1
|
Dermitzakis I, Chatzi D, Kyriakoudi SA, Evangelidis N, Vakirlis E, Meditskou S, Theotokis P, Manthou ME. Skin Development and Disease: A Molecular Perspective. Curr Issues Mol Biol 2024; 46:8239-8267. [PMID: 39194704 DOI: 10.3390/cimb46080487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/27/2024] [Accepted: 07/28/2024] [Indexed: 08/29/2024] Open
Abstract
Skin, the largest organ in the human body, is a crucial protective barrier that plays essential roles in thermoregulation, sensation, and immune defence. This complex organ undergoes intricate processes of development. Skin development initiates during the embryonic stage, orchestrated by molecular cues that control epidermal specification, commitment, stratification, terminal differentiation, and appendage growth. Key signalling pathways are integral in coordinating the development of the epidermis, hair follicles, and sweat glands. The complex interplay among these pathways is vital for the appropriate formation and functionality of the skin. Disruptions in multiple molecular pathways can give rise to a spectrum of skin diseases, from congenital skin disorders to cancers. By delving into the molecular mechanisms implicated in developmental processes, as well as in the pathogenesis of diseases, this narrative review aims to present a comprehensive understanding of these aspects. Such knowledge paves the way for developing innovative targeted therapies and personalised treatment approaches for various skin conditions.
Collapse
Affiliation(s)
- Iasonas Dermitzakis
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Despoina Chatzi
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Stella Aikaterini Kyriakoudi
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Nikolaos Evangelidis
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Efstratios Vakirlis
- First Department of Dermatology and Venereology, School of Medicine, Aristotle University of Thessaloniki, 54643 Thessaloniki, Greece
| | - Soultana Meditskou
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Paschalis Theotokis
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Maria Eleni Manthou
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
2
|
Park JH, Koh EB, Seo YJ, Oh HS, Byun JH. BMP-9 Improves the Osteogenic Differentiation Ability over BMP-2 through p53 Signaling In Vitro in Human Periosteum-Derived Cells. Int J Mol Sci 2023; 24:15252. [PMID: 37894931 PMCID: PMC10607732 DOI: 10.3390/ijms242015252] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/10/2023] [Accepted: 10/14/2023] [Indexed: 10/29/2023] Open
Abstract
Bone morphogenetic proteins (BMPs) have tremendous therapeutic potential regarding the treatment of bone and musculoskeletal disorders due to their osteo-inductive ability. More than twenty BMPs have been identified in the human body with various functions, such as embryonic development, skeleton genesis, hematopoiesis, and neurogenesis. BMPs can induce the differentiation of MSCs into the osteoblast lineage and promote the proliferation of osteoblasts and chondrocytes. BMP signaling is also involved in tissue remodeling and regeneration processes to maintain homeostasis in adults. In particular, growth factors, such as BMP-2 and BMP-7, have already been approved and are being used as treatments, but it is unclear as to whether they are the most potent BMPs that induce bone formation. According to recent studies, BMP-9 is known to be the most potent inducer of the osteogenic differentiation of mesenchymal stem cells, both in vitro and in vivo. However, its exact role in the skeletal system is still unclear. In addition, research results suggest that the molecular mechanism of BMP-9-mediated bone formation is also different from the previously known BMP family, suggesting that research on signaling pathways related to BMP-9-mediated bone formation is actively being conducted. In this study, we performed a phosphorylation array to investigate the signaling mechanism of BMP-9 compared with BMP-2, another influential bone-forming growth factor, and we compared the downstream signaling system. We present a mechanism for the signal transduction of BMP-9, focusing on the previously known pathway and the p53 factor, which is relatively upregulated compared with BMP-2.
Collapse
Affiliation(s)
- Jin-Ho Park
- Department of Nutritional Science, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA
| | - Eun-Byeol Koh
- Department of Oral and Maxillofacial Surgery, Gyeongsang National University School of Medicine, Gyeongsang National University Hospital, Institute of Medical Sciences, Gyeongsang National University, Jinju 52727, Republic of Korea
- Department of Convergence Medical Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Young-Jin Seo
- Department of Oral and Maxillofacial Surgery, Gyeongsang National University School of Medicine, Gyeongsang National University Hospital, Institute of Medical Sciences, Gyeongsang National University, Jinju 52727, Republic of Korea
- Department of Convergence Medical Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Hye-Seong Oh
- Department of Oral and Maxillofacial Surgery, Gyeongsang National University School of Medicine, Gyeongsang National University Hospital, Institute of Medical Sciences, Gyeongsang National University, Jinju 52727, Republic of Korea
- Department of Convergence Medical Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - June-Ho Byun
- Department of Oral and Maxillofacial Surgery, Gyeongsang National University School of Medicine, Gyeongsang National University Hospital, Institute of Medical Sciences, Gyeongsang National University, Jinju 52727, Republic of Korea
- Department of Convergence Medical Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| |
Collapse
|
3
|
Um SH, Seo Y, Seo H, Lee K, Park SH, Jeon JH, Lim JY, Ok MR, Kim YC, Kim H, Cheon CH, Han HS, Edwards JR, Kim SW, Jeon H. Biomimetic hydrogel blanket for conserving and recovering intrinsic cell properties. Biomater Res 2022; 26:78. [PMID: 36514131 PMCID: PMC9746181 DOI: 10.1186/s40824-022-00327-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 11/20/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Cells in the human body experience different growth environments and conditions, such as compressive pressure and oxygen concentrations, depending on the type and location of the tissue. Thus, a culture device that emulates the environment inside the body is required to study cells outside the body. METHODS A blanket-type cell culture device (Direct Contact Pressing: DCP) was fabricated with an alginate-based hydrogel. Changes in cell morphology due to DCP pressure were observed using a phase contrast microscope. The changes in the oxygen permeability and pressure according to the hydrogel concentration of DCP were analyzed. To compare the effects of DCP with normal or artificial hypoxic cultures, cells were divided based on the culture technique: normal culture, DCP culture device, and artificial hypoxic environment. Changes in phenotype, genes, and glycosaminoglycan amounts according to each environment were evaluated. Based on this, the mechanism of each culture environment on the intrinsic properties of conserving chondrocytes was suggested. RESULTS Chondrocytes live under pressure from the surrounding collagen tissue and experience a hypoxic environment because collagen inhibits oxygen permeability. By culturing the chondrocytes in a DCP environment, the capability of DCP to produce a low-oxygen and physical pressure environment was verified. When human primary chondrocytes, which require pressure and a low-oxygen environment during culture to maintain their innate properties, were cultured using the hydrogel blanket, the original shapes and properties of the chondrocytes were maintained. The intrinsic properties could be recovered even in aged cells that had lost their original cell properties. CONCLUSIONS A DCP culture method using a biomimetic hydrogel blanket provides cells with an adjustable physical pressure and a low-oxygen environment. Through this technique, we could maintain the original cellular phenotypes and intrinsic properties of human primary chondrocytes. The results of this study can be applied to other cells that require special pressure and oxygen concentration control to maintain their intrinsic properties. Additionally, this technique has the potential to be applied to the re-differentiation of cells that have lost their original properties.
Collapse
Affiliation(s)
- Seung-Hoon Um
- grid.35541.360000000121053345Biomaterials Research Center, Biomedical Research Division, Korea Institute of Science and Technology (KIST), 02792 Seoul, Republic of Korea ,grid.23856.3a0000 0004 1936 8390Laboratory for Biomaterials and Bioengineering, Department of Min-Met-Materials Engineering, Research Center of CHU de Quebec, Division of Regenerative Medicine, Canada Research Chair I in Biomaterials and Bioengineering for the Innovation in Surgery, Laval University, G1V 0A6 Quebec City, Quebec, Canada
| | - Youngmin Seo
- grid.35541.360000000121053345Biomaterials Research Center, Biomedical Research Division, Korea Institute of Science and Technology (KIST), 02792 Seoul, Republic of Korea ,R&D Institute, OID Ltd, Seoul, 06286 Republic of Korea
| | - Hyunseon Seo
- grid.35541.360000000121053345Biomaterials Research Center, Biomedical Research Division, Korea Institute of Science and Technology (KIST), 02792 Seoul, Republic of Korea ,grid.264381.a0000 0001 2181 989XSchool of Medicine, Sungkyunkwan University, Suwon, 16419 Republic of Korea
| | - Kyungwoo Lee
- grid.35541.360000000121053345Biomaterials Research Center, Biomedical Research Division, Korea Institute of Science and Technology (KIST), 02792 Seoul, Republic of Korea
| | - Sun Hwa Park
- grid.23856.3a0000 0004 1936 8390Laboratory for Biomaterials and Bioengineering, Department of Min-Met-Materials Engineering, Research Center of CHU de Quebec, Division of Regenerative Medicine, Canada Research Chair I in Biomaterials and Bioengineering for the Innovation in Surgery, Laval University, G1V 0A6 Quebec City, Quebec, Canada
| | - Jung Ho Jeon
- grid.411947.e0000 0004 0470 4224Department of Otolaryngology-Head and Neck Surgery, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea ,grid.411947.e0000 0004 0470 4224Department of Biomedicine & Health Sciences, Department of Otolaryngology-Head and Neck Surgery, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jung Yeon Lim
- grid.411947.e0000 0004 0470 4224Department of Otolaryngology-Head and Neck Surgery, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Myoung-Ryul Ok
- grid.35541.360000000121053345Biomaterials Research Center, Biomedical Research Division, Korea Institute of Science and Technology (KIST), 02792 Seoul, Republic of Korea
| | - Yu-Chan Kim
- grid.35541.360000000121053345Biomaterials Research Center, Biomedical Research Division, Korea Institute of Science and Technology (KIST), 02792 Seoul, Republic of Korea ,grid.412786.e0000 0004 1791 8264Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul, 02792 Republic of Korea
| | - Hyunjung Kim
- grid.256753.00000 0004 0470 5964Division of Nursing, Research Institute of Nursing Science, Hallym University, Chuncheon, 24252 Republic of Korea
| | - Cheol-Hong Cheon
- grid.222754.40000 0001 0840 2678Department of Chemistry, Korea University, Seoul, 02841 Republic of Korea
| | - Hyung-Seop Han
- grid.35541.360000000121053345Biomaterials Research Center, Biomedical Research Division, Korea Institute of Science and Technology (KIST), 02792 Seoul, Republic of Korea
| | - James R. Edwards
- grid.4991.50000 0004 1936 8948Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS), Botnar Research Centre, University of Oxford, Oxford, OX3 7LD UK
| | - Sung Won Kim
- grid.411947.e0000 0004 0470 4224Department of Otolaryngology-Head and Neck Surgery, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea ,grid.411947.e0000 0004 0470 4224Department of Biomedicine & Health Sciences, Department of Otolaryngology-Head and Neck Surgery, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hojeong Jeon
- grid.35541.360000000121053345Biomaterials Research Center, Biomedical Research Division, Korea Institute of Science and Technology (KIST), 02792 Seoul, Republic of Korea ,grid.412786.e0000 0004 1791 8264Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul, 02792 Republic of Korea ,grid.222754.40000 0001 0840 2678KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841 Republic of Korea
| |
Collapse
|
4
|
Ganjoo S, Puebla-Osorio N, Nanez S, Hsu E, Voss T, Barsoumian H, Duong LK, Welsh JW, Cortez MA. Bone morphogenetic proteins, activins, and growth and differentiation factors in tumor immunology and immunotherapy resistance. Front Immunol 2022; 13:1033642. [PMID: 36353620 PMCID: PMC9638036 DOI: 10.3389/fimmu.2022.1033642] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2024] Open
Abstract
The TGF-β superfamily is a group of secreted polypeptides with key roles in exerting and regulating a variety of physiologic effects, especially those related to cell signaling, growth, development, and differentiation. Although its central member, TGF-β, has been extensively reviewed, other members of the family-namely bone morphogenetic proteins (BMPs), activins, and growth and differentiation factors (GDFs)-have not been as thoroughly investigated. Moreover, although the specific roles of TGF-β signaling in cancer immunology and immunotherapy resistance have been extensively reported, little is known of the roles of BMPs, activins, and GDFs in these domains. This review focuses on how these superfamily members influence key immune cells in cancer progression and resistance to treatment.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Maria Angelica Cortez
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
5
|
Wawrzyniak A, Balawender K. Structural and Metabolic Changes in Bone. Animals (Basel) 2022; 12:ani12151946. [PMID: 35953935 PMCID: PMC9367262 DOI: 10.3390/ani12151946] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/24/2022] [Accepted: 07/27/2022] [Indexed: 12/23/2022] Open
Abstract
Simple Summary Bone is an extremely metabolically active tissue that is regenerated and repaired over its lifetime by bone remodeling. Most bone diseases are caused by abnormal restructure processes that undermine bone structure and mechanical strength and trigger clinical symptoms, such as pain, deformity, fracture, and abnormalities of calcium and phosphate homoeostasis. The article examines the main aspects of bone development, anatomy, structure, and the mechanisms of cell and molecular regulation of bone remodeling. Abstract As an essential component of the skeleton, bone tissue provides solid support for the body and protects vital organs. Bone tissue is a reservoir of calcium, phosphate, and other ions that can be released or stored in a controlled manner to provide constant concentration in body fluids. Normally, bone development or osteogenesis occurs through two ossification processes (intra-articular and intra-chondral), but the first produces woven bone, which is quickly replaced by stronger lamellar bone. Contrary to commonly held misconceptions, bone is a relatively dynamic organ that undergoes significant turnover compared to other organs in the body. Bone metabolism is a dynamic process that involves simultaneous bone formation and resorption, controlled by numerous factors. Bone metabolism comprises the key actions. Skeletal mass, structure, and quality are accrued and maintained throughout life, and the anabolic and catabolic actions are mostly balanced due to the tight regulation of the activity of osteoblasts and osteoclasts. This activity is also provided by circulating hormones and cytokines. Bone tissue remodeling processes are regulated by various biologically active substances secreted by bone tissue cells, namely RANK, RANKL, MMP-1, MMP-9, or type 1 collagen. Bone-derived factors (BDF) influence bone function and metabolism, and pathophysiological conditions lead to bone dysfunction. This work aims to analyze and evaluate the current literature on various local and systemic factors or immune system interactions that can affect bone metabolism and its impairments.
