1
|
Ahmadpour S, Habibi MA, Ghazi FS, Molazadeh M, Pashaie MR, Mohammadpour Y. The effects of tumor-derived supernatants (TDS) on cancer cell progression: A review and update on carcinogenesis and immunotherapy. Cancer Treat Res Commun 2024; 40:100823. [PMID: 38875884 DOI: 10.1016/j.ctarc.2024.100823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/26/2024] [Accepted: 05/27/2024] [Indexed: 06/16/2024]
Abstract
Tumors can produce bioactive substances called tumor-derived supernatants (TDS) that modify the immune response in the host body. This can result in immunosuppressive effects that promote the growth and spread of cancer. During tumorigenesis, the exudation of these substances can disrupt the function of immune sentinels in the host and reinforce the support for cancer cell growth. Tumor cells produce cytokines, growth factors, and proteins, which contribute to the progression of the tumor and the formation of premetastatic niches. By understanding how cancer cells influence the host immune system through the secretion of these factors, we can gain new insights into cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Sajjad Ahmadpour
- Patient Safety Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Mohammad Amin Habibi
- Department of Neurosurgery, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Mikaeil Molazadeh
- Department of Medical Physics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Reza Pashaie
- Patient Safety Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran; Department of Internal Medicine, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Yousef Mohammadpour
- Department of Medical Education, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
2
|
Reticker-Flynn NE, Engleman EG. Lymph nodes: at the intersection of cancer treatment and progression. Trends Cell Biol 2023; 33:1021-1034. [PMID: 37149414 PMCID: PMC10624650 DOI: 10.1016/j.tcb.2023.04.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/04/2023] [Accepted: 04/11/2023] [Indexed: 05/08/2023]
Abstract
Metastasis to lymph nodes (LNs) is a common feature of disease progression in most solid organ malignancies. Consequently, LN biopsy and lymphadenectomy are common clinical practices, not only because of their diagnostic utility but also as a means of deterring further metastatic spread. LN metastases have the potential to seed additional tissues and can induce metastatic tolerance, a process by which tumor-specific immune tolerance in LNs promotes further disease progression. Nonetheless, phylogenetic studies have revealed that distant metastases are not necessarily derived from nodal metastases. Furthermore, immunotherapy efficacy is increasingly being attributed to initiation of systemic immune responses within LNs. We argue that lymphadenectomy and nodal irradiation should be approached with caution, particularly in patients receiving immunotherapy.
Collapse
Affiliation(s)
- Nathan E Reticker-Flynn
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Edgar G Engleman
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
3
|
Moreno CS, Winham CL, Alemozaffar M, Klein ER, Lawal IO, Abiodun-Ojo OA, Patil D, Barwick BG, Huang Y, Schuster DM, Sanda MG, Osunkoya AO. Integrated Genomic Analysis of Primary Prostate Tumor Foci and Corresponding Lymph Node Metastases Identifies Mutations and Pathways Associated with Metastasis. Cancers (Basel) 2023; 15:5671. [PMID: 38067373 PMCID: PMC10705102 DOI: 10.3390/cancers15235671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/20/2023] [Accepted: 11/29/2023] [Indexed: 02/12/2024] Open
Abstract
Prostate cancer is a highly heterogeneous disease and mortality is mainly due to metastases but the initial steps of metastasis have not been well characterized. We have performed integrative whole exome sequencing and transcriptome analysis of primary prostate tumor foci and corresponding lymph node metastases (LNM) from 43 patients enrolled in clinical trial. We present evidence that, while there are some cases of clonally independent primary tumor foci, 87% of primary tumor foci and metastases are descended from a common ancestor. We demonstrate that genes related to oxidative phosphorylation are upregulated in LNM and in African-American patients relative to White patients. We further show that mutations in TP53, FLT4, EYA1, NCOR2, CSMD3, and PCDH15 are enriched in prostate cancer metastases. These findings were validated in a meta-analysis of 3929 primary tumors and 2721 metastases and reveal a pattern of molecular alterations underlying the pathology of metastatic prostate cancer. We show that LNM contain multiple subclones that are already present in primary tumor foci. We observed enrichment of mutations in several genes including understudied genes such as EYA1, CSMD3, FLT4, NCOR2, and PCDH15 and found that mutations in EYA1 and CSMD3 are associated with a poor outcome in prostate cancer.
Collapse
Affiliation(s)
- Carlos S. Moreno
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA 30322, USA; (C.L.W.); (A.O.O.)
- Department of Biomedical Informatics, Emory University, Atlanta, GA 30322, USA
| | - Cynthia L. Winham
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA 30322, USA; (C.L.W.); (A.O.O.)
| | - Mehrdad Alemozaffar
- Department of Urology, Emory University, Atlanta, GA 30322, USA (D.P.); (M.G.S.)
| | - Emma R. Klein
- Emory College of Arts and Sciences, Atlanta, GA 30322, USA
| | - Ismaheel O. Lawal
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA 30322, USA (O.A.A.-O.); (D.M.S.)
| | - Olayinka A. Abiodun-Ojo
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA 30322, USA (O.A.A.-O.); (D.M.S.)
| | - Dattatraya Patil
- Department of Urology, Emory University, Atlanta, GA 30322, USA (D.P.); (M.G.S.)
| | - Benjamin G. Barwick
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA 30322, USA
| | - Yijian Huang
- Department of Biostatistics and Bioinformatics, Emory University, Atlanta, GA 30322, USA;
| | - David M. Schuster
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA 30322, USA (O.A.A.-O.); (D.M.S.)
| | - Martin G. Sanda
- Department of Urology, Emory University, Atlanta, GA 30322, USA (D.P.); (M.G.S.)
| | - Adeboye O. Osunkoya
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA 30322, USA; (C.L.W.); (A.O.O.)
- Department of Urology, Emory University, Atlanta, GA 30322, USA (D.P.); (M.G.S.)
| |
Collapse
|
4
|
Sorrentino C, Di Carlo E. Molecular Targeted Therapies in Metastatic Prostate Cancer: Recent Advances and Future Challenges. Cancers (Basel) 2023; 15:2885. [PMID: 37296848 PMCID: PMC10251915 DOI: 10.3390/cancers15112885] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
Prostate cancer is the most frequent malignant tumor in men, and, despite the great improvements in survival in patients with localized cancer, the prognosis for metastatic disease remains poor. Novel molecular targeted therapies, which block specific molecules or signaling pathways in tumor cells or in their microenvironment, have shown encouraging results in metastatic castration-resistant prostate cancer. Among these therapeutic approaches, prostate-specific membrane antigen-targeted radionuclide therapies and DNA repair inhibitors represent the most promising ones, with some therapeutic protocols already approved by the FDA, whereas therapies targeting tumor neovascularization and immune checkpoint inhibitors have not yet demonstrated clear clinical benefits. In this review, the most relevant studies and clinical trials on this topic are illustrated and discussed, together with future research directions and challenges.
Collapse
Affiliation(s)
- Carlo Sorrentino
- Department of Medicine and Sciences of Aging, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy;
- Anatomic Pathology and Immuno-Oncology Unit, Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Emma Di Carlo
- Department of Medicine and Sciences of Aging, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy;
- Anatomic Pathology and Immuno-Oncology Unit, Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| |
Collapse
|
5
|
Di Donato M, Giovannelli P, Migliaccio A, Castoria G. The nerve growth factor-delivered signals in prostate cancer and its associated microenvironment: when the dialogue replaces the monologue. Cell Biosci 2023; 13:60. [PMID: 36941697 PMCID: PMC10029315 DOI: 10.1186/s13578-023-01008-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 03/06/2023] [Indexed: 03/22/2023] Open
Abstract
Prostate cancer (PC) represents the most diagnosed and the second most lethal cancer in men worldwide. Its development and progression occur in concert with alterations in the surrounding tumor microenvironment (TME), made up of stromal cells and extracellular matrix (ECM) that dynamically interact with epithelial PC cells affecting their growth and invasiveness. PC cells, in turn, can functionally sculpt the TME through the secretion of various factors, including neurotrophins. Among them, the nerve growth factor (NGF) that is released by both epithelial PC cells and carcinoma-associated fibroblasts (CAFs) triggers the activation of various intracellular signaling cascades, thereby promoting the acquisition of a metastatic phenotype. After many years of investigation, it is indeed well established that aberrations and/or derangement of NGF signaling are involved not only in neurological disorders, but also in the pathogenesis of human proliferative diseases, including PC. Another key feature of cancer progression is the nerve outgrowth in TME and the concept of nerve dependence related to perineural invasion is currently emerging. NGF released by cancer cells can be a driver of tumor neurogenesis and nerves infiltrated in TME release neurotransmitters, which might stimulate the growth and sustainment of tumor cells.In this review, we aim to provide a snapshot of NGF action in the interactions between TME, nerves and PC cells. Understanding the molecular basis of this dialogue might expand the arsenal of therapeutic strategies against this widespread disease.
Collapse
Affiliation(s)
- Marzia Di Donato
- Department of Precision Medicine, University of Campania "L.Vanvitelli", 80138, Naples, Italy.
| | - Pia Giovannelli
- Department of Precision Medicine, University of Campania "L.Vanvitelli", 80138, Naples, Italy.
| | - Antimo Migliaccio
- Department of Precision Medicine, University of Campania "L.Vanvitelli", 80138, Naples, Italy
| | - Gabriella Castoria
- Department of Precision Medicine, University of Campania "L.Vanvitelli", 80138, Naples, Italy
| |
Collapse
|
6
|
Fu Z, Yuan Y. The role of tumor neogenesis pipelines in tumor progression and their therapeutic potential. Cancer Med 2022; 12:1558-1571. [PMID: 35832030 PMCID: PMC9883577 DOI: 10.1002/cam4.4979] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/27/2022] [Accepted: 06/11/2022] [Indexed: 02/02/2023] Open
Abstract
Pipeline formation between tumor cells and the tumor microenvironment (TME) is a key event leading to tumor progression. These pipelines include blood vessels, lymphatics, and membranous vessels (the former two can be collectively referred to as vasculature). Pipeline regeneration is a feature of all solid tumors; it delivers nutrients to tumors and promotes tumor invasion and metastasis such that cancer cells grow rapidly, escape unfavorable TME, spread to secondary sites, generate tumor drug resistance, and promote postoperative tumor recurrence. Novel tumor therapy strategies must exploit the molecular mechanisms underpinning these pipelines to facilitate more targeted drug therapies. In this review, pipeline generation, influencing factors, pipeline functions during tumor progression, and pipeline potential as drug targets are systematically summarized.
Collapse
Affiliation(s)
- Zhanqi Fu
- Tumor Etiology and Screening Department of Cancer Institute and General SurgeryThe First Hospital of China Medical UniversityShenyangChina,Key Laboratory of Cancer Etiology and Prevention in Liaoning Education DepartmentThe First Hospital of China Medical UniversityShenyangChina,Key Laboratory of GI Cancer Etiology and Prevention in Liaoning ProvinceThe First Hospital of China Medical UniversityShenyangChina
| | - Yuan Yuan
- Tumor Etiology and Screening Department of Cancer Institute and General SurgeryThe First Hospital of China Medical UniversityShenyangChina,Key Laboratory of Cancer Etiology and Prevention in Liaoning Education DepartmentThe First Hospital of China Medical UniversityShenyangChina,Key Laboratory of GI Cancer Etiology and Prevention in Liaoning ProvinceThe First Hospital of China Medical UniversityShenyangChina
| |
Collapse
|
7
|
Wang M, Yu W, Cao X, Gu H, Huang J, Wu C, Wang L, Sha X, Shen B, Wang T, Yao Y, Zhu W, Huang F. Exosomal CD44 Transmits Lymph Node Metastatic Capacity Between Gastric Cancer Cells via YAP-CPT1A-Mediated FAO Reprogramming. Front Oncol 2022; 12:860175. [PMID: 35359362 PMCID: PMC8960311 DOI: 10.3389/fonc.2022.860175] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 02/21/2022] [Indexed: 12/11/2022] Open
Abstract
Background Lymph node metastasis (LNM) commonly occurs in gastric cancer (GC) and is tightly associated with poor prognosis. Exosome-mediated lymphangiogenesis has been considered an important driver of LNM. Whether exosomes directly transmit the LNM phenotype between GC cells and its mechanisms remain elusive. Methods A highly lymphatic metastatic GC cell line (HGC-27-L) was established by serial passage of parental HGC-27 cells in BALB/c nude mice. The capacities of migration, invasion and LNM; fatty acid oxidation (FAO) levels; and the role of exosome-transferred LNM phenotype were compared among HGC-27-L, HGC-27 and primary GC cell line AGS. Exosomes derived from GC cells and sera were separately isolated using ultracentrifugation and ExoQuick exosome precipitation solution, and were characterized by transmission electron microscopy, Nanosight and western blotting. Transwell assay and LNM models were conducted to evaluate the capacities of migration, invasion and LNM of GC cells in vitro and in vivo. β-oxidation rate and CPT1 activity were measured to assess FAO. CPT1A inhibitor etomoxir was used to determine the role of FAO. Label-free LC-MS/MS proteome analysis screened the differential protein profiling between HGC-27-exosomes and AGS-exosomes. Small interference RNAs and YAP inhibitor verteporfin were used to elucidate the role and mechanism of exosomal CD44. TCGA data analysis, immunochemistry staining and ELISA were performed to analyze the expression correlation and clinical significance of CD44/YAP/CPT1A. Results FAO was increased in lymphatic metastatic GC cells and indispensable for sustaining LNM capacity. Lymphatic metastatic GC cell-exosomes conferred LNM capacity on primary GC cells in an FAO-dependent way. Mechanistically, CD44 was identified to be enriched in HGC-27-exosomes and was a critical cargo protein regulating exosome-mediated transmission, possibly by modulating the RhoA/YAP/Prox1/CPT1A signaling axis. Abnormal expression of CD44/YAP/CPT1A in GC tissues was correlated with each other and associated with LNM status, stages, invasion and poor survival. Serum exosomal CD44 concentration was positively correlated with tumor burden in lymph nodes. Conclusions We uncovered a novel mechanism: exosomal CD44 transmits LNM capacity between GC cells via YAP-CPT1A-mediated FAO reprogramming from the perspective of exosomes-transferred LNM phenotype. This provides potential therapeutic targets and a non-invasive biomarker for GC patients with LNM.
