1
|
Song Z, Wu W, Wei W, Xiao W, Lei M, Cai KQ, Huang DW, Jeong S, Zhang JP, Wang H, Kadin ME, Waldmann TA, Staudt LM, Nakagawa M, Yang Y. Analysis and therapeutic targeting of the IL-1R pathway in anaplastic large cell lymphoma. Blood 2023; 142:1297-1311. [PMID: 37339580 PMCID: PMC10613726 DOI: 10.1182/blood.2022019166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 05/11/2023] [Accepted: 06/01/2023] [Indexed: 06/22/2023] Open
Abstract
Anaplastic large cell lymphoma (ALCL), a subgroup of mature T-cell neoplasms with an aggressive clinical course, is characterized by elevated expression of CD30 and anaplastic cytology. To achieve a comprehensive understanding of the molecular characteristics of ALCL pathology and to identify therapeutic vulnerabilities, we applied genome-wide CRISPR library screenings to both anaplastic lymphoma kinase positive (ALK+) and primary cutaneous (pC) ALK- ALCLs and identified an unexpected role of the interleukin-1R (IL-1R) inflammatory pathway in supporting the viability of pC ALK- ALCL. Importantly, this pathway is activated by IL-1α in an autocrine manner, which is essential for the induction and maintenance of protumorigenic inflammatory responses in pC-ALCL cell lines and primary cases. Hyperactivation of the IL-1R pathway is promoted by the A20 loss-of-function mutation in the pC-ALCL lines we analyze and is regulated by the nonproteolytic protein ubiquitination network. Furthermore, the IL-1R pathway promotes JAK-STAT3 signaling activation in ALCLs lacking STAT3 gain-of-function mutation or ALK translocation and enhances the sensitivity of JAK inhibitors in these tumors in vitro and in vivo. Finally, the JAK2/IRAK1 dual inhibitor, pacritinib, exhibited strong activities against pC ALK- ALCL, where the IL-1R pathway is hyperactivated in the cell line and xenograft mouse model. Thus, our studies revealed critical insights into the essential roles of the IL-1R pathway in pC-ALCL and provided opportunities for developing novel therapeutic strategies.
Collapse
Affiliation(s)
- Zhihui Song
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA
| | - Wenjun Wu
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA
| | - Wei Wei
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA
| | - Wenming Xiao
- Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD
| | - Michelle Lei
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA
| | - Kathy Q. Cai
- Histopathology Facility, Fox Chase Cancer Center, Philadelphia, PA
| | - Da Wei Huang
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Subin Jeong
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA
| | - Jing-Ping Zhang
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA
| | - Hongbo Wang
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA
| | - Marshall E. Kadin
- Department of Pathology and Laboratory Medicine, Brown University Alpert School of Medicine, Providence, RI
| | - Thomas A. Waldmann
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Louis M. Staudt
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Masao Nakagawa
- Department of Hematology, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | - Yibin Yang
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA
| |
Collapse
|
2
|
Lai P, Liu F, Liu X, Sun J, Wang Y. Differential molecular programs of cutaneous anaplastic large cell lymphoma and CD30-positive transformed mycosis fungoides. Front Immunol 2023; 14:1270365. [PMID: 37790936 PMCID: PMC10544577 DOI: 10.3389/fimmu.2023.1270365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 08/31/2023] [Indexed: 10/05/2023] Open
Abstract
Background Discriminating between cutaneous anaplastic large cell lymphoma (cALCL) and CD30-positive transformed mycosis fungoides (CD30+ TMF) is challenging, particularly when they arise in the context of pre-existing mycosis fungoides. The development of molecular diagnostic tools was hampered by the rarity of both diseases and the limited understanding of their pathogenesis. Methods In this study, we established a cohort comprising 25 cALCL cases and 25 CD30+ TMF cases, with transcriptomic data obtained from 31 samples. We compared the clinicopathological information and investigated the gene expression profiling between these two entities. Furthermore, we developed an immunohistochemistry (IHC) algorithm to differentiate these two entities clinically. Results Our investigation revealed distinct clinicopathological features and unique gene expression programs associated with cALCL and CD30+ TMF. cALCL and CD30+ TMF displayed marked differences in gene expression patterns. Notably, CD30+ TMF demonstrated enrichment of T cell receptor signaling pathways and an exhausted T cell phenotype, accompanied by infiltration of B cells, dendritic cells, and neurons. In contrast, cALCL cells expressed high levels of HLA class II genes, polarized towards a Th17 phenotype, and exhibited neutrophil infiltration. An IHC algorithm with BATF3 and TCF7 staining emerged as potential diagnostic markers for identifying these two entities. Conclusions Our findings provide valuable insights into the differential molecular signatures associated with cALCL and CD30+ TMF, which contribute to their distinct clinicopathological behaviors. An appropriate IHC algorithm could be used as a potential diagnostic tool.
Collapse
Affiliation(s)
- Pan Lai
- Department of Dermatology and Venereology, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China
- National Clinical Research Center for Skin and Immune Diseases, Beijing, China
| | - Fengjie Liu
- Department of Dermatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiangjun Liu
- Department of Dermatology, Shandong University Qilu Hospital, Jinan, China
| | - Jingru Sun
- Department of Dermatology and Venereology, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China
- National Clinical Research Center for Skin and Immune Diseases, Beijing, China
| | - Yang Wang
- Department of Dermatology and Venereology, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China
- National Clinical Research Center for Skin and Immune Diseases, Beijing, China
| |
Collapse
|
3
|
Ren FJ, Cai XY, Yao Y, Fang GY. JunB: a paradigm for Jun family in immune response and cancer. Front Cell Infect Microbiol 2023; 13:1222265. [PMID: 37731821 PMCID: PMC10507257 DOI: 10.3389/fcimb.2023.1222265] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/21/2023] [Indexed: 09/22/2023] Open
Abstract
Jun B proto-oncogene (JunB) is a crucial member of dimeric activator protein-1 (AP-1) complex, which plays a significant role in various physiological processes, such as placental formation, cardiovascular development, myelopoiesis, angiogenesis, endochondral ossification and epidermis tissue homeostasis. Additionally, it has been reported that JunB has great regulatory functions in innate and adaptive immune responses by regulating the differentiation and cytokine secretion of immune cells including T cells, dendritic cells and macrophages, while also facilitating the effector of neutrophils and natural killer cells. Furthermore, a growing body of studies have shown that JunB is involved in tumorigenesis through regulating cell proliferation, differentiation, senescence and metastasis, particularly affecting the tumor microenvironment through transcriptional promotion or suppression of oncogenes in tumor cells or immune cells. This review summarizes the physiological function of JunB, its immune regulatory function, and its contribution to tumorigenesis, especially focusing on its regulatory mechanisms within tumor-associated immune processes.
Collapse
Affiliation(s)
- Fu-jia Ren
- Department of Pharmacy, Hangzhou Women’s Hospital, Hangzhou, Zhejiang, China
| | - Xiao-yu Cai
- Department of Clinical Pharmacology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yao Yao
- Department of Pharmacy, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Guo-ying Fang
- Department of Pharmacy, Hangzhou Women’s Hospital, Hangzhou, Zhejiang, China
| |
Collapse
|
4
|
Nagel S, Meyer C, Pommerenke C. Establishment of the lymphoid ETS-code reveals deregulated ETS genes in Hodgkin lymphoma. PLoS One 2023; 18:e0288031. [PMID: 37428779 DOI: 10.1371/journal.pone.0288031] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 06/16/2023] [Indexed: 07/12/2023] Open
Abstract
The human family of ETS transcription factors numbers 28 genes which control multiple aspects of development, notably the differentiation of blood and immune cells. Otherwise, aberrant expression of ETS genes is reportedly involved in forming leukemia and lymphoma. Here, we comprehensively mapped ETS gene activities in early hematopoiesis, lymphopoiesis and all mature types of lymphocytes using public datasets. We have termed the generated gene expression pattern lymphoid ETS-code. This code enabled identification of deregulated ETS genes in patients with lymphoid malignancies, revealing 12 aberrantly expressed members in Hodgkin lymphoma (HL). For one of these, ETS gene ETV3, expression in stem and progenitor cells in addition to that in developing and mature T-cells was mapped together with downregulation in B-cell differentiation. In contrast, subsets of HL patients aberrantly overexpressed ETV3, indicating oncogenic activity in this B-cell malignancy. Analysis of ETV3-overexpressing HL cell line SUP-HD1 demonstrated genomic duplication of the ETV3 locus at 1q23, GATA3 as mutual activator, and suppressed BMP-signalling as mutual downstream effect. Additional examination of the neighboring ETS genes ETS1 and FLI1 revealed physiological activities in B-cell development and aberrant downregulation in HL patient subsets. SUP-HD1 showed genomic loss on chromosome 11, del(11)(q22q25), targeting both ETS1 and FLI1, underlying their downregulation. Furthermore, in the same cell line we identified PBX1-mediated overexpression of RIOK2 which inhibited ETS1 and activated JAK2 expression. Collectively, we codified normal ETS gene activities in lymphopoiesis and identified oncogenic ETS members in HL.
Collapse
Affiliation(s)
- Stefan Nagel
- Department of Human and Animal Cell Lines, Leibniz-Institute DSMZ, German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Corinna Meyer
- Department of Human and Animal Cell Lines, Leibniz-Institute DSMZ, German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Claudia Pommerenke
- Department of Human and Animal Cell Lines, Leibniz-Institute DSMZ, German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| |
Collapse
|
5
|
Kaur G, Sharma D, Bisen S, Mukhopadhyay CS, Gurdziel K, Singh NK. Vascular cell-adhesion molecule 1 (VCAM-1) regulates JunB-mediated IL-8/CXCL1 expression and pathological neovascularization. Commun Biol 2023; 6:516. [PMID: 37179352 PMCID: PMC10183029 DOI: 10.1038/s42003-023-04905-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 05/02/2023] [Indexed: 05/15/2023] Open
Abstract
Vascular adhesion molecules play an important role in various immunological disorders, particularly in cancers. However, little is known regarding the role of these adhesion molecules in proliferative retinopathies. We observed that IL-33 regulates VCAM-1 expression in human retinal endothelial cells and that genetic deletion of IL-33 reduces hypoxia-induced VCAM-1 expression and retinal neovascularization in C57BL/6 mice. We found that VCAM-1 via JunB regulates IL-8 promoter activity and expression in human retinal endothelial cells. In addition, our study outlines the regulatory role of VCAM-1-JunB-IL-8 signaling on retinal endothelial cell sprouting and angiogenesis. Our RNA sequencing results show an induced expression of CXCL1 (a murine functional homolog of IL-8) in the hypoxic retina, and intravitreal injection of VCAM-1 siRNA not only decreases hypoxia-induced VCAM-1-JunB-CXCL1 signaling but also reduces OIR-induced sprouting and retinal neovascularization. These findings suggest that VCAM-1-JunB-IL-8 signaling plays a crucial role in retinal neovascularization, and its antagonism might provide an advanced treatment option for proliferative retinopathies.
Collapse
Affiliation(s)
- Geetika Kaur
- Integrative Biosciences Center, Wayne State University, Detroit, MI, 48202, USA
- Department of Ophthalmology, Visual and Anatomical Sciences, School of Medicine, Wayne State University, Detroit, MI, 48202, USA
| | - Deepti Sharma
- Integrative Biosciences Center, Wayne State University, Detroit, MI, 48202, USA
- Department of Ophthalmology, Visual and Anatomical Sciences, School of Medicine, Wayne State University, Detroit, MI, 48202, USA
| | - Shivantika Bisen
- Integrative Biosciences Center, Wayne State University, Detroit, MI, 48202, USA
- Department of Ophthalmology, Visual and Anatomical Sciences, School of Medicine, Wayne State University, Detroit, MI, 48202, USA
| | - Chandra Sekhar Mukhopadhyay
- School of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, 141004, India
| | - Katherine Gurdziel
- Institute of Environmental Health Sciences and Department of Pharmacology, School of Medicine, Wayne State University, Detroit, MI, 48202, USA
| | - Nikhlesh K Singh
- Integrative Biosciences Center, Wayne State University, Detroit, MI, 48202, USA.
- Department of Ophthalmology, Visual and Anatomical Sciences, School of Medicine, Wayne State University, Detroit, MI, 48202, USA.
| |
Collapse
|
6
|
Kojima N, Mori T, Motoi T, Kobayashi E, Yoshida M, Yatabe Y, Ichikawa H, Kawai A, Yonemori K, Antonescu CR, Yoshida A. Frequent CD30 Expression in an Emerging Group of Mesenchymal Tumors With NTRK, BRAF, RAF1, or RET Fusions. Mod Pathol 2023; 36:100083. [PMID: 36788089 PMCID: PMC10373933 DOI: 10.1016/j.modpat.2022.100083] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 01/12/2023]
Abstract
Neurotrophic tyrosine receptor kinase (NTRK) fusions define infantile fibrosarcomas in young children and NTRK-rearranged spindle-cell tumors in older children and adults, which share characteristic spindle-cell histology and CD34 or S100 protein expression. Similar phenotypes were identified in tumors with BRAF, RAF1, or RET fusions, suggesting a unifying concept of "spindle-cell tumors with kinase gene fusions." In this study, we investigated CD30 expression in 38 mesenchymal tumors with kinase gene fusions using immunohistochemistry. CD30 was expressed in 15 of 22 NTRK-rearranged tumors and 12 of 16 tumors with BRAF, RAF1, or RET fusions. In total, CD30 was expressed in 27 of the 38 tumors (71%), with >50% CD30-positive cells in 21 tumors and predominantly moderate or strong staining in 24 tumors. CD34 and S100 protein were also expressed in 71% and 69% of the tumors, respectively. In contrast, CD30 was significantly less frequently expressed in other mesenchymal tumor types that histologically mimic kinase fusion-positive tumors (9 of 150 tumors, 6%), of which none showed >50% or predominantly strong staining. Among these mimicking tumors, malignant peripheral nerve sheath tumors occasionally (30%) expressed CD30, albeit in a weak focal manner in most positive cases. CD30 was also expressed in 3 of 15 separately analyzed ALK- or ROS1-positive inflammatory myofibroblastic tumors. Frequent expression of CD30 enhances the shared phenotype of spindle-cell tumors with NTRK and other kinase gene fusions, and its sensitivity seems similar to that of CD34 and S100 protein. Although moderate sensitivity hampers its use as a screening tool, CD30 expression could be valuable to rapidly identify high-yield candidates for molecular workup, particularly in communities that lack routine genetic analysis and/or for tumors with BRAF, RAF1, or RET fusions.
Collapse
Affiliation(s)
- Naoki Kojima
- Department of Diagnostic Pathology, National Cancer Center Hospital, Tokyo, Japan
| | - Taisuke Mori
- Department of Diagnostic Pathology, National Cancer Center Hospital, Tokyo, Japan; Division of Molecular Pathology, National Cancer Center Research Institute, Tokyo, Japan
| | - Toru Motoi
- Department of Pathology, Komagome Hospital, Tokyo, Japan
| | - Eisuke Kobayashi
- Department of Musculoskeletal Oncology, National Cancer Center Hospital, Tokyo, Japan; Rare Cancer Center, National Cancer Center Hospital, Tokyo, Japan
| | - Masayuki Yoshida
- Department of Diagnostic Pathology, National Cancer Center Hospital, Tokyo, Japan
| | - Yasushi Yatabe
- Department of Diagnostic Pathology, National Cancer Center Hospital, Tokyo, Japan; Division of Molecular Pathology, National Cancer Center Research Institute, Tokyo, Japan
| | - Hitoshi Ichikawa
- Department of Clinical Genomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Akira Kawai
- Department of Musculoskeletal Oncology, National Cancer Center Hospital, Tokyo, Japan; Rare Cancer Center, National Cancer Center Hospital, Tokyo, Japan
| | - Kan Yonemori
- Rare Cancer Center, National Cancer Center Hospital, Tokyo, Japan; Department of Medical Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Cristina R Antonescu
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Akihiko Yoshida
- Department of Diagnostic Pathology, National Cancer Center Hospital, Tokyo, Japan; Rare Cancer Center, National Cancer Center Hospital, Tokyo, Japan.
| |
Collapse
|
7
|
Zhao W, Wang W, Xiao Y, Cui F. c-Jun regulates flotillin 2 transcription to benefit viral accumulation in insect vectors. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2023; 152:103894. [PMID: 36535580 DOI: 10.1016/j.ibmb.2022.103894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
The c-Jun N-terminal kinase (JNK) signaling pathway plays a critical role in viral infection in host cells. In addition to triggering immune reactions against pathogens, the JNK signaling pathway has also been found to benefit viral infection. Our previous work showed that JNK activation facilitated rice stripe virus (RSV) accumulation in the insect vector small brown planthopper, but the underlying mechanisms remain elusive. Here, we revealed a link between JNK activation and the transcriptional upregulation of the plasma membrane protein flotillin 2, which mediates RSV cell entry. c-Jun, a downstream substrate of JNKs, was identified as a transcription factor that targets the promoter of flotillin 2 at three binding sites. Phosphorylated c-Jun, especially at the serine 63 site, promoted the transcriptional activity of c-Jun on flotillin 2. JNK activation or inhibition affected c-Jun phosphorylation status and flotillin 2 expression. In the midguts of planthoppers, RSV infection significantly increased flotillin 2 expression and the phosphorylation level of JNKs and c-Jun. Manipulation of JNK status impacted viral acquisition in midgut cells. These findings reveal a new regulatory mechanism of the JNK signaling pathway and shed light on the virus-supportive effect of this pathway.
