1
|
Zhu YX, Li ZY, Yu ZL, Lu YT, Liu JX, Chen JR, Xie ZZ. The underlying mechanism and therapeutic potential of IFNs in viral-associated cancers. Life Sci 2025; 361:123301. [PMID: 39675548 DOI: 10.1016/j.lfs.2024.123301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 11/28/2024] [Accepted: 12/06/2024] [Indexed: 12/17/2024]
Abstract
Interferons (IFNs) are a diverse family of cytokines secreted by various cells, including immune cells, fibroblasts, and certain viral-parasitic cells. They are classified into three types and encompass 21 subtypes based on their sources and properties. The regulatory functions of IFNs closely involve cell surface receptors and several signal transduction pathways. Initially investigated for their antiviral properties, IFNs have shown promise in combating cancer-associated viruses, making them a potent therapeutic approach. Most IFNs have been identified for their role in inhibiting cancer; however, they have also demonstrated cancer-promoting effects under specific conditions. These mechanisms primarily rely on immune regulation and cytotoxic effects, significantly impacting cancer progression. Despite widespread use of IFN-based therapies in viral-related cancers, ongoing research aims to develop more effective treatments. This review synthesizes the signal transduction pathways and regulatory capabilities of IFNs, highlighting their connections with viruses, cancers, and emerging clinical treatments.
Collapse
Affiliation(s)
- Yu-Xin Zhu
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330031, PR China; Queen Mary School, Medical Department, Nanchang University, Nanchang, Jiangxi 330031, PR China
| | - Zi-Yi Li
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330031, PR China; Queen Mary School, Medical Department, Nanchang University, Nanchang, Jiangxi 330031, PR China
| | - Zi-Lu Yu
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330031, PR China; Queen Mary School, Medical Department, Nanchang University, Nanchang, Jiangxi 330031, PR China
| | - Yu-Tong Lu
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330031, PR China; Queen Mary School, Medical Department, Nanchang University, Nanchang, Jiangxi 330031, PR China
| | - Jia-Xiang Liu
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330031, PR China; Queen Mary School, Medical Department, Nanchang University, Nanchang, Jiangxi 330031, PR China
| | - Jian-Rui Chen
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330031, PR China; Queen Mary School, Medical Department, Nanchang University, Nanchang, Jiangxi 330031, PR China
| | - Zhen-Zhen Xie
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330031, PR China.
| |
Collapse
|
2
|
Wang L, Zhu Y, Zhang N, Xian Y, Tang Y, Ye J, Reza F, He G, Wen X, Jiang X. The multiple roles of interferon regulatory factor family in health and disease. Signal Transduct Target Ther 2024; 9:282. [PMID: 39384770 PMCID: PMC11486635 DOI: 10.1038/s41392-024-01980-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/12/2024] [Accepted: 09/10/2024] [Indexed: 10/11/2024] Open
Abstract
Interferon Regulatory Factors (IRFs), a family of transcription factors, profoundly influence the immune system, impacting both physiological and pathological processes. This review explores the diverse functions of nine mammalian IRF members, each featuring conserved domains essential for interactions with other transcription factors and cofactors. These interactions allow IRFs to modulate a broad spectrum of physiological processes, encompassing host defense, immune response, and cell development. Conversely, their pivotal role in immune regulation implicates them in the pathophysiology of various diseases, such as infectious diseases, autoimmune disorders, metabolic diseases, and cancers. In this context, IRFs display a dichotomous nature, functioning as both tumor suppressors and promoters, contingent upon the specific disease milieu. Post-translational modifications of IRFs, including phosphorylation and ubiquitination, play a crucial role in modulating their function, stability, and activation. As prospective biomarkers and therapeutic targets, IRFs present promising opportunities for disease intervention. Further research is needed to elucidate the precise mechanisms governing IRF regulation, potentially pioneering innovative therapeutic strategies, particularly in cancer treatment, where the equilibrium of IRF activities is of paramount importance.
Collapse
Affiliation(s)
- Lian Wang
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yanghui Zhu
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Nan Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yali Xian
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yu Tang
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jing Ye
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Fekrazad Reza
- Radiation Sciences Research Center, Laser Research Center in Medical Sciences, AJA University of Medical Sciences, Tehran, Iran
- International Network for Photo Medicine and Photo Dynamic Therapy (INPMPDT), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Gu He
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiang Wen
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Xian Jiang
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
3
|
Kang K, Lin X, Chen P, Liu H, Liu F, Xiong W, Li G, Yi M, Li X, Wang H, Xiang B. T cell exhaustion in human cancers. Biochim Biophys Acta Rev Cancer 2024; 1879:189162. [PMID: 39089484 DOI: 10.1016/j.bbcan.2024.189162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 08/04/2024]
Abstract
T cell exhaustion refers to a progressive state in which T cells become functionally impaired due to sustained antigenic stimulation, which is characterized by increased expression of immune inhibitory receptors, but weakened effector functions, reduced self-renewal capacity, altered epigenetics, transcriptional programme and metabolism. T cell exhaustion is one of the major causes leading to immune escape of cancer, creating an environment that supports tumor development and metastatic spread. In addition, T cell exhaustion plays a pivotal role to the efficacy of current immunotherapies for cancer. This review aims to provide a comprehensive view of roles of T cell exhaustion in cancer development and progression. We summerized the regulatory mechanisms that involved in T cell exhaustion, including transcription factors, epigenetic and metabolic reprogramming events, and various microenvironmental factors such as cytokines, microorganisms, and tumor autocrine substances. The paper also discussed the challenges posed by T cell exhaustion to cancer immunotherapies, including immune checkpoint blockade (ICB) therapies and chimeric antigen receptor T cell (CAR-T) therapy, highlightsing the obstacles encountered in ICB therapies and CAR-T therapies due to T cell exhaustion. Finally, the article provides an overview of current therapeutic options aimed to reversing or alleviating T cell exhaustion in ICB and CAR-T therapies. These therapeutic approaches seek to overcome T cell exhaustion and enhance the effectiveness of immunotherapies in treating tumors.
Collapse
Affiliation(s)
- Kuan Kang
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China; The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha 410008, Hunan, China; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha 410078, Hunan, China
| | - Xin Lin
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China; The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha 410008, Hunan, China; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha 410078, Hunan, China
| | - Pan Chen
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China
| | - Huai Liu
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China; Department of Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China
| | - Feng Liu
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China; Department of Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China
| | - Wei Xiong
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China; The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha 410008, Hunan, China; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha 410078, Hunan, China
| | - Guiyuan Li
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China; The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha 410008, Hunan, China; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha 410078, Hunan, China
| | - Mei Yi
- Department of Dermatology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Xiayu Li
- Hunan Key Laboratory of Nonresolving Infammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, China.
| | - Hui Wang
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China; Department of Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China.
| | - Bo Xiang
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China; The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha 410008, Hunan, China; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha 410078, Hunan, China; FuRong Laboratory, Changsha 410078, Hunan, China.
| |
Collapse
|
4
|
Asano Y, Veatch J, McAfee M, Bakhtiari J, Lee B, Martin L, Zhang S, Mazziotta F, Paulson KG, Schmitt TM, Munkbhat A, Young C, Seaton B, Hunter D, Horst N, Lindberg M, Miller N, Stone M, Bielas J, Koelle D, Voillet V, Gottardo R, Gooley T, Oda S, Greenberg PD, Nghiem P, Chapuis AG. Tumor Regression Following Engineered Polyomavirus-Specific T Cell Therapy in Immune Checkpoint Inhibitor-Refractory Merkel Cell Carcinoma. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.07.01.24309780. [PMID: 39006423 PMCID: PMC11245074 DOI: 10.1101/2024.07.01.24309780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Although immune check-point inhibitors (CPIs) revolutionized treatment of Merkel cell carcinoma (MCC), patients with CPI-refractory MCC lack effective therapy. More than 80% of MCC express T-antigens encoded by Merkel cell polyomavirus, which is an ideal target for T-cell receptor (TCR)-based immunotherapy. However, MCC often repress HLA expression, requiring additional strategies to reverse the downregulation for allowing T cells to recognize their targets. We identified TCRMCC1 that recognizes a T-antigen epitope restricted to human leukocyte antigen (HLA)-A*02:01. Seven CPI-refractory metastatic MCC patients received CD4 and CD8 T cells transduced with TCRMCC1 (TTCR-MCC1) preceded either by lymphodepleting chemotherapy or an HLA-upregulating regimen (single-fraction radiation therapy (SFRT) or systemic interferon gamma (IFNγ)) with concurrent avelumab. Two patients who received preceding SFRT and IFNγ respectively experienced tumor regression. One experienced regression of 13/14 subcutaneous lesions with 1 'escape' lesion and the other had delayed tumor regression in all lesions after initial progression. Although TTCR-MCC1 cells with an activated phenotype infiltrated tumors including the 'escape' lesion, all progressing lesions transcriptionally lacked HLA expression. While SFRT/IFNγ did not immediately upregulate tumor HLA expression, a secondary endogenous antigen-specific T cell infiltrate was detected in one of the regressing tumors and associated with HLA upregulation, indicating in situ immune responses have the potential to reverse HLA downregulation. Indeed, supplying a strong co-stimulatory signal via a CD200R-CD28 switch receptor allows TTCR-MCC1 cells to control HLA-downregulated MCC cells in a xenograft mouse model, upregulating HLA expression. Our results demonstrate the potential of TCR gene therapy for metastatic MCC and propose a next strategy for overcoming epigenetic downregulation of HLA in MCC.
Collapse
Affiliation(s)
- Yuta Asano
- Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Joshua Veatch
- Fred Hutchinson Cancer Center, Seattle, WA, USA
- University of Washington, Seattle, WA, USA
| | | | | | - Bo Lee
- Fred Hutchinson Cancer Center, Seattle, WA, USA
| | | | | | | | | | | | | | | | | | | | - Nick Horst
- Fred Hutchinson Cancer Center, Seattle, WA, USA
| | | | | | - Matt Stone
- Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Jason Bielas
- Fred Hutchinson Cancer Center, Seattle, WA, USA
- University of Washington, Seattle, WA, USA
| | - David Koelle
- Fred Hutchinson Cancer Center, Seattle, WA, USA
- University of Washington, Seattle, WA, USA
- Benaroya Research Institute, Seattle, WA, USA
| | | | - Raphael Gottardo
- Fred Hutchinson Cancer Center, Seattle, WA, USA
- University of Washington, Seattle, WA, USA
| | - Ted Gooley
- Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Shannon Oda
- Seattle Children’s Research Institute, Seattle, WA, USA
| | - Philip D. Greenberg
- Fred Hutchinson Cancer Center, Seattle, WA, USA
- University of Washington, Seattle, WA, USA
| | - Paul Nghiem
- Fred Hutchinson Cancer Center, Seattle, WA, USA
- University of Washington, Seattle, WA, USA
| | - Aude G. Chapuis
- Fred Hutchinson Cancer Center, Seattle, WA, USA
- University of Washington, Seattle, WA, USA
| |
Collapse
|
5
|
Zhang XJ, Yu Y, Zhao HP, Guo L, Dai K, Lv J. Mechanisms of tumor immunosuppressive microenvironment formation in esophageal cancer. World J Gastroenterol 2024; 30:2195-2208. [PMID: 38690024 PMCID: PMC11056912 DOI: 10.3748/wjg.v30.i16.2195] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/05/2024] [Accepted: 04/10/2024] [Indexed: 04/26/2024] Open
Abstract
As a highly invasive malignancy, esophageal cancer (EC) is a global health issue, and was the eighth most prevalent cancer and the sixth leading cause of cancer-related death worldwide in 2020. Due to its highly immunogenic nature, emer-ging immunotherapy approaches, such as immune checkpoint blockade, have demonstrated promising efficacy in treating EC; however, certain limitations and challenges still exist. In addition, tumors may exhibit primary or acquired resistance to immunotherapy in the tumor immune microenvironment (TIME); thus, understanding the TIME is urgent and crucial, especially given the im-portance of an immunosuppressive microenvironment in tumor progression. The aim of this review was to better elucidate the mechanisms of the suppressive TIME, including cell infiltration, immune cell subsets, cytokines and signaling pathways in the tumor microenvironment of EC patients, as well as the downregulated expression of major histocompatibility complex molecules in tumor cells, to obtain a better understanding of the differences in EC patient responses to immunotherapeutic strategies and accurately predict the efficacy of immunotherapies. Therefore, personalized treatments could be developed to maximize the advantages of immunotherapy.
