1
|
Cheng H, Shang D, Zhou R. Germline stem cells in human. Signal Transduct Target Ther 2022; 7:345. [PMID: 36184610 PMCID: PMC9527259 DOI: 10.1038/s41392-022-01197-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/06/2022] [Accepted: 09/14/2022] [Indexed: 12/02/2022] Open
Abstract
The germline cells are essential for the propagation of human beings, thus essential for the survival of mankind. The germline stem cells, as a unique cell type, generate various states of germ stem cells and then differentiate into specialized cells, spermatozoa and ova, for producing offspring, while self-renew to generate more stem cells. Abnormal development of germline stem cells often causes severe diseases in humans, including infertility and cancer. Primordial germ cells (PGCs) first emerge during early embryonic development, migrate into the gentile ridge, and then join in the formation of gonads. In males, they differentiate into spermatogonial stem cells, which give rise to spermatozoa via meiosis from the onset of puberty, while in females, the female germline stem cells (FGSCs) retain stemness in the ovary and initiate meiosis to generate oocytes. Primordial germ cell-like cells (PGCLCs) can be induced in vitro from embryonic stem cells or induced pluripotent stem cells. In this review, we focus on current advances in these embryonic and adult germline stem cells, and the induced PGCLCs in humans, provide an overview of molecular mechanisms underlying the development and differentiation of the germline stem cells and outline their physiological functions, pathological implications, and clinical applications.
Collapse
Affiliation(s)
- Hanhua Cheng
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, 430072, Wuhan, China.
| | - Dantong Shang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, 430072, Wuhan, China
| | - Rongjia Zhou
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, 430072, Wuhan, China.
| |
Collapse
|
2
|
Pluta J, Pyle LC, Nead KT, Wilf R, Li M, Mitra N, Weathers B, D'Andrea K, Almstrup K, Anson-Cartwright L, Benitez J, Brown CD, Chanock S, Chen C, Cortessis VK, Ferlin A, Foresta C, Gamulin M, Gietema JA, Grasso C, Greene MH, Grotmol T, Hamilton RJ, Haugen TB, Hauser R, Hildebrandt MAT, Johnson ME, Karlsson R, Kiemeney LA, Lessel D, Lothe RA, Loud JT, Loveday C, Martin-Gimeno P, Meijer C, Nsengimana J, Quinn DI, Rafnar T, Ramdas S, Richiardi L, Skotheim RI, Stefansson K, Turnbull C, Vaughn DJ, Wiklund F, Wu X, Yang D, Zheng T, Wells AD, Grant SFA, Rajpert-De Meyts E, Schwartz SM, Bishop DT, McGlynn KA, Kanetsky PA, Nathanson KL. Identification of 22 susceptibility loci associated with testicular germ cell tumors. Nat Commun 2021; 12:4487. [PMID: 34301922 PMCID: PMC8302763 DOI: 10.1038/s41467-021-24334-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 06/01/2021] [Indexed: 02/07/2023] Open
Abstract
Testicular germ cell tumors (TGCT) are the most common tumor in young white men and have a high heritability. In this study, the international Testicular Cancer Consortium assemble 10,156 and 179,683 men with and without TGCT, respectively, for a genome-wide association study. This meta-analysis identifies 22 TGCT susceptibility loci, bringing the total to 78, which account for 44% of disease heritability. Men with a polygenic risk score (PRS) in the 95th percentile have a 6.8-fold increased risk of TGCT compared to men with median scores. Among men with independent TGCT risk factors such as cryptorchidism, the PRS may guide screening decisions with the goal of reducing treatment-related complications causing long-term morbidity in survivors. These findings emphasize the interconnected nature of two known pathways that promote TGCT susceptibility: male germ cell development within its somatic niche and regulation of chromosomal division and structure, and implicate an additional biological pathway, mRNA translation.
Collapse
Affiliation(s)
- John Pluta
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Louise C Pyle
- Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Kevin T Nead
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Rona Wilf
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Mingyao Li
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Nandita Mitra
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Benita Weathers
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kurt D'Andrea
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kristian Almstrup
- Department of Growth and Reproduction, Rigshospitalet, Copenhagen, Denmark
| | - Lynn Anson-Cartwright
- Department of Surgery (Urology), University of Toronto and The Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - Javier Benitez
- Human Genetics Group, Spanish National Cancer Centre (CNIO), Madrid, Spain
| | - Christopher D Brown
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Stephen Chanock
- Division of Cancer Epidemiology and Genetics, Clinical Genetics Branch, National Cancer Institute, Bethesda, MD, USA
| | - Chu Chen
- Program in Epidemiology, Fred Hutchinson Cancer Research Center; Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Victoria K Cortessis
- Departments of Preventive Medicine and Obstetrics and Gynecology, Keck School of Medicine at the University of Southern California, Los Angeles, CA, USA
| | - Alberto Ferlin
- Unit of Endocrinology and Metabolism, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Carlo Foresta
- Unit of Andrology and Reproductive Medicine, Department of Medicine, University of Padova, Padova, Italy
| | - Marija Gamulin
- Department of Oncology, Division of Medical Oncology, University Hospital Centre Zagreb, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Jourik A Gietema
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Chiara Grasso
- Cancer Epidemiology Unit, Department of Medical Sciences, University of Turin and CPO-Piemonte, Turin, Italy
| | - Mark H Greene
- Division of Cancer Epidemiology and Genetics, Clinical Genetics Branch, National Cancer Institute, Bethesda, MD, USA
| | - Tom Grotmol
- Department of Research, Cancer Registry of Norway, Oslo, Norway
| | - Robert J Hamilton
- Department of Surgery (Urology), University of Toronto and The Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - Trine B Haugen
- Faculty of Health Sciences, OsloMet-Oslo Metropolitan University, Oslo, Norway
| | - Russ Hauser
- Department of Environmental Health, Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | | | - Matthew E Johnson
- Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Center for Spatial and Functional Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Robert Karlsson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | | | - Davor Lessel
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ragnhild A Lothe
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital-Radiumhospitalet, Oslo, Norway
- Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Jennifer T Loud
- Division of Cancer Epidemiology and Genetics, Clinical Genetics Branch, National Cancer Institute, Bethesda, MD, USA
| | - Chey Loveday
- Division of Genetics & Epidemiology, The Institute of Cancer Research, London, UK
| | | | - Coby Meijer
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Jérémie Nsengimana
- Biostatistics Research Group, Population Health Sciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle, UK
| | - David I Quinn
- Division of Oncology, Keck School of Medicine at the University of Southern California, Los Angeles, CA, USA
| | | | - Shweta Ramdas
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Lorenzo Richiardi
- Cancer Epidemiology Unit, Department of Medical Sciences, University of Turin and CPO-Piemonte, Turin, Italy
| | - Rolf I Skotheim
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital-Radiumhospitalet, Oslo, Norway
- Department of Informatics, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | | | - Clare Turnbull
- Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- William Harvey Research Institute, Queen Mary University, London, UK
| | - David J Vaughn
- Division of Hematology and Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Fredrik Wiklund
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Xifeng Wu
- School of Public Health, Zhejiang University, Zhejiang, China
| | - Daphne Yang
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Tongzhang Zheng
- Department of Epidemiology, Brown School of Public Health, Brown University, Providence, RI, USA
| | - Andrew D Wells
- Center for Spatial and Functional Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Struan F A Grant
- Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Spatial and Functional Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | | | - Stephen M Schwartz
- Program in Epidemiology, Fred Hutchinson Cancer Research Center; Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - D Timothy Bishop
- Department of Haematology and Immunology, Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK
| | - Katherine A McGlynn
- Division of Cancer Epidemiology and Genetics, Clinical Genetics Branch, National Cancer Institute, Bethesda, MD, USA
| | - Peter A Kanetsky
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Katherine L Nathanson
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
3
|
Nicholls PK, Page DC. Germ cell determination and the developmental origin of germ cell tumors. Development 2021; 148:239824. [PMID: 33913479 DOI: 10.1242/dev.198150] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In each generation, the germline is tasked with producing somatic lineages that form the body, and segregating a population of cells for gametogenesis. During animal development, when do cells of the germline irreversibly commit to producing gametes? Integrating findings from diverse species, we conclude that the final commitment of the germline to gametogenesis - the process of germ cell determination - occurs after primordial germ cells (PGCs) colonize the gonads. Combining this understanding with medical findings, we present a model whereby germ cell tumors arise from cells that failed to undertake germ cell determination, regardless of their having colonized the gonads. We propose that the diversity of cell types present in these tumors reflects the broad developmental potential of migratory PGCs.
Collapse
Affiliation(s)
- Peter K Nicholls
- Whitehead Institute, 455 Main Street, Cambridge, MA 02142, USA.,Faculty of Life Sciences, University of Bradford, Bradford BD7 1DP, UK
| | - David C Page
- Whitehead Institute, 455 Main Street, Cambridge, MA 02142, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Howard Hughes Medical Institute, Whitehead Institute, Cambridge, MA 02142, USA
| |
Collapse
|
4
|
Xie Y, Wei BH, Ni FD, Yang WX. Conversion from spermatogonia to spermatocytes: Extracellular cues and downstream transcription network. Gene 2020; 764:145080. [PMID: 32858178 DOI: 10.1016/j.gene.2020.145080] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 08/16/2020] [Accepted: 08/19/2020] [Indexed: 12/15/2022]
Abstract
Spermatocyte (spc) formation from spermatogonia (spg) differentiation is the first step of spermatogenesis which produces prodigious spermatozoa for a lifetime. After decades of studies, several factors involved in the functioning of a mouse were discovered both inside and outside spg. Considering the peculiar expression and working pattern of each factor, this review divides the whole conversion of spg to spc into four consecutive development processes with a focus on extracellular cues and downstream transcription network in each one. Potential coordination among Dmrt1, Sohlh1/2 and BMP families mediates Ngn3 upregulation, which marks progenitor spg, with other changes. After that, retinoic acid (RA), as a master regulator, promotes A1 spg formation with its helpers and Sall4. A1-to-B spg transition is under the control of Kitl and impulsive RA signaling together with early and late transcription factors Stra8 and Dmrt6. Finally, RA and its responsive effectors conduct the entry into meiosis. The systematic transcription network from outside to inside still needs research to supplement or settle the controversials in each process. As a step further ahead, this review provides possible drug targets for infertility therapy by cross-linking humans and mouse model.