Collapse
Affiliation(s)
- Wan Zhao
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wei Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yan Xiao
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Feng Cui
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
8
|
To V, Evtimov VJ, Jenkin G, Pupovac A, Trounson AO, Boyd RL. CAR-T cell development for Cutaneous T cell Lymphoma: current limitations and potential treatment strategies. Front Immunol 2022; 13:968395. [PMID: 36059451 PMCID: PMC9433932 DOI: 10.3389/fimmu.2022.968395] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 07/27/2022] [Indexed: 11/21/2022] Open
Abstract
Chimeric antigen receptor (CAR)-T therapy has demonstrated remarkable outcomes for B cell malignancies, however, its application for T cell lymphoma, particularly cutaneous T cell lymphoma (CTCL), has been limited. Barriers to effective CAR-T cell therapy in treating CTCL include T cell aplasia in autologous transplants, CAR-T product contamination with leukemic T cells, CAR-T fratricide (when the target antigen is present on normal T cells), and tumor heterogeneity. To address these critical challenges, innovative CAR engineering by targeting multiple antigens to strike a balance between efficacy and safety of the therapy is necessary. In this review, we discuss the current obstacles to CAR-T cell therapy and highlight potential targets in treating CTCL. Looking forward, we propose strategies to develop more powerful dual CARs that are advancing towards the clinic in CTCL therapy.
Collapse
Affiliation(s)
- Van To
- Cartherics Pty Ltd, Notting Hill, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, Australia
| | | | - Graham Jenkin
- Cartherics Pty Ltd, Notting Hill, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
| | | | - Alan O. Trounson
- Cartherics Pty Ltd, Notting Hill, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, Australia
| | - Richard L. Boyd
- Cartherics Pty Ltd, Notting Hill, VIC, Australia
- *Correspondence: Richard L. Boyd,
| |
Collapse
|
9
|
Young S, Kuzu A, Magill M, Hajdenberg J. Partial Response to Small Molecule Inhibition in a Case of Anaplastic Large Cell Lymphoma. Cureus 2022; 14:e23627. [PMID: 35494913 PMCID: PMC9050040 DOI: 10.7759/cureus.23627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/29/2022] [Indexed: 11/05/2022] Open
Abstract
In the era of personalized medicine, small-molecule inhibitors have become key to targeting many malignancies. Multiple hematologic malignancies are driven by small-molecule pathways that are seemingly ripe for such targeting. In this case report, we present a patient who was treated with a mitogen-activated extracellular signal-regulated kinase (MEK) inhibitor for what was originally diagnosed as a histiocytic sarcoma. Re-biopsy ultimately revealed an anaplastic lymphoma kinase (ALK)-negative anaplastic large cell lymphoma (ALCL), but his disease initially showed a remarkable response to MEK inhibition. This case illustrates both the importance of obtaining high-quality biopsy specimens for diagnostic and molecular analysis as well as the need for further research into the molecular drivers of T-cell lymphomas that may be amenable to targeted therapies.
Collapse
|
10
|
Wang Y, He J, Xu M, Xue Q, Zhu C, Liu J, Zhang Y, Shi W. Holistic View of ALK TKI Resistance in ALK-Positive Anaplastic Large Cell Lymphoma. Front Oncol 2022; 12:815654. [PMID: 35211406 PMCID: PMC8862178 DOI: 10.3389/fonc.2022.815654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/04/2022] [Indexed: 11/23/2022] Open
Abstract
Anaplastic lymphoma kinase (ALK) is a receptor tyrosine kinase expressed at early stages of normal development and in various cancers including ALK-positive anaplastic large cell lymphoma (ALK+ ALCL), in which it is the main therapeutic target. ALK tyrosine kinase inhibitors (ALK TKIs) have greatly improved the prognosis of ALK+ALCL patients, but the emergence of drug resistance is inevitable and limits the applicability of these drugs. Although various mechanisms of resistance have been elucidated, the problem persists and there have been relatively few relevant clinical studies. This review describes research progress on ALK+ ALCL including the application and development of new therapies, especially in relation to drug resistance. We also propose potential treatment strategies based on current knowledge to inform the design of future clinical trials.
Collapse
Affiliation(s)
- Yuan Wang
- Department of Oncology, Affiliated Hospital of Nantong University, Nantong, China.,Nantong University School of Medicine, Nantong, China
| | - Jing He
- Department of Oncology, Affiliated Hospital of Nantong University, Nantong, China.,Nantong University School of Medicine, Nantong, China
| | - Manyu Xu
- Department of Clinical Biobank, Affiliated Hospital of Nantong University, Nantong, China
| | - Qingfeng Xue
- Department of Oncology, Affiliated Hospital of Nantong University, Nantong, China
| | - Cindy Zhu
- Department of Psychology, University of California, Los Angeles (UCLA), Los Angeles, CA, United States
| | - Juan Liu
- Department of Oncology, Affiliated Hospital of Nantong University, Nantong, China.,Nantong University School of Medicine, Nantong, China
| | - Yaping Zhang
- Department of Hematology, Affiliated Hospital of Nantong University, Nantong, China
| | - Wenyu Shi
- Department of Oncology, Affiliated Hospital of Nantong University, Nantong, China.,Department of Hematology, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
11
|
Liang HC, Costanza M, Prutsch N, Zimmerman MW, Gurnhofer E, Montes-Mojarro IA, Abraham BJ, Prokoph N, Stoiber S, Tangermann S, Lobello C, Oppelt J, Anagnostopoulos I, Hielscher T, Pervez S, Klapper W, Zammarchi F, Silva DA, Garcia KC, Baker D, Janz M, Schleussner N, Fend F, Pospíšilová Š, Janiková A, Wallwitz J, Stoiber D, Simonitsch-Klupp I, Cerroni L, Pileri S, de Leval L, Sibon D, Fataccioli V, Gaulard P, Assaf C, Knörr F, Damm-Welk C, Woessmann W, Turner SD, Look AT, Mathas S, Kenner L, Merkel O. Super-enhancer-based identification of a BATF3/IL-2R-module reveals vulnerabilities in anaplastic large cell lymphoma. Nat Commun 2021; 12:5577. [PMID: 34552066 PMCID: PMC8458384 DOI: 10.1038/s41467-021-25379-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 07/29/2021] [Indexed: 12/18/2022] Open
Abstract
Anaplastic large cell lymphoma (ALCL), an aggressive CD30-positive T-cell lymphoma, comprises systemic anaplastic lymphoma kinase (ALK)-positive, and ALK-negative, primary cutaneous and breast implant-associated ALCL. Prognosis of some ALCL subgroups is still unsatisfactory, and already in second line effective treatment options are lacking. To identify genes defining ALCL cell state and dependencies, we here characterize super-enhancer regions by genome-wide H3K27ac ChIP-seq. In addition to known ALCL key regulators, the AP-1-member BATF3 and IL-2 receptor (IL2R)-components are among the top hits. Specific and high-level IL2R expression in ALCL correlates with BATF3 expression. Confirming a regulatory link, IL-2R-expression decreases following BATF3 knockout, and BATF3 is recruited to IL2R regulatory regions. Functionally, IL-2, IL-15 and Neo-2/15, a hyper-stable IL-2/IL-15 mimic, accelerate ALCL growth and activate STAT1, STAT5 and ERK1/2. In line, strong IL-2Rα-expression in ALCL patients is linked to more aggressive clinical presentation. Finally, an IL-2Rα-targeting antibody-drug conjugate efficiently kills ALCL cells in vitro and in vivo. Our results highlight the importance of the BATF3/IL-2R-module for ALCL biology and identify IL-2Rα-targeting as a promising treatment strategy for ALCL. Anaplastic large cell lymphoma (ALCL) is an aggressive T-cell lymphoma often with poor prognosis. To identify genes defining ALCL cell state and dependencies, the authors here characterize ALCL-specific super-enhancers and describe the BATF3/IL-2R−module as a therapeutic opportunity for ALCL.
Collapse
Affiliation(s)
- Huan-Chang Liang
- Department of Pathology, Unit of Experimental and Laboratory Animal Pathology, Medical University of Vienna, Vienna, Austria.,European Research Initiative on ALK-Related Malignancies (ERIA), Suzanne Turner, Cambridge, UK
| | - Mariantonia Costanza
- European Research Initiative on ALK-Related Malignancies (ERIA), Suzanne Turner, Cambridge, UK.,Group Biology of Malignant Lymphomas, Max-Delbrück-Center (MDC) for Molecular Medicine, Berlin, Germany.,Department of Hematology, Oncology, and Cancer Immunology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany, and Experimental and Clinical Research Center (ECRC), a joint cooperation between the MDC and Charité, Berlin, Germany
| | - Nicole Prutsch
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Mark W Zimmerman
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Elisabeth Gurnhofer
- Department of Pathology, Unit of Experimental and Laboratory Animal Pathology, Medical University of Vienna, Vienna, Austria
| | - Ivonne A Montes-Mojarro
- European Research Initiative on ALK-Related Malignancies (ERIA), Suzanne Turner, Cambridge, UK.,Institute of Pathology and Neuropathology, University Hospital and Comprehensive Cancer Center Tübingen, Tübingen, Germany
| | - Brian J Abraham
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Nina Prokoph
- European Research Initiative on ALK-Related Malignancies (ERIA), Suzanne Turner, Cambridge, UK.,Division of Cellular and Molecular Pathology, Department of Pathology, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - Stefan Stoiber
- Department of Pathology, Unit of Experimental and Laboratory Animal Pathology, Medical University of Vienna, Vienna, Austria.,Christian Doppler Laboratory (CDL) for Applied Metabolomics, Medical University of Vienna, Vienna, Austria
| | - Simone Tangermann
- Unit of Laboratory Animal Pathology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Cosimo Lobello
- European Research Initiative on ALK-Related Malignancies (ERIA), Suzanne Turner, Cambridge, UK.,Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
| | - Jan Oppelt
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
| | | | - Thomas Hielscher
- German Cancer Consortium (DKTK) German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Shahid Pervez
- Department of Pathology and Laboratory Medicine, Aga Khan University Hospital, Karachi, Pakistan
| | - Wolfram Klapper
- Department of Pathology, Hematopathology Section, University Hospital Schleswig-Holstein Campus Kiel, Kiel, Germany
| | | | - Daniel-Adriano Silva
- Institute for Protein Design, University of Washington, Seattle, WA, USA.,Department of Biochemistry, University of Washington, Seattle, WA, USA.,Division of Life Science, The Hong Kong University of Science and Technology, Kowloon, Hong Kong
| | - K Christopher Garcia
- Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, CA, USA.,Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - David Baker
- Institute for Protein Design, University of Washington, Seattle, WA, USA.,Department of Biochemistry, University of Washington, Seattle, WA, USA.,Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Martin Janz
- Group Biology of Malignant Lymphomas, Max-Delbrück-Center (MDC) for Molecular Medicine, Berlin, Germany.,Department of Hematology, Oncology, and Cancer Immunology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany, and Experimental and Clinical Research Center (ECRC), a joint cooperation between the MDC and Charité, Berlin, Germany
| | - Nikolai Schleussner
- Group Biology of Malignant Lymphomas, Max-Delbrück-Center (MDC) for Molecular Medicine, Berlin, Germany.,Department of Hematology, Oncology, and Cancer Immunology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany, and Experimental and Clinical Research Center (ECRC), a joint cooperation between the MDC and Charité, Berlin, Germany
| | - Falko Fend
- European Research Initiative on ALK-Related Malignancies (ERIA), Suzanne Turner, Cambridge, UK.,Institute of Pathology and Neuropathology, University Hospital and Comprehensive Cancer Center Tübingen, Tübingen, Germany
| | - Šárka Pospíšilová
- European Research Initiative on ALK-Related Malignancies (ERIA), Suzanne Turner, Cambridge, UK.,Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic.,Department of Internal Medicine-Hematology and Oncology, University Hospital Brno, Brno, Czech Republic
| | - Andrea Janiková
- European Research Initiative on ALK-Related Malignancies (ERIA), Suzanne Turner, Cambridge, UK.,Department of Internal Medicine-Hematology and Oncology, University Hospital Brno, Brno, Czech Republic
| | - Jacqueline Wallwitz
- Department of Pharmacology, Physiology and Microbiology, Division Pharmacology, Karl Landsteiner University of Health Sciences, Krems, Austria
| | - Dagmar Stoiber
- Department of Pharmacology, Physiology and Microbiology, Division Pharmacology, Karl Landsteiner University of Health Sciences, Krems, Austria
| | - Ingrid Simonitsch-Klupp
- Department of Pathology, Unit of Experimental and Laboratory Animal Pathology, Medical University of Vienna, Vienna, Austria
| | - Lorenzo Cerroni
- Department of Dermatology, Medical University of Graz, Graz, Austria
| | - Stefano Pileri
- Division of Haematopathology, European Institute of Oncology IRCCS, Milan, Italy
| | - Laurence de Leval
- Institute of Pathology, Lausanne University Hospital (CHUV) and Lausanne University, Lausanne, Switzerland
| | - David Sibon
- Hematology Department, Necker University Hospital, Assistance Publique-Hôpitaux de Paris, and Institut Necker-Enfants Malades, INSERM UMR1151 (Normal and pathological lymphoid differentiation), Université de Paris, Paris, France
| | - Virginie Fataccioli
- Department of Pathology, Henri Mondor University Hospital, AP-HP, INSERM U955, University Paris East, Créteil, France
| | - Philippe Gaulard
- Department of Pathology, Henri Mondor University Hospital, AP-HP, INSERM U955, University Paris East, Créteil, France
| | - Chalid Assaf
- Department of Dermatology, HELIOS Hospital Krefeld, Krefeld, Department of Dermatology and Allergy, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Fabian Knörr
- Pediatric Hematology and Oncology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Christine Damm-Welk
- European Research Initiative on ALK-Related Malignancies (ERIA), Suzanne Turner, Cambridge, UK.,Pediatric Hematology and Oncology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Wilhelm Woessmann
- European Research Initiative on ALK-Related Malignancies (ERIA), Suzanne Turner, Cambridge, UK.,Pediatric Hematology and Oncology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Suzanne D Turner
- European Research Initiative on ALK-Related Malignancies (ERIA), Suzanne Turner, Cambridge, UK.,Division of Cellular and Molecular Pathology, Department of Pathology, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK.,Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
| | - A Thomas Look
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Stephan Mathas
- European Research Initiative on ALK-Related Malignancies (ERIA), Suzanne Turner, Cambridge, UK. .,Group Biology of Malignant Lymphomas, Max-Delbrück-Center (MDC) for Molecular Medicine, Berlin, Germany. .,Department of Hematology, Oncology, and Cancer Immunology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany, and Experimental and Clinical Research Center (ECRC), a joint cooperation between the MDC and Charité, Berlin, Germany. .,German Cancer Consortium (DKTK) German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Lukas Kenner
- Department of Pathology, Unit of Experimental and Laboratory Animal Pathology, Medical University of Vienna, Vienna, Austria. .,European Research Initiative on ALK-Related Malignancies (ERIA), Suzanne Turner, Cambridge, UK. .,Christian Doppler Laboratory (CDL) for Applied Metabolomics, Medical University of Vienna, Vienna, Austria. .,Unit of Laboratory Animal Pathology, University of Veterinary Medicine Vienna, Vienna, Austria. .,Center for Biomarker Research in Medicine (CBMed) Core Lab 2, Medical University of Vienna, Vienna, Austria.
