .007, P = .01, P < .001, P = .0065, P = .007, and P = .01, respectively). For TRPC4, TRPV5, and TRPV6, this association was also independent of Gleason score and pT stage. Moreover, overexpression of TRPV6 and Orai2 was significantly associated with longer time to recurrence after RP (P = .048 and .023, respectively). Overexpression of TRPC4, TRPV5, TRPV6, and Orai2 transcripts was observed in group R- (3.71-, 5.7-, 1.14-, and 2.65-fold increase, respectively). CONCLUSIONS This is the first study to suggest the independent prognostic value of certain proteins involved in Ca2+ influx in systemic recurrence after RP: overexpression of TRPC1, TRPC4, TRPV5, TRPV6, TRPM8, and Orai2 is associated with a lower risk of systemic recurrence. TRPC4, TRPV5, and TRPV6 appear to be particularly interesting, as they are independent of the five commonly used predictive factors, that is, PSA, percentage of positive biopsies, SM status, Gleason score, and pT stage.
Collapse
Affiliation(s)
- M A Perrouin-Verbe
- Department of Urology, CHRU-Université de Brest, Brest, France
- INSERM UMR1078, Université de Bretagne Occidentale, Brest, France
- Department of Urology, CHU-Université de Nantes, Nantes, France
| | - N Schoentgen
- Department of Urology, CHRU-Université de Brest, Brest, France
- INSERM UMR1078, Université de Bretagne Occidentale, Brest, France
| | - M Talagas
- Department of Pathology, CHRU-Université de Brest, Brest, France
- EA 4685 - LIEN, Université de Bretagne Occidentale, Brest, France
| | - R Garlantezec
- INSERM UMR1085-IRSET, Université Rennes 1, Rennes, France
| | - A Uguen
- Department of Pathology, CHRU-Université de Brest, Brest, France
| | - L Doucet
- Department of Pathology, CHRU-Université de Brest, Brest, France
| | - S Rosec
- INSERM UMR1412, Centre d'Investigation Clinique, CHRU-Université de Brest, Brest, France
| | - P Marcorelles
- Department of Pathology, CHRU-Université de Brest, Brest, France
| | | | - C Vandier
- INSERM UMR1069, Université François Rabelais, Tours, France
| | - C Ferec
- INSERM UMR1078, Université de Bretagne Occidentale, Brest, France
| | - G Fromont
- INSERM UMR1069, Université François Rabelais, Tours, France
- Department of Pathology, CHRU-Université de Tours, Tours, France
| | - G Fournier
- Department of Urology, CHRU-Université de Brest, Brest, France
| | - A Valeri
- Department of Urology, CHRU-Université de Brest, Brest, France
| | - O Mignen
- INSERM UMR1078, Université de Bretagne Occidentale, Brest, France
- INSERM UMR1227, Université de Bretagne Occidentale, Brest, France
| |
Collapse
|
37
|
Capiod T, Barry Delongchamps N, Pigat N, Souberbielle JC, Goffin V. Do dietary calcium and vitamin D matter in men with prostate cancer? Nat Rev Urol 2019; 15:453-461. [PMID: 29765146 DOI: 10.1038/s41585-018-0015-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Active surveillance (AS) is an attractive alternative to immediate treatment for men with low-risk prostate cancer. Thus, the identification of environmental factors that promote the progression of indolent disease towards aggressive stages is critical to optimize clinical management. Epidemiological studies suggest that calcium-rich diets contribute to an increased risk of developing prostate cancer and that vitamin D reduces this risk. However, the potential effect of these nutrients on the progression of early-stage prostate tumours is uncertain, as studies in this setting are scarce and have not provided unambiguous conclusions. By contrast, the results of a preclinical study from our own group demonstrate that a diet high in calcium dose-dependently accelerated the progression of early-stage prostate tumours and that dietary vitamin D prevented this effect. The extent to which the conclusions of preclinical and epidemiological studies support a role for calcium and vitamin D and the relevance of monitoring and adjustment of calcium and/or vitamin D intake in patients on AS require further investigation.