Collapse
Affiliation(s)
- Xiao-Jun Zhang
- Department of Clinical Laboratory, Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, Shaanxi Province, China
| | - Yan Yu
- Department of Clinical Laboratory, Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, Shaanxi Province, China
| | - He-Ping Zhao
- Department of Clinical Laboratory, Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, Shaanxi Province, China
| | - Lei Guo
- Department of Spinal Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, Shaanxi Province, China
| | - Kun Dai
- Department of Clinical Laboratory, Yanliang Railway Hospital of Xi’an, Xi’an 710089, Shaanxi Province, China
| | - Jing Lv
- Department of Clinical Laboratory, Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, Shaanxi Province, China
| |
Collapse
|
6
|
Wei X, Ruan H, Zhang Y, Qin T, Zhang Y, Qin Y, Li W. Pan-cancer analysis of IFN-γ with possible immunotherapeutic significance: a verification of single-cell sequencing and bulk omics research. Front Immunol 2023; 14:1202150. [PMID: 37646041 PMCID: PMC10461559 DOI: 10.3389/fimmu.2023.1202150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 07/17/2023] [Indexed: 09/01/2023] Open
Abstract
Background Interferon-gamma (IFN-γ), commonly referred to as type II interferon, is a crucial cytokine that coordinates the tumor immune process and has received considerable attention in tumor immunotherapy research. Previous studies have discussed the role and mechanisms associated with IFN-γ in specific tumors or diseases, but the relevant role of IFN-γ in pan-cancer remains uncertain. Methods TCGA and GTEx RNA expression data and clinical data were downloaded. Additionally, we analyzed the role of IFN-γ on tumors by using a bioinformatic approach, which included the analysis of the correlation between IFN-γ in different tumors and expression, prognosis, functional status, TMB, MSI, immune cell infiltration, and TIDE. We also developed a PPI network for topological analysis of the network, identifying hub genes as those having a degree greater than IFN-γ levels. Result IFN-γ was differentially expressed and predicted different survival statuses in a majority of tumor types in TCGA. Additionally, IFN-γ expression was strongly linked to factors like infiltration of T cells, immune checkpoints, immune-activating genes, immunosuppressive genes, chemokines, and chemokine receptors, as well as tumor purity, functional statuses, and prognostic value. Also, prognosis, CNV, and treatment response were all substantially correlated with IFN-γ-related gene expression. Particularly, the IFN-γ-related gene STAT1 exhibited the greatest percentage of SNVs and the largest percentage of SNPs in UCEC. Elevated expression levels of IFN-γ-related genes were found in a wide variety of tumor types, and this was shown to be positively linked to drug sensitivity for 20 different types of drugs. Conclusion IFN-γ is a good indicator of response to tumor immunotherapy and is likely to limit tumor progression, offering a novel approach for immunotherapy's future development.
Collapse
Affiliation(s)
- Xiaoying Wei
- Department of Health Management, The People’s Hospital of Guangxi Zhuang Autonomous Region and Research Center of Health Management, Guangxi Academy of Medical Sciences, Nanning, China
| | - Hanyi Ruan
- Department of Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Yan Zhang
- Department of Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Tianyu Qin
- Department of Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Yujie Zhang
- Department of Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Yan Qin
- Department of Health Management, The People’s Hospital of Guangxi Zhuang Autonomous Region and Research Center of Health Management, Guangxi Academy of Medical Sciences, Nanning, China
| | - Wei Li
- Department of Health Management, The People’s Hospital of Guangxi Zhuang Autonomous Region and Research Center of Health Management, Guangxi Academy of Medical Sciences, Nanning, China
| |
Collapse
|
7
|
Mozooni Z, Golestani N, Bahadorizadeh L, Yarmohammadi R, Jabalameli M, Amiri BS. The role of interferon-gamma and its receptors in gastrointestinal cancers. Pathol Res Pract 2023; 248:154636. [PMID: 37390758 DOI: 10.1016/j.prp.2023.154636] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/20/2023] [Accepted: 06/20/2023] [Indexed: 07/02/2023]
Abstract
Gastrointestinal malignancies are the most prevalent type of cancer around the world. Even though numerous studies have evaluated gastrointestinal malignancies, the actual underlying mechanism is still unknown. These tumors have a poor prognosis and are frequently discovered at an advanced stage. Globally, there is an increase in the incidence and mortality of gastrointestinal malignancies, including those of the stomach, esophagus, colon, liver, and pancreas. Growth factors and cytokines are signaling molecules that are part of the tumor microenvironment and play a significant role in the development and spread of malignancies. IFN-γ induce its effects by activation of intracellular molecular networks. The main pathway involved in IFN-γ signaling is the JAK/STAT pathway, which regulates the transcription of hundreds of genes and mediates various biological responses. IFN-γ receptor is composed of two IFN-γR1 chains and two IFN-γR2 chains. Binding to IFN-γ, causes the intracellular domains of IFN-γR2 to oligomerize and transphosphorylate with IFN-γR1 which activates downstream signaling components: JAK1 and JAK2. These activated JAKs phosphorylate the receptor, creating binding sites for STAT1. STAT1 is then phosphorylated by JAK, resulting in the formation of STAT1 homodimers (gamma activated factors or GAFs) that translocate to the nucleus and regulate gene expression. The balance between positive and negative regulation of this pathway is crucial for immune responses and tumorigenesis. In this paper, we evaluate the dynamic roles of IFN- γ and its receptors in gastrointestinal cancers and present evidence that inhibiting IFN- γ signaling may be an effective treatment strategy.
Collapse
Affiliation(s)
- Zahra Mozooni
- Institute of Immunology and Infectious Diseases, Antimicrobial Resistance Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Nafiseh Golestani
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Leyla Bahadorizadeh
- Institute of Immunology and Infectious Diseases, Antimicrobial Resistance Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Internal Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Reyhaneh Yarmohammadi
- Doctoral Student Carolina University Winston, Salem, NC, USA; Skin and Stem Cell Research Center Tehran University of Medical Sciences, Tehran, Iran
| | | | - Bahareh Shateri Amiri
- Department of Internal Medicine, School of Medicine Hazrat-e Rasool General Hospital, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Han J, Wu M, Liu Z. Dysregulation in IFN-γ signaling and response: the barricade to tumor immunotherapy. Front Immunol 2023; 14:1190333. [PMID: 37275859 PMCID: PMC10233742 DOI: 10.3389/fimmu.2023.1190333] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 04/14/2023] [Indexed: 06/07/2023] Open
Abstract
Interferon-gamma (IFN-γ) has been identified as a crucial factor in determining the responsiveness to immunotherapy. Produced primarily by natural killer (NK) and T cells, IFN-γ promotes activation, maturation, proliferation, cytokine expression, and effector function in immune cells, while simultaneously inducing antigen presentation, growth arrest, and apoptosis in tumor cells. However, tumor cells can hijack the IFN-γ signaling pathway to mount IFN-γ resistance: rather than increasing antigenicity and succumbing to death, tumor cells acquire stemness characteristics and express immunosuppressive molecules to defend against antitumor immunity. In this review, we summarize the potential mechanisms of IFN-γ resistance occurring at two critical stages: disrupted signal transduction along the IFNG/IFNGR/JAK/STAT pathway, or preferential expression of specific interferon-stimulated genes (ISGs). Elucidating the molecular mechanisms through which tumor cells develop IFN-γ resistance help identify promising therapeutic targets to improve immunotherapy, with broad application value in conjugation with targeted, antibody or cellular therapies.
Collapse
Affiliation(s)
- Jiashu Han
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of General Surgery, Peking Union Medical College Hospital (CAMS), Beijing, China
| | - Mengwei Wu
- Department of General Surgery, Peking Union Medical College Hospital (CAMS), Beijing, China
| | - Ziwen Liu
- Department of General Surgery, Peking Union Medical College Hospital (CAMS), Beijing, China
| |
Collapse
|
9
|
Lukhele S, Rabbo DA, Guo M, Shen J, Elsaesser HJ, Quevedo R, Carew M, Gadalla R, Snell LM, Mahesh L, Ciudad MT, Snow BE, You-Ten A, Haight J, Wakeham A, Ohashi PS, Mak TW, Cui W, McGaha TL, Brooks DG. The transcription factor IRF2 drives interferon-mediated CD8 + T cell exhaustion to restrict anti-tumor immunity. Immunity 2022; 55:2369-2385.e10. [PMID: 36370712 PMCID: PMC9809269 DOI: 10.1016/j.immuni.2022.10.020] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 08/10/2022] [Accepted: 10/24/2022] [Indexed: 11/13/2022]
Abstract
Type I and II interferons (IFNs) stimulate pro-inflammatory programs that are critical for immune activation, but also induce immune-suppressive feedback circuits that impede control of cancer growth. Here, we sought to determine how these opposing programs are differentially induced. We demonstrated that the transcription factor interferon regulatory factor 2 (IRF2) was expressed by many immune cells in the tumor in response to sustained IFN signaling. CD8+ T cell-specific deletion of IRF2 prevented acquisition of the T cell exhaustion program within the tumor and instead enabled sustained effector functions that promoted long-term tumor control and increased responsiveness to immune checkpoint and adoptive cell therapies. The long-term tumor control by IRF2-deficient CD8+ T cells required continuous integration of both IFN-I and IFN-II signals. Thus, IRF2 is a foundational feedback molecule that redirects IFN signals to suppress T cell responses and represents a potential target to enhance cancer control.
Collapse
Affiliation(s)
- Sabelo Lukhele
- Princess Margaret Cancer Center, University Health Network, Toronto, ON, M5G 2M9 Canada.
| | - Diala Abd Rabbo
- Princess Margaret Cancer Center, University Health Network, Toronto, ON, M5G 2M9 Canada
| | - Mengdi Guo
- Princess Margaret Cancer Center, University Health Network, Toronto, ON, M5G 2M9 Canada; Department of Immunology, University of Toronto, Toronto, ON, M5S 1A8 Canada
| | - Jian Shen
- Blood Research Institute, Versiti Wisconsin, Milwaukee, WI 53226, USA; Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Heidi J Elsaesser
- Princess Margaret Cancer Center, University Health Network, Toronto, ON, M5G 2M9 Canada
| | - Rene Quevedo
- Princess Margaret Cancer Center, University Health Network, Toronto, ON, M5G 2M9 Canada
| | - Madeleine Carew
- Princess Margaret Cancer Center, University Health Network, Toronto, ON, M5G 2M9 Canada
| | - Ramy Gadalla
- Princess Margaret Cancer Center, University Health Network, Toronto, ON, M5G 2M9 Canada
| | - Laura M Snell
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Lawanya Mahesh
- Princess Margaret Cancer Center, University Health Network, Toronto, ON, M5G 2M9 Canada
| | - M Teresa Ciudad
- Princess Margaret Cancer Center, University Health Network, Toronto, ON, M5G 2M9 Canada
| | - Bryan E Snow
- Princess Margaret Cancer Center, University Health Network, Toronto, ON, M5G 2M9 Canada
| | - Annick You-Ten
- Princess Margaret Cancer Center, University Health Network, Toronto, ON, M5G 2M9 Canada
| | - Jillian Haight
- Princess Margaret Cancer Center, University Health Network, Toronto, ON, M5G 2M9 Canada
| | - Andrew Wakeham
- Princess Margaret Cancer Center, University Health Network, Toronto, ON, M5G 2M9 Canada
| | - Pamela S Ohashi
- Princess Margaret Cancer Center, University Health Network, Toronto, ON, M5G 2M9 Canada; Department of Immunology, University of Toronto, Toronto, ON, M5S 1A8 Canada
| | - Tak W Mak
- Princess Margaret Cancer Center, University Health Network, Toronto, ON, M5G 2M9 Canada; Department of Immunology, University of Toronto, Toronto, ON, M5S 1A8 Canada
| | - Weiguo Cui
- Blood Research Institute, Versiti Wisconsin, Milwaukee, WI 53226, USA; Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Tracy L McGaha
- Princess Margaret Cancer Center, University Health Network, Toronto, ON, M5G 2M9 Canada; Department of Immunology, University of Toronto, Toronto, ON, M5S 1A8 Canada
| | - David G Brooks
- Princess Margaret Cancer Center, University Health Network, Toronto, ON, M5G 2M9 Canada; Department of Immunology, University of Toronto, Toronto, ON, M5S 1A8 Canada.