| | - Olaf Merkel
- Department of Pathology, Unit of Experimental and Laboratory Animal Pathology, Medical University of Vienna, Vienna, Austria. .,European Research Initiative on ALK-Related Malignancies (ERIA), Suzanne Turner, Cambridge, UK.
| |
Collapse
|
12
|
Tsutsui Y, Kawai K. Papular CD30 + T-cell pseudolymphoma induced by S-1. J Dermatol 2021; 49:e48-e49. [PMID: 34535921 DOI: 10.1111/1346-8138.16161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 08/26/2021] [Accepted: 09/04/2021] [Indexed: 11/30/2022]
Affiliation(s)
- Yuka Tsutsui
- Department of Dermatology, Kido Hospital, Niigata, Japan.,Division of Dermatology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Kazuhiro Kawai
- Department of Dermatology, Kido Hospital, Niigata, Japan
| |
Collapse
|
13
|
A novel model of alternative NF-κB pathway activation in anaplastic large cell lymphoma. Leukemia 2021; 35:1976-1989. [PMID: 33184494 PMCID: PMC9245089 DOI: 10.1038/s41375-020-01088-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 10/01/2020] [Accepted: 10/29/2020] [Indexed: 02/01/2023]
Abstract
Aberrant activation of NF-κB is the most striking oncogenic mechanism in B-cell lymphoma; however, its role in anaplastic large cell lymphomas (ALCL) has not been fully established and its activation mechanism(s) remain unclear. Using ALCL cell line models, we revealed the supporting roles for NFKB2 and the NIK pathway in some ALCL lines. To investigate the detailed activation mechanisms for this oncogenic pathway, we performed specifically designed alternative NF-κB reporter CRISPR screens followed by the RNA-seq analysis, which led us to identify STAT3 as the major mediator for NIK-dependent NF-κB activation in ALCL. Consistently, p-STAT3 level was correlated with NFKB2 nuclear accumulation in primary clinical samples. Mechanistically, we found that in NIK-positive ALK- ALCL cells, common JAK/STAT3 mutations promote transcriptional activity of STAT3 which directly regulates NFKB2 and CD30 expression. Endogenous expression of CD30 induces constitutive NF-κB activation through binding and degrading of TRAF3. In ALK+ ALCL, the CD30 pathway is blocked by the NPM-ALK oncoprotein, but STAT3 activity and resultant NFKB2 expression can still be induced by NPM-ALK, leading to minimal alternative NF-κB activation. Our data suggest combined NIK and JAK inhibitor therapy could benefit patients with NIK-positive ALK- ALCL carrying JAK/STAT3 somatic mutations.
Collapse
|
14
|
Garbin A, Lovisa F, Holmes AB, Damanti CC, Gallingani I, Carraro E, Accordi B, Veltri G, Pizzi M, d'Amore ESG, Pillon M, Biffi A, Basso K, Mussolin L. miR-939 acts as tumor suppressor by modulating JUNB transcriptional activity in pediatric anaplastic large cell lymphoma. Haematologica 2021; 106:610-613. [PMID: 32299901 PMCID: PMC7849582 DOI: 10.3324/haematol.2019.241307] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 04/09/2020] [Indexed: 12/13/2022] Open
Affiliation(s)
- Anna Garbin
- Dept Women's and Children's Health, Clinic of Pediatric Hemato-Oncology, University of Padua, Italy
| | - Federica Lovisa
- Dept Women's and Children's Health, Clinic of Pediatric Hemato-Oncology, University of Padua, Italy
| | - Antony B Holmes
- Institute for Cancer Genetics, Columbia University, New York, NY, USA
| | - Carlotta C Damanti
- Dept Women's and Children's Health, Clinic of Pediatric Hemato-Oncology, University of Padua, Italy
| | - Ilaria Gallingani
- Dept Women's and Children's Health, Clinic of Pediatric Hemato-Oncology, University of Padua, Italy
| | - Elisa Carraro
- Dept Women's and Children's Health, Clinic of Pediatric Hemato-Oncology, University of Padua, Italy
| | - Benedetta Accordi
- Dept Women's and Children's Health, Clinic of Pediatric Hemato-Oncology, University of Padua, Italy
| | - Giulia Veltri
- Dept Women's and Children's Health, Clinic of Pediatric Hemato-Oncology, University of Padua, Italy
| | - Marco Pizzi
- Surgical Pathology and Cytopathology Unit, Department of Medicine, University of Padova, Italy
| | | | - Marta Pillon
- Dept Women's and Children's Health, Clinic of Pediatric Hemato-Oncology, University of Padua, Italy
| | - Alessandra Biffi
- Dept Women's and Children's Health, Clinic of Pediatric Hemato-Oncology, University of Padua, Italy
| | - Katia Basso
- Institute for Cancer Genetics and Dept of Pathology and Cell Biology, Columbia University, New York, USA
| | - Lara Mussolin
- Dept Women's and Children's Health, Clinic of Pediatric Hemato-Oncology, University of Padua, Italy
| |
Collapse
|
15
|
Wu Z, Nicoll M, Ingham RJ. AP-1 family transcription factors: a diverse family of proteins that regulate varied cellular activities in classical hodgkin lymphoma and ALK+ ALCL. Exp Hematol Oncol 2021; 10:4. [PMID: 33413671 PMCID: PMC7792353 DOI: 10.1186/s40164-020-00197-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 01/07/2023] Open
Abstract
Classical Hodgkin lymphoma (cHL) and anaplastic lymphoma kinase-positive, anaplastic large cell lymphoma (ALK+ ALCL) are B and T cell lymphomas respectively, which express the tumour necrosis factor receptor superfamily member, CD30. Another feature shared by cHL and ALK+ ALCL is the aberrant expression of multiple members of the activator protein-1 (AP-1) family of transcription factors which includes proteins of the Jun, Fos, ATF, and Maf subfamilies. In this review, we highlight the varied roles these proteins play in the pathobiology of these lymphomas including promoting proliferation, suppressing apoptosis, and evading the host immune response. In addition, we discuss factors contributing to the elevated expression of these transcription factors in cHL and ALK+ ALCL. Finally, we examine therapeutic strategies for these lymphomas that exploit AP-1 transcriptional targets or the signalling pathways they regulate.
Collapse
Affiliation(s)
- Zuoqiao Wu
- grid.17089.37Department of Medical Microbiology and Immunology, Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Canada ,grid.17063.330000 0001 2157 2938Present Address: Department of Medicine, University of Toronto, Toronto, Canada
| | - Mary Nicoll
- grid.17089.37Department of Medical Microbiology and Immunology, Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Canada ,grid.14709.3b0000 0004 1936 8649Present Address: Department of Biology, McGill University, Montreal, Canada
| | - Robert J. Ingham
- grid.17089.37Department of Medical Microbiology and Immunology, Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Canada
| |
Collapse
|
16
|
Fiore D, Cappelli LV, Broccoli A, Zinzani PL, Chan WC, Inghirami G. Peripheral T cell lymphomas: from the bench to the clinic. Nat Rev Cancer 2020; 20:323-342. [PMID: 32249838 DOI: 10.1038/s41568-020-0247-0] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/18/2020] [Indexed: 02/07/2023]
Abstract
Peripheral T cell lymphomas (PTCLs) are a heterogeneous group of orphan neoplasms. Despite the introduction of anthracycline-based chemotherapy protocols, with or without autologous haematopoietic transplantation and a plethora of new agents, the progression-free survival of patients with PTCLs needs to be improved. The rarity of these neoplasms, the limited knowledge of their driving defects and the lack of experimental models have impaired clinical successes. This scenario is now rapidly changing with the discovery of a spectrum of genomic defects that hijack essential signalling pathways and foster T cell transformation. This knowledge has led to new genomic-based stratifications, which are being used to establish objective diagnostic criteria, more effective risk assessment and target-based interventions. The integration of genomic and functional data has provided the basis for targeted therapies and immunological approaches that underlie individual tumour vulnerabilities. Fortunately, novel therapeutic strategies can now be rapidly tested in preclinical models and effectively translated to the clinic by means of well-designed clinical trials. We believe that by combining new targeted agents with immune regulators and chimeric antigen receptor-expressing natural killer and T cells, the overall survival of patients with PTCLs will dramatically increase.
Collapse
MESH Headings
- Epigenesis, Genetic/genetics
- Epigenesis, Genetic/physiology
- Humans
- Immunotherapy
- Lymphoma, T-Cell, Peripheral/drug therapy
- Lymphoma, T-Cell, Peripheral/genetics
- Lymphoma, T-Cell, Peripheral/immunology
- Lymphoma, T-Cell, Peripheral/metabolism
- Molecular Targeted Therapy
- Mutation
- Signal Transduction/genetics
- Signal Transduction/physiology
- T-Lymphocytes/physiology
- Transcription Factors/genetics
- Transcription Factors/physiology
- Tumor Microenvironment/genetics
- Tumor Microenvironment/immunology
Collapse
Affiliation(s)
- Danilo Fiore
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Luca Vincenzo Cappelli
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
- Department of Translational and Precision Medicine, Sapienza University, Rome, Italy
| | - Alessandro Broccoli
- Institute of Hematology "L. e A. Seràgnoli", University of Bologna, Bologna, Italy
| | - Pier Luigi Zinzani
- Institute of Hematology "L. e A. Seràgnoli", University of Bologna, Bologna, Italy.
| | - Wing C Chan
- Department of Pathology, City of Hope Medical Center, Duarte, CA, USA.
| | - Giorgio Inghirami
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
17
|
Kumar R, Mani AM, Singh NK, Rao GN. PKCθ-JunB axis via upregulation of VEGFR3 expression mediates hypoxia-induced pathological retinal neovascularization. Cell Death Dis 2020; 11:325. [PMID: 32382040 PMCID: PMC7206019 DOI: 10.1038/s41419-020-2522-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 04/17/2020] [Accepted: 04/20/2020] [Indexed: 12/30/2022]
Abstract
Pathological retinal neovascularization is the most common cause of vision loss. PKCθ has been shown to play a role in type 2 diabetes, which is linked to retinal neovascularization. Based on these clues, we have studied the role of PKCθ and its downstream target genes JunB and VEGFR3 in retinal neovascularization using global and tissue-specific knockout mouse models along with molecular biological approaches. Here, we show that vascular endothelial growth factor A (VEGFA) induces PKCθ phosphorylation in human retinal microvascular endothelial cells (HRMVECs) and downregulation of its levels attenuates VEGFA-induced HRMVECs migration, sprouting and tube formation. Furthermore, the whole body deletion of PKCθ or EC-specific deletion of its target gene JunB inhibited hypoxia-induced retinal EC proliferation, tip cell formation and neovascularization. VEGFA also induced VEGFR3 expression via JunB downstream to PKCθ in the regulation of HRMVEC migration, sprouting, and tube formation in vitro and OIR-induced retinal EC proliferation, tip cell formation and neovascularization in vivo. In addition, VEGFA-induced VEGFR3 expression requires VEGFR2 activation upstream to PKCθ-JunB axis both in vitro and in vivo. Depletion of VEGFR2 or VEGFR3 levels attenuated VEGFA-induced HRMVEC migration, sprouting and tube formation in vitro and retinal neovascularization in vivo and it appears that these events were dependent on STAT3 activation. Furthermore, the observations using soluble VEGFR3 indicate that VEGFR3 mediates its effects on retinal neovascularization in a ligand dependent and independent manner downstream to VEGFR2. Together, these observations suggest that PKCθ-dependent JunB-mediated VEGFR3 expression targeting STAT3 activation is required for VEGFA/VEGFR2-induced retinal neovascularization.
Collapse
Affiliation(s)
- Raj Kumar
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Arul M Mani
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Nikhlesh K Singh
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Gadiparthi N Rao
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN, 38163, USA.
| |
Collapse
|
18
|
Kreutmair S, Klingeberg C, Poggio T, Andrieux G, Keller A, Miething C, Follo M, Pfeifer D, Shoumariyeh K, Lengerke C, Gonzalez-Menendez I, Fend F, Zeiser R, Turner SD, Quintanilla-Martinez L, Boerries M, Duyster J, Illert AL. Existence of reprogrammed lymphoma stem cells in a murine ALCL-like model. Leukemia 2020; 34:3242-3255. [PMID: 32203142 DOI: 10.1038/s41375-020-0789-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 02/20/2020] [Accepted: 02/25/2020] [Indexed: 11/09/2022]
Abstract
While cancer stem cells are well established in certain hematologic and solid malignancies, their existence in T cell lymphoma is unclear and the origin of disease is not fully understood. To examine the existence of lymphoma stem cells, we utilized a mouse model of anaplastic large cell lymphoma. Established NPM-ALK+ lymphomas contained heterogeneous cell populations ranging from mature T cells to undifferentiated hematopoietic stem cells. Interestingly, CD4-/CD8- double negative (DN) lymphoma cells aberrantly expressed the T cell receptor α/β chain. Serial transplantation of sorted CD4/CD8 and DN lymphoma subpopulations identified lymphoma stem cells within the DN3/DN4 T cell population, whereas all other subpopulations failed to establish serial lymphomas. Moreover, transplanted lymphoma DN3/DN4 T cells were able to differentiate and gave rise to mature lymphoma T cells. Gene expression analyses unmasked stem-cell-like transcriptional regulation of the identified lymphoma stem cell population. Furthermore, these lymphoma stem cells are characterized by low CD30 expression levels, which might contribute to limited long-term therapeutic success in patients treated with anti-CD30-targeted therapies. In summary, our results highlight the existence of a lymphoma stem cell population in a NPM-ALK-driven CD30+ mouse model, thereby giving the opportunity to test innovative treatment strategies developed to eradicate the origin of disease.
Collapse
Affiliation(s)
- Stefanie Kreutmair
- Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany.,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany.,Comprehensive Cancer Center Freiburg (CCCF), University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany
| | - Cathrin Klingeberg
- Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany
| | - Teresa Poggio
- Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany
| | - Geoffroy Andrieux
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany.,Institute of Medical Bioinformatics and Systems Medicine, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany
| | - Alexander Keller
- Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany.,Comprehensive Cancer Center Freiburg (CCCF), University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany
| | - Cornelius Miething
- Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany.,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany.,Comprehensive Cancer Center Freiburg (CCCF), University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany
| | - Marie Follo
- Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany
| | - Dietmar Pfeifer
- Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany.,Comprehensive Cancer Center Freiburg (CCCF), University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany
| | - Khalid Shoumariyeh
- Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany.,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany.,Comprehensive Cancer Center Freiburg (CCCF), University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany
| | - Claudia Lengerke
- Division of Hematology, University Hospital Basel, 4031, Basel, Switzerland
| | - Irene Gonzalez-Menendez
- Department of Pathology and Neuropathology, University of Tübingen, 72076, Tübingen, Germany
| | - Falko Fend
- Department of Pathology and Neuropathology, University of Tübingen, 72076, Tübingen, Germany
| | - Robert Zeiser
- Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany.,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany.,Comprehensive Cancer Center Freiburg (CCCF), University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany
| | - Suzanne D Turner
- Department of Pathology, University of Cambridge, Cambridge, CB20QQ, UK
| | | | - Melanie Boerries
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany.,Comprehensive Cancer Center Freiburg (CCCF), University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany.,Institute of Medical Bioinformatics and Systems Medicine, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany
| | - Justus Duyster
- Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany.,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany.,Comprehensive Cancer Center Freiburg (CCCF), University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany
| | - Anna L Illert
- Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany. .,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany. .,Comprehensive Cancer Center Freiburg (CCCF), University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany.
| |
Collapse
|
19
|
Abstract
Anaplastic large cell lymphomas are a rare subtype of peripheral/mature T-cell lymphomas which are clinically, pathologically and genetically heterogeneous. Both ALK-positive (ALK+) and ALK-negative (ALK-) ALCL are composed of large lymphoid cells with abundant cytoplasm and pleomorphic features with horseshoe-shaped and reniform nuclei. ALK+ ALCL were considered as a definite entity in the 2008 World Health Organization classification of hematopoietic and lymphoid tissues. ALK-ALCL was included as a provisional entity in the WHO 2008 edition and in the most recent 2017 edition, it is now considered a distinct entity that includes cytogenetic subsets that appear to have prognostic implications (e.g. 6p25 rearrangements at IRF4/DUSP22 locus). ALK+ ALCLs are distinct in epidemiology and pathogenetic origin and should be distinguished from ALK-ALCL, cutaneous ALCL and breast implant associated ALCL which have distinct clinical course and pathogenetic features. Breast implant-associated ALCL is now recognized as a new provisional entity distinct from other ALK-ALCL; notably that it is a noninvasive disease associated with excellent outcome. In this article, we will provide an overview of the salient themes relevant to the pathology and genetic mechanisms in ALCL.