Collapse
Affiliation(s)
- Thierry Capiod
- Inserm Unit 1151, Institut Necker-Enfants Malades (INEM), Université Paris Descartes, Paris, France
| | - Nicolas Barry Delongchamps
- Inserm Unit 1151, Institut Necker-Enfants Malades (INEM), Université Paris Descartes, Paris, France.,Urology Department, Hôpital Cochin, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Natascha Pigat
- Inserm Unit 1151, Institut Necker-Enfants Malades (INEM), Université Paris Descartes, Paris, France
| | - Jean-Claude Souberbielle
- Inserm Unit 1151, Institut Necker-Enfants Malades (INEM), Université Paris Descartes, Paris, France.,Physiology Department, Hôpital Necker-Enfants Malades, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Vincent Goffin
- Inserm Unit 1151, Institut Necker-Enfants Malades (INEM), Université Paris Descartes, Paris, France.
| |
Collapse
|
38
|
Haustrate A, Hantute-Ghesquier A, Prevarskaya N, Lehen’kyi V. RETRACTED: TRPV6 calcium channel regulation, downstream pathways, and therapeutic targeting in cancer. Cell Calcium 2019; 80:117-124. [DOI: 10.1016/j.ceca.2019.04.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 04/19/2019] [Accepted: 04/20/2019] [Indexed: 11/30/2022]
|
39
|
Cui C, Yang J, Fu L, Wang M, Wang X. Progress in understanding mitochondrial calcium uniporter complex-mediated calcium signalling: A potential target for cancer treatment. Br J Pharmacol 2019; 176:1190-1205. [PMID: 30801705 DOI: 10.1111/bph.14632] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 01/02/2019] [Accepted: 01/29/2019] [Indexed: 12/15/2022] Open
Abstract
Due to its Ca2+ buffering capacity, the mitochondrion is one of the most important intracellular organelles in regulating Ca2+ dynamic oscillation. Mitochondrial calcium uniporter (MCU) is the primary mediator of Ca2+ influx into mitochondria, manipulating cell energy metabolism, ROS production, and programmed cell death, all of which are critical for carcinogenesis. The understanding of the uniporter complex was significantly boosted by recent groundbreaking discoveries that identified the uniporter pore-forming subunit MCU and its regulatory molecules, including MCU-dominant negative β subunit (MCUb), essential MCU regulator (EMRE), MCU regulator 1 (MCUR1), mitochondrial calcium uptake (MICU) 1, MICU2, and MICU3. These provide the means and molecular platform to investigate MCU complex (uniplex)-mediated impaired Ca2+ signalling in physiology and pathology. This review aims to summarize the progress of the understanding regulatory mechanisms of uniplex, roles of uniplex-mediated Ca2+ signalling in cancer, and potential pharmacological inhibitors of MCU.
Collapse
Affiliation(s)
- Chaochu Cui
- Henan Key Laboratory of Medical Tissue Regeneration, College of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China.,Henan Key Laboratory of Neurorestoratology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China.,State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jianbo Yang
- Henan Key Laboratory of Medical Tissue Regeneration, College of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Liwu Fu
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Mingyong Wang
- School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Xianwei Wang
- Henan Key Laboratory of Medical Tissue Regeneration, College of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
40
|
Wang H, Tian L, Liu J, Goldstein A, Bado I, Zhang W, Arenkiel BR, Li Z, Yang M, Du S, Zhao H, Rowley DR, Wong STC, Gugala Z, Zhang XHF. The Osteogenic Niche Is a Calcium Reservoir of Bone Micrometastases and Confers Unexpected Therapeutic Vulnerability. Cancer Cell 2018; 34:823-839.e7. [PMID: 30423299 PMCID: PMC6239211 DOI: 10.1016/j.ccell.2018.10.002] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 07/10/2018] [Accepted: 10/02/2018] [Indexed: 02/06/2023]
Abstract
The fate of disseminated tumor cells is largely determined by microenvironment (ME) niche. The osteogenic niche promotes cancer cell proliferation and bone metastasis progression. We investigated the underlying mechanisms using pre-clinical models and analyses of clinical data. We discovered that the osteogenic niche serves as a calcium (Ca) reservoir for cancer cells through gap junctions. Cancer cells cannot efficiently absorb Ca from ME, but depend on osteogenic cells to increase intracellular Ca concentration. The Ca signaling, together with previously identified mammalian target of rapamycin signaling, promotes bone metastasis progression. Interestingly, effective inhibition of these pathways can be achieved by danusertib, or a combination of everolimus and arsenic trioxide, which provide possibilities of eliminating bone micrometastases using clinically established drugs.