Collapse
Affiliation(s)
- Mei Wang
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Wanjun Yu
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Xiaoli Cao
- Department of Laboratory Medicine, Affiliated Tumor Hospital of Nantong University, Nantong, China
| | - Hongbing Gu
- Department of Laboratory Medicine, The Affiliated People’s Hospital, Jiangsu University, Zhenjiang, China
| | - Jiaying Huang
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Chen Wu
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Lin Wang
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Xin Sha
- Department of Surgery, The Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, China
| | - Bo Shen
- Department of Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, China
| | - Ting Wang
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Yongliang Yao
- Department of Clinical Laboratory, Affiliated Kunshan Hospital of Jiangsu University, Suzhou, China
| | - Wei Zhu
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Feng Huang
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, China
- Department of Clinical Laboratory, Affiliated Kunshan Hospital of Jiangsu University, Suzhou, China
- Department of Clinical Laboratory, Maternal and Child Health Care Hospital of Kunshan, Suzhou, China
| |
Collapse
|
8
|
Li CY, Brown S, Mehrara BJ, Kataru RP. Lymphatics in Tumor Progression and Immunomodulation. Int J Mol Sci 2022; 23:2127. [PMID: 35216243 PMCID: PMC8875298 DOI: 10.3390/ijms23042127] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/06/2022] [Accepted: 02/08/2022] [Indexed: 12/18/2022] Open
Abstract
The lymphatic system consists of a unidirectional hierarchy of vessels responsible for fluid homeostasis, lipid absorption, and the transport of immune cells and antigens to secondary lymphoid organs. In cancer, lymphatics play complex and heterogenous roles that can promote or inhibit tumor growth. While lymphatic proliferation and remodeling promote tumor dissemination, functional lymphatics are necessary for generating an effective immune response. Recent reports have noted lymphatic-dependent effects on the efficacy of immunotherapy. These findings suggest that the impact of lymphatic vessels on tumor progression is organ- and context-specific and that a greater understanding of the interaction of tumor cells, lymphatics, and the tumor microenvironment can unveil novel therapies.
Collapse
Affiliation(s)
| | | | | | - Raghu P. Kataru
- The Department of Surgery, Division of Plastic and Reconstructive Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (C.Y.L.); (S.B.); (B.J.M.)
| |
Collapse
|
9
|
Olmeda D, Cerezo-Wallis D, Castellano-Sanz E, García-Silva S, Peinado H, Soengas MS. Physiological models for in vivo imaging and targeting the lymphatic system: Nanoparticles and extracellular vesicles. Adv Drug Deliv Rev 2021; 175:113833. [PMID: 34147531 DOI: 10.1016/j.addr.2021.113833] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 05/24/2021] [Accepted: 06/11/2021] [Indexed: 02/06/2023]
Abstract
Imaging of the lymphatic vasculature has gained great attention in various fields, not only because lymphatic vessels act as a key draining system in the body, but also for their implication in autoimmune diseases, organ transplant, inflammation and cancer. Thus, neolymphangiogenesis, or the generation of new lymphatics, is typically an early event in the development of multiple tumor types, particularly in aggressive ones such as malignant melanoma. Still, the understanding of how lymphatic endothelial cells get activated at distal (pre)metastatic niches and their impact on therapy is still unclear. Addressing these questions is of particular interest in the case of immune modulators, because endothelial cells may favor or halt inflammatory processes depending on the cellular context. Therefore, there is great interest in visualizing the lymphatic vasculature in vivo. Here, we review imaging tools and mouse models used to analyze the lymphatic vasculature during tumor progression. We also discuss therapeutic approaches based on nanomedicines to target the lymphatic system and the potential use of extracellular vesicles to track and target sentinel lymph nodes. Finally, we summarize main pre-clinical models developed to visualize the lymphatic vasculature in vivo, discussing their applications with a particular focus in metastatic melanoma.
Collapse
Affiliation(s)
- David Olmeda
- Melanoma Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Daniela Cerezo-Wallis
- Melanoma Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain; Area of Cell & Developmental Biology, Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, 28029, Spain
| | - Elena Castellano-Sanz
- Microenvironment and Metastasis Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Susana García-Silva
- Microenvironment and Metastasis Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Héctor Peinado
- Microenvironment and Metastasis Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain.
| | - María S Soengas
- Melanoma Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain.
| |
Collapse
|
10
|
Fontana F, Limonta P. Dissecting the Hormonal Signaling Landscape in Castration-Resistant Prostate Cancer. Cells 2021; 10:1133. [PMID: 34067217 PMCID: PMC8151003 DOI: 10.3390/cells10051133] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/05/2021] [Accepted: 05/06/2021] [Indexed: 02/07/2023] Open
Abstract
Understanding the molecular mechanisms underlying prostate cancer (PCa) progression towards its most aggressive, castration-resistant (CRPC) stage is urgently needed to improve the therapeutic options for this almost incurable pathology. Interestingly, CRPC is known to be characterized by a peculiar hormonal landscape. It is now well established that the androgen/androgen receptor (AR) axis is still active in CRPC cells. The persistent activity of this axis in PCa progression has been shown to be related to different mechanisms, such as intratumoral androgen synthesis, AR amplification and mutations, AR mRNA alternative splicing, increased expression/activity of AR-related transcription factors and coregulators. The hypothalamic gonadotropin-releasing hormone (GnRH), by binding to its specific receptors (GnRH-Rs) at the pituitary level, plays a pivotal role in the regulation of the reproductive functions. GnRH and GnRH-R are also expressed in different types of tumors, including PCa. Specifically, it has been demonstrated that, in CRPC cells, the activation of GnRH-Rs is associated with a significant antiproliferative/proapoptotic, antimetastatic and antiangiogenic activity. This antitumor activity is mainly mediated by the GnRH-R-associated Gαi/cAMP signaling pathway. In this review, we dissect the molecular mechanisms underlying the role of the androgen/AR and GnRH/GnRH-R axes in CRPC progression and the possible therapeutic implications.
Collapse
Affiliation(s)
| | - Patrizia Limonta
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milano, Italy;
| |
Collapse
|
11
|
Cytokines and Chemokines as Mediators of Prostate Cancer Metastasis. Int J Mol Sci 2020; 21:ijms21124449. [PMID: 32585812 PMCID: PMC7352203 DOI: 10.3390/ijms21124449] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 06/19/2020] [Accepted: 06/21/2020] [Indexed: 12/16/2022] Open
Abstract
The consequences of prostate cancer metastasis remain severe, with huge impact on the mortality and overall quality of life of affected patients. Despite the convoluted interplay and cross talk between various cell types and secreted factors in the metastatic process, cytokine and chemokines, along with their receptors and signaling axis, constitute important factors that help drive the sequence of events that lead to metastasis of prostate cancer. These proteins are involved in extracellular matrix remodeling, epithelial-mesenchymal-transition, angiogenesis, tumor invasion, premetastatic niche creation, extravasation, re-establishment of tumor cells in secondary organs as well as the remodeling of the metastatic tumor microenvironment. This review presents an overview of the main cytokines/chemokines, including IL-6, CXCL12, TGFβ, CXCL8, VEGF, RANKL, CCL2, CX3CL1, IL-1, IL-7, CXCL1, and CXCL16, that exert modulatory roles in prostate cancer metastasis. We also provide extensive description of their aberrant expression patterns in both advanced disease states and metastatic sites, as well as their functional involvement in the various stages of the prostate cancer metastatic process.
Collapse
|
12
|
Wu ZS, Ding W, Cai J, Bashir G, Li YQ, Wu S. Communication Of Cancer Cells And Lymphatic Vessels In Cancer: Focus On Bladder Cancer. Onco Targets Ther 2019; 12:8161-8177. [PMID: 31632067 PMCID: PMC6781639 DOI: 10.2147/ott.s219111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 08/07/2019] [Indexed: 12/16/2022] Open
Abstract
Bladder cancer is one of the most commonly diagnosed cancers worldwide and causes the highest lifetime treatment costs per patient. Bladder cancer is most likely to metastasize through lymphatic ducts, and once the lymph nodes are involved, the prognosis is poorly and finitely improved by current modalities. The underlying metastatic mechanism for bladder cancer is thus becoming a research focus to date. To identify relevant published data, an online search of the PubMed/Medline archives was performed to locate original articles and review articles regarding lymphangiogenesis and lymphatic metastasis in urinary bladder cancer (UBC), and was limited to articles in English published between 1998 and 2018. A further search of the clinical trials.gov search engine was conducted to identify both trials with results available and those with results not yet available. Herein, we summarized the unique mechanisms and biomarkers involved in the malignant progression of bladder cancer as well as their emerging roles in therapeutics, and that current data suggests that lymphangiogenesis and lymph node invasion are important prognostic factors for UBC. The growing knowledge about their roles in bladder cancers provides the basis for novel therapeutic strategies. In addition, more basic and clinical research needs to be conducted in order to identify further accurate predictive molecules and relevant mechanisms.
Collapse
Affiliation(s)
- Zhang-song Wu
- Medical College, Shenzhen University, Shenzhen518000, People’s Republic of China
- Department of Urological Surgery, The Third Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen518000, People’s Republic of China
- Shenzhen following Precision Medical Institute, The Third Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen518000, People’s Republic of China
| | - Wa Ding
- Medical College, Shenzhen University, Shenzhen518000, People’s Republic of China
- Shenzhen following Precision Medical Institute, The Third Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen518000, People’s Republic of China
| | - Jiajia Cai
- Shenzhen following Precision Medical Institute, The Third Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen518000, People’s Republic of China
- Medical College, Anhui University of Science and Technology, Huainan232001, People’s Republic of China
| | - Ghassan Bashir
- Shenzhen following Precision Medical Institute, The Third Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen518000, People’s Republic of China
| | - Yu-qing Li
- Department of Urological Surgery, The Third Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen518000, People’s Republic of China
- Shenzhen following Precision Medical Institute, The Third Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen518000, People’s Republic of China
| | - Song Wu
- Medical College, Shenzhen University, Shenzhen518000, People’s Republic of China
- Department of Urological Surgery, The Third Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen518000, People’s Republic of China
- Shenzhen following Precision Medical Institute, The Third Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen518000, People’s Republic of China
- Medical College, Anhui University of Science and Technology, Huainan232001, People’s Republic of China
| |
Collapse
|
13
|
Hakamivala A, Huang Y, Chang YF, Pan Z, Nair A, Hsieh JT, Tang L. Development of 3D Lymph Node Mimetic for Studying Prostate Cancer Metastasis. ACTA ACUST UNITED AC 2019; 3:e1900019. [PMID: 32648652 DOI: 10.1002/adbi.201900019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 05/14/2019] [Indexed: 02/06/2023]
Abstract
Lymph node (LN) metastasis causes poor prognosis for patients with prostate cancer (PCa). Although LN-cells and cellular responses play a pivotal role in cancer metastasis, the interplay between LN-cells and PCa cells is undetermined due to the small size and widespread distribution of LNs. To identify factors responsible for LN metastasis, a 3D cell culture biosystem is fabricated to simulate LN responses during metastasis. First, it is determined that LN explants previously exposed to high metastatic PCa release substantially more chemotactic factors to promote metastatic PCa migration than those exposed to low-metastatic PCa. Furthermore, T-lymphocytes are found to produce chemotactic factors in LNs, among which, CXCL12, CCL21, and IL-10 are identified to have the most chemotactic effect. To mimic the LN microenvironment, Cytodex beads are seeded with T cells to produce a LN-mimetic biosystem in both static and flow conditions. As expected, the flow condition permits prolonged cellular responses. Interestingly, when PCa cells with varying metastatic potentials are introduced into the system, it produces PCa-specific chemokines accordingly. These results support that the LN mimetic helps in analyzing the processes underlying metastasized LNs and for testing various treatments to reduce cancer LN metastasis.
