1
|
Tortora K, Margheri F, Luceri C, Mocali A, Ristori S, Magnelli L, Caderni G, Giovannelli L. Colon fibroblasts from Pirc rats (F344/NTac-Apc am1137 ) exhibit a proliferative and inflammatory phenotype that could support early stages of colon carcinogenesis. Int J Cancer 2022; 150:362-373. [PMID: 34486752 PMCID: PMC9291568 DOI: 10.1002/ijc.33796] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 08/03/2021] [Accepted: 08/16/2021] [Indexed: 12/28/2022]
Abstract
The role of fibroblast APC mutation in carcinogenesis is not clear. Apc+/− colon fibroblasts have been previously characterized: however, little is known about their behavior at very early‐stage of colon carcinogenesis. We cultured colon mucosa fibroblasts (PCF, Apc+/−) of Pirc rats (F344/NTac‐Apcam1137) at an early stage of tumorigenesis, in absence of preneoplastic lesions, and of age‐matched wt (WCF): DNA damage levels, inflammatory phenotype and the expression of known markers of CAFs were analyzed. The latter were also assessed by microarray analysis on colon normal mucosa of Pirc and wt animals. PCF exhibited higher proliferative rates (P < .001) and delayed replicative senescence onset (P < .05) compared to WCF, along with a lower level of oxidative DNA damage (P < .05). Furthermore, a constitutively higher expression of COX‐2 and sensitivity to inflammatory stimuli was found in PCF compared to WCF (P < .05), accompanied by higher invasive capability (P < .05) and presence of cytoplasmic chromatin foci (cytoplasmic chromatin foci, P < .05). However, they neither expressed CAFs markers (α‐SMA, IL‐6) nor responded to CAFs activating stimuli (TGF‐β). Accordingly, CAFs markers and activating stimuli resulted down‐regulated in Pirc normal mucosa compared to wt, whereas DNA damage response and tolerance pathways were overexpressed. These data show for the first time that a proliferative and inflammatory phenotype characterizes Apc+/− colon fibroblasts since very early stages of colon tumorigenesis, and indicate a role of Apc mutation in driving fibroblast phenotypic alterations that could support the establishment of a protumorigenic environment. Early pharmacological targeting of these dysfunctions might impact on tumor prevention in FAP patients.
What's new?
Heterozygous mutations in APC represent the earliest event in sporadic colorectal carcinogenesis onset and cause familial adenomatous polyposis syndrome. However, the role of APC‐mutated fibroblasts remains unclear. Here, Apc+/‐ fibroblasts isolated from apparently‐normal colon tissue of Pirc rats showed proliferative, inflammatory features and resistance to oxidative DNA damage, although they did not show cancer‐associated fibroblast features. These data suggest that, at the very early stages of colon tumourigenesis, Apc‐mutated colon fibroblasts favour the establishment of a pro‐tumourigenic environment for pre‐neoplastic lesion development. Early pharmacological targeting of these dysfunctions might be valuable for tumour prevention in familial adenomatous polyposis patients.
Collapse
Affiliation(s)
- Katia Tortora
- NEUROFARBA Department, Pharmacology and Toxicology Section, University of Florence, Florence, Italy
| | - Francesca Margheri
- Department of Experimental and Clinical Biomedical Sciences Mario Serio, University of Florence, Florence, Italy
| | - Cristina Luceri
- NEUROFARBA Department, Pharmacology and Toxicology Section, University of Florence, Florence, Italy
| | - Alessandra Mocali
- Department of Experimental and Clinical Biomedical Sciences Mario Serio, University of Florence, Florence, Italy
| | - Sara Ristori
- NEUROFARBA Department, Pharmacology and Toxicology Section, University of Florence, Florence, Italy
| | - Lucia Magnelli
- Department of Experimental and Clinical Biomedical Sciences Mario Serio, University of Florence, Florence, Italy
| | - Giovanna Caderni
- NEUROFARBA Department, Pharmacology and Toxicology Section, University of Florence, Florence, Italy
| | - Lisa Giovannelli
- NEUROFARBA Department, Pharmacology and Toxicology Section, University of Florence, Florence, Italy
| |
Collapse
|
2
|
Preisler L, Habib A, Shapira G, Kuznitsov-Yanovsky L, Mayshar Y, Carmel-Gross I, Malcov M, Azem F, Shomron N, Kariv R, Hershkovitz D, Ben-Yosef D. Heterozygous APC germline mutations impart predisposition to colorectal cancer. Sci Rep 2021; 11:5113. [PMID: 33664379 PMCID: PMC7933349 DOI: 10.1038/s41598-021-84564-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 02/04/2021] [Indexed: 12/24/2022] Open
Abstract
Familial adenomatous polyposis (FAP) is an inherited syndrome caused by a heterozygous adenomatous polyposis coli (APC) germline mutation, associated with a profound lifetime risk for colorectal cancer. While it is well accepted that tumorigenic transformation is initiated following acquisition of a second mutation and loss of function of the APC gene, the role of heterozygous APC mutation in this process is yet to be discovered. This work aimed to explore whether a heterozygous APC mutation induces molecular defects underlying tumorigenic transformation and how different APC germline mutations predict disease severity. Three FAP-human embryonic stem cell lines (FAP1/2/3-hESC lines) carrying germline mutations at different locations of the APC gene, and two control hESC lines free of the APC mutation, were differentiated into colon organoids and analyzed by immunohistochemistry and RNA sequencing. In addition, data regarding the genotype and clinical phenotype of the embryo donor parents were collected from medical records. FAP-hESCs carrying a complete loss-of-function of a single APC allele (FAP3) generated complex and molecularly mature colon organoids, which were similar to controls. In contrast, FAP-hESCs carrying APC truncation mutations (FAP1 and FAP2) generated only few cyst-like structures and cell aggregates of various shape, occasionally with luminal parts, which aligned with their failure to upregulate critical differentiation genes early in the process, as shown by RNA sequencing. Abnormal disease phenotype was shown also in non-pathological colon of FAP patients by the randomly distribution of proliferating cells throughout the crypts, compared to their focused localization in the lower part of the crypt in healthy/non-FAP patients. Genotype/phenotype analysis revealed correlations between the colon organoid maturation potential and FAP severity in the carrier parents. In conclusion, this study suggest that a single truncated APC allele is sufficient to initiate early molecular tumorigenic activity. In addition, the results hint that patient-specific hESC-derived colon organoids can probably predict disease severity among FAP patients.
Collapse
Affiliation(s)
- Livia Preisler
- Wolfe PGD-Stem Cell Laboratory, Racine IVF Unit, Lis Maternity Hospital, Tel-Aviv Sourasky Medical Center, 64239, Tel-Aviv, Israel.,Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel
| | - Aline Habib
- Wolfe PGD-Stem Cell Laboratory, Racine IVF Unit, Lis Maternity Hospital, Tel-Aviv Sourasky Medical Center, 64239, Tel-Aviv, Israel.,Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel
| | - Guy Shapira
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel
| | - Liron Kuznitsov-Yanovsky
- Wolfe PGD-Stem Cell Laboratory, Racine IVF Unit, Lis Maternity Hospital, Tel-Aviv Sourasky Medical Center, 64239, Tel-Aviv, Israel.,Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel
| | - Yoav Mayshar
- Wolfe PGD-Stem Cell Laboratory, Racine IVF Unit, Lis Maternity Hospital, Tel-Aviv Sourasky Medical Center, 64239, Tel-Aviv, Israel.,Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Ilana Carmel-Gross
- Wolfe PGD-Stem Cell Laboratory, Racine IVF Unit, Lis Maternity Hospital, Tel-Aviv Sourasky Medical Center, 64239, Tel-Aviv, Israel
| | - Mira Malcov
- Wolfe PGD-Stem Cell Laboratory, Racine IVF Unit, Lis Maternity Hospital, Tel-Aviv Sourasky Medical Center, 64239, Tel-Aviv, Israel
| | - Foad Azem
- Wolfe PGD-Stem Cell Laboratory, Racine IVF Unit, Lis Maternity Hospital, Tel-Aviv Sourasky Medical Center, 64239, Tel-Aviv, Israel
| | - Noam Shomron
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel
| | - Revital Kariv
- Department of Gastroenterology, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel
| | - Dov Hershkovitz
- Institute of Pathology, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel
| | - Dalit Ben-Yosef
- Wolfe PGD-Stem Cell Laboratory, Racine IVF Unit, Lis Maternity Hospital, Tel-Aviv Sourasky Medical Center, 64239, Tel-Aviv, Israel. .,Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel.
| |
Collapse
|
3
|
The multifaceted roles of sulfane sulfur species in cancer-associated processes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1862:148338. [PMID: 33212042 DOI: 10.1016/j.bbabio.2020.148338] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/30/2020] [Accepted: 11/13/2020] [Indexed: 02/07/2023]
Abstract
Sulfane sulfur species comprise a variety of biologically relevant hydrogen sulfide (H2S)-derived species, including per- and poly-sulfidated low molecular weight compounds and proteins. A growing body of evidence suggests that H2S, currently recognized as a key signaling molecule in human physiology and pathophysiology, plays an important role in cancer biology by modulating cell bioenergetics and contributing to metabolic reprogramming. This is accomplished through functional modulation of target proteins via H2S binding to heme iron centers or H2S-mediated reversible per- or poly-sulfidation of specific cysteine residues. Since sulfane sulfur species are increasingly viewed not only as a major source of H2S but also as key mediators of some of the biological effects commonly attributed to H2S, the multifaceted role of these species in cancer biology is reviewed here with reference to H2S, focusing on their metabolism, signaling function, impact on cell bioenergetics and anti-tumoral properties.
Collapse
|
4
|
Ferrell SD, Ahmad I, Nguyen C, Petrova SC, Wilhelm SR, Ye Y, Barsky SH. Why is cancer so common a disease in people yet so rare at a cellular level? Med Hypotheses 2020; 144:110171. [PMID: 33254495 DOI: 10.1016/j.mehy.2020.110171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 08/06/2020] [Indexed: 11/17/2022]
Abstract
Cancers are common diseases in people and yet, on a cellular level, are quite rare. The vast majority of both sporadic, spontaneous cancers and inherited germline cancers arise in single foci from singly transformed cells despite the fact that, in the former, carcinogenic factors bathe fields of millions of potential target cells and, in the latter, the predisposing germline mutations are present in every cell of a given organ and, in fact, every cell of the body. Although the multi-hit theory of carcinogenesis has been invoked to explain such things as cancer latency, which is the period between cancer initiation and emergence and the cancer-aging relationship where an accumulation of "hits" over a period of time are necessary for cancer emergence, the multi-hit theory falls short in explaining the rareness of transformation at a cellular level. This is so because many cancers are not due to multiple hits, and even for those that are, it would be expected that many cells would be exposed to those factors inducing the hits. Although the tumor stem/progenitor cell compartmental theory of tumorigenesis characterizes a tumor compartment that is capable of self-renewal and multipotency, accounting for cancer relapses and recurrences, this compartmental theory alone cannot account for the rareness of initial transformation at a cellular level as the cancer stem/progenitor cell compartment is already transformed and considerable in size. This study advances a different and novel hypothesis that oncogenesis is regulated and ultimately determined by a cell of origin's critical state of differentiation. Before and after this critical state of differentiation has been reached, target cells cannot transform and give rise to cancer even when they receive the necessary carcinogenic insults or have the requisite transforming tumor suppressor genes or oncogenes. As support for this hypothesis, the study cites preliminary evidence using oncogene-containing transgenic mice that develop mammary carcinomas, to derive tail vein fibroblasts converted to iPSCs which, when left undifferentiated, and injected into the cleared fat pads of non-transgenic background mice give rise to mammary gland ontogeny and mammary gland carcinogenesis. However, when first differentiated in vitro into multiply different non-mammary lineages prior to injection, they fail to do so. The hypothesis has widespread implications for chemopreventive strategies.