Collapse
Affiliation(s)
- Hai Wang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Dan L. Duncan Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Lin Tian
- Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Dan L. Duncan Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Jun Liu
- Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Dan L. Duncan Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Amit Goldstein
- Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Dan L. Duncan Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Igor Bado
- Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Dan L. Duncan Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Weijie Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Dan L. Duncan Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Benjamin R Arenkiel
- Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; McNair Medical Institute, Baylor College of Medicine, BCM600, One Baylor Plaza, Houston, TX 77030, USA
| | - Zonghai Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, P.R. China
| | - Meng Yang
- Department of General Surgery, China-Japan Friendship Hospital, Beijing 100029, China
| | - Shiyu Du
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Hong Zhao
- Department of Systems Medicine and Bioengineering, Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, TX 77030, USA
| | - David R Rowley
- Dan L. Duncan Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Stephen T C Wong
- Dan L. Duncan Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Systems Medicine and Bioengineering, Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, TX 77030, USA
| | - Zbigniew Gugala
- Department of Orthopaedic Surgery & Rehabilitation, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Xiang H-F Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Dan L. Duncan Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; McNair Medical Institute, Baylor College of Medicine, BCM600, One Baylor Plaza, Houston, TX 77030, USA.
| |
Collapse
|
41
|
Prevarskaya N, Skryma R, Shuba Y. Ion Channels in Cancer: Are Cancer Hallmarks Oncochannelopathies? Physiol Rev 2018; 98:559-621. [PMID: 29412049 DOI: 10.1152/physrev.00044.2016] [Citation(s) in RCA: 277] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Genomic instability is a primary cause and fundamental feature of human cancer. However, all cancer cell genotypes generally translate into several common pathophysiological features, often referred to as cancer hallmarks. Although nowadays the catalog of cancer hallmarks is quite broad, the most common and obvious of them are 1) uncontrolled proliferation, 2) resistance to programmed cell death (apoptosis), 3) tissue invasion and metastasis, and 4) sustained angiogenesis. Among the genes affected by cancer, those encoding ion channels are present. Membrane proteins responsible for signaling within cell and among cells, for coupling of extracellular events with intracellular responses, and for maintaining intracellular ionic homeostasis ion channels contribute to various extents to pathophysiological features of each cancer hallmark. Moreover, tight association of these hallmarks with ion channel dysfunction gives a good reason to classify them as special type of channelopathies, namely oncochannelopathies. Although the relation of cancer hallmarks to ion channel dysfunction differs from classical definition of channelopathies, as disease states causally linked with inherited mutations of ion channel genes that alter channel's biophysical properties, in a broader context of the disease state, to which pathogenesis ion channels essentially contribute, such classification seems absolutely appropriate. In this review the authors provide arguments to substantiate such point of view.
Collapse
Affiliation(s)
- Natalia Prevarskaya
- INSERM U-1003, Equipe Labellisée par la Ligue Nationale contre le Cancer et LABEX, Université Lille1 , Villeneuve d'Ascq , France ; Bogomoletz Institute of Physiology and International Center of Molecular Physiology, NASU, Kyiv-24, Ukraine
| | - Roman Skryma
- INSERM U-1003, Equipe Labellisée par la Ligue Nationale contre le Cancer et LABEX, Université Lille1 , Villeneuve d'Ascq , France ; Bogomoletz Institute of Physiology and International Center of Molecular Physiology, NASU, Kyiv-24, Ukraine
| | - Yaroslav Shuba
- INSERM U-1003, Equipe Labellisée par la Ligue Nationale contre le Cancer et LABEX, Université Lille1 , Villeneuve d'Ascq , France ; Bogomoletz Institute of Physiology and International Center of Molecular Physiology, NASU, Kyiv-24, Ukraine
| |
Collapse
|
42
|
Kaushik V, Yakisich JS, Kumar A, Azad N, Iyer AKV. Ionophores: Potential Use as Anticancer Drugs and Chemosensitizers. Cancers (Basel) 2018; 10:E360. [PMID: 30262730 PMCID: PMC6211070 DOI: 10.3390/cancers10100360] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 09/13/2018] [Accepted: 09/21/2018] [Indexed: 01/08/2023] Open
Abstract
Ion homeostasis is extremely important for the survival of both normal as well as neoplastic cells. The altered ion homeostasis found in cancer cells prompted the investigation of several ionophores as potential anticancer agents. Few ionophores, such as Salinomycin, Nigericin and Obatoclax, have demonstrated potent anticancer activities against cancer stem-like cells that are considered highly resistant to chemotherapy and responsible for tumor relapse. The preclinical success of these compounds in in vitro and in vivo models have not been translated into clinical trials. At present, phase I/II clinical trials demonstrated limited benefit of Obatoclax alone or in combination with other anticancer drugs. However, future development in targeted drug delivery may be useful to improve the efficacy of these compounds. Alternatively, these compounds may be used as leading molecules for the development of less toxic derivatives.