Collapse
|
6
|
Kapalczynska M, Lin M, Maertzdorf J, Heuberger J, Muellerke S, Zuo X, Vidal R, Shureiqi I, Fischer AS, Sauer S, Berger H, Kidess E, Mollenkopf HJ, Tacke F, Meyer TF, Sigal M. BMP feed-forward loop promotes terminal differentiation in gastric glands and is interrupted by H. pylori-driven inflammation. Nat Commun 2022; 13:1577. [PMID: 35332152 PMCID: PMC8948225 DOI: 10.1038/s41467-022-29176-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 02/19/2022] [Indexed: 12/13/2022] Open
Abstract
Helicobacter pylori causes gastric inflammation, gland hyperplasia and is linked to gastric cancer. Here, we studied the interplay between gastric epithelial stem cells and their stromal niche under homeostasis and upon H. pylori infection. We find that gastric epithelial stem cell differentiation is orchestrated by subsets of stromal cells that either produce BMP inhibitors in the gland base, or BMP ligands at the surface. Exposure to BMP ligands promotes a feed-forward loop by inducing Bmp2 expression in the epithelial cells themselves, enforcing rapid lineage commitment to terminally differentiated mucous pit cells. H. pylori leads to a loss of stromal and epithelial Bmp2 expression and increases expression of BMP inhibitors, promoting self-renewal of stem cells and accumulation of gland base cells, which we mechanistically link to IFN-γ signaling. Mice that lack IFN-γ signaling show no alterations of BMP gradient upon infection, while exposure to IFN-γ resembles H. pylori-driven mucosal responses. Helicobacter pylori causes gastric inflammation, gland hyperplasia and is linked to gastric cancer. Here the authors identify a BMP feedback loop between the stomach epithelium and surrounding stroma that controls gland homeostasis and demonstrate its interruption upon infection with H. pylori.
Collapse
Affiliation(s)
- Marta Kapalczynska
- Department of Hepatology and Gastroenterology, Charité University Medicine, 13353, Berlin, Germany.,Department of Molecular Biology, Max Planck Institute for Infection Biology, 10117, Berlin, Germany
| | - Manqiang Lin
- Department of Hepatology and Gastroenterology, Charité University Medicine, 13353, Berlin, Germany.,Department of Molecular Biology, Max Planck Institute for Infection Biology, 10117, Berlin, Germany
| | - Jeroen Maertzdorf
- Department of Immunology, Max Planck Institute for Infection Biology, 10117, Berlin, Germany
| | - Julian Heuberger
- Department of Hepatology and Gastroenterology, Charité University Medicine, 13353, Berlin, Germany.,Department of Molecular Biology, Max Planck Institute for Infection Biology, 10117, Berlin, Germany
| | - Stefanie Muellerke
- Department of Hepatology and Gastroenterology, Charité University Medicine, 13353, Berlin, Germany
| | - Xiangsheng Zuo
- Departments of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ramon Vidal
- Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine, 10115, Berlin, Germany
| | - Imad Shureiqi
- Departments of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anne-Sophie Fischer
- Department of Hepatology and Gastroenterology, Charité University Medicine, 13353, Berlin, Germany
| | - Sascha Sauer
- Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine, 10115, Berlin, Germany
| | - Hilmar Berger
- Department of Hepatology and Gastroenterology, Charité University Medicine, 13353, Berlin, Germany.,Department of Molecular Biology, Max Planck Institute for Infection Biology, 10117, Berlin, Germany
| | - Evelyn Kidess
- Department of Hepatology and Gastroenterology, Charité University Medicine, 13353, Berlin, Germany
| | - Hans-Joachim Mollenkopf
- Department of Molecular Biology, Max Planck Institute for Infection Biology, 10117, Berlin, Germany
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Charité University Medicine, 13353, Berlin, Germany
| | - Thomas F Meyer
- Department of Molecular Biology, Max Planck Institute for Infection Biology, 10117, Berlin, Germany.,Laboratory of Infection Oncology, Institute of Clinical Molecular Biology (IKMB), Christian Albrechts University of Kiel, Kiel, Germany
| | - Michael Sigal
- Department of Hepatology and Gastroenterology, Charité University Medicine, 13353, Berlin, Germany. .,Department of Molecular Biology, Max Planck Institute for Infection Biology, 10117, Berlin, Germany. .,Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine, 10115, Berlin, Germany. .,Berlin Institute of Health, 10117, Berlin, Germany.
| |
Collapse
|
7
|
Chen G, Xiong S, Zou G, Wu F, Qu X, Alawbathani S, Sun L. A 6.3 Mb maternally derived microduplication of 20p13p12.2 in a fetus with Brachydactyly type D and related literature review. Mol Cytogenet 2022; 15:6. [PMID: 35227291 PMCID: PMC8887085 DOI: 10.1186/s13039-022-00584-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 01/26/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
With the introduction of genetic tests such as chromosomal microarray analysis (CMA) and exome sequencing (ES) into fetal medical practices, genotype–phenotype correlations in intrauterine-onset disorders have substantially improved. The BMP2 gene, located on the long arm of chromosome 20 plays a role in bone and cartilage development and is associated with Brachydactyly type A2, an autosomal dominant disease characterized by malformations of the middle phalanx of the index finger and abnormalities of the second toe. However, the BMP2 gene has so far never been reported as a candidate gene for Brachydactyly type D (BDD) affecting only the thumbs.
Methods and
results
Here, we report one family possessing a maternally inherited 6.3 Mb microduplication of 20p13p12.2 including the BMP2 gene with discordant phenotypes between the mother and the fetus. The mother was affected with BDD alongside mild facial dysmorphism and learning difficulties, while the female fetus showed BDD, severe symmetric intrauterine growth restriction combined with oligohydramnios. The CMA and Trio ES tests were implemented. Trio ES ruled out other possible monogenic causes for the family. After reviewing cases and literature with duplications within this genomic region, we found that they are extremely rare and most of the cited cases were too small for comparison. The disturbance of the BMP2 gene could explain BDD, but the other clinical presentations in the mother and fetus are not yet fully understood.
Conclusion
This study provides important evidence for the current understanding of genotype–phenotype association of this 6.3 Mb size duplication in the 20p13p12.2 region. This duplication is a unique CNV occurring so far only in this family. Further cases and research are needed to understand the discordance in the phenotypes between the mother and fetus and establish the relationship between BMP2 gene and BDD.
Collapse
|
8
|
Chadha S, Kumar A, Srivastava SA, Behl T, Ranjan R. Inulin as a Delivery Vehicle for Targeting Colon-Specific Cancer. Curr Drug Deliv 2021; 17:651-674. [PMID: 32459607 DOI: 10.2174/1567201817666200527133719] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/11/2020] [Accepted: 04/01/2020] [Indexed: 12/12/2022]
Abstract
Natural polysaccharides, as well as biopolymers, are now days widely developed for targeting colon cancer using various drug delivery systems. Currently, healing conformations are being explored that can efficiently play a multipurpose role. Owing to the capability of extravagance colonic diseases with the least adverse effects, biopolymers for site specific colon delivery have developed an increased curiosity over the past decades. Inulin (INU) was explored for its probable application as an entrapment material concerning its degradation by enzymes in the colonic microflora and its drug release behavior in a sustained and controlled manner. INU is a polysaccharide and it consists of 2 to 1 linkage having an extensive array of beneficial uses such as a carrier for delivery of therapeutic agents as an indicative/investigative utensil or as a dietary fiber with added well-being aids. In the main, limited research, as well as information, is available on the delivery of therapeutic agents using inulin specifically for colon cancer because of its capability to subsist in the stomach's acidic medium. This exceptional steadiness and robustness properties are exploited in numerous patterns to target drugs securely for the management of colonic cancer, where they effectively act and kills colonic tumor cells easily. In this review article, recent efforts and inulin-based nano-technological approaches for colon cancer targeting are presented and discussed.
Collapse
Affiliation(s)
- Swati Chadha
- Department of Pharmaceutics, Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Arun Kumar
- Department of Pharmaceutics, Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | | | - Tapan Behl
- Department of Pharmaceutics, Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Rishu Ranjan
- Department of Pharmaceutics, Chitkara College of Pharmacy, Chitkara University, Punjab, India
| |
Collapse
|
9
|
Mitoyan L, Chevrier V, Hernandez-Vargas H, Ollivier A, Homayed Z, Pannequin J, Poizat F, De Biasi-Cador C, Charafe-Jauffret E, Ginestier C, Guasch G. A stem cell population at the anorectal junction maintains homeostasis and participates in tissue regeneration. Nat Commun 2021; 12:2761. [PMID: 33980830 PMCID: PMC8115161 DOI: 10.1038/s41467-021-23034-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 04/11/2021] [Indexed: 11/09/2022] Open
Abstract
At numerous locations of the body, transition zones are localized at the crossroad between two types of epithelium and are frequently associated with neoplasia involving both type of tissues. These transition zones contain cells expressing markers of adult stem cells that can be the target of early transformation. The mere fact that transition zone cells can merge different architecture with separate functions implies for a unique plasticity that these cells must display in steady state. However, their roles during tissue regeneration in normal and injured state remain unknown. Here, by using in vivo lineage tracing, single-cell transcriptomics, computational modeling and a three-dimensional organoid culture system of transition zone cells, we identify a population of Krt17+ basal cells with multipotent properties at the squamo-columnar anorectal junction that maintain a squamous epithelium during normal homeostasis and can participate in the repair of a glandular epithelium following tissue injury.
Collapse
Affiliation(s)
- Louciné Mitoyan
- Aix-Marseille University, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Epithelial Stem Cells and Cancer Team, Marseille, France
| | - Véronique Chevrier
- Aix-Marseille University, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Epithelial Stem Cells and Cancer Team, Marseille, France
| | - Hector Hernandez-Vargas
- Department of Immunity, Virus and Inflammation, Cancer Research Center of Lyon (CRCL), Inserm U 1052, CNRS UMR 5286, Université de Lyon, Centre Léon Bérard, Lyon Cedex 08, France.,Department of Translational Research and Innovation, Centre Léon Bérard, Lyon Cedex 08, France
| | - Alexane Ollivier
- Aix-Marseille University, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Epithelial Stem Cells and Cancer Team, Marseille, France
| | - Zeinab Homayed
- CNRS, UMR5203, Inserm U661, Institut de Génomique Fonctionnelle, Montpellier, France
| | - Julie Pannequin
- CNRS, UMR5203, Inserm U661, Institut de Génomique Fonctionnelle, Montpellier, France
| | - Flora Poizat
- Department of Biopathology, Institut Paoli-Calmettes, Marseille, France
| | | | - Emmanuelle Charafe-Jauffret
- Aix-Marseille University, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Epithelial Stem Cells and Cancer Team, Marseille, France.,Department of Biopathology, Institut Paoli-Calmettes, Marseille, France
| | - Christophe Ginestier
- Aix-Marseille University, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Epithelial Stem Cells and Cancer Team, Marseille, France
| | - Géraldine Guasch
- Aix-Marseille University, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Epithelial Stem Cells and Cancer Team, Marseille, France.
| |
Collapse
|
10
|
Li K, Wu H, Wang A, Charron J, Mishina Y, Habib SL, Liu H, Li B. mTOR signaling regulates gastric epithelial progenitor homeostasis and gastric tumorigenesis via MEK1-ERKs and BMP-Smad1 pathways. Cell Rep 2021; 35:109069. [PMID: 33951440 DOI: 10.1016/j.celrep.2021.109069] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 03/01/2021] [Accepted: 04/09/2021] [Indexed: 02/08/2023] Open
Abstract
mTOR, the sensor of nutrients and growth factors, has important roles in tissue homeostasis and tumorigenesis. However, how mTOR controls gastric epithelial cell turnover and gastric cancer development, a leading malignancy, remains poorly understood. Here, we provide genetic evidence that mTOR activation promotes proliferation and inhibits differentiation of Lgr5+ gastric epithelial progenitors (GEPs) in gastric homeostasis and tumorigenesis. mTOR signaling increases MEK1 and Smad1 expression and enhances activation of MEK1-ERKs and BMP-Smad1 pathways, respectively, in GEPs and gastric tumors. Mek1 deletion or inhibition rescues hyperproliferation, whereas Bmpr1a ablation or inhibition rescues differentiation defects of Tsc1-/- GEPs. Tsc1 deficiency in Lgr5+ GEPs accelerates gastric tumor initiation and development, which require MEK1-ERKs for hyperplasia and BMP-Smad1 for differentiation suppression. These findings reveal how mTOR signaling controls Lgr5+ GEP homeostasis and cancerization and suggest that ERKs and Smad1 signaling can be safely targeted to substitute mTOR inhibitors in gastric cancer therapy.