Collapse
Affiliation(s)
- Amirhossein Hakamivala
- Bioengineering Department, University of Texas Southwestern Medical Center and The University of Texas at Arlington, Arlington, TX, 76019, USA
| | - YiHui Huang
- Bioengineering Department, University of Texas Southwestern Medical Center and The University of Texas at Arlington, Arlington, TX, 76019, USA
| | - Yung-Fu Chang
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Zui Pan
- College of Nursing and Health Innovation, University of Texas at Arlington, Arlington, TX, 76010, USA
| | - Ashwin Nair
- Bioengineering Department, University of Texas Southwestern Medical Center and The University of Texas at Arlington, Arlington, TX, 76019, USA
| | - Jer-Tsong Hsieh
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Liping Tang
- Bioengineering Department, University of Texas Southwestern Medical Center and The University of Texas at Arlington, Arlington, TX, 76019, USA.,Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| |
Collapse
|
14
|
Melegh Z, Oltean S. Targeting Angiogenesis in Prostate Cancer. Int J Mol Sci 2019; 20:E2676. [PMID: 31151317 PMCID: PMC6600172 DOI: 10.3390/ijms20112676] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 05/24/2019] [Accepted: 05/29/2019] [Indexed: 02/07/2023] Open
Abstract
Prostate cancer is the most commonly diagnosed cancer among men in the Western world. Although localized disease can be effectively treated with established surgical and radiopharmaceutical treatments options, the prognosis of castration-resistant advanced prostate cancer is still disappointing. The objective of this study was to review the role of angiogenesis in prostate cancer and to investigate the effectiveness of anti-angiogenic therapies. A literature search of clinical trials testing the efficacy of anti-angiogenic therapy in prostate cancer was performed using Pubmed. Surrogate markers of angiogenic activity (microvessel density and vascular endothelial growth factor A (VEGF-A) expression) were found to be associated with tumor grade, metastasis, and prognosis. Six randomizedstudies were included in this review: two phase II trials on localized and hormone-sensitive disease (n = 60 and 99 patients) and four phase III trials on castration-resistant refractory disease (n = 873 to 1224 patients). Although the phase II trials showed improved relapse-free survival and stabilisation of the disease, the phase III trials found increased toxicity and no significant improvement in overall survival. Although angiogenesis appears to have an important role in prostate cancer, the results of anti-angiogenic therapy in castration-resistant refractory disease have hitherto been disappointing. There are various possible explanations for this lack of efficacy in castration-resistant refractory disease: redundancy of angiogenic pathways, molecular heterogeneity of the disease, loss of tumor suppressor protein phosphatase and tensin homolog (PTEN) expression as well as various VEGF-A splicing isoforms with pro- and anti-angiogenic activity. A better understanding of the molecular mechanisms of angiogenesis may help to develop effective anti-angiogenic therapy in prostate cancer.
Collapse
Affiliation(s)
- Zsombor Melegh
- Department of Cellular Pathology, Southmead Hospital, Bristol BS10 5NB, UK.
| | - Sebastian Oltean
- Institute of Biomedical and Clinical Sciences, Medical School, College of Medicine and Health, University of Exeter, Exeter EX12LU, UK.
| |
Collapse
|
15
|
Hu X, Luo J. Heterogeneity of tumor lymphangiogenesis: Progress and prospects. Cancer Sci 2018; 109:3005-3012. [PMID: 30007095 PMCID: PMC6172057 DOI: 10.1111/cas.13738] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 07/10/2018] [Indexed: 12/26/2022] Open
Abstract
Lymphangiogenesis and increased expression of lymphangiogenic growth factors are associated with high rates of lymph node (LN) metastasis and with poor prognosis in some, but not all, solid tumors. In addition to its involvement in metastasis, lymphangiogenesis has been shown to have other roles in tumor pathogenesis, such as the niche function of tumor stem cells and regulatory functions of antitumor immune responses. In contrast, evidence has accumulated that tumor-induced lymphangiogenesis displays the heterogeneity in gene signature, structure, cellular origins and functional plasticity. This review summarizes the advances in the research on the heterogeneity of tumor lymphangiogenesis and discusses how it may contribute to functional complexity and multiplicity of lymphangiogenesis in tumor progression.
Collapse
Affiliation(s)
- Xueting Hu
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing, China
| | - Jincai Luo
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing, China
| |
Collapse
|
16
|
Lin YC, Chen CC, Chen WM, Lu KY, Shen TL, Jou YC, Shen CH, Ohbayashi N, Kanaho Y, Huang YL, Lee H. LPA 1/3 signaling mediates tumor lymphangiogenesis through promoting CRT expression in prostate cancer. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1863:1305-1315. [PMID: 30053596 DOI: 10.1016/j.bbalip.2018.07.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 07/13/2018] [Accepted: 07/20/2018] [Indexed: 12/15/2022]
Abstract
Lysophosphatidic acid (LPA) is a bioactive lipid growth factor which is present in high levels in serum and platelets. LPA binds to its specific G-protein-coupled receptors, including LPA1 to LPA6, thereby regulating various physiological functions, including cancer growth, angiogenesis, and lymphangiogenesis. Our previous study showed that LPA promotes the expression of the lymphangiogenic factor vascular endothelial growth factor (VEGF)-C in prostate cancer (PCa) cells. Interestingly, LPA has been shown to regulate the expression of calreticulin (CRT), a multifunctional chaperone protein, but the roles of CRT in PCa progression remain unclear. Here we investigated the involvement of CRT in LPA-mediated VEGF-C expression and lymphangiogenesis in PCa. Knockdown of CRT significantly reduced LPA-induced VEGF-C expression in PC-3 cells. Moreover, LPA promoted CRT expression through LPA receptors LPA1 and LPA3, reactive oxygen species (ROS) production, and phosphorylation of eukaryotic translation initiation factor 2α (eIF2α). Tumor-xenografted mouse experiments further showed that CRT knockdown suppressed tumor growth and lymphangiogenesis. Notably, clinical evidence indicated that the LPA-producing enzyme autotaxin (ATX) is related to CRT and that CRT level is highly associated with lymphatic vessel density and VEGF-C expression. Interestingly, the pharmacological antagonist of LPA receptors significantly reduced the lymphatic vessel density in tumor and lymph node metastasis in tumor-bearing nude mice. Together, our results demonstrated that CRT is critical in PCa progression through the mediation of LPA-induced VEGF-C expression, implying that targeting the LPA signaling axis is a potential therapeutic strategy for PCa.
Collapse
Affiliation(s)
- Yueh-Chien Lin
- Department of Life Sciences, National Taiwan University, Taipei 10617, Taiwan; Department of Physiological Chemistry, Faculty of Medicine and Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Chien-Chin Chen
- Department of Pathology, Chia-Yi Christian Hospital, Chiayi 600, Taiwan; Department of Cosmetic Science, Chia Nan University of Pharmacy and Science, Tainan 71710, Taiwan
| | - Wei-Min Chen
- Department of Life Sciences, National Taiwan University, Taipei 10617, Taiwan
| | - Kuan-Ying Lu
- Department of Life Sciences, National Taiwan University, Taipei 10617, Taiwan
| | - Tang-Long Shen
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei 10617, Taiwan
| | - Yeong-Chin Jou
- Department of Urology, Chia-Yi Christian Hospital, Chiayi 600, Taiwan
| | - Cheng-Huang Shen
- Department of Urology, Chia-Yi Christian Hospital, Chiayi 600, Taiwan
| | - Norihiko Ohbayashi
- Department of Physiological Chemistry, Faculty of Medicine and Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Yasunori Kanaho
- Department of Physiological Chemistry, Faculty of Medicine and Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Yuan-Li Huang
- Department of Biotechnology, Asia University, Taichung 41354, Taiwan; Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan.
| | - Hsinyu Lee
- Department of Life Sciences, National Taiwan University, Taipei 10617, Taiwan; Department of Electrical Engineering, National Taiwan University, Taipei 10617, Taiwan; Institute of Biomedical Electronic and Bioinformatics, National Taiwan University, Taipei 10617, Taiwan; Center for Biotechnology, National Taiwan University, Taipei 10617, Taiwan.
| |
Collapse
|
17
|
Mermod M, Hiou-Feige A, Bovay E, Roh V, Sponarova J, Bongiovanni M, Vermeer DW, Lee JH, Petrova TV, Rivals JP, Monnier Y, Tolstonog GV, Simon C. Mouse model of postsurgical primary tumor recurrence and regional lymph node metastasis progression in HPV-related head and neck cancer. Int J Cancer 2018; 142:2518-2528. [PMID: 29313973 DOI: 10.1002/ijc.31240] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 12/07/2017] [Indexed: 01/24/2023]
Abstract
HPV-positive head and neck squamous cell carcinoma (HNSCC) is increasingly frequent. Management is particularly debated in the case of postsurgical high-risk features, that is, positive surgical margins and extracapsular spread (ECS). In this increasingly complex emerging framework of HNSCC treatment, representative preclinical models are needed to support future clinical trials and advances in personalized medicine. Here, we present an immunocompetent mouse model based on the implantation of mouse tonsil epithelial HPV16-E6/E7-expressing cancer cells into the submental region of the floor-of-the-mouth. Primary tumors were found to replicate the patterns of human HNSCC local invasion and lymphatic dissemination. To study disease progression after surgery, tumors were removed likely leaving behind residual disease. Surgical resection of tumors was followed by a high rate of local recurrences (>90%) within the first 2-3 weeks. While only 50% of mice had lymph node metastases (LNM) at time of primary tumor excision, all mice with recurrent tumors showed evidence of LNM. To study the consecutive steps of LNM progression and distant metastasis development, LNs from tumor-bearing mice were transplanted into naïve recipient mice. Using this approach, transplanted LNs were found to recapitulate all stages and relevant histological features of regional metastasis progression, including ECS and metastatic spread to the lungs. Altogether, we have developed an immunocompetent HPV-positive HNSCC mouse model of postsurgical local recurrence and regional and distant metastasis progression suitable for preclinical studies.
Collapse
Affiliation(s)
- Maxime Mermod
- Department of Otolaryngology - Head and Neck Surgery, CHUV, University of Lausanne, Lausanne, Switzerland
| | - Agnès Hiou-Feige
- Department of Otolaryngology - Head and Neck Surgery, CHUV, University of Lausanne, Lausanne, Switzerland
| | - Esther Bovay
- Department of Fundamental Oncology, CHUV, University of Lausanne, Lausanne, Switzerland
| | - Vincent Roh
- Department of Otolaryngology - Head and Neck Surgery, CHUV, University of Lausanne, Lausanne, Switzerland
| | - Jana Sponarova
- Department of Otolaryngology - Head and Neck Surgery, CHUV, University of Lausanne, Lausanne, Switzerland
| | - Massimo Bongiovanni
- Service of Clinical Pathology, Institute of Pathology, CHUV, University of Lausanne, Lausanne, Switzerland
| | - Daniel W Vermeer
- Cancer Biology Research Center, Sanford Research, Sioux Falls, SD
| | - John H Lee
- Cancer Biology Research Center, Sanford Research, Sioux Falls, SD
| | - Tatiana V Petrova
- Department of Fundamental Oncology, CHUV, University of Lausanne, Lausanne, Switzerland
| | - Jean-Paul Rivals
- Department of Otolaryngology - Head and Neck Surgery, CHUV, University of Lausanne, Lausanne, Switzerland
| | - Yan Monnier
- Department of Otolaryngology - Head and Neck Surgery, CHUV, University of Lausanne, Lausanne, Switzerland
| | - Genrich V Tolstonog
- Department of Otolaryngology - Head and Neck Surgery, CHUV, University of Lausanne, Lausanne, Switzerland
| | - Christian Simon
- Department of Otolaryngology - Head and Neck Surgery, CHUV, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
18
|
Abstract
Solid tumor growth and metastasis require the interaction of tumor cells with the surrounding tissue, leading to a view of tumors as tissue-level phenomena rather than exclusively cell-intrinsic anomalies. Due to the ubiquitous nature of adipose tissue, many types of solid tumors grow in proximate or direct contact with adipocytes and adipose-associated stromal and vascular components, such as fibroblasts and other connective tissue cells, stem and progenitor cells, endothelial cells, innate and adaptive immune cells, and extracellular signaling and matrix components. Excess adiposity in obesity both increases risk of cancer development and negatively influences prognosis in several cancer types, in part due to interaction with adipose tissue cell populations. Herein, we review the cellular and noncellular constituents of the adipose "organ," and discuss the mechanisms by which these varied microenvironmental components contribute to tumor development, with special emphasis on obesity. Due to the prevalence of breast and prostate cancers in the United States, their close anatomical proximity to adipose tissue depots, and their complex epidemiologic associations with obesity, we particularly highlight research addressing the contribution of adipose tissue to the initiation and progression of these cancer types. Obesity dramatically modifies the adipose tissue microenvironment in numerous ways, including induction of fibrosis and angiogenesis, increased stem cell abundance, and expansion of proinflammatory immune cells. As many of these changes also resemble shifts observed within the tumor microenvironment, proximity to adipose tissue may present a hospitable environment to developing tumors, providing a critical link between adiposity and tumorigenesis. © 2018 American Physiological Society. Compr Physiol 8:237-282, 2018.
