1
|
Suzuki M, Kawauchi K, Machiyama H, Hirata H, Ishiwata S, Fujita H. Dynamic Remodeling of Mechano-Sensing Complexes in Suspended Fibroblast Cell-Sheets Under External Mechanical Stimulus. Biotechnol Bioeng 2025. [PMID: 40270085 DOI: 10.1002/bit.28996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 04/02/2025] [Accepted: 04/05/2025] [Indexed: 04/25/2025]
Abstract
Freestanding cell-sheets are valuable bio-materials for use in regenerative medicine and tissue engineering. Because cell-sheets experience various mechanical stimulations during handling, it is important to understand the responses of cells to these stimulations. Here, we demonstrate changes in the localization of various proteins during the stretching of fibroblast cell-sheets. These proteins are known to be involved in mechano-sensing. Upon stretching, actin filaments appear parallel to the stretching direction. At cell-cell junctions, β-catenin forms clusters that co-localize with accumulated vinculin and zyxin as well as the actin filaments. The p130 Crk-associated substrate, known to be present in focal adhesions, is also recruited to these clusters and phosphorylated. Our results suggest that mechano-sensing machinery is formed at cell-cell junctions when the cell-sheets are stretched.
Collapse
Affiliation(s)
- Madoka Suzuki
- Institute for Protein Research, The University of Osaka, Suita, Osaka, Japan
| | - Keiko Kawauchi
- Faculty of Frontiers of Innovative Research in Science and Technology, Konan University, Kobe, Hyogo, Japan
| | - Hiroaki Machiyama
- Department of Immunology, Tokyo Medical University, Shinjuku-ku, Tokyo, Japan
| | - Hiroaki Hirata
- Department of Life Science and Biotechnology, Kanazawa Institute of Technology, Hakusan, Ishikawa, Japan
| | - Shin'ichi Ishiwata
- Department of Physics, Faculty of Science and Engineering, Waseda University, Shinjuku-ku, Tokyo, Japan
| | - Hideaki Fujita
- Department of Stem Cell Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Hiroshima, Japan
| |
Collapse
|
2
|
Caruso JA, Chen-Tanyolac C, Tlsty TD. A hybrid epithelial-mesenchymal transition program enables basal epithelial cells to bypass stress-induced stasis and contributes to a metaplastic breast cancer progenitor state. Breast Cancer Res 2024; 26:184. [PMID: 39696672 DOI: 10.1186/s13058-024-01920-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 11/12/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Human mammary epithelial cell (HMEC) cultures encounter a stress-associated barrier termed stasis, during which most cells adopt a senescence-like phenotype. From these cultures, rare variants emerge from the basal epithelial population, re-initiating growth. Variants exhibit pre-malignant properties, including an aberrant epigenetic program that enables continued proliferation and acquisition of genetic changes. Following oncogenic transformation, variants produce tumors that recapitulate the histopathological characteristics of metaplastic breast cancer (MBC), a rare and aggressive subtype marked by the differentiation of neoplastic epithelium into squamous and mesenchymal elements. METHODS Using a serum-free HMEC culture system, we probed the capacity for phenotypic plasticity inherent to basal epithelial cell populations from human breast tissue as they navigated stasis and emerged as variant populations. RESULTS We observed robust activation of a TGF-β-dependent epithelial-mesenchymal transition (EMT) program in basal epithelial cells during stasis, followed by subsequent attenuation of this program in emerging variants. Inhibition of the TGF-β pathway or depleting the EMT regulators Snail or Slug allowed basal epithelial cells to collectively bypass stasis, demonstrating that cellular dysfunction and arrest resulting from TGF-β and EMT activation are central to this in vitro barrier. The spontaneous emergence of variants from stasis cultures was associated with a restricted EMT trajectory, characterized by the stabilization of hybrid EMT states associated with greater proliferative capacity, rather than progressing to a complete mesenchymal state characterized by irreversible growth arrest. Epigenetic mechanisms, which contributed to the dysregulated growth control characteristic of the variant phenotype, also contributed to the stability of the hybrid EMT program in variants. By overcoming the cellular dysfunction and growth arrest resulting from TGF-β and complete EMT, variants exhibited a higher oncogenic transformation efficiency compared to pre-stasis basal epithelial cells. Inhibiting the TGF-β pathway prior to stasis significantly reduced EMT in the basal epithelial population, alleviated selective pressure driving variant emergence, and also enhanced oncogenic transformation efficiency, resulting in tumors with markedly diminished metaplastic differentiation. CONCLUSIONS This study reveals how an epigenetic program governs basal epithelial cell fate decisions and contributes to the development of MBC progenitors by restricting access to terminal mesenchymal states that induce growth arrest and, instead, favoring hybrid EMT states with enhanced tumorigenic potential.
Collapse
Affiliation(s)
- Joseph A Caruso
- Department of Pathology, University of California, San Francisco, San Francisco, CA, 94143, USA.
| | - Chira Chen-Tanyolac
- Department of Pathology, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Thea D Tlsty
- Department of Pathology, University of California, San Francisco, San Francisco, CA, 94143, USA.
| |
Collapse
|
3
|
Caruso JA, Tlsty TD. An adaptive Epithelial-Mesenchymal Transition Program Enables Basal Epithelial Cells to Bypass Stress-Induced Stasis and Contributes to Metaplastic Breast Cancer Progenitor State. RESEARCH SQUARE 2024:rs.3.rs-4980285. [PMID: 39399685 PMCID: PMC11469408 DOI: 10.21203/rs.3.rs-4980285/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Background Human mammary epithelial cell (HMEC) cultures encounter a stress-associated barrier termed stasis, during which most cells adopt a senescence-like phenotype. From these cultures, rare variants emerge from the basal epithelial population, re-initiating growth. Variants exhibit pre-malignant properties, including an aberrant epigenetic program that enables continued proliferation and acquisition of genetic changes. Following oncogenic transformation, variants produce tumors that recapitulate the histopathological characteristics of metaplastic breast cancer (MBC), a rare subtype characterized by squamous and mesenchymal differentiation. Methods Using the conventional serum-free HMEC culture system, we probed the capacity for phenotypic plasticity inherent to basal epithelial cell populations from human breast tissue as they navigated stasis and emerged as variant populations. Results We observed robust activation of a TGF-β-dependent epithelial-mesenchymal transition (EMT) program in basal epithelial cells during stasis, followed by subsequent attenuation of this program in emerging variants. Inhibiting the TGF-β pathway or depleting the EMT regulators Snail or Slug allowed basal epithelial cells to collectively bypass stasis, demonstrating that cellular dysfunction and arrest resulting from TGF-β and EMT activation are central to this in vitro barrier. The spontaneous emergence of variants from stasis cultures was associated with a restricted EMT trajectory, which diverted cells away from a complete mesenchymal state characterized by irreversible growth arrest, and instead limited variants to epithelial and intermediate EMT states associated with greater proliferative capacity and stemness. Epigenetic mechanisms, which contributed to the dysregulated growth control characteristic of the variant phenotype, also contributed to the constrained EMT program in variants. By overcoming the cellular dysfunction and growth arrest resulting from TGF-β and EMT activation, variants exhibited increased oncogenic transformation efficiency compared to pre-stasis basal epithelial cells. Inhibiting the TGF-β pathway prior to stasis significantly reduced EMT in the basal epithelial population, alleviated selective pressure driving variant emergence, and enhanced oncogenic transformation efficiency, resulting in tumors with markedly diminished metaplastic differentiation. Conclusions This study reveals how adaptive EMT reprogramming governs basal epithelial cell fate decisions and contributes to the development of MBC progenitors by restricting access to terminal mesenchymal states that induce growth arrest and, instead, favoring intermediate states with enhanced tumorigenic potential.
Collapse
|
4
|
Rodrigues AM, Paula Zen Petisco Fiore A, Guardia GDA, Tomasin R, Azevedo Reis Teixeira A, Giordano RJ, Schechtman D, Pagano M, Galante PAF, Bruni-Cardoso A. Identification of a novel alternative splicing isoform of the Hippo kinase STK3/MST2 with impaired kinase and cell growth suppressing activities. Oncogene 2024; 43:2938-2950. [PMID: 39174858 DOI: 10.1038/s41388-024-03104-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 06/27/2024] [Accepted: 07/10/2024] [Indexed: 08/24/2024]
Abstract
Mammalian Ste-20-like Kinases 1 and 2 (MST1/2) are core serine-threonine kinases of the Hippo pathway regulating several cellular processes, including cell cycle arrest and cell death. Here, we discovered a novel alternative splicing variant of the MST2 encoding gene, STK3, in malignant cells and tumor datasets. This variant, named STK3∆7 or MST2∆7 (for mRNA or protein, respectively), resulted from the skipping of exon 7. MST2∆7 exhibited increased ubiquitylation and interaction with the E3 ubiquitin-protein ligase CHIP compared to the full-length protein (MST2FL). Exon 7 in STK3 encodes a segment within the kinase domain, and its exclusion compromised MST2 interaction with and phosphorylation of MOB, a major MST1/2 substrate. Nevertheless, MST2∆7 was capable of interacting with MST1 and MST2FL. Unlike MST2FL, overexpression of MST2∆7 did not lead to increased cell death and growth arrest. Strikingly, we observed the exclusion of STK3 exon 7 in 3.2-15% of tumor samples from patients of several types of cancer, while STK3∆7 was seldomly found in healthy tissues. Our study identified a novel STK3 splicing variant with loss of function and the potential to disturb tissue homeostasis by impacting on MST2 activities in the regulation of cell death and quiescence.
Collapse
Affiliation(s)
- Ana Maria Rodrigues
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Ana Paula Zen Petisco Fiore
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
- Department of Biology, New York University, New York, NY, USA
| | | | - Rebeka Tomasin
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | | | - Ricardo Jose Giordano
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Deborah Schechtman
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Michele Pagano
- Department of Biochemistry and Molecular Pharmacology, Howard Hughes Medical Institute, New York University Grossman School of Medicine, New York, NY, USA
| | - Pedro A F Galante
- Centro de Oncologia Molecular, Hospital Sírio-Libanês, São Paulo, Brazil
| | - Alexandre Bruni-Cardoso
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil.
| |
Collapse
|
5
|
Moragas N, Fernandez-Nogueira P, Recalde-Percaz L, Inman JL, López-Plana A, Bergholtz H, Noguera-Castells A, Del Burgo PJ, Chen X, Sorlie T, Gascón P, Bragado P, Bissell M, Carbó N, Fuster G. The SEMA3F-NRP1/NRP2 axis is a key factor in the acquisition of invasive traits in in situ breast ductal carcinoma. Breast Cancer Res 2024; 26:122. [PMID: 39138514 PMCID: PMC11320849 DOI: 10.1186/s13058-024-01871-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 07/12/2024] [Indexed: 08/15/2024] Open
Abstract
BACKGROUND A better understanding of ductal carcinoma in situ (DCIS) is urgently needed to identify these preinvasive lesions as distinct clinical entities. Semaphorin 3F (SEMA3F) is a soluble axonal guidance molecule, and its coreceptors Neuropilin 1 (NRP1) and NRP2 are strongly expressed in invasive epithelial BC cells. METHODS We utilized two cell line models to represent the progression from a healthy state to the mild-aggressive or ductal carcinoma in situ (DCIS) stage and, ultimately, to invasive cell lines. Additionally, we employed in vivo models and conducted analyses on patient databases to ensure the translational relevance of our results. RESULTS We revealed SEMA3F as a promoter of invasion during the DCIS-to-invasive ductal carcinoma transition in breast cancer (BC) through the action of NRP1 and NRP2. In epithelial cells, SEMA3F activates epithelialmesenchymal transition, whereas it promotes extracellular matrix degradation and basal membrane and myoepithelial cell layer breakdown. CONCLUSIONS Together with our patient database data, these proof-of-concept results reveal new SEMA3F-mediated mechanisms occurring in the most common preinvasive BC lesion, DCIS, and represent potent and direct activation of its transition to invasion. Moreover, and of clinical and therapeutic relevance, the effects of SEMA3F can be blocked directly through its coreceptors, thus preventing invasion and keeping DCIS lesions in the preinvasive state.
