1
|
Chang YM, Huang WY, Yang SH, Jan CI, Nieh S, Lin YS, Chen SF, Lin YC. Interleukin-8/CXCR1 Signaling Contributes to the Progression of Pulmonary Adenocarcinoma Resulting in Malignant Pleural Effusion. Cells 2024; 13:968. [PMID: 38891100 PMCID: PMC11172099 DOI: 10.3390/cells13110968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/18/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024] Open
Abstract
Pulmonary adenocarcinoma (PADC) treatment limited efficacy in preventing tumor progression, often resulting in malignant pleural effusion (MPE). MPE is filled with various mediators, especially interleukin-8 (IL-8). However, the role of IL-8 and its signaling mechanism within the fluid microenvironment (FME) implicated in tumor progression warrants further investigation. Primary cultured cells from samples of patients with MPE from PADC, along with a commonly utilized lung cancer cell line, were employed to examine the role of IL-8 and its receptor, CXCR1, through comparative analysis. Our study primarily assessed migration and invasion capabilities, epithelial-mesenchymal transition (EMT), and cancer stem cell (CSC) properties. Additionally, IL-8 levels in MPE fluid versus serum, along with immunohistochemical expression of IL-8/CXCR1 signaling in tumor tissue and cell blocks were analyzed. IL-8/CXCR1 overexpression enhanced EMT and CSC properties. Furthermore, the immunocytochemical examination of 17 cell blocks from patients with PADC and MPE corroborated the significant correlation between upregulated IL-8 and CXCR1 expression and the co-expression of IL-8 and CXCR1 in MPE with distant metastasis. In summary, the IL-8/ CXCR1 axis in FME is pivotal to tumor promotion via paracrine and autocrine signaling. Our study provides a therapeutic avenue for improving the prognosis of PADC patients with MPE.
Collapse
Affiliation(s)
- Yi-Ming Chang
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 11490, Taiwan; (Y.-M.C.); (S.-H.Y.)
- Department of Pathology and Laboratory Medicine, Kaohsiung Veterans General Hospital, Kaohsiung 813414, Taiwan;
| | - Wen-Yen Huang
- Department of Radiation Oncology, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan;
| | - Shih-Hsien Yang
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 11490, Taiwan; (Y.-M.C.); (S.-H.Y.)
- Office of General Affairs and Occupational Safety, National Defense Medical Center, Taipei 11490, Taiwan
| | - Chia-Ing Jan
- Department of Pathology and Laboratory Medicine, Kaohsiung Veterans General Hospital, Kaohsiung 813414, Taiwan;
| | - Shin Nieh
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan;
| | - Yaoh-Shiang Lin
- Department of Otorhinolaryngology, Head and Neck Surgery, Kaohsiung Veterans General Hospital, Kaohsiung 813414, Taiwan;
| | - Su-Feng Chen
- Department of Dentistry, School of Dentistry, China Medical University, Taichung 404333, Taiwan
| | - Yu-Chun Lin
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan;
| |
Collapse
|
2
|
Krishnamohan M, Kaplanov I, Maudi-Boker S, Yousef M, Machluf-Katz N, Cohen I, Elkabets M, Titus J, Bersudsky M, Apte RN, Voronov E, Braiman A. Tumor Cell-Associated IL-1α Affects Breast Cancer Progression and Metastasis in Mice through Manipulation of the Tumor Immune Microenvironment. Int J Mol Sci 2024; 25:3950. [PMID: 38612760 PMCID: PMC11011794 DOI: 10.3390/ijms25073950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 03/25/2024] [Accepted: 03/30/2024] [Indexed: 04/14/2024] Open
Abstract
IL-1α is a dual function cytokine that affects inflammatory and immune responses and plays a pivotal role in cancer. The effects of intracellular IL-1α on the development of triple negative breast cancer (TNBC) in mice were assessed using the CRISPR/Cas9 system to suppress IL-1α expression in 4T1 breast cancer cells. Knockout of IL-1α in 4T1 cells modified expression of multiple genes, including downregulation of cytokines and chemokines involved in the recruitment of tumor-associated pro-inflammatory cells. Orthotopical injection of IL-1α knockout (KO) 4T1 cells into BALB/c mice led to a significant decrease in local tumor growth and lung metastases, compared to injection of wild-type 4T1 (4T1/WT) cells. Neutrophils and myeloid-derived suppressor cells were abundant in tumors developing after injection of 4T1/WT cells, whereas more antigen-presenting cells were observed in the tumor microenvironment after injection of IL-1α KO 4T1 cells. This switch correlated with increased infiltration of CD3+CD8+ and NKp46+cells. Engraftment of IL-1α knockout 4T1 cells into immunodeficient NOD.SCID mice resulted in more rapid tumor growth, with increased lung metastasis in comparison to engraftment of 4T1/WT cells. Our results suggest that tumor-associated IL-1α is involved in TNBC progression in mice by modulating the interplay between immunosuppressive pro-inflammatory cells vs. antigen-presenting and cytotoxic cells.
Collapse
Affiliation(s)
- Mathumathi Krishnamohan
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; (M.K.); (M.E.); (J.T.); (M.B.)
| | - Irena Kaplanov
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; (M.K.); (M.E.); (J.T.); (M.B.)
| | - Sapir Maudi-Boker
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; (M.K.); (M.E.); (J.T.); (M.B.)
| | - Muhammad Yousef
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; (M.K.); (M.E.); (J.T.); (M.B.)
| | - Noy Machluf-Katz
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; (M.K.); (M.E.); (J.T.); (M.B.)
| | - Idan Cohen
- Cancer Center, Emek Medical Center, Afula 18101, Israel;
| | - Moshe Elkabets
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; (M.K.); (M.E.); (J.T.); (M.B.)
| | - Jaison Titus
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; (M.K.); (M.E.); (J.T.); (M.B.)
| | - Marina Bersudsky
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; (M.K.); (M.E.); (J.T.); (M.B.)
| | - Ron N. Apte
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; (M.K.); (M.E.); (J.T.); (M.B.)
| | - Elena Voronov
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; (M.K.); (M.E.); (J.T.); (M.B.)
| | - Alex Braiman
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; (M.K.); (M.E.); (J.T.); (M.B.)
| |
Collapse
|
3
|
Chelladurai M, Xu D, Izraely S, Ben-Menachem S, Bengaiev R, Sagi-Assif O, Yuan W, Pasmanik Chor M, Hoon DS, Lu W, Witz IP. A heterodimer of α and β hemoglobin chains functions as an innate anticancer agent. Int J Cancer 2024; 154:561-572. [PMID: 37675956 DOI: 10.1002/ijc.34702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 07/25/2023] [Accepted: 08/01/2023] [Indexed: 09/08/2023]
Abstract
Metastatic (as well as tumor) microenvironments contain both cancer-promoting and cancer-restraining factors. The balance between these opposing forces determines the fate of cancer cells that disseminate to secondary organ sites. In search for microenvironmental drivers or inhibitors of metastasis, we identified, in a previous study, the beta subunit of hemoglobin (HBB) as a lung-derived antimetastatic factor. In the present study, exploring mechanisms regulating melanoma brain metastasis, we discovered that brain-derived factors restrain proliferation and induce apoptosis and necrosis of brain-metastasizing melanoma cells. Employing various purification procedures, we identified a heterodimer composed of hemoglobin alpha and beta chains that perform these antimetastatic functions. Neither the alpha nor the beta subunit alone was inhibitory. An alpha/beta chain dimer chemically purified from human hemoglobin inhibited the cell viability of primary melanomas, melanoma brain metastasis (MBM), and breast cancer cell lines. The dimer-induced DNA damage, cell cycle arrest at the SubG1 phase, apoptosis, and significant necrosis in four MBM cell lines. Proteomic analysis of dimer-treated MBM cells revealed that the dimer downregulates the expression of BRD4, GAB2, and IRS2 proteins, playing crucial roles in cancer cell sustainability and progression. Thus, we hypothesize that the hemoglobin dimer functions as a resistance factor against brain-metastasizing cancer cells.
Collapse
Affiliation(s)
- Maharrish Chelladurai
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Science, Tel Aviv University, Tel Aviv, Israel
| | - Dan Xu
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Sivan Izraely
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Science, Tel Aviv University, Tel Aviv, Israel
| | - Shlomit Ben-Menachem
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Science, Tel Aviv University, Tel Aviv, Israel
| | - Roman Bengaiev
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Science, Tel Aviv University, Tel Aviv, Israel
| | - Orit Sagi-Assif
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Science, Tel Aviv University, Tel Aviv, Israel
| | - Weirong Yuan
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Metsada Pasmanik Chor
- Bioinformatics Unit, The George S. Wise Faculty of Life Science, Tel Aviv University, Tel-Aviv, Israel
| | - Dave S Hoon
- Department of Translational Molecular Medicine and Sequencing Center, Saint John's Cancer Institute at Providence Saint John's Health Center, Santa Monica, California, USA
| | - Wuyuan Lu
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Isaac P Witz
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Science, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
4
|
Yao Y, Yan Z, Li C, Zhang S, Liu S, Zhang X, Shi L, Liu W, Shi L, Yao Y. Association of HLA class I and II genes with cervical cancer susceptibility in a Han Chinese population. HLA 2024; 103:e15340. [PMID: 38212262 DOI: 10.1111/tan.15340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 12/11/2023] [Accepted: 12/19/2023] [Indexed: 01/13/2024]
Abstract
Cervical cancer (CC) is one of the leading causes of cancer-related death in females worldwide. Genome-wide association studies (GWASs) have identified CC-related susceptibility loci in HLA regions. To investigate the associations between HLA genes and cervical intraepithelial neoplasia (CIN) or cervical cancer (CC), six loci of HLA class I (HLA-A, -B, and -C) and II (HLA-DRB1, -DPB1, and -DQB1) were selected for genotyping, and the associations between these alleles or their haplotypes with CIN or CC risk or protection from disease were evaluated. In total, 2193 participants, including 909 healthy individuals in the control group, 769 patients with CC, and 515 patients with CIN2+ (CIN II and III), were enrolled in the current study. HLA genes were genotyped using the NGSgo Illumina MiSeq workflow, and the associations between these loci and CIN2+ or CC at the allele and haplotype levels were analyzed. The allele frequencies of HLA-A*33:03, B*58:01, C*03:02, DPB1*05:01, and DRB1*12:01 were lower in both the CC and CIN2+ groups than in the control group, whereas those of B*55:02, C*04:03, and DPB1*03:01 were higher in the CC group than in the control group. In the histologic CC type analysis, the differences in the frequencies of these alleles in squamous cell carcinoma (SCC) of the cervix and stage I CC showed a consistent trend. In the haplotype analysis, the frequency of A*33:03-C*03:02-B*58:01 was lower in the CC and CIN2+ groups than in the control group, and that of A*24:02-C*04:03-B*15:25 was higher in the CC group than in both the control and CIN2+ groups. These three different haplotype frequencies were also identified in the FIGO CC stage analysis. In addition, in human papilloma virus (HPV) genotype analyses, the frequencies of HLA-C*03:02 and DPB1*05:01 were significantly lower in the CC and CIN2+ groups than in the control group, and in SCC subgroup, the frequencies of HLA-DQB1*04:01 and DRB1*04:05 were higher in the HPV other genotype infection group than in the HPV16 infection group. In both HPV16 single infection and coinfection with other HPVs, the frequency of haplotype A*33:03-C*03:02-B*58:01 was lower in both CC and CIN2+ than in the control group, while the frequencies of A*11:01-C*14:02-B*51:01 and A*24:02-C*03:04-B*13:01 were higher in the CIN2+ than in CC and the control group. In the HPV16 and other HPV infection comparisons, the frequencies of DRB1*04:05-DQB1*04:01-DPB1*02:01 and DRB1*11:01-DQB1*03:01-DPB1*05:01 were lower in the HPV16 infection group than in the other HPV infection group. Our results suggest that the HLA class I and II genes may affect the risk of CIN and CC as well as the histologic CC types and FIGO stages of CC in the Han Chinese population. In addition, HLA genes were associated with HPV16 infection at both the allelic and haplotype levels.