Collapse
Affiliation(s)
- Ke Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hongguang Wu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ao Wang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jean Charron
- Centre de recherche sur le cancer de l'Université Laval, Centre Hospitalier Universitaire de Québec, L'Hôtel-Dieu de Québec, 9 rue McMahon, Québec, QC G1R 2J6, Canada
| | - Yuji Mishina
- Department of Biologic and Materials Sciences and Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Samy L Habib
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Huijuan Liu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Baojie Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China; State Key Laboratory of Oncogenes and Related Genes, Bio-X-Renji Hospital Research Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Center for Traditional Chinese Medicine and Stem Cell Research, the Chengdu University of Traditional Chinese Medicine, Sichuan, China.
| |
Collapse
|
11
|
Terauchi M, Tamura A, Arisaka Y, Masuda H, Yoda T, Yui N. Cyclodextrin-Based Supramolecular Complexes of Osteoinductive Agents for Dental Tissue Regeneration. Pharmaceutics 2021; 13:136. [PMID: 33494320 PMCID: PMC7911178 DOI: 10.3390/pharmaceutics13020136] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/13/2021] [Accepted: 01/18/2021] [Indexed: 12/16/2022] Open
Abstract
Oral tissue regeneration has received growing attention for improving the quality of life of patients. Regeneration of oral tissues such as alveolar bone and widely defected bone has been extensively investigated, including regenerative treatment of oral tissues using therapeutic cells and growth factors. Additionally, small-molecule drugs that promote bone formation have been identified and tested as new regenerative treatment. However, treatments need to progress to realize successful regeneration of oral functions. In this review, we describe recent progress in development of regenerative treatment of oral tissues. In particular, we focus on cyclodextrin (CD)-based pharmaceutics and polyelectrolyte complexation of growth factors to enhance their solubility, stability, and bioactivity. CDs can encapsulate hydrophobic small-molecule drugs into their cavities, resulting in inclusion complexes. The inclusion complexation of osteoinductive small-molecule drugs improves solubility of the drugs in aqueous solutions and increases in vitro osteogenic differentiation efficiency. Additionally, various anionic polymers such as heparin and its mimetic polymers have been developed to improve stability and bioactivity of growth factors. These polymers protect growth factors from deactivation and degradation by complex formation through electrostatic interaction, leading to potentiation of bone formation ability. These approaches using an inclusion complex and polyelectrolyte complexes have great potential in the regeneration of oral tissues.
Collapse
Affiliation(s)
- Masahiko Terauchi
- Department of Maxillofacial Surgery, Graduate School of Medical and Dental Science, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo, Tokyo 113-8549, Japan; (M.T.); (H.M.); (T.Y.)
| | - Atsushi Tamura
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan; (Y.A.); (N.Y.)
| | - Yoshinori Arisaka
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan; (Y.A.); (N.Y.)
| | - Hiroki Masuda
- Department of Maxillofacial Surgery, Graduate School of Medical and Dental Science, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo, Tokyo 113-8549, Japan; (M.T.); (H.M.); (T.Y.)
| | - Tetsuya Yoda
- Department of Maxillofacial Surgery, Graduate School of Medical and Dental Science, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo, Tokyo 113-8549, Japan; (M.T.); (H.M.); (T.Y.)
| | - Nobuhiko Yui
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan; (Y.A.); (N.Y.)
| |
Collapse
|
12
|
Cuevas A, Ravinet M, Saetre GP, Eroukhmanoff F. Intraspecific genomic variation and local adaptation in a young hybrid species. Mol Ecol 2021; 30:791-809. [PMID: 33259111 DOI: 10.1111/mec.15760] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 11/02/2020] [Accepted: 11/19/2020] [Indexed: 12/23/2022]
Abstract
Hybridization increases genetic variation, hence hybrid species may have greater evolutionary potential once their admixed genomes have stabilized and incompatibilities have been purged. Yet, little is known about how such hybrid lineages evolve at the genomic level following their formation, in particular their adaptive potential. Here we investigate how the Italian sparrow (Passer italiae), a homoploid hybrid species, has evolved and locally adapted to its variable environment. Using restriction site-associated DNA sequencing (RAD-seq) on several populations across the Italian peninsula, we evaluate how genomic constraints and novel genetic variation have influenced population divergence and adaptation. We show that population divergence within this hybrid species has evolved in response to climatic variation, suggesting ongoing local adaptation. As found previously in other nonhybrid species, climatic differences appear to increase population differentiation. We also report strong population divergence in a gene known to affect beak morphology. Most of the strongly divergent loci among Italian sparrow populations do not seem to be differentiated between its parent species, the house and Spanish sparrows. Unlike in the hybrid, population divergence within each of the parental taxa has occurred mostly at loci with high allele frequency difference between the parental species, suggesting that novel combinations of parental alleles in the hybrid have not necessarily enhanced its evolutionary potential. Rather, our study suggests that constraints linked to incompatibilities may have restricted the evolution of this admixed genome, both during and after hybrid species formation.
Collapse
Affiliation(s)
- Angélica Cuevas
- Department of Biosciences, Centre for Ecological and Evolutionary Synthesis, University of Oslo, Oslo, Norway
| | - Mark Ravinet
- Department of Biosciences, Centre for Ecological and Evolutionary Synthesis, University of Oslo, Oslo, Norway.,School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Glenn-Peter Saetre
- Department of Biosciences, Centre for Ecological and Evolutionary Synthesis, University of Oslo, Oslo, Norway
| | - Fabrice Eroukhmanoff
- Department of Biosciences, Centre for Ecological and Evolutionary Synthesis, University of Oslo, Oslo, Norway
| |
Collapse
|
13
|
Zhang Y, Que J. BMP Signaling in Development, Stem Cells, and Diseases of the Gastrointestinal Tract. Annu Rev Physiol 2020; 82:251-273. [PMID: 31618602 DOI: 10.1146/annurev-physiol-021119-034500] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The bone morphogenetic protein (BMP) pathway is essential for the morphogenesis of multiple organs in the digestive system. Abnormal BMP signaling has also been associated with disease initiation and progression in the gastrointestinal (GI) tract and associated organs. Recent studies using animal models, tissue organoids, and human pluripotent stem cells have significantly expanded our understanding of the roles played by BMPs in the development and homeostasis of GI organs. It is clear that BMP signaling regulates GI function and disease progression that involve stem/progenitor cells and inflammation in a tissue-specific manner. In this review we discuss these new findings with a focus on the esophagus, stomach, and intestine.
Collapse
Affiliation(s)
- Yongchun Zhang
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, New York, NY 10032, USA; .,Columbia Center for Human Development, Columbia University Medical Center, New York, NY 10032, USA
| | - Jianwen Que
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, New York, NY 10032, USA; .,Columbia Center for Human Development, Columbia University Medical Center, New York, NY 10032, USA
| |
Collapse
|
14
|
Wu HC, Chang HM, Yi Y, Sun ZG, Lin YM, Lian F, Leung PCK. Bone morphogenetic protein 6 affects cell-cell communication by altering the expression of Connexin43 in human granulosa-lutein cells. Mol Cell Endocrinol 2019; 498:110548. [PMID: 31434001 DOI: 10.1016/j.mce.2019.110548] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 08/06/2019] [Accepted: 08/17/2019] [Indexed: 11/25/2022]
Abstract
Connexin 43 (Cx43)-coupled gap junctions in granulosa cells play an important role in follicular development, oocyte maturation, and corpus luteum maintenance. Bone morphogenetic protein 6 (BMP6) is highly expressed in human oocytes and granulosa cells and is involved in the regulation of female reproduction. Currently, whether oocyte- and granulosa cell-derived BMP6 affects the expression of Cx43 and its related gap junction intercellular communication (GJIC) activity in human granulosa cells remains unknown. In this study, we demonstrate that BMP6 treatment significantly suppressed the expression of Cx43 in both primary and immortalized (SVOG) human granulosa-lutein cells. Using both pharmacological inhibitors and small interfering RNA-mediated knockdown approaches, we demonstrate that ALK2 and ALK3 BMP type I receptors are involved in BMP6-induced suppressive effects on Cx43 expression and GJIC activity in SVOG cells. Furthermore, these cellular activities are most likely mediated by the SMAD1/SMAD5-SMAD4-dependent signaling pathway. Notably, the ChIP analyses demonstrated that phosphorylated SMADs could bind to human Cx43 promoter. Our findings provide new insight into the molecular mechanisms by which an intrafollicular growth factor regulates cell-cell communication in human granulosa cells.
Collapse
Affiliation(s)
- Hai-Cui Wu
- Integrative Medicine Research Centre of Reproduction and Heredity, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, China; Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, V6H 3V5, Canada
| | - Hsun-Ming Chang
- Integrative Medicine Research Centre of Reproduction and Heredity, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, China; Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, V6H 3V5, Canada
| | - Yuyin Yi
- Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, V6H 3V5, Canada
| | - Zhen-Gao Sun
- Integrative Medicine Research Centre of Reproduction and Heredity, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, China; Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, V6H 3V5, Canada
| | - Yung-Ming Lin
- Integrative Medicine Research Centre of Reproduction and Heredity, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, China; Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, V6H 3V5, Canada
| | - Fang Lian
- Integrative Medicine Research Centre of Reproduction and Heredity, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, China.
| | - Peter C K Leung
- Integrative Medicine Research Centre of Reproduction and Heredity, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, China; Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, V6H 3V5, Canada.
| |
Collapse
|
15
|
Application of Chitosan in Bone and Dental Engineering. Molecules 2019; 24:molecules24163009. [PMID: 31431001 PMCID: PMC6720623 DOI: 10.3390/molecules24163009] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 08/08/2019] [Accepted: 08/19/2019] [Indexed: 12/30/2022] Open
Abstract
Chitosan is a deacetylated polysaccharide from chitin, the natural biopolymer primarily found in shells of marine crustaceans and fungi cell walls. Upon deacetylation, the protonation of free amino groups of the d-glucosamine residues of chitosan turns it into a polycation, which can easily interact with DNA, proteins, lipids, or negatively charged synthetic polymers. This positive-charged characteristic of chitosan not only increases its solubility, biodegradability, and biocompatibility, but also directly contributes to the muco-adhesion, hemostasis, and antimicrobial properties of chitosan. Combined with its low-cost and economic nature, chitosan has been extensively studied and widely used in biopharmaceutical and biomedical applications for several decades. In this review, we summarize the current chitosan-based applications for bone and dental engineering. Combining chitosan-based scaffolds with other nature or synthetic polymers and biomaterials induces their mechanical properties and bioactivities, as well as promoting osteogenesis. Incorporating the bioactive molecules into these biocomposite scaffolds accelerates new bone regeneration and enhances neovascularization in vivo.
Collapse
|
16
|
Lee YH, Lai CW, Cheng YC. Fluid Shear Stress Induces Cell Cycle Arrest in Human Urinary Bladder Transitional Cell Carcinoma Through Bone Morphogenetic Protein Receptor-Smad1/5 Pathway. Cell Mol Bioeng 2018; 11:185-195. [PMID: 31719885 DOI: 10.1007/s12195-018-0523-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 04/13/2018] [Indexed: 10/17/2022] Open
Abstract
Introduction Mechanical force generated from the interstitial fluid flow inside and surrounding tissue has been known to play a significant role in cancer pathophysiology. In this study, we aimed to investigate the role of laminar shear stress (LSS) in modulating the cell cycle of human bladder transitional carcinoma (BFTC-905) cells which are frequently stimulated by not only the interstitial fluid flow, but also the urine flow transported from kidney to bladder in the urinary tract. Methods The BFTC-905 cells were subjected to 0-12 dynes cm-2 LSS for 1, 4, 8, or 12 h, respectively, followed by cellular and molecular assays for investigations of cell cycle regulation protein expressions, cell growth rates, and the potential mechanism. Results The results showed that the LSS with ≥ 8 dynes cm-2 for ≥ 8 h significantly increased protein expressions of cyclin B1, Wee1, p21, and p-CDK1(Tyr15) (p < 0.05 for each), but conversely decreased protein expressions of cyclin A2, D1, E1, and CDK-1, -2, -4, and -6 (p < 0.05 for each) in the BFTC-905 cells, indicating that a G2/M cell cycle arrest was obtained after shearing stimulation. Furthermore, our data demonstrated that the LSS-induced G2/M arrest and the corresponding changes in cell cycle regulatory protein expressions were modulated by bone morphogenetic protein (BMP) receptor-Smad1/5 signaling pathway. Conclusions Our findings provided evidences for the effect of mechanical microenvironment on urothelial cancer pathobiology and generated insights into mechanism of LSS-regulated bladder tumor cell cycle.