Collapse
MESH Headings
- Humans
- Neuropilin-1/metabolism
- Neuropilin-1/genetics
- Female
- Breast Neoplasms/pathology
- Breast Neoplasms/metabolism
- Breast Neoplasms/genetics
- Neuropilin-2/metabolism
- Neuropilin-2/genetics
- Neoplasm Invasiveness
- Carcinoma, Intraductal, Noninfiltrating/metabolism
- Carcinoma, Intraductal, Noninfiltrating/pathology
- Carcinoma, Intraductal, Noninfiltrating/genetics
- Cell Line, Tumor
- Nerve Tissue Proteins/metabolism
- Nerve Tissue Proteins/genetics
- Epithelial-Mesenchymal Transition/genetics
- Animals
- Membrane Proteins/metabolism
- Membrane Proteins/genetics
- Mice
- Carcinoma, Ductal, Breast/pathology
- Carcinoma, Ductal, Breast/metabolism
- Carcinoma, Ductal, Breast/genetics
- Gene Expression Regulation, Neoplastic
- Signal Transduction
Collapse
Affiliation(s)
- Núria Moragas
- Department of Biochemistry and Molecular Biomedicine, Universitat de Barcelona (UB), 08028, Barcelona, Spain
- Institute of Biomedicine of the Universitat de Barcelona (IBUB), Barcelona, Spain
| | - Patricia Fernandez-Nogueira
- Department of Biochemistry and Molecular Biomedicine, Universitat de Barcelona (UB), 08028, Barcelona, Spain
- Institute of Biomedicine of the Universitat de Barcelona (IBUB), Barcelona, Spain
- Department of Biomedicine, School of Medicine, Universitat de Barcelona (UB), 08036, Barcelona, Spain
| | - Leire Recalde-Percaz
- Department of Biochemistry and Molecular Biomedicine, Universitat de Barcelona (UB), 08028, Barcelona, Spain
- Institute of Biomedicine of the Universitat de Barcelona (IBUB), Barcelona, Spain
| | - Jamie L Inman
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd., Berkeley, CA, 94720, USA
| | - Anna López-Plana
- Department of Biochemistry and Molecular Biomedicine, Universitat de Barcelona (UB), 08028, Barcelona, Spain
- Institute of Biomedicine of the Universitat de Barcelona (IBUB), Barcelona, Spain
| | - Helga Bergholtz
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, 0450, Oslo, Norway
| | - Aleix Noguera-Castells
- Department of Biochemistry and Molecular Biomedicine, Universitat de Barcelona (UB), 08028, Barcelona, Spain
- Institute of Biomedicine of the Universitat de Barcelona (IBUB), Barcelona, Spain
- Cancer Epigenetics Group, Josep Carreras Leukaemia Research Institute (IJC), Barcelona, Catalonia, Spain
- Centro de Investigacion Biomedica en Red Cancer (CIBERONC), Madrid, Spain
- Department of Biosciences, Faculty of Science, Technology and Engineering, University of Vic - Central University of Catalonia (UVic-UCC), Vic, Barcelona, Catalonia, Spain
| | - Pedro J Del Burgo
- Department of Biochemistry and Molecular Biomedicine, Universitat de Barcelona (UB), 08028, Barcelona, Spain
| | - Xieng Chen
- Department of Biochemistry and Molecular Biomedicine, Universitat de Barcelona (UB), 08028, Barcelona, Spain
| | - Therese Sorlie
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, 0450, Oslo, Norway
| | - Pere Gascón
- Department of Biochemistry and Molecular Biomedicine, Universitat de Barcelona (UB), 08028, Barcelona, Spain
| | - Paloma Bragado
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Universidad Complutense de Madrid, Health Research Institute of the Hospital Clínico San Carlos, 28040, Madrid, Spain
| | - Mina Bissell
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd., Berkeley, CA, 94720, USA
| | - Neus Carbó
- Department of Biochemistry and Molecular Biomedicine, Universitat de Barcelona (UB), 08028, Barcelona, Spain
- Institute of Biomedicine of the Universitat de Barcelona (IBUB), Barcelona, Spain
| | - Gemma Fuster
- Department of Biochemistry and Molecular Biomedicine, Universitat de Barcelona (UB), 08028, Barcelona, Spain.
- Institute of Biomedicine of the Universitat de Barcelona (IBUB), Barcelona, Spain.
- Tissue Repair and Regeneration Laboratory (TR2Lab), Institute of Research and Innovation of Life Sciences and Health, Catalunya Central (IRIS-CC), UVIC-UCC, Vic, Spain.
| |
Collapse
|
6
|
Manucci AC, Fiore APZP, Genesi GL, Bruni-Cardoso A. The basement membrane regulates the cellular localization and the cytoplasmic interactome of Yes-Associated Protein (YAP) in mammary epithelial cells. J Cell Biochem 2024; 125:e30606. [PMID: 38779980 DOI: 10.1002/jcb.30606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 04/16/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024]
Abstract
The Hippo pathway, a signaling cascade involved in the regulation of organ size and several other processes, acts as a conduit between extracellular matrix (ECM) cues and cellular responses. We asked whether the basement membrane (BM), a specialized ECM component known to induce quiescence and differentiation in mammary epithelial cells, would regulate the localization, activity, and interactome of YAP, a Hippo pathway effector. To address this question, we used a broad range of experimental approaches, including 2D and 3D cultures of both mouse and human mammary epithelial cells, as well as the developing mouse mammary gland. In contrast to malignant cells, nontumoral cells cultured with a reconstituted BM (rBM) displayed higher concentrations of YAP in the cytoplasm. Incidentally, when in the nucleus of rBM-treated cells, YAP resided preferentially at the nuclear periphery. In agreement with our cell culture experiments, YAP exhibited cytoplasmic predominance in ductal cells of developing mammary epithelia, where a denser BM is found. Conversely, terminal end bud (TEB) cells with a thinner BM displayed higher nucleus-to-cytoplasm ratios of YAP. Bioinformatic analysis revealed that genes regulated by YAP were overrepresented in the transcriptomes of microdissected TEBs. Consistently, mouse epithelial cells exposed to the rBM expressed lower levels of YAP-regulated genes, although the protein level of YAP and Hippo components were slightly altered by the treatment. Mass spectrometry analysis identified a differential set of proteins interacting with YAP in cytoplasmic fractions of mouse epithelial cells in the absence or presence of rBM. In untreated cells, YAP interactants were enriched in processes related to ubiquitin-mediated proteolysis, whereas in cells exposed to rBM YAP interactants were mainly key proteins related to amino acid, amino sugar, and carbohydrate metabolism. Collectively, we unraveled that the BM induces YAP translocation or retention in the cytoplasm of nontumoral epithelial cells and that in the cytoplasm YAP seems to undertake novel functions in metabolic pathways.
Collapse
Affiliation(s)
- Antonio Carlos Manucci
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | | | - Giovani Luiz Genesi
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Alexandre Bruni-Cardoso
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
7
|
Ancona P, Trentini A, Terrazzan A, Grassilli S, Navals P, Gates EWJ, Rosta V, Cervellati C, Bergamini CM, Pignatelli A, Keillor JW, Taccioli C, Bianchi N. Transcriptomics Studies Reveal Functions of Transglutaminase 2 in Breast Cancer Cells Using Membrane Permeable and Impermeable Inhibitors. J Mol Biol 2024; 436:168569. [PMID: 38604527 DOI: 10.1016/j.jmb.2024.168569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 04/02/2024] [Accepted: 04/05/2024] [Indexed: 04/13/2024]
Abstract
Transglutaminase 2 (TG2) performs many functions both under physiological and pathological conditions. In cancer, its expression is associated with aggressiveness, propensity to epithelial-mesenchymal transition, and metastasis. Since TG2 performs key functions both outside and inside the cell, using inhibitors with different membrane permeability we analyzed the changes in the transcriptome induced in two triple-negative cell lines (MDA-MB-436 and MDA-MB-231) with aggressive features. By characterizing pathways and gene networks, we were able to define the effects of TG2 inhibitors (AA9, membrane-permeable, and NCEG2, impermeable) in relation to the roles of the enzyme in the intra- and extracellular space within the context of breast cancer. The deregulated genes revealed p53 and integrin signaling to be the common pathways with some genes showing opposite changes in expression. In MDA-MB-436, AA9 induced apoptosis, modulated cadherin, Wnt, gastrin and cholecystokinin receptors (CCKR) mediated signaling, with RHOB and GNG2 playing significant roles, and affected the Warburg effect by decreasing glycolytic enzymes. In MDA-MB-231 cells, AA9 strongly impacted HIF-mediated hypoxia, including AKT and mTOR pathway. These effects suggest an anti-tumor activity by blocking intracellular TG2 functions. Conversely, the use of NCEG2 stimulated the expression of ATP synthase and proteins involved in DNA replication, indicating a potential promotion of cell proliferation through inhibition of extracellular TG2. To effectively utilize these molecules as an anti-tumor strategy, an appropriate delivery system should be evaluated to target specific functions and avoid adverse effects. Additionally, considering combinations with other pathway modulators is crucial.
Collapse
Affiliation(s)
- Pietro Ancona
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy.
| | - Alessandro Trentini
- Department of Environmental Sciences and Prevention, University of Ferrara, Ferrara, Italy.
| | - Anna Terrazzan
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy.
| | - Silvia Grassilli
- Department of Environmental Sciences and Prevention, University of Ferrara, Ferrara, Italy.
| | - Pauline Navals
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada.
| | - Eric W J Gates
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada.
| | - Valentina Rosta
- Department of Environmental Sciences and Prevention, University of Ferrara, Ferrara, Italy.
| | - Carlo Cervellati
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy.
| | - Carlo M Bergamini
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy.
| | - Angela Pignatelli
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy.
| | - Jeffrey W Keillor
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada.
| | - Cristian Taccioli
- Department of Animal Medicine, Production and Health, University of Padua, Padua, Italy.
| | - Nicoletta Bianchi
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy.
| |
Collapse
|
8
|
Wang J, Li B, Luo M, Huang J, Zhang K, Zheng S, Zhang S, Zhou J. Progression from ductal carcinoma in situ to invasive breast cancer: molecular features and clinical significance. Signal Transduct Target Ther 2024; 9:83. [PMID: 38570490 PMCID: PMC10991592 DOI: 10.1038/s41392-024-01779-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 02/14/2024] [Accepted: 02/26/2024] [Indexed: 04/05/2024] Open
Abstract
Ductal carcinoma in situ (DCIS) represents pre-invasive breast carcinoma. In untreated cases, 25-60% DCIS progress to invasive ductal carcinoma (IDC). The challenge lies in distinguishing between non-progressive and progressive DCIS, often resulting in over- or under-treatment in many cases. With increasing screen-detected DCIS in these years, the nature of DCIS has aroused worldwide attention. A deeper understanding of the biological nature of DCIS and the molecular journey of the DCIS-IDC transition is crucial for more effective clinical management. Here, we reviewed the key signaling pathways in breast cancer that may contribute to DCIS initiation and progression. We also explored the molecular features of DCIS and IDC, shedding light on the progression of DCIS through both inherent changes within tumor cells and alterations in the tumor microenvironment. In addition, valuable research tools utilized in studying DCIS including preclinical models and newer advanced technologies such as single-cell sequencing, spatial transcriptomics and artificial intelligence, have been systematically summarized. Further, we thoroughly discussed the clinical advancements in DCIS and IDC, including prognostic biomarkers and clinical managements, with the aim of facilitating more personalized treatment strategies in the future. Research on DCIS has already yielded significant insights into breast carcinogenesis and will continue to pave the way for practical clinical applications.
Collapse
Affiliation(s)
- Jing Wang
- The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Breast Surgery and Oncology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for Cancer, Hangzhou, China
| | - Baizhou Li
- Department of Pathology, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Meng Luo
- The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for Cancer, Hangzhou, China
- Department of Plastic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jia Huang
- The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for Cancer, Hangzhou, China
| | - Kun Zhang
- Department of Breast Surgery and Oncology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shu Zheng
- The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for Cancer, Hangzhou, China
| | - Suzhan Zhang
- The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Zhejiang Provincial Clinical Research Center for Cancer, Hangzhou, China.
| | - Jiaojiao Zhou
- The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Department of Breast Surgery and Oncology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Zhejiang Provincial Clinical Research Center for Cancer, Hangzhou, China.
- Cancer Center, Zhejiang University, Hangzhou, China.
| |
Collapse
|
9
|
Muñoz-Sáez E, Moracho N, Learte AIR, Collignon A, Arroyo AG, Noel A, Sounni NE, Sánchez-Camacho C. Molecular Mechanisms Driven by MT4-MMP in Cancer Progression. Int J Mol Sci 2023; 24:9944. [PMID: 37373092 DOI: 10.3390/ijms24129944] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
MT4-MMP (or MMP-17) belongs to the membrane-type matrix metalloproteinases (MT-MMPs), a distinct subset of the MMP family that is anchored to the cell surface, in this case by a glycosylphosphatidylinositol (GPI) motif. Its expression in a variety of cancers is well documented. However, the molecular mechanisms by which MT4-MMP contributes to tumor development need further investigation. In this review, we aim to summarize the contribution of MT4-MMP in tumorigenesis, focusing on the molecular mechanisms triggered by the enzyme in tumor cell migration, invasiveness, and proliferation, in the tumor vasculature and microenvironment, as well as during metastasis. In particular, we highlight the putative substrates processed and signaling cascades activated by MT4-MMP that may underlie these malignancy processes and compare this with what is known about its role during embryonic development. Finally, MT4-MMP is a relevant biomarker of malignancy that can be used for monitoring cancer progression in patients as well as a potential target for future therapeutic drug development.
Collapse
Affiliation(s)
- Emma Muñoz-Sáez
- Department of Health Science, School of Biomedical Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, 28670 Madrid, Spain
| | - Natalia Moracho
- Department of Medicine, School of Biomedical Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, 28670 Madrid, Spain
| | - Ana I R Learte
- Department of Dentistry, School of Biomedical Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, 28670 Madrid, Spain
| | - Alice Collignon
- Laboratory of Biology of Tumor and Developmental Biology, GIGA Cancer, Liège University, B-4000 Liège, Belgium
- Cancer Metabolism and Tumor Microenvironment Group, GIGA Cancer, Liège University, B-4000 Liège, Belgium
| | - Alicia G Arroyo
- Department of Molecular Biomedicine, Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), 28040 Madrid, Spain
| | - Agnés Noel
- Laboratory of Biology of Tumor and Developmental Biology, GIGA Cancer, Liège University, B-4000 Liège, Belgium
| | - Nor Eddine Sounni
- Laboratory of Biology of Tumor and Developmental Biology, GIGA Cancer, Liège University, B-4000 Liège, Belgium
- Cancer Metabolism and Tumor Microenvironment Group, GIGA Cancer, Liège University, B-4000 Liège, Belgium
| | - Cristina Sánchez-Camacho
- Department of Genetics, Physiology and Microbiology, Faculty of Biological Sciences, Complutense University of Madrid, 28040 Madrid, Spain
| |
Collapse
|
10
|
Wakefield L, Agarwal S, Tanner K. Preclinical models for drug discovery for metastatic disease. Cell 2023; 186:1792-1813. [PMID: 37059072 DOI: 10.1016/j.cell.2023.02.026] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/13/2023] [Accepted: 02/21/2023] [Indexed: 04/16/2023]
Abstract
Despite many advances, metastatic disease remains essentially uncurable. Thus, there is an urgent need to better understand mechanisms that promote metastasis, drive tumor evolution, and underlie innate and acquired drug resistance. Sophisticated preclinical models that recapitulate the complex tumor ecosystem are key to this process. We begin with syngeneic and patient-derived mouse models that are the backbone of most preclinical studies. Second, we present some unique advantages of fish and fly models. Third, we consider the strengths of 3D culture models for resolving remaining knowledge gaps. Finally, we provide vignettes on multiplexed technologies to advance our understanding of metastatic disease.