Collapse
Affiliation(s)
- Yi Xie
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Bang-Hong Wei
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Fei-Da Ni
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wan-Xi Yang
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
5
|
Nicholls PK, Schorle H, Naqvi S, Hu YC, Fan Y, Carmell MA, Dobrinski I, Watson AL, Carlson DF, Fahrenkrug SC, Page DC. Mammalian germ cells are determined after PGC colonization of the nascent gonad. Proc Natl Acad Sci U S A 2019; 116:25677-25687. [PMID: 31754036 PMCID: PMC6925976 DOI: 10.1073/pnas.1910733116] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Mammalian primordial germ cells (PGCs) are induced in the embryonic epiblast, before migrating to the nascent gonads. In fish, frogs, and birds, the germline segregates even earlier, through the action of maternally inherited germ plasm. Across vertebrates, migrating PGCs retain a broad developmental potential, regardless of whether they were induced or maternally segregated. In mammals, this potential is indicated by expression of pluripotency factors, and the ability to generate teratomas and pluripotent cell lines. How the germline loses this developmental potential remains unknown. Our genome-wide analyses of embryonic human and mouse germlines reveal a conserved transcriptional program, initiated in PGCs after gonadal colonization, that differentiates germ cells from their germline precursors and from somatic lineages. Through genetic studies in mice and pigs, we demonstrate that one such gonad-induced factor, the RNA-binding protein DAZL, is necessary in vivo to restrict the developmental potential of the germline; DAZL's absence prolongs expression of a Nanog pluripotency reporter, facilitates derivation of pluripotent cell lines, and causes spontaneous gonadal teratomas. Based on these observations in humans, mice, and pigs, we propose that germ cells are determined after gonadal colonization in mammals. We suggest that germ cell determination was induced late in embryogenesis-after organogenesis has begun-in the common ancestor of all vertebrates, as in modern mammals, where this transition is induced by somatic cells of the gonad. We suggest that failure of this process of germ cell determination likely accounts for the origin of human testis cancer.
Collapse
Affiliation(s)
| | - Hubert Schorle
- Whitehead Institute, Cambridge, MA 02142
- Department of Developmental Pathology, Institute of Pathology, University of Bonn Medical School, 53127 Bonn, Germany
| | - Sahin Naqvi
- Whitehead Institute, Cambridge, MA 02142
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Yueh-Chiang Hu
- Whitehead Institute, Cambridge, MA 02142
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267
| | - Yuting Fan
- Whitehead Institute, Cambridge, MA 02142
- Reproductive Medicine Center, Sixth Affiliated Hospital, Sun Yat-sen University, 510655 Guangzhou, China
| | | | - Ina Dobrinski
- Department of Comparative Biology & Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | | | | | | | - David C Page
- Whitehead Institute, Cambridge, MA 02142;
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
- Howard Hughes Medical Institute, Whitehead Institute, Cambridge, MA 02142
| |
Collapse
|
6
|
Das MK, Kleppa L, Haugen TB. Functions of genes related to testicular germ cell tumour development. Andrology 2019; 7:527-535. [DOI: 10.1111/andr.12663] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 05/05/2019] [Accepted: 05/12/2019] [Indexed: 12/15/2022]
Affiliation(s)
- M. K. Das
- Faculty of Health Sciences; OsloMet - Oslo Metropolitan University; Oslo Norway
- Department of Molecular Medicine, Faculty of Medicine; University of Oslo; Oslo Norway
| | - L. Kleppa
- Faculty of Health Sciences; OsloMet - Oslo Metropolitan University; Oslo Norway
| | - T. B. Haugen
- Faculty of Health Sciences; OsloMet - Oslo Metropolitan University; Oslo Norway
| |
Collapse
|
7
|
Batool A, Karimi N, Wu XN, Chen SR, Liu YX. Testicular germ cell tumor: a comprehensive review. Cell Mol Life Sci 2019; 76:1713-1727. [PMID: 30671589 PMCID: PMC11105513 DOI: 10.1007/s00018-019-03022-7] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 01/15/2019] [Accepted: 01/17/2019] [Indexed: 12/23/2022]
Abstract
Testicular tumors are the most common tumors in adolescent and young men and germ cell tumors (TGCTs) account for most of all testicular cancers. Increasing incidence of TGCTs among males provides strong motivation to understand its biological and genetic basis. Gains of chromosome arm 12p and aneuploidy are nearly universal in TGCTs, but TGCTs have low point mutation rate. It is thought that TGCTs develop from premalignant intratubular germ cell neoplasia that is believed to arise from the failure of normal maturation of gonocytes during fetal or postnatal development. Progression toward invasive TGCTs (seminoma and nonseminoma) then occurs after puberty. Both inherited genetic factors and environmental risk factors emerge as important contributors to TGCT susceptibility. Genome-wide association studies have so far identified more than 30 risk loci for TGCTs, suggesting that a polygenic model fits better with the genetic landscape of the disease. Despite high cure rates because of its particular sensitivity to platinum-based chemotherapy, exploration of mechanisms underlying the occurrence, progression, metastasis, recurrence, chemotherapeutic resistance, early diagnosis and optional clinical therapeutics without long-term side effects are urgently needed to reduce the cancer burden in this underserved age group. Herein, we present an up-to-date review on clinical challenges, origin and progression, risk factors, TGCT mouse models, serum diagnostic markers, resistance mechanisms, miRNA regulation, and database resources of TGCTs. We appeal that more attention should be paid to the basic research and clinical diagnosis and treatment of TGCTs.
Collapse
Affiliation(s)
- Aalia Batool
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Najmeh Karimi
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiang-Nan Wu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Su-Ren Chen
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101, China.
| | - Yi-Xun Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101, China
| |
Collapse
|
8
|
|
9
|
Abstract
Testicular cancer is the most common malignancy among men between 14 and 44 years of age, and its incidence has risen over the past two decades in Western countries. Both genetic and environmental factors contribute to the development of testicular cancer, for which cryptorchidism is the most common risk factor. Progress has been made in our understanding of the disease since the initial description of carcinoma in situ of the testis in 1972 (now referred to as germ cell neoplasia in situ), which has led to improved treatment options. The combination of surgery and cisplatin-based chemotherapy has resulted in a cure rate of >90% in patients with testicular cancer, although some patients become refractory to chemotherapy or have a late relapse; an improved understanding of the molecular determinants underlying tumour sensitivity and resistance may lead to the development of novel therapies for these patients. This Primer provides an overview of the biology, epidemiology, diagnosis and current treatment guidelines for testicular cancer, with a focus on germ cell tumours. We also outline areas for future research and what to expect in the next decade for testicular cancer.
Collapse
|
10
|
Dawson EP, Lanza DG, Webster NJ, Benton SM, Suetake I, Heaney JD. Delayed male germ cell sex-specification permits transition into embryonal carcinoma cells with features of primed pluripotency. Development 2018; 145:dev156612. [PMID: 29545285 PMCID: PMC6514421 DOI: 10.1242/dev.156612] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 02/09/2018] [Indexed: 01/04/2023]
Abstract
Testicular teratomas result from anomalies in embryonic germ cell development. In 129 inbred mice, teratoma initiation coincides with germ cell sex-specific differentiation and the mitotic-meiotic switch: XX and XY germ cells repress pluripotency, XX germ cells initiate meiosis, and XY germ cells activate male-specific differentiation and mitotic arrest. Here, we report that expression of Nanos2, a gene that is crucial to male sex specification, is delayed in teratoma-susceptible germ cells. Decreased expression of Nanos2 was found to be due, in part, to the Nanos2 allele present in 129 mice. In teratoma-susceptible germ cells, diminished expression of genes downstream of Nanos2 disrupted processes that were crucial to male germ cell differentiation. Deficiency for Nanos2 increased teratoma incidence in 129 mice and induced developmental abnormalities associated with tumor initiation in teratoma-resistant germ cells. Finally, in the absence of commitment to the male germ cell fate, we discovered that a subpopulation of teratoma-susceptible germ cells transition into embryonal carcinoma (EC) cells with primed pluripotent features. We conclude that delayed male germ cell sex-specification facilitates the transformation of germ cells with naïve pluripotent features into primed pluripotent EC cells.
Collapse
Affiliation(s)
- Emily P Dawson
- Department of Molecular and Human Genetics, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| | - Denise G Lanza
- Department of Molecular and Human Genetics, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| | - Nicholas J Webster
- Department of Molecular and Human Genetics, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| | - Susan M Benton
- Department of Molecular and Human Genetics, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| | - Isao Suetake
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Jason D Heaney
- Department of Molecular and Human Genetics, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
- Dan L Duncan Cancer Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
- Center For Reproductive Medicine, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| |
Collapse
|
11
|
Do Gametes Woo? Evidence for Their Nonrandom Union at Fertilization. Genetics 2018; 207:369-387. [PMID: 28978771 DOI: 10.1534/genetics.117.300109] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 07/10/2017] [Indexed: 12/18/2022] Open
Abstract
A fundamental tenet of inheritance in sexually reproducing organisms such as humans and laboratory mice is that gametes combine randomly at fertilization, thereby ensuring a balanced and statistically predictable representation of inherited variants in each generation. This principle is encapsulated in Mendel's First Law. But exceptions are known. With transmission ratio distortion, particular alleles are preferentially transmitted to offspring. Preferential transmission usually occurs in one sex but not both, and is not known to require interactions between gametes at fertilization. A reanalysis of our published work in mice and of data in other published reports revealed instances where any of 12 mutant genes biases fertilization, with either too many or too few heterozygotes and homozygotes, depending on the mutant gene and on dietary conditions. Although such deviations are usually attributed to embryonic lethality of the underrepresented genotypes, the evidence is more consistent with genetically-determined preferences for specific combinations of egg and sperm at fertilization that result in genotype bias without embryo loss. This unexpected discovery of genetically-biased fertilization could yield insights about the molecular and cellular interactions between sperm and egg at fertilization, with implications for our understanding of inheritance, reproduction, population genetics, and medical genetics.