Collapse
Affiliation(s)
- Yueting Yao
- Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Disease, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, China
| | - Zhiling Yan
- Department of Gynecologic Oncology, No. 3 Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Chuanyin Li
- Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Disease, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, China
| | - Shao Zhang
- Department of Gynecologic Oncology, No. 3 Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Shuyuan Liu
- Department of Immunogenetics, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, China
| | - Xinwen Zhang
- Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Disease, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, China
| | - Lei Shi
- Department of Immunogenetics, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, China
| | - Weipeng Liu
- Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Disease, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, China
| | - Li Shi
- Department of Immunogenetics, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, China
| | - Yufeng Yao
- Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Disease, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, China
| |
Collapse
|
5
|
Izraely S, Ben-Menachem S, Malka S, Sagi-Assif O, Bustos MA, Adir O, Meshel T, Chelladurai M, Ryu S, Ramos RI, Pasmanik-Chor M, Hoon DSB, Witz IP. The Vicious Cycle of Melanoma-Microglia Crosstalk: Inter-Melanoma Variations in the Brain-Metastasis-Promoting IL-6/JAK/STAT3 Signaling Pathway. Cells 2023; 12:1513. [PMID: 37296634 PMCID: PMC10253015 DOI: 10.3390/cells12111513] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/17/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Previous studies from our lab demonstrated that the crosstalk between brain-metastasizing melanoma cells and microglia, the macrophage-like cells of the central nervous system, fuels progression to metastasis. In the present study, an in-depth investigation of melanoma-microglia interactions elucidated a pro-metastatic molecular mechanism that drives a vicious melanoma-brain-metastasis cycle. We employed RNA-Sequencing, HTG miRNA whole transcriptome assay, and reverse phase protein arrays (RPPA) to analyze the impact of melanoma-microglia interactions on sustainability and progression of four different human brain-metastasizing melanoma cell lines. Microglia cells exposed to melanoma-derived IL-6 exhibited upregulated levels of STAT3 phosphorylation and SOCS3 expression, which, in turn, promoted melanoma cell viability and metastatic potential. IL-6/STAT3 pathway inhibitors diminished the pro-metastatic functions of microglia and reduced melanoma progression. SOCS3 overexpression in microglia cells evoked microglial support in melanoma brain metastasis by increasing melanoma cell migration and proliferation. Different melanomas exhibited heterogeneity in their microglia-activating capacity as well as in their response to microglia-derived signals. In spite of this reality and based on the results of the present study, we concluded that the activation of the IL-6/STAT3/SOCS3 pathway in microglia is a major mechanism by which reciprocal melanoma-microglia signaling engineers the interacting microglia to reinforce the progression of melanoma brain metastasis. This mechanism may operate differently in different melanomas.
Collapse
Affiliation(s)
- Sivan Izraely
- The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Science, Tel Aviv University, Tel Aviv 6997801, Israel; (S.I.)
| | - Shlomit Ben-Menachem
- The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Science, Tel Aviv University, Tel Aviv 6997801, Israel; (S.I.)
| | - Sapir Malka
- The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Science, Tel Aviv University, Tel Aviv 6997801, Israel; (S.I.)
| | - Orit Sagi-Assif
- The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Science, Tel Aviv University, Tel Aviv 6997801, Israel; (S.I.)
| | - Matias A. Bustos
- Department of Translational Molecular Medicine, Saint John’s Cancer Institute, Providence Saint John’s Health Center, Santa Monica, CA 90404, USA
| | - Orit Adir
- The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Science, Tel Aviv University, Tel Aviv 6997801, Israel; (S.I.)
| | - Tsipi Meshel
- The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Science, Tel Aviv University, Tel Aviv 6997801, Israel; (S.I.)
| | - Maharrish Chelladurai
- The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Science, Tel Aviv University, Tel Aviv 6997801, Israel; (S.I.)
| | - Suyeon Ryu
- Department of Genome Sequencing, Saint John’s Cancer Institute, Providence Saint John’s Health Center, Santa Monica, CA 90404, USA
| | - Romela I. Ramos
- Department of Translational Molecular Medicine, Saint John’s Cancer Institute, Providence Saint John’s Health Center, Santa Monica, CA 90404, USA
| | - Metsada Pasmanik-Chor
- Bioinformatics Unit, The George S. Wise Faculty of Life Science, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Dave S. B. Hoon
- Department of Translational Molecular Medicine, Saint John’s Cancer Institute, Providence Saint John’s Health Center, Santa Monica, CA 90404, USA
| | - Isaac P. Witz
- The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Science, Tel Aviv University, Tel Aviv 6997801, Israel; (S.I.)
| |
Collapse
|
6
|
De Las Rivas J, Brozovic A, Izraely S, Casas-Pais A, Witz IP, Figueroa A. Cancer drug resistance induced by EMT: novel therapeutic strategies. Arch Toxicol 2021; 95:2279-2297. [PMID: 34003341 PMCID: PMC8241801 DOI: 10.1007/s00204-021-03063-7] [Citation(s) in RCA: 100] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 04/28/2021] [Indexed: 02/06/2023]
Abstract
Over the last decade, important clinical benefits have been achieved in cancer patients by using drug-targeting strategies. Nevertheless, drug resistance is still a major problem in most cancer therapies. Epithelial-mesenchymal plasticity (EMP) and tumour microenvironment have been described as limiting factors for effective treatment in many cancer types. Moreover, epithelial-to-mesenchymal transition (EMT) has also been associated with therapy resistance in many different preclinical models, although limited evidence has been obtained from clinical studies and clinical samples. In this review, we particularly deepen into the mechanisms of which intermediate epithelial/mesenchymal (E/M) states and its interconnection to microenvironment influence therapy resistance. We also describe how the use of bioinformatics and pharmacogenomics will help to figure out the biological impact of the EMT on drug resistance and to develop novel pharmacological approaches in the future.
Collapse
Affiliation(s)
- Javier De Las Rivas
- Bioinformatics and Functional Genomics Group, Cancer Research Center (CiC-IBMCC, CSIC/USAL/IBSAL), Consejo Superior de Investigaciones Científicas (CSIC), University of Salamanca (USAL), Salamanca, Spain
| | - Anamaria Brozovic
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička 54, 10000, Zagreb, Croatia
| | - Sivan Izraely
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel Aviv, Israel
| | - Alba Casas-Pais
- Epithelial Plasticity and Metastasis Group, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, Spain.,Universidade da Coruña (UDC), Coruña, Spain
| | - Isaac P Witz
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel Aviv, Israel
| | - Angélica Figueroa
- Epithelial Plasticity and Metastasis Group, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, Spain. .,Universidade da Coruña (UDC), Coruña, Spain.
| |
Collapse
|
7
|
One Metformin a Day, Keeps Lung Cancer Away! Or Does It? J Thorac Oncol 2021; 16:11-13. [PMID: 33384055 DOI: 10.1016/j.jtho.2020.10.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 10/02/2020] [Indexed: 11/21/2022]
|
8
|
Domogauer JD, de Toledo SM, Howell RW, Azzam EI. Acquired radioresistance in cancer associated fibroblasts is concomitant with enhanced antioxidant potential and DNA repair capacity. Cell Commun Signal 2021; 19:30. [PMID: 33637118 PMCID: PMC7912493 DOI: 10.1186/s12964-021-00711-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 01/18/2021] [Indexed: 12/21/2022] Open
Abstract
Background Cancer-associated fibroblasts (CAFs) are a major component of the cancer stroma, and their response to therapeutic treatments likely impacts the outcome. We tested the hypothesis that CAFs develop unique characteristics that enhance their resistance to ionizing radiation. Methods CAFs were generated through intimate coculture of normal human fibroblasts of skin or lung origin with various human cancer cell types using permeable microporous membrane inserts. Fibroblasts and cancer cells are grown intimately, yet separately, on either side of the insert’s membrane for extended times to generate activated fibroblast populations highly enriched in CAFs. Results The generated CAFs exhibited a decrease in Caveolin-1 protein expression levels, a CAF biomarker, which was further enhanced when the coculture was maintained under in-vivo-like oxygen tension conditions. The level of p21Waf1 was also attenuated, a characteristic also associated with accelerated tumor growth. Furthermore, the generated CAFs experienced perturbations in their redox environment as demonstrated by increases in protein carbonylation, mitochondrial superoxide anion levels, and modulation of the activity of the antioxidants, manganese superoxide dismutase and catalase. Propagation of the isolated CAFs for 25 population doublings was associated with enhanced genomic instability and a decrease in expression of the senescence markers β-galactosidase and p16INK4a. With relevance to radiotherapeutic treatments, CAFs in coculture with cancer cells of diverse origins (breast, brain, lung, and prostate) were resistant to the clastogenic effects of 137Cs γ rays compared to naïve fibroblasts. Addition of repair inhibitors of single- or double-stranded DNA breaks attenuated the resistance of CAFs to the clastogenic effects of γ rays, supporting a role for increased ability to repair DNA damage in CAF radioresistance. Conclusions This study reveals that CAFs are radioresistant and experience significant changes in indices of oxidative metabolism. The CAFs that survive radiation treatment likely modulate the fate of the associated cancer cells. Identifying them together with their mode of communication with cancer cells, and eradicating them, particularly when they may exist at the margin of the radiotherapy planning target volume, may improve the efficacy of cancer treatments.![]() Video Abstract
Collapse
Affiliation(s)
- Jason D Domogauer
- Division of Radiation Research and Center for Cell Signaling, Department of Radiology, Rutgers Biomedical and Health Sciences, New Jersey Medical School, Rutgers University, 205 South Orange Avenue, Room - F1212, Newark, NJ, USA
| | - Sonia M de Toledo
- Division of Radiation Research and Center for Cell Signaling, Department of Radiology, Rutgers Biomedical and Health Sciences, New Jersey Medical School, Rutgers University, 205 South Orange Avenue, Room - F1212, Newark, NJ, USA
| | - Roger W Howell
- Division of Radiation Research and Center for Cell Signaling, Department of Radiology, Rutgers Biomedical and Health Sciences, New Jersey Medical School, Rutgers University, 205 South Orange Avenue, Room - F1212, Newark, NJ, USA
| | - Edouard I Azzam
- Division of Radiation Research and Center for Cell Signaling, Department of Radiology, Rutgers Biomedical and Health Sciences, New Jersey Medical School, Rutgers University, 205 South Orange Avenue, Room - F1212, Newark, NJ, USA.
| |
Collapse
|
9
|
Di Gioia S, Hossain MN, Conese M. Biological properties and therapeutic effects of plant-derived nanovesicles. Open Med (Wars) 2020; 15:1096-1122. [PMID: 33336066 PMCID: PMC7718644 DOI: 10.1515/med-2020-0160] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/29/2020] [Accepted: 09/23/2020] [Indexed: 12/11/2022] Open
Abstract
Exosomes-like nanoparticles can be released by a variety of plants and vegetables. The relevance of plant-derived nanovesicles (PDNVs) in interspecies communication is derived from their content in biomolecules (lipids, proteins, and miRNAs), absence of toxicity, easy internalization by mammalian cells, as well as for their anti-inflammatory, immunomodulatory, and regenerative properties. Due to these interesting features, we review here their potential application in the treatment of inflammatory bowel disease (IBD), liver diseases, and cancer as well as their potentiality as drug carriers. Current evidence indicate that PDNVs can improve the disease state at the level of intestine in IBD mouse models by affecting inflammation and promoting prohealing effects. While few reports suggest that anticancer effects can be derived from antiproliferative and immunomodulatory properties of PDNVs, other studies have shown that PDNVs can be used as effective delivery systems for small molecule agents and nucleic acids with therapeutic effects (siRNAs, miRNAs, and DNAs). Finally, since PDNVs are characterized by a proven stability in the gastrointestinal tract, they have been considered as promising delivery systems for natural products contained therein and drugs (including nucleic acids) via the oral route.