Collapse
Affiliation(s)
- Lalage Wakefield
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Seema Agarwal
- Department of Pathology, Center for Cell Reprogramming, Georgetown University Medical Center, Washington, DC 20007, USA.
| | - Kandice Tanner
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
11
|
Whitford MKM, McCaffrey L. Polarity in breast development and cancer. Curr Top Dev Biol 2023; 154:245-283. [PMID: 37100520 DOI: 10.1016/bs.ctdb.2023.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
Mammary gland development and breast cancer progression are associated with extensive remodeling of epithelial tissue architecture. Apical-basal polarity is a key feature of epithelial cells that coordinates key elements of epithelial morphogenesis including cell organization, proliferation, survival, and migration. In this review we discuss advances in our understanding of how apical-basal polarity programs are used in breast development and cancer. We describe cell lines, organoids, and in vivo models commonly used for studying apical-basal polarity in breast development and disease and discuss advantages and limitations of each. We also provide examples of how core polarity proteins regulate branching morphogenesis and lactation during development. We describe alterations to core polarity genes in breast cancer and their associations with patient outcomes. The impact of up- or down-regulation of key polarity proteins in breast cancer initiation, growth, invasion, metastasis, and therapeutic resistance are discussed. We also introduce studies demonstrating that polarity programs are involved in regulating the stroma, either through epithelial-stroma crosstalk, or through signaling of polarity proteins in non-epithelial cell types. Overall, a key concept is that the function of individual polarity proteins is highly contextual, depending on developmental or cancer stage and cancer subtype.
Collapse
Affiliation(s)
- Mara K M Whitford
- Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada; Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Luke McCaffrey
- Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada; Department of Biochemistry, McGill University, Montreal, Quebec, Canada; Gerald Bronfman Department of Oncology, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
12
|
Pargett M, Ram AR, Murthy V, Davies AE. Live-Cell Sender-Receiver Co-cultures for Quantitative Measurement of Paracrine Signaling Dynamics, Gene Expression, and Drug Response. Methods Mol Biol 2023; 2634:285-314. [PMID: 37074584 DOI: 10.1007/978-1-0716-3008-2_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023]
Abstract
Paracrine signaling is a fundamental process regulating tissue development, repair, and pathogenesis of diseases such as cancer. Herein we describe a method for quantitatively measuring paracrine signaling dynamics, and resultant gene expression changes, in living cells using genetically encoded signaling reporters and fluorescently tagged gene loci. We discuss considerations for selecting paracrine "sender-receiver" cell pairs, appropriate reporters, the use of this system to ask diverse experimental questions and screen drugs blocking intracellular communication, data collection, and the use of computational approaches to model and interpret these experiments.
Collapse
Affiliation(s)
- Michael Pargett
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA, USA
| | - Abhineet R Ram
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA, USA
| | - Vaibhav Murthy
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
- Knight Cancer Institute, Cancer Early Detection Advanced Research Center, Oregon Health & Science University, Portland, OR, USA
| | - Alexander E Davies
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA.
- Knight Cancer Institute, Cancer Early Detection Advanced Research Center, Oregon Health & Science University, Portland, OR, USA.
| |
Collapse
|
13
|
Stromal Co-Cultivation for Modeling Breast Cancer Dormancy in the Bone Marrow. Cancers (Basel) 2022; 14:cancers14143344. [PMID: 35884405 PMCID: PMC9320268 DOI: 10.3390/cancers14143344] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/05/2022] [Accepted: 07/05/2022] [Indexed: 11/16/2022] Open
Abstract
Cancers metastasize to the bone marrow before primary tumors can be detected. Bone marrow micrometastases are resistant to therapy, and while they are able to remain dormant for decades, they recur steadily and result in incurable metastatic disease. The bone marrow microenvironment maintains the dormancy and chemoresistance of micrometastases through interactions with multiple cell types and through structural and soluble factors. Modeling dormancy in vitro can identify the mechanisms of these interactions. Modeling also identifies mechanisms able to disrupt these interactions or define novel interactions that promote the reawakening of dormant cells. The in vitro modeling of the interactions of cancer cells with various bone marrow elements can generate hypotheses on the mechanisms that control dormancy, treatment resistance and reawakening in vivo. These hypotheses can guide in vivo murine experiments that have high probabilities of succeeding in order to verify in vitro findings while minimizing the use of animals in experiments. This review outlines the existing data on predominant stromal cell types and their use in 2D co-cultures with cancer cells.
Collapse
|
14
|
Abstract
Drug resistance and metastasis-the major complications in cancer-both entail adaptation of cancer cells to stress, whether a drug or a lethal new environment. Intriguingly, these adaptive processes share similar features that cannot be explained by a pure Darwinian scheme, including dormancy, increased heterogeneity, and stress-induced plasticity. Here, we propose that learning theory offers a framework to explain these features and may shed light on these two intricate processes. In this framework, learning is performed at the single-cell level, by stress-driven exploratory trial-and-error. Such a process is not contingent on pre-existing pathways but on a random search for a state that diminishes the stress. We review underlying mechanisms that may support this search, and show by using a learning model that such exploratory learning is feasible in a high-dimensional system as the cell. At the population level, we view the tissue as a network of exploring agents that communicate, restraining cancer formation in health. In this view, disease results from the breakdown of homeostasis between cellular exploratory drive and tissue homeostasis.
Collapse
Affiliation(s)
- Aseel Shomar
- Department of Chemical Engineering, Israel Institute of Technology, Haifa 32000, Israel
- Network Biology Research Laboratory, Israel Institute of Technology, Haifa 32000, Israel
| | - Omri Barak
- Network Biology Research Laboratory, Israel Institute of Technology, Haifa 32000, Israel
- Rappaport Faculty of Medicine Technion, Israel Institute of Technology, Haifa 32000, Israel
| | - Naama Brenner
- Department of Chemical Engineering, Israel Institute of Technology, Haifa 32000, Israel
- Network Biology Research Laboratory, Israel Institute of Technology, Haifa 32000, Israel
| |
Collapse
|
15
|
Özkan H, Öztürk DG, Korkmaz G. Transcriptional Factor Repertoire of Breast Cancer in 3D Cell Culture Models. Cancers (Basel) 2022; 14:cancers14041023. [PMID: 35205770 PMCID: PMC8870600 DOI: 10.3390/cancers14041023] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/13/2022] [Accepted: 02/14/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Knowledge of the transcriptional regulation of breast cancer tumorigenesis is largely based on studies performed in two-dimensional (2D) monolayer culture models, which lack tissue architecture and therefore fail to represent tumor heterogeneity. However, three-dimensional (3D) cell culture models are better at mimicking in vivo tumor microenvironment, which is critical in regulating cellular behavior. Hence, 3D cell culture models hold great promise for translational breast cancer research. Abstract Intratumor heterogeneity of breast cancer is driven by extrinsic factors from the tumor microenvironment (TME) as well as tumor cell–intrinsic parameters including genetic, epigenetic, and transcriptomic traits. The extracellular matrix (ECM), a major structural component of the TME, impacts every stage of tumorigenesis by providing necessary biochemical and biomechanical cues that are major regulators of cell shape/architecture, stiffness, cell proliferation, survival, invasion, and migration. Moreover, ECM and tissue architecture have a profound impact on chromatin structure, thereby altering gene expression. Considering the significant contribution of ECM to cellular behavior, a large body of work underlined that traditional two-dimensional (2D) cultures depriving cell–cell and cell–ECM interactions as well as spatial cellular distribution and organization of solid tumors fail to recapitulate in vivo properties of tumor cells residing in the complex TME. Thus, three-dimensional (3D) culture models are increasingly employed in cancer research, as these culture systems better mimic the physiological microenvironment and shape the cellular responses according to the microenvironmental cues that will regulate critical cell functions such as cell shape/architecture, survival, proliferation, differentiation, and drug response as well as gene expression. Therefore, 3D cell culture models that better resemble the patient transcriptome are critical in defining physiologically relevant transcriptional changes. This review will present the transcriptional factor (TF) repertoire of breast cancer in 3D culture models in the context of mammary tissue architecture, epithelial-to-mesenchymal transition and metastasis, cell death mechanisms, cancer therapy resistance and differential drug response, and stemness and will discuss the impact of culture dimensionality on breast cancer research.
Collapse
Affiliation(s)
- Hande Özkan
- School of Medicine, Koç University, Istanbul 34450, Turkey;
- Research Centre for Translational Medicine (KUTTAM), Koç University, Istanbul 34450, Turkey
| | - Deniz Gülfem Öztürk
- School of Medicine, Koç University, Istanbul 34450, Turkey;
- Research Centre for Translational Medicine (KUTTAM), Koç University, Istanbul 34450, Turkey
- Correspondence: (D.G.Ö.); (G.K.)
| | - Gozde Korkmaz
- School of Medicine, Koç University, Istanbul 34450, Turkey;
- Research Centre for Translational Medicine (KUTTAM), Koç University, Istanbul 34450, Turkey
- Correspondence: (D.G.Ö.); (G.K.)
| |
Collapse
|
16
|
[Spheroids to organoids: Solid cancer models for anticancer drug discovery]. Bull Cancer 2021; 109:49-57. [PMID: 34848046 DOI: 10.1016/j.bulcan.2021.09.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/24/2021] [Accepted: 09/26/2021] [Indexed: 11/20/2022]
Abstract
Cell culture is an important and necessary technology in oncology research. Currently, two-dimensional (2D) cell culture models are the most widely used, but they cannot reproduce the complexity and pathophysiology of tumors in vivo. This may be a major cause of the high rate of attrition of anticancer drugs entering clinical trials, the rate of new anticancer drugs entering the market being less than 5 %. One way to improve the success of new cancer drugs in the clinic is based on the use of three-dimensional (3D) cell culture models, more able to represent the complex environment and architecture of tumors. These 3D culture systems are also a powerful research tool for modeling the evolution of cancer from early stages to metastasis. Spheroids and organoids, the most adaptable models among 3D culture systems, are beginning to be used in pharmaceutical research and personalized medicine. In this article, we review the use of spheroids and organoids by highlighting their differences, discussing their impact on drug development, and looking at future challenges.
Collapse
|
17
|
Brown CW, Chhoy P, Mukhopadhyay D, Karner ER, Mercurio AM. Targeting prominin2 transcription to overcome ferroptosis resistance in cancer. EMBO Mol Med 2021; 13:e13792. [PMID: 34223704 PMCID: PMC8350900 DOI: 10.15252/emmm.202013792] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 06/03/2021] [Accepted: 06/07/2021] [Indexed: 01/22/2023] Open
Abstract
Understanding how cancer cells resist ferroptosis is a significant problem that impacts ongoing efforts to stimulate ferroptosis as a therapeutic strategy. We reported that prominin2 is induced by ferroptotic stimuli and functions to resist ferroptotic death. Although this finding has significant implications for therapy, specific prominin2 inhibitors are not available. We rationalized that the mechanism by which prominin2 expression is induced by ferroptotic stress could be targeted, expanding the range of options to overcome ferroptosis resistance. Here, we show that that 4-hydroxynonenal (4HNE), a specific lipid metabolite formed from the products of lipid peroxidation stimulates PROM2 transcription by a mechanism that involves p38 MAP kinase-mediated activation of HSF1 and HSF1-dependent transcription of PROM2. HSF1 inhibitors sensitize a wide variety of resistant cancer cells to drugs that induce ferroptosis. Importantly, the combination of a ferroptosis-inducing drug and an HSF1 inhibitor causes the cytostasis of established tumors in mice, although neither treatment alone is effective. These data reveal a novel approach for the therapeutic induction of ferroptosis in cancer.
Collapse
Affiliation(s)
- Caitlin W Brown
- Department of Molecular, Cell and Cancer BiologyUniversity of Massachusetts Medical SchoolWorcesterMAUSA
| | - Peter Chhoy
- Department of Molecular, Cell and Cancer BiologyUniversity of Massachusetts Medical SchoolWorcesterMAUSA
| | - Dimpi Mukhopadhyay
- Department of Molecular, Cell and Cancer BiologyUniversity of Massachusetts Medical SchoolWorcesterMAUSA
| | - Emmet R Karner
- Department of Molecular, Cell and Cancer BiologyUniversity of Massachusetts Medical SchoolWorcesterMAUSA
| | - Arthur M Mercurio
- Department of Molecular, Cell and Cancer BiologyUniversity of Massachusetts Medical SchoolWorcesterMAUSA
| |
Collapse
|
18
|
Ray SK, Mukherjee S. Imitating Hypoxia and Tumor Microenvironment with Immune Evasion by Employing Three Dimensional in vitro Cellular Models: Impressive Tool in Drug Discovery. Recent Pat Anticancer Drug Discov 2021; 17:80-91. [PMID: 34323197 DOI: 10.2174/1574892816666210728115605] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 06/04/2021] [Accepted: 06/10/2021] [Indexed: 11/22/2022]
Abstract
The heterogeneous tumor microenvironment is exceptionally perplexing and not wholly comprehended. Different multifaceted alignments lead to the generation of oxygen destitute situations within the tumor niche that modulate numerous intrinsic tumor microenvironments. Disentangling these communications is vital for scheming practical therapeutic approaches that can successfully decrease tumor allied chemotherapy resistance by utilizing the innate capability of the immune system. Several research groups have concerned with a protruding role for oxygen metabolism along with hypoxia in the immunity of healthy tissue. Hypoxia in addition to hypoxia-inducible factors (HIFs) in the tumor microenvironment plays an important part in tumor progression and endurance. Although numerous hypoxia-focused therapies have shown promising outcomes both in vitro and in vivo these outcomes have not effectively translated into clinical preliminaries. Distinctive cell culture techniques have utilized as an in vitro model for tumor niche along with tumor microenvironment and proficient in more precisely recreating tumor genomic profiles as well as envisaging therapeutic response. To study the dynamics of tumor immune evasion, three-dimensional (3D) cell cultures are more physiologically important to the hypoxic tumor microenvironment. Recent research has revealed new information and insights into our fundamental understanding of immune systems, as well as novel results that have been established as potential therapeutic targets. There are a lot of patented 3D cell culture techniques which will be highlighted in this review. At present notable 3D cell culture procedures in the hypoxic tumor microenvironment, discourse open doors to accommodate both drug repurposing, advancement, and divulgence of new medications and will deliberate the 3D cell culture methods into standard prescription disclosure especially in the field of cancer biology which will be discussing here.