Collapse
Affiliation(s)
- Yu-Hsiang Lee
- Department of Biomedical Sciences and Engineering, National Central University, No. 300, Jhongda Rd., Taoyuan City, 32001 Taiwan, ROC.,Department of Chemical and Materials Engineering, National Central University, Taoyuan City, Taiwan, ROC
| | - Chia-Wei Lai
- Department of Biomedical Sciences and Engineering, National Central University, No. 300, Jhongda Rd., Taoyuan City, 32001 Taiwan, ROC
| | - Yu-Che Cheng
- Department of Biomedical Sciences and Engineering, National Central University, No. 300, Jhongda Rd., Taoyuan City, 32001 Taiwan, ROC.,Proteomics Laboratory, Cathay Medical Research Institute, Cathay General Hospital, No.32, Ln.160, Jiancheng Rd., New Taipei City, 22174 Taiwan, ROC.,School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan, ROC
| |
Collapse
|
17
|
Abstract
Bone morphogenetic proteins (BMPs) are a diverse class of molecules with over 20 growth factor proteins that belong to the transforming growth factor-β (TGF-β) family and are highly associated with bone formation and disease development. Aberrant expression of various BMPs has been reported in several cancer tissues. Biological function studies have elicited the dual role of BMPs in both cancer development and suppression. Furthermore, a variety of BMP antagonists, ligands, and receptors have been shown to reduce or enhance tumorigenesis and metastasis. Knockout mouse models of BMP signaling components have also revealed that the suppression of BMP signaling impairs cancer metastasis. Herein, we highlight the basic clinical background and involvement of BMPs in modulating cancer progression and their dynamic interactions (e.g., with microRNAs) in the tumor microenvironment in addition to their mutations and roles in chemoprevention. We also suggest that BMPs should be considered a powerful putative therapeutic target in tumorigenesis and bone metastasis.
Collapse
Affiliation(s)
- Duc-Hiep Bach
- College of Pharmacy, Natural Products Research Institute, Seoul National University, Seoul 151-742, Republic of Korea
| | - Hyen Joo Park
- College of Pharmacy, Natural Products Research Institute, Seoul National University, Seoul 151-742, Republic of Korea
| | - Sang Kook Lee
- College of Pharmacy, Natural Products Research Institute, Seoul National University, Seoul 151-742, Republic of Korea
| |
Collapse
|
18
|
Hu MS, Borrelli MR, Hong WX, Malhotra S, Cheung ATM, Ransom RC, Rennert RC, Morrison SD, Lorenz HP, Longaker MT. Embryonic skin development and repair. Organogenesis 2018; 14:46-63. [PMID: 29420124 PMCID: PMC6150059 DOI: 10.1080/15476278.2017.1421882] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 12/15/2017] [Accepted: 12/21/2017] [Indexed: 12/31/2022] Open
Abstract
Fetal cutaneous wounds have the unique ability to completely regenerate wounded skin and heal without scarring. However, adult cutaneous wounds heal via a fibroproliferative response which results in the formation of a scar. Understanding the mechanism(s) of scarless wound healing leads to enormous clinical potential in facilitating an environment conducive to scarless healing in adult cutaneous wounds. This article reviews the embryonic development of the skin and outlines the structural and functional differences in adult and fetal wound healing phenotypes. A review of current developments made towards applying this clinical knowledge to promote scarless healing in adult wounds is addressed.
Collapse
Affiliation(s)
- Michael S. Hu
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Division of Plastic Surgery, Stanford University School of Medicine, Stanford, California
- Stanford Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California
| | - Mimi R. Borrelli
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Division of Plastic Surgery, Stanford University School of Medicine, Stanford, California
| | - Wan Xing Hong
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Division of Plastic Surgery, Stanford University School of Medicine, Stanford, California
| | - Samir Malhotra
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Division of Plastic Surgery, Stanford University School of Medicine, Stanford, California
| | - Alexander T. M. Cheung
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Division of Plastic Surgery, Stanford University School of Medicine, Stanford, California
| | - Ryan C. Ransom
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Division of Plastic Surgery, Stanford University School of Medicine, Stanford, California
| | - Robert C. Rennert
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Division of Plastic Surgery, Stanford University School of Medicine, Stanford, California
| | - Shane D. Morrison
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Division of Plastic Surgery, Stanford University School of Medicine, Stanford, California
| | - H. Peter Lorenz
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Division of Plastic Surgery, Stanford University School of Medicine, Stanford, California
| | - Michael T. Longaker
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Division of Plastic Surgery, Stanford University School of Medicine, Stanford, California
- Stanford Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California
| |
Collapse
|
19
|
Kinoshita H, Hayakawa Y, Koike K. Metaplasia in the Stomach-Precursor of Gastric Cancer? Int J Mol Sci 2017; 18:ijms18102063. [PMID: 28953255 PMCID: PMC5666745 DOI: 10.3390/ijms18102063] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 09/23/2017] [Accepted: 09/25/2017] [Indexed: 02/07/2023] Open
Abstract
Despite a significant decrease in the incidence of gastric cancer in Western countries over the past century, gastric cancer is still one of the leading causes of cancer-related deaths worldwide. Most human gastric cancers develop after long-term Helicobacter pylori infection via the Correa pathway: the progression is from gastritis, atrophy, intestinal metaplasia, dysplasia, to cancer. However, it remains unclear whether metaplasia is a direct precursor of gastric cancer or merely a marker of high cancer risk. Here, we review human studies on the relationship between metaplasia and cancer in the stomach, data from mouse models of metaplasia regarding the mechanism of metaplasia development, and the cellular responses induced by H. pylori infection.
Collapse
Affiliation(s)
- Hiroto Kinoshita
- Graduate School of Medicine, Department of Gastroenterology, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8655, Japan.
| | - Yoku Hayakawa
- Graduate School of Medicine, Department of Gastroenterology, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8655, Japan.
| | - Kazuhiko Koike
- Graduate School of Medicine, Department of Gastroenterology, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8655, Japan.
| |
Collapse
|
20
|
Hampel M, Blasco J, Babbucci M, Ferraresso S, Bargelloni L, Milan M. Transcriptome analysis of the brain of the sea bream (Sparus aurata) after exposure to human pharmaceuticals at realistic environmental concentrations. MARINE ENVIRONMENTAL RESEARCH 2017; 129:36-45. [PMID: 28434674 DOI: 10.1016/j.marenvres.2017.04.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Revised: 04/09/2017] [Accepted: 04/09/2017] [Indexed: 06/07/2023]
Abstract
Human pharmaceuticals such as Acetaminophen, Atenolol and Carbamazepine are pseudo persistent aquatic pollutants with yet unknown sub-lethal effects at environmentally relevant concentrations. Gilthead seabream (Sparus aurata) were exposed to Acetaminophen: 31.90 ± 11.07 μg L-1; Atenolol: 0.95 ± 0.38 μg L-1 and Carbamazepine: 6.95 ± 0.13 μg L-1 in a 28 day flow through experiment to (1) determine whether exposure to low concentrations in the μg·L-1 range of the pharmaceuticals alters the brain transcriptome and, (2) identify different expression profiles and treatment specific modes of action and pathways. Despite low exposure concentrations, 411, 7 and 612 differently expressed transcripts were identified in the individual treatments with Acetaminophen, Atenolol and Carbamazepine, respectively. Functional analyses of differentially expressed genes revealed a significant over representation of several biological processes, cellular compartment features and molecular functions for both Acetaminophen and Carbamazepine treatments. Overall, the results obtained in seabream brain suggest similar physiological responses to those observed in humans also at environmental concentrations, as well as the existence of treatment specific processes that may be useful for the development of biomarkers of contamination.
Collapse
Affiliation(s)
- Miriam Hampel
- Department for Physical Chemistry, Faculty of Marine and Environmental Sciences, University of Cadiz, 11510 Puerto Real, Cadiz, Spain; University Institute for Marine Research (INMAR), 11510 Puerto Real, Cadiz, Spain.
| | - Julian Blasco
- Andalusian Institute for Marine Sciences, Department of Ecology and Coastal Management, Campus Universitario Río San Pedro s/n, 11519 Puerto Real, Spain
| | - Massimiliano Babbucci
- Department of Comparative Biomedicine and Food Science, University of Padova, I-35020 Legnaro, Italy
| | - Serena Ferraresso
- Department of Comparative Biomedicine and Food Science, University of Padova, I-35020 Legnaro, Italy
| | - Luca Bargelloni
- Department of Comparative Biomedicine and Food Science, University of Padova, I-35020 Legnaro, Italy
| | - Massimo Milan
- Department of Comparative Biomedicine and Food Science, University of Padova, I-35020 Legnaro, Italy
| |
Collapse
|
21
|
Vaughn NH, Stepanyan H, Gallo RA, Dhawan A. Genetic Factors in Tendon Injury: A Systematic Review of the Literature. Orthop J Sports Med 2017; 5:2325967117724416. [PMID: 28856171 PMCID: PMC5571768 DOI: 10.1177/2325967117724416] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Tendon injury such as tendinopathy or rupture is common and has multiple etiologies, including both intrinsic and extrinsic factors. The genetic influence on susceptibility to tendon injury is not well understood. PURPOSE To analyze the published literature regarding genetic factors associated with tendon injury. STUDY DESIGN Systematic review; Level of evidence, 3. METHODS A systematic review of published literature was performed in concordance with the Preferred Reporting Items of Systematic Reviews and Meta-analysis (PRISMA) guidelines to identify current evidence for genetic predisposition to tendon injury. PubMed, Ovid, and ScienceDirect databases were searched. Studies were included for review if they specifically addressed genetic factors and tendon injuries in humans. Reviews, animal studies, or studies evaluating the influence of posttranscription factors and modifications (eg, proteins) were excluded. RESULTS Overall, 460 studies were available for initial review. After application of inclusion and exclusion criteria, 11 articles were ultimately included for qualitative synthesis. Upon screening of references of these 11 articles, an additional 15 studies were included in the final review, for a total of 26 studies. The genetic factors with the strongest evidence of association with tendon injury were those involving type V collagen A1, tenascin-C, matrix metalloproteinase-3, and estrogen-related receptor beta. CONCLUSION The published literature is limited to relatively homogenous populations, with only level 3 and level 4 data. Additional research is needed to make further conclusions about the genetic factors involved in tendon injury.
Collapse
Affiliation(s)
- Natalie H. Vaughn
- Department of Orthopaedics and Rehabilitation, Penn State College of Medicine, Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA
| | - Hayk Stepanyan
- Department of Orthopaedics and Rehabilitation, Penn State College of Medicine, Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA
| | - Robert A. Gallo
- Department of Orthopaedics and Rehabilitation, Penn State College of Medicine, Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA
| | - Aman Dhawan
- Department of Orthopaedics and Rehabilitation, Penn State College of Medicine, Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA
| |
Collapse
|
22
|
Shi L, Sun W, Gao F, Cheng L, Li Z. Heterotopic ossification related to the use of recombinant human BMP-2 in osteonecrosis of femoral head. Medicine (Baltimore) 2017; 96:e7413. [PMID: 28682898 PMCID: PMC5502171 DOI: 10.1097/md.0000000000007413] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Despite the wide use of recombinant human bone morphogenetic protein-2 (rhBMP-2) in bone defect, its application in treating osteonecrosis of femoral head (ONFH) is yet to be elucidated. The heterotopic ossification (HO) after rhBMP-2 usage in some orthopedic surgeries has been reported previously; however, only a few studies describe this complication in the treatment of ONFH.The present study investigated whether the rhBMP-2 application would increase the risk of HO formation in selected ONFH patients with nonvascularized bone grafting surgery and enhance the surgical results of nonvascularized bone grafting as compared to patients who did not receive intraoperative rhBMP-2.A retrospective analysis was performed on 94 patients (141 hips) who, with Association Research Circulation Osseous (ARCO) stages IIb, IIc, and IIIa ONFH, underwent nonvascularized bone grafting surgery. The first 46 patients (66 hips) received intraoperative rhBMP-2. The postoperative radiographic results (X-ray and CT scan) and Harris hip score (HHS) were reviewed in each patient to record the incidence of HO formation and evaluate the clinical efficacy of rhBMP-2, respectively.HO formation frequently occurred in patients receiving intraoperative rhBMP-2 (8/66 hips) than those not receiving the protein (1/75 hips) (P = .02). HHS improved from preoperatively at the final follow-up (P < .01) in the BMP-positive group, with a survival rate of 83.3%. In the BMP-negative group, the HHS improved from preoperatively at the end of the follow-up (P < .01), and the survival rate was 72.0%.rhBMP-2 has osteoinductive property and might serve as an adjuvant therapy in the surgical treatment of ONFH. However, the incidence of HO formation might increase when used in high doses.