Collapse
|
12
|
Salz HK, Dawson EP, Heaney JD. Germ cell tumors: Insights from the Drosophila ovary and the mouse testis. Mol Reprod Dev 2017; 84:200-211. [PMID: 28079292 DOI: 10.1002/mrd.22779] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 01/10/2017] [Indexed: 12/14/2022]
Abstract
Ovarian and testicular germ cell tumors of young adults are thought to arise from defects in germ cell development, but the molecular mechanisms underlying malignant transformation are poorly understood. In this review, we focus on the biology of germ cell tumor formation in the Drosophila ovary and the mouse testis, for which evidence supports common underlying mechanisms, such as blocking initiation into the differentiation pathway, impaired lineage progression, and sexual identity instability. We then discuss how these concepts inform our understanding of the disease in humans. Mol. Reprod. Dev. 84: 200-211, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Helen K Salz
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio
| | - Emily P Dawson
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Jason D Heaney
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
13
|
Facchini G, Rossetti S, Cavaliere C, D'Aniello C, Di Franco R, Iovane G, Grimaldi G, Piscitelli R, Muto P, Botti G, Perdonà S, Veneziani BM, Berretta M, Montanari M. Exploring the molecular aspects associated with testicular germ cell tumors: a review. Oncotarget 2017; 9:1365-1379. [PMID: 29416701 PMCID: PMC5787445 DOI: 10.18632/oncotarget.22373] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 10/05/2017] [Indexed: 11/25/2022] Open
Abstract
Testicular germ cell tumors (TGCTs) represent the most common solid tumors affecting young men. They constitute a distinct entity because of their embryonic origin and their unique biological behavior. Recent preclinical data regarding biological signaling machinery as well as genetic and epigenetic mechanisms associated with molecular patterns of tumors have contribute to explain the pathogenesis and the differentiation of TGCTs and to understand the mechanisms responsible for the development of resistance to treatment. In this review, we discuss the main genetic and epigenetic events associated with TGCTs development in order to better define their role in the pathogenesis of these tumors and in cisplatin-acquired resistance.
Collapse
Affiliation(s)
- Gaetano Facchini
- Progetto ONCONET2.0, Linea Progettuale 14 per l'Implementazione della Prevenzione e Diagnosi Precoce del Tumore alla Prostata e Testicolo, Regione Campania, Italy.,S.S.D Oncologia Clinica Sperimentale Uro-Andrologica, Dipartimento Corp-S Assistenziale dei Percorsi Oncologici Uro-Genitale, Istituto Nazionale Tumori "Fondazione G. Pascale", IRCCS, Naples, Italy
| | - Sabrina Rossetti
- Progetto ONCONET2.0, Linea Progettuale 14 per l'Implementazione della Prevenzione e Diagnosi Precoce del Tumore alla Prostata e Testicolo, Regione Campania, Italy.,S.S.D Oncologia Clinica Sperimentale Uro-Andrologica, Dipartimento Corp-S Assistenziale dei Percorsi Oncologici Uro-Genitale, Istituto Nazionale Tumori "Fondazione G. Pascale", IRCCS, Naples, Italy
| | - Carla Cavaliere
- Medical Oncology Unit, ASL NA 3 SUD, Ospedali Riuniti Area Nolana, Nola, Italy
| | - Carmine D'Aniello
- Division of Medical Oncology, A.O.R.N. dei COLLI "Ospedali Monaldi-Cotugno-CTO", Naples, Italy
| | - Rossella Di Franco
- Progetto ONCONET2.0, Linea Progettuale 14 per l'Implementazione della Prevenzione e Diagnosi Precoce del Tumore alla Prostata e Testicolo, Regione Campania, Italy.,Radiation Oncology, Istituto Nazionale per lo Studio e la Cura dei Tumori "Fondazione Giovanni Pascale", IRCCS, Naples, Italy
| | - Gelsomina Iovane
- Progetto ONCONET2.0, Linea Progettuale 14 per l'Implementazione della Prevenzione e Diagnosi Precoce del Tumore alla Prostata e Testicolo, Regione Campania, Italy.,S.S.D Oncologia Clinica Sperimentale Uro-Andrologica, Dipartimento Corp-S Assistenziale dei Percorsi Oncologici Uro-Genitale, Istituto Nazionale Tumori "Fondazione G. Pascale", IRCCS, Naples, Italy
| | - Giovanni Grimaldi
- Division of Urology, Department of Uro-Gynaecological Oncology, Istituto Nazionale Tumori "Fondazione G. Pascale", IRCCS, Naples, Italy
| | - Raffaele Piscitelli
- Progetto ONCONET2.0, Linea Progettuale 14 per l'Implementazione della Prevenzione e Diagnosi Precoce del Tumore alla Prostata e Testicolo, Regione Campania, Italy
| | - Paolo Muto
- Radiation Oncology, Istituto Nazionale per lo Studio e la Cura dei Tumori "Fondazione Giovanni Pascale", IRCCS, Naples, Italy
| | - Gerardo Botti
- Pathology Unit, Istituto Nazionale Tumori "Fondazione G. Pascale", IRCCS, Naples, Italy.,Scientific Management, Istituto Nazionale Tumori "Fondazione G. Pascale", IRCCS, Naples, Italy
| | - Sisto Perdonà
- Division of Urology, Department of Uro-Gynaecological Oncology, Istituto Nazionale Tumori "Fondazione G. Pascale", IRCCS, Naples, Italy
| | - Bianca Maria Veneziani
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples "Federico II", Naples, Italy
| | - Massimiliano Berretta
- Department of Medical Oncology, CRO Aviano, National Cancer Institute, Aviano, Italy
| | - Micaela Montanari
- Progetto ONCONET2.0, Linea Progettuale 14 per l'Implementazione della Prevenzione e Diagnosi Precoce del Tumore alla Prostata e Testicolo, Regione Campania, Italy.,Department of Molecular Medicine and Medical Biotechnologies, University of Naples "Federico II", Naples, Italy.,Department of Biology, College of Science and Technology, Temple University, Philadelphia, USA
| |
Collapse
|
14
|
Marcotte EL, Pankratz N, Amatruda JF, Frazier AL, Krailo M, Davies S, Starr JR, Lau CC, Roesler M, Langer E, Hallstrom C, Hooten AJ, Poynter JN. Variants in BAK1, SPRY4, and GAB2 are associated with pediatric germ cell tumors: A report from the children's oncology group. Genes Chromosomes Cancer 2017; 56:548-558. [PMID: 28295819 DOI: 10.1002/gcc.22457] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 03/07/2017] [Accepted: 03/07/2017] [Indexed: 12/18/2022] Open
Abstract
Germ cell tumors (GCT) are a rare form of childhood cancer that originate from the primordial germ cell. Recent genome-wide association studies (GWAS) have identified susceptibility alleles for adult testicular GCT (TGCT). We test whether these SNPs are associated with GCT in pediatric and adolescent populations. This case-parent triad study includes individuals with GCT diagnosed between ages 0 and 19. We evaluated 26 SNPs from GWAS of adult TGCT and estimated main effects for pediatric GCT within complete trios (N = 366) using the transmission disequilibrium test. We used Estimation of Maternal, Imprinting and interaction effects using Multinomial modelling to evaluate maternal effects in non-Hispanic white trios and dyads (N = 244). We accounted for multiple comparisons using a Bonferroni correction. A variant in SPRY4 (rs4624820) was associated with reduced risk of GCT (OR [95% CI]: 0.70 [0.57, 0.86]). A variant in BAK1 (rs210138) was positively associated with GCT (OR [95% CI]: 1.70 [1.32, 2.18]), with a strong estimated effect for testis tumors (OR [95% CI]: 3.31 [1.89, 5.79]). Finally, a SNP in GAB2 (rs948662) was associated with increased risk for GCT (OR [95% CI]: 1.56 [1.20, 2.03]). Nominal associations (P < 0.05) were noted for eight additional loci. A maternal effect was observed for KITLG SNP rs4474514 (OR [95% CI]: 1.66 [1.21, 2.28]) and a paternal parent-of-origin effect was observed for rs7221274 (P = 0.00007), near TEX14, RAD51C, and PPM1E. We observed associations between SNPs in SPRY4, BAK1, and GAB2 and GCTs. This analysis suggests there may be common genetic risk factors for GCT in all age groups.
Collapse
Affiliation(s)
- Erin L Marcotte
- Division of Epidemiology & Clinical Research, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota
| | - Nathan Pankratz
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota
| | - James F Amatruda
- Departments of Pediatrics, Molecular Biology and Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | | | - Mark Krailo
- Department of Preventive Medicine, University of Southern California, Los Angeles, California
| | - Stella Davies
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | | | - Ching C Lau
- Texas Children's Cancer and Hematology Centers, Department of Pediatrics, Baylor College of Medicine and Texas Children's Hospital, Houston, Texas
| | - Michelle Roesler
- Division of Epidemiology & Clinical Research, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota
| | - Erica Langer
- Division of Epidemiology & Clinical Research, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota
| | - Caroline Hallstrom
- Division of Epidemiology & Clinical Research, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota
| | - Anthony J Hooten
- Division of Epidemiology & Clinical Research, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota
| | - Jenny N Poynter
- Division of Epidemiology & Clinical Research, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota
- Masonic Cancer Center, Minneapolis, Minnesota
| |
Collapse
|
15
|
Nemtsova MV, Ivkin EV, Simonova OA, Rudenko VV, Chernykh VB, Mikhaylenko DS, Loran OB. Polymorphisms of KITLG, SPRY4, and BAK1 genes in patients with testicular germ cell tumors and individuals with infertility associated with AZFc deletion of the Y chromosome. Mol Biol 2016. [DOI: 10.1134/s0026893316050137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Pyle LC, Nathanson KL. Genetic changes associated with testicular cancer susceptibility. Semin Oncol 2016; 43:575-581. [PMID: 27899190 DOI: 10.1053/j.seminoncol.2016.08.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 08/17/2016] [Indexed: 11/11/2022]
Abstract
Testicular germ cell tumor (TGCT) is a highly heritable cancer primarily affecting young white men. Genome-wide association studies (GWAS) have been particularly effective in identifying multiple common variants with strong contribution to TGCT risk. These loci identified through association studies have implicated multiple genes as associated with TGCT predisposition, many of which are unique among cancer types, and regulate processes such as pluripotency, sex specification, and microtubule assembly. Together these biologically plausible genes converge on pathways involved in male germ cell development and maturation, and suggest that perturbation of them confers susceptibility to TGCT, as a developmental defect of germ cell differentiation.