Collapse
Affiliation(s)
- Vivek Kaushik
- Department of Pharmaceutical Sciences, School of Pharmacy, Hampton University, Hampton, VA 23668, USA.
| | - Juan Sebastian Yakisich
- Department of Pharmaceutical Sciences, School of Pharmacy, Hampton University, Hampton, VA 23668, USA.
| | - Anil Kumar
- Great Plains Health, North Platte, NE 69101, USA.
| | - Neelam Azad
- Department of Pharmaceutical Sciences, School of Pharmacy, Hampton University, Hampton, VA 23668, USA.
| | - Anand K V Iyer
- Department of Pharmaceutical Sciences, School of Pharmacy, Hampton University, Hampton, VA 23668, USA.
| |
Collapse
|
43
|
Jardin I, Diez-Bello R, Lopez JJ, Redondo PC, Salido GM, Smani T, Rosado JA. TRPC6 Channels Are Required for Proliferation, Migration and Invasion of Breast Cancer Cell Lines by Modulation of Orai1 and Orai3 Surface Exposure. Cancers (Basel) 2018; 10:cancers10090331. [PMID: 30223530 PMCID: PMC6162527 DOI: 10.3390/cancers10090331] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 09/07/2018] [Accepted: 09/13/2018] [Indexed: 02/07/2023] Open
Abstract
Transient receptor potential channels convey signaling information from a number of stimuli to a wide variety of cellular functions, mainly by inducing changes in cytosolic Ca2+ concentration. Different members of the TRPC, TRPM and TRPV subfamilies have been reported to play a role in tumorigenesis. Here we show that the estrogen receptor positive and triple negative breast cancer cell lines, MCF7 and MDA-MB-231, respectively, exhibit enhanced expression of the TRPC6 channel as compared to the non-tumoral MCF10A cell line. In vitro TRPC6 knockdown using shRNA impaired MCF7 and MDA-MB-231 cell proliferation, migration and invasion detected by BrdU incorporation, wound healing and Boyden chamber assays, respectively. Using RNAi-mediated TRPC6 silencing as well as overexpression of the pore-dead dominant-negative TRPC6 mutant we have found that TRPC6 plays a relevant role in the activation of store-operated Ca2+ entry in the breast cancer cell lines but not in non-tumoral breast cells. Finally, we have found that TRPC6 interacts with Orai1 and Orai3 in MCF7 and MDA-MB-231 cells and is required for the translocation of Orai1 and Orai3 to the plasma membrane in MDA-MB-231 and MCF7 cells, respectively, upon Ca2+ store depletion. These findings introduce a novel mechanism for the modulation of Ca2+ influx and the development of different cancer hallmarks in breast cancer cells.
Collapse
Affiliation(s)
- Isaac Jardin
- Cellular Physiology Research Group, Department of Physiology, Institute of Molecular Pathology Biomarkers, University of Extremadura, 10003 Caceres, Spain.
| | - Raquel Diez-Bello
- Cellular Physiology Research Group, Department of Physiology, Institute of Molecular Pathology Biomarkers, University of Extremadura, 10003 Caceres, Spain.
| | - Jose J Lopez
- Cellular Physiology Research Group, Department of Physiology, Institute of Molecular Pathology Biomarkers, University of Extremadura, 10003 Caceres, Spain.