Collapse
Affiliation(s)
- Stuart D Ferrell
- Cancer Center and Institute for Personalized Medicine, California University of Science and Medicine, 1501 Violet Street, Colton, CA 92324, USA
| | - Ihsaan Ahmad
- Cancer Center and Institute for Personalized Medicine, California University of Science and Medicine, 1501 Violet Street, Colton, CA 92324, USA
| | - Christine Nguyen
- Cancer Center and Institute for Personalized Medicine, California University of Science and Medicine, 1501 Violet Street, Colton, CA 92324, USA
| | - Sarah C Petrova
- Cancer Center and Institute for Personalized Medicine, California University of Science and Medicine, 1501 Violet Street, Colton, CA 92324, USA
| | - Sabrina R Wilhelm
- Cancer Center and Institute for Personalized Medicine, California University of Science and Medicine, 1501 Violet Street, Colton, CA 92324, USA
| | - Yin Ye
- Cancer Center and Institute for Personalized Medicine, California University of Science and Medicine, 1501 Violet Street, Colton, CA 92324, USA
| | - Sanford H Barsky
- Cancer Center and Institute for Personalized Medicine, California University of Science and Medicine, 1501 Violet Street, Colton, CA 92324, USA.
| |
Collapse
|
5
|
Dou X, Tong P, Huang H, Zellmer L, He Y, Jia Q, Zhang D, Peng J, Wang C, Xu N, Liao DJ. Evidence for immortality and autonomy in animal cancer models is often not provided, which causes confusion on key issues of cancer biology. J Cancer 2020; 11:2887-2920. [PMID: 32226506 PMCID: PMC7086263 DOI: 10.7150/jca.41324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 02/08/2020] [Indexed: 11/08/2022] Open
Abstract
Modern research into carcinogenesis has undergone three phases. Surgeons and pathologists started the first phase roughly 250 years ago, establishing morphological traits of tumors for pathologic diagnosis, and setting immortality and autonomy as indispensable criteria for neoplasms. A century ago, medical doctors, biologists and chemists started to enhance "experimental cancer research" by establishing many animal models of chemical-induced carcinogenesis for studies of cellular mechanisms. In this second phase, the two-hit theory and stepwise carcinogenesis of "initiation-promotion" or "initiation-promotion-progression" were established, with an illustrious finding that outgrowths induced in animals depend on the inducers, and thus are not authentically neoplastic, until late stages. The last 40 years are the third incarnation, molecular biologists have gradually dominated the carcinogenesis research fraternity and have established numerous genetically-modified animal models of carcinogenesis. However, evidence has not been provided for immortality and autonomy of the lesions from most of these models. Probably, many lesions had already been collected from animals for analyses of molecular mechanisms of "cancer" before the lesions became autonomous. We herein review the monumental work of many predecessors to reinforce that evidence for immortality and autonomy is essential for confirming a neoplastic nature. We extrapolate that immortality and autonomy are established early during sporadic human carcinogenesis, unlike the late establishment in most animal models. It is imperative to resume many forerunners' work by determining the genetic bases for initiation, promotion and progression, the genetic bases for immortality and autonomy, and which animal models are, in fact, good for identifying such genetic bases.
Collapse
Affiliation(s)
- Xixi Dou
- Shandong Provincial Key Laboratory of Transmucosal and Transdermal Drug Delivery, Shandong Freda Pharmaceutical Group Co., Ltd., Jinan 250101, Shandong Province, P.R. China
| | - Pingzhen Tong
- Department of Pathology, The Second Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang 550001, Guizhou Province, P.R. China
| | - Hai Huang
- Center for Clinical Laboratories, The Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou Province, P.R. China
| | - Lucas Zellmer
- Masonic Cancer Center, University of Minnesota, 435 E. River Road, Minneapolis, MN 55455, USA
| | - Yan He
- Key Lab of Endemic and Ethnic Diseases of The Ministry of Education of China in Guizhou Medical University, Guiyang, Guizhou Province 550004, P. R. China
| | - Qingwen Jia
- Shandong Provincial Key Laboratory of Transmucosal and Transdermal Drug Delivery, Shandong Freda Pharmaceutical Group Co., Ltd., Jinan 250101, Shandong Province, P.R. China
| | - Daizhou Zhang
- Shandong Provincial Key Laboratory of Transmucosal and Transdermal Drug Delivery, Shandong Freda Pharmaceutical Group Co., Ltd., Jinan 250101, Shandong Province, P.R. China
| | - Jiang Peng
- Department of Orthopaedics, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, Shandong Province, P.R. China
| | - Chenguang Wang
- Department of Orthopaedics, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, Shandong Province, P.R. China
| | - Ningzhi Xu
- Tianjin LIPOGEN Gene Technology Ltd., #238 Baidi Road, Nankai District, Tianjin 300192, P.R. China
| | - Dezhong Joshua Liao
- Department of Pathology, The Second Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang 550001, Guizhou Province, P.R. China
| |
Collapse
|
6
|
Tortora K, Vitali F, De Filippo C, Caderni G, Giovannelli L. DNA damage in colon mucosa of Pirc rats, an Apc-driven model of colon tumorigenesis. Toxicol Lett 2020; 324:12-19. [PMID: 32035981 DOI: 10.1016/j.toxlet.2020.02.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 01/15/2020] [Accepted: 02/02/2020] [Indexed: 02/08/2023]
Abstract
APC mutation is the first event triggering colon carcinogenesis (CRC). The contribution of APC to colon mucosa DNA damage is not well characterized yet. Similarly, the role of genotoxin-producer gut microorganisms is unclear. DNA strand breaks and oxidative damage were measured in Pirc rats, mutated in Apc, with the COMET assay at age 1 (T1) and 11 months (T11), i.e. in absence and presence of colon adenomas. In Pirc colon mucosa a 2-fold increase in the mean level of DNA oxidative damage was found at T11 compared to T1. Moreover, the analysis of DNA damage distribution showed that the proportion of Pirc mucosa cells in the highest DNA damage class was increased compared to wt rats at T1 and T11 months (p < 0.05 and <0.001, respectively). The analysis of colon mucosa-associated microbiota composition showed that this result was not attributable to the presence of genotoxin-producer bacteria B. fragilis nor E. coli. However, Pirc colon mucosa was enriched in Clostridium cluster XI, harmful bacteria in the large intestine, while the wt colon mucosa was enriched in Clostridium cluster IV. This work provides an original way to investigate the interplay between Apc and gut microbiota in affecting DNA stability during CRC.
Collapse
Affiliation(s)
- Katia Tortora
- NEUROFARBA Department, Pharmacology and Toxicology Section, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy
| | - Francesco Vitali
- Institute of Agricultural Biology and Biotechnology, National Research Council, Via Moruzzi, 1, 56124 Pisa, Italy
| | - Carlotta De Filippo
- Institute of Agricultural Biology and Biotechnology, National Research Council, Via Moruzzi, 1, 56124 Pisa, Italy
| | - Giovanna Caderni
- NEUROFARBA Department, Pharmacology and Toxicology Section, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy
| | - Lisa Giovannelli
- NEUROFARBA Department, Pharmacology and Toxicology Section, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy.
| |
Collapse
|
7
|
Crotti S, Bedin C, Bertazzo A, Digito M, Zuin M, Urso ED, Agostini M. Tryptophan Metabolism as Source of New Prognostic Biomarkers for FAP Patients. Int J Tryptophan Res 2019; 12:1178646919890293. [PMID: 31798304 PMCID: PMC6868567 DOI: 10.1177/1178646919890293] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 11/01/2019] [Indexed: 12/28/2022] Open
Abstract
Familial adenomatous polyposis (FAP), a common inherited form of colorectal cancer (CRC), causes the development of hundreds to thousands of colonic adenomas in the colorectum beginning in early adolescence. In absence of a prophylactic surgery, FAP patients almost inevitably develop CRC by the age of 40 to 50. The lack of valuable prognostic biomarkers for FAP patients makes it difficult to predict when the progression from adenoma to malignant carcinoma occurs. Decreased tryptophan (TRP) plasma levels and increased indoleamine 2,3-dioxygenase 1 (IDO1) and tryptophan hydroxylase 1 (TPH1) enzymatic activities have been associated to tumour progression in CRC. In the present study, we aimed at investigating whether an altered TRP metabolism might also exist in FAP patients. Our results highlighted that plasma levels of TRP and its main catabolites are comparable between FAP patients and healthy subject. On the contrary, FAP patients presented significantly higher TRP levels with respect to high-grade adenoma (ADE) subjects and CRC patients. Obtained data lead us to evaluate IDO1 and TPH1 enzymes activity in the study groups. For both enzymes, it was possible to discriminate correctly between FAP subject and ADE/CRC patients with high sensitivities and specificities. By receiver operating characteristic (ROC) curve analysis, the cut-off values of IDO1 and TPH1 enzymatic activities associated to the presence of an active malignant transformation have been calculated as >38 and >5.5, respectively. When these cut-off values are employed, the area under the curve (AUC) is > 0.8 for both, indicating that TRP metabolism in patients with FAP may be used to monitor and predict the tumorigenic evolution.
