1
|
Falk-Mahapatra R, Gollnick SO. Photodynamic Therapy-Induced Cyclooxygenase 2 Expression in Tumor-Draining Lymph Nodes Regulates B-Cell Expression of Interleukin 17 and Neutrophil Infiltration. Photochem Photobiol 2022; 98:1207-1214. [PMID: 35103990 PMCID: PMC9484206 DOI: 10.1111/php.13601] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/27/2022] [Indexed: 11/27/2022]
Abstract
Photodynamic therapy (PDT) is an effective anticancer modality approved by the U.S. Food and Drug Administration (FDA). Antitumor immunity can be augmented during PDT by inducing sterile inflammation in an acute manner, and this process is characterized by interleukin 17 (IL-17)-mediated neutrophil infiltration to tumor-draining lymph nodes (TDLNs). However, the inflammatory factors that influence IL-17 expression in TDLNs are poorly understood. Prior studies have linked the cyclooxygenase 2 (COX2)-driven prostaglandin E2 (PGE2) pathway to IL-17 expression. Here, we report that an immune-activating PDT regimen (imPDT) induces COX2/PGE2 expression in TDLNs, whereby IL-17 expression is facilitated without corresponding effects on the expression of RORγt, the transcriptional driver of the canonical IL-17 pathway. Pharmacologic inhibition with NS398, a COX2 inhibitor, was utilized to demonstrate that imPDT-induced COX2 regulates RORγt-independent expression of IL-17 by B cells and neutrophil entry into TDLNs. Depletion of B cells prior to imPDT significantly reduced neutrophil entry into TDLNs following treatment, and diminishes the efficacy of imPDT, which is dependent upon antitumor immunity. These findings are suggestive of a novel role for B cells in the augmentation of antitumor immunity by imPDT.
Collapse
Affiliation(s)
- Riddhi Falk-Mahapatra
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Elm and Carlton Sts, Buffalo, NY 14263, USA
| | - Sandra O. Gollnick
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Elm and Carlton Sts, Buffalo, NY 14263, USA,Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Elm and Carlton Sts, Buffalo, NY 14263, USA,Corresponding author: (Sandra O. Gollnick)
| |
Collapse
|
2
|
Wan Y, Fu LH, Li C, Lin J, Huang P. Conquering the Hypoxia Limitation for Photodynamic Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2103978. [PMID: 34580926 DOI: 10.1002/adma.202103978] [Citation(s) in RCA: 298] [Impact Index Per Article: 74.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/11/2021] [Indexed: 06/13/2023]
Abstract
Photodynamic therapy (PDT) has aroused great research interest in recent years owing to its high spatiotemporal selectivity, minimal invasiveness, and low systemic toxicity. However, due to the hypoxic nature characteristic of many solid tumors, PDT is frequently limited in therapeutic effect. Moreover, the consumption of O2 during PDT may further aggravate the tumor hypoxic condition, which promotes tumor proliferation, metastasis, and invasion resulting in poor prognosis of treatment. Therefore, numerous efforts have been made to increase the O2 content in tumor with the goal of enhancing PDT efficacy. Herein, these strategies developed in past decade are comprehensively reviewed to alleviate tumor hypoxia, including 1) delivering exogenous O2 to tumor directly, 2) generating O2 in situ, 3) reducing tumor cellular O2 consumption by inhibiting respiration, 4) regulating the TME, (e.g., normalizing tumor vasculature or disrupting tumor extracellular matrix), and 5) inhibiting the hypoxia-inducible factor 1 (HIF-1) signaling pathway to relieve tumor hypoxia. Additionally, the O2 -independent Type-I PDT is also discussed as an alternative strategy. By reviewing recent progress, it is hoped that this review will provide innovative perspectives in new nanomaterials designed to combat hypoxia and avoid the associated limitation of PDT.
Collapse
Affiliation(s)
- Yilin Wan
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Lian-Hua Fu
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Chunying Li
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Jing Lin
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Peng Huang
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| |
Collapse
|
3
|
Hoda M. Potential Alternatives to Conventional Cancer Therapeutic Approaches: The Way Forward. Curr Pharm Biotechnol 2021; 22:1141-1148. [PMID: 33069195 DOI: 10.2174/1389201021666201016142408] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/31/2020] [Accepted: 09/24/2020] [Indexed: 11/22/2022]
Abstract
onventional cancer therapeutic approaches broadly include chemotherapy, radiation therapy and surgery. These established approaches have evolved over several decades of clinical experience. For a complex disease like cancer, satisfactory treatment remains an enigma for the simple fact that the causal factors for cancer are extremely diverse. In order to overcome existing therapeutic limitations, consistent scientific endeavors have evolved several potential therapeutic approaches, majority of which focuses essentially on targeted drug delivery, minimal concomitant ramification, and selective high cytotoxicity. The current review focuses on highlighting some of these potential alternatives that are currently in various stages of in vitro, in vivo, and clinical trials. These include physical, chemical and biological entities that are avidly being explored for therapeutic alternatives. Some of these entities include suicide gene, micro RNA, modulatory peptides, ultrasonic waves, free radicals, nanoparticles, phytochemicals, and gene knockout, and stem cells. Each of these techniques may be exploited exclusively and in combination with conventional therapeutic approaches thereby enhancing the therapeutic efficacy of the treatment. The review intends to briefly discuss the mechanism of action, pros, and cons of potential alternatives to conventional therapeutic approaches.
Collapse
Affiliation(s)
- Muddasarul Hoda
- Department of Biological Sciences, Aliah University, IIA/27-Newtown, Kolkata 700160, India
| |
Collapse
|
4
|
Sobolewski C, Legrand N. Celecoxib Analogues for Cancer Treatment: An Update on OSU-03012 and 2,5-Dimethyl-Celecoxib. Biomolecules 2021; 11:biom11071049. [PMID: 34356673 PMCID: PMC8302000 DOI: 10.3390/biom11071049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/12/2021] [Accepted: 07/14/2021] [Indexed: 12/20/2022] Open
Abstract
Cyclooxygenase-2 (COX-2) is an important enzyme involved in prostaglandins biosynthesis from arachidonic acid. COX-2 is frequently overexpressed in human cancers and plays a major tumor promoting function. Accordingly, many efforts have been devoted to efficiently target the catalytic site of this enzyme in cancer cells, by using COX-2 specific inhibitors such as celecoxib. However, despite their potent anti-tumor properties, the myriad of detrimental effects associated to the chronic inhibition of COX-2 in healthy tissues, has considerably limited their use in clinic. In addition, increasing evidence indicate that these anti-cancerous properties are not strictly dependent on the inhibition of the catalytic site. These findings have led to the development of non-active COX-2 inhibitors analogues aiming at preserving the antitumor effects of COX-2 inhibitors without their side effects. Among them, two celecoxib derivatives, 2,5-Dimethyl-Celecoxib and OSU-03012, have been developed and suggested for the treatment of viral (e.g., recently SARS-CoV-2), inflammatory, metabolic diseases and cancers. These molecules display stronger anti-tumor properties than celecoxib and thus may represent promising anti-cancer molecules. In this review, we discuss the impact of these two analogues on cancerous processes but also their potential for cancer treatment alone or in combination with existing approaches.
Collapse
Affiliation(s)
- Cyril Sobolewski
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland
- Correspondence: ; Tel.: +41-22-379-5421
| | - Noémie Legrand
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland;
| |
Collapse
|
5
|
Majerník M, Jendželovský R, Fedoročko P. Potentiality, Limitations, and Consequences of Different Experimental Models to Improve Photodynamic Therapy for Cancer Treatment in Relation to Antiangiogenic Mechanism. Cancers (Basel) 2020; 12:cancers12082118. [PMID: 32751731 PMCID: PMC7463805 DOI: 10.3390/cancers12082118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 07/24/2020] [Accepted: 07/28/2020] [Indexed: 12/13/2022] Open
Abstract
The relevance of experimentally gained information represents a long-term debating issue in the field of molecular biology research. The loss of original conditions in the in vitro environment affects various biological mechanisms and cellular interactions. Consequently, some biochemical mechanisms are lost or critically altered. Analyses in these modified conditions could, therefore, distort the relevancy of experimentally gained information. In some cases, the similarities with original conditions are so small that utilization of simpler in vitro models seems impossible, or could occur in a very limited way. To conclude, the study of more complex phenomena places higher demands on the complexity of the experimental model. The latest information highlights the fact that the tumor angiogenesis mechanism has very complex features. This complexity can be associated with a wide range of angiogenic factors expressed by a variety of malignant and non-malignant cells. Our article summarizes the results from various experimental models that were utilized to analyze a photodynamic therapy effect on tumor angiogenic mechanisms. Additionally, based on the latest information, we present the most important attributes and limitations of utilized experimental models. We also evaluate the essential problems associated with angiogenic mechanism induction after photodynamic therapy application.
Collapse
|
6
|
Larue L, Myrzakhmetov B, Ben-Mihoub A, Moussaron A, Thomas N, Arnoux P, Baros F, Vanderesse R, Acherar S, Frochot C. Fighting Hypoxia to Improve PDT. Pharmaceuticals (Basel) 2019; 12:E163. [PMID: 31671658 PMCID: PMC6958374 DOI: 10.3390/ph12040163] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 10/24/2019] [Accepted: 10/26/2019] [Indexed: 12/11/2022] Open
Abstract
Photodynamic therapy (PDT) has drawn great interest in recent years mainly due to its low side effects and few drug resistances. Nevertheless, one of the issues of PDT is the need for oxygen to induce a photodynamic effect. Tumours often have low oxygen concentrations, related to the abnormal structure of the microvessels leading to an ineffective blood distribution. Moreover, PDT consumes O2. In order to improve the oxygenation of tumour or decrease hypoxia, different strategies are developed and are described in this review: 1) The use of O2 vehicle; 2) the modification of the tumour microenvironment (TME); 3) combining other therapies with PDT; 4) hypoxia-independent PDT; 5) hypoxia-dependent PDT and 6) fractional PDT.