Collapse
Affiliation(s)
- Lijun Shi
- Peking University China–Japan Friendship School of Clinical Medicine
| | - Wei Sun
- Centre for Osteonecrosis and Joint-Preserving and Reconstruction, China–Japan Friendship Hospital, Chaoyang District, Beijing, China
| | - Fuqiang Gao
- Centre for Osteonecrosis and Joint-Preserving and Reconstruction, China–Japan Friendship Hospital, Chaoyang District, Beijing, China
| | - Liming Cheng
- Centre for Osteonecrosis and Joint-Preserving and Reconstruction, China–Japan Friendship Hospital, Chaoyang District, Beijing, China
| | - Zirong Li
- Centre for Osteonecrosis and Joint-Preserving and Reconstruction, China–Japan Friendship Hospital, Chaoyang District, Beijing, China
| |
Collapse
|
23
|
McCauley HA, Chevrier V, Birnbaum D, Guasch G. De-repression of the RAC activator ELMO1 in cancer stem cells drives progression of TGFβ-deficient squamous cell carcinoma from transition zones. eLife 2017; 6:e22914. [PMID: 28219480 PMCID: PMC5319840 DOI: 10.7554/elife.22914] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 01/27/2017] [Indexed: 01/18/2023] Open
Abstract
Squamous cell carcinomas occurring at transition zones are highly malignant tumors with poor prognosis. The identity of the cell population and the signaling pathways involved in the progression of transition zone squamous cell carcinoma are poorly understood, hence representing limited options for targeted therapies. Here, we identify a highly tumorigenic cancer stem cell population in a mouse model of transitional epithelial carcinoma and uncover a novel mechanism by which loss of TGFβ receptor II (Tgfbr2) mediates invasion and metastasis through de-repression of ELMO1, a RAC-activating guanine exchange factor, specifically in cancer stem cells of transition zone tumors. We identify ELMO1 as a novel target of TGFβ signaling and show that restoration of Tgfbr2 results in a complete block of ELMO1 in vivo. Knocking down Elmo1 impairs metastasis of carcinoma cells to the lung, thereby providing insights into the mechanisms of progression of Tgfbr2-deficient invasive transition zone squamous cell carcinoma.
Collapse
Affiliation(s)
- Heather A McCauley
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, United States
| | - Véronique Chevrier
- Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, F-13009, CNRS, UMR7258, F-13009, Institut Paoli-Calmettes, F-13009, Aix-Marseille University, UM 105, F-13284, Marseille, France
| | - Daniel Birnbaum
- Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, F-13009, CNRS, UMR7258, F-13009, Institut Paoli-Calmettes, F-13009, Aix-Marseille University, UM 105, F-13284, Marseille, France
| | - Géraldine Guasch
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, United States
- Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, F-13009, CNRS, UMR7258, F-13009, Institut Paoli-Calmettes, F-13009, Aix-Marseille University, UM 105, F-13284, Marseille, France
| |
Collapse
|
24
|
Abstract
The bone morphogenetic proteins, (BMP)s are regulatory peptides that have significant effects on the growth and differentiation of gastrointestinal tissues. In addition, the BMPs have been shown to exert anti-inflammatory actions in the gut and to negatively regulate the growth of gastric neoplasms. The role of BMP signaling in the regulation of gastric metaplasia, dysplasia and neoplasia has been poorly characterized. Transgenic expression in the mouse stomach of the BMP inhibitor noggin leads to decreased parietal cell number, increased epithelial cell proliferation, and to the emergence of SPEM. Moreover, expression of noggin increases Helicobacter-induced inflammation and epithelial cell proliferation, accelerates the development of dysplasia, and it increases the expression of signal transducer and activator of transcription 3 (STAT3) and of activation-induced cytidine deaminase (AID). These findings provide new clues for a better understanding of the pathophysiological mechanisms that regulate gastric inflammation and the development of both dysplastic and neoplastic lesions of the stomach.
Collapse
|
25
|
Lim J, Burclaff J, He G, Mills JC, Long F. Unintended targeting of Dmp1-Cre reveals a critical role for Bmpr1a signaling in the gastrointestinal mesenchyme of adult mice. Bone Res 2017; 5:16049. [PMID: 28163952 PMCID: PMC5282469 DOI: 10.1038/boneres.2016.49] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 09/10/2016] [Accepted: 09/18/2016] [Indexed: 12/20/2022] Open
Abstract
Cre/loxP technology has been widely used to study cell type-specific functions of genes. Proper interpretation of such data critically depends on a clear understanding of the tissue specificity of Cre expression. The Dmp1-Cre mouse, expressing Cre from a 14-kb DNA fragment of the mouse Dmp1 gene, has become a common tool for studying gene function in osteocytes, but the presumed cell specificity is yet to be fully established. By using the Ai9 reporter line that expresses a red fluorescent protein upon Cre recombination, we find that in 2-month-old mice, Dmp1-Cre targets not only osteocytes within the bone matrix but also osteoblasts on the bone surface and preosteoblasts at the metaphyseal chondro-osseous junction. In the bone marrow, Cre activity is evident in certain stromal cells adjacent to the blood vessels, but not in adipocytes. Outside the skeleton, Dmp1-Cre marks not only the skeletal muscle fibers, certain cells in the cerebellum and the hindbrain but also gastric and intestinal mesenchymal cells that express Pdgfra. Confirming the utility of Dmp1-Cre in the gastrointestinal mesenchyme, deletion of Bmpr1a with Dmp1-Cre causes numerous large polyps along the gastrointestinal tract, consistent with prior work involving inhibition of BMP signaling. Thus, caution needs to be exercised when using Dmp1-Cre because it targets not only the osteoblast lineage at an earlier stage than previously appreciated, but also a number of non-skeletal cell types.
Collapse
Affiliation(s)
- Joohyun Lim
- Department of Orthopaedic Surgery, Washington University School of Medicine , St. Louis, MO, USA
| | - Joseph Burclaff
- Division of Gastroenterology, Departments of Medicine and Pathology and Immunology, Washington University School of Medicine , St. Louis, MO, USA
| | - Guangxu He
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO, USA; Department of Orthopedics, The Second Xiangya Hospital, Central South University, Hunan 410011, China
| | - Jason C Mills
- Division of Gastroenterology, Departments of Medicine and Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA; Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Fanxin Long
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO, USA; Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
26
|
O'Neil A, Petersen CP, Choi E, Engevik AC, Goldenring JR. Unique Cellular Lineage Composition of the First Gland of the Mouse Gastric Corpus. J Histochem Cytochem 2016; 65:47-58. [PMID: 27872404 DOI: 10.1369/0022155416678182] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The glandular stomach has two major zones: the acid secreting corpus and the gastrin cell-containing antrum. Nevertheless, a single gland lies at the transition between the forestomach and corpus in the mouse stomach. We have sought to define the lineages that make up this gland unit at the squamocolumnar junction. The first gland in mice showed a notable absence of characteristic corpus lineages, including parietal cells and chief cells. In contrast, the gland showed strong staining of Griffonia simplicifolia-II (GSII)-lectin-positive mucous cells at the bases of glands, which were also positive for CD44 variant 9 and Clusterin. Prominent numbers of doublecortin-like kinase 1 (DCLK1) positive tuft cells were present in the first gland. The first gland contained Lgr5-expressing putative progenitor cells, and a large proportion of the cells were positive for Sox2. The cells of the first gland stained strongly for MUC4 and EpCAM, but both were absent in the normal corpus mucosa. The present studies indicate that the first gland in the corpus represents a unique anatomic entity. The presence of a concentration of progenitor cells and sensory tuft cells in this gland suggests that it may represent a source of reserve reparative cells for adapting to severe mucosal damage.
Collapse
Affiliation(s)
- Andrew O'Neil
- Department of Surgery (AO, EC, ACE, JRG), Vanderbilt University Medical Center, Nashville, Tennessee
| | - Christine P Petersen
- Epithelial Biology Center (CPP, EC, ACE, JRG), Vanderbilt University Medical Center, Nashville, Tennessee
| | - Eunyoung Choi
- Nashville VA Medical Center (EC, JRG), Vanderbilt University Medical Center, Nashville, Tennessee.,Department of Surgery (AO, EC, ACE, JRG), Vanderbilt University Medical Center, Nashville, Tennessee.,Epithelial Biology Center (CPP, EC, ACE, JRG), Vanderbilt University Medical Center, Nashville, Tennessee
| | - Amy C Engevik
- Department of Surgery (AO, EC, ACE, JRG), Vanderbilt University Medical Center, Nashville, Tennessee.,Epithelial Biology Center (CPP, EC, ACE, JRG), Vanderbilt University Medical Center, Nashville, Tennessee
| | - James R Goldenring
- Nashville VA Medical Center (EC, JRG), Vanderbilt University Medical Center, Nashville, Tennessee.,Department of Surgery (AO, EC, ACE, JRG), Vanderbilt University Medical Center, Nashville, Tennessee.,Department of Cell and Developmental Biology (CPP, JRG), Vanderbilt University Medical Center, Nashville, Tennessee.,Epithelial Biology Center (CPP, EC, ACE, JRG), Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
27
|
Melleby AO, Strand ME, Romaine A, Herum KM, Skrbic B, Dahl CP, Sjaastad I, Fiane AE, Filmus J, Christensen G, Lunde IG. The Heparan Sulfate Proteoglycan Glypican-6 Is Upregulated in the Failing Heart, and Regulates Cardiomyocyte Growth through ERK1/2 Signaling. PLoS One 2016; 11:e0165079. [PMID: 27768722 PMCID: PMC5074531 DOI: 10.1371/journal.pone.0165079] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 10/05/2016] [Indexed: 11/18/2022] Open
Abstract
Pressure overload is a frequent cause of heart failure. Heart failure affects millions of patients worldwide and is a major cause of morbidity and mortality. Cell surface proteoglycans are emerging as molecular players in cardiac remodeling, and increased knowledge about their regulation and function is needed for improved understanding of cardiac pathogenesis. Here we investigated glypicans (GPC1-6), a family of evolutionary conserved heparan sulfate proteoglycans anchored to the extracellular leaflet of the cell membrane, in experimental and clinical heart failure, and explored the function of glypican-6 in cardiac cells in vitro. In mice subjected to pressure overload by aortic banding (AB), we observed elevated glypican-6 levels during hypertrophic remodeling and dilated, end-stage heart failure. Consistently, glypican-6 mRNA was elevated in left ventricular myocardium from explanted hearts of patients with end-stage, dilated heart failure with reduced ejection fraction. Glypican-6 levels correlated negatively with left ventricular ejection fraction in patients, and positively with lung weight after AB in mice. Glypican-6 mRNA was expressed in both cardiac fibroblasts and cardiomyocytes, and the corresponding protein displayed different sizes in the two cell types due to tissue-specific glycanation. Importantly, adenoviral overexpression of glypican-6 in cultured cardiomyocytes increased protein synthesis and induced mRNA levels of the pro-hypertrophic signature gene ACTA1 and the hypertrophy and heart failure signature genes encoding natriuretic peptides, NPPA and NPPB. Overexpression of GPC6 induced ERK1/2 phosphorylation, and co-treatment with the ERK inhibitor U0126 attenuated the GPC6-induced increase in NPPA, NPPB and protein synthesis. In conclusion, our data suggests that glypican-6 plays a role in clinical and experimental heart failure progression by regulating cardiomyocyte growth through ERK signaling.
Collapse
Affiliation(s)
- Arne O. Melleby
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- Center for Heart Failure Research, University of Oslo, Oslo, Norway
- * E-mail:
| | - Mari E. Strand
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- Center for Heart Failure Research, University of Oslo, Oslo, Norway
| | - Andreas Romaine
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- Center for Heart Failure Research, University of Oslo, Oslo, Norway
| | - Kate M. Herum
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- Center for Heart Failure Research, University of Oslo, Oslo, Norway
| | - Biljana Skrbic
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- Center for Heart Failure Research, University of Oslo, Oslo, Norway
- Department of Cardiothoracic Surgery, Oslo University Hospital, Oslo, Norway
| | - Christen P. Dahl
- Center for Heart Failure Research, University of Oslo, Oslo, Norway
- Research Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway
| | - Ivar Sjaastad
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- Center for Heart Failure Research, University of Oslo, Oslo, Norway
- Division of Molecular and Cellular Biology, Sunnybrook Research Institute and Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Arnt E. Fiane
- Department of Cardiothoracic Surgery, Oslo University Hospital, Oslo, Norway
| | - Jorge Filmus
- Division of Molecular and Cellular Biology, Sunnybrook Research Institute and Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Geir Christensen
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- Center for Heart Failure Research, University of Oslo, Oslo, Norway
| | - Ida G. Lunde
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- Center for Heart Failure Research, University of Oslo, Oslo, Norway
| |
Collapse
|
28
|
Roy SAB, Allaire JM, Ouellet C, Maloum-Rami F, Pomerleau V, Lemieux É, Babeu JP, Rousseau J, Paquet M, Garde-Granger P, Boudreau F, Perreault N. Loss of mesenchymal bone morphogenetic protein signaling leads to development of reactive stroma and initiation of the gastric neoplastic cascade. Sci Rep 2016; 6:32759. [PMID: 27609464 PMCID: PMC5016723 DOI: 10.1038/srep32759] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 08/02/2016] [Indexed: 02/07/2023] Open
Abstract
Bmps are morphogens involved in various gastric cellular functions. Studies in genetically-modified mice have shown that Bmp disruption in gastric epithelial and stromal cell compartments leads to the development of tumorigenesis. Our studies have demonstrated that abrogation of gastric epithelial Bmp signaling alone was not sufficient to recapitulate the neoplastic features associated with total gastric loss of Bmp signaling. Thus, epithelial Bmp signaling does not appear to be a key player in gastric tumorigenesis initiation. These observations suggest a greater role for stromal Bmp signaling in gastric polyposis initiation. In order to identify the specific roles played by mesenchymal Bmp signaling in gastric homeostasis, we generated a mouse model with abrogation of Bmp signaling exclusively in the gastro-intestinal mesenchyme (Bmpr1aΔMES). We were able to expose an unsuspected role for Bmp loss of signaling in leading normal gastric mesenchyme to adapt into reactive mesenchyme. An increase in the population of activated-fibroblasts, suggesting mesenchymal transdifferentiation, was observed in mutant stomach. Bmpr1aΔMES stomachs exhibited spontaneous benign polyps with presence of both intestinal metaplasia and spasmolytic-polypeptide-expressing metaplasia as early as 90 days postnatal. These results support the novel concept that loss of mesenchymal Bmp signaling cascade acts as a trigger in gastric polyposis initiation.