Collapse
Affiliation(s)
- Alyssa J. Cozzo
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Ashley M. Fuller
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Liza Makowski
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
19
|
Oh N, Park JI, Park JH, Kim KS, Lee DR, Park KS. The role of ELK3 to regulate peritumoral lymphangiogenesis and VEGF-C production in triple negative breast cancer cells. Biochem Biophys Res Commun 2017; 484:896-902. [DOI: 10.1016/j.bbrc.2017.02.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 02/06/2017] [Indexed: 12/11/2022]
|
20
|
Asai A, Miyata Y, Matsuo T, Shida Y, Hakariya T, Ohba K, Sakai H. Changes in Lymphangiogenesis and Vascular Endothelial Growth Factor Expression by Neo-Adjuvant Hormonal Therapy in Prostate Cancer Patients. Prostate 2017; 77:255-262. [PMID: 27527525 PMCID: PMC5260425 DOI: 10.1002/pros.23244] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 07/25/2016] [Indexed: 12/13/2022]
Abstract
BACKGROUND The anti-cancer mechanism of neo-adjuvant hormonal therapy (NHT) is not well understood. Lymphangiogenesis plays an important role in cancer progression and is regulated by a complex mechanism that includes vascular endothelial growth factor (VEGF) signaling. However, there is little information regarding relationship between lymphangiogenesis and androgen deprivation. The aim of this study was to clarify changes in lymphangiogenesis and VEGF expression induced by androgen deprivation in prostate cancer in vivo and in vitro. METHODS Patients who had undergone a radical prostatectomy were enrolled in the study (NHT, n = 60 and non-NHT, n = 64). Lymph vessels were identified by D2-40 immunoreactivity and lymph vessel density and lymph vessel area (LVD and LVA, respectively) were measured from micrographs. The expression of VEGF-A, -B, -C, and -D was evaluated by immunohistochemistry. The prognostic value of LVD and LVA for biochemical recurrence was also investigated. RESULTS Mean LVD ± SD was higher in the NHT than in the non-NHT group (11.3 ± 3.0 vs. 7.1 ± 3.4 per high power field; P < 0.001). LVA was larger in the NHT than in the non-NHT group (512.8 ± 174.9 vs. 202.7 ± 72.8 µm2 ; P < 0.001). VEGF-A expression was lower whereas VEGF-C and -D levels were higher in the NHT than in the non-NHT group. VEGF-B expression in specimens with NHT was lower than that in biopsy specimens at diagnosis. These results were confirmed by in vitro studies used androgen-sensitive prostate cancer cell line. LVA was found to be an independent predictor of biochemical recurrence in patients who received NHT. CONCLUSIONS Our results demonstrate that NHT stimulates lymphangiogenesis via upregulation of VEGF-C and -D, which may increase LVA and affect the outcome of prostate cancer patients. This findings were supported by in vitro data of prostate cancer cell. Prostate 77:255-262, 2017. © 2016 The Authors. The Prostate Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Akihiro Asai
- Department of UrologyNagasaki University Graduate School of Biomedical SciencesNagasakiJapan
| | - Yasuyoshi Miyata
- Department of UrologyNagasaki University Graduate School of Biomedical SciencesNagasakiJapan
| | - Tomohiro Matsuo
- Department of UrologyNagasaki University Graduate School of Biomedical SciencesNagasakiJapan
| | - Yohei Shida
- Department of UrologyNagasaki University Graduate School of Biomedical SciencesNagasakiJapan
| | - Tomoaki Hakariya
- Department of UrologyNagasaki University Graduate School of Biomedical SciencesNagasakiJapan
| | - Kojiro Ohba
- Department of UrologyNagasaki University Graduate School of Biomedical SciencesNagasakiJapan
| | - Hideki Sakai
- Department of UrologyNagasaki University Graduate School of Biomedical SciencesNagasakiJapan
| |
Collapse
|
21
|
Venero Galanternik M, Stratman AN, Jung HM, Butler MG, Weinstein BM. Building the drains: the lymphatic vasculature in health and disease. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2016; 5:689-710. [PMID: 27576003 DOI: 10.1002/wdev.246] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 06/30/2016] [Accepted: 07/01/2016] [Indexed: 02/06/2023]
Abstract
The lymphatic vasculature is comprised of a network of endothelial vessels found in close proximity to but separated from the blood vasculature. An essential tissue component of all vertebrates, lymphatics are responsible for the maintenance of fluid homeostasis, dissemination of immune cells, and lipid reabsorption under healthy conditions. When lymphatic vessels are impaired due to invasive surgery, genetic disorders, or parasitic infections, severe fluid build-up accumulates in the affected tissues causing a condition known as lymphedema. Malignant tumors can also directly activate lymphangiogenesis and use these vessels to promote the spread of metastatic cells. Although their first description goes back to the times of Hippocrates, with subsequent anatomical characterization at the beginning of the 20th-century, the lack of identifying molecular markers and tools to visualize these translucent vessels meant that investigation of lymphatic vessels fell well behind research of blood vessels. However, after years under the shadow of the blood vasculature, recent advances in imaging technologies and new genetic and molecular tools have accelerated the pace of research on lymphatic vessel development. These new tools have facilitated both work in classical mammalian models and the emergence of new powerful vertebrate models like zebrafish, quickly driving the field of lymphatic development back into the spotlight. In this review, we summarize the highlights of recent research on the development and function of the lymphatic vascular network in health and disease. WIREs Dev Biol 2016, 5:689-710. doi: 10.1002/wdev.246 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Marina Venero Galanternik
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Amber N Stratman
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Hyun Min Jung
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Matthew G Butler
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Brant M Weinstein
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
22
|
Nefedova NA, Kharlova OA, Danilova NV, Malkov PG, Gaifullin NM. [Markers of angiogenesis in tumor growth]. Arkh Patol 2016; 78:55-63. [PMID: 27340718 DOI: 10.17116/patol201678255-62] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Angiogenesis is a process of new blood vessels formation. The role of angiogenesis in growth, invasion and metastasis of malignant tumours is nowdays universally recognized. Though, investigation of mechanisms of blood vessels formation and elaboration methods for assessment of tumour angiogenesis are still up-dated. Another important concern are different aspects of usage of immunohistochemical markers of blood vessels endothelium (CD31 and CD34) for assessment of tumour aggressiveness and prognosis. The problems of malignant lymphangiogenesis are also up-to-date. The focus is on methods of immunohistochemical visualization of forming lymphatic vessels, role of podoplanin, the most reliable marker of lymphatic vessels, in their identification, and formulization of the main criteria for lymphangiogenesis estimation, its correlation with metastatic activity and prognostic potential. Studying of angiogenesis and lymph angiogenesis in malignant tumors is important and challenging direction for researching tumour progression and invention of antiangiogenic therapy.
Collapse
Affiliation(s)
- N A Nefedova
- Russian Medical Academy of Postgraduate Education Ministry of Health of Russia, Moscow, Russia; Lomonosov Moscow State University, Moscow, Russia
| | - O A Kharlova
- Lomonosov Moscow State University, Moscow, Russia
| | - N V Danilova
- Russian Medical Academy of Postgraduate Education Ministry of Health of Russia, Moscow, Russia; Lomonosov Moscow State University, Moscow, Russia
| | - P G Malkov
- Russian Medical Academy of Postgraduate Education Ministry of Health of Russia, Moscow, Russia; Lomonosov Moscow State University, Moscow, Russia
| | | |
Collapse
|
23
|
Abstract
The role of angiogenesis in tumor growth has been studied continuously for over 45 years. It is now appreciated that angiogenesis is also essential for the dissemination and establishment of tumor metastases. In this review, we focus on the role of angiogenesis as a necessity for the escape of tumor cells into the bloodstream and for the establishment of metastatic colonies in secondary sites. We also discuss the role of tumor lymphangiogenesis as a means of dissemination of lymphatic metastases. Appropriate combination therapies may be used in the future to both prevent and treat metastatic disease through the rational use of antiangiogenic and antilymphangiogenic therapies in ways that are informed by the current and future work in the field.
Collapse
|
24
|
Identification of Gene Expression Differences between Lymphangiogenic and Non-Lymphangiogenic Non-Small Cell Lung Cancer Cell Lines. PLoS One 2016; 11:e0150963. [PMID: 26950548 PMCID: PMC4780812 DOI: 10.1371/journal.pone.0150963] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 02/21/2016] [Indexed: 12/25/2022] Open
Abstract
It is well established that lung tumors induce the formation of lymphatic vessels. However, the molecular mechanisms controlling tumor lymphangiogenesis in lung cancer have not been fully delineated. In the present study, we identify a panel of non-small cell lung cancer (NSCLC) cell lines that induce lymphangiogenesis and use genome-wide mRNA expression to characterize the molecular mechanisms regulating tumor lymphangiogenesis. We show that Calu-1, H1993, HCC461, HCC827, and H2122 NSCLC cell lines form tumors that induce lymphangiogenesis whereas Calu-3, H1155, H1975, and H2073 NSCLC cell lines form tumors that do not induce lymphangiogenesis. By analyzing genome-wide mRNA expression data, we identify a 17-gene expression signature that distinguishes lymphangiogenic from non-lymphangiogenic NSCLC cell lines. Importantly, VEGF-C is the only lymphatic growth factor in this expression signature and is approximately 50-fold higher in the lymphangiogenic group than in the non-lymphangiogenic group. We show that forced expression of VEGF-C by H1975 cells induces lymphangiogenesis and that knockdown of VEGF-C in H1993 cells inhibits lymphangiogenesis. Additionally, we demonstrate that the triple angiokinase inhibitor, nintedanib (small molecule that blocks all FGFRs, PDGFRs, and VEGFRs), suppresses tumor lymphangiogenesis in H1993 tumors. Together, these data suggest that VEGF-C is the dominant driver of tumor lymphangiogenesis in NSCLC and reveal a specific therapy that could potentially block tumor lymphangiogenesis in NSCLC patients.
Collapse
|
25
|
Lund AW, Medler TR, Leachman SA, Coussens LM. Lymphatic Vessels, Inflammation, and Immunity in Skin Cancer. Cancer Discov 2015; 6:22-35. [PMID: 26552413 DOI: 10.1158/2159-8290.cd-15-0023] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 08/19/2015] [Indexed: 12/21/2022]
Abstract
UNLABELLED Skin is a highly ordered immune organ that coordinates rapid responses to external insult while maintaining self-tolerance. In healthy tissue, lymphatic vessels drain fluid and coordinate local immune responses; however, environmental factors induce lymphatic vessel dysfunction, leading to lymph stasis and perturbed regional immunity. These same environmental factors drive the formation of local malignancies, which are also influenced by local inflammation. Herein, we discuss clinical and experimental evidence supporting the tenet that lymphatic vessels participate in regulation of cutaneous inflammation and immunity, and are important contributors to malignancy and potential biomarkers and targets for immunotherapy. SIGNIFICANCE The tumor microenvironment and tumor-associated inflammation are now appreciated not only for their role in cancer progression but also for their response to therapy. The lymphatic vasculature is a less-appreciated component of this microenvironment that coordinates local inflammation and immunity and thereby critically shapes local responses. A mechanistic understanding of the complexities of lymphatic vessel function in the unique context of skin provides a model to understand how regional immune dysfunction drives cutaneous malignancies, and as such lymphatic vessels represent a biomarker of cutaneous immunity that may provide insight into cancer prognosis and effective therapy.
Collapse
Affiliation(s)
- Amanda W Lund
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, Oregon. Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, Oregon. Department of Dermatology, Oregon Health and Science University, Portland, Oregon. Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon.
| | - Terry R Medler
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, Oregon
| | - Sancy A Leachman
- Department of Dermatology, Oregon Health and Science University, Portland, Oregon. Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon
| | - Lisa M Coussens
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, Oregon. Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon
| |
Collapse
|
26
|
Thomas LN, Merrimen J, Bell DG, Rendon R, Too CKL. Prolactin- and testosterone-induced carboxypeptidase-D correlates with increased nitrotyrosines and Ki67 in prostate cancer. Prostate 2015. [PMID: 26202060 DOI: 10.1002/pros.23054] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Carboxypeptidase-D (CPD) cleaves C-terminal arginine for conversion to nitric oxide (NO) by nitric oxide synthase (NOS). Prolactin (PRL) and androgens stimulate CPD gene transcription and expression, which increases intracellular production of NO to promote viability of prostate cancer (PCa) cells in vitro. The current study evaluated whether hormonal upregulation of CPD and NO promote PCa cell viabilty in vivo, by correlating changes in expression of CPD and nitrotyrosine residues (products of NO action) with proliferation marker Ki67 and associated proteins during PCa development and progression. METHODS Fresh prostate tissues, obtained from 40 men with benign prostatic hyperplasia (BPH) or PCa, were flash-frozen at the time of surgery and used for RT-qPCR analysis of CPD, androgen receptor (AR), PRL receptor (PRLR), eNOS, and Ki67 levels. Archival paraffin-embedded tissues from 113 men with BPH or PCa were used for immunohistochemical (IHC) analysis of CPD, nitrotyrosines, phospho-Stat5 (for activated PRLR), AR, eNOS/iNOS, and Ki67. RESULTS RT-qPCR and IHC analyses showed strong AR and PRLR expression in benign and malignant prostates. CPD mRNA levels increased ∼threefold in PCa compared to BPH, which corresponded to a twofold increase in Ki67 mRNA levels. IHC analysis showed a progressive increase in CPD from 11.4 ± 2.1% in benign to 21.8 ± 3.2% in low-grade (P = 0.007), 40.7 ± 4.0% in high-grade (P < 0.0001) and 50.0 ± 9.5% in castration-recurrent PCa (P < 0.0001). Immunostaining for nitrotyrosines and Ki67 mirrored these increases during PCa progression. CPD, nitrotyrosines, and Ki67 tended to co-localize, as did phospho-Stat5. CONCLUSIONS CPD, nitrotyrosine, and Ki67 levels were higher in PCa than in benign and tended to co-localize, along with phospho-Stat5. The strong correlation in expression of these proteins in benign and malignant prostate tissues, combined with abundant AR and PRLR, supports in vitro evidence that the CPD-Arg-NO pathway is involved in the regulation of PCa cell proliferation. It further highlights a role for PRL in the development and progression of PCa.