Collapse
Affiliation(s)
- Ludivine Larue
- Laboratoire Réactions et Génie des Procédés (LRGP), UMR 7274, CNRS, Université de Lorraine, 54000 Nancy, France.
| | | | - Amina Ben-Mihoub
- Laboratoire de Chimie Physique Macromoléculaire (LCPM), UMR 7375, CNRS, Université de Lorraine, 54000 Nancy, France.
| | - Albert Moussaron
- Laboratoire Réactions et Génie des Procédés (LRGP), UMR 7274, CNRS, Université de Lorraine, 54000 Nancy, France.
| | - Noémie Thomas
- Biologie, Signaux et Systèmes en Cancérologie et Neurosciences, CRAN, UMR 7039, Université de Lorraine, CNRS, 54000 Nancy, France.
| | - Philippe Arnoux
- Laboratoire Réactions et Génie des Procédés (LRGP), UMR 7274, CNRS, Université de Lorraine, 54000 Nancy, France.
| | - Francis Baros
- Laboratoire Réactions et Génie des Procédés (LRGP), UMR 7274, CNRS, Université de Lorraine, 54000 Nancy, France.
| | - Régis Vanderesse
- Laboratoire de Chimie Physique Macromoléculaire (LCPM), UMR 7375, CNRS, Université de Lorraine, 54000 Nancy, France.
| | - Samir Acherar
- Laboratoire de Chimie Physique Macromoléculaire (LCPM), UMR 7375, CNRS, Université de Lorraine, 54000 Nancy, France.
| | - Céline Frochot
- Laboratoire Réactions et Génie des Procédés (LRGP), UMR 7274, CNRS, Université de Lorraine, 54000 Nancy, France.
| |
Collapse
|
7
|
Min H, Wang J, Qi Y, Zhang Y, Han X, Xu Y, Xu J, Li Y, Chen L, Cheng K, Liu G, Yang N, Li Y, Nie G. Biomimetic Metal-Organic Framework Nanoparticles for Cooperative Combination of Antiangiogenesis and Photodynamic Therapy for Enhanced Efficacy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1808200. [PMID: 30773718 DOI: 10.1002/adma.201808200] [Citation(s) in RCA: 252] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 01/27/2019] [Indexed: 05/25/2023]
Abstract
Photodynamic therapy (PDT) is a promising anticancer treatment and is clinically approved for different types of tumors. However, current PDT suffers several obstacles, including its neutralization by excess glutathione (GSH) in the tumor tissue and its strongly proangiogenic tumor response. In this work, a biomimic, multifunctional nanoparticle-based PDT agent, combining a tumor-targeted photosensitizer with GSH scavenging and antiangiogenesis therapy, is developed. A porphyrinic Zr-metal-organic framework nanoparticle is used simultaneously as the photosensitizer and the delivery vehicle of vascular endothelial growth factor receptor 2 (VEGFR2) inhibitor apatinib. The core nanoparticles are wrapped in MnO2 to consume the intratumoral GSH and then decorated with a tumor cell membrane camouflage. After intravenous administration, the nanoparticles selectively accumulate in tumor through homotypic targeting mediated by the biomimic decoration, and the combination of enhanced PDT and antiangiogenic drug significantly improves their tumor inhibition efficiency. This study provides an integrated solution for mechanism-based enhancement of PDT and demonstrates the encouraging potential for multifunctional nanosystem applicable for tumor therapy.
Collapse
Affiliation(s)
- Huan Min
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Jing Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yingqiu Qi
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, P. R. China
| | - Yinlong Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xuexiang Han
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ying Xu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Junchao Xu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yao Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Long Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Keman Cheng
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Guangna Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Na Yang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yiye Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guangjun Nie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
8
|
Peng CL, Lin HC, Chiang WL, Shih YH, Chiang PF, Luo TY, Cheng CC, Shieh MJ. Anti-angiogenic treatment (Bevacizumab) improves the responsiveness of photodynamic therapy in colorectal cancer. Photodiagnosis Photodyn Ther 2018; 23:111-118. [PMID: 29894822 DOI: 10.1016/j.pdpdt.2018.06.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 05/09/2018] [Accepted: 06/08/2018] [Indexed: 12/18/2022]
Abstract
Photodynamic therapy (PDT) is a treatment utilizing the combined action of photosensitizers and light for the treatment of various cancers. The mechanisms for tumor destruction after PDT include direct tumor cell kill by singlet oxygen species (OS), indirect cell kill via vascular damage, and an elicited immune response. However, it has been reported that many cellular activators, including vascular endothelial growth factor (VEGF), are produced by tumor cells after PDT. In this study, we demonstrate that meta-tetra(hydroxyphenyl) chlorin (mTHPC)-based photodynamic therapy combined with bevacizumab (Avastin™), an anti-VEGF neutralizing monoclonal antibody that blocks the binding of VEGF to its receptor, can enhance the effectiveness of each treatment modality. We evaluated the efficacy of bevacizumab-based anti-angiogenesis in combination with PDT as well as the resulting VEGF levels and microvessel density (MVD) in a mouse model of human colon cancer. Enzyme-linked immunosorbent assay (ELISA) and immunohistochemistry (IHC) were performed to assess VEGF concentrations and microvessel density in the various treatment groups, and confocal imaging and high performance liquid chromatography (HPLC) analyses were used to measure the distribution and concentration of mTHPC in tumors. Our results demonstrate that combination of PDT followed by bevacizumab significantly elicits a greater tumor response whereas bevacizumab treatment prior to PDT led to a reduced tumor response. Immunostaining and ELISA analyses revealed a lower expression of VEGF in tumors treated with combination therapy of PDT followed by bevacizumab. However, bevacizumab treatment decreased the accumulation of mTHPC in tumors 24 h after administration, which complemented the results of decreased anti-tumor efficacy of bevacizumab followed by PDT.
Collapse
Affiliation(s)
- Cheng-Liang Peng
- Isotope Application Division, Institute of Nuclear Energy Research, 1000 Wenhua Rd. Jiaan Village, Longtan District, Taoyuan City 32546, Taiwan
| | - Hua-Ching Lin
- Division of Colorectal Surgery, Chen-Hsin General Hospital, Taipei, Taiwan; Department of Healthcare Information and Management, Ming Chuan University, Taoyuan, Taiwan
| | - Wei-Lun Chiang
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, No. 1, Section 1, Jen-Ai Road, Taipei 100, Taiwan
| | - Ying-Hsia Shih
- Isotope Application Division, Institute of Nuclear Energy Research, 1000 Wenhua Rd. Jiaan Village, Longtan District, Taoyuan City 32546, Taiwan
| | - Ping-Fang Chiang
- Isotope Application Division, Institute of Nuclear Energy Research, 1000 Wenhua Rd. Jiaan Village, Longtan District, Taoyuan City 32546, Taiwan
| | - Tsai-Yueh Luo
- Isotope Application Division, Institute of Nuclear Energy Research, 1000 Wenhua Rd. Jiaan Village, Longtan District, Taoyuan City 32546, Taiwan
| | - Chun-Chia Cheng
- Division of Hematology and Oncology, Department of Internal Medicine, MacKay Memorial Hospital, Taipei, Taiwan
| | - Ming-Jium Shieh
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, No. 1, Section 1, Jen-Ai Road, Taipei 100, Taiwan; Department of Oncology, National Taiwan University Hospital and College of Medicine, #7, Chung-Shan South Road, Taipei 100, Taiwan.
| |
Collapse
|
9
|
Davis RW, Papasavvas E, Klampatsa A, Putt M, Montaner LJ, Culligan MJ, McNulty S, Friedberg JS, Simone CB, Singhal S, Albelda SM, Cengel KA, Busch TM. A preclinical model to investigate the role of surgically-induced inflammation in tumor responses to intraoperative photodynamic therapy. Lasers Surg Med 2018; 50:440-450. [PMID: 29799130 DOI: 10.1002/lsm.22934] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2018] [Indexed: 12/29/2022]
Abstract
OBJECTIVE Inflammation is a well-known consequence of surgery. Although surgical debulking of tumor is beneficial to patients, the onset of inflammation in injured tissue may impede the success of adjuvant therapies. One marker for postoperative inflammation is IL-6, which is released as a consequence of surgical injuries. IL-6 is predictive of response to many cancer therapies, and it is linked to various molecular and cellular resistance mechanisms. The purpose of this study was to establish a murine model by which therapeutic responses to photodynamic therapy (PDT) can be studied in the context of surgical inflammation. MATERIALS AND METHODS Murine models with AB12 mesothelioma tumors were treated with either surgical resection or sham surgery with tumor incision but no resection. The timing and extent of IL-6 release in the tumor and/or serum was measured using enzyme-linked immunosorbent assay (ELISA) and compared to that measured in the serum of 27 consecutive, prospectively enrolled patients with malignant pleural mesothelioma (MPM) who underwent macroscopic complete resection (MCR). RESULTS MPM patients showed a significant increase in IL-6 at the time MCR was completed. Similarly, IL-6 increased in the tumor and serum of mice treated with surgical resections. However, investigations that combine resection with another therapy make it necessary to grow tumors for resection to a larger volume than those that receive secondary therapy alone. As the larger size may alter tumor biology independent of the effects of surgical injury, we assessed the tumor incision model. In this model, tumor levels of IL-6 significantly increased after tumor incision. CONCLUSION The tumor incision model induces IL-6 release as is seen in the surgical setting, yet it avoids the limitations of surgical resection models. Potential mechanisms by which surgical induction of inflammation and IL-6 could alter the nature and efficacy of tumor response to PDT are reviewed. These include a wide spectrum of molecular and cellular mechanisms through which surgically-induced IL-6 could change the effectiveness of therapies that are combined with surgery. The tumor incision model can be employed for novel investigations of the effects of surgically-induced, acute inflammation on therapeutic response to PDT (or potentially other therapies). Lasers Surg. Med. 50:440-450, 2018. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Richard W Davis
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, 19104
| | | | - Astero Klampatsa
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, 19104
| | - Mary Putt
- Department of Biostatistics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, 19104
| | - Luis J Montaner
- Wistar Institute, University of Pennsylvania, Philadelphia, Pennsylvania, 19104
| | - Melissa J Culligan
- Division of Thoracic Surgery, Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, 19104
| | - Sally McNulty
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, 19104
| | - Joseph S Friedberg
- Division of Thoracic Surgery, Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, 19104
| | - Charles B Simone
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, 19104
| | - Sunil Singhal
- Division of Thoracic Surgery, Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, 19104
| | - Steven M Albelda
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, 19104
| | - Keith A Cengel
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, 19104
| | - Theresa M Busch
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, 19104
| |
Collapse
|
10
|
Roschger C, Verwanger T, Krammer B, Cabrele C. Reduction of cancer cell viability by synergistic combination of photodynamic treatment with the inhibition of the Id protein family. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 178:521-529. [PMID: 29245122 DOI: 10.1016/j.jphotobiol.2017.11.038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 11/25/2017] [Accepted: 11/29/2017] [Indexed: 12/15/2022]
Abstract
The inhibitor of DNA binding and cell differentiation (Id) proteins are dominant negative regulators of the helix-loop-helix transcription factor family and play a key role during development as well as in vascular disorders and cancer. In fact, impairing the Id-protein activity in cancer cells reduces cell growth and even chemoresistance. Recently, we have shown that a synthetic Id-protein ligand (1Y) consisting of a cyclic nonapeptide can reduce the viability of the two breast cancer cell lines MCF-7 and T47D and of the bladder cancer cells T24 to about 50% at concentrations ≥100μM. Moreover, the cyclopeptide displays both proapoptotic and antiproliferative effects on MCF-7 cells. Herein, we show that the cyclopeptide does not induce cell death at the dose of 5μΜ, but it still inhibits MCF-7 and T24 cell proliferation, which correlates with an increased protein level of the cell-cycle regulator p27Kip1. Furthermore, 1Y-pretreated MCF-7, T47D, and T24 cells are more susceptible than untreated cells to the phototoxic effects of the three photosensitizers meta-tetra(hydroxyphenyl)chlorin, porfimer sodium, and hypericin, which are applied in photodynamic therapy (PDT). The combination of the Id-protein ligand with each of the light-activated photosensitizers shows synergistic effects on the reduction of cell viability. In conclusion, an Id-protein ligand with moderate cancer cell killing activity at concentrations ≥100μM can be applied at a 20-fold lower and barely toxic dose to raise the sensitivity of cancer cells towards phototoxicity associated with photodynamic treatment. This suggests the potential benefit of targeting the Id proteins in combined drug approaches for cancer therapy.