| | - Pedro C Redondo
- Cellular Physiology Research Group, Department of Physiology, Institute of Molecular Pathology Biomarkers, University of Extremadura, 10003 Caceres, Spain.
| | - Ginés M Salido
- Cellular Physiology Research Group, Department of Physiology, Institute of Molecular Pathology Biomarkers, University of Extremadura, 10003 Caceres, Spain.
| | - Tarik Smani
- Department of Medical Physiology and Biophysic, Institute of Biomedicine of Sevilla, 41013 Sevilla, Spain.
| | - Juan A Rosado
- Cellular Physiology Research Group, Department of Physiology, Institute of Molecular Pathology Biomarkers, University of Extremadura, 10003 Caceres, Spain.
| |
Collapse
|
44
|
Carbonate Apatite Nanoparticles-Facilitated Intracellular Delivery of siRNA(s) Targeting Calcium Ion Channels Efficiently Kills Breast Cancer Cells. TOXICS 2018; 6:toxics6030034. [PMID: 29949888 PMCID: PMC6161028 DOI: 10.3390/toxics6030034] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 06/11/2018] [Accepted: 06/20/2018] [Indexed: 12/13/2022]
Abstract
Specific gene knockdown facilitated by short interfering RNA (siRNA) is a potential approach for suppressing the expression of ion channels and transporter proteins to kill breast cancer cells. The overexpression of calcium ion channels and transporter genes is seen in the MCF-7 breast cancer cell line. Since naked siRNA is anionic and prone to nuclease-mediated degradation, it has limited permeability across the cationic cell membrane and short systemic half-life, respectively. Carbonate apatite (CA) nanoparticles were formulated, characterized, loaded with a series of siRNAs, and delivered into MCF-7 and 4T1 breast cancer cells to selectively knockdown the respective calcium and magnesium ion channels and transporters. Individual knockdown of TRPC6, TRPM7, TRPM8, SLC41A1, SLC41A2, ORAI1, ORAI3, and ATP2C1 genes showed significant reduction (p < 0.001) in cell viability depending on the cancer cell type. From a variety of combinations of siRNAs, the combination of TRPC6, TRPM8, SLC41A2, and MAGT1 siRNAs delivered via CA produced the greatest cell viability reduction, resulting in a cytotoxicity effect of 57.06 ± 3.72% (p < 0.05) and 59.83 ± 2.309% (p = 0.09) in 4T1 and MCF-7 cell lines, respectively. Some of the combinations were shown to suppress the Akt pathway in Western Blot analysis when compared to the controls. Therefore, CA-siRNA-facilitated gene knockdown in vitro holds a high prospect for deregulating cell proliferation and survival pathways through the modulation of Ca2+ signaling in breast cancer cells.
Collapse
|
45
|
Calcium and Nuclear Signaling in Prostate Cancer. Int J Mol Sci 2018; 19:ijms19041237. [PMID: 29671777 PMCID: PMC5979488 DOI: 10.3390/ijms19041237] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 04/15/2018] [Accepted: 04/17/2018] [Indexed: 02/06/2023] Open
Abstract
Recently, there have been a number of developments in the fields of calcium and nuclear signaling that point to new avenues for a more effective diagnosis and treatment of prostate cancer. An example is the discovery of new classes of molecules involved in calcium-regulated nuclear import and nuclear calcium signaling, from the G protein-coupled receptor (GPCR) and myosin families. This review surveys the new state of the calcium and nuclear signaling fields with the aim of identifying the unifying themes that hold out promise in the context of the problems presented by prostate cancer. Genomic perturbations, kinase cascades, developmental pathways, and channels and transporters are covered, with an emphasis on nuclear transport and functions. Special attention is paid to the molecular mechanisms behind prostate cancer progression to the malignant forms and the unfavorable response to anti-androgen treatment. The survey leads to some new hypotheses that connect heretofore disparate results and may present a translational interest.