Collapse
Affiliation(s)
- Suman Kumar Ray
- Department of Applied Sciences. Indira Gandhi Technological and Medical Sciences University, Ziro, Arunachal Pradesh-791120, India
| | - Sukhes Mukherjee
- Department of Biochemistry. All India Institute of Medical Sciences. Bhopal, Madhya Pradesh-462020, India
| |
Collapse
|
19
|
Ray SK, Mukherjee S. Consequences of Extracellular Matrix Remodeling in Headway and Metastasis of Cancer along with Novel Immunotherapies: A Great Promise for Future Endeavor. Anticancer Agents Med Chem 2021; 22:1257-1271. [PMID: 34254930 DOI: 10.2174/1871520621666210712090017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/23/2021] [Accepted: 05/30/2021] [Indexed: 12/12/2022]
Abstract
Tissues are progressively molded by bidirectional correspondence between denizen cells and extracellular matrix (ECM) via cell-matrix connections along with ECM remodeling. The composition and association of ECM are spatiotemporally directed to control cell conduct and differentiation; however, dysregulation of ECM dynamics prompts the development of diseases, for example, cancer. Emerging information demonstrates that hypoxia may have decisive roles in metastasis. In addition, the sprawling nature of neoplastic cells and chaotic angiogenesis are increasingly influencing microcirculation as well as altering the concentration of oxygen. In various regions of the tumor microenvironment, hypoxia, an essential player in the multistep phase of cancer metastasis, is necessary. Hypoxia can be turned into an advantage for selective cancer therapy because it is much more severe in tumors than in normal tissues. Cellular matrix gives signaling cues that control cell behavior and organize cells' elements in tissue development and homeostasis. The interplay between intrinsic factors of cancer cells themselves, including their genotype and signaling networks, and extrinsic factors of tumor stroma, for example, ECM and ECM remodeling, together decide the destiny and behavior of tumor cells. Tumor matrix encourages the development, endurance, and invasion of neoplastic and immune cell activities to drive metastasis and debilitate treatment. Incipient evidence recommends essential parts of tumor ECM segments and their remodeling in controlling each progression of the cancer-immunity cycle. Scientists have discovered that tumor matrix dynamics as well as matrix remodeling in perspective to anti-tumor immune reactions are especially important for matrix-based biomarkers recognition and followed by immunotherapy and targeting specific drugs.
Collapse
Affiliation(s)
- Suman Kumar Ray
- Department of Applied Sciences, Indira Gandhi Technological and Medical Sciences University, India
| | - Sukhes Mukherjee
- Department of Biochemistry. All India Institute of Medical Sciences Bhopal, Madhya pradesh-462020, India
| |
Collapse
|
20
|
Identification of Key Genes Related to the Prognosis of Esophageal Squamous Cell Carcinoma Based on Chip Re-Annotation. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11073229] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Esophageal cancer (EC) is one of the deadliest cancers worldwide. However, reliable biomarkers for early diagnosis, or those for the prognosis of therapy, remain unfulfilled goals for its subtype esophageal squamous cell carcinoma (ESCC). The purpose of this study was to identify reliable biomarkers for the diagnosis and prognosis of ESCC by gene chip re-annotation technique and downstream bioinformatics analysis. In our research, the GSE53624 dataset was downloaded from the GEO database. Then, we reannotated the gene expression probe and obtained the gene expression matrix. Differential expressed genes (DEGs) were found by R packages and they were subjected to Gene Ontology enrichment analysis and protein–protein interaction (PPI) network construction. As a result, a total of 28,885 mRNA probes were reannotated, among which 210 down-regulated and 80 up-regulated DEGs were screened out. By combining these genes set in clinical prognosis information and Western blot analysis, we found four genes with diagnostic and prognostic significance, including MMP13, SPP1, MMP10, and COL1A1. Furthermore, markers of infiltrating immune cells exhibited different DEG-related immune infiltration patterns.
Collapse
|
21
|
Yin S, Xu L, Wang S, Feng J, Liu L, Liu G, Wang J, Zhan S, Zhao Z, Gao P. Prevalence of extramammary Paget's disease in urban China: a population-based study. Orphanet J Rare Dis 2021; 16:134. [PMID: 33731175 PMCID: PMC7972239 DOI: 10.1186/s13023-021-01715-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 01/26/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Extramammary Paget's disease (EMPD) is an intraepithelial adenocarcinoma. The chronic relapsing clinical course and unbearable clinical symptoms of extramammary Paget's disease usually result in a markedly diminished quality of life. No national data are available on descriptive epidemiology of EMPD in China, the most populous country over the world. This population-based study aimed to estimate the prevalence and associated sex and age patterns of EMPD in China. METHODS This study was conducted using data from China's Urban Employee Basic Medical Insurance and Urban Resident Basic Medical Insurance, covering approximately 0.43 billion Chinese urban residents in 2016. Patients with EMPD were identified based on the diagnostic names and codes in claim data. RESULTS A total of 53 males and 31 females with EMPD were found. The crude prevalence in 2016 was 0.04 per 100,000 population [95% confidence interval (CI) 0.02-0.06], ranging from 0.01 (95% CI 0.00-0.02) in North or Northeast China to 0.08 (95% CI 0.03-0.16) in Southwest China. The rate was higher in males (0.05, 95% CI 0.03-0.08) compared with females (0.03, 95% CI 0.02-0.05). The mean age of patients was 65.87 (standard deviation: 14.21) years, with the peak prevalence appeared in patients aged 70-79 (0.28, 95% CI 0.16-0.42). CONCLUSIONS The prevalence of EMPD was markedly lower than those in the United States and Europe, and varied across regions in China. Chinese patients were much younger, with significant male predominance. Further studies are warranted to examine potential pathophysiologic mechanism.
Collapse
Affiliation(s)
- Shilu Yin
- Department of Plastic Surgery, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, 100191, China
| | - Lu Xu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, 38 Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Shengfeng Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, 38 Xueyuan Road, Haidian District, Beijing, 100191, China.
| | - Jingnan Feng
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, 38 Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Lili Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, 38 Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Guozhen Liu
- Peking University Health Information Technology Co. Ltd, 52 North Fourth Ring West Road, Haidian District, Beijing, 100080, China
| | - Jinxi Wang
- Shanghai Songsheng Business Consulting Co. Ltd, 6 Chaoyang Men North street, Dongcheng District, Beijing, 100000, China
| | - Siyan Zhan
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, 38 Xueyuan Road, Haidian District, Beijing, 100191, China.
- Research Center of Clinical Epidemiology, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, 100191, China.
- Center for Intelligent Public Health, Institute for Artificial Intelligence, Peking University, 38 Xueyuan Road, Haidian District, Beijing, 100191, China.
| | - Zhenmin Zhao
- Department of Plastic Surgery, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, 100191, China.
| | - Pei Gao
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, 38 Xueyuan Road, Haidian District, Beijing, 100191, China.
| |
Collapse
|
22
|
Habli Z, Deen NNA, Malaeb W, Mahfouz N, Mermerian A, Talhouk R, Mhanna R. Biomimetic sulfated glycosaminoglycans maintain differentiation markers of breast epithelial cells and preferentially inhibit proliferation of cancer cells. Acta Biomater 2021; 122:186-198. [PMID: 33444795 DOI: 10.1016/j.actbio.2020.12.049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 12/29/2020] [Accepted: 12/30/2020] [Indexed: 02/06/2023]
Abstract
Glycosaminoglycans (GAG) are key elements involved in various physiological and pathological processes including cancer. Several GAG-based drugs have been developed showing significant results and potential use as cancer therapeutics. We previously reported that alginate sulfate (AlgSulf), a GAG-mimetic, reduces the proliferation of lung adenocarcinoma cells. In this study, we evaluated the preferential effect of AlgSulf on tumorigenic and nontumorigenic mammary epithelial cells in 2D, 3D, and coculture conditions. AlgSulf were synthesized with different degrees of sulfation (DSs) varying from 0 to 2.7 and used at 100 µg/mL on HMT-3522 S1 (S1) nontumorigenic mammary epithelial cells and their tumorigenic counterparts HMT-3522 T4-2 (T4-2) cells. The anti-tumor properties of AlgSulf were assessed using trypan blue and bromodeoxyuridine proliferation (BrdU) assays, immunofluorescence staining and transwell invasion assay. Binding of insulin and epidermal growth factor (EGF) to sulfated substrates was measured using QCM-D and ELISA. In 2D, the cell growth rate of cells treated with AlgSulf was consistently lower compared to untreated controls (p<0.001) and surpassed the effect of the native GAG heparin (positive control). In 3D, AlgSulf preferentially hindered the growth rate and the invasion potential of tumorigenic T4-2 nodules while maintaining the formation of differentiated polarized nontumorigenic S1 acini. The preferential growth inhibition of tumorigenic cells by AlgSulf was confirmed in a coculture system (p<0.001). In the ELISA assay, a trend of EGF binding was detected for sulfated polysaccharides while QCM-D analysis showed negligible binding of insulin and EGF to sulfated substrates. The preferential effect mediated by the mimetic sulfated GAGs on cancer cells may in part be growth factor dependent. Our findings suggest a potential anticancer therapeutic role of AlgSulf for the development of anticancer drugs.
Collapse
|
23
|
Yanagi H, Watanabe T, Nishimura T, Hayashi T, Kono S, Tsuchida H, Hirata M, Kijima Y, Takao S, Okada S, Suzuki M, Imaizumi K, Kawada K, Minami H, Gotoh N, Shimono Y. Upregulation of S100A10 in metastasized breast cancer stem cells. Cancer Sci 2020; 111:4359-4370. [PMID: 32976661 PMCID: PMC7734155 DOI: 10.1111/cas.14659] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 09/12/2020] [Accepted: 09/14/2020] [Indexed: 12/24/2022] Open
Abstract
Metastatic progression remains the major cause of death in human breast cancer. Cancer cells with cancer stem cell (CSC) properties drive initiation and growth of metastases at distant sites. We have previously established the breast cancer patient-derived tumor xenograft (PDX) mouse model in which CSC marker CD44+ cancer cells formed spontaneous microscopic metastases in the liver. In this PDX mouse, the expression levels of S100A10 and its family proteins were much higher in the CD44+ cancer cells metastasized to the liver than those at the primary site. Knockdown of S100A10 in breast cancer cells suppressed and overexpression of S100A10 in breast cancer PDX cells enhanced their invasion abilities and 3D organoid formation capacities in vitro. Mechanistically, S100A10 regulated the matrix metalloproteinase activity and the expression levels of stem cell-related genes. Finally, constitutive knockdown of S100A10 significantly reduced their metastatic ability to the liver in vivo. These findings suggest that S100A10 functions as a metastasis promoter of breast CSCs by conferring both invasion ability and CSC properties in breast cancers.
Collapse
Affiliation(s)
- Hisano Yanagi
- Department of BiochemistryFujita Health University School of MedicineToyoakeJapan
- Department of Medical OncologyFujita Health University School of MedicineToyoakeJapan
| | - Takashi Watanabe
- Department of BiochemistryFujita Health University School of MedicineToyoakeJapan
| | - Tatsunori Nishimura
- Division of Cancer Cell BiologyCancer Research InstituteKanazawa UniversityKanazawaJapan
| | - Takanori Hayashi
- Department of BiochemistryFujita Health University School of MedicineToyoakeJapan
| | - Seishi Kono
- Division of Breast and Endocrine SurgeryKobe University Graduate School of MedicineKobeJapan
| | - Hitomi Tsuchida
- Division of Molecular and Cellular BiologyKobe University Graduate School of MedicineKobeJapan
| | - Munetsugu Hirata
- Department of Breast SurgeryFujita Health University School of MedicineToyoakeJapan
| | - Yuko Kijima
- Department of Breast SurgeryFujita Health University School of MedicineToyoakeJapan
| | - Shintaro Takao
- Division of Breast and Endocrine SurgeryKobe University Graduate School of MedicineKobeJapan
| | - Seiji Okada
- Division of HematopoiesisJoint Research Center for Human Retrovirus InfectionKumamoto UniversityKumamotoJapan
| | - Motoshi Suzuki
- Department of Molecular OncologyFujita Health University School of MedicineToyoakeJapan
| | - Kazuyoshi Imaizumi
- Department of Respiratory MedicineFujita Health University School of MedicineFujita Health University School of MedicineToyoakeJapan
| | - Kenji Kawada
- Department of Medical OncologyFujita Health University School of MedicineToyoakeJapan
| | - Hironobu Minami
- Division of Medical Oncology/HematologyKobe University Graduate School of MedicineKobeJapan
| | - Noriko Gotoh
- Division of Cancer Cell BiologyCancer Research InstituteKanazawa UniversityKanazawaJapan
| | - Yohei Shimono
- Department of BiochemistryFujita Health University School of MedicineToyoakeJapan
- Division of Molecular and Cellular BiologyKobe University Graduate School of MedicineKobeJapan
- Division of Medical Oncology/HematologyKobe University Graduate School of MedicineKobeJapan
| |
Collapse
|
24
|
Park S, Jung WH, Pittman M, Chen J, Chen Y. The Effects of Stiffness, Fluid Viscosity, and Geometry of Microenvironment in Homeostasis, Aging, and Diseases: A Brief Review. J Biomech Eng 2020; 142:100804. [PMID: 32803227 PMCID: PMC7477718 DOI: 10.1115/1.4048110] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 08/05/2020] [Indexed: 12/12/2022]
Abstract
Cells sense biophysical cues in the micro-environment and respond to the cues biochemically and biophysically. Proper responses from cells are critical to maintain the homeostasis in the body. Abnormal biophysical cues will cause pathological development in the cells; pathological or aging cells, on the other hand, can alter their micro-environment to become abnormal. In this minireview, we discuss four important biophysical cues of the micro-environment-stiffness, curvature, extracellular matrix (ECM) architecture and viscosity-in terms of their roles in health, aging, and diseases.