Collapse
Affiliation(s)
- Cornelia Roschger
- Department of Molecular Biology, University of Salzburg, Billrothstrasse 11, 5020 Salzburg, Austria
| | - Thomas Verwanger
- Department of Molecular Biology, University of Salzburg, Hellbrunnerstrasse 34, 5020 Salzburg, Austria
| | - Barbara Krammer
- Department of Molecular Biology, University of Salzburg, Hellbrunnerstrasse 34, 5020 Salzburg, Austria
| | - Chiara Cabrele
- Department of Molecular Biology, University of Salzburg, Billrothstrasse 11, 5020 Salzburg, Austria.
| |
Collapse
|
11
|
Beyond mouse cancer models: Three-dimensional human-relevant in vitro and non-mammalian in vivo models for photodynamic therapy. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2017; 773:242-262. [DOI: 10.1016/j.mrrev.2016.09.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 09/09/2016] [Indexed: 02/08/2023]
|
12
|
Decarli MC, Corrêa TQ, Vollet-Filho JD, Bagnato VS, Souza CWO. The influence of experimental conditions on the final result of photoinhibition of Staphylococcus aureus. Photodiagnosis Photodyn Ther 2017; 19:229-234. [PMID: 28662923 DOI: 10.1016/j.pdpdt.2017.06.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 06/04/2017] [Accepted: 06/23/2017] [Indexed: 11/26/2022]
Abstract
BACKGROUND By and large, phototherapies are a promising approach to promote inactivation of microorganisms using light exposure, providing an effective alternative to control multidrug-resistant bacterial infections. Considering this, intercomparison between experiments is vitally important. Most experiments are performed using multiwell plates in which the volume of the culture medium is not standardized. In such cases, light attenuation and the distance it travels, which also depends on the volume and vessel geometry, can lead to different results. This study investigated how the different volumes imply different depths that light will have to travel through in this volume and the relation of this parameter with the result that will be obtained. METHODS Staphylococcus aureus was exposed to 460nm light with 50, 100 and 200J/cm2, in 100, 200, 500 and 1000μL of inocula in a 24-well plate to investigate pure light inactivation. RESULTS The literature suggests that fluence is the most important light parameter to obtain a high eradication of microbial cells in phototherapies. Our results show evidence that different geometrical configurations, taking into account the volume of the vessels, clearly affect the in vitro results, risking misinterpretation of dosimetry studies. Effects, such as dose distribution and decantation, are discussed throughout the paper. CONCLUSION The outcome strongly depends on the volume and vessel geometry used. This study aims to encourage the standardization of phototherapies in vitro in general.
Collapse
Affiliation(s)
- M C Decarli
- Department of Morphology and Pathology, Federal University of São Carlos, 13565-905, São Carlos, SP, Brazil.
| | - T Q Corrêa
- Department of Morphology and Pathology, Federal University of São Carlos, 13565-905, São Carlos, SP, Brazil; Federal University of São Carlos, PPG Biotec, Rod. Washington Luís, km 235, São Carlos, SP 13565-905, Brazil; São Carlos Institute of Physics, University of São Paulo, PO Box 369, 13560-970, São Carlos, SP, Brazil
| | - J D Vollet-Filho
- São Carlos Institute of Physics, University of São Paulo, PO Box 369, 13560-970, São Carlos, SP, Brazil
| | - V S Bagnato
- São Carlos Institute of Physics, University of São Paulo, PO Box 369, 13560-970, São Carlos, SP, Brazil
| | - C W O Souza
- Department of Morphology and Pathology, Federal University of São Carlos, 13565-905, São Carlos, SP, Brazil
| |
Collapse
|
13
|
Luo D, Carter KA, Miranda D, Lovell JF. Chemophototherapy: An Emerging Treatment Option for Solid Tumors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2017; 4:1600106. [PMID: 28105389 PMCID: PMC5238751 DOI: 10.1002/advs.201600106] [Citation(s) in RCA: 289] [Impact Index Per Article: 36.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 04/21/2016] [Indexed: 05/17/2023]
Abstract
Near infrared (NIR) light penetrates human tissues with limited depth, thereby providing a method to safely deliver non-ionizing radiation to well-defined target tissue volumes. Light-based therapies including photodynamic therapy (PDT) and laser-induced thermal therapy have been validated clinically for curative and palliative treatment of solid tumors. However, these monotherapies can suffer from incomplete tumor killing and have not displaced existing ablative modalities. The combination of phototherapy and chemotherapy (chemophototherapy, CPT), when carefully planned, has been shown to be an effective tumor treatment option preclinically and clinically. Chemotherapy can enhance the efficacy of PDT by targeting surviving cancer cells or by inhibiting regrowth of damaged tumor blood vessels. Alternatively, PDT-mediated vascular permeabilization has been shown to enhance the deposition of nanoparticulate drugs into tumors for enhanced accumulation and efficacy. Integrated nanoparticles have been reported that combine photosensitizers and drugs into a single agent. More recently, light-activated nanoparticles have been developed that release their payload in response to light irradiation to achieve improved drug bioavailability with superior efficacy. CPT can potently eradicate tumors with precise spatial control, and further clinical testing is warranted.
Collapse
Affiliation(s)
- Dandan Luo
- Department of Biomedical EngineeringUniversity at BuffaloState University of New YorkBuffaloNY14260
| | - Kevin A. Carter
- Department of Biomedical EngineeringUniversity at BuffaloState University of New YorkBuffaloNY14260
| | - Dyego Miranda
- Department of Biomedical EngineeringUniversity at BuffaloState University of New YorkBuffaloNY14260
| | - Jonathan F. Lovell
- Department of Biomedical EngineeringUniversity at BuffaloState University of New YorkBuffaloNY14260
| |
Collapse
|
14
|
Sharma S, Xing F, Liu Y, Wu K, Said N, Pochampally R, Shiozawa Y, Lin HK, Balaji KC, Watabe K. Secreted Protein Acidic and Rich in Cysteine (SPARC) Mediates Metastatic Dormancy of Prostate Cancer in Bone. J Biol Chem 2016; 291:19351-63. [PMID: 27422817 DOI: 10.1074/jbc.m116.737379] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Indexed: 11/06/2022] Open
Abstract
Prostate cancer is known to frequently recur in bone; however, how dormant cells switch its phenotype leading to recurrent tumor remains poorly understood. We have isolated two syngeneic cell lines (indolent and aggressive) through in vivo selection by implanting PC3mm stem-like cells into tibial bones. We found that indolent cells retained the dormant phenotype, whereas aggressive cells grew rapidly in bone in vivo, and the growth rates of both cells in culture were similar, suggesting a role of the tumor microenvironment in the regulation of dormancy and recurrence. Indolent cells were found to secrete a high level of secreted protein acidic and rich in cysteine (SPARC), which significantly stimulated the expression of BMP7 in bone marrow stromal cells. The secreted BMP7 then kept cancer cells in a dormant state by inducing senescence, reducing "stemness," and activating dormancy-associated p38 MAPK signaling and p21 expression in cancer cells. Importantly, we found that SPARC was epigenetically silenced in aggressive cells by promoter methylation, but 5-azacytidine treatment reactivated the expression. Furthermore, high SPARC promoter methylation negatively correlated with disease-free survival of prostate cancer patients. We also found that the COX2 inhibitor NS398 down-regulated DNMTs and increased expression of SPARC, which led to tumor growth suppression in bone in vivo These findings suggest that SPARC plays a key role in maintaining the dormancy of prostate cancer cells in the bone microenvironment.
Collapse
Affiliation(s)
| | - Fei Xing
- From the Departments of Cancer Biology
| | - Yin Liu
- From the Departments of Cancer Biology
| | - Kerui Wu
- From the Departments of Cancer Biology
| | | | - Radhika Pochampally
- the Department of Biochemistry and Cancer Institute, University of Mississippi Medical Center, Jackson, Mississippi 39216
| | | | | | - K C Balaji
- Urology, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157 and
| | | |
Collapse
|
15
|
Influence of Photodynamic Therapy on Apoptosis and Invasion of Human Cholangiocarcinoma QBC939 Cell Line. ACTA ACUST UNITED AC 2016; 30:252-9. [PMID: 26960307 DOI: 10.1016/s1001-9294(16)30009-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
OBJECTIVE To investigate the effect of photodynamic therapy (PDT) mediated by hematoporphyrin derivative (HPD) on apoptosis and invasion of cholangiocarcinoma QBC939 cell lines. METHODS In vitro cultured cholangiocarcinoma QBC939 cell line was exposed to 2, 4, 6, 8, 10, 12, and 14 μg/ml HPD with 5, 10, and 15 J/cm2 light intensity, respectively. The optical density at 450 nm of the QBC939 cells was measured by CCK8 assay and its growth inhibition ratio was calculated. Flow cytometry and transwell migration assay were applied to detect cell apoptosis and invasion respectively. RT-PCR and immunocytochemistry analyses were used to detect expressions of vascular endothelial growth factor-C (VEGF-C), cyclooxygenase-2 (COX-2), and proliferating cell nuclear antigen (PCNA). Enzyme-linked immunosorbent assay (ELISA) was carried out to examine the secretion of VEGF-C and COX-2 in QBC939 cells. RESULTS Exposure to HPD-PDT can significantly suppress the growth of QBC939 cells (all P<0.05). HPD-PDT can promote apoptosis of QBC939 cells at the early stage. When the concentration of HPD was 2 μg/ml and light irradiation was 5 J/cm2, HPD-PDT had no obvious inhibitory effect on QBC939 cell growth, but can obviously inhibit cell invasion, and significant difference was observed between the HPD-PDT and control groups (P<0.01). The HPD-PDT can reduce the mRNA and protein expressions of VEGF-C, COX-2, and PCNA, and decrease the secretion of VEGF-C and COX-2 in QBC939 cells. CONCLUSION PDT could promote apoptosis and inhibit growth and invasion of cholangiocarcinoma cells QBC939 in vitro.