Collapse
Affiliation(s)
- Sébastien A B Roy
- Département d'Anatomie et Biologie Cellulaire, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Joannie M Allaire
- Département d'Anatomie et Biologie Cellulaire, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Camille Ouellet
- Département d'Anatomie et Biologie Cellulaire, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Faiza Maloum-Rami
- Département d'Anatomie et Biologie Cellulaire, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Véronique Pomerleau
- Département d'Anatomie et Biologie Cellulaire, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Étienne Lemieux
- Département d'Anatomie et Biologie Cellulaire, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Jean-Philippe Babeu
- Département d'Anatomie et Biologie Cellulaire, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Jasmin Rousseau
- Département d'Anatomie et Biologie Cellulaire, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Marilène Paquet
- Département de pathologie et de microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal, St-Hyacinthe, QC, Canada
| | - Perrine Garde-Granger
- Département de Pathologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - François Boudreau
- Département d'Anatomie et Biologie Cellulaire, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Nathalie Perreault
- Département d'Anatomie et Biologie Cellulaire, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
29
|
Abstract
The stomach, an organ derived from foregut endoderm, secretes acid and enzymes and plays a key role in digestion. During development, mesenchymal-epithelial interactions drive stomach specification, patterning, differentiation and growth through selected signaling pathways and transcription factors. After birth, the gastric epithelium is maintained by the activity of stem cells. Developmental signals are aberrantly activated and stem cell functions are disrupted in gastric cancer and other disorders. Therefore, a better understanding of stomach development and stem cells can inform approaches to treating these conditions. This Review highlights the molecular mechanisms of stomach development and discusses recent findings regarding stomach stem cells and organoid cultures, and their roles in investigating disease mechanisms.
Collapse
Affiliation(s)
- Tae-Hee Kim
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada M5G 0A4 Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada M5S 1A8
| | - Ramesh A Shivdasani
- Department of Medical Oncology and Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA Department of Medicine, Brigham & Women's Hospital and Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
30
|
Abstract
Gastric diseases cause considerable worldwide burden. However, the stomach is still poorly understood in terms of the molecular-cellular processes that govern its development and homeostasis. In particular, the complex relationship between the differentiated cell types located within the stomach and the stem and progenitor cells that give rise to them is significantly understudied relative to other organs. In this review, we will highlight the current state of the literature relating to specification of gastric cell lineages from embryogenesis to adulthood. Special emphasis is placed on substantial gaps in knowledge about stomach specification that we think should be tackled to advance the field. For example, it has long been assumed that adult gastric units have a granule-free stem cell that gives rise to all differentiated lineages. Here we will point out that there are also other models that fit all extant data, such as long-lived lineage-committed progenitors that might serve as a source of new cells during homeostasis.
Collapse
Affiliation(s)
- Spencer G. Willet
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Jason C. Mills
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri
- Correspondence Address correspondence to: Jason C. Mills, MD, PhD, Washington University School of Medicine, Box 8124, 660 South Euclid Avenue, St. Louis, Missouri 63110. fax: (314) 362-7487.Washington University School of MedicineBox 8124, 660 South Euclid AvenueSt. LouisMissouri 63110
| |
Collapse
|
31
|
The soluble form of BMPRIB is a novel therapeutic candidate for treating bone related disorders. Sci Rep 2016; 6:18849. [PMID: 26732094 PMCID: PMC4702141 DOI: 10.1038/srep18849] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 11/27/2015] [Indexed: 11/08/2022] Open
Abstract
Bone morphogenetic proteins (BMPs) are multi-functional growth factors that belong to the TGF-beta superfamily. Recently, several soluble BMP receptors, such as ActRIIA-Fc, ActRIIB-Fc, and ALK1-Fc, are undergoing clinical trials. Both BMPRIA and BMPRIB are type I BMP receptors, and while BMPRIA-Fc has been reported to have bone-increasing properties, there have been no investigations concerning the biological functions of BMPRIB-Fc. Therefore, comparing the effects of BMPRIA-Fc and BMPRIB-Fc in vivo should be helpful in revealing the differences in biological function between BMPRIA and BMPRIB, and would also aid in the evaluation of BMPRIB-Fc as a therapeutic agent. Here, we produced Tg chimeras in which BMPRIA-Fc and BMPRIB-Fc proteins circulated at high concentrations (36.8–121.4 μg/mL). Both Tg chimeras showed a significant increase of bone volume and strength. Using histological analysis, adenoma of the glandular stomach was observed only in BMPRIA-Fc chimeras suggesting the tumorigenic activity of this protein. Administration of recombinant BMPRIB-Fc protein to normal mice also increased bone volumes. Finally, treatment with BMPRIB-Fc decreased the area of osteolytic regions in a mouse model of breast cancer metastasis. In conclusion, our data suggest that BMPRIB-Fc can be used for the treatment of bone-related disorders with a lower risk than BMPRIA-Fc.
Collapse
|
32
|
Mechanisms of action of bone morphogenetic proteins in cancer. Cytokine Growth Factor Rev 2015; 27:81-92. [PMID: 26678814 DOI: 10.1016/j.cytogfr.2015.11.009] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 11/13/2015] [Indexed: 01/28/2023]
Abstract
The bone morphogenetic proteins (BMPs) play fundamental roles in embryonic development and control differentiation of a diverse set of cell types. It is therefore of no surprise that the BMPs also contribute to the process of tumourigenesis and regulate cancer progression through various stages. We summarise here key roles of BMP ligands, receptors, their signalling mediators, mainly focusing on proteins of the Smad family, and extracellular antagonists, that contribute to the onset of tumourigenesis and to cancer progression in diverse tissues. Overall, the BMP pathways seem to act as tumour suppressors that maintain physiological tissue homeostasis and which are perturbed in cancer either via genetic mutation or via epigenetic misregulation of key gene components. BMPs also control the self-renewal and fate choices made by stem cells in several tissues. By promoting cell differentiation, including inhibition of the process of epithelial-mesenchymal transition, BMPs contribute to the malignant progression of cancer at advanced stages. It is therefore reasonable that pharmaceutical industries continuously develop biological agents and chemical modulators of BMP signalling with the aim to improve therapeutic regimes against several types of cancer.
Collapse
|
33
|
Abstract
Colorectal cancer (CRC) is a complex disease that develops as a consequence of both genetic and environmental risk factors. A small proportion (3-5%) of cases arise from hereditary syndromes predisposing to early onset CRC as a result of mutations in over a dozen well defined genes. In contrast, CRC is predominantly a late onset 'sporadic' disease, developing in individuals with no obvious hereditary syndrome. In recent years, genome wide association studies have discovered that over 40 genetic regions are associated with weak effects on sporadic CRC, and it has been estimated that increasingly large genome wide scans will identify many additional novel genetic regions. Subsequent experimental validations have identified the causally related variant(s) in a limited number of these genetic regions. Further biological insight could be obtained through ethnically diverse study populations, larger genetic sequencing studies and development of higher throughput functional experiments. Along with inherited variation, integration of the tumour genome may shed light on the carcinogenic processes in CRC. In addition to summarising the genetic architecture of CRC, this review discusses genetic factors that modify environmental predictors of CRC, as well as examples of how genetic insight has improved clinical surveillance, prevention and treatment strategies. In summary, substantial progress has been made in uncovering the genetic architecture of CRC, and continued research efforts are expected to identify additional genetic risk factors that further our biological understanding of this disease. Subsequently these new insights will lead to improved treatment and prevention of colorectal cancer.
Collapse
Affiliation(s)
- Ulrike Peters
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Epidemiology, University of Washington School of Public Health, Seattle, WA, USA
| | - Stephanie Bien
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Niha Zubair
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| |
Collapse
|
34
|
|
35
|
Todisco A, Mao M, Keeley TM, Ye W, Samuelson LC, Eaton KA. Regulation of gastric epithelial cell homeostasis by gastrin and bone morphogenetic protein signaling. Physiol Rep 2015; 3:3/8/e12501. [PMID: 26290525 PMCID: PMC4562585 DOI: 10.14814/phy2.12501] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
We reported that transgenic expression of the bone morphogenetic protein (BMP) signaling inhibitor noggin in the mouse stomach, leads to parietal-cell (PC) loss, expansion of transitional cells expressing markers of both mucus neck and zymogenic lineages, and to activation of proliferative mechanisms. Because these cellular changes were associated with increased levels of the hormone gastrin, we investigated if gastrin mediates the expression of the phenotypic changes of the noggin transgenic mice (NogTG mice). Three-month-old NogTG mice were crossed to gastrin-deficient (GasKO mice) to generate NogTG;GasKO mice. Morphology of the corpus of wild type, NogTG, GasKO, and NogTG;GasKO mice was analyzed by H&E staining. Distribution of PCs and zymogenic cells (ZCs) was analyzed by immunostaining for the H+/K+-ATPase and intrinsic factor (IF). Expression of the H+/K+-ATPase and IF genes and proteins were measured by QRT-PCR and western blots. Cell proliferation was assessed by immunostaining for proliferating cell nuclear antigen. The corpus of the NogTG;GasKO mice displayed a marked reduction in the number of PCs and ZCs in comparison to NogTG mice. Further, cellular proliferation was significantly lower in NogTG;GasKO mice, than in the NogTG mice. Thus, gastrin mediates the increase in gastric epithelial cell proliferation induced by inhibition of BMP signaling in vivo. Moreover, gastrin and BMP signaling exert cooperative effects on the maturation and differentiation of both the zymogenic and PC lineages. These findings contribute to a better understanding of the factors involved in the control of gastric epithelial cell homeostasis.
Collapse
Affiliation(s)
- Andrea Todisco
- Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, Michigan
| | - Maria Mao
- Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, Michigan
| | - Theresa M Keeley
- Department of Molecular and Integrative Physiology, University of Michigan Medical Center, Ann Arbor, Michigan
| | - Wei Ye
- Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, Michigan
| | - Linda C Samuelson
- Department of Molecular and Integrative Physiology, University of Michigan Medical Center, Ann Arbor, Michigan
| | - Kathryn A Eaton
- Laboratory Animal Medicine Unit, University of Michigan Medical Center, Ann Arbor, Michigan
| |
Collapse
|
36
|
Carreira ACO, Zambuzzi WF, Rossi MC, Astorino Filho R, Sogayar MC, Granjeiro JM. Bone Morphogenetic Proteins: Promising Molecules for Bone Healing, Bioengineering, and Regenerative Medicine. VITAMINS AND HORMONES 2015; 99:293-322. [PMID: 26279381 DOI: 10.1016/bs.vh.2015.06.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Bone morphogenetic proteins (BMPs), glycoproteins secreted by some cells, are members of the TGF-β superfamily that have been implicated in a wide variety of roles. Currently, about 20 different BMPs have been identified and grouped into subfamilies, according to similarities with respect to their amino acid sequences. It has been shown that BMPs are secreted growth factors involved in mesenchymal stem cell differentiation, also being reported to control the differentiation of cancer stem cells. BMPs initiate signaling from the cell surface by binding to two different receptors (R: Type I and II). The heterodimeric formation of type I R and II R may occur before or after BMP binding, inducing signal transduction pathways through SMADs. BMPs may also signal through SMAD-independent pathways via mitogen-activated protein kinases (ERK, p38MAPKs, JNK). BMPs may act in an autocrine or paracrine manner, being regulated by specific antagonists, namely: noggin and chordin. Genetic engineering allows the production of large amounts of BMPs for clinical use, and clinical trials have shown the benefits of FDA-approved recombinant human BMPs 2 and 7. Several materials from synthetic to natural sources have been tested as BMP carriers, ranging from hydroxyapatite, and organic polymers to collagen. Bioactive membranes doped with BMPs are promising options, acting to accelerate and enhance osteointegration. The development of smart materials, mainly based on biopolymers and bone-like calcium phosphates, appears to provide an attractive alternative for delivering BMPs in an adequately controlled fashion. BMPs have revealed a promising future for the fields of Bioengineering and Regenerative Medicine. In this chapter, we review and discuss the data on BMP structure, mechanisms of action, and possible clinical applications.