| |
Collapse
|
10
|
Ding H, Wang G, Yu Z, Sun H, Wang L. Role of interferon-gamma (IFN-γ) and IFN-γ receptor 1/2 (IFNγR1/2) in regulation of immunity, infection, and cancer development: IFN-γ-dependent or independent pathway. Biomed Pharmacother 2022; 155:113683. [PMID: 36095965 DOI: 10.1016/j.biopha.2022.113683] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/27/2022] [Accepted: 09/07/2022] [Indexed: 11/02/2022] Open
Abstract
IFN-γ, a soluble cytokine being produced by T lymphocytes, macrophages, mucosal epithelial cells, or natural killer cells, is able to bind to the IFN-γ receptor (IFNγR) and in turn activate the Janus kinase (JAK)-signal transducer and transcription protein (STAT) pathway and induce expression of IFN-γ-stimulated genes. IFN-γ is critical for innate and adaptive immunity and aberrant IFN-γ expression and functions have been associated with different human diseases. However, the IFN-γ/IFNγR signaling could be a double-edged sword in cancer development because the tissue microenvironments could determine its anti- or pro-tumorigenic activities. The IFNγR protein consists of two IFNγR1 and IFNγR2 chains, subunits of which play different roles under certain conditions. This review assessed IFNγR polymorphisms, expression and functions in development and progression of various human diseases in an IFN-γ-dependent or independent manner. This review also discussed tumor microenvironment, microbial infection, and vital molecules in the IFN-γ upstream signaling that might regulate IFNγR expression, drug resistance, and druggable strategy, to provide evidence for further application of IFNγR.
Collapse
Affiliation(s)
- Huihui Ding
- School of Pharmacy, Shandong First Medical University, Jinan, Shandong, China.
| | - Gongfu Wang
- Center for Drug Evaluation, China Food and Drug Administration (CFDA), Beijing, China.
| | - Zhen Yu
- Department of Pharmacy, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
| | - Huimin Sun
- School of Pharmacy, Shandong First Medical University, Jinan, Shandong, China.
| | - Lu Wang
- School of Pharmacy, Shandong First Medical University, Jinan, Shandong, China; Department of Pharmacy, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
| |
Collapse
|
11
|
Xia Y, Wang P, Ye Y, Zhang S, Sun G, Xu J, Han G. Immunotherapy Mechanism of Esophageal Squamous Cell Carcinoma with the Effect of STK11/AMPK Signaling Pathway. BIOMED RESEARCH INTERNATIONAL 2022; 2022:8636527. [PMID: 35463992 PMCID: PMC9033337 DOI: 10.1155/2022/8636527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/04/2022] [Accepted: 01/13/2022] [Indexed: 11/17/2022]
Abstract
This study was aimed at exploring the mechanism of serine threonine protein kinase 11 (STK11)/Adenosine 5'-monophosphate-activated protein kinase (AMPK) signaling pathway after immunotherapy for esophageal squamous cell carcinoma (ESCC), providing basic information for the clinical treatment of ESCC. In this study, tissue specimens from 100 patients with ESCC who underwent surgical treatment in Taizhou People's Hospital (group A) and 20 patients with recurrent or metastatic ESCC who received second-line immunotherapy (group B) were collected. The real-time fluorescent quantitative polymerase chain reaction (PCR) (RT-qPCR) technology was used to detect the expression levels of STK11, interferon-γ (IFN-γ), interleukin 6 (IL-6), and vascular endothelial growth factor (VEGF) in the tissues. The immunohistochemical staining was used to detect the positive expression levels (PELs) of STK11 and AMPKα in the tissues, and immunofluorescence staining was used to detect the PELs Teff cells (CD3 and CD8), Treg cells (CD4 and FOXP3), and neutrophils (CD68 and CD163). RT-qPCR results showed that the expression levels of STK11 and IFN-γ in group A were obviously lower, and those of IL-6 and VEGF were much higher in contrast to group B (P < 0.05). The results of immunohistochemical staining showed that the number of STK11- and AMPKα-positive staining cells in group A was dramatically less than that in group B (P <0.05). The results of immunofluorescence staining revealed that the number of positive staining cells for Teff cells, Treg cells, and neutrophils in group A was also less dramatically than that in group B (P <0.05). In summary, immunotherapy can play a therapeutic effect on ESCC by regulating STK11/AMPK pathway and immune cell infiltration.
Collapse
Affiliation(s)
- Yang Xia
- Department of Oncology, Taizhou People's Hospital, Taizhou, 225300 Jiangsu Province, China
| | - Peng Wang
- Department of Oncology, Taizhou People's Hospital, Taizhou, 225300 Jiangsu Province, China
| | - Yunyao Ye
- Department of Oncology, Taizhou People's Hospital, Taizhou, 225300 Jiangsu Province, China
| | - Sihui Zhang
- Department of Oncology, Taizhou People's Hospital, Taizhou, 225300 Jiangsu Province, China
| | - Guangzhi Sun
- Department of Oncology, Taizhou People's Hospital, Taizhou, 225300 Jiangsu Province, China
| | - Jie Xu
- Department of Oncology, Taizhou People's Hospital, Taizhou, 225300 Jiangsu Province, China
| | - Gaohua Han
- Department of Oncology, Taizhou People's Hospital, Taizhou, 225300 Jiangsu Province, China
| |
Collapse
|
12
|
Barrett's Metaplasia Progression towards Esophageal Adenocarcinoma: An Attempt to Select a Panel of Molecular Sensors and to Reflect Clinical Alterations by Experimental Models. Int J Mol Sci 2022; 23:ijms23063312. [PMID: 35328735 PMCID: PMC8955539 DOI: 10.3390/ijms23063312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 02/06/2023] Open
Abstract
The molecular processes that predispose the development of Barrett’s esophagus (BE) towards esophageal adenocarcinoma (EAC) induced by gastrointestinal reflux disease (GERD) are still under investigation. In this study, based on a scientific literature screening and an analysis of clinical datasets, we selected a panel of 20 genes covering BE- and EAC-specific molecular markers (FZD5, IFNGR1, IL1A, IL1B, IL1R1, IL1RN, KRT4, KRT8, KRT15, KRT18, NFKBIL1, PTGS1, PTGS2, SOCS3, SOX4, SOX9, SOX15, TIMP1, TMEM2, TNFRSF10B). Furthermore, we aimed to reflect these alterations within an experimental and translational in vitro model of BE to EAC progression. We performed a comparison between expression profiles in GSE clinical databases with an in vitro model of GERD involving a BE cell line (BAR-T) and EAC cell lines (OE33 and OE19). Molecular responses of cells treated with acidified bile mixture (BM) at concentration of 100 and 250 μM for 30 min per day were evaluated. We also determined a basal mRNA expression within untreated, wild type cell lines on subsequent stages of BE and EAC development. We observed that an appropriately optimized in vitro model based on the combination of BAR-T, OE33 and OE19 cell lines reflects in 65% and more the clinical molecular alterations observed during BE and EAC development. We also confirmed previous observations that exposure to BM (GERD in vitro) activated carcinogenesis in non-dysplastic cells, inducing molecular alternations in the advanced stages of BE. We conclude that it is possible to induce, to a high extent, the molecular profile observed clinically within appropriately and carefully optimized experimental models, triggering EAC development. This experimental scheme and molecular marker panel might be implemented in further research, e.g., aiming to develop and evaluate novel compounds and prodrugs targeting GERD as well as BE and EAC prevention and treatment.
Collapse
|
13
|
Liu T, Zhu C, Chen X, Wu J, Guan G, Zou C, Shen S, Chen L, Cheng P, Cheng W, Wu A. Dual role of ARPC1B in regulating the network between tumor-associated macrophages and tumor cells in glioblastoma. Oncoimmunology 2022; 11:2031499. [PMID: 35111386 PMCID: PMC8803105 DOI: 10.1080/2162402x.2022.2031499] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Tianqi Liu
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Chen Zhu
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xin Chen
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jianqi Wu
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Gefei Guan
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Cunyi Zou
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Shuai Shen
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Ling Chen
- Department of Neurosurgery, Chinese People’s Liberation Army of China (Pla) General Hospital, Medical School of Chinese Pla, Institute of Neurosurgery of Chinese Pla, Beijing, China
| | - Peng Cheng
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Wen Cheng
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Anhua Wu
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
14
|
Ren K, Zhu Y, Sun H, Li S, Duan X, Li S, Li Y, Li B, Chen L. IRF2 inhibits ZIKV replication by promoting FAM111A expression to enhance the host restriction effect of RFC3. Virol J 2021; 18:256. [PMID: 34930359 PMCID: PMC8691090 DOI: 10.1186/s12985-021-01724-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 12/08/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Although interferon regulatory factor 2 (IRF2) was reported to stimulate virus replication by suppressing the type I interferon signaling pathway, because cell cycle arrest was found to promote viral replication, IRF2-regulated replication fork factor (FAM111A and RFC3) might be able to affect ZIKV replication. In this study, we aimed to investigate the function of IRF2, FAM111A and RFC3 to ZIKV replication and underlying mechanism. METHODS siIRF2, siFAM111A, siRFC3 and pIRF2 in ZIKV-infected A549, 2FTGH and U5A cells were used to explore the mechanism of IRF2 to inhibit ZIKV replication. In addition, their expression was analyzed by RT-qPCR and western blots, respectively. RESULTS In this study, we found IRF2 expression was increased in ZIKV-infected A549 cells and IRF2 inhibited ZIKV replication independent of type I IFN signaling pathway. IRF2 could activate FAM111A expression and then enhanced the host restriction effect of RFC3 to inhibit replication of ZIKV. CONCLUSIONS We speculated the type I interferon signaling pathway might not play a leading role in regulating ZIKV replication in IRF2-silenced cells. We found IRF2 was able to upregulate FAM111A expression and thus enhance the host restriction effect of RFC3 on ZIKV.
Collapse
Affiliation(s)
- Kai Ren
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, 26 Huacai Road, Chengdu, 610051, China.,The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Ya Zhu
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, 26 Huacai Road, Chengdu, 610051, China
| | - Honggang Sun
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, 26 Huacai Road, Chengdu, 610051, China
| | - Shilin Li
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, 26 Huacai Road, Chengdu, 610051, China
| | - Xiaoqiong Duan
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, 26 Huacai Road, Chengdu, 610051, China
| | - Shuang Li
- Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Yujia Li
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, 26 Huacai Road, Chengdu, 610051, China.
| | - Bin Li
- The Joint Laboratory on Transfusion-Transmitted Diseases (TTDs) Between Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Nanning Blood Center, Naning Blood Center, Nanning, China.
| | - Limin Chen
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, 26 Huacai Road, Chengdu, 610051, China. .,The Joint Laboratory on Transfusion-Transmitted Diseases (TTDs) Between Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Nanning Blood Center, Naning Blood Center, Nanning, China. .,Toronto General Research Institute, University of Toronto, Toronto, Canada.
| |
Collapse
|
15
|
PD_BiBIM: Biclustering-based biomarker identification in ESCC microarray data. J Biosci 2021. [DOI: 10.1007/s12038-021-00171-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
16
|
Liu SB, Lu LF, Lu XB, Li S, Zhang YA. Zebrafish FGFR3 is a negative regulator of RLR pathway to decrease IFN expression. FISH & SHELLFISH IMMUNOLOGY 2019; 92:224-229. [PMID: 31200068 DOI: 10.1016/j.fsi.2019.06.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 05/30/2019] [Accepted: 06/04/2019] [Indexed: 06/09/2023]
Abstract
Fibroblast growth factor receptor (FGFR) 3 is one of the four distinct membrane-spanning tyrosine kinases required for proper skeletal development. In fish, the role of FGFR3 is still unclear. In this article, we reveal that zebrafish FGFR3 is a negative regulator of interferon (IFN) production in the innate immune response by suppressing the activity of TANK-binding kinase 1 (TBK1) in the process of virus infection. qPCR experiments demonstrate that the transcriptional level of cellular FGFR3 was upregulated by infection with spring viremia of carp virus (SVCV), indicating that FGFR3 might be involved in the process of host cell response to viral infection. Then, overexpression of FGFR3 significantly impeded the IFN promoter activity induced by a stimulator. In addition, the capabilities of a retinoic acid-inducible gene I (RIG-I)-like receptor (RLR) system to activate IFN promoter were decreased during the overexpression of FGFR3. Subsequently, FGFR3 decreased the phosphorylation of interferon regulatory factor 3 (IRF3) and mediator of IRF3 activation (MITA) by TBK1. These findings suggest that zebrafish FGFR3 is a negative regulator of IFN by attenuating the kinase activity of TBK1, leading to the suppression of IFN expression.