Collapse
Affiliation(s)
- Lynn N Thomas
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada
| | - Jennifer Merrimen
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
- Department of Urology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - David G Bell
- Department of Urology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Ricardo Rendon
- Department of Urology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Catherine K L Too
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
27
|
de Brot S, Ntekim A, Cardenas R, James V, Allegrucci C, Heery DM, Bates DO, Ødum N, Persson JL, Mongan NP. Regulation of vascular endothelial growth factor in prostate cancer. Endocr Relat Cancer 2015; 22:R107-23. [PMID: 25870249 DOI: 10.1530/erc-15-0123] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/01/2015] [Indexed: 12/14/2022]
Abstract
Prostate cancer (PCa) is the most common malignancy affecting men in the western world. Although radical prostatectomy and radiation therapy can successfully treat PCa in the majority of patients, up to ~30% will experience local recurrence or metastatic disease. Prostate carcinogenesis and progression is typically an androgen-dependent process. For this reason, therapies for recurrent PCa target androgen biosynthesis and androgen receptor function. Such androgen deprivation therapies (ADT) are effective initially, but the duration of response is typically ≤24 months. Although ADT and taxane-based chemotherapy have delivered survival benefits, metastatic PCa remains incurable. Therefore, it is essential to establish the cellular and molecular mechanisms that enable localized PCas to invade and disseminate. It has long been accepted that metastases require angiogenesis. In the present review, we examine the essential role for angiogenesis in PCa metastases, and we focus in particular on the current understanding of the regulation of vascular endothelial growth factor (VEGF) in localized and metastatic PCa. We highlight recent advances in understanding the role of VEGF in regulating the interaction of cancer cells with tumor-associated immune cells during the metastatic process of PCa. We summarize the established mechanisms of transcriptional and post-transcriptional regulation of VEGF in PCa cells and outline the molecular insights obtained from preclinical animal models of PCa. Finally, we summarize the current state of anti-angiogenesis therapies for PCa and consider how existing therapies impact VEGF signaling.
Collapse
Affiliation(s)
- Simone de Brot
- Faculty of Medicine and Health SciencesSchool of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Nottingham LE12 5RD, UKDepartment of PharmacologySchool of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UKCancer BiologyDivision of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, UKDepartment of International HealthImmunology and Microbiology, University of Copenhagen, Copenhagen, DenmarkClinical Research CenterLund University, Malmö, SwedenDepartment of PharmacologyWeill Cornell Medical College, New York, New York 10065, USA
| | - Atara Ntekim
- Faculty of Medicine and Health SciencesSchool of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Nottingham LE12 5RD, UKDepartment of PharmacologySchool of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UKCancer BiologyDivision of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, UKDepartment of International HealthImmunology and Microbiology, University of Copenhagen, Copenhagen, DenmarkClinical Research CenterLund University, Malmö, SwedenDepartment of PharmacologyWeill Cornell Medical College, New York, New York 10065, USA
| | - Ryan Cardenas
- Faculty of Medicine and Health SciencesSchool of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Nottingham LE12 5RD, UKDepartment of PharmacologySchool of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UKCancer BiologyDivision of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, UKDepartment of International HealthImmunology and Microbiology, University of Copenhagen, Copenhagen, DenmarkClinical Research CenterLund University, Malmö, SwedenDepartment of PharmacologyWeill Cornell Medical College, New York, New York 10065, USA
| | - Victoria James
- Faculty of Medicine and Health SciencesSchool of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Nottingham LE12 5RD, UKDepartment of PharmacologySchool of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UKCancer BiologyDivision of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, UKDepartment of International HealthImmunology and Microbiology, University of Copenhagen, Copenhagen, DenmarkClinical Research CenterLund University, Malmö, SwedenDepartment of PharmacologyWeill Cornell Medical College, New York, New York 10065, USA
| | - Cinzia Allegrucci
- Faculty of Medicine and Health SciencesSchool of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Nottingham LE12 5RD, UKDepartment of PharmacologySchool of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UKCancer BiologyDivision of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, UKDepartment of International HealthImmunology and Microbiology, University of Copenhagen, Copenhagen, DenmarkClinical Research CenterLund University, Malmö, SwedenDepartment of PharmacologyWeill Cornell Medical College, New York, New York 10065, USA
| | - David M Heery
- Faculty of Medicine and Health SciencesSchool of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Nottingham LE12 5RD, UKDepartment of PharmacologySchool of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UKCancer BiologyDivision of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, UKDepartment of International HealthImmunology and Microbiology, University of Copenhagen, Copenhagen, DenmarkClinical Research CenterLund University, Malmö, SwedenDepartment of PharmacologyWeill Cornell Medical College, New York, New York 10065, USA
| | - David O Bates
- Faculty of Medicine and Health SciencesSchool of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Nottingham LE12 5RD, UKDepartment of PharmacologySchool of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UKCancer BiologyDivision of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, UKDepartment of International HealthImmunology and Microbiology, University of Copenhagen, Copenhagen, DenmarkClinical Research CenterLund University, Malmö, SwedenDepartment of PharmacologyWeill Cornell Medical College, New York, New York 10065, USA
| | - Niels Ødum
- Faculty of Medicine and Health SciencesSchool of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Nottingham LE12 5RD, UKDepartment of PharmacologySchool of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UKCancer BiologyDivision of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, UKDepartment of International HealthImmunology and Microbiology, University of Copenhagen, Copenhagen, DenmarkClinical Research CenterLund University, Malmö, SwedenDepartment of PharmacologyWeill Cornell Medical College, New York, New York 10065, USA
| | - Jenny L Persson
- Faculty of Medicine and Health SciencesSchool of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Nottingham LE12 5RD, UKDepartment of PharmacologySchool of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UKCancer BiologyDivision of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, UKDepartment of International HealthImmunology and Microbiology, University of Copenhagen, Copenhagen, DenmarkClinical Research CenterLund University, Malmö, SwedenDepartment of PharmacologyWeill Cornell Medical College, New York, New York 10065, USA
| | - Nigel P Mongan
- Faculty of Medicine and Health SciencesSchool of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Nottingham LE12 5RD, UKDepartment of PharmacologySchool of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UKCancer BiologyDivision of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, UKDepartment of International HealthImmunology and Microbiology, University of Copenhagen, Copenhagen, DenmarkClinical Research CenterLund University, Malmö, SwedenDepartment of PharmacologyWeill Cornell Medical College, New York, New York 10065, USA Faculty of Medicine and Health SciencesSchool of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Nottingham LE12 5RD, UKDepartment of PharmacologySchool of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UKCancer BiologyDivision of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, UKDepartment of International HealthImmunology and Microbiology, University of Copenhagen, Copenhagen, DenmarkClinical Research CenterLund University, Malmö, SwedenDepartment of PharmacologyWeill Cornell Medical College, New York, New York 10065, USA
| |
Collapse
|
28
|
Kesler CT, Pereira ER, Cui CH, Nelson GM, Masuck DJ, Baish JW, Padera TP. Angiopoietin-4 increases permeability of blood vessels and promotes lymphatic dilation. FASEB J 2015; 29:3668-77. [PMID: 25977256 DOI: 10.1096/fj.14-268920] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 05/04/2015] [Indexed: 01/12/2023]
Abstract
The angiopoietin (Ang) ligands are potential therapeutic targets for lymphatic related diseases, which include lymphedema and cancer. Ang-1 and Ang-2 functions are established, but those of Ang-4 are poorly understood. We used intravital fluorescence microscopy to characterize Ang-4 actions on T241 murine fibrosarcoma-associated vessels in mice. The diameters of lymphatic vessels draining Ang-4- or VEGF-C (positive control)-expressing tumors increased to 123 and 135 μm, respectively, and parental, mock-transduced (negative controls) and tumors expressing Ang-1 or Ang-2 remained at baseline (∼60 μm). Ang-4 decreased human dermal lymphatic endothelial cell (LEC) monolayer permeability by 27% while increasing human dermal blood endothelial cell (BEC) monolayer permeability by 200%. In vivo, Ang-4 stimulated a 4.5-fold increase in tumor-associated blood vessel permeability compared with control when measured using intravital quantitative multiphoton microscopy. Ang-4 activated receptor signaling in both LECs and BECs, evidenced by tyrosine kinase with Ig and endothelial growth factor homology domains-2 (TIE2) receptor, protein kinase B, and Erk1,2 phosphorylation detectable by immunoblotting. These data suggest that Ang-4 actions are mediated through cell-type-specific networks and that lymphatic vessel dilation occurs secondarily to increased vascular leakage. Ang-4 also promoted survival of LECs. Thus, blocking Ang-4 may prune the draining lymphatic vasculature and decrease interstitial fluid pressure (IFP) by reducing vascular permeability.
Collapse
Affiliation(s)
- Cristina T Kesler
- *Edwin Steele Laboratory for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts, USA; Harold B. Lee Library, Brigham Young University, Provo, Utah, USA; and Department of Biomedical Engineering, Bucknell University, Lewisburg, Pennsylvania, USA
| | - Ethel R Pereira
- *Edwin Steele Laboratory for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts, USA; Harold B. Lee Library, Brigham Young University, Provo, Utah, USA; and Department of Biomedical Engineering, Bucknell University, Lewisburg, Pennsylvania, USA
| | - Cheryl H Cui
- *Edwin Steele Laboratory for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts, USA; Harold B. Lee Library, Brigham Young University, Provo, Utah, USA; and Department of Biomedical Engineering, Bucknell University, Lewisburg, Pennsylvania, USA
| | - Gregory M Nelson
- *Edwin Steele Laboratory for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts, USA; Harold B. Lee Library, Brigham Young University, Provo, Utah, USA; and Department of Biomedical Engineering, Bucknell University, Lewisburg, Pennsylvania, USA
| | - David J Masuck
- *Edwin Steele Laboratory for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts, USA; Harold B. Lee Library, Brigham Young University, Provo, Utah, USA; and Department of Biomedical Engineering, Bucknell University, Lewisburg, Pennsylvania, USA
| | - James W Baish
- *Edwin Steele Laboratory for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts, USA; Harold B. Lee Library, Brigham Young University, Provo, Utah, USA; and Department of Biomedical Engineering, Bucknell University, Lewisburg, Pennsylvania, USA
| | - Timothy P Padera
- *Edwin Steele Laboratory for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts, USA; Harold B. Lee Library, Brigham Young University, Provo, Utah, USA; and Department of Biomedical Engineering, Bucknell University, Lewisburg, Pennsylvania, USA
| |
Collapse
|
29
|
Abstract
Lymphatic vessels in the tumor microenvironment are known to foster tumor metastasis in many cancers, and they can undergo activation, hyperplasia, and lymphangiogenesis in the tumor microenvironment and in the tumor-draining lymph node. The mechanism underlying this correlation was originally considered as lymphatic vessels providing a physical route for tumor cell dissemination, but recent studies have highlighted new roles of the lymphatic endothelium in regulating host immunity. These include indirectly suppressing T-cell function by secreting immunosuppressive factors and inhibiting dendritic cell (DC) maturation, as well as directly driving T-cell tolerance by antigen presentation in the presence of inhibitory ligands. Furthermore, lymphatic endothelium scavenges and regulates transendothelial transport actively, controlling the sustained delivery of lymph-borne antigens from chronically inflamed tissues to draining lymph nodes where immature DCs, in the absence of danger signals, along with lymph node stromal cells present these antigens to T cells for maintenance of peripheral tolerance to self-antigens, a mechanism that may be hijacked by some tumors. This Masters of Immunology primer aims to present an overview of research in this area and highlight emerging evidence that suggests lymphatic vessels, and lymphangiogenesis, play important immunomodulatory roles in the tumor microenvironment.
Collapse
Affiliation(s)
- Melody A Swartz
- Institute of Bioengineering and Swiss Institute for Experimental Cancer Research (ISREC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland; and Institute for Molecular Engineering, University of Chicago, Chicago, Illinois
| |
Collapse
|
30
|
Mumblat Y, Kessler O, Ilan N, Neufeld G. Full-Length Semaphorin-3C Is an Inhibitor of Tumor Lymphangiogenesis and Metastasis. Cancer Res 2015; 75:2177-86. [PMID: 25808871 DOI: 10.1158/0008-5472.can-14-2464] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Accepted: 03/13/2015] [Indexed: 11/16/2022]
Abstract
Semaphorins play important regulatory roles in diverse processes such as axon guidance, angiogenesis, and immune responses. We find that semaphorin-3C (sema3C) induces the collapse of the cytoskeleton of lymphatic endothelial cells (LEC) in a neuropilin-2-, plexin-D1-, and plexin-A1-dependent manner, while most other semaphorins, including antiangiogenic semaphorins such as sema3A do not. Sema3C is cleaved, like other class-3 semaphorins, by furin-like pro-protein convertases (FPPC). Cleaved sema3C (p65-Sema3C) was unable to induce the collapse of the cytoskeleton of LEC. FPPC are strongly upregulated in tumor cells. In order to examine the effects of full-length sema3C on tumor progression, we therefore generated an active point mutated furin cleavage-resistant sema3C (FR-sema3C). FR-sema3C inhibited potently proliferation of LEC and to a lesser extent proliferation of human umbilical vein-derived endothelial cells. FR-sema3C also inhibited VEGF-C-induced phosphorylation of VEGFR-3, ERK1/2, and AKT. Expression of recombinant FR-sema3C in metastatic, triple-negative LM2-4 breast cancer cells did not affect their migration or proliferation in vitro. However, tumors derived from FR-sema3C-expressing LM2-4 cells implanted in mammary fat pads developed at a slower rate, contained a lower concentration of blood vessels and lymph vessels, and metastasized much less effectively to lymph nodes. Interestingly, p65-Sema3C, but not FR-sema3C, rendered A549 lung cancer cells resistant to serum deprivation, suggesting that previously reported protumorigenic activities of sema3C may be due to p65-Sema3C produced by tumor cells. Our observations suggest that FR-sema3C may be further developed into a novel antitumorigenic drug.