Collapse
Affiliation(s)
- Sante Di Gioia
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
| | - Md Niamat Hossain
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
| | - Massimo Conese
- Laboratory of Experimental and Regenerative Medicine, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| |
Collapse
|
10
|
Izraely S, Witz IP. Site-specific metastasis: A cooperation between cancer cells and the metastatic microenvironment. Int J Cancer 2020; 148:1308-1322. [PMID: 32761606 PMCID: PMC7891572 DOI: 10.1002/ijc.33247] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 07/08/2020] [Accepted: 08/03/2020] [Indexed: 12/19/2022]
Abstract
The conclusion derived from the information provided in this review is that disseminating tumor cells (DTC) collaborate with the microenvironment of a future metastatic organ site in the establishment of organ‐specific metastasis. We review the basic principles of site‐specific metastasis and the contribution of the cross talk between DTC and the microenvironment of metastatic sites (metastatic microenvironment [MME]) to the establishment of the organ‐specific premetastatic niche; the targeted migration of DTC to the endothelium of the future organ‐specific metastasis; the transmigration of DTC to this site and the seeding and colonization of DTC in their future MME. We also discuss the role played by DTC‐MME interactions on tumor dormancy and on the differential response of tumor cells residing in different MMEs to antitumor therapy. Finally, we summarize some studies dealing with the effects of the MME on a unique site‐specific metastasis—brain metastasis.
Collapse
Affiliation(s)
- Sivan Izraely
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel Aviv, Israel
| | - Isaac P Witz
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel Aviv, Israel
| |
Collapse
|
11
|
Tamminga M, Hiltermann TJN, Schuuring E, Timens W, Fehrmann RS, Groen HJ. Immune microenvironment composition in non-small cell lung cancer and its association with survival. Clin Transl Immunology 2020; 9:e1142. [PMID: 32547744 PMCID: PMC7291326 DOI: 10.1002/cti2.1142] [Citation(s) in RCA: 119] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 04/25/2020] [Accepted: 05/11/2020] [Indexed: 12/16/2022] Open
Abstract
Objectives In non-small cell lung cancer (NSCLC), the immune system and possibly its composition affect survival. In this in silico study, the immune infiltrate composition in NSCLC patients was evaluated. Methods Gene expression data of tumors from early NSCLC patients were obtained from Gene Expression Omnibus (GEO). With CIBERSORT, 22 immune cell fractions were estimated. Results The immune infiltrate of 1430 pretreatment NSCLC patients contained mostly plasma cells, macrophages and CD8 T cells. Higher fractions of resting mast and CD4 T-helper cells were associated with longer overall survival (OS) (HR = 0.95, P < 0.01; HR = 0.98, = 0.04, respectively) and higher fractions of M2 macrophages and active dendritic cells with shorter survival (HR = 1.02, P = 0.03; HR = 1.03, P = 0.05, respectively). Adenocarcinoma patients with survival data (n = 587) showed higher fractions of resting mast and resting CD4 T cells, and lower M0 macrophages than squamous cell carcinoma (n = 254), which were associated with OS (HR = 0.95, P = 0.04; HR = 0.97, P = 0.01; HR = 1.03, P = 0.01, respectively). Fractions of memory B cells, naïve CD4 T cells and neutrophils had different associations with survival depending on the subtype. Smokers had had higher fractions of regulatory T cell, follicular helper T cell, neutrophil and M2 macrophage, which were associated with shorter survival (HR = 1.3, P < 0.01; HR = 1.13, P = 0.02; HR = 1.09, P = 0.03; HR = 1.04, P = 0.02, respectively). Conclusion Pretreatment differences in immune cell composition in NSCLC are associated with survival and depend on smoking status and histological subtype. Smokers' immune composition is associated with lower survival.
Collapse
Affiliation(s)
- Menno Tamminga
- Department of Pulmonary Diseases University Medical Center Groningen University of Groningen Groningen The Netherlands
| | - Thijo Jeroen N Hiltermann
- Department of Pulmonary Diseases University Medical Center Groningen University of Groningen Groningen The Netherlands
| | - Ed Schuuring
- Department of Pathology and Medical Biology University Medical Center Groningen University of Groningen Groningen The Netherlands
| | - Wim Timens
- Department of Pathology and Medical Biology University Medical Center Groningen University of Groningen Groningen The Netherlands
| | - Rudolf Sn Fehrmann
- Department of Medical Oncology University Medical Center Groningen University of Groningen Groningen The Netherlands
| | - Harry Jm Groen
- Department of Pulmonary Diseases University Medical Center Groningen University of Groningen Groningen The Netherlands
| |
Collapse
|
12
|
Eisenberg L, Eisenberg-Bord M, Eisenberg-Lerner A, Sagi-Eisenberg R. Metabolic alterations in the tumor microenvironment and their role in oncogenesis. Cancer Lett 2020; 484:65-71. [PMID: 32387442 DOI: 10.1016/j.canlet.2020.04.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 03/30/2020] [Accepted: 04/11/2020] [Indexed: 12/19/2022]
Abstract
Metabolic reprogramming is a characteristic feature of both cancer cells and their neighbouring cells in the tumor microenvironment (TME). The latter include stroma fibroblasts and adipocytes, that respectively differentiate to become cancer associated fibroblasts (CAFs) and cancer associated adipocytes (CAAs), and infiltrated immune cells, that collaborate with the stromal cells to provide the tumor a pro-tumorigenic niche. Here we discuss the association between the reprogramming of glucose metabolism in the TME and oncogenic signaling and its reflection in the non-canonical functions of metabolic enzymes. We also discuss the non-canonical actions of oncometabolites and the contribution to oncogenesis of external metabolites that accumulate in the TME as result of crosstalk between the tumor and the TME. Special emphasis is given in this regard to lysophosphatidic acid (LPA) and adenosine, two powerful metabolites, the concentrations of which rise in the TME due to altered metabolism of the tumor and its surrounding cells, allowing their action as external signals.
Collapse
Affiliation(s)
- Lihie Eisenberg
- Department of Epidemiology and Preventive Medicine, School of Public Health, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Michal Eisenberg-Bord
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 76100, Israel
| | | | - Ronit Sagi-Eisenberg
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel.
| |
Collapse
|
13
|
Gorzalczany Y, Merimsky O, Sagi-Eisenberg R. Mast Cells Are Directly Activated by Cancer Cell-Derived Extracellular Vesicles by a CD73- and Adenosine-Dependent Mechanism. Transl Oncol 2019; 12:1549-1556. [PMID: 31493676 PMCID: PMC6732751 DOI: 10.1016/j.tranon.2019.08.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 08/05/2019] [Indexed: 12/20/2022] Open
Abstract
We have recently shown that mast cells (MCs), which constitute an important part of the tumor microenvironment (TME), can be directly activated by cancer cells under conditions that recapitulate cell to cell contact. However, MCs are often detected in the tumor periphery rather than intratumorally. Therefore, we investigated the possibility of MC activation by cancer cell–derived extracellular vesicles (EVs). Here we show that exposure of MCs to EVs derived from pancreatic cancer cells or non–small cell lung carcinoma results in MC activation, evident by the increased phosphorylation of the ERK1/2 MAP kinases. Further, we show that, similarly to activation by cancer cell contact, activation by EVs is dependent on the ecto enzyme CD73 that mediates extracellular formation of adenosine and on signaling by the A3 adenosine receptor. Finally, we show that activation by either cell contact or EVs upregulates expression of angiogenic and tissue remodeling genes, including IL8, IL6, VEGF, and amphiregulin. Collectively, our findings indicate that both intratumorally localized MCs and peripheral MCs are activated and reprogrammed in the TME either by contact with the cancer cells or by their released EVs.
Collapse
Affiliation(s)
- Yaara Gorzalczany
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Ofer Merimsky
- Unit of Soft Tissue and Bone Oncology, Division of Oncology, The Tel Aviv Sourasky Medical Center and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Ronit Sagi-Eisenberg
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel.
| |
Collapse
|
14
|
Marchenko LV, Nikotina AD, Aksenov ND, Smagina LV, Margulis BA, Guzhova IV. Phenotypic Characteristics of Macrophages and Tumor Cells in Coculture. ACTA ACUST UNITED AC 2018. [DOI: 10.1134/s1990519x18050036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
15
|
Abstract
The concept that progression of cancer is regulated by interactions of cancer cells with their microenvironment was postulated by Stephen Paget over a century ago. Contemporary tumour microenvironment (TME) research focuses on the identification of tumour-interacting microenvironmental constituents, such as resident or infiltrating non-tumour cells, soluble factors and extracellular matrix components, and the large variety of mechanisms by which these constituents regulate and shape the malignant phenotype of tumour cells. In this Timeline article, we review the developmental phases of the TME paradigm since its initial description. While illuminating controversies, we discuss the importance of interactions between various microenvironmental components and tumour cells and provide an overview and assessment of therapeutic opportunities and modalities by which the TME can be targeted.
Collapse
Affiliation(s)
- Shelly Maman
- Department of Cell Research and Immunology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Isaac P Witz
- Department of Cell Research and Immunology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
16
|
Moshe A, Izraely S, Sagi-Assif O, Prakash R, Telerman A, Meshel T, Carmichael T, Witz IP. Cystatin C takes part in melanoma-microglia cross-talk: possible implications for brain metastasis. Clin Exp Metastasis 2018; 35:369-378. [PMID: 29722001 PMCID: PMC6208992 DOI: 10.1007/s10585-018-9891-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 04/16/2018] [Indexed: 12/20/2022]
Abstract
The development of melanoma brain metastasis is largely dependent on mutual interactions between the melanoma cells and cells in the brain microenvironment. Here, we report that the extracellular cysteine protease inhibitor cystatin C (CysC) is involved in these interactions. Microglia-derived factors upregulated CysC secretion by melanoma. Similarly, melanoma-derived factors upregulated CysC secretion by microglia. Whereas CysC enhanced melanoma cell migration through a layer of brain endothelial cells, it inhibited the migration of microglia cells toward melanoma cells. CysC was also found to promote the formation of melanoma three-dimensional structures in matrigel. IHC analysis revealed increased expression levels of CysC in the brain of immune-deficient mice bearing xenografted human melanoma brain metastasis compared to the brain of control mice. Based on these in vitro and in vivo experiments we hypothesize that CysC promotes melanoma brain metastasis. Increased expression levels of CysC were detected in the regenerating brain of mice after stroke. Post-stroke brain with melanoma brain metastasis showed an even stronger expression of CysC. The in vitro induction of stroke-like conditions in brain microenvironmental cells increased the levels of CysC in the secretome of microglia cells, but not in the secretome of brain endothelial cells. The similarities between melanoma brain metastasis and stroke with respect to CysC expression by and secretion from microglia cells suggest that CysC may be involved in shared pathways between brain metastasis and post-stroke regeneration. This manifests the tendency of tumor cells to highjack physiological molecular pathways in their progression.