Collapse
|
16
|
Pantziarka P, Sukhatme V, Bouche G, Meheus L, Sukhatme VP. Repurposing Drugs in Oncology (ReDO)-diclofenac as an anti-cancer agent. Ecancermedicalscience 2016; 10:610. [PMID: 26823679 PMCID: PMC4720497 DOI: 10.3332/ecancer.2016.610] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Indexed: 12/16/2022] Open
Abstract
Diclofenac (DCF) is a well-known and widely used non-steroidal anti-inflammatory drug (NSAID), with a range of actions which are of interest in an oncological context. While there has long been an interest in the use of NSAIDs in chemoprevention, there is now emerging evidence that such drugs may have activity in a treatment setting. DCF, which is a potent inhibitor of COX-2 and prostaglandin E2 synthesis, displays a range of effects on the immune system, the angiogenic cascade, chemo- and radio-sensitivity and tumour metabolism. Both pre-clinical and clinical evidence of these effects, in multiple cancer types, is assessed and summarised and relevant mechanisms of action outlined. Based on this evidence the case is made for further clinical investigation of the anticancer effects of DCF, particularly in combination with other agents - with a range of possible multi-drug and multi-modality combinations outlined in the supplementary materials accompanying the main paper.
Collapse
Affiliation(s)
- Pan Pantziarka
- Anticancer Fund, Brussels, 1853 Strombeek-Bever, Belgium
- The George Pantziarka TP53 Trust, London, UK
| | | | | | - Lydie Meheus
- Anticancer Fund, Brussels, 1853 Strombeek-Bever, Belgium
| | - Vikas P Sukhatme
- GlobalCures, Inc; Newton MA 02459, USA
- Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
17
|
Broekgaarden M, Weijer R, van Gulik TM, Hamblin MR, Heger M. Tumor cell survival pathways activated by photodynamic therapy: a molecular basis for pharmacological inhibition strategies. Cancer Metastasis Rev 2015; 34:643-90. [PMID: 26516076 PMCID: PMC4661210 DOI: 10.1007/s10555-015-9588-7] [Citation(s) in RCA: 176] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Photodynamic therapy (PDT) has emerged as a promising alternative to conventional cancer therapies such as surgery, chemotherapy, and radiotherapy. PDT comprises the administration of a photosensitizer, its accumulation in tumor tissue, and subsequent irradiation of the photosensitizer-loaded tumor, leading to the localized photoproduction of reactive oxygen species (ROS). The resulting oxidative damage ultimately culminates in tumor cell death, vascular shutdown, induction of an antitumor immune response, and the consequent destruction of the tumor. However, the ROS produced by PDT also triggers a stress response that, as part of a cell survival mechanism, helps cancer cells to cope with the PDT-induced oxidative stress and cell damage. These survival pathways are mediated by the transcription factors activator protein 1 (AP-1), nuclear factor E2-related factor 2 (NRF2), hypoxia-inducible factor 1 (HIF-1), nuclear factor κB (NF-κB), and those that mediate the proteotoxic stress response. The survival pathways are believed to render some types of cancer recalcitrant to PDT and alter the tumor microenvironment in favor of tumor survival. In this review, the molecular mechanisms are elucidated that occur post-PDT to mediate cancer cell survival, on the basis of which pharmacological interventions are proposed. Specifically, pharmaceutical inhibitors of the molecular regulators of each survival pathway are addressed. The ultimate aim is to facilitate the development of adjuvant intervention strategies to improve PDT efficacy in recalcitrant solid tumors.
Collapse
Affiliation(s)
- Mans Broekgaarden
- Department of Experimental Surgery, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Ruud Weijer
- Department of Experimental Surgery, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Thomas M van Gulik
- Department of Experimental Surgery, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Dermatology, Harvard Medical School, Boston, MA, USA
- Harvard-MIT Division of Health Sciences & Technology, Cambridge, MA, USA
| | - Michal Heger
- Department of Experimental Surgery, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
| |
Collapse
|
18
|
Tsai YJ, Tsai T, Peng PC, Li PT, Chen CT. Histone acetyltransferase p300 is induced by p38MAPK after photodynamic therapy: the therapeutic response is increased by the p300HAT inhibitor anacardic acid. Free Radic Biol Med 2015; 86:118-32. [PMID: 26001729 DOI: 10.1016/j.freeradbiomed.2015.05.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 05/07/2015] [Accepted: 05/08/2015] [Indexed: 12/11/2022]
Abstract
Oxidative stress mediated by photodynamic therapy (PDT) mediates the tumoricidal effect, but has also been shown to induce the expression of prosurvival molecules, such as cyclooxygenase-2 (COX-2), which is involved in tumor recurrences after PDT. However, the molecular mechanism is still not fully understood. In this study, we found that activated p38MAPK could significantly up-regulate the activity and expression of histone acetyltransferase p300 (p300HAT) in A375 and C26 cells treated with ALA-and chlorin e6 (Ce6)-mediated photodynamic treatment. A colony-formation assay showed that PDT-induced cytotoxicity was dramatically elevated in the presence of the p300HAT inhibitor anacardic acid (AA). Further studies showed that increased p300HAT acetylates histone H3 and NF-κB p65 subunit to up-regulate the COX-2 expression, which was reduced by AA or p300HAT shRNA. Using chromatin immunoprecipitation analysis, we found that the augmented acetylation of histone H3 and NF-κB increases their binding to the COX-2 promoter region. These in vitro findings were further verified in mice bearing murine C26 and human A375 tumors treated with liposomal Ce6 mediated PDT. Meanwhile, the combination of PDT and AA resulted in greater tumor regression in BALB/c mice bearing C26 tumors, compared with PDT only or combined with COX-2 inhibitor. Finally, we demonstrated that suppression of the PDT-induced p300HAT activity also resulted in the decreased expression of survivin, restoring caspase-3 activity and sensitizing PDT-treated cells from autophagy to apoptosis due to the Becline-1 cleavage. This study demonstrates for the first time the molecular mechanisms involved in histone modification induced by PDT-mediated oxidative stress, suggesting that HAT inhibitors may provide a novel therapeutic approach for improving PDT response.
Collapse
Affiliation(s)
- Yi-Jane Tsai
- Department of Biochemical Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Tsuimin Tsai
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Po-Chun Peng
- Department of Biochemical Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Pei-Tzu Li
- Department of Biochemical Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Chin-Tin Chen
- Department of Biochemical Science and Technology, National Taiwan University, Taipei 10617, Taiwan.
| |
Collapse
|
19
|
Rogers L, Sergeeva NN, Paszko E, Vaz GMF, Senge MO. Lead Structures for Applications in Photodynamic Therapy. 6. Temoporfin Anti-Inflammatory Conjugates to Target the Tumor Microenvironment for In Vitro PDT. PLoS One 2015; 10:e0125372. [PMID: 25992651 PMCID: PMC4437655 DOI: 10.1371/journal.pone.0125372] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 03/23/2015] [Indexed: 11/18/2022] Open
Abstract
Due to the ongoing development of clinical photodynamic therapy (PDT), the search continues for optimized photosensitizers that can overcome some of the side effects associated with this type of treatment modality. The main protagonists being: post-treatment photosensitivity, due to only limited cellular selectivity and post-treatment tumor regrowth, due to the up-regulation of pro-inflammatory agents within the tumor microenvironment. A photosensitizer that could overcome one or both of these drawbacks would be highly attractive to those engaged in clinical PDT. Certain non-steroidal anti-inflammatory drugs (NSAIDs) when used in combination with PDT have shown to increase the cytotoxicity of the treatment modality by targeting the tumor microenvironment. Temoporfin (m-THPC), the gold standard chlorin-based photosensitizer (PS) since its discovery in the 1980's, has successfully been conjugated to non-steroidal anti-inflammatory compounds, in an attempt to address the issue of post-treatment tumor regrowth. Using a modified Steglich esterification reaction, a library of "iPorphyrins" was successfully synthesized and evaluated for their PDT efficacy.
Collapse
Affiliation(s)
- Luke Rogers
- School of Chemistry, SFI Tetrapyrrole Laboratory, Trinity Biomedical Sciences Institute, 152–160 Pearse Street, Trinity College Dublin, The University of Dublin, Dublin, 2, Ireland
| | - Natalia N. Sergeeva
- Medicinal Chemistry, Institute of Molecular Medicine, Trinity Centre for Health Sciences, Trinity College Dublin, St. James's Hospital, Dublin, 8, Ireland
| | - Edyta Paszko
- Medicinal Chemistry, Institute of Molecular Medicine, Trinity Centre for Health Sciences, Trinity College Dublin, St. James's Hospital, Dublin, 8, Ireland
| | - Gisela M. F. Vaz
- Medicinal Chemistry, Institute of Molecular Medicine, Trinity Centre for Health Sciences, Trinity College Dublin, St. James's Hospital, Dublin, 8, Ireland
| | - Mathias O. Senge
- School of Chemistry, SFI Tetrapyrrole Laboratory, Trinity Biomedical Sciences Institute, 152–160 Pearse Street, Trinity College Dublin, The University of Dublin, Dublin, 2, Ireland
- Medicinal Chemistry, Institute of Molecular Medicine, Trinity Centre for Health Sciences, Trinity College Dublin, St. James's Hospital, Dublin, 8, Ireland
- * E-mail:
| |
Collapse
|
20
|
Della Pietra E, Simonella F, Bonavida B, Xodo LE, Rapozzi V. Repeated sub-optimal photodynamic treatments with pheophorbide a induce an epithelial mesenchymal transition in prostate cancer cells via nitric oxide. Nitric Oxide 2015; 45:43-53. [PMID: 25700664 DOI: 10.1016/j.niox.2015.02.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 12/31/2014] [Accepted: 02/12/2015] [Indexed: 12/28/2022]
Abstract
Photodynamic therapy (PDT) is a clinically approved treatment that causes a selective cytotoxic effect in cancer cells. In addition to the production of singlet oxygen and reactive oxygen species, PDT can induce the release of nitric oxide (NO) by up-regulating nitric oxide synthases (NOS). Since non-optimal PDT often causes tumor recurrence, understanding the molecular pathways involved in the photoprocess is a challenging task for scientists. The present study has examined the response of the PC3 human metastatic prostate cancer cell line following repeated low-dose pheophorbide a treatments, mimicking non-optimal PDT treatment. The analysis was focused on the NF-kB/YY1/RKIP circuitry as it is (i) dysregulated in cancer cells, (ii) modulated by NO and (iii) correlated with the epithelial to mesenchymal transition (EMT). We hypothesized that a repeated treatment of non-optimal PDT induces low levels of NO that lead to cell growth and EMT via the regulation of the above circuitry. The expressions of gene products involved in the circuitry and in EMT were analyzed by western blot. The findings demonstrate the cytoprotective role of NO following non-optimal PDT treatments that was corroborated by the use of L-NAME, an inhibitor of NOS.