Collapse
Affiliation(s)
- Yelena Mumblat
- Cancer Research and Vascular Biology Center, The Bruce Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel
| | - Ofra Kessler
- Cancer Research and Vascular Biology Center, The Bruce Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel
| | - Neta Ilan
- Cancer Research and Vascular Biology Center, The Bruce Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel
| | - Gera Neufeld
- Cancer Research and Vascular Biology Center, The Bruce Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
31
|
Shirako Y, Taya Y, Sato K, Chiba T, Imai K, Shimazu Y, Aoba T, Soeno Y. Heterogeneous tumor stromal microenvironments of oral squamous cell carcinoma cells in tongue and nodal metastatic lesions in a xenograft mouse model. J Oral Pathol Med 2015; 44:656-68. [PMID: 25765182 DOI: 10.1111/jop.12318] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/02/2015] [Indexed: 12/13/2022]
Abstract
BACKGROUND Oral squamous cell carcinoma exhibits a poor prognosis, caused by aggressive progression and early-stage metastasis to cervical lymph nodes. Here, we developed a xenograft mouse model to explore the heterogeneity of the tumor microenvironment that may govern local invasion and nodal metastasis of tumor cells. METHODS We transplanted five oral carcinoma cell lines into the tongues of nude mice and determined tongue tumor growth and micrometastatic dissemination by serially sectioning the tongue and lymph node lesions in combination with immunohistochemistry and computer-assisted image analysis. Our morphometric analysis enabled a quantitative assessment of blood and lymphatic endothelial densities in the intratumoral and host stromal regions. RESULTS All cell lines tested were tumorigenic in mouse tongue. The metastatic lesion-derived carcinoma cell lines (OSC19, OSC20, and HSC2) yielded a 100% nodal metastasis rate, whereas the primary tumor-derived cell lines (KOSC2 and HO-1-u-1) showed <40% metastatic potential. Immunohistochemistry showed that the individual cell lines gave rise to heterogeneous tumor architecture and phenotypes and that their micrometastatic lesions assimilated the immunophenotypic properties of the corresponding tongue tumors. Notably, OSC19 and OSC20 cells shared similar aggressive tumorigenicity in both the tongue and lymph node environments but displayed markedly diverse immunophenotypes and gene expression profiles. CONCLUSIONS Our model facilitated comparing the tumor microenvironments in tongue and lymph node lesions. The results support that tumorigenicity and tumor architecture in the host tongue environment depend on the origin and properties of the carcinoma cell lines and that metastatic progression may take place through heterogeneous tumor-host interactions.
Collapse
Affiliation(s)
- Youichi Shirako
- Department of Pathology, School of Life Dentistry at Tokyo, The Nippon Dental University, Chiyoda-ku, Tokyo, Japan
| | - Yuji Taya
- Department of Pathology, School of Life Dentistry at Tokyo, The Nippon Dental University, Chiyoda-ku, Tokyo, Japan
| | - Kaori Sato
- Department of Pathology, School of Life Dentistry at Tokyo, The Nippon Dental University, Chiyoda-ku, Tokyo, Japan
| | - Tadashige Chiba
- Department of Biochemistry, School of Life Dentistry at Tokyo, The Nippon Dental University, Chiyoda-ku, Tokyo, Japan
| | - Kazushi Imai
- Department of Biochemistry, School of Life Dentistry at Tokyo, The Nippon Dental University, Chiyoda-ku, Tokyo, Japan
| | - Yoshihito Shimazu
- Department of Pathology, School of Life Dentistry at Tokyo, The Nippon Dental University, Chiyoda-ku, Tokyo, Japan.,Department of Food and Life Sciences, School of Life and Environmental Sciences, Azabu University, Chuo-ku, Sagamihara, Kanagawa, Japan
| | - Takaaki Aoba
- Department of Pathology, School of Life Dentistry at Tokyo, The Nippon Dental University, Chiyoda-ku, Tokyo, Japan
| | - Yuuichi Soeno
- Department of Pathology, School of Life Dentistry at Tokyo, The Nippon Dental University, Chiyoda-ku, Tokyo, Japan
| |
Collapse
|
32
|
Liu D, Li L, Zhang XX, Wan DY, Xi BX, Hu Z, Ding WC, Zhu D, Wang XL, Wang W, Feng ZH, Wang H, Ma D, Gao QL. SIX1 promotes tumor lymphangiogenesis by coordinating TGFβ signals that increase expression of VEGF-C. Cancer Res 2014; 74:5597-607. [PMID: 25142796 DOI: 10.1158/0008-5472.can-13-3598] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Lymphatic vessels are one of the major routes for the dissemination of cancer cells. Malignant tumors release growth factors such as VEGF-C to induce lymphangiogenesis, thereby promoting lymph node metastasis. Here, we report that sine oculis homeobox homolog 1 (SIX1), expressed in tumor cells, can promote tumor lymphangiogenesis and lymph node metastasis by coordinating with TGFβ to increase the expression of VEGF-C. Lymphangiogenesis and lymph node metastasis in cervical cancer were closely correlated with higher expression of SIX1 in tumor cells. By enhancing VEGF-C expression in tumor cells, SIX1 could augment the promoting effect of tumor cells on the migration and tube formation of lymphatic endothelial cells (LEC) in vitro and lymphangiogenesis in vivo. SIX1 enhanced TGFβ-induced activation of SMAD2/3 and coordinated with the SMAD pathway to modulate VEGF-C expression. Together, SIX1 and TGFβ induced much higher expression of VEGF-C in tumor cells than each of them alone. Despite its effect in promoting VEGF-C expression, TGFβ could inhibit lymphangiogenesis by directly inhibiting tube formation by LECs. However, the increased production of VEGF-C not only directly promoted migration and tube formation of LECs but also thwarted the inhibitory effect of TGFβ on LECs. That is, tumor cells that expressed high levels of SIX1 could promote lymphangiogenesis and counteract the negative effects of TGFβ on lymphangiogenesis by increasing the expression of VEGF-C. These findings provide new insights into tumor lymphangiogenesis and the various roles of TGFβ signaling in tumor regulation. Our results also suggest that SIX1/TGFβ might be a potential therapeutic target for preventing lymph node metastasis of tumor.
Collapse
Affiliation(s)
- Dan Liu
- Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Li Li
- Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Xiao-Xue Zhang
- Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Dong-Yi Wan
- Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Bi-Xin Xi
- Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Zheng Hu
- Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Wen-Cheng Ding
- Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Da Zhu
- Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Xiao-Li Wang
- Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Wei Wang
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University Guangzhou, People's Republic of China
| | - Zuo-Hua Feng
- Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Hui Wang
- Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China.
| | - Ding Ma
- Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China.
| | - Qing-Lei Gao
- Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China.
| |
Collapse
|
33
|
Kostis G, Ioannis L, Helen K, Helen P. The expression of vascular endothelial growth factor-C correlates with lymphatic microvessel density and lymph node metastasis in prostate carcinoma: An immunohistochemical study. Urol Ann 2014; 6:224-30. [PMID: 25125895 PMCID: PMC4127859 DOI: 10.4103/0974-7796.134275] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 03/05/2013] [Indexed: 12/14/2022] Open
Abstract
Aim: To evaluate the expression of two different lymphatic vascular density (LVD) markers (D2-40 and LYVE-1) and a lymphangiogenic cytokine (Vascular Endothelial Growth Factor-C, [VEGF-C]) in prostate carcinoma and to investigate their relationship with the lymph node status. Settings and Design: Archival material study of 92 non-consecutive radical prostatectomy specimens. Materials and Methods: The mean LVD was assessed immunohistochemically in 24 prostate carcinoma specimens from patients with clinically localized disease, who were found to have nodal metastasis (pN1), and was compared with 68 pN0 cases. Furthermore, the mean LVD, VEGF-C expression, and lymphatic invasion were examined in relation to lymph node involvement. Results: Peritumoral (but not intratumoral) mean LVD assessed by D2-40 was higher in pN1 tumors (P = 0.015). LYVE-1 expression was limited and not associated with lymph node status. The VEGF-C expression was higher in the N1 cases and also correlated with the increased mean LVD in both the peri- and intratumoral compartments. Lymphatic invasion was strongly associated with nodal metastasis and higher VEGF-C expression. Conclusions: Our results indicate that increased peritumoral (but not intratumoral) LVD in the tumor specimen is associated with lymph node metastasis. Increased expression of VEGF-C is associated with higher LVD (in both intratumoral and peritumoral compartments) and with positive lymph node status, indicating a possible dual role in both lymphangiogenesis and lymphatic vessel invasion.
Collapse
Affiliation(s)
- Gyftopoulos Kostis
- Department of Anatomy, School of Medicine, University of Patras, Rion, Greece
| | - Lilis Ioannis
- Department of Anatomy, School of Medicine, University of Patras, Rion, Greece
| | - Kourea Helen
- Department of Pathology, School of Medicine, University of Patras, Rion, Greece
| | - Papadaki Helen
- Department of Anatomy, School of Medicine, University of Patras, Rion, Greece
| |
Collapse
|
34
|
Stacker SA, Williams SP, Karnezis T, Shayan R, Fox SB, Achen MG. Lymphangiogenesis and lymphatic vessel remodelling in cancer. Nat Rev Cancer 2014; 14:159-72. [PMID: 24561443 DOI: 10.1038/nrc3677] [Citation(s) in RCA: 565] [Impact Index Per Article: 56.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The generation of new lymphatic vessels through lymphangiogenesis and the remodelling of existing lymphatics are thought to be important steps in cancer metastasis. The past decade has been exciting in terms of research into the molecular and cellular biology of lymphatic vessels in cancer, and it has been shown that the molecular control of tumour lymphangiogenesis has similarities to that of tumour angiogenesis. Nevertheless, there are significant mechanistic differences between these biological processes. We are now developing a greater understanding of the specific roles of distinct lymphatic vessel subtypes in cancer, and this provides opportunities to improve diagnostic and therapeutic approaches that aim to restrict the progression of cancer.
Collapse
Affiliation(s)
- Steven A Stacker
- 1] Tumour Angiogenesis Program, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia. [2] Sir Peter MacCallum Department of Oncology, University of Melbourne, Victoria 3010, Australia. [3] Department of Surgery, Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria 3050, Australia
| | - Steven P Williams
- Tumour Angiogenesis Program, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia
| | - Tara Karnezis
- 1] Tumour Angiogenesis Program, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia. [2] Sir Peter MacCallum Department of Oncology, University of Melbourne, Victoria 3010, Australia
| | - Ramin Shayan
- 1] Tumour Angiogenesis Program, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia. [2] Department of Surgery, Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria 3050, Australia. [3] Department of Surgery, St. Vincent's Hospital, University of Melbourne, Fitzroy, Victoria 3065, Australia. [4] O'Brien Institute, Australian Catholic University, Fitzroy, Victoria 3065, Australia
| | - Stephen B Fox
- 1] Sir Peter MacCallum Department of Oncology, University of Melbourne, Victoria 3010, Australia. [2] Department of Pathology, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia
| | - Marc G Achen
- 1] Tumour Angiogenesis Program, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia. [2] Sir Peter MacCallum Department of Oncology, University of Melbourne, Victoria 3010, Australia. [3] Department of Surgery, Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria 3050, Australia
| |
Collapse
|
35
|
Sun Q, Zhou J, Zhang Z, Guo M, Liang J, Zhou F, Long J, Zhang W, Yin F, Cai H, Yang H, Zhang W, Gu Y, Ni L, Sai Y, Cui Y, Zhang M, Hong M, Sun J, Yang Z, Qing W, Su W, Ren Y. Discovery of fruquintinib, a potent and highly selective small molecule inhibitor of VEGFR 1, 2, 3 tyrosine kinases for cancer therapy. Cancer Biol Ther 2014; 15:1635-45. [PMID: 25482937 PMCID: PMC4622458 DOI: 10.4161/15384047.2014.964087] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2014] [Revised: 10/14/2014] [Accepted: 09/04/2014] [Indexed: 12/30/2022] Open
Abstract
VEGF/VEGFR signal axis has been proven to be an important target for development of novel cancer therapies. One challenging aspect in small molecular VEGFR inhibitors is to achieve sustained target inhibition at tolerable doses previously seen only with the long-acting biologics. It would require high potency (low effective drug concentrations) and sufficient drug exposures at tolerated doses so that the drug concentration can be maintained above effective drug concentration for target inhibition within the dosing period. Fruquintinib (HMPL-013) is a small molecule inhibitor with strong potency and high selectivity against VEGFR family currently in Phase II clinical studies. Analysis of Phase I pharmacokinetic data revealed that at the maximum tolerated dose of once daily oral administration fruquintinib achieved complete VEGFR2 suppression (drug concentrations were maintained above that required to produce >85% inhibition of VEGFR2 phosphorylation in mouse) for 24 hours/day. In this article, the preclinical data for fruquintinib will be described, including kinase enzyme activity and selectivity, cellular VEGFR inhibition and VEGFR-driven functional activity, in vivo VEGFR phosphorylation inhibition in the lung tissue in mouse and tumor growth inhibition in a panel of tumor xenograft and patient derive xenograft models in mouse. Pharmacokinetic and target inhibition data are also presented to provide a correlation between target inhibition and tumor growth inhibition.