Collapse
Affiliation(s)
- Adi Moshe
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, 69978, Tel Aviv, Israel
| | - Sivan Izraely
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, 69978, Tel Aviv, Israel
| | - Orit Sagi-Assif
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, 69978, Tel Aviv, Israel
| | - Roshini Prakash
- Department of Neurology, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Alona Telerman
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, 69978, Tel Aviv, Israel
| | - Tsipi Meshel
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, 69978, Tel Aviv, Israel
| | - Thomas Carmichael
- Department of Neurology, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Isaac P Witz
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, 69978, Tel Aviv, Israel.
| |
Collapse
|
17
|
Establishment of a Model of Microencapsulated SGC7901 Human Gastric Carcinoma Cells Cocultured with Tumor-Associated Macrophages. Can J Gastroenterol Hepatol 2018; 2018:3767482. [PMID: 29808160 PMCID: PMC5902114 DOI: 10.1155/2018/3767482] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 01/26/2018] [Accepted: 02/20/2018] [Indexed: 01/17/2023] Open
Abstract
The important factors of poor survival of gastric cancer (GC) are relapse and metastasis. For further elucidation of the mechanism, a culture system mimicking the microenvironment of the tumor in humans was needed. We established a model of microencapsulated SGC7901 human GC cells and evaluated the effects of coculturing spheres with tumor-associated macrophages (TAMs). SGC7901 cells were encapsulated in alginate-polylysine-sodium alginate (APA) microcapsules using an electrostatic droplet generator. MTT assays showed that the numbers of microencapsulated cells were the highest after culturing for 14 days. Metabolic curves showed consumption of glucose and production of lactic acid by day 20. Immunocytochemistry confirmed that Proliferating Cell Nuclear Antigen (PCNA) and Vascular Endothelial Growth Factor (VEGF) were expressed in microencapsulated SGC7901 cells on days 7 and 14. The expression of PCNA was observed outside spheroids; however, VEGF was found in the entire spheroids. PCNA and VEGF were increased after being cocultured with TAMs. Matrix metalloproteinase-2 (MMP-2) and matrix metalloproteinase-9 (MMP-9) expressions were detected in the supernatant of microencapsulated cells cocultured with TAMs but not in microencapsulated cells. Our study confirms the successful establishment of the microencapsulated GC cells. TAMs can promote PCNA, VEGF, MMP-2, and MMP-9 expressions of the GC cells.
Collapse
|
18
|
Lichtenstein AV. Genetic Mosaicism and Cancer: Cause and Effect. Cancer Res 2018; 78:1375-1378. [DOI: 10.1158/0008-5472.can-17-2769] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 10/14/2017] [Accepted: 01/09/2018] [Indexed: 11/16/2022]
|
19
|
Wei S. Yin-yang regulating effects of cancer-associated genes, proteins, and cells: An ancient Chinese concept in vogue in modern cancer research. Biosci Trends 2017; 11:612-618. [PMID: 29238002 DOI: 10.5582/bst.2017.01259] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Great achievements have been made in human cancer research, but most of this research is focused on conditions at the microscopic rather than the systemic level. Recent studies have increasingly cited the ancient Chinese theory of yin-yang in an effort to expand beyond the microscopic level. Various cancer-associated genes and proteins such as mitogen-activated protein kinase (MAPK), p38, p53, c-Myc, tumor necrosis factor (TNF)-α, NF-κB, Cyclin D1, and cyclin-dependent kinase (CDK) and cells such as T cells, B cells, macrophages, neutrophils, and fibroblasts have been reported to regulate various types of cancers in a yin-yang manner. These studies have brought the theory of yin-yang into vogue in cancer research worldwide.
Collapse
Affiliation(s)
- Shuyong Wei
- College of Animal Science, Southwest University
| |
Collapse
|
20
|
Roh T, Lynch CF, Weyer P, Wang K, Kelly KM, Ludewig G. Low-level arsenic exposure from drinking water is associated with prostate cancer in Iowa. ENVIRONMENTAL RESEARCH 2017; 159:338-343. [PMID: 28841521 PMCID: PMC5623650 DOI: 10.1016/j.envres.2017.08.026] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 07/24/2017] [Accepted: 08/12/2017] [Indexed: 05/02/2023]
Abstract
Inorganic arsenic is a toxic naturally occurring element in soil and water in many regions of the US including the Midwest. Prostate cancer is the second most common type of cancer in men in Iowa, surpassed only by non-melanotic skin cancer. Epidemiology studies have evaluated arsenic exposure from drinking water and prostate cancer, but most have focused on high-level exposures outside the US. As drinking water from groundwater sources is a major source of arsenic exposure, we conducted an ecologic study to evaluate prostate cancer and arsenic in drinking water from public water sources and private wells in Iowa, where exposure levels are low, but duration of exposure can be long. Arsenic data from public water systems were obtained from the Iowa Safe Drinking Water Information System for the years 1994-2003 and for private wells from two Iowa Well Water Studies, the Iowa Community Private Well Study (ICPWS, 2002-2003) and Iowa Statewide Rural Well Water Survey Phase 2 (SWIRL2, 2006-2008) that provided data for 87 Iowa counties. Prostate cancer incidence data from 2009 to 2013 for Iowa were obtained from Surveillance, Epidemiology and End Results' SEER*Stat software. County averages of water arsenic levels varied from 1.08 to 18.6 ppb, with three counties above the current 10 ppb limit. Based on the tertiles of arsenic levels, counties were divided into three groups: low (1.08-2.06 ppb), medium (2.07-2.98 ppb), and high (2.99-18.6 ppb). Spatial Poisson regression modeling was conducted to estimate the risk ratios (RR) of prostate cancer by tertiles of arsenic level at a county level, adjusted for demographic and risk factors. The RR of prostate cancer were 1.23 (95% CI, 1.16-1.30) and 1.28 (95% CI, 1.21-1.35) in the medium and high groups, respectively, compared to the low group after adjusting for risk factors. The RR increased to 1.36 (95% CI, 1.28-1.45) in the high group when analyses were restricted to aggressive prostate cancers (Gleason score ≥ 7). This study shows a significant dose-dependent association between low-level arsenic exposure and prostate cancer, and if this result is replicated in future individual-level studies, may suggest that 10 ppb is not protective for human health.
Collapse
Affiliation(s)
- Taehyun Roh
- Interdisciplinary Graduate Program in Human Toxicology, University of Iowa, Iowa City, IA 52242, United States
| | - Charles F Lynch
- Department of Epidemiology, University of Iowa, Iowa City, IA 52242, United States
| | - Peter Weyer
- Center for Health Effects of Environmental Contamination, University of Iowa, Iowa City, IA 52242, United States
| | - Kai Wang
- Department of Biostatistics, University of Iowa, Iowa City, IA 52242, United States
| | - Kevin M Kelly
- Department of Occupational and Environmental Health, University of Iowa, Iowa City, IA 52242, United States
| | - Gabriele Ludewig
- Interdisciplinary Graduate Program in Human Toxicology, University of Iowa, Iowa City, IA 52242, United States; Department of Occupational and Environmental Health, University of Iowa, Iowa City, IA 52242, United States.
| |
Collapse
|
21
|
Silencing of TGF-β1 in tumor cells impacts MMP-9 in tumor microenvironment. Sci Rep 2017; 7:8678. [PMID: 28819116 PMCID: PMC5561077 DOI: 10.1038/s41598-017-09062-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 07/19/2017] [Indexed: 02/07/2023] Open
Abstract
Transforming growth factor (TGF)-β1 contributes to autocrine and paracrine functions in the tumor microenvironment (TME). The present study examined the effects of TGF-β1 crosstalk in TME and its role in mediating tumor formation and progression by targeted abrogation of TGF-β1 expression in metastatic cells in situ. Using species-specific primers, we found a significant increase in MMP-9 gene expression in the tumor-reactive stroma during late-stage metastasis in the lung. This effect was also confirmed in cancer-associated fibroblasts (CAFs) when co-cultured with the tumor cells. Knockdown of TGF-β1 expression in the tumor cells negatively affected matrix metalloproteinase (MMP)-9 gene expression. Fibroblasts, cultured in the presence of tumor cells with intact TGF-β1, showed a significant increase in proliferation rate, as well as expression of VEGF, bFGF, and SDF-1, which was not seen when TGF-β1 expression was abrogated in tumor cells. Absence of TGF-β1 in tumor cells also failed to result in myofibroblast differentiation. Co-implantation of CAFs and tumor cells with either intact TGF-β1 expression or devoid of TGF-β1 in vivo showed a significant increase in tumor growth kinetics in both cell types, suggesting a possible activation TGF-β receptor signaling in tumor cells in response to TGF-β from the TME.
Collapse
|
22
|
Gorzalczany Y, Akiva E, Klein O, Merimsky O, Sagi-Eisenberg R. Mast cells are directly activated by contact with cancer cells by a mechanism involving autocrine formation of adenosine and autocrine/paracrine signaling of the adenosine A3 receptor. Cancer Lett 2017; 397:23-32. [PMID: 28342985 DOI: 10.1016/j.canlet.2017.03.026] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 03/14/2017] [Accepted: 03/15/2017] [Indexed: 12/11/2022]
Abstract
Mast cells (MCs) constitute an important part of the tumor microenvironment (TME). However, their underlying mechanisms of activation within the TME remain poorly understood. Here we show that recapitulating cell-to-cell contact interactions by exposing MCs to membranes derived from a number of cancer cell types, results in MC activation, evident by the increased phosphorylation of the ERK1/2 MAP kinases and Akt, in a phosphatidylinositol 3-kinase dependent fashion. Activation is unidirectional since MC derived membranes do not activate cancer cells. Stimulated ERK1/2 phosphorylation is strictly dependent on the ecto enzyme CD73 that mediates autocrine formation of adenosine, and is inhibited by knockdown of the A3 adenosine receptor (A3R) as well as by an A3R antagonist or by agonist-stimulated down-regulation of the A3R. We also show that cancer cell mediated triggering upregulates expression and stimulates secretion of interleukin 8 from the activated MCs. These findings provide evidence for a novel mode of unidirectional crosstalk between MCs and cancer cells implicating direct activation by cancer cells in MC reprogramming into a pro tumorigenic profile.