Collapse
Affiliation(s)
- Sara Crotti
- Nano-inspired Biomedicine Lab, Institute of Paediatric Research - Città della Speranza, Padua, Italy
| | - Chiara Bedin
- Nano-inspired Biomedicine Lab, Institute of Paediatric Research - Città della Speranza, Padua, Italy
| | - Antonella Bertazzo
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | - Maura Digito
- First Surgical Clinic Section, Department of Surgical, Oncological and Gastroenterological Sciences, University of Padua, Padua, Italy
| | - Matteo Zuin
- First Surgical Clinic Section, Department of Surgical, Oncological and Gastroenterological Sciences, University of Padua, Padua, Italy
| | - Emanuele Dl Urso
- First Surgical Clinic Section, Department of Surgical, Oncological and Gastroenterological Sciences, University of Padua, Padua, Italy
| | - Marco Agostini
- Nano-inspired Biomedicine Lab, Institute of Paediatric Research - Città della Speranza, Padua, Italy.,First Surgical Clinic Section, Department of Surgical, Oncological and Gastroenterological Sciences, University of Padua, Padua, Italy
| |
Collapse
|
8
|
Witherspoon M, Sandu D, Lu C, Wang K, Edwards R, Yeung A, Gelincik O, Manfredi G, Gross S, Kopelovich L, Lipkin S. ETHE1 overexpression promotes SIRT1 and PGC1α mediated aerobic glycolysis, oxidative phosphorylation, mitochondrial biogenesis and colorectal cancer. Oncotarget 2019; 10:4004-4017. [PMID: 31258845 PMCID: PMC6592291 DOI: 10.18632/oncotarget.26958] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 04/21/2019] [Indexed: 12/25/2022] Open
Abstract
Ethylmalonic Encephalopathy Protein 1 (ETHE1) is a sulfur dioxygenase that regulates cellular H2S levels. We previously demonstrated a significant increase of ETHE1 expression in "single-hit" colon epithelial cells from crypts of patients with Familial Adenomatous Polyposis (FAP). Here, we report elevated levels of ETHE1 expression and increased mitochondrial density occurring in-situ in phenotypically normal FAP colorectal mucosa. We also found that constitutive expression of ETHE1 increased aerobic glycolysis ("Warburg effect"), oxidative phosphorylation, and mitochondrial biogenesis in colorectal cancer (CRC) cell lines, thereby depleting H2S which relieved the inhibition of phosphodiesterase (PDE), and increased adenosine monophosphate (AMP) levels. This led to activation of the energy sensing AMP-activated protein kinase (AMPKp), Sirtuin1 (SIRT1) and peroxisome proliferator-activated receptor γ coactivator 1α (PGC1α), a master regulator of mitochondrial biogenesis. By contrast, shRNA silencing of ETHE1 reduced PDE activity, AMPKp/SIRT1/PGC1α levels and mitochondrial biogenesis. Constitutive expression of ETHE1 accelerated both CRC cell xenograft and orthotopic patient derived xenograft CRC cell growth in vivo. Overall, our data nominate elevated ETHE1 expression levels as a novel biomarker and potential therapeutic target for the prevention of CRC tumorigenesis.
Collapse
Affiliation(s)
- Mavee Witherspoon
- Department of Medicine, Weill Cornell College of Medicine, New York, NY, USA
| | - Davinder Sandu
- Department of Pharmacology, Weill Cornell College of Medicine, New York, NY, USA
| | - Changyuan Lu
- Department of Pharmacology, Weill Cornell College of Medicine, New York, NY, USA
| | - Kehui Wang
- Department of Pathology and Laboratory Medicine, University of Irvine School of Medicine, Irvine, CA, USA
| | - Robert Edwards
- Department of Pathology and Laboratory Medicine, University of Irvine School of Medicine, Irvine, CA, USA
| | | | - Ozkan Gelincik
- Department of Medicine, Weill Cornell College of Medicine, New York, NY, USA
| | - Giovanni Manfredi
- Department of Neurology, Weill Cornell College of Medicine, New York, NY, USA
| | - Steven Gross
- Department of Pharmacology, Weill Cornell College of Medicine, New York, NY, USA
| | - Levy Kopelovich
- Department of Medicine, Weill Cornell College of Medicine, New York, NY, USA
| | - Steven Lipkin
- Department of Medicine, Weill Cornell College of Medicine, New York, NY, USA
| |
Collapse
|
9
|
Phatak A, Athar M, Crowell JA, Leffel D, Herbert BS, Bale AE, Kopelovich L. Global gene expression of histologically normal primary skin cells from BCNS subjects reveals "single-hit" effects that are influenced by rapamycin. Oncotarget 2019; 10:1360-1387. [PMID: 30858923 PMCID: PMC6402716 DOI: 10.18632/oncotarget.26640] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Accepted: 01/11/2019] [Indexed: 02/05/2023] Open
Abstract
Studies of dominantly heritable cancers enabled insights about tumor progression. BCNS is a dominantly inherited disorder that is characterized by developmental abnormalities and postnatal neoplasms, principally BCCs. We performed an exploratory gene expression profiling of primary cell cultures derived from clinically unaffected skin biopsies of BCNS gene-carriers (PTCH1+/-) and normal individuals. PCA and HC of untreated keratinocytes or fibroblasts failed to clearly distinguish BCNS samples from controls. These results are presumably due to the common suppression of canonical HH signaling in vitro. We then used a relaxed threshold (p-value <0.05, no FDR cut-off; FC 1.3) that identified a total of 585 and 857 genes differentially expressed in BCNS keratinocytes and fibroblasts samples, respectively. A GSEA identified pancreatic β cell hallmark and mTOR signaling genes in BCNS keratinocytes, whereas analyses of BCNS fibroblasts identified gene signatures regulating pluripotency of stem cells, including WNT pathway. Significantly, rapamycin treatment (FDR<0.05), affected a total of 1411 and 4959 genes in BCNS keratinocytes and BCNS fibroblasts, respectively. In contrast, rapamycin treatment affected a total of 3214 and 4797 genes in normal keratinocytes and normal fibroblasts, respectively. The differential response of BCNS cells to rapamycin involved 599 and 1463 unique probe sets in keratinocytes and fibroblasts, respectively. An IPA of these genes in the presence of rapamycin pointed to hepatic fibrosis/stellate cell activation, and HIPPO signaling in BCNS keratinocytes, whereas mitochondrial dysfunction and AGRN expression were uniquely enriched in BCNS fibroblasts. The gene expression changes seen here are likely involved in the etiology of BCCs and they may represent biomarkers/targets for early intervention.
Collapse
Affiliation(s)
- Amruta Phatak
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Mohammad Athar
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - David Leffel
- Department of Dermatology, Yale School of Medicine, New Haven, CT, USA
| | - Brittney-Shea Herbert
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Allen E Bale
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | - Levy Kopelovich
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|
10
|
Lori G, Paoli P, Femia AP, Pranzini E, Caselli A, Tortora K, Romagnoli A, Raugei G, Caderni G. Morin-dependent inhibition of low molecular weight protein tyrosine phosphatase (LMW-PTP) restores sensitivity to apoptosis during colon carcinogenesis: Studies in vitro and in vivo, in an Apc-driven model of colon cancer. Mol Carcinog 2019; 58:686-698. [PMID: 30582224 DOI: 10.1002/mc.22962] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 11/22/2018] [Accepted: 12/06/2018] [Indexed: 02/06/2023]
Abstract
LMW-PTP has been associated with the development of colorectal cancer (CRC) and with the resistance to chemotherapy in cancer cells. To clarify its role in vivo, we studied LMW-PTP expression in Pirc rats (F344/NTac-Apc am1137 ), genetically prone to CRC and resistant to apoptosis. In the morphologically normal mucosa (NM) of Pirc rats, a dramatic over-expression of LMW-PTP was found compared to wt rats (about 60 times higher). Moreover, LMW-PTP levels further increase in spontaneously developed Pirc colon tumors. To understand if and how LMW-PTP affects resistance to apoptosis, we studied CRC cell lines, sensitive (HT29 and HCT-116), or resistant (HT29R, HCT116R) to 5-Fluorouracil (5-FU): resistant cells over-express LMW-PTP. When resistant cells were challenged with morin, a polyphenol inhibiting LMW-PTP, a fast and dose-related down-regulation of LMW-PTP was observed. 5-FU and morin co-treatment dramatically decreased cell viability, increased apoptosis, and significantly impaired self-renewal ability of all the cancer cell lines we have studied. Similarly, we observed that, in Pirc rats, one-week morin administration (50 mg/kg) down-regulated LMW-PTP and restored the apoptotic response to 5-FU in the NM. Finally, administration of morin for a longer period led to a significant reduction in colon precancerous lesions, together with a down-regulation of LMW-PTP. Taken together, these results document the involvement of LMW-PTP in the process of CRC in vitro and in vivo. Morin treatment may be envisaged as a system to increase the sensitivity to chemotherapy and to prevent carcinogenesis.
Collapse
Affiliation(s)
- Giulia Lori
- Department of Experimental and Clinical Biomedical Sciences"Mario Serio", University of Florence, Florence, Italy
| | - Paolo Paoli
- Department of Experimental and Clinical Biomedical Sciences"Mario Serio", University of Florence, Florence, Italy
| | - Angelo Pietro Femia
- NEUROFARBA Department, Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Erica Pranzini
- Department of Experimental and Clinical Biomedical Sciences"Mario Serio", University of Florence, Florence, Italy
| | - Anna Caselli
- Department of Experimental and Clinical Biomedical Sciences"Mario Serio", University of Florence, Florence, Italy
| | - Katia Tortora
- NEUROFARBA Department, Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Andrea Romagnoli
- NEUROFARBA Department, Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Giovanni Raugei
- Department of Experimental and Clinical Biomedical Sciences"Mario Serio", University of Florence, Florence, Italy
| | - Giovanna Caderni
- NEUROFARBA Department, Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| |
Collapse
|
11
|
Sommer CA, Capilla A, Molina-Estevez FJ, Gianotti-Sommer A, Skvir N, Caballero I, Chowdhury S, Mostoslavsky G. Modeling APC mutagenesis and familial adenomatous polyposis using human iPS cells. PLoS One 2018; 13:e0200657. [PMID: 30024920 PMCID: PMC6053155 DOI: 10.1371/journal.pone.0200657] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 06/30/2018] [Indexed: 01/31/2023] Open
Abstract
Mutations in the gene Adenomatous Polyposis Coli or APC appear in most sporadic cases of colorectal cancer and it is the most frequent mutation causing hereditary Familial Adenomatous Polyposis. The detailed molecular mechanism by which APC mutations predispose to the development of colorectal cancer is not completely understood. This is in part due to the lack of accessibility to appropriate models that recapitulate the early events associated with APC mediated intestinal transformation. We have established a novel platform utilizing human induced Pluripotent Stem cells or iPSC from normal or FAP-specific APC mutant individuals and evaluated the effect of the mutation in the cells before and after differentiation into intestinal organoids. In order to minimize genetic background effects, we also established an isogenic platform using TALEN-mediated gene editing. Comparison of normal and APC mutant iPSC revealed a significant defect in cell identity and polarity due to the presence of APC in heterozygosity as well as chromosomal aberrations including abnormal anaphases and centrosome numbers. Importantly, upon specification into intestinal progeny, APC heterozygosity was responsible for a major change in the transcriptional identity of the cells with dysregulation of key signaling pathways, including metabolic reprogramming, abnormal lipid metabolism and intestinal-specific cadherin expression. In conclusion, we have developed a novel iPSC/intestinal model of APC mutagenesis and provide strong evidence that APC in heterozygosity imparts a clear phenotypic and molecular defect, affecting basic cellular functions and integrity, providing novel insights in the earlier events of APC-mediated tumorigenesis.