Collapse
Affiliation(s)
- Vasiliki Leventaki
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Siddharth Bhattacharyya
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA United States
| | - Megan S Lim
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA United States.
| |
Collapse
|
20
|
Sud A, Thomsen H, Orlando G, Försti A, Law PJ, Broderick P, Cooke R, Hariri F, Pastinen T, Easton DF, Pharoah PDP, Dunning AM, Peto J, Canzian F, Eeles R, Kote-Jarai ZS, Muir K, Pashayan N, Campa D, Hoffmann P, Nöthen MM, Jöckel KH, von Strandmann EP, Swerdlow AJ, Engert A, Orr N, Hemminki K, Houlston RS. Genome-wide association study implicates immune dysfunction in the development of Hodgkin lymphoma. Blood 2018; 132:2040-2052. [PMID: 30194254 PMCID: PMC6236462 DOI: 10.1182/blood-2018-06-855296] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 08/19/2018] [Indexed: 02/08/2023] Open
Abstract
To further our understanding of inherited susceptibility to Hodgkin lymphoma (HL), we performed a meta-analysis of 7 genome-wide association studies totaling 5325 HL cases and 22 423 control patients. We identify 5 new HL risk loci at 6p21.31 (rs649775; P = 2.11 × 10-10), 6q23.3 (rs1002658; P = 2.97 × 10-8), 11q23.1 (rs7111520; P = 1.44 × 10-11), 16p11.2 (rs6565176; P = 4.00 × 10-8), and 20q13.12 (rs2425752; P = 2.01 × 10-8). Integration of gene expression, histone modification, and in situ promoter capture Hi-C data at the 5 new and 13 known risk loci implicates dysfunction of the germinal center reaction, disrupted T-cell differentiation and function, and constitutive NF-κB activation as mechanisms of predisposition. These data provide further insights into the genetic susceptibility and biology of HL.
Collapse
Affiliation(s)
- Amit Sud
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, United Kingdom
| | - Hauke Thomsen
- Division of Molecular Genetic Epidemiology, German Cancer Research Center, Heidelberg, Germany
| | - Giulia Orlando
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, United Kingdom
| | - Asta Försti
- Division of Molecular Genetic Epidemiology, German Cancer Research Center, Heidelberg, Germany
- Center for Primary Health Care Research, Lund University, Malmö, Sweden
| | - Philip J Law
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, United Kingdom
| | - Peter Broderick
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, United Kingdom
| | - Rosie Cooke
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, United Kingdom
| | - Fadi Hariri
- Department of Human Genetics, McGill University and Genome Quebec Innovation Centre, McGill University, Montreal, QC, Canada
| | - Tomi Pastinen
- Department of Human Genetics, McGill University and Genome Quebec Innovation Centre, McGill University, Montreal, QC, Canada
| | - Douglas F Easton
- Centre for Cancer Genetic Epidemiology, Department of Oncology, and
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
| | - Paul D P Pharoah
- Centre for Cancer Genetic Epidemiology, Department of Oncology, and
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
| | - Alison M Dunning
- Centre for Cancer Genetic Epidemiology, Department of Oncology, and
| | - Julian Peto
- Department of Non-Communicable Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Federico Canzian
- Genomic Epidemiology Group, German Cancer Research Center, Heidelberg, Germany
| | - Rosalind Eeles
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, United Kingdom
- Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - ZSofia Kote-Jarai
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, United Kingdom
| | - Kenneth Muir
- Institute of Population Health, University of Manchester, Manchester, United Kingdom
- Division of Health Sciences, Warwick Medical School, Warwick University, Coventry, United Kingdom
| | - Nora Pashayan
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
- Department of Applied Health Research, University College London, London, United Kingdom
| | - Daniele Campa
- Department of Biology, University of Pisa, Pisa, Italy
| | - Per Hoffmann
- Human Genomic Research Group, Department of Biomedicine, University of Basel, Basel, Switzerland
- Institute of Human Genetics and
- Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany
| | - Markus M Nöthen
- Institute of Human Genetics and
- Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany
| | | | - Elke Pogge von Strandmann
- Experimental Tumor Research, Center for Tumor Biology and Immunology, Clinic for Hematology, Oncology and Immunology, Philipps University, Marburg, Germany
| | - Anthony J Swerdlow
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, United Kingdom
- Division of Breast Cancer Research, The Institute of Cancer Research, London, United Kingdom; and
| | - Andreas Engert
- Department of Internal Medicine, University Hospital of Cologne, Cologne, Germany
| | - Nick Orr
- Division of Breast Cancer Research, The Institute of Cancer Research, London, United Kingdom; and
| | - Kari Hemminki
- Division of Molecular Genetic Epidemiology, German Cancer Research Center, Heidelberg, Germany
- Center for Primary Health Care Research, Lund University, Malmö, Sweden
| | - Richard S Houlston
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, United Kingdom
| |
Collapse
|
21
|
The c-Jun and JunB transcription factors facilitate the transit of classical Hodgkin lymphoma tumour cells through G 1. Sci Rep 2018; 8:16019. [PMID: 30375407 PMCID: PMC6207696 DOI: 10.1038/s41598-018-34199-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 10/07/2018] [Indexed: 12/29/2022] Open
Abstract
Classical Hodgkin Lymphoma (cHL) is primarily a B cell lymphoid neoplasm and a member of the CD30–positive lymphomas. cHL and the other CD30–positive lymphomas are characterized by the elevated expression and/or constitutive activation of the activator protein-1 (AP-1) family transcription factors, c-Jun and JunB; however, the specific roles they play in the pathobiology of cHL are unclear. In this report we show that reducing either c-Jun or JunB expression with short-hairpin RNAs (shRNAs) reduced the growth of cHL cell lines in vitro and in vivo, primarily through impairing cell cycle transition through G1. We further investigated the effect of c-Jun and JunB knock-down on proliferation in another CD30–positive lymphoma, anaplastic lymphoma kinase-positive, anaplastic large cell lymphoma (ALK+ ALCL). We found that JunB knock-down in most ALK+ ALCL cell lines examined also resulted in reduced proliferation that was associated with a G0/G1 cell cycle defect. In contrast, c-Jun knock-down in multiple ALK+ ALCL cell lines had no effect on proliferation. In summary, this study directly establishes that both c-Jun and JunB play roles in promoting HRS cell proliferation. Furthermore, we demonstrate there are similarities and differences in c-Jun and JunB function between cHL and ALK+ ALCL.
Collapse
|
22
|
Nakashima M, Yamochi T, Watanabe M, Uchimaru K, Utsunomiya A, Higashihara M, Watanabe T, Horie R. CD30 Characterizes Polylobated Lymphocytes and Disease Progression in HTLV-1-Infected Individuals. Clin Cancer Res 2018; 24:5445-5457. [PMID: 30068708 DOI: 10.1158/1078-0432.ccr-18-0268] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 06/07/2018] [Accepted: 07/25/2018] [Indexed: 11/16/2022]
Abstract
Purpose: Although expression of CD30 is reported in a subset of adult T-cell leukemia/lymphoma cases, its clinicopathologic significance is poorly understood. We aimed to characterize CD30-positive cells and clarify their tumorigenic role in human T-cell lymphotropic virus type 1 (HTLV-1)-infected cells.Experimental Design: CD30-positive peripheral blood mononuclear cells from individuals with differing HTLV-1 disease status were characterized, and the role of CD30 signaling was examined using HTLV-1-infected cell lines and primary cells.Results: CD30-positive cells were detected in all samples examined, and the marker was coexpressed with both CD25 and CD4. This cell population expanded in accordance with disease progression. CD30-positive cells showed polylobation, with some possessing "flower cell" features, active cycling, and hyperploidy. CD30 stimulation of HTLV-1-infected cell lines induced these features and abnormal cell division, with polylobation found to be dependent on the activation of PI3K. The results thus link the expression of CD30, which serves as a marker for HTLV-1 disease status, to an active proliferating cell fraction featuring polylobation and chromosomal aberrations. In addition, brentuximab vedotin, an anti-CD30 monoclonal antibody conjugated with auristatin E, was found to reduce the CD30-positive cell fraction.Conclusions: Our results indicate that CD30-positive cells act as a reservoir for tumorigenic transformation and clonal expansion during HTLV-1 infection. The CD30-positive fraction may thus be a potential molecular target for those with differing HTLV-1 disease status. Clin Cancer Res; 24(21); 5445-57. ©2018 AACR.
Collapse
Affiliation(s)
- Makoto Nakashima
- Department of Molecular Hematology, Faculty of Molecular Medical Biology, Graduate School of Medical Sciences, Kitasato University, Sagamihara, Kanagawa, Japan.,Laboratory of Tumor Cell Biology, Department of Medical Genome Sciences, Graduate School of Frontier Sciences, University of Tokyo, Tokyo, Japan
| | - Tadanori Yamochi
- Laboratory of Tumor Cell Biology, Department of Medical Genome Sciences, Graduate School of Frontier Sciences, University of Tokyo, Tokyo, Japan
| | - Mariko Watanabe
- Department of Molecular Hematology, Faculty of Molecular Medical Biology, Graduate School of Medical Sciences, Kitasato University, Sagamihara, Kanagawa, Japan.,Divison of Hematology, Department of Laboratory Sciences, School of Allied Health Sciences, Kitasato University, Sagamihara, Kanagawa, Japan
| | - Kaoru Uchimaru
- Laboratory of Tumor Cell Biology, Department of Medical Genome Sciences, Graduate School of Frontier Sciences, University of Tokyo, Tokyo, Japan
| | - Atae Utsunomiya
- Department of Hematology, Imamura General Hospital, Kamoikeshinmachi, Kagoshima, Japan
| | - Masaaki Higashihara
- Department of Hematology, School of Medicine, Kitasato University, Sagamihara, Kanagawa, Japan
| | - Toshiki Watanabe
- Laboratory of Tumor Cell Biology, Department of Medical Genome Sciences, Graduate School of Frontier Sciences, University of Tokyo, Tokyo, Japan.
| | - Ryouichi Horie
- Department of Molecular Hematology, Faculty of Molecular Medical Biology, Graduate School of Medical Sciences, Kitasato University, Sagamihara, Kanagawa, Japan. .,Divison of Hematology, Department of Laboratory Sciences, School of Allied Health Sciences, Kitasato University, Sagamihara, Kanagawa, Japan
| |
Collapse
|
23
|
Weniger MA, Tiacci E, Schneider S, Arnolds J, Rüschenbaum S, Duppach J, Seifert M, Döring C, Hansmann ML, Küppers R. Human CD30+ B cells represent a unique subset related to Hodgkin lymphoma cells. J Clin Invest 2018; 128:2996-3007. [PMID: 29889102 DOI: 10.1172/jci95993] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 04/17/2018] [Indexed: 01/05/2023] Open
Abstract
Very few B cells in germinal centers (GCs) and extrafollicular (EF) regions of lymph nodes express CD30. Their specific features and relationship to CD30-expressing Hodgkin and Reed/Sternberg (HRS) cells of Hodgkin lymphoma are unclear but highly relevant, because numerous patients with lymphoma are currently treated with an anti-CD30 immunotoxin. We performed a comprehensive analysis of human CD30+ B cells. Phenotypic and IgV gene analyses indicated that CD30+ GC B lymphocytes represent typical GC B cells, and that CD30+ EF B cells are mostly post-GC B cells. The transcriptomes of CD30+ GC and EF B cells largely overlapped, sharing a strong MYC signature, but were strikingly different from conventional GC B cells and memory B and plasma cells, respectively. CD30+ GC B cells represent MYC+ centrocytes redifferentiating into centroblasts; CD30+ EF B cells represent active, proliferating memory B cells. HRS cells shared typical transcriptome patterns with CD30+ B cells, suggesting that they originate from these lymphocytes or acquire their characteristic features during lymphomagenesis. By comparing HRS to normal CD30+ B cells we redefined aberrant and disease-specific features of HRS cells. A remarkable downregulation of genes regulating genomic stability and cytokinesis in HRS cells may explain their genomic instability and multinuclearity.
Collapse
Affiliation(s)
| | | | | | - Judith Arnolds
- Department of Otorhinolaryngology, University of Duisburg-Essen, Essen, Germany
| | | | | | - Marc Seifert
- Institute of Cell Biology (Cancer Research), and
| | - Claudia Döring
- Dr. Senckenberg Institute of Pathology, University of Frankfurt/Main, Medical School, Frankfurt, Germany
| | - Martin-Leo Hansmann
- Dr. Senckenberg Institute of Pathology, University of Frankfurt/Main, Medical School, Frankfurt, Germany.,Frankfurt Institute for Advanced Studies, Frankfurt, Germany
| | - Ralf Küppers
- Institute of Cell Biology (Cancer Research), and
| |
Collapse
|
24
|
Kunchala P, Kuravi S, Jensen R, McGuirk J, Balusu R. When the good go bad: Mutant NPM1 in acute myeloid leukemia. Blood Rev 2018; 32:167-183. [DOI: 10.1016/j.blre.2017.11.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 10/19/2017] [Accepted: 11/02/2017] [Indexed: 12/26/2022]
|
25
|
The Role of Activator Protein-1 (AP-1) Family Members in CD30-Positive Lymphomas. Cancers (Basel) 2018; 10:cancers10040093. [PMID: 29597249 PMCID: PMC5923348 DOI: 10.3390/cancers10040093] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 03/21/2018] [Accepted: 03/25/2018] [Indexed: 12/14/2022] Open
Abstract
The Activator Protein-1 (AP-1) transcription factor (TF) family, composed of a variety of members including c-JUN, c-FOS and ATF, is involved in mediating many biological processes such as proliferation, differentiation and cell death. Since their discovery, the role of AP-1 TFs in cancer development has been extensively analysed. Multiple in vitro and in vivo studies have highlighted the complexity of these TFs, mainly due to their cell-type specific homo- or hetero-dimerization resulting in diverse transcriptional response profiles. However, as a result of the increasing knowledge of the role of AP-1 TFs in disease, these TFs are being recognized as promising therapeutic targets for various malignancies. In this review, we focus on the impact of deregulated expression of AP-1 TFs in CD30-positive lymphomas including Classical Hodgkin Lymphoma and Anaplastic Large Cell Lymphoma.
Collapse
|
26
|
Yi JH, Kim SJ, Kim WS. Brentuximab vedotin: clinical updates and practical guidance. Blood Res 2017; 52:243-253. [PMID: 29333400 PMCID: PMC5762734 DOI: 10.5045/br.2017.52.4.243] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 11/30/2017] [Accepted: 12/01/2017] [Indexed: 02/06/2023] Open
Abstract
Brentuximab vedotin (BV), a potent antibody-drug conjugate, targets the CD30 antigen. Owing to the remarkable efficacy shown in CD30-positive lymphomas, such as Hodgkin's lymphoma and systemic anaplastic large-cell lymphoma, BV was granted accelerated approval in 2011 by the US Food and Drug Administration. Thereafter, many large-scale trials in various situations have been performed, which led to extensions of the original indication. The aim of this review was to describe the latest updates on clinical trials of BV and the in-practice guidance for the use of BV.