Collapse
Affiliation(s)
- Yaara Gorzalczany
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Eyal Akiva
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Ofir Klein
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Ofer Merimsky
- Unit of Soft Tissue and Bone Oncology, Division of Oncology, The Tel Aviv Sourasky Medical Center and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Ronit Sagi-Eisenberg
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel.
| |
Collapse
|
23
|
Naftali O, Maman S, Meshel T, Sagi-Assif O, Ginat R, Witz IP. PHOX2B is a suppressor of neuroblastoma metastasis. Oncotarget 2016; 7:10627-37. [PMID: 26840262 PMCID: PMC4891146 DOI: 10.18632/oncotarget.7056] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 01/23/2016] [Indexed: 12/27/2022] Open
Abstract
Paired like homeobox 2B (PHOX2B) is a minimal residual disease (MRD) marker of neuroblastoma. The presence of MRD, also referred to as micro-metastases, is a powerful marker of poor prognosis in neuroblastoma. Lung metastasis is considered a terminal event in neuroblastoma. Lung micro-metastatic neuroblastoma (MicroNB) cells show high expression levels of PHOX2B and possess a less malignant and metastatic phenotype than lung macro metastatic neuroblastoma (MacroNB) cells, which hardly express PHOX2B. In vitro assays showed that PHOX2B knockdown in MicroNB cells did not affect cell viability; however it decreased the migratory capacity of the MicroNB-shPHOX2B cells. An orthotopic inoculation of MicroNB-shPHOX2B cells into the adrenal gland of nude mice resulted in significantly larger primary tumors and a heavier micro-metastatic load in the lungs and bone-marrow, than when control cells were inoculated. PHOX2B expression was found to be regulated by methylation. The PHOX2B promoter in MacroNB cells is significantly more methylated than in MicroNB cells. Demethylation assays using 5-azacytidine demonstrated that methylation can indeed inhibit PHOX2B transcription in MacroNB cells. These pre-clinical data strongly suggest that PHOX2B functions as a suppressor of neuroblastoma progression.
Collapse
Affiliation(s)
- Osnat Naftali
- Department of Cell Research and Immunology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel 69978
| | - Shelly Maman
- Department of Cell Research and Immunology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel 69978
| | - Tsipi Meshel
- Department of Cell Research and Immunology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel 69978
| | - Orit Sagi-Assif
- Department of Cell Research and Immunology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel 69978
| | - Ravit Ginat
- Department of Cell Research and Immunology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel 69978
| | - Isaac P Witz
- Department of Cell Research and Immunology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel 69978
| |
Collapse
|
24
|
Abstract
Metastases that are resistant to conventional therapy are the major cause of death from cancer. In most patients, metastasis has already occurred by the time of diagnosis. Thus, the prevention of metastasis is unlikely to be of therapeutic benefit. The biological heterogeneity of metastases presents a major obstacle to treatment. However, the growth and survival of metastases depend on interactions between tumor cells and host homeostatic mechanisms. Targeting these interactions, in addition to the tumor cells, can produce synergistic therapeutic effects against existing metastases.
Collapse
Affiliation(s)
- Isaiah J Fidler
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 173, Houston, TX, 77030, USA.
| | - Margaret L Kripke
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 173, Houston, TX, 77030, USA
| |
Collapse
|
25
|
Huang H, Zhu J, Li Y, Zhang L, Gu J, Xie Q, Jin H, Che X, Li J, Huang C, Chen LC, Lyu J, Gao J, Huang C. Upregulation of SQSTM1/p62 contributes to nickel-induced malignant transformation of human bronchial epithelial cells. Autophagy 2016; 12:1687-1703. [PMID: 27467530 PMCID: PMC5079680 DOI: 10.1080/15548627.2016.1196313] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Chronic lung inflammation is accepted as being associated with the development of lung cancer caused by nickel exposure. Therefore, identifying the molecular mechanisms that lead to a nickel-induced sustained inflammatory microenvironment that causes transformation of human bronchial epithelial cells is of high significance. In the current studies, we identified SQSTM1/p62 as a novel nickel-upregulated protein that is important for nickel-induced inflammatory TNF expression, subsequently resulting in transformation of human bronchial epithelial cells. We found that nickel exposure induced SQSTM1 protein upregulation in human lung epithelial cells in vitro and in mouse lung tissues in vivo. The SQSTM1 upregulation was also observed in human lung squamous cell carcinoma. Further studies revealed that the knockdown of SQSTM1 expression dramatically inhibited transformation of human lung epithelial cells upon chronic nickel exposure, whereas ectopic expression of SQSTM1 promoted such transformation. Mechanistic studies showed that the SQSTM1 upregulation by nickel was the compromised result of upregulating SQSTM1 mRNA transcription and promoting SQSTM1 protein degradation. We demonstrated that nickel-initiated SQSTM1 protein degradation is mediated by macroautophagy/autophagy via an MTOR-ULK1-BECN1 axis, whereas RELA is important for SQSTM1 transcriptional upregulation following nickel exposure. Furthermore, SQSTM1 upregulation exhibited its promotion of nickel-induced cell transformation through exerting an impetus for nickel-induced inflammatory TNF mRNA stability. Consistently, the MTOR-ULK1-BECN1 autophagic cascade acted as an inhibitory effect on nickel-induced TNF expression and cell transformation. Collectively, our results demonstrate a novel SQSTM1 regulatory network that promotes a nickel-induced tumorigenic effect in human bronchial epithelial cells, which is negatively controlled by an autophagic cascade following nickel exposure.
Collapse
Affiliation(s)
- Haishan Huang
- a Zhejiang Provincial Key Laboratory for Technology & Application of Model Organisms, School of Life Sciences, Wenzhou Medical University , Wenzhou , Zhejiang , China.,b Nelson Institute of Environmental Medicine, New York University School of Medicine , Tuxedo , NY , USA
| | - Junlan Zhu
- a Zhejiang Provincial Key Laboratory for Technology & Application of Model Organisms, School of Life Sciences, Wenzhou Medical University , Wenzhou , Zhejiang , China.,b Nelson Institute of Environmental Medicine, New York University School of Medicine , Tuxedo , NY , USA
| | - Yang Li
- a Zhejiang Provincial Key Laboratory for Technology & Application of Model Organisms, School of Life Sciences, Wenzhou Medical University , Wenzhou , Zhejiang , China.,b Nelson Institute of Environmental Medicine, New York University School of Medicine , Tuxedo , NY , USA
| | - Liping Zhang
- a Zhejiang Provincial Key Laboratory for Technology & Application of Model Organisms, School of Life Sciences, Wenzhou Medical University , Wenzhou , Zhejiang , China
| | - Jiayan Gu
- a Zhejiang Provincial Key Laboratory for Technology & Application of Model Organisms, School of Life Sciences, Wenzhou Medical University , Wenzhou , Zhejiang , China
| | - Qipeng Xie
- a Zhejiang Provincial Key Laboratory for Technology & Application of Model Organisms, School of Life Sciences, Wenzhou Medical University , Wenzhou , Zhejiang , China
| | - Honglei Jin
- a Zhejiang Provincial Key Laboratory for Technology & Application of Model Organisms, School of Life Sciences, Wenzhou Medical University , Wenzhou , Zhejiang , China.,b Nelson Institute of Environmental Medicine, New York University School of Medicine , Tuxedo , NY , USA
| | - Xun Che
- b Nelson Institute of Environmental Medicine, New York University School of Medicine , Tuxedo , NY , USA
| | - Jingxia Li
- b Nelson Institute of Environmental Medicine, New York University School of Medicine , Tuxedo , NY , USA
| | - Chao Huang
- b Nelson Institute of Environmental Medicine, New York University School of Medicine , Tuxedo , NY , USA
| | - Lung-Chi Chen
- b Nelson Institute of Environmental Medicine, New York University School of Medicine , Tuxedo , NY , USA
| | - Jianxin Lyu
- a Zhejiang Provincial Key Laboratory for Technology & Application of Model Organisms, School of Life Sciences, Wenzhou Medical University , Wenzhou , Zhejiang , China
| | - Jimin Gao
- a Zhejiang Provincial Key Laboratory for Technology & Application of Model Organisms, School of Life Sciences, Wenzhou Medical University , Wenzhou , Zhejiang , China
| | - Chuanshu Huang
- a Zhejiang Provincial Key Laboratory for Technology & Application of Model Organisms, School of Life Sciences, Wenzhou Medical University , Wenzhou , Zhejiang , China.,b Nelson Institute of Environmental Medicine, New York University School of Medicine , Tuxedo , NY , USA
| |
Collapse
|
26
|
Shearer JJ, Wold EA, Umbaugh CS, Lichti CF, Nilsson CL, Figueiredo ML. Inorganic Arsenic-Related Changes in the Stromal Tumor Microenvironment in a Prostate Cancer Cell-Conditioned Media Model. ENVIRONMENTAL HEALTH PERSPECTIVES 2016; 124:1009-15. [PMID: 26588813 PMCID: PMC4937864 DOI: 10.1289/ehp.1510090] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 11/12/2015] [Indexed: 05/18/2023]
Abstract
BACKGROUND The tumor microenvironment plays an important role in the progression of cancer by mediating stromal-epithelial paracrine signaling, which can aberrantly modulate cellular proliferation and tumorigenesis. Exposure to environmental toxicants, such as inorganic arsenic (iAs), has also been implicated in the progression of prostate cancer. OBJECTIVE The role of iAs exposure in stromal signaling in the tumor microenvironment has been largely unexplored. Our objective was to elucidate molecular mechanisms of iAs-induced changes to stromal signaling by an enriched prostate tumor microenvironment cell population, adipose-derived mesenchymal stem/stromal cells (ASCs). RESULTS ASC-conditioned media (CM) collected after 1 week of iAs exposure increased prostate cancer cell viability, whereas CM from ASCs that received no iAs exposure decreased cell viability. Cytokine array analysis suggested changes to cytokine signaling associated with iAs exposure. Subsequent proteomic analysis suggested a concentration-dependent alteration to the HMOX1/THBS1/TGFβ signaling pathway by iAs. These results were validated by quantitative reverse transcriptase-polymerase chain reaction (RT-PCR) and Western blotting, confirming a concentration-dependent increase in HMOX1 and a decrease in THBS1 expression in ASC following iAs exposure. Subsequently, we used a TGFβ pathway reporter construct to confirm a decrease in stromal TGFβ signaling in ASC following iAs exposure. CONCLUSIONS Our results suggest a concentration-dependent alteration of stromal signaling: specifically, attenuation of stromal-mediated TGFβ signaling following exposure to iAs. Our results indicate iAs may enhance prostate cancer cell viability through a previously unreported stromal-based mechanism. These findings indicate that the stroma may mediate the effects of iAs in tumor progression, which may have future therapeutic implications. CITATION Shearer JJ, Wold EA, Umbaugh CS, Lichti CF, Nilsson CL, Figueiredo ML. 2016. Inorganic arsenic-related changes in the stromal tumor microenvironment in a prostate cancer cell-conditioned media model. Environ Health Perspect 124:1009-1015; http://dx.doi.org/10.1289/ehp.1510090.
Collapse
Affiliation(s)
- Joseph J. Shearer
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Eric A. Wold
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Charles S. Umbaugh
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Cheryl F. Lichti
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Carol L. Nilsson
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Marxa L. Figueiredo
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|
27
|
Barrett JR. Stroma Insights: Potential Mechanism for Arsenic-Induced Prostate Cancer. ENVIRONMENTAL HEALTH PERSPECTIVES 2016; 124:A130. [PMID: 27478972 PMCID: PMC4937844 DOI: 10.1289/ehp.124-a130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
|
28
|
Jiang C, Starr S, Chen F, Wu J. Low-fidelity alternative DNA repair carcinogenesis theory may interpret many cancer features and anticancer strategies. Future Oncol 2016; 12:1897-910. [PMID: 27166654 DOI: 10.2217/fon-2016-0066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We have proposed that the low-fidelity compensatory backup alternative DNA repair pathways drive multistep carcinogenesis. Here, we apply it to interpret the clinical features of cancer, such as mutator phenotype, tissue specificity, age specificity, diverse types of cancers originated from the same type of tissue, cancer susceptibility of patients with DNA repair-defective syndromes, development of cancer only for a selected number of individuals among those that share the same genetic defect, invasion and metastasis. Clinically, the theory predicts that to improve the efficacy of molecular targeted or synthetic lethal therapy, it may be crucial to inhibit the low-fidelity compensatory alternative DNA repair either directly or by blocking the signal transducers of the sustained microenvironmental stress.