Collapse
|
46
|
Zhang X, Zhao Z, Ma L, Guo Y, Li X, Zhao L, Tian C, Tang X, Cheng D, Chen Z, Zhang L. The effects of transient receptor potential channel (TRPC) on airway smooth muscle cell isolated from asthma model mice. J Cell Biochem 2018; 119:6033-6044. [PMID: 29574924 DOI: 10.1002/jcb.26801] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 02/23/2018] [Indexed: 12/31/2022]
Abstract
This study aimed to validate whether transient receptor potential channel1 (TRPC1) and TRPC3 participate in the regulation the proliferation of airway smooth muscle cells (ASMCs) through modulating calcium ion (Ca2+ ) influx in vitro. Chronic model of murine asthma was induced and ASMCs isolated from asthmatic mice were used in this whole study. TRPC1 and TRPC3 were upregulated in asthmatic mouse ASMCs and selected for further investigation. Ca2+ concentration and the cell viability of asthmatic mouse ASMCs were significantly higher than that from non- asthma mice, however, TRPC channels blocker SKF96365 alleviated these effects. Furthermore, TRPC1 or TRPC3 overexpression markedly increased Ca2+ concentration and significantly induced the viability of ASMCs; whereas TRPC1 or TRPC3 knockdown exerted the completely conversed effects. Moreover, knockdown of TRPC1 and TRPC3 also exerted different effects on the protein expression of growth-related proteins p-p38, p-JNK, cleaved caspase-3 and Bcl-2, as well as on cell cycle. Finally, we found Ca2+ chelator EGTA or BAPTA-AM significantly diminished the effects of si-TRPC1 and si-TRPC3 on the cell viability, cell cycle, and the protein expression of p-p38, p-JNK, cleaved caspase-3, and Bcl-2 in asthmatic mouse ASMCs. Our findings demonstrated that the effects of TRPC1 and TRPC3 on the cell viability and cell cycle of ASMCs were, at least partially, through regulating Ca2+ influx.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- Department of Respiratory Medicine, People's Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Zhixin Zhao
- Department of Respiratory Medicine, People's Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Lijun Ma
- Department of Respiratory Medicine, People's Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Yali Guo
- Department of Respiratory Medicine, People's Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Xiaosu Li
- Department of Respiratory Medicine, People's Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Limin Zhao
- Department of Respiratory Medicine, People's Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Cuijie Tian
- Department of Respiratory Medicine, People's Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Xueyi Tang
- Department of Respiratory Medicine, People's Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Dongjun Cheng
- Department of Respiratory Medicine, People's Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Zhuochang Chen
- Department of Respiratory Medicine, People's Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Luoxian Zhang
- Department of Respiratory Medicine, People's Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| |
Collapse
|
47
|
Xu J, Yang Y, Xie R, Liu J, Nie X, An J, Wen G, Liu X, Jin H, Tuo B. The NCX1/TRPC6 Complex Mediates TGFβ-Driven Migration and Invasion of Human Hepatocellular Carcinoma Cells. Cancer Res 2018; 78:2564-2576. [PMID: 29500176 DOI: 10.1158/0008-5472.can-17-2061] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 12/19/2017] [Accepted: 02/27/2018] [Indexed: 01/11/2023]
Abstract
TGFβ plays an important role in the progression and metastasis of hepatocellular carcinoma (HCC), yet the cellular and molecular mechanisms underlying this role are not completely understood. In this study, we investigated the roles of Na+/Ca2+ exchanger 1 (NCX1) and canonical transient receptor potential channel 6 (TRPC6) in regulating TGFβ in human HCC. In HepG2 and Huh7 cells, TGFβ-stimulated intracellular Ca2+ increases through NCX1 and TRPC6 and induced the formation of a TRPC6/NCX1 molecular complex. This complex-mediated Ca2+ signaling regulated the effect of TGFβ on the migration, invasion, and intrahepatic metastasis of human HCC cells in nude mice. TGFβ upregulated TRPC6 and NCX1 expression, and there was a positive feedback between TRPC6/NCX1 signaling and Smad signaling. Expression of both TRPC6 and NCX1 were markedly increased in native human HCC tissues, and their expression levels positively correlated with advancement of HCC in patients. These data reveal the role of the TRPC6/NCX1 molecular complex in HCC and in regulating TGFβ signaling, and they implicate TRPC6 and NCX1 as potential targets for therapy in HCC.Significance: TGFβ induces the formation and activation of a TRPC6/NCX1 molecular complex, which mediates the effects of TGFβ on the migration, invasion, and intrahepatic metastasis of HCC. Cancer Res; 78(10); 2564-76. ©2018 AACR.