Collapse
Affiliation(s)
- Emilia Della Pietra
- Department of Medical and Biological Sciences, School of Medicine, University of Udine, Udine, Italy
| | - Francesca Simonella
- Department of Medical and Biological Sciences, School of Medicine, University of Udine, Udine, Italy
| | - Benjamin Bonavida
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, California 90095, USA
| | - Luigi Emilio Xodo
- Department of Medical and Biological Sciences, School of Medicine, University of Udine, Udine, Italy
| | - Valentina Rapozzi
- Department of Medical and Biological Sciences, School of Medicine, University of Udine, Udine, Italy.
| |
Collapse
|
21
|
Dąbrowski JM, Arnaut LG. Photodynamic therapy (PDT) of cancer: from local to systemic treatment. Photochem Photobiol Sci 2015. [DOI: 10.1039/c5pp00132c] [Citation(s) in RCA: 295] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Photodynamic therapy (PDT) requires a medical device, a photosensitizing drug and adequate use of both to trigger biological mechanisms that can rapidly destroy the primary tumour and provide long-lasting protection against metastasis.
Collapse
Affiliation(s)
| | - Luis G. Arnaut
- Chemistry Department
- University of Coimbra
- 3004-535 Coimbra
- Portugal
- Luzitin SA
| |
Collapse
|
22
|
Selbo PK, Bostad M, Olsen CE, Edwards VT, Høgset A, Weyergang A, Berg K. Photochemical internalisation, a minimally invasive strategy for light-controlled endosomal escape of cancer stem cell-targeting therapeutics. Photochem Photobiol Sci 2015; 14:1433-50. [DOI: 10.1039/c5pp00027k] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Despite progress in radio-, chemo- and photodynamic-therapy (PDT) of cancer, treatment resistance still remains a major problem for patients with aggressive tumours.
Collapse
Affiliation(s)
- Pål Kristian Selbo
- Department of Radiation Biology
- Institute for Cancer Research
- The Norwegian Radium Hospital
- Oslo University Hospital
- Montebello
| | - Monica Bostad
- Department of Radiation Biology
- Institute for Cancer Research
- The Norwegian Radium Hospital
- Oslo University Hospital
- Montebello
| | - Cathrine Elisabeth Olsen
- Department of Radiation Biology
- Institute for Cancer Research
- The Norwegian Radium Hospital
- Oslo University Hospital
- Montebello
| | - Victoria Tudor Edwards
- Department of Radiation Biology
- Institute for Cancer Research
- The Norwegian Radium Hospital
- Oslo University Hospital
- Montebello
| | - Anders Høgset
- Cancer Stem Cell Innovation Center (SFI-CAST)
- Institute for Cancer Research
- Norwegian Radium Hospital
- Oslo University Hospital
- Oslo
| | - Anette Weyergang
- Department of Radiation Biology
- Institute for Cancer Research
- The Norwegian Radium Hospital
- Oslo University Hospital
- Montebello
| | - Kristian Berg
- Department of Radiation Biology
- Institute for Cancer Research
- The Norwegian Radium Hospital
- Oslo University Hospital
- Montebello
| |
Collapse
|
23
|
Tumor Microenvironment as a Determinant of Photodynamic Therapy Resistance. RESISTANCE TO TARGETED ANTI-CANCER THERAPEUTICS 2015. [DOI: 10.1007/978-3-319-12730-9_3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
24
|
Popescu T, Nenu I, Aldea MD, Olteanu D, Gheban D, Tatomir C, Bolfa P, Muresan A, Ion RM, Filip AG. The effect of TSPP-mediated photodynamic therapy and Parecoxib in experimental tumours. Life Sci 2014; 117:75-83. [DOI: 10.1016/j.lfs.2014.09.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 08/18/2014] [Accepted: 09/23/2014] [Indexed: 01/26/2023]
|
25
|
Mun ST, Bae DH, Ahn WS. Epigallocatechin gallate with photodynamic therapy enhances anti-tumor effects in vivo and in vitro. Photodiagnosis Photodyn Ther 2014; 11:141-7. [DOI: 10.1016/j.pdpdt.2014.03.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 02/27/2014] [Accepted: 03/01/2014] [Indexed: 01/10/2023]
|
26
|
Song J, Wei Y, Chen Q, Xing D. Cyclooxygenase 2-mediated apoptotic and inflammatory responses in photodynamic therapy treated breast adenocarcinoma cells and xenografts. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2014; 134:27-36. [DOI: 10.1016/j.jphotobiol.2014.03.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 03/17/2014] [Accepted: 03/23/2014] [Indexed: 12/22/2022]
|
27
|
ZHANG HONG, LI ZHIHONG, WANG KAIZHONG. Combining sorafenib with celecoxib synergistically inhibits tumor growth of non-small cell lung cancer cells in vitro and in vivo. Oncol Rep 2014; 31:1954-60. [DOI: 10.3892/or.2014.3026] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 01/27/2014] [Indexed: 11/06/2022] Open
|
28
|
Brooke R, Sidhu M, Sinha A, Watson R, Friedmann P, Clough G, Rhodes L. Prostaglandin E2and nitric oxide mediate the acute inflammatory (erythemal) response to topical 5-aminolaevulinic acid photodynamic therapy in human skin. Br J Dermatol 2013; 169:645-52. [PMID: 23909846 DOI: 10.1111/bjd.12562] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/14/2013] [Indexed: 01/17/2023]
Affiliation(s)
- R.C.C. Brooke
- Dermatology Centre; Institute of Inflammation and Repair; University of Manchester; Manchester Academic Health Science Centre; Salford Royal NHS Foundation Trust; Manchester; U.K
| | - M. Sidhu
- Dermatology Centre; Institute of Inflammation and Repair; University of Manchester; Manchester Academic Health Science Centre; Salford Royal NHS Foundation Trust; Manchester; U.K
| | - A. Sinha
- Dermatology Centre; Institute of Inflammation and Repair; University of Manchester; Manchester Academic Health Science Centre; Salford Royal NHS Foundation Trust; Manchester; U.K
| | - R.E.B. Watson
- Dermatology Centre; Institute of Inflammation and Repair; University of Manchester; Manchester Academic Health Science Centre; Salford Royal NHS Foundation Trust; Manchester; U.K
| | - P.S. Friedmann
- Division of Infection, Inflammation and Immunity ; Faculty of Medicine; University of Southampton; Southampton; U.K
| | - G.F. Clough
- Institute of Developmental Health; Faculty of Medicine; University of Southampton; Southampton; U.K
| | - L.E. Rhodes
- Dermatology Centre; Institute of Inflammation and Repair; University of Manchester; Manchester Academic Health Science Centre; Salford Royal NHS Foundation Trust; Manchester; U.K
| |
Collapse
|
29
|
Modeling of non-steroidal anti-inflammatory drug effect within signaling pathways and miRNA-regulation pathways. PLoS One 2013; 8:e72477. [PMID: 23967306 PMCID: PMC3743815 DOI: 10.1371/journal.pone.0072477] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 07/10/2013] [Indexed: 12/31/2022] Open
Abstract
To date, it is widely recognized that Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) can exert considerable anti-tumor effects regarding many types of cancers. The prolonged use of NSAIDs is highly associated with diverse side effects. Therefore, tailoring down the NSAID application onto individual patients has become a necessary and relevant step towards personalized medicine. This study conducts the systemsbiological approach to construct a molecular model (NSAID model) containing a cyclooxygenase (COX)-pathway and its related signaling pathways. Four cancer hallmarks are integrated into the model to reflect different developmental aspects of tumorigenesis. In addition, a Flux-Comparative-Analysis (FCA) based on Petri net is developed to transfer the dynamic properties (including drug responsiveness) of individual cellular system into the model. The gene expression profiles of different tumor-types with available drug-response information are applied to validate the predictive ability of the NSAID model. Moreover, two therapeutic developmental strategies, synthetic lethality and microRNA (miRNA) biomarker discovery, are investigated based on the COX-pathway. In conclusion, the result of this study demonstrates that the NSAID model involving gene expression, gene regulation, signal transduction, protein interaction and other cellular processes, is able to predict the individual cellular responses for different therapeutic interventions (such as NS-398 and COX-2 specific siRNA inhibition). This strongly indicates that this type of model is able to reflect the physiological, developmental and pathological processes of an individual. The approach of miRNA biomarker discovery is demonstrated for identifying miRNAs with oncogenic and tumor suppressive functions for individual cell lines of breast-, colon- and lung-tumor. The achieved results are in line with different independent studies that investigated miRNA biomarker related to diagnostics of cancer treatments, therefore it might shed light on the development of biomarker discovery at individual level. Particular results of this study might contribute to step further towards personalized medicine with the systemsbiological approach.
Collapse
|
30
|
Jiang HT, Cao JY, Han R, Wang YL, Fan YJ, Li YY, Sui AH. Photodynamic therapy promotes apoptosis of cholangiocarcinoma QBC939 cells. Shijie Huaren Xiaohua Zazhi 2013; 21:1853-1858. [DOI: 10.11569/wcjd.v21.i19.1853] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the effect of photodynamic therapy on cholangiocarcinoma QBC939 cell apoptosis.
METHODS: Cultured cholangiocarcinoma QBC939 cells were given different concentrations of hematoporphyrin derivatives and different light intensity. The relative growth inhibition rate of QBC939 cells was detected by the CCK8 method. Flow cytometry assays were applied to determine the rate of QBC939 cell apoptosis. RT-PCR was used to detect transcriptional changes of proliferating cell nuclear antigen (PCNA). Immunocytochemistry was used to measure the changes in protein expression of PCNA.
RESULTS: PDT inhibited QBC939 cell growth in vitro, and significant different A values between the PDT group and control group was observed (0.403 ± 0.027 vs 2.028 ± 0.013, P < 0.05). When the concentration of HPD was 8 mg/L and the light irradiation was 5 J/cm2, the relative growth inhibition rate of QBC939 cells was 80%. The increase in drug concentration or light dose did not significantly increase the growth inhibition rate. Flow cytometry assays showed that PDT could promote early apoptosis of QBC939 cells (74.6% ± 1.5%). PDT could reduce the transcriptional changes of PCNA (0.68 ± 0.06) and down-regulated the expression of PCNA protein in QBC939 cell nuclei (4.5% ± 1.4%).
CONCLUSION: PDT could inhibit QBC939 cell growth and promote early apoptosis of QBC939 cells. PDT induces QBC939 cell growth inhibition possibly by inhibiting PCNA gene and protein expression and promoting early apoptosis.