Collapse
Affiliation(s)
- Louise C Pyle
- Division of Genetics and Metabolism, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA; Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Katherine L Nathanson
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA; Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA.
| |
Collapse
|
17
|
Parent-of-origin effects of A1CF and AGO2 on testicular germ-cell tumors, testicular abnormalities, and fertilization bias. Proc Natl Acad Sci U S A 2016; 113:E5425-33. [PMID: 27582469 DOI: 10.1073/pnas.1604773113] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Testicular tumors, the most common cancer in young men, arise from abnormalities in germ cells during fetal development. Unconventional inheritance for testicular germ cell tumor (TGCT) risk both in humans and mice implicates epigenetic mechanisms. Apolipoprotein B mRNA-editing enzyme complex 1 (APOBEC1) cytidine deaminase and Deadend-1, which are involved in C-to-U RNA editing and microRNA-dependent mRNA silencing, respectively, are potent epigenetic modifiers of TGCT susceptibility in the genetically predisposed 129/Sv inbred mouse strain. Here, we show that partial loss of either APOBEC1 complementation factor (A1CF), the RNA-binding cofactor of APOBEC1 in RNA editing, or Argonaute 2 (AGO2), a key factor in the biogenesis of certain noncoding RNAs, modulates risk for TGCTs and testicular abnormalities in both parent-of-origin and conventional genetic manners. In addition, non-Mendelian inheritance was found among progeny of A1cf and Ago2 mutant intercrosses but not in backcrosses and without fetal loss. Together these findings suggest nonrandom union of gametes rather than meiotic drive or preferential lethality. Finally, this survey also suggested that A1CF contributes to long-term reproductive performance. These results directly implicate the RNA-binding proteins A1CF and AGO2 in the epigenetic control of germ-cell fate, urogenital development, and gamete functions.
Collapse
|
18
|
The genomic landscape of testicular germ cell tumours: from susceptibility to treatment. Nat Rev Urol 2016; 13:409-19. [PMID: 27296647 DOI: 10.1038/nrurol.2016.107] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The genomic landscape of testicular germ cell tumour (TGCT) can be summarized using four overarching hypotheses. Firstly, TGCT risk is dominated by inherited genetic factors, which determine nearly half of all disease risk and are highly polygenic in nature. Secondly KIT-KITLG signalling is currently the major pathway that is implicated in TGCT formation, both as a predisposition risk factor and a somatic driver event. Results from genome-wide association studies have also consistently suggested that other closely related pathways involved in male germ cell development and sex determination are associated with TGCT risk. Thirdly, the method of disease formation is unique, with tumours universally stemming from a noninvasive precursor lesion, probably of fetal origin, which lies dormant through childhood into adolescence and then eventually begins malignant growth in early adulthood. Formation of a 12p isochromosome, a hallmark of TGCT observed in nearly all tumours, is likely to be a key triggering event for malignant transformation. Finally, TGCT have been shown to have a distinctive somatic mutational profile, with a low rate of point mutations contrasted with frequent large-scale chromosomal gains. These four hypotheses by no means constitute a complete model that explains TGCT tumorigenesis, but advances in genomic technologies have enabled considerable progress in describing and understanding the disease. Further advancing our understanding of the genomic basis of TGCT offers a clear opportunity for clinical benefit in terms of preventing invasive cancer arising in young men, decreasing the burden of chemotherapy-related survivorship issues and reducing mortality in the minority of patients who have treatment-refractory disease.
Collapse
|
19
|
Lanza DG, Dawson EP, Rao P, Heaney JD. Misexpression of cyclin D1 in embryonic germ cells promotes testicular teratoma initiation. Cell Cycle 2016; 15:919-30. [PMID: 26901436 DOI: 10.1080/15384101.2016.1149272] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Testicular teratomas result from anomalies in embryonic germ cell development. In the 129 family of inbred mouse strains, teratomas arise during the same developmental period that male germ cells normally enter G1/G0 mitotic arrest and female germ cells initiate meiosis (the mitotic:meiotic switch). Dysregulation of this switch associates with teratoma susceptibility and involves three germ cell developmental abnormalities seemingly critical for tumor initiation: delayed G1/G0 mitotic arrest, retention of pluripotency, and misexpression of genes normally restricted to embryonic female and adult male germ cells. One misexpressed gene, cyclin D1 (Ccnd1), is a known regulator of cell cycle progression and an oncogene in many tissues. Here, we investigated whether Ccnd1 misexpression in embryonic germ cells is a determinant of teratoma susceptibility in mice. We found that CCND1 localizes to teratoma-susceptible germ cells that fail to enter G1/G0 arrest during the mitotic:meiotic switch and is the only D-type cyclin misexpressed during this critical developmental time frame. We discovered that Ccnd1 deficiency in teratoma-susceptible mice significantly reduced teratoma incidence and suppressed the germ cell proliferation and pluripotency abnormalities associated with tumor initiation. Importantly, Ccnd1 expression was dispensable for somatic cell development and male germ cell specification and maturation in tumor-susceptible mice, implying that the mechanisms by which Ccnd1 deficiency reduced teratoma incidence were germ cell autonomous and specific to tumorigenesis. We conclude that misexpression of Ccnd1 in male germ cells is a key component of a larger pro-proliferative program that disrupts the mitotic:meiotic switch and predisposes 129 inbred mice to testicular teratocarcinogenesis.
Collapse
Affiliation(s)
- Denise G Lanza
- a Department of Molecular and Human Genetics , Baylor College of Medicine , Houston , TX , USA
| | - Emily P Dawson
- a Department of Molecular and Human Genetics , Baylor College of Medicine , Houston , TX , USA
| | - Priya Rao
- b Department of Pathology , MD Anderson Cancer Center, The University of Texas , Houston , TX , USA
| | - Jason D Heaney
- a Department of Molecular and Human Genetics , Baylor College of Medicine , Houston , TX , USA.,c Dan L Duncan Cancer Center, Baylor College of Medicine , Houston , TX , USA.,d Center For Reproductive Medicine, Baylor College of Medicine , Houston , TX , USA
| |
Collapse
|
20
|
Litchfield K, Sultana R, Renwick A, Dudakia D, Seal S, Ramsay E, Powell S, Elliott A, Warren-Perry M, Eeles R, Peto J, Kote-Jarai Z, Muir K, Nsengimana J, Stratton MR, Easton DF, Bishop DT, Huddart RA, Rahman N, Turnbull C. Multi-stage genome-wide association study identifies new susceptibility locus for testicular germ cell tumour on chromosome 3q25. Hum Mol Genet 2015; 24:1169-76. [PMID: 25281660 PMCID: PMC4375409 DOI: 10.1093/hmg/ddu511] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 09/29/2014] [Indexed: 01/28/2023] Open
Abstract
Recent genome-wide association studies (GWAS) and subsequent meta-analyses have identified over 25 SNPs at 18 loci, together accounting for >15% of the genetic susceptibility to testicular germ cell tumour (TGCT). To identify further common SNPs associated with TGCT, here we report a three-stage experiment, involving 4098 cases and 18 972 controls. Stage 1 comprised previously published GWAS analysis of 307 291 SNPs in 986 cases and 4946 controls. In Stage 2, we used previously published customised Illumina iSelect genotyping array (iCOGs) data across 694 SNPs in 1064 cases and 10 082 controls. Here, we report new genotyping of eight SNPs showing some evidence of association in combined analysis of Stage 1 and Stage 2 in an additional 2048 cases of TGCT and 3944 controls (Stage 3). Through fixed-effects meta-analysis across three stages, we identified a novel locus at 3q25.31 (rs1510272) demonstrating association with TGCT [per-allele odds ratio (OR) = 1.16, 95% confidence interval (CI) = 1.06-1.27; P = 1.2 × 10(-9)].