Collapse
Affiliation(s)
- Jingyu Xu
- Department of Gastroenterology, Affiliated Hospital, Zunyi Medical College, Zunyi, China.,Digestive Disease Institute of Guizhou Province, Zunyi, China.,Clinical Medical Research Center of Digestive Diseases of Guizhou Province, Zunyi, China
| | - Yuan Yang
- Department of Gastroenterology, Affiliated Hospital, Zunyi Medical College, Zunyi, China.,Digestive Disease Institute of Guizhou Province, Zunyi, China.,Clinical Medical Research Center of Digestive Diseases of Guizhou Province, Zunyi, China
| | - Rui Xie
- Department of Gastroenterology, Affiliated Hospital, Zunyi Medical College, Zunyi, China.,Digestive Disease Institute of Guizhou Province, Zunyi, China.,Clinical Medical Research Center of Digestive Diseases of Guizhou Province, Zunyi, China
| | - Jilong Liu
- Department of Gastroenterology, Affiliated Hospital, Zunyi Medical College, Zunyi, China.,Digestive Disease Institute of Guizhou Province, Zunyi, China.,Clinical Medical Research Center of Digestive Diseases of Guizhou Province, Zunyi, China
| | - Xubiao Nie
- Department of Gastroenterology, Affiliated Hospital, Zunyi Medical College, Zunyi, China.,Digestive Disease Institute of Guizhou Province, Zunyi, China.,Clinical Medical Research Center of Digestive Diseases of Guizhou Province, Zunyi, China
| | - Jiaxing An
- Department of Gastroenterology, Affiliated Hospital, Zunyi Medical College, Zunyi, China.,Digestive Disease Institute of Guizhou Province, Zunyi, China.,Clinical Medical Research Center of Digestive Diseases of Guizhou Province, Zunyi, China
| | - Guorong Wen
- Department of Gastroenterology, Affiliated Hospital, Zunyi Medical College, Zunyi, China.,Digestive Disease Institute of Guizhou Province, Zunyi, China.,Clinical Medical Research Center of Digestive Diseases of Guizhou Province, Zunyi, China
| | - Xuemei Liu
- Department of Gastroenterology, Affiliated Hospital, Zunyi Medical College, Zunyi, China.,Digestive Disease Institute of Guizhou Province, Zunyi, China.,Clinical Medical Research Center of Digestive Diseases of Guizhou Province, Zunyi, China
| | - Hai Jin
- Department of Gastroenterology, Affiliated Hospital, Zunyi Medical College, Zunyi, China.,Digestive Disease Institute of Guizhou Province, Zunyi, China.,Clinical Medical Research Center of Digestive Diseases of Guizhou Province, Zunyi, China
| | - Biguang Tuo
- Department of Gastroenterology, Affiliated Hospital, Zunyi Medical College, Zunyi, China. .,Digestive Disease Institute of Guizhou Province, Zunyi, China.,Clinical Medical Research Center of Digestive Diseases of Guizhou Province, Zunyi, China
| |
Collapse
|
48
|
Liu T, Liao Y, Tao H, Zeng J, Wang G, Yang Z, Wang Y, Xiao Y, Zhou J, Wang X. RNA interference-mediated depletion of TRPM8 enhances the efficacy of epirubicin chemotherapy in prostate cancer LNCaP and PC3 cells. Oncol Lett 2018. [PMID: 29541177 PMCID: PMC5835898 DOI: 10.3892/ol.2018.7847] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Several studies have shown that transient receptor potential cation channel subfamily M member 8 (TRPM8), which has been regarded as a novel prostate-specific marker, serves a key role in processes such as the proliferation, viability and cell migration of prostate cancer cells. Efforts have been made to uncover the potential role of targeting TRPM8 in the management of prostate cancer; it has been verified that TRPM8-targeted blockade, either by RNA interference-mediated depletion or specific TRPM8 inhibitors, could reduce the rate of proliferation and proliferative fraction, and induce apoptosis in prostate cancer cells. The aim of the present study was to investigate the effect of knockdown of TRPM8 on chemosensitivity in prostate cancer LNCaP and PC3 cells. The RNA interference-mediated depletion of TRPM8 inhibited proliferation and enhanced epirubicin chemosensitivity of LNCaP and PC3 cells, and promoted epirubicin-induced apoptosis by increasing the phosphorylation of p38 mitogen-activated protein kinase (hereafter p38) and c-Jun N-terminal kinase (JNK)/mitogen-activated protein kinase signaling pathways, which was demonstrated via the use of specific inhibitors of phosphorylation of p38 and JNK. The results demonstrate that the targeted silencing of TRPM8 expression is a therapeutic strategy for treatment of prostate cancer that has considerable potential, even for castration-resistant prostate cancer.