Collapse
Affiliation(s)
- Chuo Jiang
- School of Life Sciences, Shanghai University, 99 Shangda Road, Shanghai 200444, China.,Central Laboratories, Xuhui Central Hospital, Shanghai Clinical Center, Chinese Academy of Sciences, 966 Middle Huaihai Road, Shanghai 200031, China
| | - Shane Starr
- Department of Pathology & Laboratory Medicine, Brody School of Medicine, East Carolina University, 600 Moye Boulevard, Greenville, North Carolina 27834, USA and currently Flint Medical Laboratory, 3490 Calkins Road, Flint, MI 48532, USA
| | - Fuxue Chen
- School of Life Sciences, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| | - Jiaxi Wu
- Central Laboratories, Xuhui Central Hospital, Shanghai Clinical Center, Chinese Academy of Sciences, 966 Middle Huaihai Road, Shanghai 200031, China.,Department of Pathology & Laboratory Medicine, Brody School of Medicine, East Carolina University, 600 Moye Boulevard, Greenville, North Carolina 27834, USA and currently Flint Medical Laboratory, 3490 Calkins Road, Flint, MI 48532, USA
| |
Collapse
|
29
|
Kotlan B, Liszkay G, Blank M, Csuka O, Balatoni T, Toth L, Eles K, Horvath S, Naszados G, Olasz J, Banky B, Toth J, Godeny M, Marincola FM, Kasler M, Shoenfeld Y. The novel panel assay to define tumor-associated antigen-binding antibodies in patients with metastatic melanomas may have diagnostic value. Immunol Res 2015; 61:11-23. [PMID: 25480739 DOI: 10.1007/s12026-014-8600-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We aim to harness the natural humoral immune response by various technologies to get novel biomarkers. A complex antibody analysis in sera and in the tumor microenvironment leads to reveal tumor-specific antibodies. More strategies were introduced to select the most effective one to identify potential tumor antigen-binding capacity of the host. Epstein-Barr virus transformation and cloning with limiting dilution assay, magnetic cell sorting and antibody phage display with further methodological improvements were used in epithelial and neuroectodermal cancers. Column-purified sera of patient with melanoma were tested by immunofluorescence assay, while sera of further melanoma patients were processed for membrane-binding enzyme-linked immunosorbent assay. Some supernatants of selected B cell clones and purified antibodies showed considerable cancer cell binding capacity by immunofluorescence FACS analysis and confocal laser microscopy. Our native tumor cell membrane preparations helped to test soluble scFv and patients' sera for tumor binder antibodies. A complex tumor immunological study was introduced for patients with melanoma (ethical permission: ETT TUKEB 16462-02/2010); peripheral blood (n = 57) and surgically removed primary or metastatic tumors (n = 44) were gathered and processed at cellular immunological level. The technological developments proved to be important steps forward to the next antibody profile analyses at DNA sequence level. Cancer cell binding of patient-derived antibodies and natural immunoglobulin preparations of pooled plasma product intravenous immunoglobulins support the importance of natural human antibodies. Important cancer diagnostics and novel anticancer strategies are going to be built on these tools.
Collapse
Affiliation(s)
- Beatrix Kotlan
- Molecular Immunology and Toxicology, National Institute of Oncology, Budapest, Hungary,
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Affiliation(s)
- Neta Erez
- Department of Pathology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, 69978 Israel
| |
Collapse
|
31
|
Catalano S, Giordano C, Panza S, Chemi F, Bonofiglio D, Lanzino M, Rizza P, Romeo F, Fuqua SAW, Maggiolini M, Andò S, Barone I. Tamoxifen through GPER upregulates aromatase expression: a novel mechanism sustaining tamoxifen-resistant breast cancer cell growth. Breast Cancer Res Treat 2014; 146:273-85. [PMID: 24928526 DOI: 10.1007/s10549-014-3017-4] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 05/28/2014] [Indexed: 11/25/2022]
Abstract
Tamoxifen resistance is a major clinical challenge in breast cancer treatment. Aromatase inhibitors are effective in women who progressed or recurred on tamoxifen, suggesting a role of local estrogen production by aromatase in driving tamoxifen-resistant phenotype. However, the link between aromatase activity and tamoxifen resistance has not yet been reported. We investigated whether long-term tamoxifen exposure may affect aromatase activity and/or expression, which may then sustain tamoxifen-resistant breast cancer cell growth. We employed MCF-7 breast cancer cells, tamoxifen-resistant MCF-7 cells (MCF-7 TR1 and TR2), SKBR-3 breast cancer cells, cancer-associated fibroblasts (CAFs1 and CAFs2). We used tritiated-water release assay, realtime-RT-PCR, and immunoblotting analysis for evaluating aromatase activity and expression; anchorage-independent assays for growth; reporter-gene, electrophoretic-mobility-shift, and chromatin-immunoprecipitation assays for promoter activity studies. We demonstrated an increased aromatase activity and expression, which supports proliferation in tamoxifen-resistant breast cancer cells. This is mediated by the G-protein-coupled receptor GPR30/GPER, since knocking-down GPER expression or treatment with a GPER antagonist reversed the enhanced aromatase levels induced by long-term tamoxifen exposure. The molecular mechanism was investigated in ER-negative, GPER/aromatase-positive SKBR3 cells, in which tamoxifen acts as a GPER agonist. Tamoxifen treatment increased aromatase promoter activity through an enhanced recruitment of c-fos/c-jun complex to AP-1 responsive elements located within the promoter region. As tamoxifen via GPER induced aromatase expression also in CAFs, this pathway may be involved in promoting aggressive behavior of breast tumors in response to tamoxifen treatment. Blocking estrogen production and/or GPER signaling activation may represent a valid option to overcome tamoxifen-resistance in breast cancers.
Collapse
Affiliation(s)
- Stefania Catalano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Arcavacata di Rende, CS, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Chung HW, Lim JB. Role of the tumor microenvironment in the pathogenesis of gastric carcinoma. World J Gastroenterol 2014; 20:1667-1680. [PMID: 24587646 PMCID: PMC3930967 DOI: 10.3748/wjg.v20.i7.1667] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 11/22/2013] [Accepted: 12/06/2013] [Indexed: 02/06/2023] Open
Abstract
Gastric carcinoma (GC) is the 4th most prevalent cancer and has the 2nd highest cancer-related mortality rate worldwide. Despite the incidence of GC has decreased over the past few decades, it is still a serious health problem. Chronic inflammatory status of the stomach, caused by the infection of Helicobacter pylori (H. pylori) and through the production of inflammatory mediators within the parenchyma is suspected to play an important role in the initiation and progression of GC. In this review, the correlation between chronic inflammation and H. pylori infection as an important factor for the development of GC will be discussed. Major components, including tumor-associated macrophages, lymphocytes, cancer-associated fibroblasts, angiogenic factors, cytokines, and chemokines of GC microenvironment and their mechanism of action on signaling pathways will also be discussed. Increasing our understanding of how the components of the tumor microenviroment interact with GC cells and the signaling pathways involved could help identify new therapeutic and chemopreventive targets.
Collapse
|
33
|
Rentala S, Chintala R, Guda M, Chintala M, Komarraju AL, Mangamoori LN. Atorvastatin inhibited Rho-associated kinase 1 (ROCK1) and focal adhesion kinase (FAK) mediated adhesion and differentiation of CD133+CD44+ prostate cancer stem cells. Biochem Biophys Res Commun 2013; 441:586-92. [DOI: 10.1016/j.bbrc.2013.10.112] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Accepted: 10/21/2013] [Indexed: 01/07/2023]
|
34
|
The role played by the microenvironment in site-specific metastasis. Cancer Lett 2013; 352:54-8. [PMID: 23988268 DOI: 10.1016/j.canlet.2013.08.029] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 08/13/2013] [Accepted: 08/15/2013] [Indexed: 01/18/2023]
Abstract
Cancer cells that disseminate to metastatic sites may progress to frank metastasis or persist as dormant micrometastasis. Significant progress has been made in defining the genetic and phenotypic cancer-cell-autonomous determinants of metastasis and in the understanding of the cross-talk between metastasizing tumor cells and the metastatic microenvironment. However several questions remain open, in particular the identity of microenvironmental factors that keep micrometastatic cells in a state of dormancy and those that promote survival, proliferation and progression of such cells. Significantly more information is available on the latter factors than on microenvironmental cells and molecules that restrain micrometastasis. This mini-review summarizes findings suggesting that: In view of the above, it is not unlikely that metastases residing in different microenvironments may require "individualized" treatment modalities.
Collapse
|
35
|
Hoshiba T, Tanaka M. Breast cancer cell behaviors on staged tumorigenesis-mimicking matrices derived from tumor cells at various malignant stages. Biochem Biophys Res Commun 2013; 439:291-6. [PMID: 23978418 DOI: 10.1016/j.bbrc.2013.08.038] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 08/11/2013] [Indexed: 12/21/2022]
Abstract
Extracellular matrix (ECM) has been focused to understand tumor progression in addition to the genetic mutation of cancer cells. Here, we prepared "staged tumorigenesis-mimicking matrices" which mimic in vivo ECM in tumor tissue at each malignant stage to understand the roles of ECM in tumor progression. Breast tumor cells, MDA-MB-231 (invasive), MCF-7 (non-invasive), and MCF-10A (benign) cells, were cultured to form their own ECM beneath the cells and formed ECM was prepared as staged tumorigenesis-mimicking matrices by decellularization treatment. Cells showed weak attachment on the matrices derived from MDA-MB-231 cancer cells. The proliferations of MDA-MB-231 and MCF-7 was promoted on the matrices derived from MDA-MB-231 cancer cells whereas MCF-10A cell proliferation was not promoted. MCF-10A cell proliferation was promoted on the matrices derived from MCF-10A cells. Chemoresistance of MDA-MB-231 cells against 5-fluorouracil increased on only matrices derived from MDA-MB-231 cells. Our results showed that the cells showed different behaviors on staged tumorigenesis-mimicking matrices according to the malignancy of cell sources for ECM preparation. Therefore, staged tumorigenesis-mimicking matrices might be a useful in vitro ECM models to investigate the roles of ECM in tumor progression.
Collapse
Affiliation(s)
- Takashi Hoshiba
- Graduate School of Science and Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan; International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | | |
Collapse
|
36
|
Bose A, Barik S, Banerjee S, Ghosh T, Mallick A, Bhattacharyya Majumdar S, Goswami KK, Bhuniya A, Banerjee S, Baral R, Storkus WJ, Dasgupta PS, Majumdar S. Tumor-derived vascular pericytes anergize Th cells. THE JOURNAL OF IMMUNOLOGY 2013; 191:971-81. [PMID: 23785117 DOI: 10.4049/jimmunol.1300280] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Immune evasion within the tumor microenvironment supports malignant growth and is also a major obstacle for successful immunotherapy. Multiple cellular components and soluble factors coordinate to disrupt protective immune responses. Although stromal cells are well-known for their parenchymal supportive roles in cancer establishment and progression, we demonstrate for the first time, to our knowledge, that tumor-derived vascular pericytes negatively influence CD4(+) T cell activation and proliferation, and promote anergy in recall response to Ag by CD4(+)CD44(+) T cells via regulator of G protein signaling 5- and IL-6-dependent pathways. Our data support a new specific role for tumor-derived pericytes in the immune evasion paradigm within the tumor microenvironment and suggest the targeting of these cell populations in the context of successful immunotherapeutics for the treatment of cancer.