Collapse
Affiliation(s)
- Kevin Litchfield
- Division of Genetics and Epidemiology, Institute of Cancer Research, London, UK
| | - Razvan Sultana
- Division of Genetics and Epidemiology, Institute of Cancer Research, London, UK
| | - Anthony Renwick
- Division of Genetics and Epidemiology, Institute of Cancer Research, London, UK
| | - Darshna Dudakia
- Division of Genetics and Epidemiology, Institute of Cancer Research, London, UK
| | - Sheila Seal
- Division of Genetics and Epidemiology, Institute of Cancer Research, London, UK
| | - Emma Ramsay
- Division of Genetics and Epidemiology, Institute of Cancer Research, London, UK
| | - Silvana Powell
- Division of Genetics and Epidemiology, Institute of Cancer Research, London, UK
| | - Anna Elliott
- Division of Genetics and Epidemiology, Institute of Cancer Research, London, UK
| | | | - Rosalind Eeles
- Division of Genetics and Epidemiology, Institute of Cancer Research, London, UK, Royal Marsden NHS Foundation Trust, London, UK
| | - Julian Peto
- Non-communicable Disease Epidemiology Department, London School of Hygiene and Tropical Medicine, London, UK
| | - Zsofia Kote-Jarai
- Division of Genetics and Epidemiology, Institute of Cancer Research, London, UK
| | - Kenneth Muir
- Institute of Population Health, University of Manchester, Manchester, UK
| | - Jeremie Nsengimana
- Section of Epidemiology and Biostatistics, Leeds Institute of Cancer and Pathology, Leeds, UK
| | | | - Douglas F Easton
- Genetic Epidemiology Unit, Strangeways Research Laboratory, Cancer Research UK, Cambridge, UK and
| | - D Timothy Bishop
- Section of Epidemiology and Biostatistics, Leeds Institute of Cancer and Pathology, Leeds, UK
| | - Robert A Huddart
- Academic Radiotherapy Unit, Institute of Cancer Research, Sutton, Surrey SM2 5NG, UK
| | - Nazneen Rahman
- Division of Genetics and Epidemiology, Institute of Cancer Research, London, UK, Royal Marsden NHS Foundation Trust, London, UK
| | - Clare Turnbull
- Division of Genetics and Epidemiology, Institute of Cancer Research, London, UK, Royal Marsden NHS Foundation Trust, London, UK,
| |
Collapse
|
21
|
Litchfield K, Shipley J, Turnbull C. Common variants identified in genome-wide association studies of testicular germ cell tumour: an update, biological insights and clinical application. Andrology 2015; 3:34-46. [DOI: 10.1111/andr.304] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 10/03/2014] [Accepted: 10/06/2014] [Indexed: 01/13/2023]
Affiliation(s)
- K. Litchfield
- Division of Genetics and Epidemiology; The Institute of Cancer Research; London UK
| | - J. Shipley
- Divisions of Molecular Pathology and Cancer Therapeutics; The Institute of Cancer Research; London UK
| | - C. Turnbull
- Division of Genetics and Epidemiology; The Institute of Cancer Research; London UK
- Royal Marsden NHS Foundation Trust; London UK
| |
Collapse
|
22
|
Rijlaarsdam MA, Looijenga LHJ. An oncofetal and developmental perspective on testicular germ cell cancer. Semin Cancer Biol 2014; 29:59-74. [PMID: 25066859 DOI: 10.1016/j.semcancer.2014.07.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 07/17/2014] [Indexed: 12/19/2022]
Abstract
Germ cell tumors (GCTs) represent a diverse group of tumors presumably originating from (early fetal) developing germ cells. Most frequent are the testicular germ cell cancers (TGCC). Overall, TGCC is the most frequent malignancy in Caucasian males (20-40 years) and remains an important cause of (treatment related) mortality in these young men. The strong association between the phenotype of TGCC stem cell components and their totipotent ancestor (fetal primordial germ cell or gonocyte) makes these tumors highly relevant from an onco-fetal point of view. This review subsequently discusses the evidence for the early embryonic origin of TGCCs, followed by an overview of the crucial association between TGCC pathogenesis, genetics, environmental exposure and the (fetal) testicular micro-environment (genvironment). This culminates in an evaluation of three genvironmentally modulated hallmarks of TGCC directly related to the oncofetal pathogenesis of TGCC: (1) maintenance of pluripotency, (2) cell cycle control/cisplatin sensitivity and (3) regulation of proliferation/migration/apoptosis by KIT-KITL mediated receptor tyrosine kinase signaling. Briefly, TGCC exhibit identifiable stem cell components (seminoma and embryonal carcinoma) and progenitors that show large and consistent similarities to primordial/embryonic germ cells, their presumed totipotent cells of origin. TGCC pathogenesis depends crucially on a complex interaction of genetic and (micro-)environmental, i.e. genvironmental risk factors that have only been partly elucidated despite significant effort. TGCC stem cell components also show a high degree of similarity with embryonic stem/germ cells (ES) in the regulation of pluripotency and cell cycle control, directly related to their exquisite sensitivity to DNA damaging agents (e.g. cisplatin). Of note, (ES specific) micro-RNAs play a pivotal role in the crossover between cell cycle control, pluripotency and chemosensitivity. Moreover, multiple consistent observations reported TGCC to be associated with KIT-KITL mediated receptor tyrosine kinase signaling, a pathway crucially implicated in proliferation, migration and survival during embryogenesis including germ cell development. In conclusion, TGCCs are a fascinating model for onco-fetal developmental processes especially with regard to studying cell cycle control, pluripotency maintenance and KIT-KITL signaling. The knowledge presented here contributes to better understanding of the molecular characteristics of TGCC pathogenesis, translating to identification of at risk individuals and enhanced quality of care for TGCC patients (diagnosis, treatment and follow-up).
Collapse
Affiliation(s)
- Martin A Rijlaarsdam
- Department of Pathology, Erasmus MC - University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Leendert H J Looijenga
- Department of Pathology, Erasmus MC - University Medical Center Rotterdam, Rotterdam, The Netherlands.
| |
Collapse
|
23
|
Tumor loci and their interactions on mouse chromosome 19 that contribute to testicular germ cell tumors. BMC Genet 2014; 15:65. [PMID: 24886204 PMCID: PMC4053281 DOI: 10.1186/1471-2156-15-65] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 05/23/2014] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Complex genetic factors underlie testicular germ cell tumor (TGCT) development. One experimental approach to dissect the genetics of TGCT predisposition is to use chromosome substitution strains, such as the 129.MOLF-Chr 19 (M19). M19 carries chromosome (Chr) 19 from the MOLF whereas all other chromosomes are from the 129 strain. 71% of M19 males develop TGCTs in contrast to 5% in 129 strain. To identify and map tumor loci from M19 we generated congenic strains harboring MOLF chromosome 19 segments on 129 strain background and monitored their TGCT incidence. RESULTS We found 3 congenic strains that each harbored tumor promoting loci that had high (14%-32%) whereas 2 other congenics had low (4%) TGCT incidences. To determine how multiple loci influence TGCT development, we created double and triple congenic strains. We found additive interactions were predominant when 2 loci were combined in double congenic strains. Surprisingly, we found an example where 2 loci, both which do not contribute significantly to TGCT, when combined in a double congenic strain resulted in greater than expected TGCT incidence (positive interaction). In an opposite example, when 2 loci with high TGCT incidences were combined, males of the double congenic showed lower than expected TGCT incidence (negative interaction). For the triple congenic strain, depending on the analysis, the overall TGCT incidence could be additive or could also be due to a positive interaction of one region with others. Additionally, we identified loci that promote bilateral tumors or testicular abnormalities. CONCLUSIONS The congenic strains each with their characteristic TGCT incidences, laterality of tumors and incidence of testicular abnormalities, are useful for identification of TGCT susceptibility modifier genes that map to Chr 19 and also for studies on the genetic and environmental causes of TGCT development. TGCTs are a consequence of aberrant germ cell and testis development. By defining predisposing loci and some of the locus interactions from M19, this study further advances our understanding of the complex genetics of TGCTs, which is the most common cancer in young human males.
Collapse
|
24
|
Comish PB, Drumond AL, Kinnell HL, Anderson RA, Matin A, Meistrich ML, Shetty G. Fetal cyclophosphamide exposure induces testicular cancer and reduced spermatogenesis and ovarian follicle numbers in mice. PLoS One 2014; 9:e93311. [PMID: 24691397 PMCID: PMC3972108 DOI: 10.1371/journal.pone.0093311] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 02/27/2014] [Indexed: 12/20/2022] Open
Abstract
Exposure to radiation during fetal development induces testicular germ cell tumors (TGCT) and reduces spermatogenesis in mice. However, whether DNA damaging chemotherapeutic agents elicit these effects in mice remains unclear. Among such agents, cyclophosphamide (CP) is currently used to treat breast cancer in pregnant women, and the effects of fetal exposure to this drug manifested in the offspring must be better understood to offer such patients suitable counseling. The present study was designed to determine whether fetal exposure to CP induces testicular cancer and/or gonadal toxicity in 129 and in 129.MOLF congenic (L1) mice. Exposure to CP on embryonic days 10.5 and 11.5 dramatically increased TGCT incidence to 28% in offspring of 129 mice (control value, 2%) and to 80% in the male offspring of L1 (control value 33%). These increases are similar to those observed in both lines of mice by radiation. In utero exposure to CP also significantly reduced testis weights at 4 weeks of age to ∼70% of control and induced atrophic seminiferous tubules in ∼30% of the testes. When the in utero CP-exposed 129 mice reached adulthood, there were significant reductions in testicular and epididymal sperm counts to 62% and 70%, respectively, of controls. In female offspring, CP caused the loss of 77% of primordial follicles and increased follicle growth activation. The results indicate that i) DNA damage is a common mechanism leading to induction of testicular cancer, ii) increased induction of testis cancer by external agents is proportional to the spontaneous incidence due to inherent genetic susceptibility, and iii) children exposed to radiation or DNA damaging chemotherapeutic agents in utero may have increased risks of developing testis cancer and having reduced spermatogenic potential or diminished reproductive lifespan.
Collapse
Affiliation(s)
- Paul B. Comish
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Ana Luiza Drumond
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Hazel L. Kinnell
- MRC Centre for Reproductive Health, Queens Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Richard A. Anderson
- MRC Centre for Reproductive Health, Queens Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Angabin Matin
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Marvin L. Meistrich
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Gunapala Shetty
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
25
|
Testicular cancer: biology and biomarkers. Virchows Arch 2014; 464:301-13. [DOI: 10.1007/s00428-013-1522-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 11/25/2013] [Indexed: 12/13/2022]
|
26
|
Chen L, Faire M, Kissner MD, Laird DJ. Primordial germ cells and gastrointestinal stromal tumors respond distinctly to a cKit overactivating allele. Hum Mol Genet 2013; 22:313-27. [PMID: 23077213 PMCID: PMC3526162 DOI: 10.1093/hmg/dds430] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Revised: 10/01/2012] [Accepted: 10/08/2012] [Indexed: 12/31/2022] Open
Abstract
KitL, via its receptor cKit, supports primordial germ cell (PGC) growth, survival, migration and reprogramming to pluripotent embryonic germ cells (EGCs). However, the signaling downstream of KitL and its regulation in PGCs remain unclear. A constitutively activating mutation, cKit(V558Δ), causes gain-of-function phenotypes in mast cells and intestines, and gastrointestinal stromal tumors (GISTs) when heterozygous. Unexpectedly, we find that PGC growth is not significantly affected in cKit(V558Δ) heterozygotes, whereas in homozygotes, increased apoptosis and inefficient migration lead to the depletion of PGCs. Through genetic studies, we reveal that this oncogenic cKit allele exhibits loss-of-function behavior in PGCs distinct from that in GIST development. Examination of downstream signaling in GISTs from cKit(V558Δ/+) mice confirmed hyperphosphorylation of AKT and ERK, but both remain unperturbed in cKit(V558Δ/+) PGCs and EGCs. In contrast, we find reduced activation of ERK1/2 and JNK1 in cKit(V558Δ) homozygous PGCs and EGCs. Inhibiting JNK, though not ERK1/2, increased apoptosis of wild-type PGCs, but did not further affect the already elevated apoptosis of cKit(V558Δ)(/V558Δ) PGCs. These results demonstrate a cell-context-dependent response to the cKit(V558Δ) mutation. We propose that AKT overload protection and JNK-mediated survival comprise PGC-specific mechanisms for regulating cKit signaling.