Collapse
Affiliation(s)
- Shu-Bo Liu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China
| | - Long-Feng Lu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Xiao-Bing Lu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China
| | - Shun Li
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.
| | - Yong-An Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; State Key Laboratory of Agricultural Microbiology, College of Fisheries, Huazhong Agricultural University, Wuhan, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|
17
|
Segovia C, San José-Enériz E, Munera-Maravilla E, Martínez-Fernández M, Garate L, Miranda E, Vilas-Zornoza A, Lodewijk I, Rubio C, Segrelles C, Valcárcel LV, Rabal O, Casares N, Bernardini A, Suarez-Cabrera C, López-Calderón FF, Fortes P, Casado JA, Dueñas M, Villacampa F, Lasarte JJ, Guerrero-Ramos F, de Velasco G, Oyarzabal J, Castellano D, Agirre X, Prósper F, Paramio JM. Inhibition of a G9a/DNMT network triggers immune-mediated bladder cancer regression. Nat Med 2019; 25:1073-1081. [PMID: 31270502 DOI: 10.1038/s41591-019-0499-y] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 05/24/2019] [Indexed: 12/14/2022]
Abstract
Bladder cancer is lethal in its advanced, muscle-invasive phase with very limited therapeutic advances1,2. Recent molecular characterization has defined new (epi)genetic drivers and potential targets for bladder cancer3,4. The immune checkpoint inhibitors have shown remarkable efficacy but only in a limited fraction of bladder cancer patients5-8. Here, we show that high G9a (EHMT2) expression is associated with poor clinical outcome in bladder cancer and that targeting G9a/DNMT methyltransferase activity with a novel inhibitor (CM-272) induces apoptosis and immunogenic cell death. Using an immunocompetent quadruple-knockout (PtenloxP/loxP; Trp53loxP/loxP; Rb1loxP/loxP; Rbl1-/-) transgenic mouse model of aggressive metastatic, muscle-invasive bladder cancer, we demonstrate that CM-272 + cisplatin treatment results in statistically significant regression of established tumors and metastases. The antitumor effect is significantly improved when CM-272 is combined with anti-programmed cell death ligand 1, even in the absence of cisplatin. These effects are associated with an endogenous antitumor immune response and immunogenic cell death with the conversion of a cold immune tumor into a hot tumor. Finally, increased G9a expression was associated with resistance to programmed cell death protein 1 inhibition in a cohort of patients with bladder cancer. In summary, these findings support new and promising opportunities for the treatment of bladder cancer using a combination of epigenetic inhibitors and immune checkpoint blockade.
Collapse
Affiliation(s)
- Cristina Segovia
- Molecular Oncology Unit CIEMAT, Madrid, Spain.,Centro de Investigación Biomédica en Red Cáncer, Madrid, Spain.,Institute of Biomedical Research, University Hospital '12 de Octubre', Madrid, Spain
| | - Edurne San José-Enériz
- Centro de Investigación Biomédica en Red Cáncer, Madrid, Spain.,Hemato-oncology Program, Centro de Investigación Médica Aplicada, IDISNA, Universidad de Navarra, Pamplona, Spain
| | - Ester Munera-Maravilla
- Molecular Oncology Unit CIEMAT, Madrid, Spain.,Institute of Biomedical Research, University Hospital '12 de Octubre', Madrid, Spain
| | - Mónica Martínez-Fernández
- Molecular Oncology Unit CIEMAT, Madrid, Spain.,Centro de Investigación Biomédica en Red Cáncer, Madrid, Spain.,Institute of Biomedical Research, University Hospital '12 de Octubre', Madrid, Spain.,Mobile Genomes and Disease Laboratory CIMUS, Universidad de Santiago de Compostela, La Coruña, Spain
| | - Leire Garate
- Centro de Investigación Biomédica en Red Cáncer, Madrid, Spain.,Hematology and Cell Therapy Department, Clínica Universidad de Navarra, Universidad de Navarra, Pamplona, Spain
| | - Estíbaliz Miranda
- Centro de Investigación Biomédica en Red Cáncer, Madrid, Spain.,Hemato-oncology Program, Centro de Investigación Médica Aplicada, IDISNA, Universidad de Navarra, Pamplona, Spain
| | - Amaia Vilas-Zornoza
- Centro de Investigación Biomédica en Red Cáncer, Madrid, Spain.,Hemato-oncology Program, Centro de Investigación Médica Aplicada, IDISNA, Universidad de Navarra, Pamplona, Spain
| | | | - Carolina Rubio
- Centro de Investigación Biomédica en Red Cáncer, Madrid, Spain.,Institute of Biomedical Research, University Hospital '12 de Octubre', Madrid, Spain
| | - Carmen Segrelles
- Molecular Oncology Unit CIEMAT, Madrid, Spain.,Centro de Investigación Biomédica en Red Cáncer, Madrid, Spain
| | - Luis Vitores Valcárcel
- Centro de Investigación Biomédica en Red Cáncer, Madrid, Spain.,Hemato-oncology Program, Centro de Investigación Médica Aplicada, IDISNA, Universidad de Navarra, Pamplona, Spain.,TECNUN, University of Navarra, San Sebastián, Spain
| | - Obdulia Rabal
- Small Molecule Discovery Platform, Molecular Therapeutics Program, Centro de Investigación Médica Aplicada, Universidad de Navarra, Pamplona, Spain
| | - Noelia Casares
- Immunology and Immunotherapy Program, Centro de Investigación Médica Aplicada, IDISNA, Universidad de Navarra, Pamplona, Spain
| | - Alejandra Bernardini
- Molecular Oncology Unit CIEMAT, Madrid, Spain.,Centro de Investigación Biomédica en Red Cáncer, Madrid, Spain
| | | | - Fernando F López-Calderón
- Molecular Oncology Unit CIEMAT, Madrid, Spain.,Centro de Investigación Biomédica en Red Cáncer, Madrid, Spain.,Institute of Biomedical Research, University Hospital '12 de Octubre', Madrid, Spain
| | - Puri Fortes
- Gene Therapy and Regulation of Gene Expression Program, Centro de Investigación Médica Aplicada, IDISNA, Universidad de Navarra, Pamplona, Spain
| | - José A Casado
- Division of Hematopoietic Innovative Therapies (CIEMAT), Centro de Investigación Biomédica en Red de Enfermedades Raras and Advanced Therapies Unit, Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Madrid, Spain
| | - Marta Dueñas
- Molecular Oncology Unit CIEMAT, Madrid, Spain.,Centro de Investigación Biomédica en Red Cáncer, Madrid, Spain.,Institute of Biomedical Research, University Hospital '12 de Octubre', Madrid, Spain
| | - Felipe Villacampa
- Centro de Investigación Biomédica en Red Cáncer, Madrid, Spain.,Institute of Biomedical Research, University Hospital '12 de Octubre', Madrid, Spain
| | - Juan José Lasarte
- Immunology and Immunotherapy Program, Centro de Investigación Médica Aplicada, IDISNA, Universidad de Navarra, Pamplona, Spain
| | - Félix Guerrero-Ramos
- Institute of Biomedical Research, University Hospital '12 de Octubre', Madrid, Spain.,Urology Department, University Hospital '12 de Octubre', Madrid, Spain
| | - Guillermo de Velasco
- Institute of Biomedical Research, University Hospital '12 de Octubre', Madrid, Spain.,Medical Oncology Department, University Hospital '12 de Octubre', Madrid, Spain
| | - Julen Oyarzabal
- Small Molecule Discovery Platform, Molecular Therapeutics Program, Centro de Investigación Médica Aplicada, Universidad de Navarra, Pamplona, Spain
| | - Daniel Castellano
- Molecular Oncology Unit CIEMAT, Madrid, Spain.,Centro de Investigación Biomédica en Red Cáncer, Madrid, Spain.,Medical Oncology Department, University Hospital '12 de Octubre', Madrid, Spain
| | - Xabier Agirre
- Centro de Investigación Biomédica en Red Cáncer, Madrid, Spain. .,Hemato-oncology Program, Centro de Investigación Médica Aplicada, IDISNA, Universidad de Navarra, Pamplona, Spain.
| | - Felipe Prósper
- Centro de Investigación Biomédica en Red Cáncer, Madrid, Spain. .,Hemato-oncology Program, Centro de Investigación Médica Aplicada, IDISNA, Universidad de Navarra, Pamplona, Spain. .,Hematology and Cell Therapy Department, Clínica Universidad de Navarra, Universidad de Navarra, Pamplona, Spain.
| | - Jesús M Paramio
- Molecular Oncology Unit CIEMAT, Madrid, Spain. .,Centro de Investigación Biomédica en Red Cáncer, Madrid, Spain. .,Institute of Biomedical Research, University Hospital '12 de Octubre', Madrid, Spain.
| |
Collapse
|
18
|
Samiei H, Sadighi-Moghaddam B, Mohammadi S, Gharavi A, Abdolmaleki S, Khosravi A, Kokhaei P, Bazzazi H, Memarian A. Dysregulation of helper T lymphocytes in esophageal squamous cell carcinoma (ESCC) patients is highly associated with aberrant production of miR-21. Immunol Res 2019; 67:212-222. [PMID: 31278653 DOI: 10.1007/s12026-019-09079-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Dysregulation of helper T (Th) cell subsets has been contributed to the initiation and propagation of esophageal squamous cell carcinoma (ESCC). Different microRNAs (miRNAs) have been reported to control the development and functions of tumor-associated immune cells in ESCC. Here, we aimed to assess the IL-10, TGF-β, IFN-γ, and IL-17a-producing CD3+CD8- T cells in association whit miR-21, miR-29b, miR-106a, and miR-155 expression in ESCC patients. A total of 34 ESCC patients including 12 newly diagnosed (ND) and 22 under-treatment (UT) cases and also 34 age-matched healthy donors were enrolled. Flow cytometric characterization of stimulated T cells was performed by staining of the cells with fluorescent conjugated specific anti-human CD3 and CD8 cell surface markers as well as IL-17a, IFN-γ, IL-10, and TGF-β intracytoplasmic cytokines. Circulating RNA was extracted from the plasma, and qRT-PCR was used to evaluate the expression of microRNAs. TGF-β plasma levels were also assessed by ELISA. Results showed that the frequency of Th cells was significantly reduced in patients. A significant increase in Treg as well as Th17 cells population in both patient subgroups was observed. ND patients showed elevated level of Th1 cells and IL-10. However the mean expression of IFN-γ was significantly decreased in Th cells. We also detected higher level of miR-21 in the ESCC patients which was significantly correlated with different subsets of Th cells. Our findings revealed that immune response related to the Th cells is highly impaired in ESCC patients. Association between miR-21 and Th subsets could be correlated with the impairment of anti-tumor immunity and ESCC pathogenesis, which could be potentially used as an important target for immunotherapeutic approaches.