Collapse
Affiliation(s)
- Ana Claudia Oliveira Carreira
- NUCEL-NETCEM (Cell and Molecular Therapy Center), Internal Medicine Department, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Willian Fernando Zambuzzi
- Department of Chemistry and Biochemistry, Biosciences Institute, UNESP, Universidade Estadual Paulista, Botucatu, Brazil
| | - Mariana Correa Rossi
- Department of Chemistry and Biochemistry, Biosciences Institute, UNESP, Universidade Estadual Paulista, Botucatu, Brazil
| | - Renato Astorino Filho
- NUCEL-NETCEM (Cell and Molecular Therapy Center), Internal Medicine Department, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Mari Cleide Sogayar
- NUCEL-NETCEM (Cell and Molecular Therapy Center), Internal Medicine Department, School of Medicine, University of São Paulo, São Paulo, Brazil; Chemistry Institute, Biochemistry Department, São Paulo, Brazil
| | - José Mauro Granjeiro
- Bioengineering Division, National Institute of Metrology, Quality, and Technology, Duque de Caxias, Brazil; Department of Dental Materials, Dental School, Fluminense Federal University, Niteroi, Brazil.
| |
Collapse
|
37
|
Duan L, Ye L, Wu R, Wang H, Li X, Li H, Yuan S, Zha H, Sun H, Zhang Y, Chen X, Zhang Y, Zhou L. Inactivation of the Phosphatidylinositol 3‐Kinase/Akt Pathway is Involved in BMP9‐mediated Tumor‐suppressive Effects in Gastric Cancer Cells. J Cell Biochem 2015; 116:1080-9. [DOI: 10.1002/jcb.25063] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 12/18/2014] [Indexed: 01/23/2023]
Affiliation(s)
- Liang Duan
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of EducationCollege of Laboratory MedicineChongqing Medical UniversityChongqing 400016China
| | - Liwei Ye
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of EducationCollege of Laboratory MedicineChongqing Medical UniversityChongqing 400016China
| | - Rui Wu
- Department of Laboratory MedicineThe First Affiliated Hospital of Chongqing Medical UniversityChongqing 400016,China
| | - Haiyan Wang
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of EducationCollege of Laboratory MedicineChongqing Medical UniversityChongqing 400016China
| | - Xueru Li
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of EducationCollege of Laboratory MedicineChongqing Medical UniversityChongqing 400016China
| | - Huan Li
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of EducationCollege of Laboratory MedicineChongqing Medical UniversityChongqing 400016China
| | - Shimei Yuan
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of EducationCollege of Laboratory MedicineChongqing Medical UniversityChongqing 400016China
| | - He Zha
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of EducationCollege of Laboratory MedicineChongqing Medical UniversityChongqing 400016China
| | - Hui Sun
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of EducationCollege of Laboratory MedicineChongqing Medical UniversityChongqing 400016China
| | - Yunyuan Zhang
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of EducationCollege of Laboratory MedicineChongqing Medical UniversityChongqing 400016China
| | - Xian Chen
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of EducationCollege of Laboratory MedicineChongqing Medical UniversityChongqing 400016China
| | - Yan Zhang
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of EducationCollege of Laboratory MedicineChongqing Medical UniversityChongqing 400016China
| | - Lan Zhou
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of EducationCollege of Laboratory MedicineChongqing Medical UniversityChongqing 400016China
| |
Collapse
|
38
|
Keenan MJ, Zhou J, Hegsted M, Pelkman C, Durham HA, Coulon DB, Martin RJ. Role of resistant starch in improving gut health, adiposity, and insulin resistance. Adv Nutr 2015; 6:198-205. [PMID: 25770258 PMCID: PMC4352178 DOI: 10.3945/an.114.007419] [Citation(s) in RCA: 158] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The realization that low-glycemic index diets were formulated using resistant starch led to more than a decade of research on the health effects of resistant starch. Determination of the metabolizable energy of the resistant starch product allowed for the performance of isocaloric studies. Fermentation of resistant starch in rodent studies results in what appears to be a healthier gut, demonstrated by increased amounts of short-chain fatty acids, an apparent positive change in the microbiota, and increased gene expression for gene products involved in normal healthy proliferation and apoptosis of potential cancer cells. Additionally, consumption of resistant starch was associated with reduced abdominal fat and improved insulin sensitivity. Increased serum glucagon-like peptide 1 (GLP-1) likely plays a role in promoting these health benefits. One rodent study that did not use isocaloric diets demonstrated that the use of resistant starch at 8% of the weight of the diet reduced body fat. This appears to be approximately equivalent to the human fiber requirement. In human subjects, insulin sensitivity is increased with the feeding of resistant starch. However, only 1 of several studies reports an increase in serum GLP-1 associated with resistant starch added to the diet. This means that other mechanisms, such as increased intestinal gluconeogenesis or increased adiponectin, may be involved in the promotion of improved insulin sensitivity. Future research may confirm that there will be improved health if human individuals consume the requirement for dietary fiber and a large amount of the fiber is fermentable.
Collapse
Affiliation(s)
| | - June Zhou
- Geriatric Endocrinology and Metabolism Laboratory, Veterans Affairs Medical Center, Washington, DC
| | - Maren Hegsted
- Department of Food and Nutrition, University of Wisconsin-Stout, Menomonie, WI
| | | | | | - Diana B Coulon
- Bioassay Core Laboratory, Louisiana State University Agricultural Center, Baton Rouge, LA
| | | |
Collapse
|
39
|
Abstract
The primary goals of craniofacial reconstruction include the restoration of the form, function, and facial esthetics, and in the case of pediatric patients, respect for craniofacial growth. The surgeon, however, faces several challenges when attempting a reconstructive cranioplasty. For that reason, craniofacial defect repair often requires sophisticated treatment strategies and multidisciplinary input. In the ideal situation, autologous tissue similar in structure and function to that which is missing can be utilized for repair. In the context of the craniofacial skeleton, autologous cranial bone, or secondarily rib, iliac crest, or scapular bone, is most favorable. Often, this option is limited by the finite supply of available bone. Therefore, alternative strategies to repair craniofacial defects are necessary. In the field of regenerative medicine, tissue engineering has emerged as a promising concept, and several methods of bone engineering are currently under investigation. A growth factor-based approach utilizing bone morphogenetic proteins (BMPs) has demonstrated stimulatory effects on cranial bone and defect repair. When combined with cell-based and matrix-based models, regenerative goals can be optimized. This manuscript intends to review recent investigations of tissue engineering models used for the repair of craniofacial defects with a focus on the role of BMPs, scaffold materials, and novel cell lines. When sufficient autologous bone is not available, safe and effective strategies to engineer bone would allow the surgeon to meet the reconstructive goals of the craniofacial skeleton.
Collapse
Affiliation(s)
- Chad M. Teven
- Department of Surgery, Section of Plastic and Reconstructive Surgery, University of Chicago Medical Center, Chicago, IL, USA
| | - Sean Fisher
- Department of Surgery, Section of Plastic and Reconstructive Surgery, University of Chicago Medical Center, Chicago, IL, USA
| | - Guillermo A. Ameer
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Tong-Chuan He
- Department of Orthopedic Surgery, University of Chicago Medical Center, Chicago, IL, USA
| | - Russell R. Reid
- Department of Surgery, Section of Plastic and Reconstructive Surgery, University of Chicago Medical Center, Chicago, IL, USA
| |
Collapse
|
40
|
Huang J, Yuan SX, Wang DX, Wu QX, Wang X, Pi CJ, Zou X, Chen L, Ying LJ, Wu K, Yang JQ, Sun WJ, Deng ZL, He BC. The role of COX-2 in mediating the effect of PTEN on BMP9 induced osteogenic differentiation in mouse embryonic fibroblasts. Biomaterials 2014; 35:9649-59. [DOI: 10.1016/j.biomaterials.2014.08.016] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 08/08/2014] [Indexed: 01/04/2023]
|
41
|
McCauley HA, Liu CY, Attia AC, Wikenheiser-Brokamp KA, Zhang Y, Whitsett JA, Guasch G. TGFβ signaling inhibits goblet cell differentiation via SPDEF in conjunctival epithelium. Development 2014; 141:4628-39. [PMID: 25377551 DOI: 10.1242/dev.117804] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The ocular surface epithelia, including the stratified but non-keratinized corneal, limbal and conjunctival epithelium, in concert with the epidermal keratinized eyelid epithelium, function together to maintain eye health and vision. Abnormalities in cellular proliferation or differentiation in any of these surface epithelia are central in the pathogenesis of many ocular surface disorders. Goblet cells are important secretory cell components of various epithelia, including the conjunctiva; however, mechanisms that regulate goblet cell differentiation in the conjunctiva are not well understood. Herein, we report that conditional deletion of transforming growth factor β receptor II (Tgfbr2) in keratin 14-positive stratified epithelia causes ocular surface epithelial hyperplasia and conjunctival goblet cell expansion that invaginates into the subconjunctival stroma in the mouse eye. We found that, in the absence of an external phenotype, the ocular surface epithelium develops properly, but young mice displayed conjunctival goblet cell expansion, demonstrating that TGFβ signaling is required for normal restriction of goblet cells within the conjunctiva. We observed increased expression of SAM-pointed domain containing ETS transcription factor (SPDEF) in stratified conjunctival epithelial cells in Tgfbr2 cKO mice, suggesting that TGFβ restricted goblet cell differentiation directly by repressing Spdef transcription. Gain of function of Spdef in keratin 14-positive epithelia resulted in the ectopic formation of goblet cells in the eyelid and peripheral cornea in adult mice. We found that Smad3 bound two distinct sites on the Spdef promoter and that treatment of keratin 14-positive cells with TGFβ inhibited SPDEF activation, thereby identifying a novel mechanistic role for TGFβ in regulating goblet cell differentiation.
Collapse
Affiliation(s)
- Heather A McCauley
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnett Avenue, Cincinnati, OH 45229, USA
| | - Chia-Yang Liu
- Department of Ophthalmology, Edith J. Crawley Vision Research Center, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Aria C Attia
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnett Avenue, Cincinnati, OH 45229, USA
| | - Kathryn A Wikenheiser-Brokamp
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnett Avenue, Cincinnati, OH 45229, USA Pathology and Laboratory Medicine, Cincinnati Children's Hospital Medical Center and University of Cincinnati, 3333 Burnett Avenue, Cincinnati, OH 45229, USA
| | - Yujin Zhang
- Department of Ophthalmology, Edith J. Crawley Vision Research Center, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Jeffrey A Whitsett
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnett Avenue, Cincinnati, OH 45229, USA
| | - Géraldine Guasch
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnett Avenue, Cincinnati, OH 45229, USA
| |
Collapse
|
42
|
Cheng Z, Cui W, Ding Y, Liu T, Liu W, Qin Y, Xia W, Xu J, Zhang Y, Zou X. BMP8B mediates the survival of pancreatic cancer cells and regulates the progression of pancreatic cancer. Oncol Rep 2014; 32:1861-6. [PMID: 25176058 DOI: 10.3892/or.2014.3413] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2014] [Accepted: 07/08/2014] [Indexed: 11/05/2022] Open
Abstract
Pancreatic cancer has become one of the most common types of cancer. It is believed that inhibiting the apoptosis of tumor cells as well as overgrowth of tumor cells accelerate the progression and development of cancer. However, the detailed mechanisms of pancreatic cancer progression remain to be fully elucidated. Although bone morphogenetic protein (BMP) families are crucial mediators in some types of cancer, whether BMP8B is involved in regulating the growth and apoptosis of pancreatic cancer cells and the progression of pancreatic cancer is not clear. In the present study, we found that the expression of BMP8B was downregulated in pancreatic cancer tissue compared with the normal tissue adjacent to the tumors. Moreover, the overexpression of BMP8B inhibited cell growth and promoted activation of caspase-3 and -9, the decrease of mitochondrial membrane potential and cell apoptosis in PANC-1, while silencing the BMP8B gene expression with BMP8B shRNA exerted anti-apoptotic effects and boosted the growth of pancreatic cancer cells in BxPC-3. Therefore, we concluded that BMP8B mediates the survival of pancreatic cancer cells and regulates the progression of pancreatic cancer, making it a potential therapeutic target for pancreatic cancer.