Collapse
Affiliation(s)
- Jun Ho Yi
- Division of Hematology-Oncology, Department of Medicine, Chung-Ang University Hospital, Seoul, Korea
| | - Seok Jin Kim
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Won Seog Kim
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
27
|
van der Weyden CA, Pileri SA, Feldman AL, Whisstock J, Prince HM. Understanding CD30 biology and therapeutic targeting: a historical perspective providing insight into future directions. Blood Cancer J 2017; 7:e603. [PMID: 28885612 PMCID: PMC5709754 DOI: 10.1038/bcj.2017.85] [Citation(s) in RCA: 161] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 07/17/2017] [Accepted: 07/20/2017] [Indexed: 12/12/2022] Open
Abstract
CD30 is a member of the tumor necrosis factor receptor superfamily. It is characteristically expressed in certain hematopoietic malignancies, including anaplastic large cell lymphoma and Hodgkin lymphoma, among others. The variable expression of CD30 on both normal and malignant lymphoid cells has focused research efforts on understanding the pathogenesis of CD30 upregulation, its contribution to lymphomagenesis through anti-apoptotic mechanisms, and its effect on cell survival. Given the restriction of CD30 to certain tumor types, the logical extension of this has been to attempt to exploit it as a therapeutic target. The efficacy of naked anti-CD30 antibodies in practice was, however, modest. Moreover, combinations with bacterial toxins and radioimmunoconjugates have also had limited success. The development of the antibody-drug compound brentuximab vedotin (BV), however, has rejuvenated interest in CD30 as a tumor target. Phase I and II clinical trials in Hodgkin lymphoma, peripheral T-cell lymphoma, cutaneous T cell lymphoma, and even CD30-expressing B-cell lymphomas, have shown the compound is well tolerated, but more importantly, able to deliver meaningful disease control even in patients with multiply relapsed or refractory disease. FDA approval has been granted for its use in relapsed Hodgkin lymphoma and systemic anaplastic large cell lymphoma. A recent phase III trial of BV in cutaneous T-cell lymphoma has confirmed its superiority to standard of care therapies. In this manuscript, we explore the history of CD30 as a tumor marker and as a therapeutic target, both in the laboratory and in the clinic, with a view to understanding future avenues for further study.
Collapse
Affiliation(s)
- C A van der Weyden
- Department of Haematology, Peter McCallum Cancer Centre, Melbourne, Victoria, Australia
| | - S A Pileri
- Haematopathology Unit, European Institute of Oncology, Milan, Italy
- Bologna University School of Medicine, Bologna, Italy
| | - A L Feldman
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - J Whisstock
- ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria, Australia
| | - H M Prince
- Department of Haematology, Peter McCallum Cancer Centre, Melbourne, Victoria, Australia
- Epworth Healthcare, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
28
|
Lollies A, Hartmann S, Schneider M, Bracht T, Weiß AL, Arnolds J, Klein-Hitpass L, Sitek B, Hansmann ML, Küppers R, Weniger MA. An oncogenic axis of STAT-mediated BATF3 upregulation causing MYC activity in classical Hodgkin lymphoma and anaplastic large cell lymphoma. Leukemia 2017; 32:92-101. [PMID: 28659618 DOI: 10.1038/leu.2017.203] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 06/13/2017] [Accepted: 06/16/2017] [Indexed: 02/07/2023]
Abstract
Classical Hodgkin lymphoma (cHL) and anaplastic large cell lymphoma (ALCL) feature high expression of activator protein-1 (AP-1) transcription factors, which regulate various physiological processes but also promote lymphomagenesis. The AP-1 factor basic leucine zipper transcription factor, ATF-like 3 (BATF3), is highly transcribed in cHL and ALCL; however, its functional importance in lymphomagenesis is unknown. Here we show that proto-typical CD30+ lymphomas, namely cHL (21/30) and primary mediastinal B-cell lymphoma (8/9), but also CD30+ diffuse large B-cell lymphoma (15/20) frequently express BATF3 protein. Mass spectrometry and co-immunoprecipitation established interactions of BATF3 with JUN and JUNB in cHL and ALCL lines. BATF3 knockdown using short hairpin RNAs was toxic for cHL and ALCL lines, reducing their proliferation and survival. We identified MYC as a critical BATF3 target and confirmed binding of BATF3 to the MYC promoter. JAK/STAT signaling regulated BATF3 expression, as chemical JAK2 inhibition reduced and interleukin 13 stimulation induced BATF3 expression in cHL lines. Chromatin immunoprecipitation substantiated a direct regulation of BATF3 by STAT proteins in cHL and ALCL lines. In conclusion, we identified STAT-mediated BATF3 expression that is essential for lymphoma cell survival and promoted MYC activity in cHL and ALCL, hence we recognized a new oncogenic axis in these lymphomas.
Collapse
Affiliation(s)
- A Lollies
- Institute of Cell Biology (Cancer Research), Faculty of Medicine, University of Duisburg-Essen, Essen, Germany
| | - S Hartmann
- Dr Senckenberg Institute of Pathology, Goethe-University of Frankfurt, Medical School, Frankfurt, Germany
| | - M Schneider
- Institute of Cell Biology (Cancer Research), Faculty of Medicine, University of Duisburg-Essen, Essen, Germany.,Dr Senckenberg Institute of Pathology, Goethe-University of Frankfurt, Medical School, Frankfurt, Germany
| | - T Bracht
- Medizinisches Proteom-Center, Ruhr-University Bochum, Bochum, Germany
| | - A L Weiß
- Institute of Cell Biology (Cancer Research), Faculty of Medicine, University of Duisburg-Essen, Essen, Germany
| | - J Arnolds
- Department of Otorhinolaryngology, Faculty of Medicine, University of Duisburg-Essen, Essen, Germany
| | - L Klein-Hitpass
- Institute of Cell Biology (Cancer Research), Faculty of Medicine, University of Duisburg-Essen, Essen, Germany
| | - B Sitek
- Medizinisches Proteom-Center, Ruhr-University Bochum, Bochum, Germany
| | - M-L Hansmann
- Dr Senckenberg Institute of Pathology, Goethe-University of Frankfurt, Medical School, Frankfurt, Germany
| | - R Küppers
- Institute of Cell Biology (Cancer Research), Faculty of Medicine, University of Duisburg-Essen, Essen, Germany
| | - M A Weniger
- Institute of Cell Biology (Cancer Research), Faculty of Medicine, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
29
|
Tsuyama N, Sakamoto K, Sakata S, Dobashi A, Takeuchi K. Anaplastic large cell lymphoma: pathology, genetics, and clinical aspects. J Clin Exp Hematop 2017; 57:120-142. [PMID: 29279550 PMCID: PMC6144189 DOI: 10.3960/jslrt.17023] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 11/19/2017] [Accepted: 11/21/2017] [Indexed: 12/20/2022] Open
Abstract
Anaplastic large cell lymphoma (ALCL) was first described in 1985 as a large-cell neoplasm with anaplastic morphology immunostained by the Ki-1 antibody, which recognizes CD30. In 1994, the nucleophosmin (NPM)-anaplastic lymphoma kinase (ALK) fusion receptor tyrosine kinase was identified in a subset of patients, leading to subdivision of this disease into ALK-positive and -negative ALCL in the present World Health Organization classification. Due to variations in morphology and immunophenotype, which may sometimes be atypical for lymphoma, many differential diagnoses should be considered, including solid cancers, lymphomas, and reactive processes. CD30 and ALK are key molecules involved in the pathogenesis, diagnosis, and treatment of ALCL. In addition, signal transducer and activator of transcription 3 (STAT3)-mediated mechanisms are relevant in both types of ALCL, and fusion/mutated receptor tyrosine kinases other than ALK have been reported in ALK-negative ALCL. ALK-positive ALCL has a better prognosis than ALK-negative ALCL or other peripheral T-cell lymphomas. Patients with ALK-positive ALCL are usually treated with anthracycline-based regimens, such as combination cyclophosphamide, doxorubicin, vincristine, and prednisolone (CHOP) or CHOEP (CHOP plus etoposide), which provide a favorable prognosis, except in patients with multiple International Prognostic Index factors. For targeted therapies, an anti-CD30 monoclonal antibody linked to a synthetic antimitotic agent (brentuximab vedotin) and ALK inhibitors (crizotinib, alectinib, and ceritinib) are being used in clinical settings.
Collapse
|
30
|
The AP-1 transcription factor JunB is essential for multiple myeloma cell proliferation and drug resistance in the bone marrow microenvironment. Leukemia 2016; 31:1570-1581. [PMID: 27890927 DOI: 10.1038/leu.2016.358] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 11/08/2016] [Accepted: 11/11/2016] [Indexed: 12/13/2022]
Abstract
Despite therapeutic advances, multiple myeloma (MM) remains an incurable disease, predominantly because of the development of drug resistance. The activator protein-1 (AP-1) transcription factor family has been implicated in a multitude of physiologic processes and tumorigenesis; however, its role in MM is largely unknown. Here we demonstrate specific and rapid induction of the AP-1 family member JunB in MM cells when co-cultured with bone marrow stromal cells. Supporting a functional key role of JunB in MM pathogenesis, knockdown of JUNB significantly inhibited in vitro MM cell proliferation and survival. Consistently, induced silencing of JUNB markedly decreased tumor growth in a murine MM model of the microenvironment. Subsequent gene expression profiling revealed a role for genes associated with apoptosis, DNA replication and metabolism in driving the JunB-mediated phenotype in MM cells. Importantly, knockdown of JUNB restored the response to dexamethasone in dexamethasone-resistant MM cells. Moreover, 4-hydroxytamoxifen-induced activation of a JunB-ER fusion protein protected dexamethasone-sensitive MM cells against dexamethasone- and bortezomib-induced cytotoxicity. In summary, our results demonstrate for the first time a specific role for AP-1/JunB in MM cell proliferation, survival and drug resistance, thereby strongly supporting that this transcription factor is a promising new therapeutic target in MM.
Collapse
|
31
|
Buetti-Dinh A, O’Hare T, Friedman R. Sensitivity Analysis of the NPM-ALK Signalling Network Reveals Important Pathways for Anaplastic Large Cell Lymphoma Combination Therapy. PLoS One 2016; 11:e0163011. [PMID: 27669408 PMCID: PMC5036789 DOI: 10.1371/journal.pone.0163011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 08/25/2016] [Indexed: 01/01/2023] Open
Abstract
A large subset of anaplastic large cell lymphoma (ALCL) patients harbour a somatic aberration in which anaplastic lymphoma kinase (ALK) is fused to nucleophosmin (NPM) resulting in a constitutively active signalling fusion protein, NPM-ALK. We computationally simulated the signalling network which mediates pathological cell survival and proliferation through NPM-ALK to identify therapeutically targetable nodes through which it may be possible to regain control of the tumourigenic process. The simulations reveal the predominant role of the VAV1-CDC42 (cell division control protein 42) pathway in NPM-ALK-driven cellular proliferation and of the Ras / mitogen-activated ERK kinase (MEK) / extracellular signal-regulated kinase (ERK) cascade in controlling cell survival. Our results also highlight the importance of a group of interleukins together with the Janus kinase 3 (JAK3) / signal transducer and activator of transcription 3 (STAT3) signalling in the development of NPM-ALK derived ALCL. Depending on the activity of JAK3 and STAT3, the system may also be sensitive to activation of protein tyrosine phosphatase-1 (SHP1), which has an inhibitory effect on cell survival and proliferation. The identification of signalling pathways active in tumourigenic processes is of fundamental importance for effective therapies. The prediction of alternative pathways that circumvent classical therapeutic targets opens the way to preventive approaches for countering the emergence of cancer resistance.
Collapse
Affiliation(s)
- Antoine Buetti-Dinh
- Department of Chemistry and Biomedical Sciences, Linnæus University, Kalmar, Sweden
- Linnæus University Centre for Biomaterials Chemistry, Linnæus University, Kalmar, Sweden
- Institute of Computational Science, Faculty of Informatics, Università della Svizzera Italiana, Lugano, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- * E-mail: (ABD); (RF)
| | - Thomas O’Hare
- Huntsman Cancer Institute, The University of Utah, Salt Lake City, United States of America
- Division of Hematology and Hematologic Malignancies, The University of Utah, Salt Lake City, United States of America
| | - Ran Friedman
- Department of Chemistry and Biomedical Sciences, Linnæus University, Kalmar, Sweden
- Linnæus University Centre for Biomaterials Chemistry, Linnæus University, Kalmar, Sweden
- * E-mail: (ABD); (RF)
| |
Collapse
|
32
|
Papoudou-Bai A, Hatzimichael E, Barbouti A, Kanavaros P. Expression patterns of the activator protein-1 (AP-1) family members in lymphoid neoplasms. Clin Exp Med 2016; 17:291-304. [PMID: 27600282 DOI: 10.1007/s10238-016-0436-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Accepted: 08/23/2016] [Indexed: 12/22/2022]
Abstract
The activator protein-1 (AP-1) is a dimeric transcription factor composed of proteins belonging to the Jun (c-Jun, JunB and JunD), Fos (c-Fos, FosB, Fra1 and Fra2) and activating transcription factor protein families. AP-1 is involved in various cellular events including differentiation, proliferation, survival and apoptosis. Deregulated expression of AP-1 transcription factors is implicated in the pathogenesis of various lymphomas such as classical Hodgkin lymphomas, anaplastic large cell lymphomas, diffuse large B cell lymphomas and adult T cell leukemia/lymphoma. The main purpose of this review is the analysis of the expression patterns of AP-1 transcription factors in order to gain insight into the histophysiology of lymphoid tissues and the pathology of lymphoid malignancies.
Collapse
Affiliation(s)
| | | | - Alexandra Barbouti
- Department of Anatomy-Histology-Embryology, Faculty of Medicine, University of Ioannina, Ioannina, Greece
| | - Panagiotis Kanavaros
- Department of Anatomy-Histology-Embryology, Faculty of Medicine, University of Ioannina, Ioannina, Greece.
| |
Collapse
|
33
|
Schütze N, Trojandt S, Kuhn S, Tomm JM, von Bergen M, Simon JC, Polte T. Allergen-Induced IL-6 Regulates IL-9/IL-17A Balance in CD4+ T Cells in Allergic Airway Inflammation. THE JOURNAL OF IMMUNOLOGY 2016; 197:2653-64. [PMID: 27574298 DOI: 10.4049/jimmunol.1501599] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 08/02/2016] [Indexed: 12/21/2022]
Abstract
IL-9-secreting Th9 cells have been considered to play a pivotal role in the pathogenesis of atopic diseases. To what extent IL-9-producing cells are induced or regulated by sensitization with naturally occurring allergens is not yet clear. Naturally occurring allergens are capable of inducing IL-6 production in dendritic cells (DCs). Whether allergen-induced IL-6 supports a Th9 subtype by increasing IL-9 production, as observed in in vitro studies, or rather favors Th17 differentiation is not finally resolved. Therefore, in the present study we have investigated the impact of IL-6 on the Th9/Th17 balance depending on the predominant cytokine milieu and, additionally, in vivo using a DC-driven murine asthma model. In vitro, IL-6 increases Th9 cells under strong IL-4 and TGF-β activation, whereas under moderate IL-4 and TGF-β activation the presence of IL-6 shifts naive CD4(+) cells to Th17 cells. To induce allergic airway inflammation, OVA-pulsed DCs from IL-6-deficient or wild-type donors were adoptively transferred into BALB/c mice. Recipients receiving IL-6-producing wild-type DCs showed a significant decrease of Th9- and IL-4-producing Th2 cells but an increase of Th17 cells in lung tissue in comparison with recipients sensitized with IL-6-deficient DCs. Our data suggest that the IL-6-mediated reduction of Th2-related IL-4 leads to a decline of the Th9 immune response and allows Th17 differentiation.