Collapse
Key Words
- 2
- 3
- AKT, protein kinase B
- CAM, chorioallantoic membrane
- ERK, extracelluar signal-regulated kinase
- KDR, Kinase insert domain-containing receptor, also named as VEGFR2
- PI3K, phosphoinositide 3-kinase
- PK/PD, pharmacokinetics/pharmacodynamics
- PKC, protein kinase C
- VEGF, vascular endothelial growth factor
- VEGFR, vascular endothelial growth factor receptor
- VEGFR1
- angiogenesis
- anti-tumor activity
- cancer treatment
- fruquintinib
- tumor xenograft models
- tyrosine kinase inhibitor
Collapse
Affiliation(s)
- Qiaoling Sun
- Department of Oncology; Hutchison MediPharma Limited; Shanghai, China
| | - Jinghong Zhou
- Department of Oncology; Hutchison MediPharma Limited; Shanghai, China
| | - Zheng Zhang
- Department of Chemistry; Hutchison MediPharma Limited; Shanghai, China
| | - Mingchuan Guo
- Department of Oncology; Hutchison MediPharma Limited; Shanghai, China
| | - Junqing Liang
- Department of Oncology; Hutchison MediPharma Limited; Shanghai, China
| | - Feng Zhou
- Department of Oncology; Hutchison MediPharma Limited; Shanghai, China
| | - Jingwen Long
- Department of Oncology; Hutchison MediPharma Limited; Shanghai, China
| | - Wei Zhang
- Department of Oncology; Hutchison MediPharma Limited; Shanghai, China
| | - Fang Yin
- Department of Oncology; Hutchison MediPharma Limited; Shanghai, China
| | - Huaqing Cai
- Department of Chemistry; Hutchison MediPharma Limited; Shanghai, China
| | - Haibin Yang
- Department of Chemistry; Hutchison MediPharma Limited; Shanghai, China
| | - Weihan Zhang
- Department of Chemistry; Hutchison MediPharma Limited; Shanghai, China
| | - Yi Gu
- Department of Drug Metabolism & Pharmacokinetics; Hutchison MediPharma Limited; Shanghai, China
| | - Liang Ni
- Department of Drug Metabolism & Pharmacokinetics; Hutchison MediPharma Limited; Shanghai, China
| | - Yang Sai
- Department of Drug Metabolism & Pharmacokinetics; Hutchison MediPharma Limited; Shanghai, China
| | - Yumin Cui
- Department of Oncology; Hutchison MediPharma Limited; Shanghai, China
| | - Meifang Zhang
- Department of Oncology; Hutchison MediPharma Limited; Shanghai, China
| | - Minhua Hong
- Department of Oncology; Hutchison MediPharma Limited; Shanghai, China
| | - Junen Sun
- Department of Oncology; Hutchison MediPharma Limited; Shanghai, China
| | - Zheng Yang
- Department of Oncology; Hutchison MediPharma Limited; Shanghai, China
| | - Weiguo Qing
- Department of Oncology; Hutchison MediPharma Limited; Shanghai, China
| | - Weiguo Su
- Department of Chemistry; Hutchison MediPharma Limited; Shanghai, China
| | - Yongxin Ren
- Department of Oncology; Hutchison MediPharma Limited; Shanghai, China
| |
Collapse
|
36
|
Takeuchi H, Kitagawa Y. Sentinel node and mechanism of lymphatic metastasis. Ann Vasc Dis 2013; 5:249-57. [PMID: 23555522 DOI: 10.3400/avd.ra.12.00033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Accepted: 06/08/2012] [Indexed: 12/26/2022] Open
Abstract
The validity and clinical usefulness of the sentinel node (SN) concept for breast cancer has been confirmed, and individualized limited surgery based on diagnosis of SN metastasis is presently performed. In the future, SN navigation surgery (SNNS) will be actively applied to the treatment of early gastric cancer, and an intraoperative real-time reverse transcription-polymerase chain reaction (RT-PCR) assay to detect SN micrometastasis of gastric cancer is under development. Not only anatomical factors, but also many other factors such as local immunosuppression in the SN and lymphoangiogenesis may be involved in development of SN micrometastasis, and clarification of the mechanisms of metastasis and development of treatment methods are awaited. (*English Translation of J Jpn Col Angiol 2008; 48: 137-142.).
Collapse
Affiliation(s)
- Hiroya Takeuchi
- Department of Surgery, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | | |
Collapse
|
37
|
Oashi K, Furukawa H, Nishihara H, Ozaki M, Oyama A, Funayama E, Hayashi T, Kuge Y, Yamamoto Y. Pathophysiological Characteristics of Melanoma In-Transit Metastasis in a Lymphedema Mouse Model. J Invest Dermatol 2013; 133:537-44. [DOI: 10.1038/jid.2012.274] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
38
|
Kesler CT, Liao S, Munn LL, Padera TP. Lymphatic vessels in health and disease. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2012. [PMID: 23209022 DOI: 10.1002/wsbm.1201] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The lymphatic vasculature plays vital roles in tissue fluid balance, immune defense, metabolism, and cancer metastasis. In adults, lymphatic vessel formation and remodeling occur primarily during inflammation, development of the corpus luteum, wound healing, and tumor growth. Unlike the blood circulation, where unidirectional flow is sustained by the pumping actions of the heart, pumping actions intrinsic to the lymphatic vessels themselves are important drivers of lymphatic flow. This review summarizes critical components that control lymphatic physiology.
Collapse
Affiliation(s)
- Cristina T Kesler
- E. L. Steele Laboratory, Department of Radiation Oncology, Harvard Medical School and Massachusetts General Hospital, Boston, MA, USA
| | | | | | | |
Collapse
|
39
|
Kashima K, Watanabe M, Satoh Y, Hata J, Ishii N, Aoki Y. Inhibition of lymphatic metastasis in neuroblastoma by a novel neutralizing antibody to vascular endothelial growth factor-D. Cancer Sci 2012; 103:2144-52. [PMID: 22937829 DOI: 10.1111/cas.12010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Revised: 08/20/2012] [Accepted: 08/24/2012] [Indexed: 12/21/2022] Open
Abstract
Lymphatic spread is an important clinical determinant in the prognosis of many human cancers. The lymphangiogenic factor vascular endothelial growth factor-D (VEGF-D) is implicated in the promotion of lymphatic metastasis through the development of lymphatic vessels in some human cancers. In this study, we developed an anti-VEGF-D monoclonal antibody, cVE199, and investigated its in vitro properties, in vivo effects against tumors and possible target indications to evaluate its potential as a therapeutic antibody. The cVE199 molecule was revealed to have a specific binding reactivity against human VEGF-D, as well as a specific inhibitory activity against the binding of human VEGF-D to VEGFR-3. In addition, cVE199 was found to inhibit the biological activity of VEGF-D against lymphatic cells in vitro. Because we determined that a neuroblastoma cell line, SK-N-DZ, abundantly expressed VEGF-D, an in vivo efficacy study was performed using a xenograft model of SK-N-DZ. We found that cVE199 significantly decreased lymphatic metastasis of SK-N-DZ as well as lymphangiogenesis in primary lesions. Finally, we investigated VEGF-D expression in human neuroblastoma, finding that the molecule was expressed in 11 of 29 human neuroblastoma specimens (37.9%). In conclusion, we found that a novel anti-VEGF-D monoclonal antibody, cVE199, with specific reactivity against human VEGF-D, prevents lymphatic metastasis of neuroblastoma through the inhibition of lymphangiogenesis in an animal model. In addition, our results show that VEGF-D is expressed in some cases of human neuroblastomas, which suggests that cVE199 is a potential anti-metastasis therapeutic antibody in neuroblastoma treatment.
Collapse
Affiliation(s)
- Kenji Kashima
- Department 2 of Pharmaceutical Research, Chugai Pharmaceutical Co. Ltd, Kanagawa, Japan.
| | | | | | | | | | | |
Collapse
|
40
|
Zhuo W, Jia L, Song N, Lu XA, Ding Y, Wang X, Song X, Fu Y, Luo Y. The CXCL12-CXCR4 chemokine pathway: a novel axis regulates lymphangiogenesis. Clin Cancer Res 2012; 18:5387-98. [PMID: 22932666 DOI: 10.1158/1078-0432.ccr-12-0708] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Lymphangiogenesis, the growth of lymphatic vessels, contributes to lymphatic metastasis. However, the precise mechanism underlying lymphangiogenesis remains poorly understood. This study aimed to examine chemokine/chemokine receptors that directly contribute to chemoattraction of activated lymphatic endothelial cells (LEC) and tumor lymphangiogenesis. EXPERIMENTAL DESIGN We used quantitative RT-PCR to analyze specifically expressed chemokine receptors in activated LECs upon stimulation of vascular endothelial growth factor-C (VEGF-C). Subsequently, we established in vitro and in vivo models to show lymphangiogenic functions of the chemokine axis. Effects of targeting the chemokine axis on tumor lymphangiogenesis and lymphatic metastasis were determined in an orthotopic breast cancer model. RESULTS VEGF-C specifically upregulates CXCR4 expression on lymphangiogenic endothelial cells. Moreover, hypoxia-inducible factor-1α (HIF-1α) mediates the CXCR4 expression induced by VEGF-C. Subsequent analyses identify the ligand CXCL12 as a chemoattractant for LECs. CXCL12 induces migration, tubule formation of LECs in vitro, and lymphangiogenesis in vivo. CXCL12 also stimulates the phosphorylation of intracellular signaling Akt and Erk, and their specific antagonists impede CXCL12-induced chemotaxis. In addition, its level is correlated with lymphatic vessel density in multiple cancer tissues microarray. Furthermore, the CXCL12-CXCR4 axis is independent of the VEGFR-3 pathway in promoting lymphangiogenesis. Intriguingly, combined treatment with anti-CXCL12 and anti-VEGF-C antibodies results in additive inhibiting effects on tumor lymphangiogenesis and lymphatic metastasis. CONCLUSIONS These results show the role of the CXCL12-CXCR4 axis as a novel chemoattractant for LECs in promoting lymphangiogenesis, and support the potential application of combined targeting of both chemokines and lymphangiogenic factors in inhibiting lymphatic metastasis.
Collapse
Affiliation(s)
- Wei Zhuo
- National Engineering Laboratory for Anti-tumor Protein Therapeutics, Beijing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Zhao YC, Ni XJ, Li Y, Dai M, Yuan ZX, Zhu YY, Luo CY. Peritumoral lymphangiogenesis induced by vascular endothelial growth factor C and D promotes lymph node metastasis in breast cancer patients. World J Surg Oncol 2012; 10:165. [PMID: 22906075 PMCID: PMC3499230 DOI: 10.1186/1477-7819-10-165] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Accepted: 07/27/2012] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Mounting clinical and experimental data suggest that the migration of tumor cells into lymph nodes is greatly facilitated by lymphangiogenesis. Vascular endothelial growth factor (VEGF)-C and D have been identified as lymphangiogenic growth factors and play an important role in tumor lymphangiogenesis. The purpose of this study was to investigate the location of lymphangiogenesis driven by tumor-derived VEGF-C/D in breast cancer, and to determine the role of intratumoral and peritumoral lymphatic vessel density (LVD) in lymphangiogenesis in breast cancer. METHODS The expression levels of VEGF-C/D were determined by immunohistochemistry, and intratumoral LVD and peritumoral LVD were assessed using immunohistochemistry and the D2-40 antibody in 73 patients with primary breast cancer. The associations of intratumoral LVD and peritumoral LVD with VEGF-C/D expression, clinicopathological features and prognosis were assessed. RESULTS VEGF-C and D expression were significantly higher in breast cancer than benign disease (P < 0.01). VEGF-C (P < 0.001) and VEGF-D (P = 0.005) expression were significantly associated with peritumoral LVD, but not intratumoral LVD. Intratumoral LVD was associated with tumor size (P = 0.01). Peritumoral LVD was significantly associated with lymph node metastasis (LNM; P = 0.005), lymphatic vessel invasion (LVI; P = 0.017) and late tumor,node, metastasis (TNM) stage (P = 0.011). Moreover, peritumoral LVD was an independent risk factor for axillary lymph node metastasis, overall survival and disease-free survival in multivariate analysis. CONCLUSIONS This study suggests that tumor-derived VEGF-C/D induce peritumoral lymphangiogenesis, which may be one mechanism that leads to lymphatic invasion and metastatic spread. Peritumoral LVD has potential as an independent prognostic factor in breast cancer patients.