Collapse
Affiliation(s)
- Cesar A. Sommer
- Section of Gastroenterology, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
- Center for Regenerative Medicine (CReM), Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Amalia Capilla
- Section of Gastroenterology, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
- Center for Regenerative Medicine (CReM), Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Francisco J. Molina-Estevez
- Section of Gastroenterology, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
- Center for Regenerative Medicine (CReM), Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Andreia Gianotti-Sommer
- Section of Gastroenterology, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
- Center for Regenerative Medicine (CReM), Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Nicholas Skvir
- Center for Regenerative Medicine (CReM), Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Ignacio Caballero
- Center for Regenerative Medicine (CReM), Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Sanjib Chowdhury
- Section of Gastroenterology, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Gustavo Mostoslavsky
- Section of Gastroenterology, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
- Center for Regenerative Medicine (CReM), Boston University School of Medicine, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
12
|
Gioria S, Urbán P, Hajduch M, Barboro P, Cabaleiro N, La Spina R, Chassaigne H. Proteomics study of silver nanoparticles on Caco-2 cells. Toxicol In Vitro 2018; 50:347-372. [PMID: 29626626 PMCID: PMC6021817 DOI: 10.1016/j.tiv.2018.03.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 03/28/2018] [Accepted: 03/29/2018] [Indexed: 12/20/2022]
Abstract
Silver nanoparticles (AgNPs) have been incorporated into several consumer products. While these advances in technology are promising and exciting, the effects of these nanoparticles have not equally been studied. Due to the size, AgNPs can penetrate the body through oral exposure and reach the gastrointestinal tract. The present study was designed as a comparative proteomic analysis of Caco-2 cells, used as an in vitro model of the small intestine, exposed to 30 nm citrate stabilized-silver nanoparticles (AgNPs) for 24 or 72 h. Using two complementary proteomic approaches, 2D gel-based and label-free mass spectrometry, we present insight into the effects of AgNPs at proteins level. Exposure of 1 or 10 μg/mL AgNPs to Caco-2 cells resulted in 56 and 88 altered proteins at 24 h and 72 h respectively, by 2D gel-based technique. Ten of these proteins were found to be common between the two time-points. Using label-free mass spectrometry technique, 291 and 179 altered proteins were found at 24 h and 72 h, of which 24 were in common. Analysis of the proteomes showed several major biological processes altered, from which, cell cycle, cell morphology, cellular function and maintenance were the most affected. Comparison between 2D gel-based vs label-free MS based proteomics study Significant changes in the protein profiles of Caco-2 cells exposed to AgNPs. Contribute to understand the mechanisms of action of AgNPs
Collapse
Affiliation(s)
- Sabrina Gioria
- European Commission, Joint Research Centre (JRC), Directorate F - Health, Consumers and Reference Materials, Via Enrico Fermi 2749, I-21027 Ispra, VA, Italy.
| | - Patricia Urbán
- European Commission, Joint Research Centre (JRC), Directorate F - Health, Consumers and Reference Materials, Via Enrico Fermi 2749, I-21027 Ispra, VA, Italy
| | - Martin Hajduch
- European Commission, Joint Research Centre (JRC), Directorate F - Health, Consumers and Reference Materials, Via Enrico Fermi 2749, I-21027 Ispra, VA, Italy
| | - Paola Barboro
- Academic Unit of Medical Oncology, Ospedale Policlinico San Martino, L.go R. Benzi 10, 16132 Genova, Italy
| | - Noelia Cabaleiro
- European Commission, Joint Research Centre (JRC), Directorate F - Health, Consumers and Reference Materials, Via Enrico Fermi 2749, I-21027 Ispra, VA, Italy
| | - Rita La Spina
- European Commission, Joint Research Centre (JRC), Directorate F - Health, Consumers and Reference Materials, Via Enrico Fermi 2749, I-21027 Ispra, VA, Italy
| | - Hubert Chassaigne
- European Commission, Joint Research Centre (JRC), Directorate F - Health, Consumers and Reference Materials, Via Enrico Fermi 2749, I-21027 Ispra, VA, Italy
| |
Collapse
|
13
|
Peri S, Caretti E, Tricarico R, Devarajan K, Cheung M, Sementino E, Menges CW, Nicolas E, Vanderveer LA, Howard S, Conrad P, Crowell JA, Campbell KS, Ross EA, Godwin AK, Yeung AT, Clapper ML, Uzzo RG, Henske EP, Ricketts CJ, Vocke CD, Linehan WM, Testa JR, Bellacosa A, Kopelovich L, Knudson AG. Haploinsufficiency in tumor predisposition syndromes: altered genomic transcription in morphologically normal cells heterozygous for VHL or TSC mutation. Oncotarget 2017; 8:17628-17642. [PMID: 27682873 PMCID: PMC5392274 DOI: 10.18632/oncotarget.12192] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 09/07/2016] [Indexed: 02/01/2023] Open
Abstract
Tumor suppressor genes and their effector pathways have been identified for many dominantly heritable cancers, enabling efforts to intervene early in the course of disease. Our approach on the subject of early intervention was to investigate gene expression patterns of morphologically normal "one-hit" cells before they become hemizygous or homozygous for the inherited mutant gene which is usually required for tumor formation. Here, we studied histologically non-transformed renal epithelial cells from patients with inherited disorders that predispose to renal tumors, including von Hippel-Lindau (VHL) disease and Tuberous Sclerosis (TSC). As controls, we studied histologically normal cells from non-cancerous renal epithelium of patients with sporadic clear cell renal cell carcinoma (ccRCC). Gene expression analyses of VHLmut/wt or TSC1/2mut/wt versus wild-type (WT) cells revealed transcriptomic alterations previously implicated in the transition to precancerous renal lesions. For example, the gene expression changes in VHLmut/wt cells were consistent with activation of the hypoxia response, associated, in part, with the "Warburg effect". Knockdown of any remaining VHL mRNA using shRNA induced secondary expression changes, such as activation of NFκB and interferon pathways, that are fundamentally important in the development of RCC. We posit that this is a general pattern of hereditary cancer predisposition, wherein haploinsufficiency for VHL or TSC1/2, or potentially other tumor susceptibility genes, is sufficient to promote development of early lesions, while cancer results from inactivation of the remaining normal allele. The gene expression changes identified here are related to the metabolic basis of renal cancer and may constitute suitable targets for early intervention.
Collapse
Affiliation(s)
- Suraj Peri
- Department of Biostatistics and Bioinformatics, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Elena Caretti
- Cancer Epigenetics, Fox Chase Cancer Center, Philadelphia, PA, USA
| | | | - Karthik Devarajan
- Department of Biostatistics and Bioinformatics, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Mitchell Cheung
- Cancer Biology, Fox Chase Cancer Center, Philadelphia, PA, USA
| | | | - Craig W. Menges
- Cancer Biology, Fox Chase Cancer Center, Philadelphia, PA, USA
| | | | - Lisa A. Vanderveer
- Cancer Prevention and Control, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Sharon Howard
- Blood Cell Development and Function, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Peggy Conrad
- University of California San Francisco, San Francisco, CA, USA
| | - James A. Crowell
- Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, NCI, Rockville, MD, USA
| | - Kerry S. Campbell
- Blood Cell Development and Function, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Eric A. Ross
- Department of Biostatistics and Bioinformatics, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Andrew K. Godwin
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Anthony T. Yeung
- Cancer Prevention and Control, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Margie L. Clapper
- Cancer Prevention and Control, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Robert G. Uzzo
- Cancer Biology, Fox Chase Cancer Center, Philadelphia, PA, USA
- Kidney Cancer Programs, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Elizabeth P. Henske
- Brigham and Womens Hospital, Harvard Medical School, Boston, MA, NCI, Bethesda, MD, USA
| | - Christopher J. Ricketts
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute Bethesda, MD, USA
| | - Cathy D. Vocke
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute Bethesda, MD, USA
| | - W. Marston Linehan
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute Bethesda, MD, USA
| | - Joseph R. Testa
- Cancer Biology, Fox Chase Cancer Center, Philadelphia, PA, USA
- Kidney Cancer Programs, Fox Chase Cancer Center, Philadelphia, PA, USA
| | | | - Levy Kopelovich
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | | |
Collapse
|
14
|
Increased variability in Apc(Min)/+ intestinal tissue can be measured with microultrasound. Sci Rep 2016; 6:29570. [PMID: 27406832 PMCID: PMC4942766 DOI: 10.1038/srep29570] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 06/23/2016] [Indexed: 02/08/2023] Open
Abstract
Altered tissue structure is a feature of many disease states and is usually measured by microscopic methods, limiting analysis to small areas. Means to rapidly and quantitatively measure the structure and organisation of large tissue areas would represent a major advance not just for research but also in the clinic. Here, changes in tissue organisation that result from heterozygosity in Apc, a precancerous situation, are comprehensively measured using microultrasound and three-dimensional high-resolution microscopy. Despite its normal appearance in conventionally examined cross-sections, both approaches revealed a significant increase in the variability of tissue organisation in Apc heterozygous tissue. These changes preceded the formation of aberrant crypt foci or adenoma. Measuring these premalignant changes using microultrasound provides a potential means to detect microscopically abnormal regions in large tissue samples, independent of visual examination or biopsies. Not only does this provide a powerful tool for studying tissue structure in experimental settings, the ability to detect and monitor tissue changes by microultrasound could be developed into a powerful adjunct to screening endoscopy in the clinic.