Collapse
Affiliation(s)
- Nicole Schütze
- Leipzig Research Center for Civilization Diseases, Junior Research Group on Pathogenesis of New Allergies, Leipzig University Medical Center, 04103 Leipzig, Germany; Department of Dermatology, Venerology and Allergology, Leipzig University Medical Center, 04103 Leipzig, Germany;
| | - Stefanie Trojandt
- Leipzig Research Center for Civilization Diseases, Junior Research Group on Pathogenesis of New Allergies, Leipzig University Medical Center, 04103 Leipzig, Germany; Department of Dermatology, Venerology and Allergology, Leipzig University Medical Center, 04103 Leipzig, Germany
| | - Stephanie Kuhn
- Department of Environmental Immunology, UFZ-Helmholtz Center for Environmental Research, 04318 Leipzig, Germany
| | - Janina M Tomm
- Department of Proteomics, UFZ-Helmholtz Center for Environmental Research, 04318 Leipzig, Germany
| | - Martin von Bergen
- Department of Proteomics, UFZ-Helmholtz Center for Environmental Research, 04318 Leipzig, Germany; Department of Metabolomics, UFZ-Helmholtz Center for Environmental Research, 04318 Leipzig, Germany; and Department of Chemistry and Bioscience, Aalborg University, 9220 Aalborg, Denmark
| | - Jan C Simon
- Department of Dermatology, Venerology and Allergology, Leipzig University Medical Center, 04103 Leipzig, Germany
| | - Tobias Polte
- Department of Dermatology, Venerology and Allergology, Leipzig University Medical Center, 04103 Leipzig, Germany; Department of Environmental Immunology, UFZ-Helmholtz Center for Environmental Research, 04318 Leipzig, Germany
| |
Collapse
|
34
|
Kadin ME, Deva A, Xu H, Morgan J, Khare P, MacLeod RAF, Van Natta BW, Adams WP, Brody GS, Epstein AL. Biomarkers Provide Clues to Early Events in the Pathogenesis of Breast Implant-Associated Anaplastic Large Cell Lymphoma. Aesthet Surg J 2016; 36:773-81. [PMID: 26979456 DOI: 10.1093/asj/sjw023] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/27/2016] [Indexed: 12/17/2022] Open
Abstract
Almost 200 women worldwide have been diagnosed with breast implant-associated anaplastic large cell lymphoma (BIA-ALCL). The unique location and specific lymphoma type strongly suggest an etio-pathologic link between breast implants and BIA-ALCL. It is postulated that chronic inflammation via bacterial infection may be an etiological factor. BIA-ALCL resembles primary cutaneous ALCL (pcALCL) in morphology, activated T-cell phenotype, and indolent clinical course. Gene expression array analysis, flow cytometry, and immunohistochemistry were used to study pcALCL and BIA-ALCL cell lines. Clinical samples were also studied to characterize transcription factor and cytokine profiles of tumor cells and surrounding lymphocytes. BIA-ALCL and pcALCL were found to have common expression of transcription factors SOCS3, JunB, SATB1, and a cytokine profile suggestive of a Th1 phenotype. Similar patterns were observed in a CD30+ cutaneous lymphoproliferative disorder (LPD). The patterns of cytokine and transcription factor expression suggest that BIA-ALCL is likely to arise from chronic bacterial antigen stimulation of T-cells. Further analysis of cytokine and transcription factor profiles may allow early detection and treatment of BIA-ALCL leading to better prognosis and survival. LEVEL OF EVIDENCE 5: Risk.
Collapse
Affiliation(s)
- Marshall E Kadin
- Dr Kadin is a Professor of Dermatology, Boston University School of Medicine, Boston, MA; and a Staff Physician, Roger Williams Medical Center, Providence, RI. Dr Deva is an Associate Professor of Cosmetic, Plastic, and Reconstructive Surgery, Macquarie University, NSW, Australia. Ms Xu is a Research Assistant, Dr Morgan is Director of the Research Core Facility, and Dr Khare is Director of the Cancer Immunotherapy and Gene Therapy Facility, Roger Williams Medical Center, Providence, RI. Dr MacLeod is Director of Cytogenetics at the Leibniz Institute, DSMZ - German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany. Dr Van Natta is an Associate Clinical Professor, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN. Dr Adams is an Associate Clinical Professor, Department of Plastic Surgery, University of Texas Southwestern Medical Center, Dallas, TX. Dr Brody is Professor Emeritus in the Division of Plastic Surgery, and Dr Epstein is a Professor of Pathology, University of Southern California Keck School of Medicine, Los Angeles, CA
| | - Anand Deva
- Dr Kadin is a Professor of Dermatology, Boston University School of Medicine, Boston, MA; and a Staff Physician, Roger Williams Medical Center, Providence, RI. Dr Deva is an Associate Professor of Cosmetic, Plastic, and Reconstructive Surgery, Macquarie University, NSW, Australia. Ms Xu is a Research Assistant, Dr Morgan is Director of the Research Core Facility, and Dr Khare is Director of the Cancer Immunotherapy and Gene Therapy Facility, Roger Williams Medical Center, Providence, RI. Dr MacLeod is Director of Cytogenetics at the Leibniz Institute, DSMZ - German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany. Dr Van Natta is an Associate Clinical Professor, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN. Dr Adams is an Associate Clinical Professor, Department of Plastic Surgery, University of Texas Southwestern Medical Center, Dallas, TX. Dr Brody is Professor Emeritus in the Division of Plastic Surgery, and Dr Epstein is a Professor of Pathology, University of Southern California Keck School of Medicine, Los Angeles, CA
| | - Haiying Xu
- Dr Kadin is a Professor of Dermatology, Boston University School of Medicine, Boston, MA; and a Staff Physician, Roger Williams Medical Center, Providence, RI. Dr Deva is an Associate Professor of Cosmetic, Plastic, and Reconstructive Surgery, Macquarie University, NSW, Australia. Ms Xu is a Research Assistant, Dr Morgan is Director of the Research Core Facility, and Dr Khare is Director of the Cancer Immunotherapy and Gene Therapy Facility, Roger Williams Medical Center, Providence, RI. Dr MacLeod is Director of Cytogenetics at the Leibniz Institute, DSMZ - German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany. Dr Van Natta is an Associate Clinical Professor, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN. Dr Adams is an Associate Clinical Professor, Department of Plastic Surgery, University of Texas Southwestern Medical Center, Dallas, TX. Dr Brody is Professor Emeritus in the Division of Plastic Surgery, and Dr Epstein is a Professor of Pathology, University of Southern California Keck School of Medicine, Los Angeles, CA
| | - John Morgan
- Dr Kadin is a Professor of Dermatology, Boston University School of Medicine, Boston, MA; and a Staff Physician, Roger Williams Medical Center, Providence, RI. Dr Deva is an Associate Professor of Cosmetic, Plastic, and Reconstructive Surgery, Macquarie University, NSW, Australia. Ms Xu is a Research Assistant, Dr Morgan is Director of the Research Core Facility, and Dr Khare is Director of the Cancer Immunotherapy and Gene Therapy Facility, Roger Williams Medical Center, Providence, RI. Dr MacLeod is Director of Cytogenetics at the Leibniz Institute, DSMZ - German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany. Dr Van Natta is an Associate Clinical Professor, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN. Dr Adams is an Associate Clinical Professor, Department of Plastic Surgery, University of Texas Southwestern Medical Center, Dallas, TX. Dr Brody is Professor Emeritus in the Division of Plastic Surgery, and Dr Epstein is a Professor of Pathology, University of Southern California Keck School of Medicine, Los Angeles, CA
| | - Pranay Khare
- Dr Kadin is a Professor of Dermatology, Boston University School of Medicine, Boston, MA; and a Staff Physician, Roger Williams Medical Center, Providence, RI. Dr Deva is an Associate Professor of Cosmetic, Plastic, and Reconstructive Surgery, Macquarie University, NSW, Australia. Ms Xu is a Research Assistant, Dr Morgan is Director of the Research Core Facility, and Dr Khare is Director of the Cancer Immunotherapy and Gene Therapy Facility, Roger Williams Medical Center, Providence, RI. Dr MacLeod is Director of Cytogenetics at the Leibniz Institute, DSMZ - German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany. Dr Van Natta is an Associate Clinical Professor, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN. Dr Adams is an Associate Clinical Professor, Department of Plastic Surgery, University of Texas Southwestern Medical Center, Dallas, TX. Dr Brody is Professor Emeritus in the Division of Plastic Surgery, and Dr Epstein is a Professor of Pathology, University of Southern California Keck School of Medicine, Los Angeles, CA
| | - Roderick A F MacLeod
- Dr Kadin is a Professor of Dermatology, Boston University School of Medicine, Boston, MA; and a Staff Physician, Roger Williams Medical Center, Providence, RI. Dr Deva is an Associate Professor of Cosmetic, Plastic, and Reconstructive Surgery, Macquarie University, NSW, Australia. Ms Xu is a Research Assistant, Dr Morgan is Director of the Research Core Facility, and Dr Khare is Director of the Cancer Immunotherapy and Gene Therapy Facility, Roger Williams Medical Center, Providence, RI. Dr MacLeod is Director of Cytogenetics at the Leibniz Institute, DSMZ - German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany. Dr Van Natta is an Associate Clinical Professor, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN. Dr Adams is an Associate Clinical Professor, Department of Plastic Surgery, University of Texas Southwestern Medical Center, Dallas, TX. Dr Brody is Professor Emeritus in the Division of Plastic Surgery, and Dr Epstein is a Professor of Pathology, University of Southern California Keck School of Medicine, Los Angeles, CA
| | - Bruce W Van Natta
- Dr Kadin is a Professor of Dermatology, Boston University School of Medicine, Boston, MA; and a Staff Physician, Roger Williams Medical Center, Providence, RI. Dr Deva is an Associate Professor of Cosmetic, Plastic, and Reconstructive Surgery, Macquarie University, NSW, Australia. Ms Xu is a Research Assistant, Dr Morgan is Director of the Research Core Facility, and Dr Khare is Director of the Cancer Immunotherapy and Gene Therapy Facility, Roger Williams Medical Center, Providence, RI. Dr MacLeod is Director of Cytogenetics at the Leibniz Institute, DSMZ - German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany. Dr Van Natta is an Associate Clinical Professor, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN. Dr Adams is an Associate Clinical Professor, Department of Plastic Surgery, University of Texas Southwestern Medical Center, Dallas, TX. Dr Brody is Professor Emeritus in the Division of Plastic Surgery, and Dr Epstein is a Professor of Pathology, University of Southern California Keck School of Medicine, Los Angeles, CA
| | - William P Adams
- Dr Kadin is a Professor of Dermatology, Boston University School of Medicine, Boston, MA; and a Staff Physician, Roger Williams Medical Center, Providence, RI. Dr Deva is an Associate Professor of Cosmetic, Plastic, and Reconstructive Surgery, Macquarie University, NSW, Australia. Ms Xu is a Research Assistant, Dr Morgan is Director of the Research Core Facility, and Dr Khare is Director of the Cancer Immunotherapy and Gene Therapy Facility, Roger Williams Medical Center, Providence, RI. Dr MacLeod is Director of Cytogenetics at the Leibniz Institute, DSMZ - German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany. Dr Van Natta is an Associate Clinical Professor, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN. Dr Adams is an Associate Clinical Professor, Department of Plastic Surgery, University of Texas Southwestern Medical Center, Dallas, TX. Dr Brody is Professor Emeritus in the Division of Plastic Surgery, and Dr Epstein is a Professor of Pathology, University of Southern California Keck School of Medicine, Los Angeles, CA
| | - Garry S Brody
- Dr Kadin is a Professor of Dermatology, Boston University School of Medicine, Boston, MA; and a Staff Physician, Roger Williams Medical Center, Providence, RI. Dr Deva is an Associate Professor of Cosmetic, Plastic, and Reconstructive Surgery, Macquarie University, NSW, Australia. Ms Xu is a Research Assistant, Dr Morgan is Director of the Research Core Facility, and Dr Khare is Director of the Cancer Immunotherapy and Gene Therapy Facility, Roger Williams Medical Center, Providence, RI. Dr MacLeod is Director of Cytogenetics at the Leibniz Institute, DSMZ - German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany. Dr Van Natta is an Associate Clinical Professor, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN. Dr Adams is an Associate Clinical Professor, Department of Plastic Surgery, University of Texas Southwestern Medical Center, Dallas, TX. Dr Brody is Professor Emeritus in the Division of Plastic Surgery, and Dr Epstein is a Professor of Pathology, University of Southern California Keck School of Medicine, Los Angeles, CA
| | - Alan L Epstein
- Dr Kadin is a Professor of Dermatology, Boston University School of Medicine, Boston, MA; and a Staff Physician, Roger Williams Medical Center, Providence, RI. Dr Deva is an Associate Professor of Cosmetic, Plastic, and Reconstructive Surgery, Macquarie University, NSW, Australia. Ms Xu is a Research Assistant, Dr Morgan is Director of the Research Core Facility, and Dr Khare is Director of the Cancer Immunotherapy and Gene Therapy Facility, Roger Williams Medical Center, Providence, RI. Dr MacLeod is Director of Cytogenetics at the Leibniz Institute, DSMZ - German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany. Dr Van Natta is an Associate Clinical Professor, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN. Dr Adams is an Associate Clinical Professor, Department of Plastic Surgery, University of Texas Southwestern Medical Center, Dallas, TX. Dr Brody is Professor Emeritus in the Division of Plastic Surgery, and Dr Epstein is a Professor of Pathology, University of Southern California Keck School of Medicine, Los Angeles, CA
| |
Collapse
|
35
|
Weniger MA, Küppers R. NF-κB deregulation in Hodgkin lymphoma. Semin Cancer Biol 2016; 39:32-9. [PMID: 27221964 DOI: 10.1016/j.semcancer.2016.05.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 05/17/2016] [Accepted: 05/20/2016] [Indexed: 12/17/2022]
Abstract
Hodgkin and Reed/Sternberg (HRS) cells in classical Hodgkin lymphoma (HL) show constitutive activity of both the canonical and non-canonical NF-κB signaling pathways. The central pathogenetic role of this activity is indicated from studies with HL cell lines, which undergo apoptosis upon NF-κB inhibition. Multiple factors contribute to the strong NF-κB activity of HRS cells. This includes interaction with other cells in the lymphoma microenvironment through CD30, CD40, BCMA and other receptors, but also recurrent somatic genetic lesions in various factors of the NF-κB pathway, including destructive mutations in negative regulators of NF-κB signaling (e.g. TNFAIP3, NFKBIA), and copy number gains of genes encoding positive regulators (e.g. REL, MAP3K14). In Epstein-Barr virus-positive cases of classical HL, the virus-encoded latent membrane protein 1 causes NF-κB activation by mimicking an active CD40 receptor. NF-κB activity is also seen in the tumor cells of the rare nodular lymphocyte predominant form of HL, but the causes for this activity are largely unclear.
Collapse
Affiliation(s)
- Marc A Weniger
- Institute of Cell Biology (Cancer Research), Medical Faculty, University of Duisburg-Essen, Virchowstr. 173, 45122 Essen, Germany
| | - Ralf Küppers
- Institute of Cell Biology (Cancer Research), Medical Faculty, University of Duisburg-Essen, Virchowstr. 173, 45122 Essen, Germany.
| |
Collapse
|
36
|
Abstract
The Hodgkin and Reed-Sternberg (HRS) tumor cells of classical Hodgkin lymphoma (HL), as well as the lymphocyte predominant (LP) cells of nodular lymphocyte predominant HL (NLPHL), are derived from mature B cells. However, HRS cells have largely lost their B-cell phenotype and show a very unusual expression of many markers of other hematopoietic cell lineages, which aids in the differential diagnosis between classical HL (cHL) and NLPHL and distinguishes cHL from all other hematopoietic malignancies. The bi- or multinucleated Reed-Sternberg cells most likely derive from the mononuclear Hodgkin cells through a process of incomplete cytokinesis. HRS cells show a deregulated activation of numerous signaling pathways, which is partly mediated by cellular interactions in the lymphoma microenvironment and partly by genetic lesions. In a fraction of cases, Epstein-Barr virus contributes to the pathogenesis of cHL. Recurrent genetic lesions in HRS cells identified so far often involve members of the nuclear factor-κB (NF-κB) and JAK/STAT pathways and genes involved in major histocompatibility complex expression. However, further lead transforming events likely remain to be identified. We here discuss the current knowledge on HL pathology and biology.