Collapse
Affiliation(s)
| | | | | | - Diana J. Laird
- Department of Obstetrics/Gynecology and Reproductive Sciences, Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, UCSF, San Francisco, CA 94143-0667, USA
| |
Collapse
|
27
|
Abstract
The failure of testicular descent or cryptorchidism is the most common defect in newborn boys. The descent of the testes during development is controlled by insulin-like 3 peptide and steroid hormones produced in testicular Leydig cells, as well as by various genetic and developmental factors. While in some cases the association with genetic abnormalities and environmental causes has been shown, the etiology of cryptorchidism remains uncertain. Cryptorchidism is an established risk factor for infertility and testicular germ cell tumors (TGCT). Experimental animal models suggest a causative role for an abnormal testicular position on the disruption of spermatogenesis however the link between cryptorchidism and TGCT is less clear. The most common type of TGCT in cryptorchid testes is seminoma, believed to be derived from pluripotent prenatal germ cells. Recent studies have shown that seminoma cells and their precursor carcinoma in situ cells express a number of spermatogonial stem cell (SSC) markers suggesting that TGCTs might originate from adult stem cells. We review here the data on changes in the SSC somatic cell niche observed in cryptorchid testes of mouse models and in human patients. We propose that the misregulation of growth factors' expression may alter the balance between SSC self-renewal and differentiation and shift stem cells toward neoplastic transformation.
Collapse
Affiliation(s)
- Lydia Ferguson
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International UniversityMiami, FL, USA
| | - Alexander I. Agoulnik
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International UniversityMiami, FL, USA
- *Correspondence: Alexander I. Agoulnik, Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th Street, HLSI 419B, Miami, FL 33199, USA. e-mail:
| |
Collapse
|
28
|
|
29
|
Nadeau JH, Forejt J, Takada T, Shiroishi T. Chromosome substitution strains: gene discovery, functional analysis, and systems studies. Mamm Genome 2012; 23:693-705. [PMID: 22961226 DOI: 10.1007/s00335-012-9426-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2012] [Accepted: 08/02/2012] [Indexed: 12/31/2022]
Abstract
Laboratory mice are valuable in biomedical research in part because of the extraordinary diversity of genetic resources that are available for studies of complex genetic traits and as models for human biology and disease. Chromosome substitution strains (CSSs) are important in this resource portfolio because of their demonstrated use for gene discovery, genetic and epigenetic studies, functional characterizations, and systems analysis. CSSs are made by replacing a single chromosome in a host strain with the corresponding chromosome from a donor strain. A complete CSS panel involves a total of 22 engineered inbred strains, one for each of the 19 autosomes, one each for the X and Y chromosomes, and one for mitochondria. A genome survey simply involves comparing each phenotype for each of the CSSs with the phenotypes of the host strain. The CSS panels that are available for laboratory mice have been used to dissect a remarkable variety of phenotypes and to characterize an impressive array of disease models. These surveys have revealed considerable phenotypic diversity even among closely related progenitor strains, evidence for strong epistasis and for heritable epigenetic changes. Perhaps most importantly, and presumably because of their unique genetic constitution, CSSs, and congenic strains derived from them, the genetic variants underlying quantitative trait loci (QTLs) are readily identified and functionally characterized. Together these studies show that CSSs are important resource for laboratory mice.
Collapse
Affiliation(s)
- Joseph H Nadeau
- Pacific Northwest Research Institute, 720 Broadway, Seattle, WA 98122, USA.
| | | | | | | |
Collapse
|
30
|
Mirabello L, Kratz CP, Savage SA, Greene MH. Promoter methylation of candidate genes associated with familial testicular cancer. INTERNATIONAL JOURNAL OF MOLECULAR EPIDEMIOLOGY AND GENETICS 2012; 3:213-227. [PMID: 23050052 PMCID: PMC3459216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 07/29/2012] [Indexed: 06/01/2023]
Abstract
Recent genomic studies have identified risk SNPs in or near eight genes associated with testicular germ cell tumors (TGCT). Mouse models suggest a role for Dnd1 epigenetics in TGCT susceptibility, and we have recently reported that transgenerational inheritance of epigenetic events may be associated with familial TGCT risk. We now investigate whether aberrant promoter methylation of selected candidate genes is associated with familial TGCT risk. Pyrosequencing assays were designed to evaluate CpG methylation in the promoters of selected genes in peripheral blood DNA from 153 TGCT affecteds and 116 healthy male relatives from 101 multiple-case families. Wilcoxon rank-sum tests and logistic regression models were used to investigate associations between promoter methylation and TGCT. We also quantified gene product expression of these genes, using quantitative PCR. We observed increased PDE11A, SPRY4 and BAK1 promoter methylation, and decreased KITLG promoter methylation, in familial TGCT cases versus healthy male family controls. A significant upward risk trend was observed for PDE11A when comparing the middle and highest tertiles of methylation to the lowest [odds ratio (OR) =1.55, 95% confidence intervals (CI) 0.82-2.93, and 1.94, 95% CI 1.03-3.66], respectively; P(trend)=0.042). A significant inverse association was observed for KITLG when comparing the middle and lowest tertiles to the highest (OR=2.15, 95% CI 1.12-4.11, and 2.15, 95% CI 1.12-4.14, respectively; P(trend)=0.031). There was a weak inverse correlation between promoter methylation and KITLG expression. Our results suggest that familial TGCT susceptibility may be associated with promoter methylation of previously-identified TGCT risk-modifying genes. Larger studies are warranted.
Collapse
|
31
|
Transgenerational epigenetic effects of the Apobec1 cytidine deaminase deficiency on testicular germ cell tumor susceptibility and embryonic viability. Proc Natl Acad Sci U S A 2012; 109:E2766-73. [PMID: 22923694 DOI: 10.1073/pnas.1207169109] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Environmental agents and genetic variants can induce heritable epigenetic changes that affect phenotypic variation and disease risk in many species. These transgenerational effects challenge conventional understanding about the modes and mechanisms of inheritance, but their molecular basis is poorly understood. The Deadend1 (Dnd1) gene enhances susceptibility to testicular germ cell tumors (TGCTs) in mice, in part by interacting epigenetically with other TGCT modifier genes in previous generations. Sequence homology to A1cf, the RNA-binding subunit of the ApoB editing complex, raises the possibility that the function of Dnd1 is related to Apobec1 activity as a cytidine deaminase. We conducted a series of experiments with a genetically engineered deficiency of Apobec1 on the TGCT-susceptible 129/Sv inbred background to determine whether dosage of Apobec1 modifies susceptibility, either alone or in combination with Dnd1, and either in a conventional or a transgenerational manner. In the paternal germ-lineage, Apobec1 deficiency significantly increased susceptibility among heterozygous but not wild-type male offspring, without subsequent transgenerational effects, showing that increased TGCT risk resulting from partial loss of Apobec1 function is inherited in a conventional manner. By contrast, partial deficiency in the maternal germ-lineage led to suppression of TGCTs in both partially and fully deficient males and significantly reduced TGCT risk in a transgenerational manner among wild-type offspring. These heritable epigenetic changes persisted for multiple generations and were fully reversed after consecutive crosses through the alternative germ-lineage. These results suggest that Apobec1 plays a central role in controlling TGCT susceptibility in both a conventional and a transgenerational manner.
Collapse
|
32
|
Lessel D, Gamulin M, Kulis T, Toliat MR, Grgic M, Friedrich K, Žunec R, Balija M, Nürnberg P, Kastelan Z, Högel J, Kubisch C. Replication of genetic susceptibility loci for testicular germ cell cancer in the Croatian population. Carcinogenesis 2012; 33:1548-52. [DOI: 10.1093/carcin/bgs218] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
|
33
|
Abstract
Since Mendel, studies of phenotypic variation and disease risk have emphasized associations between genotype and phenotype among affected individuals in families and populations. Although this paradigm has led to important insights into the molecular basis for many traits and diseases, most of the genetic variants that control the inheritance of these conditions continue to elude detection. Recent studies suggest an alternative mode of inheritance where genetic variants that are present in one generation affect phenotypes in subsequent generations, thereby decoupling the conventional relations between genotype and phenotype, and perhaps, contributing to 'missing heritability'. Under some conditions, these transgenerational genetic effects can be as frequent and strong as conventional inheritance, and can persist for multiple generations. Growing evidence suggests that RNA mediates these heritable epigenetic changes. The primary challenge now is to identify the molecular basis for these effects, characterize mechanisms and determine whether transgenerational genetic effects occur in humans.
Collapse
Affiliation(s)
- Vicki R Nelson
- Department of Genetics, BRB731, Case Western Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | | |
Collapse
|
34
|
Le cancer du testicule : facteurs de risque génétiques et environnementaux. Basic Clin Androl 2012. [DOI: 10.1007/s12610-012-0164-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
Résumé
L'incidence du cancer du testicule (CT), qui est inégale d'une région à l'autre, progresse dans la plupart des pays y compris la France. L'origine la plus probable du CT est la non différenciation de cellules germinales souches pendant la vie fœtale. Ces cellules, maintenues dans un état immature, pourraient proliférer pour former une tumeur après la puberté. La fréquence de son association avec une cryptorchidie ou une infertilité a conduit à formuler l'hypothèse que le CT pouvait être un des constituants du syndrome de dysgénésie testiculaire. Le rôle des facteurs génétiques est suggéré par la fréquence de cas familiaux de CT mais aucun gène clairement responsable du cancer n'a été identifié jusqu'à présent. Parmi les nombreux gènes étudiés, ce sont ceux contrôlant la voie KITLG/KIT, qui participe à la régulation de la prolifération et de la fonction des cellules germinales primordiales, qui semblent jouer le rôle principal. Les études faites sur des populations migrantes et les jumeaux suggèrent par ailleurs que des facteurs environnementaux pourraient jouer un rôle essentiel dans la genèse du CT. Des dérégulations hormonales pendant la vie fœtale ou la puberté pourraient notamment favoriser le développement de CT. Cependant, l'exposition à des substances exogènes agissant comme des perturbateurs endocriniens est encore à démontrer.