Collapse
Affiliation(s)
- Hadiseh Samiei
- Student Research Committee, Department of Immunology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Bizhan Sadighi-Moghaddam
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Department of Immunology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Saeed Mohammadi
- Infectious Diseases Research Center, Golestan University of Medical Sciences, Gorgan, Iran
- Stem Cell Research center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Abdolsamad Gharavi
- Digestive Oncology Research Center, Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
- Golestan Research Center of Gastroenterology and Hepatology, Golestan University of Medical Sciences, Gorgan, Iran
| | - Sara Abdolmaleki
- Student Research Committee, Department of Immunology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ayyoob Khosravi
- Stem Cell Research center, Golestan University of Medical Sciences, Gorgan, Iran
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Parviz Kokhaei
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Immune and Gene Therapy Laboratory, Cancer Centre Karolinska, Department of Oncology and Pathology, Karolinska Institute, Stockholm, Sweden
| | - Hadi Bazzazi
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Golestan University of Medical Sciences, Gorgan, Iran
- Department of Medical Laboratory Sciences, Gorgan Branch, Islamic Azad University, Gorgan, Iran
| | - Ali Memarian
- Golestan Research Center of Gastroenterology and Hepatology, Golestan University of Medical Sciences, Gorgan, Iran.
| |
Collapse
|
19
|
Li Z, Chen J, Li P, Li XY, Lu L, Li S. Functional characterization of dark sleeper (Odontobutis obscura) IRF3 in IFN regulation. FISH & SHELLFISH IMMUNOLOGY 2019; 89:411-419. [PMID: 30978449 DOI: 10.1016/j.fsi.2019.04.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 03/29/2019] [Accepted: 04/05/2019] [Indexed: 06/09/2023]
Abstract
The dark sleeper, Odontobutis obscura (O. obscura), is a commercially important species of freshwater sleeper native to East Asia. However, its molecular biology system is unexplored, including the interferon (IFN) signaling pathway, which is crucial to the antiviral response. In this study, we characterised the IFN regulation pattern of dark sleeper interferon regulatory factor 3 (OdIRF3), supplementing evidence of the conservation of this classical pathway in fish. First, the open reading frame (ORF) of OdIRF3 was cloned from the liver tissue by Rapid amplification of cDNA ends (RACE). Amino acid sequence analysis suggested that OdIRF3 is homologous with other fish IRF3 and that the N-terminal DNA-binding domain (DBD) and the C-terminal IRF-association domain (IAD) are conserved. Then, the cellular distribution demonstrated that OdIRF3 is located in the cytoplasm region and transfers into the nuclear region under stimulation. For the function identification, OdIRF3 activated several types of IFN promoters and induced downstream interferon stimulated genes (ISGs) expression. Finally, the overexpression of OdIRF3 significantly decreased viral proliferation. Taken together, these data systematically characterised the sequence, cellular location, and function in IFN expression of OdIRF3, shedding light on the molecular biology mechanism of the dark sleeper.
Collapse
Affiliation(s)
- Zhuocong Li
- University of Chinese Academy of Sciences, Beijing, China; State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Jian Chen
- Fisheries Research Institute, Wuhan Academy of Agricultural Sciences, Wuhan, China
| | - Pei Li
- Fisheries Research Institute, Wuhan Academy of Agricultural Sciences, Wuhan, China
| | - Xi-Yin Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Longfeng Lu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Shun Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.
| |
Collapse
|
20
|
Tecalco-Cruz AC, Cortés-González CC, Cruz-Ramos E, Ramírez Jarquín JO, Romero-Mandujano AK, Sosa-Garrocho M. Interplay between interferon-stimulated gene 15/ISGylation and interferon gamma signaling in breast cancer cells. Cell Signal 2018; 54:91-101. [PMID: 30500379 DOI: 10.1016/j.cellsig.2018.11.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 11/25/2018] [Accepted: 11/26/2018] [Indexed: 12/11/2022]
Abstract
Interferon-stimulated gene 15 (ISG15) is a ubiquitin-like protein that conjugates to its target proteins to modify them through ISGylation, but the relevance of ISG15 expression and its effects have been not completely defined. Herein, we examined the interplay between ISG15/ISGylation and the interferon-gamma (IFN-γ) signaling pathway in mammary tumors and compared it with that in normal mammary tissues. Our results indicated that mammary tumors had higher levels of ISG15 mRNA and ISG15 protein than the adjacent normal mammary tissue. Furthermore, the expression of IFN-γ signaling components was altered in breast cancer. Interestingly, IFN-γ treatment induced morphological changes in MCF-7 and MDA-MB-231 breast cancer cell lines due to cytoskeletal reorganization. This cellular process seems to be related to the increase in ISGylation of cytoplasmic IQ Motif Containing GTPase Activating Protein 1 (IQGAP1). Interactome analysis also indicated that IFN-γ signaling and the ISGylation system are associated with several proteins implicated in cytoskeletal remodeling, including IQGAP1. Thus, ISG15 may present a potential biomarker for breast cancer, and IFN-γ signaling and protein ISGylation may participate in the regulation of the cytoskeleton in breast cancer cells.
Collapse
Affiliation(s)
- Angeles C Tecalco-Cruz
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico.
| | - Carlo César Cortés-González
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, Tlalpan, C.P. 14080 Mexico City, Mexico
| | - Eduardo Cruz-Ramos
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Josué O Ramírez Jarquín
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Aline Kay Romero-Mandujano
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, Tlalpan, C.P. 14080 Mexico City, Mexico
| | - Marcela Sosa-Garrocho
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| |
Collapse
|
21
|
Zhang M, Zhang L, Cui M, Ye W, Zhang P, Zhou S, Wang J. miR-302b inhibits cancer-related inflammation by targeting ERBB4, IRF2 and CXCR4 in esophageal cancer. Oncotarget 2018; 8:49053-49063. [PMID: 28467773 PMCID: PMC5564748 DOI: 10.18632/oncotarget.17041] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 04/04/2017] [Indexed: 01/23/2023] Open
Abstract
Cancer related inflammation (CRI) plays an important role in the development of esophageal cancer (EC), and the target gene analysis shows that miR-302b potential target genes closely correlated to CRI important signaling pathways. The present study was to evaluate the inhibition of miR-302b on CRI in EC and its mechanism. We found that the expression levels of miR-302b in EC cells were lower than that in Het-1A cells, while TE11 with the lowest expression and OE33 with the highest. Inflammatory stimuli at 48 h significantly reduced expression of miR-302b in EC cells, but had no effect in Het-1A. After up-regulation of miR-302b in TE11 and down-regulation of miR-302b in OE33, it was found that miR-302b reduced CRI key transcription factors and representative cytokines. Then, over-expressed of miR-302b significantly altered potential target genes protein expressions and there was a negative correlation between miR-302b and potential target genes protein expressions (ERBB4, IRF2 and CXCR4) in EC tissues. Then reporter gene analysis revealed that miR-302b post-transcriptionally regulated expression of target genes by specific area of 3′-UTR. Transfected by target genes shRNA plasmids together could get the same effects of miR-302b on protein expression of CRI key transcription factors. Furthermore, miR-302b was able to repress tumor growth and transcription factors protein expression in vivo. These finding suggests that miR-302b inhibits key transcription factors and cytokines by targeting ERBB4, IRF2 and CXCR4, implicating its role in the inhibition of CRI in EC.
Collapse
Affiliation(s)
- Mingxin Zhang
- Department of Gastroenterology, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, Shaanxi Province, China
| | - Lingmin Zhang
- Department of Anesthesiology, First Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, China
| | - Manli Cui
- Department of Gastroenterology, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, Shaanxi Province, China
| | - Wenguang Ye
- Department of Gastroenterology, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, Shaanxi Province, China
| | - Pengjiang Zhang
- Second Department of Cadre's Ward, Lanzhou General Hospital of Chinese PLA, Lanzhou 730050, China
| | - Suna Zhou
- Department of Radiotherapy, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, Shaanxi Province, China
| | - Jingjie Wang
- Department of Gastroenterology, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, Shaanxi Province, China
| |
Collapse
|
22
|
Liu F, Yu X, Huang H, Chen X, Wang J, Zhang X, Lin Q. Upregulation of microRNA-450 inhibits the progression of lung cancer in vitro and in vivo by targeting interferon regulatory factor 2. Int J Mol Med 2016; 38:283-90. [PMID: 27246609 DOI: 10.3892/ijmm.2016.2612] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 05/16/2016] [Indexed: 11/05/2022] Open
Abstract
MicroRNAs (miRNAs) are a class of non‑coding RNAs that play pivotal roles in human lung cancer development. The majority of studies have focused on either non-small cell lung cancer (NSCLC) or small cell lung cancer (SCLC). In the present study, we investigated a plausible mechanism of action of miR‑450 in these types of lung cancer. We found that the level of miR‑450 was decreased in lung cancer cell lines, as well as in solid tumors. As exemplified in the H510A (SCLC) and H2291 (NSCLC) cells, transfection with lentivirus carrying miR‑450 upregulated miR‑450 expression and significantly attenuated lung cancer cell proliferation and invasion, as well as the growth of implantated tumors. Interferon regulatory factor 2 (IRF2) was also verified to be a direct target of miR‑450 in lung cancer cells. The overexpression of IRF2 in the H510A and H2291 cells abrogated the inhibitory effects of miR‑450 on lung cancer cell proliferation and invasion. Taken together, in this study, we identified a novel role of miR‑450 in lung cancer. miR-450 targets IRF2 and thus supresses lung cancer cell proliferation and invasion.
Collapse
Affiliation(s)
- Fabing Liu
- Department of Thoracic Surgery, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200080, P.R. China
| | - Xiaobo Yu
- Department of Thoracic Surgery, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200080, P.R. China
| | - Haihua Huang
- Department of Thoracic Surgery, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200080, P.R. China
| | - Xi Chen
- Department of Thoracic Surgery, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200080, P.R. China
| | - Jin Wang
- Department of Thoracic Surgery, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200080, P.R. China
| | - Xiaomiao Zhang
- Department of Thoracic Surgery, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200080, P.R. China
| | - Qiang Lin
- Department of Thoracic Surgery, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200080, P.R. China
| |
Collapse
|
23
|
Mandai M, Hamanishi J, Abiko K, Matsumura N, Baba T, Konishi I. Dual Faces of IFNγ in Cancer Progression: A Role of PD-L1 Induction in the Determination of Pro- and Antitumor Immunity. Clin Cancer Res 2016; 22:2329-34. [PMID: 27016309 DOI: 10.1158/1078-0432.ccr-16-0224] [Citation(s) in RCA: 288] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 03/14/2016] [Indexed: 12/22/2022]
Abstract
IFNγ is a cytokine that plays a pivotal role in antitumor host immunity. IFNγ elicits potent antitumor immunity by inducing Th1 polarization, CTL activation, and dendritic cell tumoricidal activity. However, there are significant discrepancies in our understanding of the role of IFNγ as an antitumor cytokine. In certain circumstances, IFNγ obviously acts to induce tumor progression. IFNγ treatment has negatively affected patient outcomes in some clinical trials, while it has favorably affected outcomes in other trials. Several mechanisms, including IFNγ insensitivity and the downregulation of the MHC complex, have been regarded as the reasons for this discrepancy, but they do not fully explain it. We propose IFNγ-induced programmed cell death 1 ligand 1 (PD-L1) expression as a novel mechanism by which IFNγ impairs tumor immunity. When tumor cells encounter CTLs in the local environment, they detect them via the high concentration of IFNγ secreted from CTLs, which induces PD-L1 expression in preparation for an immune attack. Thus, tumor cells acquire the capability to counterattack immune cells. These findings indicate that although IFNγ is thought to be a representative antitumor cytokine, it actually has dual roles: one as a hallmark of antitumor immunity and the other as an inducer of the immune escape phenomenon through various mechanisms, such as PD-L1 expression. In this context, the optimization of immunotherapy according to the local immune environment is important. Anti-PD-1/PD-L1 treatment may be particularly promising when efficient tumor immunity is present, but it is disturbed by PD-L1 expression. Clin Cancer Res; 22(10); 2329-34. ©2016 AACR.