Collapse
Affiliation(s)
- Anamika Bose
- Department of Molecular Medicine, Bose Institute, Kolkata 700054, India.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Rodríguez D, Silvera R, Carrio R, Nadji M, Caso R, Rodríguez G, Iragavarapu-Charyulu V, Torroella-Kouri M. Tumor microenvironment profoundly modifies functional status of macrophages: peritoneal and tumor-associated macrophages are two very different subpopulations. Cell Immunol 2013; 283:51-60. [PMID: 23850963 PMCID: PMC3771500 DOI: 10.1016/j.cellimm.2013.06.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 06/11/2013] [Accepted: 06/13/2013] [Indexed: 01/04/2023]
Abstract
Macrophages are key players in the inflammatory response. In this study, we tested the hypothesis that although all macrophage subpopulations in tumor hosts are affected by the disease, it is the close proximity to the tumor that induces major alterations in these cells. We compared tumor-associated macrophages (TAMs) with peritoneal macrophages from mice bearing D1-DMBA-3 mammary tumors (T-PEMs). Our results show that TAMs downregulate IL-12p70 but upregulate IL-12p40, IL-23, IL-6 and IL-10. Some NFκB and C/EBP transcription factors family members are decreased in TAMs; however NFκBp50 homodimers, STAT1/pSTAT1 and STAT3/pSTAT3 are overexpressed. Furthermore, while TAMs block T-cell proliferation and are more prone to apoptosis compared to T-PEMs, both types of macrophages have an impaired phagocytic capacity. Moreover, TAMs constitutively express iNOS and produce nitric oxide but do not express arginase and are Gr-1(high) and CD11b(low). Collectively, our analysis of two spatially distinct macrophage subpopulations in tumor-bearing mice revealed that the tumor modulates them differently into two molecularly and functionally dissimilar macrophage subpopulations.
Collapse
Affiliation(s)
| | - Risset Silvera
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Roberto Carrio
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Microbiology & Immunology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Mehrdad Nadji
- Department of Pathology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Raul Caso
- Department of Microbiology & Immunology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Gracielena Rodríguez
- Department of Microbiology & Immunology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Vijaya Iragavarapu-Charyulu
- Department of Basic Sciences, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Marta Torroella-Kouri
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Microbiology & Immunology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
38
|
Sha W, Olesch C, Hanaka H, Rådmark O, Weigert A, Brüne B. Necrosis in DU145 prostate cancer spheroids induces COX-2/mPGES-1-derived PGE2 to promote tumor growth and to inhibit T cell activation. Int J Cancer 2013; 133:1578-88. [PMID: 23536473 DOI: 10.1002/ijc.28181] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Accepted: 03/12/2013] [Indexed: 12/16/2022]
Abstract
Cyclooxygenase (COX)-2-derived prostaglandin E2 (PGE2 ) supports the growth of a spectrum of cancers. The potential benefit of COX-2-inhibiting non-steroidal anti-inflammatory drugs (NSAIDs) for cancer treatment is however limited by their well-known cardiovascular side-effects. Therefore, targeting microsomal PGE synthase 1 (mPGES-1), the downstream enzyme in the COX-2-dependent pathway of PGE2 production might be attractive, although conflicting data regarding a potential tumor-supporting function of mPGES-1 were reported. We determined the impact of mPGES-1 in human DU145 prostate cancer cell growth. Surprisingly, knockdown of mPGES-1 did not alter growth of DU145 monolayer cells, but efficiently inhibited the growth of DU145 multicellular tumor spheroids (MCTS). Opposed to MCTS, monolayer cells did not secrete PGE2 due to a lack of COX-2 expression, which was induced during spheroid formation. Pharmacological inhibition of COX-2 and mPGES-1 supported the crucial role of PGE2 for growth of MCTS. The functionality of spheroid-derived PGE2 was demonstrated by its ability to inhibit cytotoxic T cell activation. When investigating mechanisms of spheroid-induced COX-2 induction, we observed that among microenvironmental factors neither glucose deprivation, hypoxia nor tumor cell apoptosis enhanced COX-2 expression. Interestingly, interfering with apoptosis in spheroids triggered a shift towards necrosis, thus augmenting COX-2 expression. We went on to demonstrate that necrotic cells induced COX-2 mRNA expression and PGE2 secretion from live tumor cells. In conclusion, necrosis-dependent COX-2 upregulation in MCTS promoted PGE2 -dependent tumor growth and inhibited activated cytotoxic T cells. Hence, blocking mPGES-1 as a therapeutic option may be considered for COX-2/mPGES-1-positive solid cancers.
Collapse
Affiliation(s)
- Weixiao Sha
- Institute of Biochemistry I/ZAFES, Faculty of Medicine, Goethe-University Frankfurt, Theodor-Stern-Kai 7, Frankfurt, Germany
| | | | | | | | | | | |
Collapse
|
39
|
Planutis K, Planutiene M, Nguyen AV, Moyer MP, Holcombe RF. Invasive colon cancer, but not non-invasive adenomas induce a gradient effect of Wnt pathway receptor frizzled 1 (Fz1) expression in the tumor microenvironment. J Transl Med 2013; 11:50. [PMID: 23442549 PMCID: PMC3605249 DOI: 10.1186/1479-5876-11-50] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 02/20/2013] [Indexed: 12/28/2022] Open
Abstract
Background Wnt signaling in the colon cancer tumor microenvironment (TME) may affect cancer biologic properties including invasion and metastatic dissemination. Prior reports have suggested that the expression of select frizzled (Fz) receptors may be altered in cancers and in the TME. Methods Colon cancer, colonic adenoma and normal colonic mucosal specimens were obtained under institutional review board approval and analyzed for the expression of Fz1 and Fz2 by confocal fluorescent immunohistochemistry and Wnt-specific membrane array. In vitro, the effect of Wnt3a on Fz1 expression was examined in normal-derived NCM460 cells by qRT-PCR and immunohistochemistry. Results Fz1 was expressed in colon cancer and villous adenomas but not in more benign tubular adenomas. Fz1 expression was seen in normal colonic mucosa in close proximity to colon cancer, but not villous or tubular adenomas. Normal colonic mucosa distant from colon cancer did not express Fz1. Fz2 was expressed ubiquitously in cancer, adenomas and normal colonic mucosa. Fz1 expression was induced by Wnt3a in a normal colon mucosa-derived cell line in vitro. Conclusions Fz1 is a Wnt responsive gene in colon-derived tissues. Fz1 expression exhibited increased expression in normal mucosa only in close proximity to colon cancer. This field effect was not seen with pre-malignant adenomas and may be due to Wnt/β-catenin signaling within the TME. Fz1 may represent a new TME-directed therapeutic target for patients with colon cancer.
Collapse
Affiliation(s)
- Kestutis Planutis
- Division of Hematology/Oncology, Tisch Cancer Institute, Mount Sinai School of Medicine, New York, NY, USA
| | | | | | | | | |
Collapse
|
40
|
Liu GY, Liu KH, Li Y, Pan C, Su JQ, Liao HF, Yv RX, Li ZH, Yuan L, Zhang HJ, Tzeng CM, Xiong B. Novel cancerization marker, TP53, and its role in distinguishing normal tissue adjacent to cancerous tissue from normal tissue adjacent to benign tissue. World J Surg Oncol 2012; 10:252. [PMID: 23170979 PMCID: PMC3544683 DOI: 10.1186/1477-7819-10-252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Accepted: 10/31/2012] [Indexed: 12/31/2022] Open
Abstract
Background The histopathological and molecular heterogeneity of normal tissue adjacent to cancerous tissue (NTAC) and normal tissue adjacent to benign tissue (NTAB), and the availability of limited specimens make deciphering the mechanisms of carcinogenesis challenging. Our goal was to identify histogenetic biomarkers that could be reliably used to define a transforming fingerprint using RNA in situ hybridization. Methods We evaluated 15 tumor-related RNA in situ hybridization biomarkers using tumor microarray and samples of seven tumor-adjacent normal tissues from 314 patients. Biomarkers were determined using comprehensive statistical methods (significance of support vector machine-based artificial intelligence and area under curve scoring of classification distribution). Results TP53 was found to be a most reliable index (P <10-7; area under curve >87%) for distinguishing NTAC from NTAB, according to the results of a significance panel (BCL10, BECN1, BRCA2, FITH, PTCH11 and TP53). Conclusions The genetic alterations in TP53 between NTAC and NTAB may provide new insight into the field of cancerization and tumor transformation.
Collapse
Affiliation(s)
- Guo-Yan Liu
- Department of Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, PR China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Chen W, Yuan F, Wang K, Song D, Zhang W. Modulatory effects of the acid polysaccharide fraction from one of anamorph of Cordyceps sinensis on Ana-1 cells. JOURNAL OF ETHNOPHARMACOLOGY 2012; 142:739-745. [PMID: 22710292 DOI: 10.1016/j.jep.2012.05.055] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 05/02/2012] [Accepted: 05/29/2012] [Indexed: 06/01/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cordyceps sinensis has been used as a precious herbal medicine for thousands of years in China. Its polysaccharide fraction has been confirmed possessing immunomodulatory function and we have reported the acid polysaccharide fraction (APSF), from an anamorph of C. sinensis, has stimulating activity on macrophages. The mechanism still needs to be further elucidated. MATERIALS AND METHODS In order to investigate the effects of APSF on macrophage's phenotypes, Ana-1 mouse macrophages were polarized to M2 phenotype by culturing the cells with culture supernatant of H22 cells. M2 phenotype was determined by measuring the expression of TNF-α and checking cell surface markers mannose receptor (MR) and scavenger receptor (SR). After cultured with H22 supernatant for 72 h, the TNF-α level of Ana-1 cells was decreased while the SR and MR expressions were up-regulated, suggesting that Ana-1 cells were polarized towards M2 macrophages. Then the effects of APSF on M2 macrophages were investigated by measuring mRNA levels of TNF-α, inducible nitric oxide synthase (iNOS), IL-12 and IL-10. Nuclear NF-κB was detected by Western blotting. RESULTS APSF treatment increased the expressions of TNF-α, IL-12 and iNOS, and reduced the expression of IL-10 of Ana-1 cells. Besides, the expressions of SR and MR were down-regulated by APSF. And the result of Western blotting showed NF-κB level was decreased in M2 macrophages and up-regulated after APSF treatment. CONCLUSIONS APSF may convert M2 macrophages to M1 phenotype by activating NF-κB pathway.