Collapse
|
15
|
Carlomagno N, Duraturo F, Candida M, De Rosa M, Varone V, Ciancia G, Calogero A, Santangelo ML. Multiple splenic hamartomas and familial adenomatous polyposis: a case report and review of the literature. J Med Case Rep 2015; 9:154. [PMID: 26141168 PMCID: PMC4507323 DOI: 10.1186/s13256-015-0627-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 05/25/2015] [Indexed: 12/13/2022] Open
Abstract
Introduction Splenoma or splenic hamartoma is a rare primary splenic tumor most often discovered radiologically and incidentally. Splenic hamartomas have a strong association with solid and hematological malignancies and, in rare cases, with tuberous sclerosis, but to the best of our knowledge no reports of splenic hamartomas associated with familial adenomatous polyposis have been documented, although it is recognized that familial adenomatous polyposis presents a variety of extracolonic manifestations. Case presentation We report on a very rare case of multiple splenic hamartomas in a 46-year-old white woman who had previously undergone surgery for restorative proctocolectomy for familial adenomatous polyposis. A computed tomography scan of her spleen revealed multiple small lesions which measured less than 1cm in diameter. A splenectomy was performed and a histologic examination of the splenectomy specimen revealed the presence of multiple hamartomas. Conclusion Incidence, differential diagnosis, diagnostic procedures, pathologic findings and treatment of splenic hamartomas are discussed here and hamartomas are considered in a differential diagnosis of splenic tumors. A splenectomy is indicated in cases where malignancy cannot be excluded and in cases of associated hematologic disorders. To the best of our knowledge our patient is the first reported case to have splenic hamartomas identified in a familial adenomatous polyposis-affected patient with mutation in exon 15 of the APC gene. At this time it is not possible to correlate with certainty our multiple splenic hamartomas and familial adenomatous polyposis case as a clinical manifestation of the mutation of APC gene; however, we believe that this case report could be important for further observation of similar cases in the future. Electronic supplementary material The online version of this article (doi:10.1186/s13256-015-0627-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nicola Carlomagno
- General Surgery Unit - Advanced Biomedical Science Department, University Federico II of Naples, Via S. Pansini 5, 80131, Naples, Italy.
| | - Francesca Duraturo
- Molecular Medicine and Medical Biotechnology Department, University Federico II of Naples, Naples, Italy.
| | - Maria Candida
- General Surgery Unit - Advanced Biomedical Science Department, University Federico II of Naples, Via S. Pansini 5, 80131, Naples, Italy.
| | - Marina De Rosa
- Molecular Medicine and Medical Biotechnology Department, University Federico II of Naples, Naples, Italy.
| | - Valeria Varone
- Advanced Biomedical Science Department, University Federico II of Naples, Naples, Italy.
| | - Giuseppe Ciancia
- Advanced Biomedical Science Department, University Federico II of Naples, Naples, Italy.
| | - Armando Calogero
- General Surgery Unit - Advanced Biomedical Science Department, University Federico II of Naples, Via S. Pansini 5, 80131, Naples, Italy.
| | - Michele L Santangelo
- General Surgery Unit - Advanced Biomedical Science Department, University Federico II of Naples, Via S. Pansini 5, 80131, Naples, Italy.
| |
Collapse
|
16
|
Costabile V, Duraturo F, Delrio P, Rega D, Pace U, Liccardo R, Rossi GB, Genesio R, Nitsch L, Izzo P, De Rosa M. Lithium chloride induces mesenchymal‑to‑epithelial reverting transition in primary colon cancer cell cultures. Int J Oncol 2015; 46:1913-23. [PMID: 25738332 PMCID: PMC4383027 DOI: 10.3892/ijo.2015.2911] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2014] [Accepted: 12/18/2014] [Indexed: 12/21/2022] Open
Abstract
Epithelial-to-mesenchymal transition (EMT) confers stem cell-like phenotype and more motile properties to carcinoma cells. During EMT, the expression of E-cadherin decreases, resulting in loss of cell-cell adhesion and increased migration. Expression of Twist1 and other pleiotropic transcription factors, such as Snail, is known to activate EMT. We established primary colon cancer cell cultures from samples of operated patients and validated cultures by cytogenetic and molecular biology approaches. Western blot assay, quantitative real-time PCR and immunofluorescence were performed to investigate the expression of E-cadherin, vimentin, β-catenin, cytokeratin-20 and -18, Twist1, Snail, CD44, cyclooxygenase-2 (COX2), Sox2, Oct4 and Nanog. Moreover, cell differentiation was induced by incubation with LiCl-containing medium for 10 days. We observed that these primary colorectal cancer (CRC) cells lost expression of the E-cadherin epithelial marker, which was instead expressed in cancer and normal colon mucosa of the same patient, while overexpressed vimentin (mesenchymal marker), Twist1, Snail (EMT markers) and COX2. Cytokeratin-18 was expressed both in tissues and cell cultures. Expression of stem cell markers, such as CD44, Oct4 and Nanog, were also observed. Following differentiation with the glycogen synthase kinase 3β (GSK3β) inhibitor LiCl, the cells began to express E-cadherin and, at once, Twist1 and Snail expression was strongly downregulated, suggesting a MET-reverting process. In conclusion, we established primary colon mesenchymal cancer cell cultures expressing mesenchymal and epithelial biomarkers together with high level of EMT transcription factors. We propose that they could represent a good model for studying EMT and its reverting mechanism, the mesenchymal-to-epithelial transition (MET). Our observation indicates that LiCl, a GSK3β inhibitor, induces MET in vitro, suggesting that LiCl and GSK3β could represent, respectively, interesting drug, and target for CRC therapy.
Collapse
Affiliation(s)
- Valeria Costabile
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico Ⅱ, I‑80131 Naples, Italy
| | - Francesca Duraturo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico Ⅱ, I‑80131 Naples, Italy
| | - Paolo Delrio
- Colorectal Surgical Oncology, Istituto Nazionale per lo Studio e la Cura dei Tumori, ̔Fondazione Giovanni Pascale̓ IRCCS, I‑80131 Naples, Italy
| | - Daniela Rega
- Colorectal Surgical Oncology, Istituto Nazionale per lo Studio e la Cura dei Tumori, ̔Fondazione Giovanni Pascale̓ IRCCS, I‑80131 Naples, Italy
| | - Ugo Pace
- Colorectal Surgical Oncology, Istituto Nazionale per lo Studio e la Cura dei Tumori, ̔Fondazione Giovanni Pascale̓ IRCCS, I‑80131 Naples, Italy
| | - Raffaella Liccardo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico Ⅱ, I‑80131 Naples, Italy
| | - Giovanni Battista Rossi
- Endoscopy Unit, Istituto Nazionale per lo Studio e la Cura dei Tumori, ̔Fondazione Giovanni Pascale̓ IRCCS, I‑80131 Naples, Italy
| | - Rita Genesio
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico Ⅱ, I‑80131 Naples, Italy
| | - Lucio Nitsch
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico Ⅱ, I‑80131 Naples, Italy
| | - Paola Izzo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico Ⅱ, I‑80131 Naples, Italy
| | - Marina De Rosa
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico Ⅱ, I‑80131 Naples, Italy
| |
Collapse
|
17
|
Femia AP, Luceri C, Soares PV, Lodovici M, Caderni G. Multiple mucin depleted foci, high proliferation and low apoptotic response in the onset of colon carcinogenesis of the PIRC rat, mutated inApc. Int J Cancer 2014; 136:E488-95. [DOI: 10.1002/ijc.29232] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 08/26/2014] [Accepted: 09/17/2014] [Indexed: 11/08/2022]
Affiliation(s)
- Angelo Pietro Femia
- Section of Pharmacology and Toxicology; NEUROFARBA Department, University of Florence; 6 Viale Pieraccini 50139 Florence Italy
| | - Cristina Luceri
- Section of Pharmacology and Toxicology; NEUROFARBA Department, University of Florence; 6 Viale Pieraccini 50139 Florence Italy
| | - Paulo Victoria Soares
- Department of Pathology and Legal Medicine; Faculty of Medicine of Ribeirão Preto; University of São Paulo Brasil
| | - Maura Lodovici
- Section of Pharmacology and Toxicology; NEUROFARBA Department, University of Florence; 6 Viale Pieraccini 50139 Florence Italy
| | - Giovanna Caderni
- Section of Pharmacology and Toxicology; NEUROFARBA Department, University of Florence; 6 Viale Pieraccini 50139 Florence Italy
| |
Collapse
|
18
|
Abstract
Intestinal stem cells (ISCs) and colorectal cancer (CRC) biology are tightly linked in many aspects. It is generally thought that ISCs are the cells of origin for a large proportion of CRCs and crucial ISC-associated signalling pathways are often affected in CRCs. Moreover, CRCs are thought to retain a cellular hierarchy that is reminiscent of the intestinal epithelium. Recent studies offer quantitative insights into the dynamics of ISC behaviour that govern homeostasis and thereby provide the necessary baseline parameters to begin to apply these analyses during the various stages of tumour development.
Collapse
Affiliation(s)
- Louis Vermeulen
- 1] Laboratory for Experimental Oncology and Radiobiology, Center for Experimental Molecular Medicine, Academic Medical Center, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands. [2] Cancer Research UK - Cambridge Institute, University of Cambridge, Robinson Way, CB2 0RE, Cambridge, UK
| | - Hugo J Snippert
- Molecular Cancer Research and Cancer Genomics Netherlands, Center for Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
| |
Collapse
|
19
|
Bhatlekar S, Addya S, Salunek M, Orr CR, Surrey S, McKenzie S, Fields JZ, Boman BM. Identification of a developmental gene expression signature, including HOX genes, for the normal human colonic crypt stem cell niche: overexpression of the signature parallels stem cell overpopulation during colon tumorigenesis. Stem Cells Dev 2013; 23:167-79. [PMID: 23980595 DOI: 10.1089/scd.2013.0039] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Our goal was to identify a unique gene expression signature for human colonic stem cells (SCs). Accordingly, we determined the gene expression pattern for a known SC-enriched region--the crypt bottom. Colonic crypts and isolated crypt subsections (top, middle, and bottom) were purified from fresh, normal, human, surgical specimens. We then used an innovative strategy that used two-color microarrays (∼18,500 genes) to compare gene expression in the crypt bottom with expression in the other crypt subsections (middle or top). Array results were validated by PCR and immunostaining. About 25% of genes analyzed were expressed in crypts: 88 preferentially in the bottom, 68 in the middle, and 131 in the top. Among genes upregulated in the bottom, ∼30% were classified as growth and/or developmental genes including several in the PI3 kinase pathway, a six-transmembrane protein STAMP1, and two homeobox (HOXA4, HOXD10) genes. qPCR and immunostaining validated that HOXA4 and HOXD10 are selectively expressed in the normal crypt bottom and are overexpressed in colon carcinomas (CRCs). Immunostaining showed that HOXA4 and HOXD10 are co-expressed with the SC markers CD166 and ALDH1 in cells at the normal crypt bottom, and the number of these co-expressing cells is increased in CRCs. Thus, our findings show that these two HOX genes are selectively expressed in colonic SCs and that HOX overexpression in CRCs parallels the SC overpopulation that occurs during CRC development. Our study suggests that developmental genes play key roles in the maintenance of normal SCs and crypt renewal, and contribute to the SC overpopulation that drives colon tumorigenesis.