Collapse
Affiliation(s)
- Seungman Park
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218; Center for Cell Dynamics, Johns Hopkins University, Baltimore, MD 21218; Institute for NanoBio Technology, Johns Hopkins University, Baltimore, MD 21218
| | - Wei-Hung Jung
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218; Center for Cell Dynamics, Johns Hopkins University, Baltimore, MD 21218; Department of Mechanical Engineering, Institute for NanoBio Technology, Johns Hopkins University, Baltimore, MD 21218
| | - Matthew Pittman
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218; Center for Cell Dynamics, Johns Hopkins University, Baltimore, MD 21218; Department of Mechanical Engineering, Institute for NanoBio Technology, Johns Hopkins University, Baltimore, MD 21218
| | - Junjie Chen
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218; Center for Cell Dynamics, Johns Hopkins University, Baltimore, MD 21218; Department of Mechanical Engineering, Institute for NanoBio Technology, Johns Hopkins University, Baltimore, MD 21218
| | - Yun Chen
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218; Center for Cell Dynamics, Johns Hopkins University, Baltimore, MD 21218; Department of Mechanical Engineering, Institute for NanoBio Technology, Johns Hopkins University, Baltimore, MD 21218
| |
Collapse
|
25
|
Davies AE, Pargett M, Siebert S, Gillies TE, Choi Y, Tobin SJ, Ram AR, Murthy V, Juliano C, Quon G, Bissell MJ, Albeck JG. Systems-Level Properties of EGFR-RAS-ERK Signaling Amplify Local Signals to Generate Dynamic Gene Expression Heterogeneity. Cell Syst 2020; 11:161-175.e5. [PMID: 32726596 PMCID: PMC7856305 DOI: 10.1016/j.cels.2020.07.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 05/06/2020] [Accepted: 07/02/2020] [Indexed: 02/08/2023]
Abstract
Intratumoral heterogeneity is associated with aggressive tumor behavior, therapy resistance, and poor patient outcomes. Such heterogeneity is thought to be dynamic, shifting over periods of minutes to hours in response to signaling inputs from the tumor microenvironment. However, models of this process have been inferred from indirect or post-hoc measurements of cell state, leaving the temporal details of signaling-driven heterogeneity undefined. Here, we developed a live-cell model system in which microenvironment-driven signaling dynamics can be directly observed and linked to variation in gene expression. Our analysis reveals that paracrine signaling between two cell types is sufficient to drive continual diversification of gene expression programs. This diversification emerges from systems-level properties of the EGFR-RAS-ERK signaling cascade, including intracellular amplification of amphiregulin-mediated paracrine signals and differential kinetic filtering by target genes including Fra-1, c-Myc, and Egr1. Our data enable more precise modeling of paracrine-driven transcriptional variation as a generator of gene expression heterogeneity. A record of this paper's transparent peer review process is included in the Supplemental Information.
Collapse
Affiliation(s)
- Alexander E Davies
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616, USA; Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| | - Michael Pargett
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616, USA
| | - Stefan Siebert
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616, USA
| | - Taryn E Gillies
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616, USA
| | - Yongin Choi
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616, USA
| | - Savannah J Tobin
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616, USA; Department of Veterinary Biosciences, College of Veterinary Medicine, the Ohio State University, Columbus, OH 43210, USA
| | - Abhineet R Ram
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616, USA
| | - Vaibhav Murthy
- Department of Veterinary Biosciences, College of Veterinary Medicine, the Ohio State University, Columbus, OH 43210, USA
| | - Celina Juliano
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616, USA
| | - Gerald Quon
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616, USA
| | - Mina J Bissell
- Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - John G Albeck
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616, USA.
| |
Collapse
|
26
|
Siouda M, Dujardin AD, Barbollat-Boutrand L, Mendoza-Parra MA, Gibert B, Ouzounova M, Bouaoud J, Tonon L, Robert M, Foy JP, Lavergne V, Manie SN, Viari A, Puisieux A, Ichim G, Gronemeyer H, Saintigny P, Mulligan P. CDYL2 Epigenetically Regulates MIR124 to Control NF-κB/STAT3-Dependent Breast Cancer Cell Plasticity. iScience 2020; 23:101141. [PMID: 32450513 PMCID: PMC7251929 DOI: 10.1016/j.isci.2020.101141] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/31/2020] [Accepted: 05/04/2020] [Indexed: 12/19/2022] Open
Abstract
Epigenetic deregulation of gene transcription is central to cancer cell plasticity and malignant progression but remains poorly understood. We found that the uncharacterized epigenetic factor chromodomain on Y-like 2 (CDYL2) is commonly over-expressed in breast cancer, and that high CDYL2 levels correlate with poor prognosis. Supporting a functional role for CDYL2 in malignancy, it positively regulated breast cancer cell migration, invasion, stem-like phenotypes, and epithelial-to-mesenchymal transition. CDYL2 regulation of these plasticity-associated processes depended on signaling via p65/NF-κB and STAT3. This, in turn, was downstream of CDYL2 regulation of MIR124 gene transcription. CDYL2 co-immunoprecipitated with G9a/EHMT2 and GLP/EHMT1 and regulated the chromatin enrichment of G9a and EZH2 at MIR124 genes. We propose that CDYL2 contributes to poor prognosis in breast cancer by recruiting G9a and EZH2 to epigenetically repress MIR124 genes, thereby promoting NF-κB and STAT3 signaling, as well as downstream cancer cell plasticity and malignant progression. Up-regulation of CDYL2 is common in breast cancer and correlates with poor prognosis CDYL2 regulates enrichment of methyltransferases G9a and EZH2 at MIR124 genes microRNA-124 regulation by CDYL2 impacts STAT3 and NF-κB signaling CDYL2 regulation of EMT, migration, invasion, and stemness is STAT3/NF-κB dependent
Collapse
Affiliation(s)
- Maha Siouda
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, France
| | - Audrey D Dujardin
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, France
| | - Laetitia Barbollat-Boutrand
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, France
| | - Marco A Mendoza-Parra
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR 7104, INSERM U964, University of Strasbourg, Illkirch, France
| | - Benjamin Gibert
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, France
| | - Maria Ouzounova
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, France; Equipe Labellisée Ligue Contre le Cancer, LabEx DEVweCAN
| | - Jebrane Bouaoud
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, France; Department of Maxillo-facial Surgery and Stomatology, Pitié-Salpétrière Hospital, Pierre et Marie Curie University Paris 6, Sorbonne Paris Cite University, AP-HP, Paris 75013, France
| | - Laurie Tonon
- Synergie Lyon Cancer, Plateforme de Bioinformatique "Gilles Thomas", Centre Léon Bérard, 28 rue Lannec, Lyon 69008, France; INRIA Grenoble-Rhône-Alpes, 655 Avenue de l'Europe, Montbonnot-Saint-Martin 38330, France
| | - Marie Robert
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, France; Equipe Labellisée Ligue Contre le Cancer, LabEx DEVweCAN
| | - Jean-Philippe Foy
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, France; Equipe Labellisée Ligue Contre le Cancer, LabEx DEVweCAN
| | - Vincent Lavergne
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, France; Equipe Labellisée Ligue Contre le Cancer, LabEx DEVweCAN
| | - Serge N Manie
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, France
| | - Alain Viari
- Synergie Lyon Cancer, Plateforme de Bioinformatique "Gilles Thomas", Centre Léon Bérard, 28 rue Lannec, Lyon 69008, France; INRIA Grenoble-Rhône-Alpes, 655 Avenue de l'Europe, Montbonnot-Saint-Martin 38330, France
| | - Alain Puisieux
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, France; Equipe Labellisée Ligue Contre le Cancer, LabEx DEVweCAN
| | - Gabriel Ichim
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, France
| | - Hinrich Gronemeyer
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR 7104, INSERM U964, University of Strasbourg, Illkirch, France
| | - Pierre Saintigny
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, France; Equipe Labellisée Ligue Contre le Cancer, LabEx DEVweCAN
| | - Peter Mulligan
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, France; Centre de Recherche en Cancérologie de Lyon (CRCL), Centre Léon Bérard, Epigenetics and Cancer Team, Cheney A, 5e étage, 28 rue Laennec, Lyon Cedex 08 69373, France.
| |
Collapse
|
27
|
Force-dependent extracellular matrix remodeling by early-stage cancer cells alters diffusion and induces carcinoma-associated fibroblasts. Biomaterials 2020; 234:119756. [PMID: 31954229 DOI: 10.1016/j.biomaterials.2020.119756] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 12/28/2019] [Accepted: 01/02/2020] [Indexed: 12/21/2022]
Abstract
It is known cancer cells secrete cytokines inducing normal fibroblasts (NFs) to become carcinoma-associated fibroblasts (CAFs). However, it is not clear how the CAF-promoting cytokines can effectively navigate the dense ECM, a diffusion barrier, in the tumor microenvironment to reach NFs during the early stages of cancer development. In this study, we devised a 3D coculture system to investigate the possible mechanism of CAF induction at early stages of breast cancer. We found that in a force-dependent manner, ECM fibrils are radially aligned relative to the tumor spheroid. The fibril alignment enhances the diffusion of exosomes containing CAF-promoting cytokines towards NFs. Suppression of force generation or ECM remodeling abolishes the enhancement of exosome diffusion and the subsequent CAF induction. In summary, our finding suggests that early-stage, pre-metastatic cancer cells can generate high forces to align the ECM fibrils, thereby enhancing the diffusion of CAF-promoting exosomes to reach the stroma and induce CAFs.
Collapse
|
28
|
The Extracellular Matrix Modulates the Metastatic Journey. Dev Cell 2020; 49:332-346. [PMID: 31063753 DOI: 10.1016/j.devcel.2019.03.026] [Citation(s) in RCA: 370] [Impact Index Per Article: 74.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 03/21/2019] [Accepted: 03/26/2019] [Indexed: 12/26/2022]
Abstract
The extracellular matrix is perturbed in tumors. The tumor matrix promotes the growth, survival, and invasion of the cancer and modifies fibroblast and immune cell behavior to drive metastasis and impair treatment. Here, we discuss how the tumor matrix regulates metastasis by fostering tumor cell invasion into the stroma and migration toward the vasculature. We describe the role of the tumor matrix in cancer cell intravasation and vascular dissemination. We examine the impact of the matrix on disseminated tumor cell extravasation and on tumor dormancy and metastatic outgrowth. Finally, we discuss the clinical outcome of therapeutics that normalize tumor-matrix interactions.
Collapse
|
29
|
Becceneri AB, Fuzer AM, Plutin AM, Batista AA, Lelièvre SA, Cominetti MR. Three-dimensional cell culture models for metallodrug testing: induction of apoptosis and phenotypic reversion of breast cancer cells by the trans-[Ru(PPh 3) 2( N, N-dimethyl- N-thiophenylthioureato-k 2O,S)(bipy)]PF 6 complex. Inorg Chem Front 2020. [DOI: 10.1039/d0qi00502a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Effects of trans-[Ru(PPh3)2(N,N-dimethyl-N-thiophenylthioureato-k2O,S)(bipy)]PF6 complex on cytotoxicity, on the induction of apoptosis and on the phenotypic reversion of tumor cells in different 3D culture techniques.
Collapse
Affiliation(s)
| | - Angelina M. Fuzer
- Department of Gerontology
- Federal University of São Carlos
- São Paulo
- Brazil
| | - Ana M. Plutin
- Facultad de Química
- Universidad de la Habana
- Habana
- Cuba
| | - Alzir A. Batista
- Department of Chemistry
- Federal University of São Carlos
- São Paulo
- Brazil
| | - Sophie A. Lelièvre
- Department of Basic Medical Sciences and Center for Cancer Research
- Purdue University
- West Lafayette
- USA
| | | |
Collapse
|
30
|
Becceneri AB, Fuzer AM, Popolin CP, Cazal CDM, Domingues VDC, Fernandes JB, Vieira PC, Cominetti MR. Acetylation of cedrelone increases its cytotoxic activity and reverts the malignant phenotype of breast cancer cells in 3D culture. Chem Biol Interact 2019; 316:108920. [PMID: 31857088 DOI: 10.1016/j.cbi.2019.108920] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 12/06/2019] [Accepted: 12/10/2019] [Indexed: 01/10/2023]
Abstract
Cedrelone is a limonoid isolated from the plant Trichilia catigua (Meliaceae). Previous studies have demonstrated that cedrelone (1) has several damaging effects on triple negative breast tumor (TNBC) cell line MDA-MB-231. In this work we investigated two new derivatives of cedrelone, the acetate (1a) and the mesylate (1b), to examine whether their effects are improved in comparison to the lead molecule. Cedrelone acetate (1a) was the most cytotoxic compound on TNBC cells and was chosen for additional analyses in traditional two-dimensional (2D) monolayer cultures and three-dimensional (3D) assays. In 2D, 1a induced cell cycle arrest, apoptosis and inhibited essential steps of the metastasis process of the MDA-MB-231 cells, in vitro. Moreover, 1a was able to revert the malignant phenotype of the T4-2 cells in 3D. These effects were concomitant with the downregulation of EGFR, β1-integrin and phospho-Akt, which could have resulted in a decrease of NFκB levels and MMP9 activity. These results suggest that 1a could be used as an important model for the design of a new drug to be applied in cancer treatment and be further studied in vivo for its antitumor and antimetastatic effects.