Collapse
Affiliation(s)
- Tao Liu
- Department of Urology, Jingzhou Central Hospital, The Second Clinical Medical College, Yangtze University, Jingzhou, Hubei 434020, P.R. China
| | - Yixiang Liao
- Department of Urology, Jingzhou Central Hospital, The Second Clinical Medical College, Yangtze University, Jingzhou, Hubei 434020, P.R. China
| | - Huangheng Tao
- Key Laboratory for Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Jinmin Zeng
- Department of Urology, Jingzhou Central Hospital, The Second Clinical Medical College, Yangtze University, Jingzhou, Hubei 434020, P.R. China
| | - Gang Wang
- Department of Urology, Center for Medical Science Research, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Zhonghua Yang
- Department of Urology, Center for Medical Science Research, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Yongzhi Wang
- Department of Urology, Center for Medical Science Research, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Yu Xiao
- Department of Urology, Center for Medical Science Research, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Jiajie Zhou
- Department of Urology, Jingzhou Central Hospital, The Second Clinical Medical College, Yangtze University, Jingzhou, Hubei 434020, P.R. China
| | - Xinghuan Wang
- Department of Urology, Center for Medical Science Research, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| |
Collapse
|
49
|
Qin JJ, Li X, Wang W, Zi X, Zhang R. Targeting the NFAT1-MDM2-MDMX Network Inhibits the Proliferation and Invasion of Prostate Cancer Cells, Independent of p53 and Androgen. Front Pharmacol 2017; 8:917. [PMID: 29311926 PMCID: PMC5735069 DOI: 10.3389/fphar.2017.00917] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 11/30/2017] [Indexed: 12/31/2022] Open
Abstract
The MDM2 and MDMX oncogenes are overexpressed in various types of human cancer and are highly associated with the initiation, progression, metastasis and chemotherapeutic resistance of these diseases, including prostate cancer. The present study was designed to test a natural MDM2 inhibitor, Inulanolide A (InuA), for anti-prostate cancer activity and to determine the underlying mechanism(s) of action. InuA directly bound to the RING domains of both MDM2 and MDMX with high affinity and specificity and disrupted MDM2-MDMX binding, markedly enhancing MDM2 protein degradation. We further discovered that InuA bound to the DNA binding domain of NFAT1, resulting in marked inhibition of MDM2 transcription. InuA inhibited the proliferation, migration, and invasion of prostate cancer cells, regardless of their p53 status and AR responsiveness. Double knockdown of MDM2 and NFAT1 also revealed that the expression of both of these molecules is important for InuA’s inhibitory effects on the proliferation and invasion of prostate cancer cells. In summary, InuA represents a novel class of bifunctional MDM2 inhibitors, and should be further investigated as a candidate lead compound for prostate cancer prevention and therapy.
Collapse
Affiliation(s)
- Jiang-Jiang Qin
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, United States.,Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, United States
| | - Xin Li
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, United States.,Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, United States
| | - Wei Wang
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, United States.,Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, United States.,Center for Drug Discovery, University of Houston, Houston, TX, United States
| | - Xiaolin Zi
- Department of Urology, University of California, Irvine, Irvine, CA, United States.,Department of Pharmacology, University of California, Irvine, Irvine, CA, United States
| | - Ruiwen Zhang
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, United States.,Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, United States.,Center for Drug Discovery, University of Houston, Houston, TX, United States
| |
Collapse
|
50
|
Chen L, Cao R, Wang G, Yuan L, Qian G, Guo Z, Wu CL, Wang X, Xiao Y. Downregulation of TRPM7 suppressed migration and invasion by regulating epithelial–mesenchymal transition in prostate cancer cells. Med Oncol 2017; 34:127. [DOI: 10.1007/s12032-017-0987-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 05/26/2017] [Indexed: 12/24/2022]
|