Collapse
Affiliation(s)
- Seema Bhatlekar
- 1 Center for Translational Cancer Research, Helen F. Graham Cancer Center and Research Institute, University of Delaware , Newark, Delaware
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Jones KA, Kim PD, Patel BB, Kelsen SG, Braverman A, Swinton DJ, Gafken PR, Jones LA, Lane WS, Neveu JM, Leung HCE, Shaffer SA, Leszyk JD, Stanley BA, Fox TE, Stanley A, Hall MJ, Hampel H, South CD, de la Chapelle A, Burt RW, Jones DA, Kopelovich L, Yeung AT. Immunodepletion plasma proteomics by tripleTOF 5600 and Orbitrap elite/LTQ-Orbitrap Velos/Q exactive mass spectrometers. J Proteome Res 2013; 12:4351-65. [PMID: 24004147 PMCID: PMC3817719 DOI: 10.1021/pr400307u] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Plasma proteomic experiments performed rapidly and economically using several of the latest high-resolution mass spectrometers were compared. Four quantitative hyperfractionated plasma proteomics experiments were analyzed in replicates by two AB SCIEX TripleTOF 5600 and three Thermo Scientific Orbitrap (Elite/LTQ-Orbitrap Velos/Q Exactive) instruments. Each experiment compared two iTRAQ isobaric-labeled immunodepleted plasma proteomes, provided as 30 labeled peptide fractions, and 480 LC-MS/MS runs delivered >250 GB of data in 2 months. Several analysis algorithms were compared. At 1% false discovery rate, the relative comparative findings concluded that the Thermo Scientific Q Exactive Mass Spectrometer resulted in the highest number of identified proteins and unique sequences with iTRAQ quantitation. The confidence of iTRAQ fold-change for each protein is dependent on the overall ion statistics (Mascot Protein Score) attainable by each instrument. The benchmarking also suggested how to further improve the mass spectrometry parameters and HPLC conditions. Our findings highlight the special challenges presented by the low abundance peptide ions of iTRAQ plasma proteome because the dynamic range of plasma protein abundance is uniquely high compared with cell lysates, necessitating high instrument sensitivity.
Collapse
Affiliation(s)
| | | | | | - Steven G Kelsen
- Temple University School of Medicine, Philadelphia, PA 19140
| | - Alan Braverman
- Temple University School of Medicine, Philadelphia, PA 19140
| | | | - Philip R Gafken
- Proteomics Shared Resources, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| | - Lisa A Jones
- Proteomics Shared Resources, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| | - William S Lane
- Mass Spectrometry and Proteomics Resource Laboratory, Harvard University, Cambridge, MA 02138
| | - John M Neveu
- Mass Spectrometry and Proteomics Resource Laboratory, Harvard University, Cambridge, MA 02138
| | - Hon-Chiu E Leung
- Mass Spectrometry and Proteomics Core Facility, Baylor College of Medicine, Houston, TX 77030
| | - Scott A Shaffer
- Proteomics and Mass Spectrometry Facility, University of Massachusetts Medical School, Worcester, MA 01545
| | - John D Leszyk
- Proteomics and Mass Spectrometry Facility, University of Massachusetts Medical School, Worcester, MA 01545
| | - Bruce A Stanley
- Mass Spectrometry Core, Penn State College of Medicine, Hershey, PA 17033
| | - Todd E Fox
- Mass Spectrometry Core, Penn State College of Medicine, Hershey, PA 17033
| | - Anne Stanley
- Mass Spectrometry Core, Penn State College of Medicine, Hershey, PA 17033
| | | | - Heather Hampel
- Human Cancer Genetics Program, the Ohio State University, Columbus, OH 43210
| | - Christopher D South
- Human Cancer Genetics Program, the Ohio State University, Columbus, OH 43210
| | | | - Randall W Burt
- Huntsman Cancer Institute, the U. of Utah, Salt Lake City, UT 84112
| | - David A Jones
- Huntsman Cancer Institute, the U. of Utah, Salt Lake City, UT 84112
| | - Levy Kopelovich
- Division of Cancer Prevention, National Cancer Institute, Bethesda, MD 20892
| | | |
Collapse
|
21
|
Kopelovich L, Shea-Herbert B. Heritable one-hit events defining cancer prevention? Cell Cycle 2013; 12:2553-7. [PMID: 23907126 DOI: 10.4161/cc.25690] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Over 100 years ago (1902-1914) Theodor Boveri suggested a role for mutations in cancer. Boveri's ideas were derived from the then "just-emerging" chromosome theory of inheritance. While demonstrating chromosomal aberrations as a cause of genetic imbalance, Boveri suggested that possible causes of malignancy may include events such as aneuploidy that are now defined as gene mutations, asserting all the while that malignancy occurs at the cellular level. Indeed, studies to date essentially uniformly show that cancer is a genetic disease.
Collapse
Affiliation(s)
- Levy Kopelovich
- Division of Cancer Prevention, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| | | |
Collapse
|
22
|
Rey C, Soubeyran I, Mahouche I, Pedeboscq S, Bessede A, Ichas F, De Giorgi F, Lartigue L. HIPK1 drives p53 activation to limit colorectal cancer cell growth. Cell Cycle 2013; 12:1879-91. [PMID: 23676219 DOI: 10.4161/cc.24927] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
HIPK1 (homeodomain interacting protein kinase 1) is a serine/threonine kinase that belongs to the CMGC superfamily. Emerging data point to the role of HIPK1 in cancer, but it is still not clear whether it acts as a tumor suppressor or promoter. Here we identified HIPK1 as a kinase that is significantly overexpressed in colorectal cancer (CRC) and whose expression is stage-dependent. Being abundantly expressed at the onset of the disease, the HIPK1 level gradually decreased as tumor stage progressed. To further uncover how this factor regulates tumorigenesis and establish whether it constitutes an early factor necessary for neoplastic transformation or for cellular defense, we studied the effect of its overexpression in vitro by investigating various cancer-related signaling cascades. We found that HIPK1 mostly regulates the p53 signaling pathway both in HCT116 and HeLa cells. By phosphorylating p53 on its serine-15, HIPK1 favored its transactivation potential, which led to a rise in p21 protein level and a decline in cell proliferation. Assuming that HIPK1 could impede CRC growth by turning on the p53/p21 pathway, we then checked p21 mRNA levels in patients. Interestingly, p21 transcripts were only increased in a subset of patients expressing high levels of HIPK1. Unlike the rest of the cohort, the majority of these patients hosted a native p53 protein, meaning that such a pro-survival pathway (HIPK1+ > p53 > p21) is active in patients, and that HIPK1 acts rather as a tumor suppressor.
Collapse
Affiliation(s)
- Christophe Rey
- INSERM U916, Institut Bergonié, Université de Bordeaux, Bordeaux, France
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Zhou S, Liu R, Yuan K, Yi T, Zhao X, Huang C, Wei Y. Proteomics analysis of tumor microenvironment: Implications of metabolic and oxidative stresses in tumorigenesis. MASS SPECTROMETRY REVIEWS 2012; 32:267-311. [PMID: 23165949 DOI: 10.1002/mas.21362] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Revised: 08/22/2012] [Accepted: 08/22/2012] [Indexed: 02/05/2023]
Abstract
Tumorigenesis is always concomitant with microenvironmental alterations. The tumor microenvironment is a heterogeneous and complex milieu, which exerts a variety of stresses on tumor cells for proliferation, survival, or death. Recently, accumulated evidence revealed that metabolic and oxidative stresses both play significant roles in tumor development and progression that converge on a common autophagic pathway. Tumor cells display increased metabolic autonomy, and the hallmark is the exploitation of aerobic glycolysis (termed Warburg effect), which increased glucose consumption and decreased oxidative phosphorylation to support growth and proliferation. This characteristic renders cancer cells more aggressive; they devour tremendous amounts of nutrients from microenvironment to result in an ever-growing appetite for new tumor vessel formation and the release of more "waste," including key determinants of cell fate like lactate and reactive oxygen species (ROS). The intracellular ROS level of cancer cells can also be modulated by a variety of stimuli in the tumor microenvironment, such as pro-growth and pro-inflammatory factors. The intracellular redox state serves as a double-edged sword in tumor development and progression: ROS overproduction results in cytotoxic effects and might lead to apoptotic cell death, whereas certain level of ROS can act as a second-messenger for regulation of such cellular processes as cell survival, proliferation, and metastasis. The molecular mechanisms for cancer cell responses to metabolic and oxidative stresses are complex and are likely to involve multiple molecules or signaling pathways. In addition, the expression and modification of these proteins after metabolic or oxidative stress challenge are diverse in different cancer cells and endow them with different functions. Therefore, MS-based high-throughput platforms, such as proteomics, are indispensable in the global analysis of cancer cell responses to metabolic and oxidative stress. Herein, we highlight recent advances in the understanding of the metabolic and oxidative stresses associated with tumor progression with proteomics-based systems biology approaches.
Collapse
Affiliation(s)
- Shengtao Zhou
- The State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | | | | | | | | | | | | |
Collapse
|
24
|
Maia AT, Antoniou AC, O'Reilly M, Samarajiwa S, Dunning M, Kartsonaki C, Chin SF, Curtis CN, McGuffog L, Domchek SM, Easton DF, Peock S, Frost D, Evans DG, Eeles R, Izatt L, Adlard J, Eccles D, Sinilnikova OM, Mazoyer S, Stoppa-Lyonnet D, Gauthier-Villars M, Faivre L, Venat-Bouvet L, Delnatte C, Nevanlinna H, Couch FJ, Godwin AK, Caligo MA, Barkardottir RB, Chen X, Beesley J, Healey S, Caldas C, Chenevix-Trench G, Ponder BAJ. Effects of BRCA2 cis-regulation in normal breast and cancer risk amongst BRCA2 mutation carriers. Breast Cancer Res 2012; 14:R63. [PMID: 22513257 PMCID: PMC3446398 DOI: 10.1186/bcr3169] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Revised: 01/30/2012] [Accepted: 04/18/2012] [Indexed: 01/22/2023] Open
Abstract
INTRODUCTION Cis-acting regulatory single nucleotide polymorphisms (SNPs) at specific loci may modulate penetrance of germline mutations at the same loci by introducing different levels of expression of the wild-type allele. We have previously reported that BRCA2 shows differential allelic expression and we hypothesize that the known variable penetrance of BRCA2 mutations might be associated with this mechanism. METHODS We combined haplotype analysis and differential allelic expression of BRCA2 in breast tissue to identify expression haplotypes and candidate cis-regulatory variants. These candidate variants underwent selection based on in silico predictions for regulatory potential and disruption of transcription factor binding, and were functionally analyzed in vitro and in vivo in normal and breast cancer cell lines. SNPs tagging the expression haplotypes were correlated with the total expression of several genes in breast tissue measured by Taqman and microarray technologies. The effect of the expression haplotypes on breast cancer risk in BRCA2 mutation carriers was investigated in 2,754 carriers. RESULTS We identified common haplotypes associated with differences in the levels of BRCA2 expression in human breast cells. We characterized three cis-regulatory SNPs located at the promoter and two intronic regulatory elements which affect the binding of the transcription factors C/EBPα, HMGA1, D-binding protein (DBP) and ZF5. We showed that the expression haplotypes also correlated with changes in the expression of other genes in normal breast. Furthermore, there was suggestive evidence that the minor allele of SNP rs4942440, which is associated with higher BRCA2 expression, is also associated with a reduced risk of breast cancer (per-allele hazard ratio (HR) = 0.85, 95% confidence interval (CI) = 0.72 to 1.00, P-trend = 0.048). CONCLUSIONS Our work provides further insights into the role of cis-regulatory variation in the penetrance of disease-causing mutations. We identified small-effect genetic variants associated with allelic expression differences in BRCA2 which could possibly affect the risk in mutation carriers through altering expression levels of the wild-type allele.