Collapse
Affiliation(s)
- Amanda Blanque Becceneri
- Department of Gerontology, Federal University of São Carlos, Rod. Washington Luís, Km 235 - São Carlos, SP, Brazil.
| | - Angelina Maria Fuzer
- Department of Gerontology, Federal University of São Carlos, Rod. Washington Luís, Km 235 - São Carlos, SP, Brazil
| | - Cecília Patrícia Popolin
- Department of Gerontology, Federal University of São Carlos, Rod. Washington Luís, Km 235 - São Carlos, SP, Brazil
| | | | - Vanessa de Cássia Domingues
- Department of Chemistry, Federal University of São Carlos, Rod. Washington Luis, Km 235 - São Carlos, SP, Brazil
| | - João Batista Fernandes
- Department of Chemistry, Federal University of São Carlos, Rod. Washington Luis, Km 235 - São Carlos, SP, Brazil
| | - Paulo Cezar Vieira
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café, Vila Monte Alegre, Ribeirão Preto, SP, Brazil
| | - Marcia Regina Cominetti
- Department of Gerontology, Federal University of São Carlos, Rod. Washington Luís, Km 235 - São Carlos, SP, Brazil
| |
Collapse
|
31
|
Ren G, Sharma V, Letson J, Walia Y, Fernando V, Furuta S. Reconstituting Breast Tissue with Organotypic Three-dimensional Co-culture of Epithelial and Stromal Cells in Discontinuous Extracellular Matrices. Bio Protoc 2019; 9:e3392. [PMID: 33654884 DOI: 10.21769/bioprotoc.3392] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 09/29/2019] [Accepted: 09/11/2019] [Indexed: 11/02/2022] Open
Abstract
Co-culture systems utilizing reconstituted or synthetic extracellular matrix (ECM) and micropatterning techniques have enabled the reconstruction of surface epithelial tissues. This technique has been utilized in the regeneration, disease modeling and drug screening of the surface epithelia, such as the skin and esophagus. On the other hand, the reconstruction of glandular epithelia would require more intricate ECM organizations. Here we describe a protocol for a novel three-dimensional organotypic co-culture system for the reconstruction of mammary glands that utilizes the discontinuous ECM. In this technique, primary mammary fibroblasts first establish a layer of the connective tissue rich in collagen I. Then, mammary epithelial cells form acinar structures, the functional glandular units, within the laminin-rich basement membrane embedded in the connective tissue. This method allows for the regeneration of the in vivo-like architecture of mammary glands and could be utilized for monitoring the real-time response of mammary glands to drug treatment.
Collapse
Affiliation(s)
- Gang Ren
- Department of Cancer Biology, College of Medicine and Life Sciences, University of Toledo Health Science Campus, 3000 Arlington Ave. Toledo, OH 43614, USA
| | - Vandana Sharma
- Department of Cancer Biology, College of Medicine and Life Sciences, University of Toledo Health Science Campus, 3000 Arlington Ave. Toledo, OH 43614, USA
| | - Joshua Letson
- Department of Cancer Biology, College of Medicine and Life Sciences, University of Toledo Health Science Campus, 3000 Arlington Ave. Toledo, OH 43614, USA
| | - Yashna Walia
- Department of Cancer Biology, College of Medicine and Life Sciences, University of Toledo Health Science Campus, 3000 Arlington Ave. Toledo, OH 43614, USA
| | - Veani Fernando
- Department of Cancer Biology, College of Medicine and Life Sciences, University of Toledo Health Science Campus, 3000 Arlington Ave. Toledo, OH 43614, USA
| | - Saori Furuta
- Department of Cancer Biology, College of Medicine and Life Sciences, University of Toledo Health Science Campus, 3000 Arlington Ave. Toledo, OH 43614, USA
| |
Collapse
|
32
|
Ravi M, Sneka MK, Joshipura A. The culture conditions and outputs from breast cancer cell line in vitro experiments. Exp Cell Res 2019; 383:111548. [PMID: 31398351 DOI: 10.1016/j.yexcr.2019.111548] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 08/02/2019] [Accepted: 08/03/2019] [Indexed: 10/26/2022]
Abstract
One of the major cancer types that have gained significant importance globally is the breast cancer due to its socio-economic impact. Breast cancer research is an area of considerable importance and several types of material are available for research applications. These include cancer cell lines which can be utilized in several ways. Cell lines are convenient to use and recently about 84 human breast cancer cell lines were classified by molecular sub-typing. These cells lines come under five major molecular subtypes namely the luminal A and B, HER-2+, triple- A and B subtypes. These cell lines have been well characterized and were utilized for understanding various aspects of breast cancers. Also, apart from providing an understanding of the molecular mechanisms associated with breast cancers, these cell lines have contributed significantly to areas such as drug testing. We present in this review the features of these cell lines, the studies conducted using them and the outcome of such studies. Also, the details about the culture conditions and study outcomes of the cell lines grown in 3-dimensional (3D) systems are presented.
Collapse
Affiliation(s)
- Maddaly Ravi
- Department of Human Genetics, Faculty of Biomedical Sciences, Technology and Research, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, 600116, India.
| | - M Kaviya Sneka
- Department of Human Genetics, Faculty of Biomedical Sciences, Technology and Research, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, 600116, India
| | - Aastha Joshipura
- Department of Human Genetics, Faculty of Biomedical Sciences, Technology and Research, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, 600116, India
| |
Collapse
|
33
|
Chhetri A, Chittiboyina S, Atrian F, Bai Y, Delisi DA, Rahimi R, Garner J, Efremov Y, Park K, Talhouk R, Lelièvre SA. Cell Culture and Coculture for Oncological Research in Appropriate Microenvironments. ACTA ACUST UNITED AC 2019; 11:e65. [PMID: 31166658 DOI: 10.1002/cpch.65] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
With the increase in knowledge on the importance of the tumor microenvironment, cell culture models of cancers can be adapted to better recapitulate physiologically relevant situations. Three main microenvironmental factors influence tumor phenotype: the biochemical components that stimulate cells, the fibrous molecules that influence the stiffness of the extracellular matrix, and noncancerous cells like epithelial cells, fibroblasts, endothelial cells, and immune cells. Here we present methods for the culture of carcinomas in the presence of a matrix of specific stiffness, and for the coculture of tumors and fibroblasts as well as epithelial cells in the presence of matrix. Information is provided to help with choice and assessment of the matrix support and in working with serum-free medium. Using the example of a tissue chip recapitulating the environmental geometry of carcinomas, we also highlight the development of engineered platforms that provide exquisite control of cell culture parameters necessary in research and development. © 2019 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Apekshya Chhetri
- Department of Basic Medical Sciences, Purdue University College of Veterinary Medicine, West Lafayette, Indiana
| | - Shirisha Chittiboyina
- Department of Basic Medical Sciences, Purdue University College of Veterinary Medicine, West Lafayette, Indiana.,3D Cell Culture Core (3D3C) Facility, Birck Nanotechnology Center, Discovery Park, Purdue University, West Lafayette, Indiana
| | - Farzaneh Atrian
- Department of Basic Medical Sciences, Purdue University College of Veterinary Medicine, West Lafayette, Indiana
| | - Yunfeng Bai
- Department of Basic Medical Sciences, Purdue University College of Veterinary Medicine, West Lafayette, Indiana
| | - Davide A Delisi
- Department of Basic Medical Sciences, Purdue University College of Veterinary Medicine, West Lafayette, Indiana
| | - Rahim Rahimi
- Department of Materials Engineering, Purdue University, West Lafayette, Indiana.,Birck Nanotechnology Center, Discovery Park, Purdue University, West Lafayette, Indiana
| | | | - Yuri Efremov
- Birck Nanotechnology Center, Discovery Park, Purdue University, West Lafayette, Indiana.,School of Mechanical Engineering, Purdue University, West Lafayette, Indiana
| | - Kinam Park
- Akina, Inc., West Lafayette, Indiana.,Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana.,Center for Cancer Research, Purdue University, West Lafayette, Indiana
| | - Rabih Talhouk
- Department of Biology, American University of Beirut, Beirut, Lebanon
| | - Sophie A Lelièvre
- Department of Basic Medical Sciences, Purdue University College of Veterinary Medicine, West Lafayette, Indiana.,3D Cell Culture Core (3D3C) Facility, Birck Nanotechnology Center, Discovery Park, Purdue University, West Lafayette, Indiana.,Center for Cancer Research, Purdue University, West Lafayette, Indiana
| |
Collapse
|
34
|
Reduced Basal Nitric Oxide Production Induces Precancerous Mammary Lesions via ERBB2 and TGFβ. Sci Rep 2019; 9:6688. [PMID: 31040372 PMCID: PMC6491486 DOI: 10.1038/s41598-019-43239-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 04/18/2019] [Indexed: 02/08/2023] Open
Abstract
One third of newly diagnosed breast cancers in the US are early-stage lesions. The etiological understanding and treatment of these lesions have become major clinical challenges. Because breast cancer risk factors are often linked to aberrant nitric oxide (NO) production, we hypothesized that abnormal NO levels might contribute to the formation of early-stage breast lesions. We recently reported that the basal level of NO in the normal breast epithelia plays crucial roles in tissue homeostasis, whereas its reduction contributes to the malignant phenotype of cancer cells. Here, we show that the basal level of NO in breast cells plummets during cancer progression due to reduction of the NO synthase cofactor, BH4, under oxidative stress. Importantly, pharmacological deprivation of NO in prepubertal to pubertal animals stiffens the extracellular matrix and induces precancerous lesions in the mammary tissues. These lesions overexpress a fibrogenic cytokine, TGFβ, and an oncogene, ERBB2, accompanied by the occurrence of senescence and stem cell-like phenotype. Consistently, normalization of NO levels in precancerous and cancerous breast cells downmodulates TGFβ and ERBB2 and ameliorates their proliferative phenotype. This study sheds new light on the etiological basis of precancerous breast lesions and their potential prevention by manipulating the basal NO level.
Collapse
|
35
|
Brock EJ, Ji K, Shah S, Mattingly RR, Sloane BF. In Vitro Models for Studying Invasive Transitions of Ductal Carcinoma In Situ. J Mammary Gland Biol Neoplasia 2019; 24:1-15. [PMID: 30056557 PMCID: PMC6641861 DOI: 10.1007/s10911-018-9405-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 07/13/2018] [Indexed: 12/11/2022] Open
Abstract
About one fourth of all newly identified cases of breast carcinoma are diagnoses of breast ductal carcinoma in situ (DCIS). Since we cannot yet distinguish DCIS cases that would remain indolent from those that may progress to life-threatening invasive ductal carcinoma (IDC), almost all women undergo aggressive treatment. In order to allow for more rational individualized treatment, we and others are developing in vitro models to identify and validate druggable pathways that mediate the transition of DCIS to IDC. These models range from conventional two-dimensional (2D) monolayer cultures on plastic to 3D cultures in natural or synthetic matrices. Some models consist solely of DCIS cells, either cell lines or primary cells. Others are co-cultures that include additional cell types present in the normal or cancerous human breast. The 3D co-culture models more accurately mimic structural and functional changes in breast architecture that accompany the transition of DCIS to IDC. Mechanistic studies of the dynamic and temporal changes associated with this transition are facilitated by adapting the in vitro models to engineered microfluidic platforms. Ultimately, the goal is to create in vitro models that can serve as a reproducible preclinical screen for testing therapeutic strategies that will reduce progression of DCIS to IDC. This review will discuss the in vitro models that are currently available, as well as the progress that has been made using them to understand DCIS pathobiology.
Collapse
MESH Headings
- Breast/pathology
- Breast Neoplasms/drug therapy
- Breast Neoplasms/pathology
- Carcinoma, Ductal, Breast/drug therapy
- Carcinoma, Ductal, Breast/pathology
- Carcinoma, Intraductal, Noninfiltrating/drug therapy
- Carcinoma, Intraductal, Noninfiltrating/pathology
- Cell Line, Tumor
- Coculture Techniques/methods
- Drug Screening Assays, Antitumor/methods
- Female
- Humans
- Neoplasm Invasiveness/pathology
- Neoplasm Invasiveness/prevention & control
- Primary Cell Culture/methods
Collapse
Affiliation(s)
- Ethan J Brock
- Program in Cancer Biology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Kyungmin Ji
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Seema Shah
- Program in Cancer Biology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Raymond R Mattingly
- Program in Cancer Biology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Bonnie F Sloane
- Program in Cancer Biology, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
- Department of Pharmacology, Wayne State University, 540 E. Canfield, Detroit, MI, 48201, USA.
| |
Collapse
|
36
|
Abstract
The past decades have witnessed significant efforts toward the development of three-dimensional (3D) cell cultures as systems that better mimic in vivo physiology. Today, 3D cell cultures are emerging, not only as a new tool in early drug discovery but also as potential therapeutics to treat disease. In this review, we assess leading 3D cell culture technologies and their impact on drug discovery, including spheroids, organoids, scaffolds, hydrogels, organs-on-chips, and 3D bioprinting. We also discuss the implementation of these technologies in compound identification, screening, and development, ranging from disease modeling to assessment of efficacy and safety profiles.
Collapse
Affiliation(s)
- Ye Fang
- 1 Biochemical Technologies, Corning Research and Development Corporation, Corning Incorporated, Corning, NY, USA
| | - Richard M Eglen
- 2 Corning Life Sciences, Corning Incorporated, Tewksbury, MA, USA
| |
Collapse
|
37
|
Dumortier M, Ladam F, Damour I, Vacher S, Bièche I, Marchand N, de Launoit Y, Tulasne D, Chotteau-Lelièvre A. ETV4 transcription factor and MMP13 metalloprotease are interplaying actors of breast tumorigenesis. Breast Cancer Res 2018; 20:73. [PMID: 29996935 PMCID: PMC6042225 DOI: 10.1186/s13058-018-0992-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 05/23/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The ETS transcription factor ETV4 is involved in the main steps of organogenesis and is also a significant mediator of tumorigenesis and metastasis, such as in breast cancer. Indeed, ETV4 is overexpressed in breast tumors and is associated with distant metastasis and poor prognosis. However, the cellular and molecular events regulated by this factor are still misunderstood. In mammary epithelial cells, ETV4 controls the expression of many genes, MMP13 among them. The aim of this study was to understand the function of MMP13 during ETV4-driven tumorigenesis. METHODS Different constructs of the MMP13 gene promoter were used to study the direct regulation of MMP13 by ETV4. Moreover, cell proliferation, migration, invasion, anchorage-independent growth, and in vivo tumorigenicity were assayed using models of mammary epithelial and cancer cells in which the expression of MMP13 and/or ETV4 is modulated. Importantly, the expression of MMP13 and ETV4 messenger RNA was characterized in 456 breast cancer samples. RESULTS Our results revealed that ETV4 promotes proliferation, migration, invasion, and anchorage-independent growth of the MMT mouse mammary tumorigenic cell line. By investigating molecular events downstream of ETV4, we found that MMP13, an extracellular metalloprotease, was an ETV4 target gene. By overexpressing or repressing MMP13, we showed that this metalloprotease contributes to proliferation, migration, and anchorage-independent clonogenicity. Furthermore, we demonstrated that MMP13 inhibition disturbs proliferation, migration, and invasion induced by ETV4 and participates to ETV4-induced tumor formation in immunodeficient mice. Finally, ETV4 and MMP13 co-overexpression is associated with poor prognosis in breast cancer. CONCLUSION MMP13 potentiates the effects of the ETV4 oncogene during breast cancer genesis and progression.