Collapse
Affiliation(s)
- Masaki Mandai
- Department of Obstetrics and Gynecology, Faculty of Medicine, Kinki University, Osaka-Sayama, Japan.
| | - Junzo Hamanishi
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kaoru Abiko
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Noriomi Matsumura
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Tsukasa Baba
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Ikuo Konishi
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
24
|
Wang L, Wang Y, Song Z, Chu J, Qu X. Deficiency of interferon-gamma or its receptor promotes colorectal cancer development. J Interferon Cytokine Res 2015; 35:273-80. [PMID: 25383957 DOI: 10.1089/jir.2014.0132] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Genetic variations in interferon-gamma (IFN-γ) and its receptor (IFNγR) subunits are closely associated with the risk of colorectal cancer (CRC) and survival after diagnosis. However, the role of loss of IFN-γ or IFNγR function in the pathogenesis of CRC remains unclear. Here, we investigated the role of endogenous IFN-γ deficiency in adenomatous polyposis coli (Apc)-mediated intestinal tumor by developing a variant of Apc(Min/+) mice. The Apc(Min/+)IFN-γ(+/-) mice presented with increased number and size of adenomas, and 41.7% of these mice developed adenocarcinoma. Molecular analyses of the adenomas suggested that heterozygous deletion of IFN-γ promoted EGFR/Erk1/2 and Wnt/β-catenin signaling. In vitro, IFN-γ administration inhibited Apc-mutated HT-29 colon cancer cell proliferation and had no effect on the proliferation of HCT-116 colon cancer cells that express wild-type Apc. Besides, we challenged HT-29 cells with small interfering RNA targeting one of its receptor subunits IFNγR1. We found that knockdown of IFNγR1 in HT-29 cells stimulated cell proliferation and colony formation, which was also related to the regulation of EGFR/Erk1/2 and Wnt/β-catenin signaling. Thus, our results strongly support the notion that IFN-γ and IFNγR1 act as a rate-limiting factor in the development of CRC, uncovering a novel role for them in cancer biology.
Collapse
Affiliation(s)
- Lu Wang
- 1 Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University , Jinan, China
| | | | | | | | | |
Collapse
|
25
|
Gu M, Lin G, Lai Q, Zhong B, Liu Y, Mi Y, Chen H, Wang B, Fan L, Hu C. Ctenopharyngodon idella IRF2 plays an antagonistic role to IRF1 in transcriptional regulation of IFN and ISG genes. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2015; 49:103-112. [PMID: 25463511 DOI: 10.1016/j.dci.2014.11.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Revised: 11/18/2014] [Accepted: 11/19/2014] [Indexed: 06/04/2023]
Abstract
Interferon Regulatory Factors (IRFs) make up a family of transcription factors involved in transcriptional regulation of type I IFN and IFN-stimulated genes (ISG) in cells. In the present study, an IRF2 gene (termed CiIRF2, JX628585) was cloned and characterized from grass carp (Ctenopharyngodon idella). The full-length cDNA of CiIRF2 is 1809 bp in length, with the largest open reading frame (ORF) of 981 bp encoding a putative protein of 326 amino acids. CiIRF2 contains a conserved DNA-binding domain (DBD) in N-terminal and a non-conserved C-terminal region. Protein sequence analysis revealed that CiIRF2 shares significant homology to the known IRF2 counterparts. Phylogenetic reconstruction confirmed its closer evolutionary relationship with other fish counterparts, especially with zebra fish IRF2. CiIRF2 was ubiquitously expressed at low level in all tested grass carp tissues and significantly up-regulated except in brain following poly I:C 6-12 h post stimulation. In order to understand fish innate immune and resistance to virus diseases, recombinant CiIRF2 with His-tag was over-expressed in BL21 Escherichia coli, and the expressed protein was purified by affinity chromatography with Ni-NTA His-Bind Resin. Promoter sequences of grass carp type I IFN gene (CiIFN) and two ISG genes (CiPKR and CiPKZ) were amplified and cloned. In vitro, gel mobility shift assays were employed to analyze the interaction of CiIRF2 protein with promoters of CiIFN, CiPKR and CiPKZ respectively. The results showed that CiIRF2 bound to these promoters with high affinity by means of its DBD. Afterwards, recombinant plasmids of pGL3-CiIFN, pGL3-CiPKR and pGL3-CiPKZ were constructed and transiently co-transfected with pcDNA3.1-CiIRF2 or pcDNA3.1-CiIRF1 respectively into C. idella kidney (CIK) cells. Dual-luciferase reporter assays demonstrated that CiIRF2 down-regulates the transcription activity of CiIFN, CiPKR and CiPKZ genes in CIK cells. To further understand the function of fish IRF2, expression plasmids (pcDNA3.1-IRF2 and pcDNA3.1-IRF1) were transiently co-transfected with pGL3-IFN or pGL3-CiPKZ into CIK cells, respectively. The results revealed that CiIRF2 plays an antagonistic role to CiIRF1 in transcriptional regulation of IFN and ISG genes.
Collapse
Affiliation(s)
- Meihui Gu
- Department of Bioscience, College of Life Science, Nanchang University, Nanchang 330031, China
| | - Gang Lin
- Department of Bioscience, College of Life Science, Nanchang University, Nanchang 330031, China
| | - Qinan Lai
- Department of Bioscience, College of Life Science, Nanchang University, Nanchang 330031, China
| | - Bin Zhong
- Department of Bioscience, College of Life Science, Nanchang University, Nanchang 330031, China
| | - Yong Liu
- Department of Bioscience, College of Life Science, Nanchang University, Nanchang 330031, China
| | - Yichuan Mi
- Department of Bioscience, College of Life Science, Nanchang University, Nanchang 330031, China
| | - Huarong Chen
- Department of Bioscience, College of Life Science, Nanchang University, Nanchang 330031, China
| | - Binhua Wang
- Department of Bioscience, College of Life Science, Nanchang University, Nanchang 330031, China
| | - Lihua Fan
- Department of Bioscience, College of Life Science, Nanchang University, Nanchang 330031, China
| | - Chengyu Hu
- Department of Bioscience, College of Life Science, Nanchang University, Nanchang 330031, China.
| |
Collapse
|
26
|
Lu S, Pardini B, Cheng B, Naccarati A, Huhn S, Vymetalkova V, Vodickova L, Buchler T, Hemminki K, Vodicka P, Försti A. Single nucleotide polymorphisms within interferon signaling pathway genes are associated with colorectal cancer susceptibility and survival. PLoS One 2014; 9:e111061. [PMID: 25350395 PMCID: PMC4211713 DOI: 10.1371/journal.pone.0111061] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 09/18/2014] [Indexed: 12/27/2022] Open
Abstract
Interferon (IFN) signaling has been suggested to play an important role in colorectal carcinogenesis. Our study aimed to examine potentially functional genetic variants in interferon regulatory factor 3 (IRF3), IRF5, IRF7, type I and type II IFN and their receptor genes with respect to colorectal cancer (CRC) risk and clinical outcome. Altogether 74 single nucleotide polymorphisms (SNPs) were covered by the 34 SNPs genotyped in a hospital-based case-control study of 1327 CRC cases and 758 healthy controls from the Czech Republic. We also analyzed these SNPs in relation to overall survival and event-free survival in a subgroup of 483 patients. Seven SNPs in IFNA1, IFNA13, IFNA21, IFNK, IFNAR1 and IFNGR1 were associated with CRC risk. After multiple testing correction, the associations with the SNPs rs2856968 (IFNAR1) and rs2234711 (IFNGR1) remained formally significant (P = 0.0015 and P<0.0001, respectively). Multivariable survival analyses showed that the SNP rs6475526 (IFNA7/IFNA14) was associated with overall survival of the patients (P = 0.041 and event-free survival among patients without distant metastasis at the time of diagnosis, P = 0.034). The hazard ratios (HRs) for rs6475526 remained statistically significant even after adjustment for age, gender, grade and stage (P = 0.029 and P = 0.036, respectively), suggesting that rs6475526 is an independent prognostic marker for CRC. Our data suggest that genetic variation in the IFN signaling pathway genes may play a role in the etiology and survival of CRC and further studies are warranted.
Collapse
Affiliation(s)
- Shun Lu
- Division of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Bowang Cheng
- Division of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Alessio Naccarati
- Human Genetics Foundation (HuGeF), Turin, Italy
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Stefanie Huhn
- Division of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Veronika Vymetalkova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic
- Institute of Biology and Medical Genetics, 1st Medical Faculty, Charles University, Prague, Czech Republic
| | - Ludmila Vodickova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic
- Institute of Biology and Medical Genetics, 1st Medical Faculty, Charles University, Prague, Czech Republic
- Biomedical Centre, Faculty of Medicine in Pilsen, Charles University in Prague, Pilsen, Czech Republic
| | - Thomas Buchler
- Department of Oncology, Thomayer Hospital, Prague, Czech Republic
| | - Kari Hemminki
- Division of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Center of Primary Health Care Research, Clinical Research Center, Lund University, Malmö, Sweden
| | - Pavel Vodicka
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic
- Institute of Biology and Medical Genetics, 1st Medical Faculty, Charles University, Prague, Czech Republic
| | - Asta Försti
- Division of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Center of Primary Health Care Research, Clinical Research Center, Lund University, Malmö, Sweden
- * E-mail:
| |
Collapse
|
27
|
Li S, Lu LF, Feng H, Wu N, Chen DD, Zhang YB, Gui JF, Nie P, Zhang YA. IFN regulatory factor 10 is a negative regulator of the IFN responses in fish. THE JOURNAL OF IMMUNOLOGY 2014; 193:1100-9. [PMID: 24958903 DOI: 10.4049/jimmunol.1400253] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
IFN regulatory factor (IRF) 10 belongs to the IRF family and exists exclusively in birds and fish. Most IRFs have been identified as critical regulators in the IFN responses in both fish and mammals; however, the role of IRF10 is unclear. In this study, we identified IRF10 in zebrafish (Danio rerio) and found that it serves as a negative regulator to balance the innate antiviral immune responses. Zebrafish IRF10 (DrIRF10) was induced by intracellular polyinosinic:polycytidylic acid in ZF4 (zebrafish embryo fibroblast-like) cells. DrIRF10 inhibited the activation of zebrafish IFN1 (DrIFN1) and DrIFN3 promoters in epithelioma papulosum cyprinid cells in the presence or absence of polyinosinic:polycytidylic acid stimulation through direct interaction with the IFN promoters, and this inhibition was also shown to block IFN signaling. Overexpression of DrIRF10 was able to abolish the induction of DrIFN1 and DrIFN3 mediated by the retinoic acid-inducible gene I-like receptors. In addition, functional domain analysis of DrIRF10 showed that either the DNA binding domain or the IRF association domain is sufficient for its inhibitory activity for IFN signaling. Lastly, overexpression of DrIRF10 decreased the transcription level of several IFN-stimulated genes, resulting in the susceptibility of host cells to spring viremia of carp virus infection. Collectively, these data suggest that DrIRF10 inhibits the expression of DrIFN1 and DrIFN3 to avoid an excessive immune response, a unique regulation mechanism of the IFN responses in lower vertebrates.
Collapse
Affiliation(s)
- Shun Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Long-Feng Lu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Hong Feng
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Nan Wu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Dan-Dan Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Yi-Bing Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Jian-Fang Gui
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Pin Nie
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Yong-An Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| |
Collapse
|
28
|
Kneitz B, Krebs M, Kalogirou C, Schubert M, Joniau S, van Poppel H, Lerut E, Kneitz S, Scholz CJ, Ströbel P, Gessler M, Riedmiller H, Spahn M. Survival in patients with high-risk prostate cancer is predicted by miR-221, which regulates proliferation, apoptosis, and invasion of prostate cancer cells by inhibiting IRF2 and SOCS3. Cancer Res 2014; 74:2591-603. [PMID: 24607843 DOI: 10.1158/0008-5472.can-13-1606] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A lack of reliably informative biomarkers to distinguish indolent and lethal prostate cancer is one reason this disease is overtreated. miR-221 has been suggested as a biomarker in high-risk prostate cancer, but there is insufficient evidence of its potential utility. Here we report that miR-221 is an independent predictor for cancer-related death, extending and validating earlier findings. By mechanistic investigations we showed that miR-221 regulates cell growth, invasiveness, and apoptosis in prostate cancer at least partially via STAT1/STAT3-mediated activation of the JAK/STAT signaling pathway. miR-221 directly inhibits the expression of SOCS3 and IRF2, two oncogenes that negatively regulate this signaling pathway. miR-221 expression sensitized prostate cancer cells for IFN-γ-mediated growth inhibition. Our findings suggest that miR-221 offers a novel prognostic biomarker and therapeutic target in high-risk prostate cancer.