Collapse
Affiliation(s)
- Weixia Chen
- Jiangsu Key Laboratory of Molecular Medicine, Medical School and State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210093, People's Republic of China
| | | | | | | | | |
Collapse
|
42
|
Li W, Wang R, Bai L, Yan Z, Sun Z. Cancer core modules identification through genomic and transcriptomic changes correlation detection at network level. BMC SYSTEMS BIOLOGY 2012; 6:64. [PMID: 22691569 PMCID: PMC3443057 DOI: 10.1186/1752-0509-6-64] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Accepted: 06/12/2012] [Indexed: 02/04/2023]
Abstract
BACKGROUND Identification of driver mutations among numerous genomic alternations remains a critical challenge to the elucidation of the underlying mechanisms of cancer. Because driver mutations by definition are associated with a greater number of cancer phenotypes compared to other mutations, we hypothesized that driver mutations could more easily be identified once the genotype-phenotype correlations are detected across tumor samples. RESULTS In this study, we describe a novel network analysis to identify the driver mutation through integrating both cancer genomes and transcriptomes. Our method successfully identified a significant genotype-phenotype change correlation in all six solid tumor types and revealed core modules that contain both significantly enriched somatic mutations and aberrant expression changes specific to tumor development. Moreover, we found that the majority of these core modules contained well known cancer driver mutations, and that their mutated genes tended to occur at hub genes with central regulatory roles. In these mutated genes, the majority were cancer-type specific and exhibited a closer relationship within the same cancer type rather than across cancer types. The remaining mutated genes that exist in multiple cancer types led to two cancer type clusters, one cluster consisted of three neural derived or related cancer types, and the other cluster consisted of two adenoma cancer types. CONCLUSIONS Our approach can successfully identify the candidate drivers from the core modules. Comprehensive network analysis on the core modules potentially provides critical insights into convergent cancer development in different organs.
Collapse
Affiliation(s)
- Wenting Li
- MOE Key Laboratory of Bioinformatics, State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Bioinformatics and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | | | | | | | | |
Collapse
|
43
|
Barone I, Catalano S, Gelsomino L, Marsico S, Giordano C, Panza S, Bonofiglio D, Bossi G, Covington KR, Fuqua SAW, Andò S. Leptin mediates tumor-stromal interactions that promote the invasive growth of breast cancer cells. Cancer Res 2012; 72:1416-27. [PMID: 22282662 DOI: 10.1158/0008-5472.can-11-2558] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Obesity confers risks to cancer development and progression but the mechanisms underlying these risks remain unclear. In this study, we identify a role for the obesity cytokine leptin, which has been implicated previously in breast cancer development, as a determinant for the tumor-promoting activity of cancer-associated fibroblasts (CAF) in both wild-type (WT) and K303R mutant estrogen receptor-α (ERα)-expressing breast cancer cells. Human CAFs stimulated a greater increase in the proliferation and migration of breast cancer cells expressing the K303R-ERα hyperactive receptor than WT-ERα-expressing cells. A concomitant increase was seen in leptin receptor isoform expression and activation of the leptin signaling pathway in cells expressing K303R-ERα compared with WT-ERα, correlating with leptin effects on cell growth, motility, and invasiveness in mutant cells. Epidermal growth factor and other factors secreted by K303R-ERα cells stimulated CAF proliferation, migration, and subsequent leptin secretion. Moreover, K303R-ERα expression generated a leptin hypersensitive phenotype in vivo. Together, our results reveal a bidirectional cross-talk between breast cancer cells and "educated" CAFs that drives tumor progression via leptin signaling. In elucidating a mechanism that connects obesity and cancer, these findings reinforce the concept that blocking cancer-stromal cell communication may represent an effective strategy for targeted therapy of breast cancer.
Collapse
Affiliation(s)
- Ines Barone
- Centro Sanitario, University of Calabria, Rende, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Chaiswing L, Zhong W, Liang Y, Jones DP, Oberley TD. Regulation of prostate cancer cell invasion by modulation of extra- and intracellular redox balance. Free Radic Biol Med 2012; 52:452-61. [PMID: 22120495 PMCID: PMC3253260 DOI: 10.1016/j.freeradbiomed.2011.10.489] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Accepted: 10/24/2011] [Indexed: 12/13/2022]
Abstract
Recent metabolic profiles of human prostate cancer tissues showed a significant increase in cysteine (Cys) and a significant decrease in reduced glutathione (GSH) during cancer progression from low- to high-grade Gleason scores. Cys is primarily localized extracellularly, whereas GSH is present mostly inside the cell. We hypothesized that extra- or intracellular redox state alterations differentially regulate cell invasion in PC3 prostate carcinoma cells versus PrEC normal prostate epithelial cells. Cells were exposed to media with calculated Cys/CySS redox potentials (E(h)CySS) ranging from -60 to -180mV. After 3h exposure to a reducing extracellular redox state (E(h)CySS=-180mV), matrix metalloprotease (MMP), gelatinase, and NADPH oxidase activities increased, correlating with increases in cell invasion, cell migration, and extracellular hydrogen peroxide levels in PC3 cells but not PrECs. Knockdown of NADPH oxidase or MMP with silencing RNAs during cultivation with E(h)CySS=-180mV medium significantly decreased PC3 cell invasion. Modulation of extra- and intracellular redox states by exposure of PC3 cells to Cys/CySS-free medium (approx E(h)CySS=-87mV) containing 500μMN-acetylcysteine resulted in a more reducing intracellular redox state and a significant decrease in cell invasive ability. The decrease in PC3 cell invasion induced by these conditions correlated with a decrease in MMP activity. Our studies demonstrated that an extracellular redox state that was more reducing than a physiologic microenvironment redox state increased PC3 cancer cell invasive ability, whereas an intracellular redox environmental that was more reducing than an intracellular physiologic redox state inhibited PC3 cell invasive ability.
Collapse
Affiliation(s)
- Luksana Chaiswing
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Weixiong Zhong
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
- Pathology and Laboratory Medicine Service, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin, USA
| | - Yongliang Liang
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Emory University, Atlanta, GA, USA
| | - Dean P. Jones
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Emory University, Atlanta, GA, USA
| | - Terry D. Oberley
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
- Pathology and Laboratory Medicine Service, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin, USA
| |
Collapse
|
45
|
Abarrategi A, Marińas-Pardo L, Mirones I, Rincón E, García-Castro J. Mesenchymal niches of bone marrow in cancer. Clin Transl Oncol 2012; 13:611-6. [PMID: 21865132 DOI: 10.1007/s12094-011-0706-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Over the last decade, genetic and cell biology studies have indicated that tumour growth is not only determined by malignant cancer cells themselves, but also by the tumour microenvironment. Cells present in the tumour microenvironment include fibroblasts, vascular, smooth muscle, adipocytes, immune cells and mesenchymal stem cells (MSC). The nature of the relationship between MSC and tumour cells appears dual and whether MSC are pro- or anti-tumorigenic is a subject of controversial reports. This review is focused on the role of MSC and bone marrow (BM) niches in cancer.
Collapse
Affiliation(s)
- Ander Abarrategi
- Unidad de Biotecnología Celular, Área Biología Celular y del Desarrollo, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | | | | | | | | |
Collapse
|
46
|
ERM stable knockdown by siRNA reduced in vitro migration and invasion of human SGC-7901 cells. Biochimie 2011; 93:954-61. [DOI: 10.1016/j.biochi.2011.01.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Accepted: 01/29/2011] [Indexed: 01/30/2023]
|
47
|
Dolznig H, Rupp C, Puri C, Haslinger C, Schweifer N, Wieser E, Kerjaschki D, Garin-Chesa P. Modeling colon adenocarcinomas in vitro a 3D co-culture system induces cancer-relevant pathways upon tumor cell and stromal fibroblast interaction. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 179:487-501. [PMID: 21703426 DOI: 10.1016/j.ajpath.2011.03.015] [Citation(s) in RCA: 135] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Revised: 03/02/2011] [Accepted: 03/29/2011] [Indexed: 12/27/2022]
Abstract
Activated tumor stroma participates in tumor cell growth, invasion, and metastasis. Normal fibroblasts and cancer-associated fibroblasts (CAFs) have been shown to display distinct gene expression signatures. This molecular heterogeneity may influence the way tumor cells migrate, proliferate, and survive during tumor progression. To test this hypothesis and to better understand the molecular mechanisms that control these interactions, we established a three-dimensional (3D) human cell culture system that recapitulates the tumor heterogeneity observed in vivo. Human colon tumor cells were grown as multicellular spheroids and subsequently co-cultured with normal fibroblasts or CAFs in collagen I gels. This in vitro model system closely mirrors the architecture of human epithelial cancers and allows the characterization of the tumor cell-stroma interactions phenotypically and at the molecular level. Using GeneChip analysis, antibody arrays, and enzyme-linked immunosorbent assays, we demonstrate that the interaction of colon cancer cells with stromal fibroblasts induced different highly relevant cancer expression profiles. Genes involved in invasion, extracellular matrix remodeling, inflammation, and angiogenesis were differentially regulated in our 3D carcinoma model. The modular setup, reproducibility, and robustness of the model make it a powerful tool to identify target molecules involved in signaling pathways that mediate paracrine interactions in the tumor microenvironment and to validate the influence of these molecular targets during tumor growth and invasion in the supporting stroma.
Collapse
Affiliation(s)
- Helmut Dolznig
- Institute of Pathology, Medical University of Vienna, Vienna, Austria.
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Immunotherapy for lung cancers. J Biomed Biotechnol 2011; 2011:250860. [PMID: 21318107 PMCID: PMC3035001 DOI: 10.1155/2011/250860] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Revised: 11/15/2010] [Accepted: 12/23/2010] [Indexed: 11/21/2022] Open
Abstract
Lung cancer is the leading cause of cancer-related deaths worldwide. Although treatment methods in surgery, irradiation, and chemotherapy have improved, prognosis remains unsatisfactory and developing new therapeutic strategies is still an urgent demand. Immunotherapy is a novel therapeutic approach wherein activated immune cells can specifically kill tumor cells by recognition of tumor-associated antigens without damage to normal cells. Several lung cancer vaccines have demonstrated prolonged survival time in phase II and phase III trials, and several clinical trials are under investigation. However, many clinical trials involving cancer vaccination with defined tumor antigens work in only a small number of patients. Cancer immunotherapy is not completely effective in eradicating tumor cells because tumor cells escape from host immune scrutiny. Understanding of the mechanism of immune evasion regulated by tumor cells is required for the development of more effective immunotherapeutic approaches against lung cancer. This paper discusses the identification of tumor antigens in lung cancer, tumor immune escape mechanisms, and clinical vaccine trials in lung cancer.
Collapse
|
49
|
Cancer: evolutionary, genetic and epigenetic aspects. Clin Epigenetics 2010; 1:85-100. [PMID: 22704202 PMCID: PMC3365664 DOI: 10.1007/s13148-010-0010-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Accepted: 08/31/2010] [Indexed: 12/22/2022] Open
Abstract
There exist two paradigms about the nature of cancer. According to the generally accepted one, cancer is a by-product of design limitations of a multi-cellular organism (Greaves, Nat Rev Cancer 7:213–221, 2007). The essence of the second resides in the question “Does cancer kill the individual and save the species?” (Sommer, Hum Mutat 3:166–169, 1994). Recent data on genetic and epigenetic mechanisms of cell transformation summarized in this review support the latter point of view, namely that carcinogenesis is an evolutionary conserved phenomenon—a programmed death of an organism. It is assumed that cancer possesses an important function of altruistic nature: as a mediator of negative selection, it serves to preserve integrity of species gene pool and to mediate its evolutionary adjustment. Cancer fulfills its task due apparently to specific killer function, understanding mechanism of which may suggest new therapeutic strategy.
Collapse
|
50
|
|