Collapse
Affiliation(s)
- Ying-Chun Zhao
- Department of Breast Surgery, The Second People's Hospital of Wuhu Affiliated with Wannan Medical College, 231 Jiuhuashan Road, Wuhu 241000, China
| | | | | | | | | | | | | |
Collapse
|
42
|
Karnezis T, Shayan R, Fox S, Achen MG, Stacker SA. The connection between lymphangiogenic signalling and prostaglandin biology: a missing link in the metastatic pathway. Oncotarget 2012; 3:893-906. [PMID: 23097685 PMCID: PMC3478465 DOI: 10.18632/oncotarget.593] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Accepted: 08/17/2012] [Indexed: 12/21/2022] Open
Abstract
Substantial evidence supports important independent roles for lymphangiogenic growth factor signaling and prostaglandins in the metastatic spread of cancer. The significance of the lymphangiogenic growth factors, vascular endothelial growth factor (VEGF)-C and VEGF-D, is well established in animal models of metastasis, and a strong correlation exits between an increase in expression of VEGF-C and VEGF-D, and metastatic spread in various solid human cancers. Similarly, key enzymes that control the production of prostaglandins, cyclooxygenases (COX-1 and COX-2, prototypic targets of Non-steroidal anti-inflammatory drugs (NSAIDs)), are frequently over-expressed or de-regulated in the progression of cancer. Recent data have suggested an intersection of lymphangiogenic growth factor signaling and the prostaglandin pathways in the control of metastatic spread via the lymphatic vasculature. Furthermore, this correlates with current clinical data showing that some NSAIDs enhance the survival of cancer patients through reducing metastasis. Here, we discuss the potential biochemical and cellular basis for such anti-cancer effects of NSAIDs through the prostaglandin and VEGF signaling pathways.
Collapse
Affiliation(s)
- Tara Karnezis
- Peter MacCallum Cancer Centre, Locked Bag 1, A'Beckett Street, East Melbourne, Victoria, Australia
| | | | | | | | | |
Collapse
|
43
|
Ran S, Montgomery KE. Macrophage-mediated lymphangiogenesis: the emerging role of macrophages as lymphatic endothelial progenitors. Cancers (Basel) 2012; 4:618-57. [PMID: 22946011 PMCID: PMC3430523 DOI: 10.3390/cancers4030618] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
It is widely accepted that macrophages and other inflammatory cells support tumor progression and metastasis. During early stages of neoplastic development, tumor-infiltrating macrophages (TAMs) mount an immune response against transformed cells. Frequently, however, cancer cells escape the immune surveillance, an event that is accompanied by macrophage transition from an anti-tumor to a pro-tumorigenic type. The latter is characterized by high expression of factors that activate endothelial cells, suppress immune response, degrade extracellular matrix, and promote tumor growth. Cumulatively, these products of TAMs promote tumor expansion and growth of both blood and lymphatic vessels that facilitate metastatic spread. Breast cancers and other epithelial malignancies induce the formation of new lymphatic vessels (i.e., lymphangiogenesis) that leads to lymphatic and subsequently, to distant metastasis. Both experimental and clinical studies have shown that TAMs significantly promote tumor lymphangiogenesis through paracrine and cell autonomous modes. The paracrine effect consists of the expression of a variety of pro-lymphangiogenic factors that activate the preexisting lymphatic vessels. The evidence for cell-autonomous contribution is based on the observed tumor mobilization of macrophage-derived lymphatic endothelial cell progenitors (M-LECP) that integrate into lymphatic vessels prior to sprouting. This review will summarize the current knowledge of macrophage-dependent growth of new lymphatic vessels with specific emphasis on an emerging role of macrophages as lymphatic endothelial cell progenitors (M-LECP).
Collapse
Affiliation(s)
- Sophia Ran
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-217-545-7026; Fax: +1-217-545-7333
| | | |
Collapse
|
44
|
Darrington E, Zhong M, Vo BH, Khan SA. Vascular endothelial growth factor A, secreted in response to transforming growth factor-β1 under hypoxic conditions, induces autocrine effects on migration of prostate cancer cells. Asian J Androl 2012; 14:745-51. [PMID: 22705563 DOI: 10.1038/aja.2011.197] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Hypoxia and transforming growth factor-β1 (TGF-β1) increase vascular endothelial growth factor A (VEGFA) expression in a number of malignancies. This effect of hypoxia and TGF-β1 might be responsible for tumor progression and metastasis of advanced prostate cancer. In the present study, TGF-β1 was shown to induce VEGFA(165) secretion from both normal cell lines (HPV7 and RWPE1) and prostate cancer cell lines (DU145 and PC3). Conversely, hypoxia-stimulated VEGFA(165) secretion was observed only in prostate cancer cell lines. Hypoxia induced TGF-β1 expression in PC3 prostate cancer cells, and the TGF-β type I receptor (ALK5) kinase inhibitor partially blocked hypoxia-mediated VEGFA(165) secretion. This effect of hypoxia provides a novel mechanism to increase VEGFA expression in prostate cancer cells. Although autocrine signaling of VEGFA has been implicated in prostate cancer progression and metastasis, the associated mechanism is poorly characterized. VEGFA activity is mediated via VEGF receptor (VEGFR) 1 (Flt-1) and 2 (Flk-1/KDR). Whereas VEGFR-1 mRNA was detected in normal prostate epithelial cells, VEGFR-2 mRNA and VEGFR protein were expressed only in PC3 cells. VEGFA(165) treatment induced phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2) in PC3 cells but not in HPV7 cells, suggesting that the autocrine function of VEGFA may be uniquely associated with prostate cancer. Activation of VEGFR-2 by VEGFA(165) was shown to enhance migration of PC3 cells. A similar effect was also observed with endogenous VEGFA induced by TGF-β1 and hypoxia. These findings illustrate that an autocrine loop of VEGFA via VEGFR-2 is critical for the tumorigenic effects of TGF-β1 and hypoxia on metastatic prostate cancers.
Collapse
Affiliation(s)
- Eric Darrington
- Center for Cancer Research and Therapeutic Development, Clark Atlanta University, Atlanta, GA 30314, USA
| | | | | | | |
Collapse
|
45
|
In vivo imaging of lymphatic vessels in development, wound healing, inflammation, and tumor metastasis. Proc Natl Acad Sci U S A 2012; 109:6223-8. [PMID: 22474390 DOI: 10.1073/pnas.1115542109] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Lymphatic vessel growth or lymphangiogenesis occurs during embryonic development and wound healing and plays an important role in tumor metastasis and inflammatory diseases. However, the possibility of noninvasive detection and quantification of lymphangiogenesis has been lacking. Here, we present the Vegfr3(EGFPLuc) mouse model, where an EGFP-luciferase fusion protein, expressed under the endogenous transcriptional control of the Vegfr3 gene, allows the monitoring of physiological and pathological lymphangiogenesis in vivo. We show tracking of lymphatic vessel development during embryogenesis as well as lymphangiogenesis induced by specific growth factors, during wound healing and in contact hypersensitivity (CHS)--induced inflammation where we also monitor down-regulation of lymphangiogenesis by the glucocorticoid dexamethasone. Importantly, the Vegfr3-reporter allowed us to tracking tumor-induced lymphangiogenesis at the tumor periphery and in lymph nodes in association with the metastatic process. This is the first reporter mouse model for luminescence imaging of lymphangiogenesis. It should provide an important tool for studying the involvement of lymphangiogenesis in pathological processes.
Collapse
|
46
|
Molecular networks that regulate cancer metastasis. Semin Cancer Biol 2012; 22:234-49. [PMID: 22484561 DOI: 10.1016/j.semcancer.2012.03.006] [Citation(s) in RCA: 257] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Revised: 03/16/2012] [Accepted: 03/21/2012] [Indexed: 12/26/2022]
Abstract
Tumor metastases are responsible for approximately 90% of all cancer-related deaths. Although many patients can be cured, in the US and UK, cancer still causes 730,000 deaths every year, and it is second only to cardiovascular disease as a cause of death. The functional roles of many critical players involved in metastasis have been delineated in great detail in recent years, due to the draft of the human genome and to many associated discoveries. Here, we address several genetic events and critical factors that define the metastatic phenotype acquired during tumorigenesis. This involves molecular networks that promote local cancer-cell invasion, single-cell invasion, formation of the metastatic microenvironment of primary tumors, intravasation, lymphogenic metastasis, extravasation, and metastatic outgrowth. Altogether, these functional networks of molecules contribute to the development of a selective environment that promotes the seeding and malignant progression of tumorigenic cells in distant organs. We include here candidate target proteins and signaling pathways that are now under clinical investigation. Although many of these trials are still ongoing, they provide the basis for the development of new aspects in the treatment of metastatic cancers, which involves inhibition of these proteins and their molecular networks.
Collapse
|
47
|
Lund AW, Duraes FV, Hirosue S, Raghavan VR, Nembrini C, Thomas SN, Issa A, Hugues S, Swartz MA. VEGF-C promotes immune tolerance in B16 melanomas and cross-presentation of tumor antigen by lymph node lymphatics. Cell Rep 2012; 1:191-9. [PMID: 22832193 DOI: 10.1016/j.celrep.2012.01.005] [Citation(s) in RCA: 255] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Revised: 01/05/2012] [Accepted: 01/30/2012] [Indexed: 12/20/2022] Open
Abstract
Tumor expression of the lymphangiogenic factor VEGF-C is correlated with metastasis and poor prognosis, and although VEGF-C enhances transport to the draining lymph node (dLN) and antigen exposure to the adaptive immune system, its role in tumor immunity remains unexplored. Here, we demonstrate that VEGF-C promotes immune tolerance in murine melanoma. In B16 F10 melanomas expressing a foreign antigen (OVA), VEGF-C protected tumors against preexisting antitumor immunity and promoted local deletion of OVA-specific CD8(+) T cells. Naive OVA-specific CD8(+) T cells, transferred into tumor-bearing mice, were dysfunctionally activated and apoptotic. Lymphatic endothelial cells (LECs) in dLNs cross-presented OVA, and naive LECs scavenge and cross-present OVA in vitro. Cross-presenting LECs drove the proliferation and apoptosis of OVA-specific CD8(+) T cells ex vivo. Our findings introduce a tumor-promoting role for lymphatics in the tumor and dLN and suggest that lymphatic endothelium in the local microenvironment may be a target for immunomodulation.
Collapse
Affiliation(s)
- Amanda W Lund
- Institute of Bioengineering (IBI), School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Tumor lymphangiogenesis as a potential therapeutic target. JOURNAL OF ONCOLOGY 2012; 2012:204946. [PMID: 22481918 PMCID: PMC3307004 DOI: 10.1155/2012/204946] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 10/10/2011] [Accepted: 10/31/2011] [Indexed: 12/18/2022]
Abstract
Metastasis the spread of cancer cells to distant organs, is the main cause of death for cancer patients. Metastasis is often mediated by lymphatic vessels that invade the primary tumor, and an early sign of metastasis is the presence of cancer cells in the regional lymph node (the first lymph node colonized by metastasizing cancer cells from a primary tumor). Understanding the interplay between tumorigenesis and lymphangiogenesis (the formation of lymphatic vessels associated with tumor growth) will provide us with new insights into mechanisms that modulate metastatic spread. In the long term, these insights will help to define new molecular targets that could be used to block lymphatic vessel-mediated metastasis and increase patient survival. Here, we review the molecular mechanisms of embryonic lymphangiogenesis and those that are recapitulated in tumor lymphangiogenesis, with a view to identifying potential targets for therapies designed to suppress tumor lymphangiogenesis and hence metastasis.
Collapse
|
49
|
Alitalo A, Detmar M. Interaction of tumor cells and lymphatic vessels in cancer progression. Oncogene 2011; 31:4499-508. [PMID: 22179834 DOI: 10.1038/onc.2011.602] [Citation(s) in RCA: 278] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Metastatic spread of cancer through the lymphatic system affects hundreds of thousands of patients yearly. Growth of new lymphatic vessels, lymphangiogenesis, is activated in cancer and inflammation, but is largely inactive in normal physiology, and therefore offers therapeutic potential. Key mediators of lymphangiogenesis have been identified in developmental studies. During embryonic development, lymphatic endothelial cells derive from the blood vascular endothelium and differentiate under the guidance of lymphatic-specific regulators, such as the prospero homeobox 1 transcription factor. Vascular endothelial growth factor-C (VEGF-C) and VEGF receptor 3 signaling are essential for the further development of lymphatic vessels and therefore they provide a promising target for inhibition of tumor lymphangiogenesis. Lymphangiogenesis is important for the progression of solid tumors as shown for melanoma and breast cancer. Tumor cells may use chemokine gradients as guidance cues and enter lymphatic vessels through intercellular openings between endothelial cell junctions or, possibly, by inducing larger discontinuities in the endothelial cell layer. Tumor-draining sentinel lymph nodes show enhanced lymphangiogenesis even before cancer metastasis and they may function as a permissive 'lymphovascular niche' for the survival of metastatic cells. Although our current knowledge indicates that the development of anti-lymphangiogenic therapies may be beneficial for the treatment of cancer patients, several open questions remain with regard to the frequency, mechanisms and biological importance of lymphatic metastases.
Collapse
Affiliation(s)
- A Alitalo
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology, ETH Zurich, Zurich, Switzerland
| | | |
Collapse
|
50
|
D2-40 immunoreactivity in penile squamous cell carcinoma: a marker of aggressiveness. Hum Pathol 2011; 42:1596-602. [DOI: 10.1016/j.humpath.2010.12.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Revised: 12/20/2010] [Accepted: 12/22/2010] [Indexed: 11/23/2022]
|