Collapse
Affiliation(s)
- Burkhard Kneitz
- Authors' Affiliations: Department of Urology and Paediatric Urology, University Hospital Wuerzburg; IZKF Laboratory for Microarray Applications, University Hospital Wuerzburg; Departments of Physiological Chemistry I; Developmental Biochemistry, Biocenter; Comprehensive Cancer Center Mainfranken, University of Wuerzburg, Wuerzburg; Department of Pathology, University Hospital Goettingen, Goettingen, Germany; Department of Urology, University Hospital Bern, Inselspital, Bern, Switzerland; and Departments of Urology and Pathology, University Hospital Leuven, Leuven, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Tanaka MH, Giro EMA, Cavalcante LB, Pires JR, Apponi LH, Valentini SR, Spolidório DMP, Capela MV, Rossa C, Scarel-Caminaga RM. Expression of interferon-γ, interferon-α and related genes in individuals with Down syndrome and periodontitis. Cytokine 2012; 60:875-81. [PMID: 22995210 DOI: 10.1016/j.cyto.2012.08.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Revised: 08/18/2012] [Accepted: 08/18/2012] [Indexed: 11/21/2022]
Abstract
BACKGROUND Recently, attenuation of anti-inflammatory and increase of pro-inflammatory mediators was demonstrated in individuals with Down syndrome (DS) in comparison with euploid patients during periodontal disease (PD), suggesting a shift to a more aggressive inflammation in DS. AIM To determine the influence of DS in the modulation of interferons (IFNs) signaling pathway in PD. MATERIALS AND METHODS Clinical periodontal assessment was performed and gingival tissue samples obtained from a total of 51 subjects, including 19 DS individuals with PD, 20 euploid individuals with PD and 12 euploid individuals without PD. Expression levels of interferon-gamma (IFNG) and interferon-alpha (IFNA), and their receptors IFNGR1, IFNGR2, IFNAR1 and IFNAR2, the signaling intermediates Janus kinase 1 (JAK1), signal transducer and activator of transcription 1 (STAT1) and interferon regulatory factor 1 (IRF1) were determined using real time quantitative polymerase chain reaction (qPCR). RESULTS Clinical signs of periodontal disease were markedly more severe in DS and euploid patients with PD in comparison to euploid and periodontally healthy patients. There was no difference on mRNA levels of IFNA, IFNG, INFGR2, IFNAR1 and IFNAR2 between DS and euploid individuals, even though some of these genes are located on chromosome 21. STAT1 and IRF1 mRNA levels were significantly lower in DS patients in comparison with euploid individuals with PD. In euploid individuals, PD was associated with an increased expression of IFNGR1, IFNGR2, IFNAR1, STAT1 and IRF1. CONCLUSIONS Reduced expression of STAT1 and IRF1 genes indicate an impaired activation of IFNs signaling in individuals with DS and PD. Expression of IFNA, IFNG and IFN receptors was not altered in DS patients, indicating that indirect mechanisms are involved in the reduced activation of IFN signaling.
Collapse
Affiliation(s)
- Marcia H Tanaka
- Department of Orthodontics and Pediatric Dentistry, School of Dentistry at Araraquara, UNESP - Univ. Estadual Paulista, São Paulo, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Chen C, Guo L, Shi M, Hu M, Hu M, Yu M, Wang T, Song L, Shen B, Qian L, Guo N. Modulation of IFN-γ receptor 1 expression by AP-2α influences IFN-γ sensitivity of cancer cells. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 180:661-71. [PMID: 22182699 DOI: 10.1016/j.ajpath.2011.10.040] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Revised: 10/18/2011] [Accepted: 10/31/2011] [Indexed: 12/25/2022]
Abstract
Interferon (IFN)-γ plays crucial roles in regulating both innate and adaptive immunity. The existence of IFN-γ receptor 1 (IFNGR1) molecules on the cell surface is a prerequisite to the initiation of IFN-γ signaling; low expression of IFNGR1 leads to a functional blockade of IFN-γ signaling. However, the molecular mechanisms by which IFNGR1 expression is controlled are unclear. In the present study, we demonstrated that IFNGR1 expression was reduced or lost in breast cancer. Heterogeneous IFNGR1 immunoreactivity appeared to be associated with the morphological heterogeneity of breast cancer, and loss of IFNGR1 expression was predominantly observed in poorly differentiated areas. We identified the functional activating protein (AP)-2 and specificity protein (SP)-1 sites within the IFNGR1 promoter. Ectopic expression of AP-2α drastically repressed the expression of IFNGR1 and hindered IFN-γ signaling, whereas AP-2α gene silencing elevated IFNGR1 levels. Overexpression of SP-1 effectively antagonized the repressive effects of AP-2α. Simultaneous recruitment of both transcription factors to the AP-2 and SP-1 motifs, respectively, in the IFNGR1 promoter was demonstrated, implying that AP-2α and SP-1 may synergistically modulate IFNGR1 transcription. Moreover, AP-2α overexpression in AP-2-deficient SW480 cells remarkably inhibited Stat1 phosphorylation and the anti-proliferative effects of IFN-γ, whereas knockdown of the AP-2α expression dramatically enhanced the sensitivities of HeLa cells highly expressing AP-2 to IFN-γ, indicating that dysregulation of AP-2α expression is associated with impaired IFN-γ actions in cancer cells.
Collapse
Affiliation(s)
- Changguo Chen
- Department of Molecular Immunology, Institute of Basic Medical Sciences, Beijing, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Ivanidze J, Hoffmann R, Lochmüller H, Engel AG, Hohlfeld R, Dornmair K. Inclusion body myositis: laser microdissection reveals differential up-regulation of IFN-γ signaling cascade in attacked versus nonattacked myofibers. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 179:1347-59. [PMID: 21855683 PMCID: PMC3157228 DOI: 10.1016/j.ajpath.2011.05.055] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Revised: 05/25/2011] [Accepted: 05/31/2011] [Indexed: 12/16/2022]
Abstract
Sporadic inclusion body myositis (IBM) is a muscle disease with two separate pathogenic components, degeneration and inflammation. Typically, nonnecrotic myofibers are focally surrounded and invaded by CD8(+) T cells and macrophages. Both attacked and nonattacked myofibers express high levels of human leukocyte antigen class I (HLA-I) molecules, a prerequisite for antigen presentation to CD8(+) T cells. However, only a subgroup of HLA-I(+) myofibers is attacked by immune cells. By using IHC, we classified myofibers from five patients with sporadic IBM as attacked (A(IBM)) or nonattacked (N(IBM)) and isolated the intracellular contents of myofibers separately by laser microdissection. For comparison, we isolated myofibers from control persons (H(CTRL)). The samples were analyzed by microarray hybridization and quantitative PCR. HLA-I up-regulation was observed in A(IBM) and N(IBM), whereas H(CTRL) were negative for HLA-I. In contrast, the inducible chain of the interferon (IFN) γ receptor (IFNGR2) and several IFN-γ-induced genes were up-regulated in A(IBM) compared with N(IBM) and H(CTRL) fibers. Confocal microscopy confirmed segmental IFNGR2 up-regulation on the membranes of A(IBM), which positively correlated with the number of adjacent CD8(+) T cells. Thus, the differential up-regulation of the IFN-γ signaling cascade observed in the attacked fibers is related to local inflammation, whereas the ubiquitous HLA-I expression on IBM muscle fibers does not require IFNGR expression.
Collapse
Affiliation(s)
- Jana Ivanidze
- Institute of Clinical Neuroimmunology, Ludwig Maximilians University, Munich, Germany
- Department of Neuroimmunology, Max-Planck-Institute of Neurobiology, Martinsried, Germany
| | - Reinhard Hoffmann
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universitaet Munich, Munich, Germany
| | - Hanns Lochmüller
- The Institute of Human Genetics, Newcastle University, International Centre for Life, Newcastle upon Tyne, United Kingdom
| | - Andrew G. Engel
- Neuromuscular Research Laboratory, Mayo Clinic and Foundation, Rochester, Minnesota
| | - Reinhard Hohlfeld
- Institute of Clinical Neuroimmunology, Ludwig Maximilians University, Munich, Germany
- Department of Neuroimmunology, Max-Planck-Institute of Neurobiology, Martinsried, Germany
- Address reprint requests to Reinhard Hohlfeld, M.D., or Klaus Dornmair, Ph.D., Institute of Clinical Neuroimmunology, Ludwig Maximilians University, D-81377 Munich, Germany
| | - Klaus Dornmair
- Institute of Clinical Neuroimmunology, Ludwig Maximilians University, Munich, Germany
- Department of Neuroimmunology, Max-Planck-Institute of Neurobiology, Martinsried, Germany
- Address reprint requests to Reinhard Hohlfeld, M.D., or Klaus Dornmair, Ph.D., Institute of Clinical Neuroimmunology, Ludwig Maximilians University, D-81377 Munich, Germany
| |
Collapse
|
32
|
IRF-2 is over-expressed in pancreatic cancer and promotes the growth of pancreatic cancer cells. Tumour Biol 2011; 33:247-55. [PMID: 22119988 DOI: 10.1007/s13277-011-0273-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Accepted: 11/09/2011] [Indexed: 10/15/2022] Open
Abstract
Pancreatic cancer is one of the most malignant diseases in the world. Interferon regulator factor 2 (IRF-2), an interferon regulatory factor, has been known to act as an oncogene in distinct types of cancer. In this study, we found that the expression of IRF-2 was up-regulated in primary pancreatic cancer samples and associated with tumor size, differentiation, tumor-node-metastasis stage, and survival of the patients. In pancreatic cancer cells, knockdown on the expression of IRF-2 inhibited cell growth in the liquid culture and on the soft agar. Mechanistically, IRF-2 modulated the growth of pancreatic cancer cells through regulating proliferation and apoptosis effectors, such as cyclin D1 and BAX. Collectively, these results suggest that IRF-2 plays an important role in the tumorigenesis of pancreatic cancer and down-regulation of IRF-2 would be a new treatment target for pancreatic cancer.
Collapse
|
33
|
Chen Y, Lin X, Liu Y, Xie D, Fang J, Le Y, Ke Z, Zhai Q, Wang H, Guo F, Wang F, Liu Y. Research advances at the Institute for Nutritional Sciences at Shanghai, China. Adv Nutr 2011; 2:428-39. [PMID: 22332084 PMCID: PMC3183593 DOI: 10.3945/an.111.000703] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Nutrition-related health issues have emerged as a major threat to public health since the rebirth of the economy in China starting in the 1980s. To meet this challenge, the Chinese Academy of Sciences established the Institute for Nutritional Sciences (INS) at Shanghai, China ≈ 8 y ago. The mission of the INS is to apply modern technologies and concepts in nutritional research to understand the molecular mechanism and provide means of intervention in the combat against nutrition-related diseases, including type 2 diabetes, metabolic syndrome, obesity, cardiovascular diseases, and many types of cancers. Through diligent and orchestrated efforts by INS scientists, graduate students, and research staff in the past few years, the INS has become the leading institution in China in the areas of basic nutritional research and metabolic regulation. Scientists at the INS have made important progress in many areas, including the characterization of genetic and nutritional properties of the Chinese population, metabolic control associated with nutrient sensing, molecular mechanisms underlying glucose and lipid metabolism, regulation of metabolism by adipokines and inflammatory pathways, disease intervention using functional foods or extracts of Chinese herbs, and many biological studies related to carcinogenesis. The INS will continue its efforts in understanding the optimal nutritional needs for Chinese people and the molecular causes associated with metabolic diseases, thus paving the way for effective and individualized intervention in the future. This review highlights the major research endeavors undertaken by INS scientists in recent years.