Collapse
Affiliation(s)
- Ana-Teresa Maia
- Cambridge Research Institute - CRUK, Li Ka Shing Centre, Cancer Research UK, Robinson Way, Cambridge, CB2 0RE, UK
- Department of Oncology, University of Cambridge, Addenbrooke's Hospital, Robinson Way, Cambridge, CB2 0RE, UK
- Institute for Biotechnology and Bioengineering, Centre for Molecular and Structural Biomedicine, Department of Biomedical Sciences and Medicine, Gambelas Campus, Building 7, University of Algarve, 8005-139 Faro, Portugal
| | - Antonis C Antoniou
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Worts Causeway, Cambridge CB1 8RN, UK
| | - Martin O'Reilly
- Cambridge Research Institute - CRUK, Li Ka Shing Centre, Cancer Research UK, Robinson Way, Cambridge, CB2 0RE, UK
| | - Shamith Samarajiwa
- Cambridge Research Institute - CRUK, Li Ka Shing Centre, Cancer Research UK, Robinson Way, Cambridge, CB2 0RE, UK
- Department of Oncology, University of Cambridge, Addenbrooke's Hospital, Robinson Way, Cambridge, CB2 0RE, UK
| | - Mark Dunning
- Cambridge Research Institute - CRUK, Li Ka Shing Centre, Cancer Research UK, Robinson Way, Cambridge, CB2 0RE, UK
| | - Christiana Kartsonaki
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Worts Causeway, Cambridge CB1 8RN, UK
| | - Suet-Feung Chin
- Cambridge Research Institute - CRUK, Li Ka Shing Centre, Cancer Research UK, Robinson Way, Cambridge, CB2 0RE, UK
- Department of Oncology, University of Cambridge, Addenbrooke's Hospital, Robinson Way, Cambridge, CB2 0RE, UK
| | - Christina N Curtis
- Cambridge Research Institute - CRUK, Li Ka Shing Centre, Cancer Research UK, Robinson Way, Cambridge, CB2 0RE, UK
- Department of Oncology, University of Cambridge, Addenbrooke's Hospital, Robinson Way, Cambridge, CB2 0RE, UK
- Institute for Biotechnology and Bioengineering, Centre for Molecular and Structural Biomedicine, Department of Biomedical Sciences and Medicine, University of Algarve, Portugal
| | - Lesley McGuffog
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Worts Causeway, Cambridge CB1 8RN, UK
| | - Susan M Domchek
- Department of Medicine, Hematology-Oncology, Abramson Cancer Center, University of Pennsylvania, 3400 Spruce St, Philadelphia, PA 19104, USA
| | - EMBRACE
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Worts Causeway, Cambridge CB1 8RN, UK
| | - Douglas F Easton
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Worts Causeway, Cambridge CB1 8RN, UK
| | - Susan Peock
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Worts Causeway, Cambridge CB1 8RN, UK
| | - Debra Frost
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Worts Causeway, Cambridge CB1 8RN, UK
| | - D Gareth Evans
- Genetic Medicine, Manchester Academic Health Sciences Centre, Central Manchester University Hospitals NHS Foundation Trust, Brunswick Street, Manchester, M13 9PL, UK
| | - Ros Eeles
- Oncogenetics Team, The Institute of Cancer Research and Royal Marsden NHS Foundation Trust, 15 Cotswold Rd, Belmont, Sutton Surrey SM2 5NG, UK
| | - Louise Izatt
- Clinical Genetics, Guy's and St. Thomas' NHS Foundation Trust, 7th floor, Borough Wing, Guy's Hospital, Great Maze Pond, London SE1 9RT, UK
| | - Julian Adlard
- Yorkshire Regional Genetics Service, Ward 10, 3rd Floor, Chapel Allerton Hospital Chapeltown Road, Leeds, LS7 4SA, UK
| | - Diana Eccles
- Wessex Clinical Genetics Service, Princess Anne Hospital, Coxford Road, Southampton, SO16 5YA, UK
| | - GEMO Study Collaborators
- GEMO Study Collaborators: Cancer Genetics Network "Groupe Génétique et Cancer", Fédération Nationale des Centres de Lutte Contre le Cancer, France
| | - Olga M Sinilnikova
- INSERM U1052, CNRS UMR5286, Université Lyon 1, Cancer Research Center of Lyon, Lyon, 7 rue Guillaume Paradin, 69008 Lyon, France
- Unité Mixte de Génétique Constitutionnelle des Cancers Fréquents, Centre Hospitalier Universitaire de Lyon/Centre Léon Bérard, 28 rue Laennec, 69008 Lyon, France
| | - Sylvie Mazoyer
- INSERM U1052, CNRS UMR5286, Université Lyon 1, Cancer Research Center of Lyon, Lyon, 7 rue Guillaume Paradin, 69008 Lyon, France
| | - Dominique Stoppa-Lyonnet
- Service de Génétique Oncologique, Institut Curie, 26 rue d'Ulm 75248 Paris cedex 05, France
- Unité INSERM U830, Institut Curie, 26 rue d'Ulm 75248 Paris cedex 05, France
- Université Paris Descartes, Faculté de Médecine, 12, rue de l'Ecole de Médecine 75270 Paris Cedex 06, France
| | | | - Laurence Faivre
- Centre de Génétique, CHU Dijon, Université de Bourgogne, Dijon F-21000, France
- Centre Georges François Leclerc, 1 Rue Professeur Marion 21000 Dijon, France
| | - Laurence Venat-Bouvet
- Department of Medical Oncology, Centre Hospitalier Universitaire Dupuytren, Limoges, France
| | - Capucine Delnatte
- Centre René Gauducheau, Boulevard Jacques Monod 44805 St Herblain Cedex, Nantes, France
| | - Heli Nevanlinna
- Department of Obstetrics and Gynecology, Helsinki University Central Hospital, P.O. BOX 700, 00029 HUS, Finland
| | - Fergus J Couch
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 1st Street Southwest Rochester, MN 55905, USA
| | - Andrew K Godwin
- University of Kansas Medical Center, 3901 Rainbow Boulevard, KS City, KS 66160, USA
| | - Maria Adelaide Caligo
- Division of Surgical, Molecular and Ultrastructural Pathology, Department of Oncology, University of Pisa and Pisa University Hospital, Lungarno Antonio Pacinotti, 43 56126 Pisa, Italy
| | | | - Rosa B Barkardottir
- Department of Pathology, Landspitali University Hospital, Reykjavik 101, Iceland
- Faculty of Medicine, University of Iceland, Vatnsmýrarvegur 16, level 4 Reykjavik, Iceland
| | - kConFab Investigators
- Peter MacCallum Cancer Institute, Locked Bag 1, A'Beckett Street, Melbourne, VIC 8006, Australia
| | - Xiaoqing Chen
- Queensland Institute of Medical Research, 300 Herston Road, Herston, Brisbane, QLD 4006, Australia
| | - Jonathan Beesley
- Queensland Institute of Medical Research, 300 Herston Road, Herston, Brisbane, QLD 4006, Australia
| | - Sue Healey
- Queensland Institute of Medical Research, 300 Herston Road, Herston, Brisbane, QLD 4006, Australia
| | - Carlos Caldas
- Cambridge Research Institute - CRUK, Li Ka Shing Centre, Cancer Research UK, Robinson Way, Cambridge, CB2 0RE, UK
- Department of Oncology, University of Cambridge, Addenbrooke's Hospital, Robinson Way, Cambridge, CB2 0RE, UK
- Cambridge Experimental Cancer Medicine Centre, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK
| | - Georgia Chenevix-Trench
- Queensland Institute of Medical Research, 300 Herston Road, Herston, Brisbane, QLD 4006, Australia
| | - Bruce AJ Ponder
- Cambridge Research Institute - CRUK, Li Ka Shing Centre, Cancer Research UK, Robinson Way, Cambridge, CB2 0RE, UK
- Department of Oncology, University of Cambridge, Addenbrooke's Hospital, Robinson Way, Cambridge, CB2 0RE, UK
| |
Collapse
|
25
|
Amos-Landgraf JM, Irving AA, Hartman C, Hunter A, Laube B, Chen X, Clipson L, Newton MA, Dove WF. Monoallelic silencing and haploinsufficiency in early murine intestinal neoplasms. Proc Natl Acad Sci U S A 2012; 109:2060-5. [PMID: 22308460 PMCID: PMC3277532 DOI: 10.1073/pnas.1120753109] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Studies of tumors from human familial adenomatous polyposis, sporadic colon cancer, and mouse and rat models of intestinal cancer indicate that the majority of early adenomas develop through loss of normal function of the Adenomatous polyposis coli (APC) gene. In murine models of familial adenomatous polyposis, specifically the multiple intestinal neoplasia mouse (Min) and the polyposis in the rat colon (Pirc) rat, most adenomas have lost their WT copy of the Apc gene through loss of heterozygosity by homologous somatic recombination. We report that large colonic adenomas in the Pirc rat have no detectable copy number losses or gains in genomic material and that most tumors lose heterozygosity only on the short arm of chromosome 18. Examination of early mouse and rat tumors indicates that a substantial subset of tumors shows maintenance of heterozygosity of Apc in genomic DNA, apparently violating Knudson's two-hit hypothesis. Sequencing of the Apc gene in a sampling of rat tumors failed to find secondary mutations in the majority of tumors that maintained heterozygosity of Apc in genomic DNA. Using quantitative allele-specific assays of Apc cDNA, we discovered two neoplastic pathways. One class of tumors maintains heterozygosity of Apc(Min/+) or Apc(Pirc/+) RNA expression and may involve haploinsufficiency for Apc function. Another class of tumors exhibits highly biased monoallelic expression of the mutant Apc allele, providing evidence for a stochastic or random process of monoallelic epigenetic silencing of the tumor suppressor gene Apc.