Collapse
|
31
|
Song J, Chen Q, Xing D. Enhanced apoptotic effects by downregulating Mcl-1: evidence for the improvement of photodynamic therapy with Celecoxib. Exp Cell Res 2013; 319:1491-504. [PMID: 23524145 DOI: 10.1016/j.yexcr.2013.03.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 03/05/2013] [Accepted: 03/09/2013] [Indexed: 12/23/2022]
Abstract
Tumor cells exposed to sub-lethal photodynamic therapy (PDT) cause cellular rescue responses that lead to resistance to the therapy, including expression of angiogenic factors and survival molecules. However, the mechanisms contributing to the resistance are yet to be fully understood. Here, we show for the first time that Mcl-1, an anti-apoptotic protein, plays an important role in protecting cells from PDT-induced apoptosis. In contrast to the reduction in the anti-apoptotic proteins Bcl-2 and Bcl-xl, sub-lethal PDT induces an increase in Mcl-1 expression. Silencing Mcl-1 sensitizes tumor cells to PDT-induced apoptosis, and ectopic expression of Mcl-1 significantly delays Bax translocation to mitochondria and inhibits caspase-3 activity following PDT. Mcl-1 expression is associated closely with activated AKT signaling following PDT. AKT can regulate Mcl-1 expression through GSK-3β and NF-κB at the protein and transcriptional levels, respectively. Inhibition of AKT by Wortmannin or siRNA significantly reduces the levels of Mcl-1 mRNA and protein and enhances PDT-induced apoptosis. Treatment with Celecoxib, a non-steroidal anti-inflammatory drug (NSAID), is shown to downregulate Mcl-1 expression, and enhances PDT-induced apoptosis both in vitro and in vivo. This down-regulation is closely related to the inhibition effect of Celecoxib on the AKT/GSK-3β pathway, and was blocked upon addition of GSK-3β inhibitor LiCl or the proteasome inhibitor MG132. These results suggest that Mcl-1 is a potential target for improving the antitumor efficiency of PDT. A loss in Mcl-1 by inhibiting AKT promotes PDT-induced apoptosis through the mitochondrial pathway. This also provides a novel rationale for utilizing Celecoxib to improve the efficacy of PDT.
Collapse
Affiliation(s)
- Jiaxing Song
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | | | | |
Collapse
|
32
|
Weyergang A, Selbo PK, Berg K. Sustained EKR inhibition by EGFR targeting therapies is a predictive factor for synergistic cytotoxicity with PDT as neoadjuvant therapy. Biochim Biophys Acta Gen Subj 2013; 1830:2659-70. [DOI: 10.1016/j.bbagen.2012.11.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
33
|
Kushibiki T, Hirasawa T, Okawa S, Ishihara M. Responses of Cancer Cells Induced by Photodynamic Therapy. JOURNAL OF HEALTHCARE ENGINEERING 2013; 4:87-108. [DOI: 10.1260/2040-2295.4.1.87] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
34
|
Rapozzi V, Umezawa K, Xodo LE. Role of NF-κB/Snail/RKIP loop in the response of tumor cells to photodynamic therapy. Lasers Surg Med 2012; 43:575-85. [PMID: 22057485 DOI: 10.1002/lsm.21095] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND OBJECTIVE Photodynamic therapy (PDT) is a therapeutic modality whose efficacy depends on several factors including type of photosensitizer, light fluence and cellular response. Cell recurrence is one of the problems still unsolved in PDT. In this work we found that in B78-H1 murine amelanotic melanoma cells there is a correlation between cell recurrence and the NF-κB/Snail/RKIP loop. MATERIALS AND METHODS Proliferation and migration of surviving cells were analyzed by MTT and wound-scratch assays. The levels of ROS/NO in B78-H1 melanoma cells treated with pheophorbide a (Pba) and light (Pba/PDT) were measured by FACS, while expression of NF-κB, Snail and RKIP were determined by Western blots. The mechanism of cell death was investigated by caspase and microscopy assays. RESULTS Our data show that after a low-dose Pba/PDT treatment, B78-H1 cells are able to recover. This correlates with a low level of NO production, which blocks apoptosis via NF-κB pathway. Western blot analyses showed that a low-dose Pba/PDT increases the expression of NF-κB and anti-apoptotic Snail, but reduces the expression of pro-apoptotic RKIP. The role played by NF-κB in the modulation of Snail and RKIP was investigated using DHMEQ: a NF-κB inhibitor which behaves as NO donor. DHMEQ caused a decrease of Snail and an increase of RKIP expression. When B78-H1 cells were treated with a low dose Pba/PDT and DHMEQ, the NO level strongly increased, with the result that Snail was down-regulated and RKIP was upregulated, as observed with a high-dose Pba/PDT. CONCLUSION One major problem in PDT is the cellular rescue occurring in tissue regions receiving a low-dose PDT. To minimize this problem and sensitize cancer cells to PDT we propose a combined treatment in which the photosensitizer is delivered with a donor of NO acting on the NF-κB/Snail/RKIP loop.
Collapse
Affiliation(s)
- Valentina Rapozzi
- Department of Medical and Biological Science, School of Medicine, University of Udine, Udine 33100, Italy.
| | | | | |
Collapse
|
35
|
Ferrario A, Luna M, Rucker N, Wong S, Gomer CJ. Pro-apoptotic and anti-inflammatory properties of the green tea constituent epigallocatechin gallate increase photodynamic therapy responsiveness. Lasers Surg Med 2012; 43:644-50. [PMID: 22057492 DOI: 10.1002/lsm.21081] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND A polyphenol constituent of green tea, epigallocatechin gallate (EGCG), has anti-carcinogenic properties. A growing number of studies document EGCG-mediated induction of apoptotic pathways and inhibition of pro-survival factors when combined with chemotherapy or radiation. We evaluated the efficacy of EGCG in modulating photofrin (PH)-mediated photodynamic therapy (PDT) responses. METHODS Mouse mammary carcinoma (BA) cells and transplanted BA tumors growing in C3H mice were treated with PH-mediated PDT. Select groups of treated cells and mice also received EGCG and then cytotoxicity, tumor response, and expression of survival molecules were evaluated in all experimental groups. RESULTS EGCG increased apoptosis and cytotoxicity in BA cells exposed to PH-mediated PDT. The initial pro-survival phase of the unfolded protein response (UPR), characterized by increased expression of the 78 kDa glucose-regulated protein (GRP-78), was induced by PDT. The second pro-apoptotic phase of the UPR, characterized by phospho-c-Jun N-terminal kinase (p-JNK) expression, activation of caspases-3 and 7, poly ADP ribose polymerase (PARP) cleavage, and expression of C/EBP homologous protein was observed when PDT was combined with EGCG. EGCG also decreased the expression of the pro-survival proteins GRP-78 and survivin, and attenuated PDT-induced prostaglandin E2 (PGE2 ) expression in PDT-treated cells. Comparable responses also were observed when BA tumors were treated with PDT and EGCG. In addition, PDT-induced expression of metalloproteinases (MMPs) and vascular endothelial growth factor (VEGF) was down-regulated in treated tumor tissue by EGCG. CONCLUSIONS The polyphenol EGCG improves PDT efficacy by increasing tumor apoptosis and decreasing expression of pro-survival and angiogenic molecules within the tumor microenvironment.
Collapse
Affiliation(s)
- Angela Ferrario
- The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, California 90027, USA
| | | | | | | | | |
Collapse
|
36
|
Gallagher-Colombo SM, Maas AL, Yuan M, Busch TM. Photodynamic therapy-induced angiogenic signaling: consequences and solutions to improve therapeutic response. Isr J Chem 2012; 52:681-690. [PMID: 26109742 DOI: 10.1002/ijch.201200011] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Photodynamic therapy (PDT) can be a highly effective treatment for diseases ranging from actinic keratosis to cancer. While use of this therapy shows great promise in preclinical and clinical studies, understanding the molecular consequences of PDT is critical to designing better treatment protocols. A number of publications have documented alteration in angiogenic factors and growth factor receptors following PDT, which could abrogate treatment effect by inducing angiogenesis and re-establishment of the tumor vasculature. In response to these findings, work over the past decade has examined the efficacy of combining PDT with molecular targeting drugs, such as anti-angiogenic compounds, in an effort to combat these PDT-induced molecular changes. These combinatorial approaches increase rates of apoptosis, impair pro-tumorigenic signaling, and enhance tumor response. This report will examine the current understanding of PDT-induced angiogenic signaling and address molecular-based approaches to abrogate this signaling or its consequences thereby enhancing PDT efficacy.
Collapse
Affiliation(s)
- Shannon M Gallagher-Colombo
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, 3620 Hamilton Walk, B13 Anatomy Chemistry Bldg., Philadelphia, PA 19104
| | - Amanda L Maas
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, 3620 Hamilton Walk, B13 Anatomy Chemistry Bldg., Philadelphia, PA 19104
| | - Min Yuan
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, 3620 Hamilton Walk, B13 Anatomy Chemistry Bldg., Philadelphia, PA 19104
| | - Theresa M Busch
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, 3620 Hamilton Walk, B13 Anatomy Chemistry Bldg., Philadelphia, PA 19104
| |
Collapse
|
37
|
Syu WJ, Yu HP, Hsu CY, Rajan YC, Hsu YH, Chang YC, Hsieh WY, Wang CH, Lai PS. Improved photodynamic cancer treatment by folate-conjugated polymeric micelles in a KB xenografted animal model. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2012; 8:2060-2069. [PMID: 22508664 DOI: 10.1002/smll.201102695] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Indexed: 05/31/2023]
Abstract
Photodynamic therapy (PDT) is a light-induced chemical reaction that produces localized tissue damage for the treatment of cancers and various nonmalignant conditions. In the clinic, patients treated with PDT should be kept away from direct sunlight or strong indoor lighting to avoid skin phototoxicity. In a previous study, it was demonstrated that the skin phototoxicity of meta-tetra(hydroxyphenyl)chlorin (m-THPC), a photosensitizer used in the clinic, can be significantly reduced after micellar encapsulation; however, no improvement in antitumor efficacy was observed. In this work, a folate-conjugated polymeric m-THPC delivery system is developed for improving tumor targeting of the photosensitizer, preventing photodamage to the healthy tissue, and increasing the effectiveness of the photosensitizers. The results demonstrate that folate-conjugated m-THPC-loaded micelles with particle sizes around 100 nm are taken up and accumulated by folate receptor-overexpressed KB cells in vitro and in vivo, and their PDT has no significant adverse effects on the body weight of mice. After an extended delivery time, a single dose of folate-conjugated m-THPC-loaded micelles has higher antitumor effects (tumor growth inhibition = 92%) through inhibition of cell proliferation and reduction of vessel density than free m-THPC or m-THPC-loaded micelles at an equivalent m-THPC concentration of 0.3 mg kg(-1) after irradiation. Furthermore, folate-conjugated m-THPC-loaded micelles at only 0.2 mg kg(-1) m-THPC have a similar antitumor efficacy to m-THPC or m-THPC-loaded micelles with the m-THPC concentration at 0.3 mg kg(-1) , which indicates that the folate conjugation on the micellar photosensitizer apparently reduces the requirement of m-THPC for PDT. Thus, folate-conjugated m-THPC-loaded micelles with improved selectivity via folate-folate receptor interactions have the potential to reduce, not only the skin photosensitivity, but also the drug dose requirement for clinical PDT.