Collapse
Affiliation(s)
- Yan Chen
- Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Wei H, Hongya P, Linlin J, Mujiang A, Kuijie W, Duohong Z, Qingang H, Zhiyuan Z. IFN-γ enhances the anti-tumour immune response of dendritic cells against oral squamous cell carcinoma. Arch Oral Biol 2011; 56:891-8. [DOI: 10.1016/j.archoralbio.2011.02.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Revised: 01/29/2011] [Accepted: 02/11/2011] [Indexed: 10/18/2022]
|
35
|
Pakravan N, Hassan ZM. Comparison of adjuvant activity of N- and C-terminal domain of gp96 in a Her2-positive breast cancer model. Cell Stress Chaperones 2011; 16:449-57. [PMID: 21359667 PMCID: PMC3118821 DOI: 10.1007/s12192-011-0258-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2010] [Revised: 01/22/2011] [Accepted: 01/26/2011] [Indexed: 10/18/2022] Open
Abstract
It has been frequently reported that gp96 acts as a strong biologic adjuvant. Some studies have even investigated adjuvant activity of the gp96 C- or N-terminal domain. The controversy surrounding adjuvant activity of gp96 terminal domains prompted us to compare adjuvant activity of gp96 C- or N-terminal domain toward Her2/neu, as DNA vaccine in a Her2/neu-positive breast cancer model. To do so, mice were immunized with DNA vaccine consisting of transmembrane and extracellular domain (TM + ECD) of rat Her2/neu alone or fused to N- or C-terminal domain of gp96. Treatment with Her2/neu fused to N-terminal domain of gp96 resulted in tumor progression, compared to the groups vaccinated with pCT/Her2 or pHer2. Immunological examination revealed that treatment with Her2/neu fused to N-terminal domain of gp96 led to significantly lower survival rates, higher interferon-γ secretion, and induced infiltration of CD4(+)/CD8(+) cells to the tumor site. However, it could not induce cytotoxic T lymphocyte activity, did not decrease regulatory T cell percentage at the tumor site, and eventually led to tumor progression. Our results reveal that gp96 N-terminal domain does not have adjuvant activity toward Her2/neu. It is also proposed that adjuvant activity and the resultant immune response of gp96 terminal domains may be directed by the antigen applied.
Collapse
Affiliation(s)
- Nafiseh Pakravan
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Zuhair Mohammad Hassan
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Ale-Ahmad Avenue, P.O. Box 14115-331, Tehran, Iran
| |
Collapse
|
36
|
Akagami M, Kawada K, Kubo H, Kawada M, Takahashi M, Kaganoi J, Kato S, Itami A, Shimada Y, Watanabe G, Sakai Y. Transcriptional factor Prox1 plays an essential role in the antiproliferative action of interferon-γ in esophageal cancer cells. Ann Surg Oncol 2011; 18:3868-77. [PMID: 21452064 DOI: 10.1245/s10434-011-1683-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2010] [Indexed: 02/03/2023]
Abstract
BACKGROUND We previously reported interferon-γ (IFN-γ)-induced apoptosis in 10 (32%) of 31 esophageal squamous cell carcinoma (ESCC) cell lines. However, the molecular basis of antiproliferative action by IFN-γ remains elusive. Here we demonstrate that IFN-γ induces transcriptional factor Prox1, and we explore the link between Prox1 and the IFN-γ system in ESCC cells. METHODS By using ESCC cell lines, we investigated the relationship between p53 mutations and the responsibility to IFN-γ, and studied the role of Prox1 in the antiproliferative effect of IFN-γ by knockdown and overexpression methods. RESULTS p53 mutations were found in seven of nine ESCC cell lines responsible for IFN-γ. The frequency was not different from that of p53 mutations in total ESCC cell lines (21 of 28 cell lines). Treatment of ESCC cells with IFN-β but not IFN-γ resulted in increase of p53 messenger RNA (mRNA) expression, whereas IFN-γ but not IFN-β induced cell growth inhibition of ESCCs harboring p53 mutations. IFN-γ induced Prox1 expression in ESCC cells but not in those transfected with dominant-negative STAT1. Cell growth inhibition by IFN-γ was significantly suppressed in ESCC cells transfected with Prox1 short interfering RNA (siRNA). In addition, overexpression of Prox1 induced antiproliferative effect in ESCC cells. We also demonstrate that Prox1 is expressed in primary esophageal cancer tissues (five of nine samples treated with neoadjuvant chemotherapy before surgery). CONCLUSIONS Prox1 mediates the antiproliferative effect by IFN-γ in ESCC cells. Prox1 may be a candidate target for novel therapeutic strategies of ESCCs.
Collapse
Affiliation(s)
- Masatoshi Akagami
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
Barrett's metaplasia is one of the commonest premalignant lesions in the western world following colorectal adenomas. One in 50 of the adult population develops Barrett's as a consequence of chronic gastro-oesophageal reflux. The mucosal inflammation seen within patients with gastro-oesophageal reflux seems likely to drive the growth of the metaplastic mucosa and also help direct further oncological change, yet the molecular events that characterize the pathway from inflammation to metaplasia to dysplasia and adenocarcinoma are poorly understood. There is hope that understanding the role of oesophageal inflammation will provide important insight into the development of Barrett's metaplasia and oesophageal cancer. This chapter will discuss the inflammation seen within context of Barrett's oesophagus and also clinical trials which hope to address this common premalignant disease. There are several ongoing clinical trials which are aiming to provide data using anti-inflammatory therapies to tackle this important premalignant condition. There is new data presented which suggests that data from the aspirin esomeprazole chemoprevention trial (AspECT) may hold the clue to disease treatment and that the cytokine TNF-α seems to be a key signalling molecule in the metaplasia-dysplasia-carcinoma sequence. Specifically it appears that both epigenetic and inherited genetics cooperate to modulate the prognosis.
Collapse
Affiliation(s)
- Anna Nicholson
- Centre for Digestive Disease, Blizard Institute, Queen Mary University of London, UK.
| | | |
Collapse
|
38
|
Nguyen GH, Schetter AJ, Chou DB, Bowman ED, Zhao R, Hawkes JE, Mathé EA, Kumamoto K, Zhao Y, Budhu A, Hagiwara N, Wang XW, Miyashita M, Casson AG, Harris CC. Inflammatory and microRNA gene expression as prognostic classifier of Barrett's-associated esophageal adenocarcinoma. Clin Cancer Res 2010; 16:5824-34. [PMID: 20947516 DOI: 10.1158/1078-0432.ccr-10-1110] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
PURPOSE Esophageal cancer is one of the most aggressive and deadly forms of cancer; highlighting the need to identify biomarkers for early detection and prognostic classification. Our recent studies have identified inflammatory gene and microRNA signatures derived from tumor and nontumor tissues as prognostic biomarkers of hepatocellular, lung, and colorectal adenocarcinoma. Here, we examine the relationship between expression of these inflammatory genes and micro RNA (miRNA) expression in esophageal adenocarcinoma and patient survival. EXPERIMENTAL DESIGN We measured the expression of 23 inflammation-associated genes in tumors and adjacent normal tissues from 93 patients (58 Barrett's and 35 Sporadic adenocarcinomas) by quantitative reverse transcription-polymerase chain reaction. These data were used to build an inflammatory risk model, based on multivariate Cox regression, to predict survival in a training cohort (n = 47). We then determined whether this model could predict survival in a cohort of 46 patients. Expression data for miRNA-375 were available for these patients and was combined with inflammatory gene expression. RESULTS IFN-γ, IL-1α, IL-8, IL-21, IL-23, and proteoglycan expression in tumor and nontumor samples were each associated with poor prognosis based on Cox regression [(Z-score)>1.5] and therefore were used to generate an inflammatory risk score (IRS). Patients with a high IRS had poor prognosis compared with those with a low IRS in the training (P = 0.002) and test (P = 0.012) cohorts. This association was stronger in the group with Barrett's history. When combining with miRNA-375, the combined IRS/miR signature was an improved prognostic classifier than either one alone. CONCLUSION Transcriptional profiling of inflammation-associated genes and miRNA expression in resected esophageal Barrett's-associated adenocarcinoma tissues may have clinical utility as predictors of prognosis.
Collapse
Affiliation(s)
- Giang Huong Nguyen
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
George J, Banik NL, Ray SK. Knockdown of hTERT and concurrent treatment with interferon-gamma inhibited proliferation and invasion of human glioblastoma cell lines. Int J Biochem Cell Biol 2010; 42:1164-73. [PMID: 20394835 DOI: 10.1016/j.biocel.2010.04.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2009] [Revised: 12/31/2009] [Accepted: 04/05/2010] [Indexed: 12/19/2022]
Abstract
Human telomerase reverse transcriptase (hTERT) is the catalytic component of telomerase that facilitates tumor cell invasion and proliferation. Telomerase and hTERT are remarkably upregulated in majority of cancers including glioblastoma. Interferon-gamma (IFN-gamma) modulates several cellular activities including cell cycle and multiplication through transcriptional regulation. The present investigation was designed to unravel the molecular mechanisms of the inhibition of cell proliferation, migration, and invasion of human glioblastoma SNB-19 and LN-18 cell lines after knockdown of hTERT using a plasmid vector based siRNA and concurrent treatment with IFN-gamma. We observed more than 80% inhibition of cell proliferation, migration, and invasion of both cell lines after the treatment with combination of hTERT siRNA and IFN-gamma. Our studies also showed accumulation of apoptotic cells in subG1 phase and an increase in cell population in G0/G1 with a reduction in G2/M phase indicating cell cycle arrest in G0/G1 phase for apoptosis. Semiquantitative and real-time RT-PCR analyses demonstrated significant downregulation of c-Myc and upregulation of p21 Waf1 and p27 Kip1. Western blotting confirmed the downregulation of the molecules involved in cell proliferation, migration, and invasion and also showed upregulation of cell cycle inhibitors. In conclusion, our study demonstrated that knockdown of hTERT and concurrent treatment with IFN-gamma effectively inhibited cell proliferation, migration, and invasion in glioblastoma cells through downregulation of the molecules involved in these processes and cell cycle inhibition. Therefore, the combination of hTERT siRNA and IFN-gamma offers a potential therapeutic strategy for controlling growth of human glioblastoma cells.
Collapse
Affiliation(s)
- Joseph George
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, 6439 Garners Ferry Road, Columbia, SC 29209, USA
| | | | | |
Collapse
|
40
|
Chang H, Jeung HC, Jung JJ, Kim TS, Rha SY, Chung HC. Identification of genes associated with chemosensitivity to SAHA/taxane combination treatment in taxane-resistant breast cancer cells. Breast Cancer Res Treat 2010; 125:55-63. [DOI: 10.1007/s10549-010-0825-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2009] [Accepted: 02/25/2010] [Indexed: 11/24/2022]
|
41
|
Lace MJ, Anson JR, Haugen TH, Turek LP. Interferon regulatory factor (IRF)-2 activates the HPV-16 E6-E7 promoter in keratinocytes. Virology 2010; 399:270-9. [PMID: 20129639 DOI: 10.1016/j.virol.2009.12.025] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2009] [Revised: 11/17/2009] [Accepted: 12/17/2009] [Indexed: 11/30/2022]
Abstract
Interferon regulatory factors (IRFs) are critical mediators of gene expression, cell growth and immune responses. We previously demonstrated that interferon (IFN) induction of early viral transcription and replication in several mucosal HPVs requires IRF-1 binding to a conserved interferon response element (IRE). Here we show that the IRF-2 protein serves as a baseline transactivator of the HPV-16 major early promoter, P97. Cotransfections in IRF knockout cells confirmed that basal HPV-16 promoter activity was supported by both IRF-1 and IRF-2 complexes interacting with the promoter-proximal IRE in a dose-dependent manner. Furthermore, HPV-16 E7 expression downregulates the IRF-2 promoter, thus linking IRF-2 levels to viral transforming gene expression through a negative feedback mechanism. Taken together, these observations reveal a complex viral strategy utilizing multiple signal transduction pathways during the establishment and maintenance of HPV persistence.
Collapse
Affiliation(s)
- Michael J Lace
- Department of Pathology, VAMC, University of Iowa, Iowa City, IA 52242, USA.
| | | | | | | |
Collapse
|
42
|
Kim EJ, Park JS, Um SJ. Ubc9-mediated sumoylation leads to transcriptional repression of IRF-1. Biochem Biophys Res Commun 2008; 377:952-6. [DOI: 10.1016/j.bbrc.2008.10.092] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2008] [Accepted: 10/20/2008] [Indexed: 12/12/2022]
|