Collapse
Affiliation(s)
- Stephan Mathas
- Max-Delbrück-Center for Molecular Medicine, and Hematology, Oncology, and Tumor Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Sylvia Hartmann
- Dr. Senckenberg Institute of Pathology, University of Frankfurt, Medical School, Frankfurt/Main, Germany
| | - Ralf Küppers
- Institute of Cell Biology (Cancer Research), Medical Faculty, University of Duisburg-Essen, Essen, Germany.
| |
Collapse
|
37
|
Vyrla D, Nikolaidis G, Oakley F, Perugorria MJ, Tsichlis PN, Mann DA, Eliopoulos AG. TPL2 Kinase Is a Crucial Signaling Factor and Mediator of NKT Effector Cytokine Expression in Immune-Mediated Liver Injury. THE JOURNAL OF IMMUNOLOGY 2016; 196:4298-310. [DOI: 10.4049/jimmunol.1501609] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 02/26/2016] [Indexed: 12/26/2022]
|
38
|
Fan SJ, Li HB, Cui G, Kong XL, Sun LL, Zhao YQ, Li YH, Zhou J. miRNA-149* promotes cell proliferation and suppresses apoptosis by mediating JunB in T-cell acute lymphoblastic leukemia. Leuk Res 2015; 41:62-70. [PMID: 26725775 DOI: 10.1016/j.leukres.2015.11.016] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 11/03/2015] [Accepted: 11/28/2015] [Indexed: 12/29/2022]
Abstract
MicroRNA-149* (miRNA-149*) functions as an oncogenic regulator in human melanoma. However, the effect of miRNA-149* on T-cell acute lymphoblastic leukemia (T-ALL) is unclear. Here we aimed to analyze the effects of miRNA-149* on in vitro T-ALL cells and to uncover the target for miRNA-149* in these cells. The miRNA-149* level was determined in multiple cell lines and bone marrow cells derived from patients with T-ALL, B acute lymphoblastic leukemia (B-ALL), acute myelocytic leukemia (AML), and healthy donors. We found that miRNA-149* was highly expressed in T-ALL cell lines and T-ALL patients' bone marrow samples. JunB was identified as a direct target of miR-149*. miRNA-149* mimics downregulated JunB levels in Molt-4 and Jurkat cells, while miRNA-149* inhibitors dramatically upregulated JunB expression in these cells. miRNA-149* mimics promoted proliferation, decreased the proportion of cells in G1 phase, and reduced cell apoptosis in T-ALL cells, while miRNA-149* inhibitors prevented these effects. miRNA-149* mimics downregulated p21 and upregulated cyclinD1, 4EBP1, and p70s6k in Molt-4 and Jurkat cells. Again, inhibitors prevented these effects. Our findings demonstrate that miRNA-149* may serve as an oncogenic regulator in T-ALL by negatively regulating JunB.
Collapse
Affiliation(s)
- Sheng-Jin Fan
- Department of Hematology, The First Clinical Hospital Affiliated to Harbin Medical University, Harbin 150001, Heilongjiang, PR China
| | - Hui-Bo Li
- Department of Hematology, The First Clinical Hospital Affiliated to Harbin Medical University, Harbin 150001, Heilongjiang, PR China
| | - Gang Cui
- Department of Hematology, The First Clinical Hospital Affiliated to Harbin Medical University, Harbin 150001, Heilongjiang, PR China
| | - Xiao-Lin Kong
- Department of Hematology, The First Clinical Hospital Affiliated to Harbin Medical University, Harbin 150001, Heilongjiang, PR China
| | - Li-Li Sun
- Department of Hematology, The First Clinical Hospital Affiliated to Harbin Medical University, Harbin 150001, Heilongjiang, PR China
| | - Yan-Qiu Zhao
- Department of Hematology, The First Clinical Hospital Affiliated to Harbin Medical University, Harbin 150001, Heilongjiang, PR China
| | - Ying-Hua Li
- Department of Hematology, The First Clinical Hospital Affiliated to Harbin Medical University, Harbin 150001, Heilongjiang, PR China.
| | - Jin Zhou
- Department of Hematology, The First Clinical Hospital Affiliated to Harbin Medical University, Harbin 150001, Heilongjiang, PR China
| |
Collapse
|
39
|
Inghirami G, Chan WC, Pileri S. Peripheral T-cell and NK cell lymphoproliferative disorders: cell of origin, clinical and pathological implications. Immunol Rev 2015; 263:124-59. [PMID: 25510275 DOI: 10.1111/imr.12248] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
T-cell lymphoproliferative disorders are a heterogeneous group of neoplasms with distinct clinical-biological properties. The normal cellular counterpart of these processes has been postulated based on functional and immunophenotypic analyses. However, T lymphocytes have been proven to be remarkably capable of modulating their properties, adapting their function in relationship with multiple stimuli and to the microenvironment. This impressive plasticity is determined by the equilibrium among a pool of transcription factors and by DNA chromatin regulators. It is now proven that the acquisition of specific genomic defects leads to the enforcement/activation of distinct pathways, which ultimately alter the preferential activation of defined regulators, forcing the neoplastic cells to acquire features and phenotypes distant from their original fate. Thus, dissecting the landscape of the genetic defects and their functional consequences in T-cell neoplasms is critical not only to pinpoint the origin of these tumors but also to define innovative mechanisms to re-adjust an unbalanced state to which the tumor cells have become addicted and make them vulnerable to therapies and targetable by the immune system. In our review, we briefly describe the pathological and clinical aspects of the T-cell lymphoma subtypes as well as NK-cell lymphomas and then focus on the current understanding of their pathogenesis and the implications on diagnosis and treatment.
Collapse
Affiliation(s)
- Giorgio Inghirami
- Department of Molecular Biotechnology and Health Science and Center for Experimental Research and Medical Studies (CeRMS), University of Torino, Torino, Italy; Department of Pathology, and NYU Cancer Center, New York University School of Medicine, New York, NY, USA; Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY, USA
| | | | | | | |
Collapse
|
40
|
Merkel O, Hamacher F, Griessl R, Grabner L, Schiefer AI, Prutsch N, Baer C, Egger G, Schlederer M, Krenn PW, Hartmann TN, Simonitsch-Klupp I, Plass C, Staber PB, Moriggl R, Turner SD, Greil R, Kenner L. Oncogenic role of miR-155 in anaplastic large cell lymphoma lacking the t(2;5) translocation. J Pathol 2015; 236:445-56. [PMID: 25820993 PMCID: PMC4557053 DOI: 10.1002/path.4539] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 03/11/2015] [Accepted: 03/14/2015] [Indexed: 12/20/2022]
Abstract
Anaplastic large cell lymphoma (ALCL) is a rare, aggressive, non-Hodgkin's lymphoma that is characterized by CD30 expression and disease onset in young patients. About half of ALCL patients bear the t(2;5)(p23;q35) translocation, which results in the formation of the nucleophosmin-anaplastic lymphoma tyrosine kinase (NPM-ALK) fusion protein (ALCL ALK(+)). However, little is known about the molecular features and tumour drivers in ALK-negative ALCL (ALCL ALK(-)), which is characterized by a worse prognosis. We found that ALCL ALK(-), in contrast to ALCL ALK(+), lymphomas display high miR-155 expression. Consistent with this, we observed an inverse correlation between miR-155 promoter methylation and miR-155 expression in ALCL. However, no direct effect of the ALK kinase on miR-155 levels was observed. Ago2 immunoprecipitation revealed miR-155 as the most abundant miRNA, and enrichment of target mRNAs C/EBPβ and SOCS1. To investigate its function, we over-expressed miR-155 in ALCL ALK(+) cell lines and demonstrated reduced levels of C/EBPβ and SOCS1. In murine engraftment models of ALCL ALK(-), we showed that anti-miR-155 mimics are able to reduce tumour growth. This goes hand-in-hand with increased levels of cleaved caspase-3 and high SOCS1 in these tumours, which leads to suppression of STAT3 signalling. Moreover, miR-155 induces IL-22 expression and suppresses the C/EBPβ target IL-8. These data suggest that miR-155 can act as a tumour driver in ALCL ALK(-) and blocking miR-155 could be therapeutically relevant. Original miRNA array data are to be found in the supplementary material (Table S1).
Collapse
MESH Headings
- Anaplastic Lymphoma Kinase
- Animals
- Argonaute Proteins/genetics
- Argonaute Proteins/metabolism
- CCAAT-Enhancer-Binding Protein-beta/genetics
- CCAAT-Enhancer-Binding Protein-beta/metabolism
- Case-Control Studies
- Caspase 3/metabolism
- Cell Line, Tumor
- Chromosomes, Human, Pair 2
- Chromosomes, Human, Pair 5
- DNA Methylation
- Gene Expression Regulation, Neoplastic
- Genetic Therapy/methods
- Humans
- Lymphoma, Large-Cell, Anaplastic/genetics
- Lymphoma, Large-Cell, Anaplastic/metabolism
- Lymphoma, Large-Cell, Anaplastic/pathology
- Lymphoma, Large-Cell, Anaplastic/therapy
- Mice, Inbred NOD
- Mice, SCID
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Promoter Regions, Genetic
- Receptor Protein-Tyrosine Kinases/deficiency
- Receptor Protein-Tyrosine Kinases/genetics
- STAT3 Transcription Factor/metabolism
- Signal Transduction
- Suppressor of Cytokine Signaling 1 Protein
- Suppressor of Cytokine Signaling Proteins/genetics
- Suppressor of Cytokine Signaling Proteins/metabolism
- Transfection
- Translocation, Genetic
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Olaf Merkel
- Department of Translational Oncology, National Centre for Tumour Diseases (NCT), German Cancer Research Centre (DKFZ)Heidelberg, Germany
- Department of Clinical Pathology, Medical University ViennaAustria
- European Research Initiative on ALK Related Malignancies (www.erialcl.net)
| | - Frank Hamacher
- Laboratory for Immunological and Molecular Cancer Research, Third Medical Department, Oncologic Centre, Paracelsus Medical UniversitySalzburg, Austria
| | - Robert Griessl
- Laboratory for Immunological and Molecular Cancer Research, Third Medical Department, Oncologic Centre, Paracelsus Medical UniversitySalzburg, Austria
| | - Lisa Grabner
- Department of Clinical Pathology, Medical University ViennaAustria
| | | | - Nicole Prutsch
- Department of Clinical Pathology, Medical University ViennaAustria
| | - Constance Baer
- Department of Epigenomics and Cancer Risk Factors, German Cancer Research Centre (DKFZ)Heidelberg, Germany
| | - Gerda Egger
- Department of Clinical Pathology, Medical University ViennaAustria
- European Research Initiative on ALK Related Malignancies (www.erialcl.net)
| | - Michaela Schlederer
- Department of Clinical Pathology, Medical University ViennaAustria
- Ludwig Boltzmann Institute for Cancer ResearchVienna, Austria
| | - Peter William Krenn
- Laboratory for Immunological and Molecular Cancer Research, Third Medical Department, Oncologic Centre, Paracelsus Medical UniversitySalzburg, Austria
| | - Tanja Nicole Hartmann
- Laboratory for Immunological and Molecular Cancer Research, Third Medical Department, Oncologic Centre, Paracelsus Medical UniversitySalzburg, Austria
| | | | - Christoph Plass
- Department of Epigenomics and Cancer Risk Factors, German Cancer Research Centre (DKFZ)Heidelberg, Germany
| | - Philipp Bernhard Staber
- Division of Hematology and Hemostaseology, Comprehensive Cancer Centre Vienna, Medical University of Vienna1090, Vienna, Austria
| | - Richard Moriggl
- Ludwig Boltzmann Institute for Cancer ResearchVienna, Austria
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna and Medical University of ViennaAustria
| | - Suzanne D Turner
- Division of Molecular Histopathology, Department of Pathology, University of CambridgeUK
- European Research Initiative on ALK Related Malignancies (www.erialcl.net)
| | - Richard Greil
- Laboratory for Immunological and Molecular Cancer Research, Third Medical Department, Oncologic Centre, Paracelsus Medical UniversitySalzburg, Austria
| | - Lukas Kenner
- Department of Clinical Pathology, Medical University ViennaAustria
- Ludwig Boltzmann Institute for Cancer ResearchVienna, Austria
- Unit of Pathology of Laboratory Animals, University of Veterinary Medicine ViennaAustria
- European Research Initiative on ALK Related Malignancies (www.erialcl.net)
| |
Collapse
|
41
|
Molavi O, Samadi N, Wu C, Lavasanifar A, Lai R. Silibinin suppresses NPM-ALK, potently induces apoptosis and enhances chemosensitivity in ALK-positive anaplastic large cell lymphoma. Leuk Lymphoma 2015; 57:1154-62. [PMID: 26133723 DOI: 10.3109/10428194.2015.1068306] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Nucleophosmin-anaplastic lymphoma kinase (NPM-ALK), an oncogenic fusion protein carrying constitutively active tyrosine kinase, is known to be central to the pathogenesis of ALK-positive anaplastic large cell lymphoma (ALK+ALCL). Here, it is reported that silibinin, a non-toxic naturally-occurring compound, potently suppressed NPM-ALK and effectively inhibited the growth and soft agar colony formation of ALK+ALCL cells. By western blots, it was found that silibinin efficiently suppressed the phosphorylation/activation of NPM-ALK and its key substrates/downstream mediators (including STAT3, MEK/ERK and Akt) in a time- and dose-dependent manner. Correlating with these observations, silibinin suppressed the expression of Bcl-2, survivin and JunB, all of which are found to be upregulated by NPM-ALK and pathogenetically important in ALK+ALCL. Lastly, silibinin augmented the chemosensitivity of ALK+ALCL cells to doxorubicin, particularly the small cell sub-set expressing the transcriptional activity of Sox2, an embryonic stem cell marker. To conclude, the findings suggest that silibinin might be useful in treating ALK+ALCL.
Collapse
Affiliation(s)
- Ommoleila Molavi
- a Faculty of Pharmacy, Tabriz University of Medical Sciences , Tabriz , Iran.,b Department of Laboratory Medicine and Pathology , Faculty of Medicine and Dentistry, University of Alberta , Edmonton , Alberta , Canada
| | - Nasser Samadi
- c Department of Biochemistry , Faculty of Medicine, Tabriz University of Medicine , Tabriz , Iran
| | - Chengsheng Wu
- b Department of Laboratory Medicine and Pathology , Faculty of Medicine and Dentistry, University of Alberta , Edmonton , Alberta , Canada
| | - Afsaneh Lavasanifar
- d Faculty of Pharmacy and Pharmaceutical Science, University of Alberta , Edmonton , Alberta , Canada
| | - Raymond Lai
- b Department of Laboratory Medicine and Pathology , Faculty of Medicine and Dentistry, University of Alberta , Edmonton , Alberta , Canada
| |
Collapse
|
42
|
Toda T, Watanabe M, Kawato J, Kadin ME, Higashihara M, Kunisada T, Umezawa K, Horie R. Brefeldin A exerts differential effects on anaplastic lymphoma kinase positive anaplastic large cell lymphoma and classical Hodgkin lymphoma cell lines. Br J Haematol 2015; 170:837-46. [DOI: 10.1111/bjh.13508] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 04/10/2015] [Indexed: 11/27/2022]
Affiliation(s)
- Takashi Toda
- Department of Applied Chemistry; Faculty of Science and Technology; Keio University; Kanagawa Japan
| | - Mariko Watanabe
- Department of Haematology; School of Medicine; Kitasato University; Kanagawa Japan
| | - Junji Kawato
- Department of Applied Chemistry; Faculty of Science and Technology; Keio University; Kanagawa Japan
| | - Marshall E. Kadin
- Boston University School of Medicine and Department of Dermatology and Skin Surgery; Roger Williams Medical Center; Providence RI USA
| | - Masaaki Higashihara
- Department of Haematology; School of Medicine; Kitasato University; Kanagawa Japan
| | - Takao Kunisada
- Bioscience Institute; Meiji Seika Pharma Co. Ltd.; Kanagawa Japan
| | - Kazuo Umezawa
- Department of Molecular Target Medicine; Aichi Medical University School of Medicine; Aichi Japan
| | - Ryouichi Horie
- Department of Haematology; School of Medicine; Kitasato University; Kanagawa Japan
| |
Collapse
|
43
|
Papoudou-Bai A, Goussia A, Batistatou A, Stefanou D, Malamou-Mitsi V, Kanavaros P. The expression levels of JunB, JunD and p-c-Jun are positively correlated with tumor cell proliferation in diffuse large B-cell lymphomas. Leuk Lymphoma 2015; 57:143-50. [PMID: 25813203 DOI: 10.3109/10428194.2015.1034704] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We analyzed the expression of Jun family in relation to CD30 expression, cell proliferation and B-cell differentiation immunophenotypes [Germinal Center and non-Germinal Center] in diffuse large B-cell lymphomas (DLBCL). Expression and high expression of phosphorylated-c-Jun (p-c-Jun), JunB, JunD and CD30 (cut-off scores 20% and 50%, respectively) was found in 18/103, 49/103, 72/101 and 26/102 cases, respectively, and in 6/103, 27/103, 60/101 and 21/102 cases, respectively. The following significant positive correlations were observed: (a) JunB with cyclin A (p = 0.046), cyclin B1 (p = 0.033), cyclin E (p = 0.003), MUM-1 (p = 0.002) and CD30 (p < 0.001), (b) JunD with Ki67 (p = 0.002) and cyclin E (p = 0.014), (c) p-c-Jun with CD30 (p = 0.015), and (d) high p-c-Jun with cyclin A (p = 0.034). The positive correlation between expression of JunB, JunD and p-c-Jun and tumor cell proliferation in DLBCL, suggests that increased JunB, JunD and p-c-Jun expression may be involved in the pathogenesis of DLBCL by increasing tumor cell proliferation.