Collapse
|
35
|
Shetty G, Comish PB, Weng CCY, Matin A, Meistrich ML. Fetal radiation exposure induces testicular cancer in genetically susceptible mice. PLoS One 2012; 7:e32064. [PMID: 22348147 PMCID: PMC3278464 DOI: 10.1371/journal.pone.0032064] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Accepted: 01/19/2012] [Indexed: 12/23/2022] Open
Abstract
The prevalence of testicular germ cell tumors (TGCT), a common solid tissue malignancy in young men, has been annually increasing at an alarming rate of 3%. Since the majority of testicular cancers are derived from germ cells at the stage of transformation of primordial germ cell (PGC) into gonocytes, the increase has been attributed to maternal/fetal exposures to environmental factors. We examined the effects of an estrogen (diethylstilbestrol, DES), an antiandrogen (flutamide), or radiation on the incidence of testicular germ cell tumors in genetically predisposed 129.MOLF-L1 (L1) congenic mice by exposing them to these agents on days 10.5 and 11.5 of pregnancy. Neither flutamide nor DES produced noticeable increases in testis cancer incidence at 4 weeks of age. In contrast, two doses of 0.8-Gy radiation increased the incidence of TGCT from 45% to 100% in the offspring. The percentage of mice with bilateral tumors, weights of testes with TGCT, and the percentage of tumors that were clearly teratomas were higher in the irradiated mice than in controls, indicating that irradiation induced more aggressive tumors and/or more foci of initiation sites in each testis. This radiation dose did not disrupt spermatogenesis, which was qualitatively normal in tumor-free testes although they were reduced in size. This is the first proof of induction of testicular cancer by an environmental agent and suggests that the male fetus of women exposed to radiation at about 5-6 weeks of pregnancy might have an increased risk of developing testicular cancer. Furthermore, it provides a novel tool for studying the molecular and cellular events of testicular cancer pathogenesis.
Collapse
Affiliation(s)
- Gunapala Shetty
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America.
| | | | | | | | | |
Collapse
|
36
|
Ferlin A, Pengo M, Pizzol D, Carraro U, Frigo AC, Foresta C. Variants in KITLG predispose to testicular germ cell cancer independently from spermatogenic function. Endocr Relat Cancer 2012; 19:101-8. [PMID: 22194441 DOI: 10.1530/erc-11-0340] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Epidemiological data suggest an association and a common pathogenetic link between male infertility and testicular germ cell tumor (TGCT) development. Genome-wide studies identified that TGCT susceptibility is associated with KITLG (c-KIT ligand), which regulates the formation of primordial germ cells, from which TGCT is believed to arise and spermatogenesis develops. In this study, we analyzed the link between KITLG, TGCT, and spermatogenic disruption by performing an association study between the KITLG markers rs995030 and rs4471514 and 426 TGCT cases and 614 controls with normal and abnormal sperm count. We found that TGCT risk was increased more than twofold per copy of the major G allele and A allele in KITLG rs995030 and rs4471514 (odds ratio (OR)=2.38, 95% confidence interval (95% CI)=1.81-3.12; OR=2.43, 95% CI=1.86-3.17 respectively), and homozygotes for the risk allele had a sevenfold increased risk of TGCT. KITLG markers were strongly associated with seminoma subtype (per allele risk increased more than threefold, homozygote risk increased by 13- to 16-fold) and weakly with nonseminoma. KITLG markers were not associated with sperm production, as no difference was observed in men with normozoospermia and azoo-oligozoospermia, both in controls and in TGCT cases. In conclusion, this study provides evidence that KITLG variants are involved in TGCT development and they represent an independent and strong specific risk factor for TGCT independently from spermatogenic function. A shared genetic cause and a common pathogenetic link between TGCT development and impairment of spermatogenesis are not evident from this study.
Collapse
Affiliation(s)
- Alberto Ferlin
- Section of Clinical Pathology and Centre for Human Reproduction Pathology, Department of Histology, Microbiology and Medical Biotechnologies, University of Padova, Via Gabelli 63, 35121 Padova, Italy.
| | | | | | | | | | | |
Collapse
|
37
|
Abstract
Cryptorchidism or undescended testis is the most frequent congenital abnormality in newborn boys. The process of testicular descent to the scrotum is controlled by hormones produced in Leydig cells, insulin-like3, and androgens. Variation in genetic and environmental factors might affect testicular descent. A failure of spermatogenesis and germ cell apoptosis resulting in infertility as well as an increased risk of neoplastic transformation of germ cell are the direct consequences of cryptorchidism in adulthood.
Collapse
Affiliation(s)
- Alexander I Agoulnik
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA.
| | | | | |
Collapse
|
38
|
Poynter JN, Hooten AJ, Lindsay Frazier A, Ross JA. Associations between variants in KITLG, SPRY4, BAK1, and DMRT1 and pediatric germ cell tumors. Genes Chromosomes Cancer 2011; 51:266-71. [DOI: 10.1002/gcc.20951] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Accepted: 09/29/2011] [Indexed: 12/16/2022] Open
|
39
|
Turnbull C, Rahman N. Genome-wide association studies provide new insights into the genetic basis of testicular germ-cell tumour. ACTA ACUST UNITED AC 2011; 34:e86-96; discussion e96-7. [PMID: 21623831 DOI: 10.1111/j.1365-2605.2011.01162.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Testicular germ-cell tumour (TGCT) is the most common cancer in young men, and genetic epidemiological studies suggest that the disease has a strong genetic basis. Until 2009, very little of this genetic component had been explained. Genome-wide association studies have since identified eight SNPs at six loci which together account for approximately 15% of the genetic risk of TGCT and offer novel biological insights into testicular germ-cell oncogenesis. In this review, we summarize the genetic epidemiology of TGCT, detail the contribution genome-wide association studies have made to our understanding of the genetic basis of TGCT and reflect on how future technological advances may assist in revealing the remaining genetic factors underlying TGCT susceptibility.
Collapse
Affiliation(s)
- C Turnbull
- Section of Cancer Genetics, Institute of Cancer Research, Sutton, UK.
| | | |
Collapse
|
40
|
Gilbert D, Rapley E, Shipley J. Testicular germ cell tumours: predisposition genes and the male germ cell niche. Nat Rev Cancer 2011; 11:278-88. [PMID: 21412254 DOI: 10.1038/nrc3021] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Testicular germ cell tumours (TGCTs) of adults and adolescents are putatively derived from primordial germ cells or gonocytes. Recently reported genome-wide association studies implicate six gene loci that predispose to TGCT development. Remarkably, the functions of proteins encoded by genes within these regions bridge our understanding between the pathways involved in primordial germ cell physiology, male germ cell development and the molecular pathology of TGCTs. Furthermore, this improved understanding of the mechanisms underlying TGCT development and dissemination has clinical relevance for the management of patients with these tumours.
Collapse
Affiliation(s)
- Duncan Gilbert
- Sussex Cancer Centre, Royal Sussex County Hospital, Eastern Road, Brighton BN2 5BE, East Sussex, UK
| | | | | |
Collapse
|
41
|
Västermark Å, Giwercman YL, Hagströmer O, De-Meyts ER, Eberhard J, Ståhl O, Cedermark GC, Rastkhani H, Daugaard G, Arver S, Giwercman A. Polymorphic variation in the androgen receptor gene: Association with risk of testicular germ cell cancer and metastatic disease. Eur J Cancer 2011; 47:413-9. [DOI: 10.1016/j.ejca.2010.08.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2010] [Revised: 08/17/2010] [Accepted: 08/24/2010] [Indexed: 10/19/2022]
|
42
|
Zhu R, Heaney J, Nadeau JH, Ali S, Matin A. Deficiency of splicing factor 1 suppresses the occurrence of testicular germ cell tumors. Cancer Res 2010; 70:7264-72. [PMID: 20736371 DOI: 10.1158/0008-5472.can-10-0820] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Testicular germ cell tumors (TGCT) originate from germ cells. The 129-Ter and M19 (129.MOLF-Chr19 consomic) mouse strains have extremely high incidences of TGCTs. We found that the expression levels of Sf1-encoded splicing factor 1 (SF1) can modulate the incidence of TGCTs. We generated mice with inactivated Sf1. Sf1 null mice (Sf1-/-) died before birth. Mice with one intact allele of Sf1 (Sf1+/-) were viable but expressed reduced levels of Sf1. When Sf1-deficient mice (Sf1+/-) were crossed to the 129-Ter and M19 strains, we observed decreased incidence of TGCTs in Sf1+/-;Ter and Sf1+/-;M19/+ mice compared with that in control cohorts. Therefore, Sf1 deficiency protects against TGCT development in both strains. Sf1 is expressed in the testes. We found that Sf1 levels vary significantly in the testes of inbred strains such as 129 and MOLF, and as such Sf1 is an oncogenic tumor-susceptibility factor from 129. Our results also highlight the complications involved in evaluating Sf1 levels and TGCT incidences. When a large number of tumor-promoting factors are present in a strain, the protective effect of lower Sf1 levels is masked. However, when the dosage of tumor-promoting factors is reduced, the protective effect of lower Sf1 levels becomes apparent. SF1 is involved in splicing of specific pre-mRNAs in cells. Alternate splicing generates the complex proteosome in eukaryotic cells. Our data indicate that Sf1 levels in mouse strains correlate with their incidences of TGCTs and implicate the importance of splicing mechanisms in germ cell tumorigenesis.