Collapse
Affiliation(s)
- Mandy Dumortier
- University of Lille, CNRS, Institut Pasteur de Lille, UMR 8161 - M3T - Mechanisms of Tumorigenesis and Targeted Therapies, F-59000, Lille, France
| | - Franck Ladam
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, 01605-2324, USA
| | - Isabelle Damour
- University of Lille, CNRS, Institut Pasteur de Lille, UMR 8161 - M3T - Mechanisms of Tumorigenesis and Targeted Therapies, F-59000, Lille, France
| | - Sophie Vacher
- Unit of Pharmacogenomics, Department of Genetics, Institut Curie, Paris, France
| | - Ivan Bièche
- Unit of Pharmacogenomics, Department of Genetics, Institut Curie, Paris, France
| | - Nathalie Marchand
- University of Lille, CNRS, Institut Pasteur de Lille, UMR 8161 - M3T - Mechanisms of Tumorigenesis and Targeted Therapies, F-59000, Lille, France
| | - Yvan de Launoit
- University of Lille, CNRS, Institut Pasteur de Lille, UMR 8161 - M3T - Mechanisms of Tumorigenesis and Targeted Therapies, F-59000, Lille, France
| | - David Tulasne
- University of Lille, CNRS, Institut Pasteur de Lille, UMR 8161 - M3T - Mechanisms of Tumorigenesis and Targeted Therapies, F-59000, Lille, France
| | - Anne Chotteau-Lelièvre
- University of Lille, CNRS, Institut Pasteur de Lille, UMR 8161 - M3T - Mechanisms of Tumorigenesis and Targeted Therapies, F-59000, Lille, France. .,CNRS UMR 8161, Institut de Biologie de Lille - Institut Pasteur de Lille, 1 Rue Pr Calmette, BP447, 59021, Lille, France.
| |
Collapse
|
38
|
Fiore APZP, Ribeiro PDF, Bruni-Cardoso A. Sleeping Beauty and the Microenvironment Enchantment: Microenvironmental Regulation of the Proliferation-Quiescence Decision in Normal Tissues and in Cancer Development. Front Cell Dev Biol 2018; 6:59. [PMID: 29930939 PMCID: PMC6001001 DOI: 10.3389/fcell.2018.00059] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 05/18/2018] [Indexed: 01/18/2023] Open
Abstract
Cells from prokaryota to the more complex metazoans cease proliferating at some point in their lives and enter a reversible, proliferative-dormant state termed quiescence. The appearance of quiescence in the course of evolution was essential to the acquisition of multicellular specialization and compartmentalization and is also a central aspect of tissue function and homeostasis. But what makes a cell cease proliferating even in the presence of nutrients, growth factors, and mitogens? And what makes some cells "wake up" when they should not, as is the case in cancer? Here, we summarize and discuss evidence showing how microenvironmental cues such as those originating from metabolism, extracellular matrix (ECM) composition and arrangement, neighboring cells and tissue architecture control the cellular proliferation-quiescence decision, and how this complex regulation is corrupted in cancer.
Collapse
Affiliation(s)
| | | | - Alexandre Bruni-Cardoso
- e-Signal Laboratory, Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
39
|
Furuta S, Ren G, Mao JH, Bissell MJ. Laminin signals initiate the reciprocal loop that informs breast-specific gene expression and homeostasis by activating NO, p53 and microRNAs. eLife 2018; 7:e26148. [PMID: 29560860 PMCID: PMC5862529 DOI: 10.7554/elife.26148] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 11/21/2017] [Indexed: 01/19/2023] Open
Abstract
How mammalian tissues maintain their architecture and tissue-specificity is poorly understood. Previously, we documented both the indispensable role of the extracellular matrix (ECM) protein, laminin-111 (LN1), in the formation of normal breast acini, and the phenotypic reversion of cancer cells to acini-like structures in 3-dimensional (3D) gels with inhibitors of oncogenic pathways. Here, we asked how laminin (LN) proteins integrate the signaling pathways necessary for morphogenesis. We report a surprising reciprocal circuitry comprising positive players: laminin-5 (LN5), nitric oxide (NO), p53, HOXD10 and three microRNAs (miRNAs) - that are involved in the formation of mammary acini in 3D. Significantly, cancer cells on either 2-dimensional (2D) or 3D and non-malignant cells on 2D plastic do not produce NO and upregulate negative players: NFκB, EIF5A2, SCA1 and MMP-9 - that disrupt the network. Introducing exogenous NO, LN5 or individual miRNAs to cancer cells reintegrates these pathways and induces phenotypic reversion in 3D. These findings uncover the essential elements of breast epithelial architecture, where the balance between positive- and negative-players leads to homeostasis.
Collapse
Affiliation(s)
- Saori Furuta
- Division of Biological Systems and EngineeringLawrence Berkeley National LaboratoryBerkeleyUnited States
- Department of Cancer Biology, College of Medicine & Life SciencesUniversity of Toledo Health Science CampusToledoUnited States
| | - Gang Ren
- Department of Cancer Biology, College of Medicine & Life SciencesUniversity of Toledo Health Science CampusToledoUnited States
| | - Jian-Hua Mao
- Division of Biological Systems and EngineeringLawrence Berkeley National LaboratoryBerkeleyUnited States
| | - Mina J Bissell
- Division of Biological Systems and EngineeringLawrence Berkeley National LaboratoryBerkeleyUnited States
| |
Collapse
|
40
|
Fiore APZP, Spencer VA, Mori H, Carvalho HF, Bissell MJ, Bruni-Cardoso A. Laminin-111 and the Level of Nuclear Actin Regulate Epithelial Quiescence via Exportin-6. Cell Rep 2018; 19:2102-2115. [PMID: 28591581 DOI: 10.1016/j.celrep.2017.05.050] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Revised: 03/19/2017] [Accepted: 05/12/2017] [Indexed: 02/08/2023] Open
Abstract
Nuclear actin (N-actin) is known to participate in the regulation of gene expression. We showed previously that N-actin levels mediate the growth and quiescence of mouse epithelial cells in response to laminin-111 (LN1), a component of the mammary basement membrane (BM). We know that BM is defective in malignant cells, and we show here that it is the LN1/N-actin pathway that is aberrant in human breast cancer cells, leading to continuous growth. Photobleaching assays revealed that N-actin exit in nonmalignant cells begins as early as 30 min after LN1 treatment. LN1 attenuates the PI3K pathway leading to upregulation of exportin-6 (XPO6) activity and shuttles actin out of the nucleus. Silencing XPO6 prevents quiescence. Malignant cells are impervious to LN1 signaling. These results shed light on the crucial role of LN1 in quiescence and differentiation and how defects in the LN1/PI3K/XPO6/N-actin axis explain the loss of tissue homeostasis and growth control that contributes to malignant progression.
Collapse
Affiliation(s)
- Ana Paula Zen Petisco Fiore
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP 05508-000, Brazil
| | | | - Hidetoshi Mori
- Life Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Center for Comparative Medicine, University of California, Davis, Davis, CA 95616, USA
| | - Hernandes F Carvalho
- INFABiC - National Institute of Science and Technology on Photonics Applied to Cell Biology, Campinas, SP 13083-862, Brazil; Structural and Functional Biology Department, Institute of Biology, State University of Campinas, Campinas, SP 13083-865, Brazil
| | - Mina J Bissell
- Life Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| | - Alexandre Bruni-Cardoso
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP 05508-000, Brazil; Life Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; INFABiC - National Institute of Science and Technology on Photonics Applied to Cell Biology, Campinas, SP 13083-862, Brazil.
| |
Collapse
|
41
|
Hopkinson BM, Klitgaard MC, Petersen OW, Villadsen R, Rønnov-Jessen L, Kim J. Establishment of a normal-derived estrogen receptor-positive cell line comparable to the prevailing human breast cancer subtype. Oncotarget 2018; 8:10580-10593. [PMID: 28076334 PMCID: PMC5354682 DOI: 10.18632/oncotarget.14554] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Accepted: 12/12/2016] [Indexed: 11/25/2022] Open
Abstract
Understanding human cancer increasingly relies on insight gained from subtype specific comparisons between malignant and non-malignant cells. The most frequent subtype in breast cancer is the luminal. By far the most frequently used model for luminal breast cancer is the iconic estrogen receptor-positive (ERpos) MCF7 cell line. However, luminal specific comparisons have suffered from the lack of a relevant non-malignant counterpart. Our previous work has shown that transforming growth factor-β receptor (TGFβR) inhibition suffices to propagate prospectively isolated ERpos human breast luminal cells from reduction mammoplasties (HBEC). Here we demonstrate that transduction of these cells with hTERT/shp16 renders them immortal while remaining true to the luminal lineage including expression of functional ER (iHBECERpos). Under identical culture conditions a major difference between MCF7 and normal-derived cells is the dependence of the latter on TGFβR inhibition for ER expression. In a breast fibroblast co-culture model we further show that whereas MCF7 proliferate concurrently with ER expression, iHBECERpos form correctly polarized acini, and segregate into proliferating and ER expressing cells. We propose that iHBECERpos may serve to shed light on hitherto unappreciated differences in ER regulation and function between normal breast and breast cancer.
Collapse
Affiliation(s)
- Branden M Hopkinson
- Department of Cellular and Molecular Medicine, University of Copenhagen, DK-2200 Copenhagen, Denmark.,Danish Stem Cell Centre, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Marie C Klitgaard
- Department of Cellular and Molecular Medicine, University of Copenhagen, DK-2200 Copenhagen, Denmark.,Danish Stem Cell Centre, University of Copenhagen, DK-2200 Copenhagen, Denmark.,Department of Biology, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Ole William Petersen
- Department of Cellular and Molecular Medicine, University of Copenhagen, DK-2200 Copenhagen, Denmark.,Danish Stem Cell Centre, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - René Villadsen
- Department of Cellular and Molecular Medicine, University of Copenhagen, DK-2200 Copenhagen, Denmark.,Danish Stem Cell Centre, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Lone Rønnov-Jessen
- Department of Biology, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Jiyoung Kim
- Department of Cellular and Molecular Medicine, University of Copenhagen, DK-2200 Copenhagen, Denmark.,Danish Stem Cell Centre, University of Copenhagen, DK-2200 Copenhagen, Denmark
| |
Collapse
|
42
|
Matsubara M, Bissell MJ. Inhibitors of Rho kinase (ROCK) signaling revert the malignant phenotype of breast cancer cells in 3D context. Oncotarget 2017; 7:31602-22. [PMID: 27203208 PMCID: PMC5077963 DOI: 10.18632/oncotarget.9395] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 04/27/2016] [Indexed: 01/08/2023] Open
Abstract
Loss of polarity and quiescence along with increased cellular invasiveness are associated with breast tumor progression. ROCK plays a central role in actin-cytoskeletal rearrangement. We used physiologically relevant 3D cultures of nonmalignant and cancer cells in gels made of laminin-rich extracellular matrix, to investigate ROCK function. Whereas expression levels of ROCK1 and ROCK2 were elevated in cancer cells compared to nonmalignant cells, this was not observed in 2D cultures. Malignant cells showed increased phosphorylation of MLC, corresponding to disorganized F-actin. Inhibition of ROCK signaling restored polarity, decreased disorganization of F-actin, and led to reduction of proliferation. Inhibition of ROCK also decreased EGFR and Integrinβ1 levels, and consequently suppressed activation of Akt, MAPK and FAK as well as GLUT3 and LDHA levels. Again, ROCK inhibition did not inhibit these molecules in 2D. A triple negative breast cancer cell line, which lacks E-cadherin, had high levels of ROCK but was less sensitive to ROCK inhibitors. Exogenous overexpression of E-cadherin, however, rendered these cells strikingly sensitive to ROCK inhibition. Our results add to the growing literature that demonstrate the importance of context and tissue architecture in determining not only regulation of normal and malignant phenotypes but also drug response.
Collapse
Affiliation(s)
- Masahiro Matsubara
- Life Sciences Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, Berkeley, CA, USA.,Present address: Oncology Research Laboratories, Kyowa Hakko Kirin Co., Ltd., Japan
| | - Mina J Bissell
- Life Sciences Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, Berkeley, CA, USA
| |
Collapse
|
43
|
Dai X, Cheng H, Bai Z, Li J. Breast Cancer Cell Line Classification and Its Relevance with Breast Tumor Subtyping. J Cancer 2017; 8:3131-3141. [PMID: 29158785 PMCID: PMC5665029 DOI: 10.7150/jca.18457] [Citation(s) in RCA: 714] [Impact Index Per Article: 89.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 08/29/2017] [Indexed: 12/18/2022] Open
Abstract
Breast cancer cell lines have been widely used for breast cancer modelling which encompasses a panel of diseases with distinct phenotypical associations. Though cell lines provide unlimited homogenous materials for tumor studies and are relatively easy to culture, they are known to accumulate mutations duringthe initial establishment and subsequent series of cultivations. Thus, whether breast cancer cell line heterogeneity reflects that of carcinoma remains an important issue to resolve before drawing any reliable conclusion at the tumor level using cell lines. Inconsistent nomenclatures used for breast cancer cell line subtyping and the different number of subtypes grouped for cell lines and tumors make their direct matching elusive. By analyzing the molecular features of 92 breast cancer cell lines as documented by different literatures, we categorize 84 cell lines into 5 groups to be consistent with breast tumor classification. After combing through these cell lines, we summarized the molecular features, genetically and epigenetically, of each subtype, and manually documented 10 cell lines lacking explicit information on subtyping. Nine cell lines, either found inconsistent on their primary molecular features from different studies or being contaminated at the origin, are not suggested as the first choice for experimental use. We conclude that breast tumor cell lines, though having a high mutational frequency with many uncertainties and could not fully capture breast cancer heterogeneity, are feasible but crude models for tumors of the same subtype. New cell lines with enriched interferon regulated genes need to be established to enlarge the coverage of cell lines on tumor heterogeneity.