Collapse
Affiliation(s)
| | - Anna Goussia
- a Department of Pathology , Medical Faculty , University of Ioannina, Ioannina , Greece
| | - Anna Batistatou
- a Department of Pathology , Medical Faculty , University of Ioannina, Ioannina , Greece
| | - Dimitrios Stefanou
- a Department of Pathology , Medical Faculty , University of Ioannina, Ioannina , Greece
| | | | - Panagiotis Kanavaros
- b Department of Anatomy-Histology-Embryology , Medical Faculty , University of Ioannina, Ioannina , Greece
| |
Collapse
|
44
|
Thakar NY, Ovchinnikov DA, Hastie ML, Kobe B, Gorman JJ, Wolvetang EJ. TRAF2 recruitment via T61 in CD30 drives NFκB activation and enhances hESC survival and proliferation. Mol Biol Cell 2015; 26:993-1006. [PMID: 25568342 PMCID: PMC4342033 DOI: 10.1091/mbc.e14-08-1290] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
CD30 activates NFκB signaling in human embryonic stem cells. A single threonine residue in the CD30v protein is critical for this and recruitment of TRAF2. The data reveal the importance of this interaction for hESC survival and proliferation. CD30 (TNFRSF8), a tumor necrosis factor receptor family protein, and CD30 variant (CD30v), a ligand-independent form encoding only the cytoplasmic signaling domain, are concurrently overexpressed in transformed human embryonic stem cells (hESCs) or hESCs cultured in the presence of ascorbate. CD30 and CD30v are believed to increase hESC survival and proliferation through NFκB activation, but how this occurs is largely unknown. Here we demonstrate that hESCs that endogenously express CD30v and hESCs that artificially overexpress CD30v exhibit increased ERK phosphorylation levels, activation of the canonical NFκB pathway, down-regulation of the noncanonical NFκB pathway, and reduced expression of the full-length CD30 protein. We further find that CD30v, surprisingly, resides predominantly in the nucleus of hESC. We demonstrate that alanine substitution of a single threonine residue at position 61 (T61) in CD30v abrogates CD30v-mediated NFκB activation, CD30v-mediated resistance to apoptosis, and CD30v-enhanced proliferation, as well as restores normal G2/M-checkpoint arrest upon H2O2 treatment while maintaining its unexpected subcellular distribution. Using an affinity purification strategy and LC-MS, we identified TRAF2 as the predominant protein that interacts with WT CD30v but not the T61A-mutant form in hESCs. The identification of Thr-61 as a critical residue for TRAF2 recruitment and canonical NFκB signaling by CD30v reveals the substantial contribution that this molecule makes to overall NFκB activity, cell cycle changes, and survival in hESCs.
Collapse
Affiliation(s)
- Nilay Y Thakar
- Stem Cell Engineering Group, Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St. Lucia, QLD 4072, Australia
| | - Dmitry A Ovchinnikov
- Stem Cell Engineering Group, Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St. Lucia, QLD 4072, Australia
| | - Marcus L Hastie
- Protein Discovery Centre, QIMR Berghofer Medical Research Institute, Herston, QLD 4029, Australia
| | - Bostjan Kobe
- School of Chemistry and Molecular Biosciences, Australian Infectious Diseases Research Centre and Institute for Molecular Bioscience, University of Queensland, St. Lucia, 4067 QLD, Australia
| | - Jeffrey J Gorman
- Protein Discovery Centre, QIMR Berghofer Medical Research Institute, Herston, QLD 4029, Australia
| | - Ernst J Wolvetang
- Stem Cell Engineering Group, Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St. Lucia, QLD 4072, Australia
| |
Collapse
|
45
|
Atsaves V, Lekakis L, Drakos E, Leventaki V, Ghaderi M, Baltatzis GE, Chioureas D, Jones D, Feretzaki M, Liakou C, Panayiotidis P, Gorgoulis V, Patsouris E, Medeiros LJ, Claret FX, Rassidakis GZ. The oncogenic JUNB/CD30 axis contributes to cell cycle deregulation in ALK+ anaplastic large cell lymphoma. Br J Haematol 2014; 167:514-23. [DOI: 10.1111/bjh.13079] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Accepted: 06/26/2014] [Indexed: 12/22/2022]
Affiliation(s)
- Vassilis Atsaves
- Department of Hematopathology; The University of Texas MD Anderson Cancer Center; Houston TX USA
- First Department of Pathology; National and Kapodistrian University of Athens; Athens Greece
| | - Lazaros Lekakis
- Department of Hematopathology; The University of Texas MD Anderson Cancer Center; Houston TX USA
| | - Elias Drakos
- Department of Hematopathology; The University of Texas MD Anderson Cancer Center; Houston TX USA
- Department of Pathology; University of Crete Medical School; Heraklion Greece
| | - Vasiliki Leventaki
- Department of Hematopathology; The University of Texas MD Anderson Cancer Center; Houston TX USA
| | - Mehran Ghaderi
- Department of Pathology and Cytology; Karolinska University Hospital & Karolinska Institute; Stockholm Sweden
| | - George E. Baltatzis
- First Department of Pathology; National and Kapodistrian University of Athens; Athens Greece
| | - Dimitris Chioureas
- Department of Pathology and Cytology; Karolinska University Hospital & Karolinska Institute; Stockholm Sweden
| | - Dan Jones
- Department of Hematopathology; The University of Texas MD Anderson Cancer Center; Houston TX USA
| | - Marianna Feretzaki
- Department of Hematopathology; The University of Texas MD Anderson Cancer Center; Houston TX USA
| | - Chryssoula Liakou
- Department of Hematopathology; The University of Texas MD Anderson Cancer Center; Houston TX USA
| | - Panayiotis Panayiotidis
- First Department of Propedeutic Medicine; National and Kapodistrian University of Athens; Athens Greece
| | - Vassilis Gorgoulis
- Laboratory of Histology and Embryology; National and Kapodistrian University of Athens; Athens Greece
| | - Efstratios Patsouris
- First Department of Pathology; National and Kapodistrian University of Athens; Athens Greece
| | - L. Jeffrey Medeiros
- Department of Pathology and Cytology; Karolinska University Hospital & Karolinska Institute; Stockholm Sweden
| | - Francois X. Claret
- Department of Systems Biology; The University of Texas MD Anderson Cancer Center; Houston TX USA
| | - George Z. Rassidakis
- Department of Hematopathology; The University of Texas MD Anderson Cancer Center; Houston TX USA
- First Department of Pathology; National and Kapodistrian University of Athens; Athens Greece
- Department of Pathology and Cytology; Karolinska University Hospital & Karolinska Institute; Stockholm Sweden
| |
Collapse
|
46
|
Gill K, Ariyan C, Wang X, Brady MS, Pulitzer M. CD30-positive lymphoproliferative disorders arising after regional therapy for recurrent melanoma: A report of two cases and analysis of CD30 expression. J Surg Oncol 2014; 110:258-64. [DOI: 10.1002/jso.23636] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Accepted: 04/05/2014] [Indexed: 12/24/2022]
Affiliation(s)
- Kamraan Gill
- Department of Pathology; Memorial Sloan Kettering Cancer Center; New York New York
| | - Charlotte Ariyan
- Department of Surgery; Memorial Sloan Kettering Cancer Center; New York New York
| | - Xuan Wang
- Department of Surgery; Memorial Sloan Kettering Cancer Center; New York New York
| | - Mary Sue Brady
- Department of Surgery; Memorial Sloan Kettering Cancer Center; New York New York
| | - Melissa Pulitzer
- Department of Pathology; Memorial Sloan Kettering Cancer Center; New York New York
| |
Collapse
|
47
|
Expression of dual-specificity phosphatase 5 pseudogene 1 (DUSP5P1) in tumor cells. PLoS One 2014; 9:e89577. [PMID: 24651368 PMCID: PMC3949351 DOI: 10.1371/journal.pone.0089577] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 01/21/2014] [Indexed: 01/03/2023] Open
Abstract
Sequencing of individual clones from a newly established cDNA library from the chemoresistant Hodgkin's lymphoma cell line L-1236 led to the isolation of a cDNA clone corresponding to a short sequence from chromosome 1. Reverse transcriptase-polymerase chain reaction indicated high expression of this sequence in Hodgkin's lymphoma derived cell lines but not in normal blood cells. Further characterization of this sequence and the surrounding genomic DNA revealed that this sequence is part of a human endogenous retrovirus locus. The sequence of this endogenous retrovirus is interrupted by a pseudogene of the dual specificity phosphatase 5 (DUSP5). Reverse transcriptase-polymerase chain reaction revealed high expression of this pseudogene (DUSP5P1) in HL cell lines but not in normal blood cells or Epstein-Barr virus-immortalized B cells. Cells from other tumor types (Burkitt's lymphoma, leukemia, neuroblastoma, Ewing sarcoma) also showed a higher DUSP5P1/DUSP5 ratio than normal cells. Furthermore, we observed that higher expression of DUSP5 in relation to DUSP5P1 correlated with the expression of the pro-apoptotic factor B cell leukemia/lymphoma 2-like 11 (BCL2L11) in peripheral blood cells and HL cells. Knock-down of DUSP5 in HL cells resulted in down-regulation of BCL2L11. Thus, the DUSP5/DUSP5P1 system could be responsible for regulation of BCL2L11 leading to inhibition of apoptosis in these tumor cells.
Collapse
|
48
|
Braun J, Strittmatter K, Nübel T, Komljenovic D, Sator-Schmitt M, Bäuerle T, Angel P, Schorpp-Kistner M. Loss of stromal JUNB does not affect tumor growth and angiogenesis. Int J Cancer 2013; 134:1511-6. [DOI: 10.1002/ijc.28477] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 07/29/2013] [Accepted: 08/01/2013] [Indexed: 11/08/2022]
Affiliation(s)
- Jennifer Braun
- Division of Signal Transduction and Growth Control DKFZ DKFZ-ZMBH Alliance; German Cancer Research Center (DKFZ); Heidelberg Germany
| | - Karin Strittmatter
- Division of Signal Transduction and Growth Control DKFZ DKFZ-ZMBH Alliance; German Cancer Research Center (DKFZ); Heidelberg Germany
| | - Tobias Nübel
- Division of Signal Transduction and Growth Control DKFZ DKFZ-ZMBH Alliance; German Cancer Research Center (DKFZ); Heidelberg Germany
| | - Dorde Komljenovic
- Department of Medical Physics in Radiology DKFZ; German Cancer Research Center (DKFZ); Heidelberg Germany
| | - Melanie Sator-Schmitt
- Division of Signal Transduction and Growth Control DKFZ DKFZ-ZMBH Alliance; German Cancer Research Center (DKFZ); Heidelberg Germany
| | - Tobias Bäuerle
- Department of Medical Physics in Radiology DKFZ; German Cancer Research Center (DKFZ); Heidelberg Germany
| | - Peter Angel
- Division of Signal Transduction and Growth Control DKFZ DKFZ-ZMBH Alliance; German Cancer Research Center (DKFZ); Heidelberg Germany
| | - Marina Schorpp-Kistner
- Division of Signal Transduction and Growth Control DKFZ DKFZ-ZMBH Alliance; German Cancer Research Center (DKFZ); Heidelberg Germany
| |
Collapse
|
49
|
Lee JKH, Pearson JD, Maser BE, Ingham RJ. Cleavage of the JunB transcription factor by caspases generates a carboxyl-terminal fragment that inhibits activator protein-1 transcriptional activity. J Biol Chem 2013; 288:21482-95. [PMID: 23749999 DOI: 10.1074/jbc.m113.485672] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The activator protein-1 (AP-1) family transcription factor, JunB, is an important regulator of proliferation, apoptosis, differentiation, and the immune response. In this report, we show that JunB is cleaved in a caspase-dependent manner in apoptotic anaplastic lymphoma kinase-positive, anaplastic large cell lymphoma cell lines and that ectopically expressed JunB is cleaved in murine RAW 264.7 macrophage cells treated with the NALP1b inflammasome activator, anthrax lethal toxin. In both cases, we identify aspartic acid 137 as the caspase cleavage site and demonstrate that JunB can be directly cleaved in vitro by multiple caspases at this site. Cleavage of JunB at aspartic acid 137 separates the N-terminal transactivation domain from the C-terminal DNA binding and dimerization domains, and we show that the C-terminal cleavage fragment retains both DNA binding activity and the ability to interact with AP-1 family transcription factors. Furthermore, this fragment interferes with the binding of full-length JunB to AP-1 sites and inhibits AP-1-dependent transcription. In summary, we have identified and characterized a novel mechanism of JunB post-translational modification and demonstrate that the C-terminal JunB caspase cleavage product functions as a potent inhibitor of AP-1-dependent transcription.
Collapse
Affiliation(s)
- Jason K H Lee
- Department of Medical Microbiology and Immunology, University of Alberta, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | | | | | | |
Collapse
|
50
|
Loss of TCR-beta F1 and/or EZRIN expression is associated with unfavorable prognosis in nodal peripheral T-cell lymphomas. Blood Cancer J 2013; 3:e111. [PMID: 23599023 PMCID: PMC3641318 DOI: 10.1038/bcj.2013.10] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Nodal peripheral T-cell lymphoma (nodal PTCL) has an unfavorable prognosis, and specific pathogenic alterations have not been fully identified. The biological and clinical relevance of the expression of CD30/T-cell receptor (TCR) genes is a topic under active investigation. One-hundred and ninety-three consecutive nodal PTCLs (89 angioimmunoblastic T-cell lymphomas (AITL) and 104 PTCL-unspecified (PTCL-not otherwise specified (NOS)) cases) were analyzed for the immunohistochemical expression of 19 molecules, involving TCR/CD30 pathways and the associations with standard prognostic indices. Mutually exclusive expression was found between CD3 and TCR-beta F1 with CD30 expression. Taking all PTCL cases together, logistic regression identified a biological score (BS) including TCR molecules (TCR-beta F1 and EZRIN) that separates two subgroups of patients with a median survival of 34.57 and 5.20 months (P<0.001). Multivariate analysis identified BS and the prognostic index for PTCL (PIT) score as independent prognostic factors. This BS maintained its significance in multivariate analysis only for the PTCL-NOS subgroup of tumors. In AITL cases, only a high level of ki67 expression was related to prognosis. A BS including molecules involved in the TCR signaling pathway proved to be an independent prognostic factor of poor outcome in a multivariate analysis, specifically in PTCL-NOS patients. Nevertheless, validation in an independent series of homogeneously treated PTCL patients is required to confirm these data.
Collapse
|