Collapse
Affiliation(s)
- Rui Zhu
- Department of Genetics, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
43
|
Nelson VR, Spezio SH, Nadeau JH. Transgenerational genetic effects of the paternal Y chromosome on daughters' phenotypes. Epigenomics 2010; 2:513-21. [PMID: 22121971 PMCID: PMC4045629 DOI: 10.2217/epi.10.26] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
AIMS Recent evidence suggests that transgenerational genetic effects contribute to phenotypic variation in complex traits. To test for the general occurrence of these effects and to estimate their strength, we took advantage of chromosome substitution strains (CSSs) of mice where the Y chromosome of the host strain has been replaced with the Y chromosome of the donor strain. Daughters of these CSS-Y males and host strain females are genetically identical and should be phenotypically indistinguishable in the absence of transgenerational genetic effects of the fathers' Y chromosome on daughters' phenotypes. MATERIALS & METHODS Assay results for a broad panel of physiological traits and behaviors were compared for genetically identical daughters of CSS-Y males and host strain females from the B6-Chr(A/J) and B6-Chr(PWD) panels of CSSs. In addition, behavioral traits including specific tests for anxiety-related behaviors were tested in daughters of B6-Chr(129) and 129-Chr(B6) CSS-Y males. RESULTS Across a panel of 41 multigenic traits assayed in the B6-Chr(A/J) panel of CSSs females and 21 multigenic traits in the B6-Chr(PWD) panel females, the frequency and strength for transgenerational genetic effects were remarkably similar to those for conventional inheritance of substituted chromosomes. In addition, we found strong evidence that the Y chromosome from the 129 inbred strain significantly reduced anxiety levels among daughters of B6-Chr(129) CSS-Y males. CONCLUSION We found that transgenerational genetic effects rival conventional genetic effects in frequency and strength, we suggest that some phenotypic variation found in conventional studies of complex traits are attributable in part to the action of genetic variants in previous generations, and we propose that transgenerational genetic effects contribute to 'missing heritability'.
Collapse
Affiliation(s)
- Vicki R Nelson
- Case Western Reserve University, School of Medicine, Cleveland, OH, USA
| | - Sabrina H Spezio
- Case Western Reserve University, School of Medicine, Cleveland, OH, USA
| | - Joseph H Nadeau
- Case Western Reserve University, School of Medicine, Cleveland, OH, USA
| |
Collapse
|
44
|
Rapley EA, Nathanson KL. Predisposition alleles for testicular germ cell tumour. Curr Opin Genet Dev 2010; 20:225-30. [DOI: 10.1016/j.gde.2010.02.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2010] [Revised: 02/18/2010] [Accepted: 02/19/2010] [Indexed: 01/21/2023]
|
45
|
Greene MH, Kratz CP, Mai PL, Mueller C, Peters JA, Bratslavsky G, Ling A, Choyke PM, Premkumar A, Bracci J, Watkins RJ, McMaster ML, Korde LA. Familial testicular germ cell tumors in adults: 2010 summary of genetic risk factors and clinical phenotype. Endocr Relat Cancer 2010; 17:R109-21. [PMID: 20228134 PMCID: PMC3101798 DOI: 10.1677/erc-09-0254] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Familial aggregations of testicular germ cell tumor (FTGCT) have been well described, suggesting the existence of a hereditary TGCT subset. Approximately 1.4% of newly diagnosed TGCT patients report a positive family history of TGCT. Sons and siblings of TGCT patients have four- to sixfold and eight- to tenfold increases in TGCT risk respectively. Segregation analyses suggest an autosomal recessive mode of inheritance. Linkage analyses have identified several genomic regions of modest interest, although no high-penetrance cancer susceptibility gene has been mapped yet. These data suggest that the combined effects of multiple common alleles, each conferring modest risk, might underlie familial testicular cancer. Families display a mild phenotype: the most common number of affected families is 2. Age at diagnosis is 2-3 years younger for familial versus sporadic cases. The ratio of familial seminoma to nonseminoma is 1.0. FTGCT is more likely to be bilateral than sporadic TGCT. This syndrome is cancer site specific. Testicular microlithiasis is a newly recognized FTGCT component. Candidate gene-association studies have implicated the Y chromosome gr/gr deletion and PDE11A gene mutations as genetic modifiers of FTGCT risk. Two genomewide association studies of predominantly sporadic but also familial cases of TGCT have implicated the KIT-ligand, SPRY4, and BAK1 genes as TGCT risk modifiers. All five loci are involved in normal testicular development and/or male infertility. These genetic data provide a novel insight into the genetic basis of FTGCT, and an invaluable guide to future TGCT research.
Collapse
Affiliation(s)
- Mark H Greene
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland 20852, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
This article defines familial testicular germ cell tumours (FTGCTs) as testicular germ cell tumours (TGCTs) diagnosed in at least two blood relatives, a situation which occurs in 1-2% of all cases of TGCT. Brothers and fathers of TGCT patients have an 8-10- and 4-6-fold increased risk of TGCT, respectively, and an even higher elevated risk of TGCT in twin brothers of men with TGCT has been observed, suggesting that genetic elements play an important role in these tumours. Nevertheless, previous linkage studies with multiple FTGCT families did not uncover any high-penetrance genes and it has been concluded that the combined effects of multiple common alleles, each conferring a modest risk, might underlie FTGCT. In agreement with this assumption, recent candidate gene-association analyses have identified the chromosome Y gr/gr deletion and mutations in the PDE11A gene as genetic modifiers of FTGCT risk. Moreover, two genome-wide association studies of predominantly sporadic but also familial cases of TGCT have identified three additional susceptibility loci, KITLG, SPRY4 and BAK1. Notably, all five loci are involved in the biology of primordial germ cells, representing the cell of origin of TGCT, suggesting that the tumours arise as a result of disturbed testicular development.
Collapse
Affiliation(s)
| | | | - Mark H. Greene
- Corresponding author. Tel.: +1 301-594-7641 (M.H. Greene)
| |
Collapse
|
47
|
Missing heritability and strategies for finding the underlying causes of complex disease. Nat Rev Genet 2010; 11:446-50. [PMID: 20479774 DOI: 10.1038/nrg2809] [Citation(s) in RCA: 1188] [Impact Index Per Article: 79.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Although recent genome-wide studies have provided valuable insights into the genetic basis of human disease, they have explained relatively little of the heritability of most complex traits, and the variants identified through these studies have small effect sizes. This has led to the important and hotly debated issue of where the 'missing heritability' of complex diseases might be found. Here, seven leading geneticists offer their opinion about where this heritability is likely to lie, what this could tell us about the underlying genetic architecture of common diseases and how this could inform research strategies for uncovering genetic risk factors.
Collapse
|
48
|
Local signalling environments and human male infertility: what we can learn from mouse models. Expert Rev Mol Med 2010; 12:e15. [PMID: 20456819 DOI: 10.1017/s1462399410001468] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Infertility is one of the most prevalent public health problems facing young adult males in today's society. A clear, treatable cause of infertility cannot be determined in a large number of these patients, and a growing body of evidence suggests that infertility in many of these men may be due to genetic causes. Studies using mouse knockout technology have been integral for examination of normal spermatogenesis and to identify proteins essential for this process, which in turn are candidate genes for human male infertility. Successful spermatogenesis depends on a delicate balance of local signalling factors, and this review focuses on the genes that encode these factors. Normal functioning of all testicular cell types is essential for fertility and might also be crucial to prevent germ cell oncogenesis. Analysis of these signalling processes in spermatogenesis using mouse models has provided investigators with an invaluable tool to effectively translate basic science research to the research of human disease and infertility.
Collapse
|
49
|
Nadeau JH. Transgenerational genetic effects on phenotypic variation and disease risk. Hum Mol Genet 2009; 18:R202-10. [PMID: 19808797 DOI: 10.1093/hmg/ddp366] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Traditionally, we understand that individual phenotypes result primarily from inherited genetic variants together with environmental exposures. However, many studies showed that a remarkable variety of factors including environmental agents, parental behaviors, maternal physiology, xenobiotics, nutritional supplements and others lead to epigenetic changes that can be transmitted to subsequent generations without continued exposure. Recent discoveries show transgenerational epistasis and transgenerational genetic effects where genetic factors in one generation affect phenotypes in subsequent generation without inheritance of the genetic variant in the parents. Together these discoveries implicate a key signaling pathway, chromatin remodeling, methylation, RNA editing and microRNA biology. This exceptional mode of inheritance complicates the search for disease genes and represents perhaps an adaptation to transmit useful gene expression profiles from one generation to the next. In this review, I present evidence for these transgenerational genetic effects, identify their common features, propose a heuristic model to guide the search for mechanisms, discuss the implications, and pose questions whose answers will begin to reveal the underlying mechanisms.
Collapse
Affiliation(s)
- Joseph H Nadeau
- Department of Genetics, Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA.
| |
Collapse
|
50
|
Anderson PD, Nelson VR, Tesar PJ, Nadeau JH. Genetic factors on mouse chromosome 18 affecting susceptibility to testicular germ cell tumors and permissiveness to embryonic stem cell derivation. Cancer Res 2009; 69:9112-7. [PMID: 19934337 DOI: 10.1158/0008-5472.can-09-3342] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Despite strong heritability, little is known about the genetic control of susceptibility to testicular germ cell tumors (TGCT) in humans or mice. Although the mouse model of spontaneous TGCTs has been extensively studied, conventional linkage analysis has failed to locate the factors that control teratocarcinogenesis in the susceptible 129 family of inbred strains. As an alternative approach, we used both chromosome substitution strains (CSS) to identify individual chromosomes that harbor susceptibility genes and a panel of congenic strains derived from a selected CSS to determine the number and location of susceptibility variants on the substituted chromosome. We showed that 129-Chr 18(MOLF) males are resistant to spontaneous TGCTs and that at least four genetic variants control susceptibility in males with this substituted chromosome. In addition, early embryonic cells from this strain fail to establish embryonic stem cell lines as efficiently as those from the parental 129/Sv strain. For the first time, 129-derived genetic variants that control TGCT susceptibility and fundamental aspects of embryonic stem cell biology have been localized in a genetic context in which the genes can be identified and functionally characterized.
Collapse
Affiliation(s)
- Philip D Anderson
- Department of Genetics, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | | | | | |
Collapse
|