Collapse
Affiliation(s)
- Xiaofeng Dai
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China.,The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Hongye Cheng
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China.,The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Zhonghu Bai
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China.,The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Jia Li
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China.,The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| |
Collapse
|
44
|
Miroshnikova YA, Rozenberg GI, Cassereau L, Pickup M, Mouw JK, Ou G, Templeman KL, Hannachi EI, Gooch KJ, Sarang-Sieminski AL, García AJ, Weaver VM. α5β1-Integrin promotes tension-dependent mammary epithelial cell invasion by engaging the fibronectin synergy site. Mol Biol Cell 2017; 28:2958-2977. [PMID: 28877984 PMCID: PMC5662256 DOI: 10.1091/mbc.e17-02-0126] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 08/25/2017] [Accepted: 08/29/2017] [Indexed: 12/13/2022] Open
Abstract
Fibronectin-ligated α5β1 integrin promotes malignancy by inducing tissue tension. Tumors are fibrotic and characterized by abundant, remodeled, and cross-linked collagen that stiffens the extracellular matrix stroma. The stiffened collagenous stroma fosters malignant transformation of the tissue by increasing tumor cell tension to promote focal adhesion formation and potentiate growth factor receptor signaling through kinase. Importantly, collagen cross-linking requires fibronectin (FN). Fibrotic tumors contain abundant FN, and tumor cells frequently up-regulate the FN receptor α5β1 integrin. Using transgenic and xenograft models and tunable two- and three-dimensional substrates, we show that FN-bound α5β1 integrin promotes tension-dependent malignant transformation through engagement of the synergy site that enhances integrin adhesion force. We determined that ligation of the synergy site of FN permits tumor cells to engage a zyxin-stabilized, vinculin-linked scaffold that facilitates nucleation of phosphatidylinositol (3,4,5)-triphosphate at the plasma membrane to enhance phosphoinositide 3-kinase (PI3K)-dependent tumor cell invasion. The data explain why rigid collagen fibrils potentiate PI3K activation to promote malignancy and offer a perspective regarding the consistent up-regulation of α5β1 integrin and FN in many tumors and their correlation with cancer aggression.
Collapse
Affiliation(s)
- Y A Miroshnikova
- Department of Surgery, Center for Bioengineering and Tissue Regeneration, University of California, San Francisco, San Francisco, CA 94143
| | - G I Rozenberg
- Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA 19104
| | - L Cassereau
- Department of Surgery, Center for Bioengineering and Tissue Regeneration, University of California, San Francisco, San Francisco, CA 94143
| | - M Pickup
- Department of Surgery, Center for Bioengineering and Tissue Regeneration, University of California, San Francisco, San Francisco, CA 94143
| | - J K Mouw
- Department of Surgery, Center for Bioengineering and Tissue Regeneration, University of California, San Francisco, San Francisco, CA 94143
| | - G Ou
- Department of Surgery, Center for Bioengineering and Tissue Regeneration, University of California, San Francisco, San Francisco, CA 94143
| | - K L Templeman
- Woodruff School of Mechanical Engineering, Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332
| | - E-I Hannachi
- Woodruff School of Mechanical Engineering, Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332
| | - K J Gooch
- Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA 19104
| | - A L Sarang-Sieminski
- Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA 19104
| | - A J García
- Woodruff School of Mechanical Engineering, Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332
| | - V M Weaver
- Department of Surgery, Center for Bioengineering and Tissue Regeneration, University of California, San Francisco, San Francisco, CA 94143 .,Department of Anatomy and Department of Bioengineering and Therapeutic Sciences, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143
| |
Collapse
|
45
|
Chittiboyina S, Rahimi R, Atrian F, Ochoa M, Ziaie B, Lelièvre SA. Gradient-on-a-Chip with Reactive Oxygen Species Reveals Thresholds in the Nucleus Response of Cancer Cells Depending on the Matrix Environment. ACS Biomater Sci Eng 2017; 4:432-445. [PMID: 33418734 DOI: 10.1021/acsbiomaterials.7b00087] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Oxidative stress-mediated cancer progression depends on exposure to reactive oxygen species (ROS) in the extracellular matrix (ECM). To study the impact of ROS levels on preinvasive breast cancer cells as a function of ECM characteristics, we created a gradient-on-a-chip in which H2O2 progressively mixes with the cell culture medium within connected microchannels and diffuses upward into the ECM of the open cell culture window. The device utilizes a paper-based microfluidic bifurcating mixer insert to prevent leakage and favor an even fluid distribution. The gradient was confirmed by measuring H2O2 catalyzed into oxygen, and increasing oxidative DNA damage and protective (AOP2) response were recorded in 2D and ECM-based 3D cell cultures. Interestingly, the impact of ROS on nuclear shape and size (annunciating phenotypical changes) was governed by the stiffness of the collagen I matrix, suggesting the existence of thresholds for the phenotypic response to microenvironmental chemical exposure depending on ECM conditions.
Collapse
Affiliation(s)
- Shirisha Chittiboyina
- Department of Basic Medical Sciences, 625 Harrison Street, Purdue University, West Lafayette, Indiana 47907, United States
| | - Rahim Rahimi
- Department of Electrical and Computer Engineering, 465 Northwestern Avenue, Purdue University, West Lafayette, Indiana 47907, United States.,Birck Nanotechnology Center, Purdue University, 1205 W State Street, Purdue Discovery Park, West Lafayette, Indiana 47907, United States
| | - Farzaneh Atrian
- Department of Basic Medical Sciences, 625 Harrison Street, Purdue University, West Lafayette, Indiana 47907, United States
| | - Manuel Ochoa
- Department of Electrical and Computer Engineering, 465 Northwestern Avenue, Purdue University, West Lafayette, Indiana 47907, United States.,Birck Nanotechnology Center, Purdue University, 1205 W State Street, Purdue Discovery Park, West Lafayette, Indiana 47907, United States
| | - Babak Ziaie
- Department of Electrical and Computer Engineering, 465 Northwestern Avenue, Purdue University, West Lafayette, Indiana 47907, United States.,Birck Nanotechnology Center, Purdue University, 1205 W State Street, Purdue Discovery Park, West Lafayette, Indiana 47907, United States.,Purdue University Center for Cancer Research, Purdue University, 201 South University Street, West Lafayette, Indiana 47907, United States
| | - Sophie A Lelièvre
- Department of Basic Medical Sciences, 625 Harrison Street, Purdue University, West Lafayette, Indiana 47907, United States.,Birck Nanotechnology Center, Purdue University, 1205 W State Street, Purdue Discovery Park, West Lafayette, Indiana 47907, United States.,Purdue University Center for Cancer Research, Purdue University, 201 South University Street, West Lafayette, Indiana 47907, United States
| |
Collapse
|
46
|
Ponnusamy L, Mahalingaiah PKS, Singh KP. Treatment schedule and estrogen receptor-status influence acquisition of doxorubicin resistance in breast cancer cells. Eur J Pharm Sci 2017; 104:424-433. [DOI: 10.1016/j.ejps.2017.04.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 04/10/2017] [Accepted: 04/25/2017] [Indexed: 02/01/2023]
|
47
|
Fuzer AM, Lee SY, Mott JD, Cominetti MR. [10]-Gingerol Reverts Malignant Phenotype of Breast Cancer Cells in 3D Culture. J Cell Biochem 2017; 118:2693-2699. [PMID: 28112417 DOI: 10.1002/jcb.25906] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 01/20/2017] [Indexed: 01/04/2023]
Abstract
Breast cancer is a complex and multifactorial disease. Tumors have a heterogeneous microenvironment, which have multiple interactions with other cell types, greatly influencing the behavior of tumor cells and response to therapy. The 3D culture mimics the microenvironment better found in vivo and is more appropriated than the traditional 2D culture made from plastic to test the cellular response to drugs. To investigate the effects of [10]-gingerol on breast tumor cells, we used physiologically relevant three-dimensional (3D) cultures of malignant and non-malignant human breast cells grown in laminin-rich extracellular matrix gels (lr-ECM). Our results showed selective cytotoxicity of [10]-gingerol against the malignant T4-2 breast cancer cell line compared to non-malignant S1 cells. The compound reverted the malignant phenotype of the cancer cells, downregulating the expression of epidermal growth factor receptor (EGFR) and β1-integrin. Moreover, [10]-gingerol induced apoptosis in this cell line. These results suggest that [10]-gingerol may be an effective compound to use as adjuvant therapy in breast cancer treatment. J. Cell. Biochem. 118: 2693-2699, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Angelina M Fuzer
- Department of Gerontology, Federal University of São Carlos, São Carlos, SP, Brazil
| | - Sun-Young Lee
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California
| | - Joni D Mott
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California
| | - Marcia R Cominetti
- Department of Gerontology, Federal University of São Carlos, São Carlos, SP, Brazil
| |
Collapse
|
48
|
Furuta S, Bissell MJ. Pathways Involved in Formation of Mammary Organoid Architecture Have Keys to Understanding Drug Resistance and to Discovery of Druggable Targets. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2017; 81:207-217. [PMID: 28416576 DOI: 10.1101/sqb.2016.81.030825] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Signals from the extracellular matrix (ECM) are received at the cell surface receptor, transmitted to the cytoskeletons, and transferred to the nucleus and chromatin for tissue- and context-specific gene expression. Cells, in return, modulate the cell shape and ECM, allowing for the maintenance of tissue homeostasis as well as for coevolution and adaptation to the environmental signals. We postulated the existence of dynamic and reciprocal interactions between the ECM and the nucleus more than three decades ago, but now these pathways have been proven experimentally thanks to the advances in imaging and cell/molecular biology techniques. In this review, we will introduce some of our recent work that has validated the critical roles of the three-dimensional (3D) tissue architecture in determining mammary biology, therapeutic response, and druggable targets. We describe a novel screen based on reversion of the malignant phenotype in 3D assays. We will also summarize our recent discoveries of the integration of feedback signaling for mammary acinar formation and phenotypic reversion of tumor cells in the LrECM. Lastly, we will introduce our exciting discovery of the physical linkages between the cell surface and cytofibers within a tunnel deep inside of the nucleus, enabling interaction with nuclear lamin and SUN proteins.
Collapse
Affiliation(s)
- Saori Furuta
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720.,Department of Biochemistry and Cancer Biology, College of Medicine and Life Sciences, University of Toledo Health Science, Toledo, Ohio 43614
| | - Mina J Bissell
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| |
Collapse
|
49
|
Fang Y, Eglen RM. Three-Dimensional Cell Cultures in Drug Discovery and Development. SLAS DISCOVERY 2017. [DOI: 10.1177/2472555217696795] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Ye Fang
- Biochemical Technologies, Corning Research and Development Corporation, Corning Incorporated, Corning, NY, USA
| | | |
Collapse
|
50
|
Wang YY, Attané C, Milhas D, Dirat B, Dauvillier S, Guerard A, Gilhodes J, Lazar I, Alet N, Laurent V, Le Gonidec S, Biard D, Hervé C, Bost F, Ren GS, Bono F, Escourrou G, Prentki M, Nieto L, Valet P, Muller C. Mammary adipocytes stimulate breast cancer invasion through metabolic remodeling of tumor cells. JCI Insight 2017; 2:e87489. [PMID: 28239646 DOI: 10.1172/jci.insight.87489] [Citation(s) in RCA: 321] [Impact Index Per Article: 40.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In breast cancer, a key feature of peritumoral adipocytes is their loss of lipid content observed both in vitro and in human tumors. The free fatty acids (FFAs), released by adipocytes after lipolysis induced by tumor secretions, are transferred and stored in tumor cells as triglycerides in lipid droplets. In tumor cell lines, we demonstrate that FFAs can be released over time from lipid droplets through an adipose triglyceride lipase-dependent (ATGL-dependent) lipolytic pathway. In vivo, ATGL is expressed in human tumors where its expression correlates with tumor aggressiveness and is upregulated by contact with adipocytes. The released FFAs are then used for fatty acid β-oxidation (FAO), an active process in cancer but not normal breast epithelial cells, and regulated by coculture with adipocytes. However, in cocultivated cells, FAO is uncoupled from ATP production, leading to AMPK/acetyl-CoA carboxylase activation, a circle that maintains this state of metabolic remodeling. The increased invasive capacities of tumor cells induced by coculture are completely abrogated by inhibition of the coupled ATGL-dependent lipolysis/FAO pathways. These results show a complex metabolic symbiosis between tumor-surrounding adipocytes and cancer cells that stimulate their invasiveness, highlighting ATGL as a potential therapeutic target to impede breast cancer progression.
Collapse
Affiliation(s)
- Yuan Yuan Wang
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS.,Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Université de Toulouse, INSERM, UPS, Toulouse, France.,Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Camille Attané
- Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Université de Toulouse, INSERM, UPS, Toulouse, France
| | - Delphine Milhas
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS
| | - Béatrice Dirat
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS.,Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Université de Toulouse, INSERM, UPS, Toulouse, France
| | - Stéphanie Dauvillier
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS
| | - Adrien Guerard
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS
| | - Julia Gilhodes
- Departement de Biostatistiques, Institut Universitaire du Cancer, Toulouse, France
| | - Ikrame Lazar
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS
| | | | - Victor Laurent
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS
| | - Sophie Le Gonidec
- Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Université de Toulouse, INSERM, UPS, Toulouse, France
| | | | | | - Frédéric Bost
- Institut National de la Santé et de la Recherche Médicale, U1065, Centre Méditerranéen de Médecine Moléculaire, Nice, France
| | - Guo Sheng Ren
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | | | - Ghislaine Escourrou
- Service d'Anatomo-Pathologie, Institut Universitaire du Cancer, Toulouse, France
| | - Marc Prentki
- Departments of Nutrition and Biochemistry and Montreal Diabetes Research Center, CRCHUM and Université de Montréal, Montréal, Quebec, Canada
| | - Laurence Nieto
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS
| | - Philippe Valet
- Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Université de Toulouse, INSERM, UPS, Toulouse, France
| | - Catherine Muller
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS
| |
Collapse
|