Collapse
Affiliation(s)
- Zhuoxin Cheng
- Department of General Surgery, The First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang 154002, P.R. China
| | - Wu Cui
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Ye Ding
- Department of General Surgery, The First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang 154002, P.R. China
| | - Tao Liu
- Department of General Surgery, The First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang 154002, P.R. China
| | - Weixin Liu
- Department of General Surgery, The First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang 154002, P.R. China
| | - Youyou Qin
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Weibin Xia
- Department of General Surgery, The First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang 154002, P.R. China
| | - Jian Xu
- Department of General Surgery, The First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang 154002, P.R. China
| | - Yinghai Zhang
- Department of General Surgery, The First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang 154002, P.R. China
| | - Xiaoming Zou
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| |
Collapse
|
43
|
Takabayashi H, Shinohara M, Mao M, Phaosawasdi P, El-Zaatari M, Zhang M, Ji T, Eaton KA, Dang D, Kao J, Todisco A. Anti-inflammatory activity of bone morphogenetic protein signaling pathways in stomachs of mice. Gastroenterology 2014; 147:396-406.e7. [PMID: 24751878 PMCID: PMC4197994 DOI: 10.1053/j.gastro.2014.04.015] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 04/03/2014] [Accepted: 04/11/2014] [Indexed: 01/14/2023]
Abstract
BACKGROUND & AIMS Bone morphogenetic protein (BMP)4 is a mesenchymal peptide that regulates cells of the gastric epithelium. We investigated whether BMP signaling pathways affect gastric inflammation after bacterial infection of mice. METHODS We studied transgenic mice that express either the BMP inhibitor noggin or the β- galactosidase gene under the control of a BMP-responsive element and BMP4(βgal/+) mice. Gastric inflammation was induced by infection of mice with either Helicobacter pylori or Helicobacter felis. Eight to 12 weeks after inoculation, gastric tissue samples were collected and immunohistochemical, quantitative, reverse-transcription polymerase chain reaction and immunoblot analyses were performed. We used enzyme-linked immunosorbent assays to measure cytokine levels in supernatants from cultures of mouse splenocytes and dendritic cells, as well as from human gastric epithelial cells (AGS cell line). We also measured the effects of BMP-2, BMP-4, BMP-7, and the BMP inhibitor LDN-193189 on the expression of interleukin (IL)8 messenger RNA by AGS cells and primary cultures of canine parietal and mucus cells. The effect of BMP-4 on NFkB activation in parietal and AGS cells was examined by immunoblot and luciferase assays. RESULTS Transgenic expression of noggin in mice increased H pylori- or H felis-induced inflammation and epithelial cell proliferation, accelerated the development of dysplasia, and increased expression of the signal transducer and activator of transcription 3 and activation-induced cytidine deaminase. BMP-4 was expressed in mesenchymal cells that expressed α-smooth muscle actin and activated BMP signaling pathways in the gastric epithelium. Neither BMP-4 expression nor BMP signaling were detected in immune cells of C57BL/6, BRE-β-galactosidase, or BMP-4(βgal/+) mice. Incubation of dendritic cells or splenocytes with BMP-4 did not affect lipopolysaccharide-stimulated production of cytokines. BMP-4, BMP-2, and BMP-7 inhibited basal and tumor necrosis factor α-stimulated expression of IL8 in canine gastric epithelial cells. LDN-193189 prevented BMP4-mediated inhibition of basal and tumor necrosis factor α-stimulated expression of IL8 in AGS cells. BMP-4 had no effect on TNFα-stimulated phosphorylation and degradation of IκBα, or on TNFα induction of a NFκβ reporter gene. CONCLUSIONS BMP signaling reduces inflammation and inhibits dysplastic changes in the gastric mucosa after infection of mice with H pylori or H felis.
Collapse
Affiliation(s)
- Hidehiko Takabayashi
- Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, Michigan
| | - Masahiko Shinohara
- Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, Michigan
| | - Maria Mao
- Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, Michigan
| | - Piangwarin Phaosawasdi
- Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, Michigan
| | - Mohamad El-Zaatari
- Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, Michigan
| | - Min Zhang
- Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, Michigan
| | - Tuo Ji
- Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, Michigan
| | - Kathryn A Eaton
- Laboratory Animal Medicine Unit, University of Michigan Medical Center, Ann Arbor, Michigan
| | - Duyen Dang
- Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, Michigan
| | - John Kao
- Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, Michigan
| | - Andrea Todisco
- Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, Michigan.
| |
Collapse
|
44
|
Yu DA, Han J, Kim BS. Stimulation of chondrogenic differentiation of mesenchymal stem cells. Int J Stem Cells 2014; 5:16-22. [PMID: 24298351 DOI: 10.15283/ijsc.2012.5.1.16] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/10/2012] [Indexed: 02/06/2023] Open
Abstract
The methods for cartilage repair have been studied so far, yet many of them seem to have limitations due to the low regenerative capacity of articular cartilage. Mesenchymal stem cell (MSC) has been suggested as an alternative solution to remedy this challenging problem. MSCs, which have extensive differentiation capacity, can be induced to differentiate into chondrocytes under specific conditions. Particularly, this review focused on the effects of growth factors, cell-to-cell interactions and biomaterials in chondrogenesis of MSCs. Appropriate stimulations through these factors are crucial in differentiation and proliferation of MSCs. However, use of MSCs for cartilage repair has some drawbacks and risks, such as expression of hypertrophy-related genes in MSCs-derived chondrocytes and consequent calcification or cell death. Nevertheless, the clinical application of MSCs is expected in the future with advanced technology.
Collapse
Affiliation(s)
- Da-Ae Yu
- School of Chemical and Biological Engineering, Seoul National University, Seoul, Korea
| | | | | |
Collapse
|
45
|
Mechanical regulation of cancer cell apoptosis and autophagy: Roles of bone morphogenetic protein receptor, Smad1/5, and p38 MAPK. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:3124-3133. [DOI: 10.1016/j.bbamcr.2013.08.023] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 08/29/2013] [Accepted: 08/30/2013] [Indexed: 12/15/2022]
|
46
|
Wang JH, Liu YZ, Yin LJ, Chen L, Huang J, Liu Y, Zhang RX, Zhou LY, Yang QJ, Luo JY, Zuo GW, Deng ZL, He BC. BMP9 and COX-2 form an important regulatory loop in BMP9-induced osteogenic differentiation of mesenchymal stem cells. Bone 2013; 57:311-21. [PMID: 23981660 DOI: 10.1016/j.bone.2013.08.015] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 07/03/2013] [Accepted: 08/13/2013] [Indexed: 01/11/2023]
Abstract
Mesenchymal stem cells (MSCs) can self-renew and differentiate into osteogenic, chondrogenic, adipogenic and myogenic lineages. It's reported that bone morphogenetic protein 9 (BMP9) is one of the most potent osteogenic BMPs to initiate the commitment of MSCs to osteoblast lineage. Cyclooxygenase-2 (COX-2) is critical for bone fracture healing and osteogenic differentiation in MSCs. However, the relationship between COX-2 and BMP9 in osteogenesis remains unknown. Herein, we investigate the role of COX-2 in BMP9-induced osteogenesis in MSCs. We demonstrate that COX-2 is up-regulated as a target of BMP9 in MSCs. Both COX-2 inhibitor (NS-398) and COX-2 knockdown siRNAs can effectively decrease alkaline phosphatase (ALP) activities induced by BMP9 in MSCs. NS-398 also down-regulates BMP9-induced expression of osteopontin and osteocalcin, so does the matrix mineralization. The in vivo studies indicate that knockdown of COX-2 attenuates BMP9-induced ectopic bone formation. In perinatal limb culture assay, NS-398 is shown to reduce the hypertropic chondrocyte zone and ossification induced by BMP9. Mechanistically, knockdown of COX-2 significantly inhibits the BMP9 up-regulated expression of Runx2 and Dlx-5 in MSCs, which can be rescued by exogenous expression of COX-2. Furthermore, knockdown of COX-2 apparently reduces BMP9 induced BMPR-Smad reporter activity, the phosphorylation of Smad1/5/8, and the expression of Smad6 and Smad7 in MSCs. NS-398 blocks the expression of BMP9 mediated by BMP9 recombinant adenovirus. Taken together, our findings suggest that COX-2 plays an important role in BMP9 induced osteogenic differentiation in MSCs; BMP9 and COX-2 may form an important regulatory loop to orchestrate the osteogenic differentiation in MSCs.
Collapse
Affiliation(s)
- Jin-Hua Wang
- Chongqing key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing, People's Republic of China; The Affiliated Hospital of Stomatology, Chongqing Medical University, Chongqing, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Nookaew I, Thorell K, Worah K, Wang S, Hibberd ML, Sjövall H, Pettersson S, Nielsen J, Lundin SB. Transcriptome signatures in Helicobacter pylori-infected mucosa identifies acidic mammalian chitinase loss as a corpus atrophy marker. BMC Med Genomics 2013; 6:41. [PMID: 24119614 PMCID: PMC4015281 DOI: 10.1186/1755-8794-6-41] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 10/01/2013] [Indexed: 12/20/2022] Open
Abstract
Background The majority of gastric cancer cases are believed to be caused by chronic infection with the bacterium Helicobacter pylori, and atrophic corpus gastritis is a predisposing condition to gastric cancer development. We aimed to increase understanding of the molecular details of atrophy by performing a global transcriptome analysis of stomach tissue. Methods Biopsies from patients with different stages of H. pylori infection were taken from both the antrum and corpus mucosa and analyzed on microarrays. The stages included patients without current H. pylori infection, H. pylori-infected without corpus atrophy and patients with current or past H. pylori-infection with corpus-predominant atrophic gastritis. Results Using clustering and integrated analysis, we found firm evidence for antralization of the corpus mucosa of atrophy patients. This antralization harbored gain of gastrin expression, as well as loss of expression of corpus-related genes, such as genes associated with acid production, energy metabolism and blood clotting. The analyses provided detailed molecular evidence for simultaneous intestinal metaplasia (IM) and spasmolytic polypeptide expressing metaplasia (SPEM) in atrophic corpus tissue. Finally, acidic mammalian chitinase, a chitin-degrading enzyme produced by chief cells, was shown to be strongly down-regulated in corpus atrophy. Conclusions Transcriptome analysis revealed several gene groups which are related to development of corpus atrophy, some of which were increased also in H. pylori-infected non-atrophic patients. Furthermore, loss of acidic chitinase expression is a promising marker for corpus atrophy.
Collapse
Affiliation(s)
- Intawat Nookaew
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Neuerburg C, Recknagel S, Fiedler J, Groll J, Moeller M, Bruellhoff K, Reichel H, Ignatius A, Brenner RE. Ultrathin sP(EO-stat-PO) hydrogel coatings are biocompatible and preserve functionality of surface bound growth factors in vivo. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2013; 24:2417-2427. [PMID: 23801500 DOI: 10.1007/s10856-013-4984-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 06/11/2013] [Indexed: 06/02/2023]
Abstract
Hydrogel coatings prepared from reactive star shaped polyethylene oxide based prepolymers (NCO-sP(EO-stat-PO)) minimize unspecific protein adsorption in vitro, while proteins immobilized on NCO-sP(EO-stat-PO) coatings retain their structure and biological function. The aim of the present study was to assess biocompatibility and the effect on early osseointegrative properties of a NCO-sP(EO-stat-PO) coating with additional RGD-peptides and augmentation with bone morphogenetic protein-4 (BMP) used on a medical grade high-density polyethylene (HDPE) base under in vivo circumstances. For testing of biocompatibility dishes with large amounts of bulk NCO-sP(EO-stat-PO) were implanted subcutaneously into 14 Wistar rats. In a second set-up functionalization of implants with ultrathin surface layers by coating ammonia-plasma treated HDPE with NCO-sP(EO-stat-PO), functionalization with linear RGD-peptides, and augmentation with RGD and BMP-4 was analyzed. Therefore, implants were placed subcutaneously in the paravertebral tissue and transcortically in the distal femur of another 14 Wistar rats. Both tests revealed no signs of enhanced inflammation of the surrounding tissue analyzed by CD68, IL-1ß-/TNF-α-antibody staining, nor systemic toxic reactions according to histological analysis of various organs. The mean thickness of the fibrous tissue surrounding the femoral implants was highest in native HDPE-implants and tended to be lower in all NCO-sP(EO-stat-PO) modified implants. Micro-CT analysis revealed a significant increase of peri-implant bone volume in RGD/BMP-4 coated samples. These results demonstrate that even very low amounts of surface bound growth factors do have significant effects when immobilized in an environment that retains their biological function. Hence, NCO-sP(EO-stat-PO)-coatings could offer an attractive platform to improve integration of orthopedic implants.
Collapse
Affiliation(s)
- Carl Neuerburg
- Department of Orthopaedics, University of Ulm, Ulm, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
The up-regulation of cysteine-rich protein 61 induced by transforming growth factor beta enhances osteosarcoma cell migration. Mol Cell Biochem 2013; 384:269-77. [PMID: 24037310 DOI: 10.1007/s11010-013-1807-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 08/30/2013] [Indexed: 12/20/2022]
Abstract
Overexpressed cysteine-rich protein 61 (Cyr61) is believed to enhance osteosarcoma (OS) cell metastasis, but the mechanism of Cyr61 overexpression in OS is not clear so far. In this study 33 OS samples were analyzed by immunostaining and focused on two parts: the correlation between overexpression of Cyr61 and OS metastasis; the mechanism of regulating Cyr61 expression in OS. Twenty-five out of 33 cases (75.76 %) with metastasis showed high expression of Cyr61. Furthermore, Cyr61 expression in Saos-2 cells was reduced by siRNA, and lower expression of Cyr61 in Saos-2 cell resulted in a cell migration deficiency and had no effect on cell proliferation. Particularly, Cyr61 expression was significantly increased in Saos-2 cells in response to different dosages of transforming growth factor beta (TGF-β), indicating that the expression of Cyr61 is TGF-β dependent. A transwell assay showed that Saos-2 cells stimulated with TGF-β had a greater capacity for migration than the control cells. The p38 MAPK-specific inhibitor SB203580 was able to reduce Cyr61 expression and inhibit the migration of Saos-2 cells stimulated with TGF-β. These results obtained provide new evidence that overexpressed Cyr61 plays a key role in the metastasis of OS cells and Cyr61 is a potential target downstream of TGF-β/p38 MAPK to regulate cell migration.
Collapse
|
50
|
Abstract
Gastric cancer (GC) remains one of the most common cancers worldwide. Its prevalence is still on the rise in the developing countries due to the ageing population. The cancer stem cell (CSC) theory provides a new insight into the interpretation of tumor initiation, aggressive growth, recurrence, and metastasis of cancer, as well as the development of new strategies for cancer treatment. This review will focus on the progress of biomarkers and signaling pathways of CSCs, the complex crosstalk networks between the microenvironment and CSCs, and the development of therapeutic approaches against CSCs, predominantly focusing on GC.
Collapse
|