Collapse
Affiliation(s)
- Wei-Jhe Syu
- Department of Chemistry, National Chung Hsing University, No. 250 Kuo-Kuang Road, Taichung, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
The human eye is constantly exposed to sunlight and artificial lighting. Light transmission through the eye is fundamental to its unique biological functions of directing vision and circadian rhythm and therefore light absorbed by the eye must be benign. However, exposure to the very intense ambient radiation can pose a hazard particularly if the recipient is over 40 years of age. There are age-related changes in the endogenous (natural) chromophores (lipofuscin, A2E and all-trans-retinal derivatives) in the human retina that makes it more susceptible to visible light damage. Intense visible light sources that do not filter short blue visible light (400-440 nm) used for phototherapy of circadian imbalance (i.e. seasonal affective disorder) increase the risk for age-related light damage to the retina. Moreover, many drugs, dietary supplements, nanoparticles and diagnostic dyes (xenobiotics) absorb ocular light and have the potential to induce photodamage to the retina, leading to transient or permanent blinding disorders. This article will review the underlying reasons why visible light in general and short blue visible light in particular dramatically raises the risk of photodamage to the human retina.
Collapse
Affiliation(s)
- Albert R Wielgus
- Department of Ophthalmology, Duke University Medical Center, Durham, NC, USA
| | | |
Collapse
|
39
|
Lin YM, Li F, Shi XZ. Mechano-transcription of COX-2 is a common response to lumen dilation of the rat gastrointestinal tract. Neurogastroenterol Motil 2012; 24:670-7, e295-6. [PMID: 22489918 PMCID: PMC4183192 DOI: 10.1111/j.1365-2982.2012.01918.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND In obstructive bowel disorders (OBDs) such as achalasia, pyloric stenosis, and bowel obstruction, the lumen of the affected segments is markedly dilated and the motility function is significantly impaired. We tested the hypothesis that mechanical stress in lumen dilation leads to induction of cyclooxygenase-2 (COX-2) in smooth muscle throughout the gastrointestinal (GI) tract, contributing to motility dysfunction. METHODS Lumen dilation was induced in vivo with obstruction bands (12 × 3 mm) applied over the lower esophageal sphincter (LES), the pyloric sphincter, and the ileum in rats for 48 h. Mechanical stretch in vivo was also emulated by balloon distension of the distal colon. Direct stretch of muscle strips from the esophagus, gastric fundus, and ileum was mimicked in an in vitro tissue culture system. KEY RESULTS Partial obstruction in the LES, pylorus, and ileum significantly increased the expression of COX-2 mRNA and protein in the muscularis externae of the dilated segment oral to the occlusions, but not in the aboral segment. Direct stretch of the lumen in vivo or of muscle strips in vitro markedly induced COX-2 expression. The smooth muscle contractility was significantly suppressed in the balloon-distended segments. However, treatment with COX-2 inhibitor NS-398 restored the contractility. Furthermore, in vivo administration of NS-398 in gastric outlet obstruction significantly improved gastric emptying. CONCLUSIONS & INFERENCES Mechanical dilation of the gut lumen by occlusion or direct distension induces gene expression of COX-2 throughout the GI tract. Mechanical stress-induced COX-2 contributes to motility dysfunction in conditions with lumen dilation.
Collapse
Affiliation(s)
| | | | - Xuan-Zheng Shi
- Address requests for reprints to: Xuan-Zheng “Peter” Shi, Department of Internal Medicine, Division of Gastroenterology, University of Texas Medical Branch, 301 University Boulevard, Basic Science Building 4.106, Galveston, TX 77555-0655,
| |
Collapse
|
40
|
Kim YW, Bae SM, Battogtokh G, Bang HJ, Ahn WS. Synergistic anti-tumor effects of combination of photodynamic therapy and arsenic compound in cervical cancer cells: in vivo and in vitro studies. PLoS One 2012; 7:e38583. [PMID: 22715393 PMCID: PMC3371011 DOI: 10.1371/journal.pone.0038583] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Accepted: 05/07/2012] [Indexed: 01/28/2023] Open
Abstract
The effects of As(4)O(6) as adjuvant on photodynamic therapy (PDT) were studied. As(4)O(6) is considered to have anticancer activity via several biological actions, such as free radical production and inhibition of VEGF expression. PDT or As(4)O(6) significantly inhibited TC-1 cell proliferation in a dose-dependent manner (P<0.05) by MTT assay. The anti-proliferative effect of the combination treatment was significantly higher than in TC-1 cells treated with either photodynamic therapy or As(4)O(6) alone (62.4 and 52.5% decrease compared to vehicle-only treated TC-1 cells, respectively, P<0.05). In addition, cell proliferation in combination of photodynamic therapy and As(4)O(6) treatment significantly decreased by 77.4% (P<0.05). Cell survival pathway (Naip1, Tert and Aip1) and p53-dependent pathway (Bax, p21(Cip1), Fas, Gadd45, IGFBP-3 and Mdm-2) were markedly increased by combination treatment of photodynamic therapy and As(4)O(6). In addition, the immune response in the NEAT pathway (Ly-12, CD178 and IL-2) was also modulated after combination treatment, suggesting improved antitumor effects by controlling unwanted growth-stimulatory pathways. The combination effect apparently reflected concordance with in vitro data, in restricting tumor growth in vivo and in relation to some common signaling pathways to those observed in vitro. These findings suggest the benefit of combinatory treatment with photodynamic therapy and As(4)O(6) for inhibition of cervical cancer cell growth.
Collapse
Affiliation(s)
- Yong-Wan Kim
- Catholic Research Institutes of Medical Science, The Catholic University of Korea, Seoul, Korea
| | - Su Mi Bae
- Catholic Research Institutes of Medical Science, The Catholic University of Korea, Seoul, Korea
| | - Gantumur Battogtokh
- Catholic Research Institutes of Medical Science, The Catholic University of Korea, Seoul, Korea
| | - Hyo Joo Bang
- Catholic Research Institutes of Medical Science, The Catholic University of Korea, Seoul, Korea
| | - Woong Shick Ahn
- Department of Obstetrics and Gynecology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
41
|
Weiss A, den Bergh HV, Griffioen AW, Nowak-Sliwinska P. Angiogenesis inhibition for the improvement of photodynamic therapy: the revival of a promising idea. Biochim Biophys Acta Rev Cancer 2012; 1826:53-70. [PMID: 22465396 DOI: 10.1016/j.bbcan.2012.03.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2011] [Revised: 03/13/2012] [Accepted: 03/14/2012] [Indexed: 12/31/2022]
Abstract
Photodynamic therapy (PDT) is a minimally invasive form of treatment, which is clinically approved for the treatment of angiogenic disorders, including certain forms of cancer and neovascular eye diseases. Although the concept of PDT has existed for a long time now, it has never made a solid entrance into the clinical management of cancer. This is likely due to secondary tissue reactions, such as inflammation and neoangiogenesis. The recent development of clinically effective angiogenesis inhibitors has lead to the initiation of research on the combination of PDT with such angiostatic targeted therapies. Preclinical studies in this research field have shown promising results, causing a revival in the field of PDT. This review reports on the current research efforts on PDT and vascular targeted combination therapies. Different combination strategies with angiogenesis inhibition and vascular targeting approaches are discussed. In addition, the concept of increasing PDT selectivity by targeted delivery of photosensitizers is presented. Furthermore, the current insights on sequencing the therapy arms of such combinations will be discussed in light of vascular normalization induced by angiogenesis inhibition.
Collapse
Affiliation(s)
- Andrea Weiss
- Medical Photonics Group, Institute of Bioengineering, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | | | | | | |
Collapse
|
42
|
Dabkeviciene D, Sasnauskiene A, Leman E, Kvietkauskaite R, Daugelaviciene N, Stankevicius V, Jurgelevicius V, Juodka B, Kirveliene V. mTHPC-mediated photodynamic treatment up-regulates the cytokines VEGF and IL-1alpha. Photochem Photobiol 2012; 88:432-9. [PMID: 22171990 DOI: 10.1111/j.1751-1097.2011.01062.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Photodynamic therapy (PDT) of cancer induces oxidative stress, which intervenes in the expression of cytokines by tumor cells. The cytokines might have either a positive or a negative impact on tumor eradication. Here, we studied the expression of cytokines vascular endothelial growth factor (VEGF) and interleukin-1alpha (IL-1alpha) in the human epidermoid carcinoma A-431 cells following m-tetra(3-hydroxyphenyl)-chlorin (mTHPC)-mediated PDT in vitro and assessed the IL-1alpha effect on VEGF expression. Quantitative polymerase chain reaction and enzyme-linked immunosorbent assay revealed the enhanced production of VEGF and IL-1alpha both on mRNA and protein levels by mTHPC-loaded cells after light exposure. The silencing of IL1A by small interfering RNA resulted in decreased production of IL-1alpha and a reduced amount of VEGF. Furthermore, exogenous recombinant IL-1alpha stimulated the VEGF expression after PDT. Thus, in addition to the cytotoxic action on the A-431 cells, mTHPC-mediated PDT stimulated the production of VEGF and IL-1alpha, and IL-1alpha contributed to the VEGF overexpression. These data establish IL-1alpha as a possible target of combined cancer treatment.
Collapse
Affiliation(s)
- Daiva Dabkeviciene
- Department of Biochemistry and Biophysics, Vilnius University, Vilnius, Lithuania
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Lin YM, Sarna SK, Shi XZ. Prophylactic and therapeutic benefits of COX-2 inhibitor on motility dysfunction in bowel obstruction: roles of PGE₂ and EP receptors. Am J Physiol Gastrointest Liver Physiol 2012; 302:G267-75. [PMID: 22038825 PMCID: PMC3341114 DOI: 10.1152/ajpgi.00326.2011] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We reported previously that mechanical stretch in rat colonic obstruction induces cyclooxygenase (COX)-2 expression in smooth muscle cells. The aims of the present study were to investigate whether in vivo treatment with COX-2 inhibitor has prophylactic and therapeutic effects on motility dysfunction in colon obstruction, and if so what are the underlying mechanisms. Partial colon obstruction was induced with a silicon band in the distal colon of 6-8-wk-old Sprague-Dawley rats; obstruction was maintained for 3 days or 7 days. Daily administration of COX-2 inhibitor NS-398 (5 mg/kg) or vehicle was started before or after the induction of obstruction to study its prophylactic and therapeutic effects, respectively. The smooth muscle contractility was significantly suppressed, and colonic transit rate was slower in colonic obstruction. Prophylactic treatment with NS-398 significantly prevented the impairments of colonic transit and smooth muscle contractility and attenuated fecal collection in the occluded colons. When NS-398 was administered therapeutically 3 days after the initiation of obstruction, the muscle contractility and colonic transit still improved on day 7. Obstruction led to marked increase of COX-2 expression and prostaglandin E(2) (PGE(2)) synthesis. Exogenous PGE(2) decreased colonic smooth muscle contractility. All four PGE(2) E-prostanoid receptor types (EP1 to EP4) were detected in rat colonic muscularis externa. Treatments with EP1 and EP3 antagonists suppressed muscle contractility in control tissue but did not improve contractility in obstruction tissue. On the contrary, the EP2 and EP4 antagonists did not affect control tissue but significantly restored muscle contractility in obstruction. We concluded that our study shows that COX-2 inhibitor has prophylactic and therapeutic benefits for motility dysfunction in bowel obstruction. PGE(2) and its receptors EP2 and EP4 are involved in the motility dysfunction in obstruction, whereas EP1 and EP3 mediate PGE(2) regulation of colonic smooth muscle contractile function in normal state.
Collapse
Affiliation(s)
- You-Min Lin
- Division of Gastroenterology, Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas
| | - Sushil K. Sarna
- Division of Gastroenterology, Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas
| | - Xuan-Zheng Shi
- Division of Gastroenterology, Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas
| |
Collapse
|
44
|
Snell SB, Foster TH, Haidaris CG. Miconazole induces fungistasis and increases killing of Candida albicans subjected to photodynamic therapy. Photochem Photobiol 2011; 88:596-603. [PMID: 22077904 DOI: 10.1111/j.1751-1097.2011.01039.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cutaneous and mucocutaneous Candida infections are considered to be important targets for antimicrobial photodynamic therapy (PDT). Clinical application of antimicrobial PDT will require strategies that enhance microbial killing while minimizing damage to host tissue. Increasing the sensitivity of infectious agents to PDT will help achieve this goal. Our previous studies demonstrated that raising the level of oxidative stress in Candida by interfering with fungal respiration increased the efficiency of PDT. Therefore, we sought to identify compounds in clinical use that would augment the oxidative stress caused by PDT by contributing to reactive oxygen species (ROS) formation themselves. Based on the ability of the antifungal miconazole to induce ROS in Candida, we tested several azole antifungals for their ability to augment PDT in vitro. Although miconazole and ketoconazole both stimulated ROS production in Candida albicans, only miconazole enhanced the killing of C. albicans and induced prolonged fungistasis in organisms that survived PDT using the porphyrin TMP-1363 and the phenothiazine methylene blue as photosensitizers. The data suggest that miconazole could be used to increase the efficacy of PDT against C. albicans, and its mechanism of action is likely to be multifactorial.
Collapse
Affiliation(s)
- Sara B Snell
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| | | | | |
Collapse
|
45
|
Weyergang A, Selbo PK, Berstad MEB, Bostad M, Berg K. Photochemical internalization of tumor-targeted protein toxins. Lasers Surg Med 2011; 43:721-33. [DOI: 10.1002/lsm.21084] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
46
|
Therapeutic effects of systemic photodynamic therapy in a leukemia animal model using A20 cells. Lasers Med Sci 2011; 27:445-52. [DOI: 10.1007/s10103-011-0950-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2011] [Accepted: 06/13/2011] [Indexed: 10/18/2022]
|
47
|
Agostinis P, Berg K, Cengel KA, Foster TH, Girotti AW, Gollnick SO, Hahn SM, Hamblin MR, Juzeniene A, Kessel D, Korbelik M, Moan J, Mroz P, Nowis D, Piette J, Wilson BC, Golab J. Photodynamic therapy of cancer: an update. CA Cancer J Clin 2011; 61:250-81. [PMID: 21617154 PMCID: PMC3209659 DOI: 10.3322/caac.20114] [Citation(s) in RCA: 3453] [Impact Index Per Article: 246.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Photodynamic therapy (PDT) is a clinically approved, minimally invasive therapeutic procedure that can exert a selective cytotoxic activity toward malignant cells. The procedure involves administration of a photosensitizing agent followed by irradiation at a wavelength corresponding to an absorbance band of the sensitizer. In the presence of oxygen, a series of events lead to direct tumor cell death, damage to the microvasculature, and induction of a local inflammatory reaction. Clinical studies revealed that PDT can be curative, particularly in early stage tumors. It can prolong survival in patients with inoperable cancers and significantly improve quality of life. Minimal normal tissue toxicity, negligible systemic effects, greatly reduced long-term morbidity, lack of intrinsic or acquired resistance mechanisms, and excellent cosmetic as well as organ function-sparing effects of this treatment make it a valuable therapeutic option for combination treatments. With a number of recent technological improvements, PDT has the potential to become integrated into the mainstream of cancer treatment.
Collapse
Affiliation(s)
- Patrizia Agostinis
- Department of Molecular Cell Biology, Cell Death Research & Therapy Laboratory, Catholic University of Leuven, B-3000 Leuven, Belgium,
| | - Kristian Berg
- Department of Radiation Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Montebello, N-0310 Oslo, Norway, ;
| | - Keith A. Cengel
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA 19004, USA, ;
| | - Thomas H. Foster
- Department of Imaging Sciences, University of Rochester, Rochester, NY 14642, USA,
| | - Albert W. Girotti
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, 53226-3548, USA,
| | - Sandra O. Gollnick
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Elm and Carlton Sts, Buffalo, NY, 14263, USA,
| | - Stephen M. Hahn
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA 19004, USA, ;
| | - Michael R. Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114-2696, USA, ;
- Department of Dermatology, Harvard Medical School, Boston MA 02115
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA
| | - Asta Juzeniene
- Department of Radiation Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Montebello, N-0310 Oslo, Norway, ;
| | - David Kessel
- Department of Pharmacology, Wayne State University School of Medicine, Detroit MI 48201, USA,
| | | | - Johan Moan
- Department of Radiation Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Montebello, N-0310 Oslo, Norway, ;
- Institute of Physics, University of Oslo, Blindern 0316 Oslo, Norway;
| | - Pawel Mroz
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114-2696, USA, ;
- Department of Dermatology, Harvard Medical School, Boston MA 02115
| | - Dominika Nowis
- Department of Immunology, Centre of Biostructure Research, Medical University of Warsaw, Poland, ;
| | - Jacques Piette
- GIGA-Research, Laboratory of Virology & Immunology, University of Liège, B-4000 Liège Belgium,
| | - Brian C. Wilson
- Ontario Cancer Institute/University of Toronto, Toronto, ON M5G 2M9, Canada,
| | - Jakub Golab
- Department of Immunology, Centre of Biostructure Research, Medical University of Warsaw, Poland, ;
- Institute of Physical Chemistry, Polish Academy of Sciences, Department 3, Warsaw, Poland
| |
Collapse
|
48
|
Enhancing photodynamyc therapy efficacy by combination therapy: dated, current and oncoming strategies. Cancers (Basel) 2011; 3:2597-629. [PMID: 24212824 PMCID: PMC3757433 DOI: 10.3390/cancers3022597] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Revised: 05/02/2011] [Accepted: 05/31/2011] [Indexed: 11/17/2022] Open
Abstract
Combination therapy is a common practice in many medical disciplines. It is defined as the use of more than one drug to treat the same disease. Sometimes this expression describes the simultaneous use of therapeutic approaches that target different cellular/molecular pathways, increasing the chances of killing the diseased cell. This short review is concerned with therapeutic combinations in which PDT (Photodynamyc Therapy) is the core therapeutic partner. Besides the description of the principal methods used to assess the efficacy attained by combinations in respect to monotherapy, this review describes experimental results in which PDT was combined with conventional drugs in different experimental conditions. This inventory is far from exhaustive, as the number of photosensitizers used in combination with different drugs is very large. Reports cited in this work have been selected because considered representative. The combinations we have reviewed include the association of PDT with anti-oxidants, chemotherapeutics, drugs targeting topoisomerases I and II, antimetabolites and others. Some paragraphs are dedicated to PDT and immuno-modulation, others to associations of PDT with angiogenesis inhibitors, receptor inhibitors, radiotherapy and more. Finally, a look is dedicated to combinations involving the use of natural compounds and, as new entries, drugs that act as proteasome inhibitors.
Collapse
|
49
|
Zhan Q, Yue W, Shaoshan H. The inhibitory effect of photodynamic therapy and of an anti-VCAM-1 monoclonal antibody on the in vivo growth of C6 glioma xenografts. Braz J Med Biol Res 2011; 44:489-90. [DOI: 10.1590/s0100-879x2011007500052] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Accepted: 04/05/2011] [Indexed: 11/21/2022] Open
Affiliation(s)
| | - Wu Yue
- Harbin Medical University
| | | |
Collapse
|
50
|
Peng J, Jian-qiu S, Ying-hui Z, Ai-qin L, Zi-tao W, Shi-rong L. Expression of cyclooxygenase-2 and its relationship with mismatch repair and microsatellite instability in hereditary nonpolyposis colorectal cancer. ACTA ACUST UNITED AC 2011; 25:206-10. [PMID: 21232179 DOI: 10.1016/s1001-9294(11)60003-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
OBJECTIVE To investigate cyclooxygenase-2 (COX-2) expression and its relationship with mismatch repair (MMR) protein expression and microsatellite instability (MSI) in hereditary nonpolyposis colorectal cancer (HNPCC). METHODS A total of 28 cases of colorectal adenoma and 14 cases of colorectal carcinoma were collected between July 2003 and July 2007 from 33 HNPCC families. Sporadic colorectal adenoma (n=32) and carcinoma patients (n=24) served as controls. With samples of tumor tissues and normal colonic mucosa collected from the patients, the protein expressions of COX-2 and MMR (hMLH1, hMSH2, and hMSH6) were examined with immunohistochemical assay. Frequency of MSI in five standard MSI loci BAT25, BAT26, D2S123, D5S346, and D17S250 were analyzed by means of polymerase chain reaction. RESULTS The rate of COX-2 high-expression was 53.6% (15/28) and 42.9% (6/14) in HNPCC adenoma and carcinoma; 62.5% (20/32) and 91.7% (22/24) in sporadic adenoma and carcinoma, respectively. That rate was lower in HNPCC carcinoma than in sporadic carcinoma (Pü0.05). MMR-deletion rate and percentage of high-frequency MSI (MSI-H) in HNPCC carcinoma were higher than those in sporadic colorectal carcinoma [both 71.4% (10/14) vs. 12.5% (3/24), both Pü0.01]. Among the 10 MMR-deficient HNPCC carcinoma patients, COX-2 low-expression was observed in 8 cases (80.0%), while COX-2 high-expression was observed in all of the 4 MMR-positive HNPCC carcinoma cases (Pü0.05). In comparison to MMR positive HNPCC carcinoma, HNPCC adenoma, and sporadic carcinoma, COX-2 expression was significantly lower in corresponding MMR-deficient cases (all Pü0.05). The rates of COX-2 low-expression in HNPCC adenoma, HNPCC carcinoma, and sporadic carcinoma with MSI-H were significantly higher than those in the cases with microsatellite stability (all Pü0.05). CONCLUSION COX-2 is expressed at a low level in HNPCC carcinoma, different from the high COX-2 expression in sporadic carcinoma.
Collapse
Affiliation(s)
- Jin Peng
- Department of Gastroenterology, The Military General Hospital of Beijing, Beijing 100700, China
| | | | | | | | | | | |
Collapse
|