Collapse
Affiliation(s)
| | - Amy A. Irving
- McArdle Laboratory for Cancer Research, Department of Oncology
- Molecular and Environmental Toxicology Center
| | - Cory Hartman
- McArdle Laboratory for Cancer Research, Department of Oncology
| | - Anthony Hunter
- McArdle Laboratory for Cancer Research, Department of Oncology
| | - Brianna Laube
- McArdle Laboratory for Cancer Research, Department of Oncology
| | - Xiaodi Chen
- McArdle Laboratory for Cancer Research, Department of Oncology
| | - Linda Clipson
- McArdle Laboratory for Cancer Research, Department of Oncology
| | | | - William F. Dove
- McArdle Laboratory for Cancer Research, Department of Oncology
- Laboratory of Genetics, University of Wisconsin – Madison, Madison, WI 53706
| |
Collapse
|
26
|
|
27
|
Abstract
APC is considered a gatekeeper for colorectal cancer (CRC). Cells with heterozygous APC mutations have altered expression profiles suggesting that the first APC hit may help set the stage for subsequent transformation. Therefore, we measured transformation efficiency following what we have designated as “simultaneous” versus “stepwise” Apc loss. We combined a conditional Apc allele (ApcCKO) with a Cre reporter gene and an out-of-frame Cre allele (Pms2cre) that stochastically becomes functional by a frameshift mutation in single cells. Loss of one Apc allele (ApcCKO/+) had little consequence, whereas simultaneous loss of both Apc alleles (ApcCKO/CKO) resulted in increased clonal expansion (crypt fission), consistent with the gatekeeper function of Apc. Interestingly, our analyses showed that most of the Apc-deficient crypts in ApcCKO/CKO mice appeared normal, with morphologic transformation, including β-catenin deregulation, occurring in only 17% of such crypts. To determine whether transformation efficiency was different following stepwise Apc loss, we combined ApcCKO with a germline mutant allele, either ApcMin or Apc1638N. Transformation efficiency following stepwise Apc loss (ApcMin/CKO or Apc1638N/CKO) was increased 5-fold and essentially all of the Apc-deficient cells were dysplastic. In summary, our data suggest that the gatekeeper function of Apc consists of two roles, clonal expansion and morphologic transformation, because simultaneous Apc loss frequently leads to occult clonal expansion without morphologic transformation, whereas stepwise Apc loss more often results in visible neoplasia. Finally, that Apc-deficient cells in certain scenarios can retain a normal phenotype is unexpected and may have clinical implications for surveillance strategies to prevent CRC.
Collapse
|
28
|
Paneth cell marker expression in intestinal villi and colon crypts characterizes dietary induced risk for mouse sporadic intestinal cancer. Proc Natl Acad Sci U S A 2011; 108:10272-7. [PMID: 21652773 DOI: 10.1073/pnas.1017668108] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Nutritional and genetic risk factors for intestinal tumors are additive on mouse tumor phenotype, establishing that diet and genetic factors impact risk by distinct combinatorial mechanisms. In a mouse model of dietary-induced sporadic small and large intestinal cancer in WT mice in which tumor etiology, lag, incidence, and frequency reflect >90% of intestinal cancer in Western societies, dietary-induced risk altered gene expression profiles predominantly in villus cells of the histologically normal mucosa, in contrast to targeting of crypt cells by inheritance of an Apc(1638N) allele or homozygous inactivation of p21(Waf1/cip1), and profiles induced by each risk factor were distinct at the gene or functional group level. The dietary-induced changes in villus cells encompassed ectopic expression of Paneth cell markers (a lineage normally confined to the bottom of small intestinal crypts), elevated expression of the Wnt receptor Fzd5 and of EphB2 (genes necessary for Paneth cell differentiation and localization to the crypt bottom), and increased Wnt signaling in villus cells. Ectopic elevation of these markers was also present in the colon crypts, which are also sites of sporadic tumors in the nutritional model. Elevating dietary vitamin D(3) and calcium, which prevents tumor development, abrogated these changes in the villus and colon cells. Thus, common intestinal cancer driven by diet involves mechanisms of tumor development distinct from those mechanisms that cause tumors induced by the rare inheritance of a mutant adenomatous polyposis coli (Apc) allele. This is fundamental for understanding how common sporadic tumors arise and in evaluating relative risk in the population.
Collapse
|
29
|
Glazer RI. A new therapeutic basis for treating Li-Fraumeni Syndrome breast tumors expressing mutated TP53. Oncotarget 2011; 1:470-1. [PMID: 21317445 DOI: 10.18632/oncotarget.101008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- Robert I Glazer
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University School of Medicine, Washington, DC 20007, USA.
| |
Collapse
|
30
|
Herbert BS, Chanoux RA, Liu Y, Baenziger PH, Goswami CP, McClintick JN, Edenberg HJ, Pennington RE, Lipkin SM, Kopelovich L. A molecular signature of normal breast epithelial and stromal cells from Li-Fraumeni syndrome mutation carriers. Oncotarget 2011; 1:405-22. [PMID: 21311097 DOI: 10.18632/oncotarget.101004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Specific changes in gene expression during cancer initiation should enable discovery of biomarkers for risk assessment, early detection and targets for chemoprevention. It has been previously demonstrated that altered mRNA and proteome signatures of morphologically normal cells bearing a single inherited "hit" in a tumor suppressor gene parallel many changes observed in the corresponding sporadic cancer. Here, we report on the global gene expression profile of morphologically normal, cultured primary breast epithelial and stromal cells from Li-Fraumeni syndrome (LFS) TP53 mutation carriers. Our analyses identified multiple changes in gene expression in both morphologically normal breast epithelial and stromal cells associated with TP53 haploinsufficiency, as well as interlocking pathways. Notably, a dysregulated p53 signaling pathway was readily detectable. Pharmacological intervention with the p53 rescue compounds CP-31398 and PRIMA-1 provided further evidence in support of the central role of p53 in affecting these changes in LFS cells and treatment for this cancer. Because loss of signaling mediated by TP53 is associated with the development and survival of many human tumors, identification of gene expression profiles in morphologically normal cells that carry "one-hit" p53 mutations may reveal novel biomarkers, enabling the discovery of potential targets for chemoprevention of sporadic tumors as well.
Collapse
Affiliation(s)
- Brittney-Shea Herbert
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Patel BB, Li XM, Dixon MP, Blagoi EL, Nicolas E, Seeholzer SH, Cheng D, He YA, Coudry RA, Howard SD, Riddle DM, Cooper HS, Boman BM, Conrad P, Crowell JA, Bellacosa A, Knudson A, Yeung AT, Kopelovich L. APC +/- alters colonic fibroblast proteome in FAP. Oncotarget 2011; 2:197-208. [PMID: 21411865 PMCID: PMC3195363 DOI: 10.18632/oncotarget.241] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Accepted: 03/15/2011] [Indexed: 12/02/2022] Open
Abstract
Here we compared the proteomes of primary fibroblast cultures derived from morphologically normal colonic mucosa of familial adenomatous polyposis (FAP) patients with those obtained from unaffected controls. The expression signature of about 19% of total fibroblast proteins separates FAP mutation carriers from unaffected controls (P < 0.01). More than 4,000 protein spots were quantified by 2D PAGE analysis, identifying 368 non-redundant proteins and 400 of their isoforms. Specifically, all three classes of cytoskeletal filaments and their regulatory proteins were altered as were oxidative stress response proteins. Given that FAP fibroblasts showed heightened sensitivity to transformation by KiMSV and SV40 including elevated levels of the p53 protein, events controlled in large measure by the Ras suppressor protein-1 (RSU-1) and oncogenic DJ-1, here we show decreased RSU1 and augmented DJ-1 expression in both fibroblasts and crypt-derived epithelial cells from morphologically normal colonic mucosa of FAP gene-carriers. The results indicate that heterozygosity for a mutant APC tumor suppressor gene alters the proteomes of both colon-derived normal fibroblasts in a gene-specific manner, consistent with a "one-hit" effect.
Collapse
Affiliation(s)
| | - Xin-Ming Li
- Developmental Therapeutics, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Maketa P. Dixon
- Developmental Therapeutics, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Elena L. Blagoi
- Developmental Therapeutics, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Emmanuelle Nicolas
- Developmental Therapeutics, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Steven H. Seeholzer
- Developmental Therapeutics, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - David Cheng
- Developmental Therapeutics, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Yin A. He
- Developmental Therapeutics, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Renata A. Coudry
- Cancer Prevention and Control, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Sharon D. Howard
- Division of Genetic and Preventive Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Dawn M. Riddle
- Cell Culture facility, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Harry S. Cooper
- Cancer Prevention and Control, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Bruce M. Boman
- Division of Genetic and Preventive Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Peggy Conrad
- University of California at San Francisco, San Francisco, California
| | - James A. Crowell
- Division of Cancer Prevention, National Cancer Institute, Bethesda, Maryland
| | | | - Alfred Knudson
- Cancer Biology, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Anthony T. Yeung
- Developmental Therapeutics, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Levy Kopelovich
- Division of Cancer Prevention, National Cancer Institute, Bethesda, Maryland
| |
Collapse
|
32
|
Heijink DM, Kleibeuker JH, Nagengast WB, Oosterhuis D, Brouwers AH, Koornstra JJ, de Jong S, de Vries EG. Total Abdominal 18F-FDG Uptake Reflects Intestinal Adenoma Burden in Apc Mutant Mice. J Nucl Med 2011; 52:431-6. [DOI: 10.2967/jnumed.110.083956] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
33
|
Glazer RI. A new therapeutic basis for treating Li-Fraumeni Syndrome breast tumors expressing mutated TP53. Oncotarget 2010; 1:470-471. [PMID: 21317445 PMCID: PMC3248136 DOI: 10.18632/oncotarget.183] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Accepted: 10/15/2010] [Indexed: 11/25/2022] Open
|
34
|
Herbert BS, Chanoux RA, Liu Y, Baenziger PH, Goswami CP, McClintick JN, Edenberg HJ, Pennington RE, Lipkin SM, Kopelovich L. A molecular signature of normal breast epithelial and stromal cells from Li-Fraumeni syndrome mutation carriers. Oncotarget 2010; 1:405-422. [PMID: 21311097 PMCID: PMC3039408 DOI: 10.18632/oncotarget.175] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2010] [Accepted: 10/05/2010] [Indexed: 11/25/2022] Open
Abstract
Specific changes in gene expression during cancer initiation should enable discovery of biomarkers for risk assessment, early detection and targets for chemoprevention. It has been previously demonstrated that altered mRNA and proteome signatures of morphologically normal cells bearing a single inherited "hit" in a tumor suppressor gene parallel many changes observed in the corresponding sporadic cancer. Here, we report on the global gene expression profile of morphologically normal, cultured primary breast epithelial and stromal cells from Li-Fraumeni syndrome (LFS) TP53 mutation carriers. Our analyses identified multiple changes in gene expression in both morphologically normal breast epithelial and stromal cells associated with TP53 haploinsufficiency, as well as interlocking pathways. Notably, a dysregulated p53 signaling pathway was readily detectable. Pharmacological intervention with the p53 rescue compounds CP-31398 and PRIMA-1 provided further evidence in support of the central role of p53 in affecting these changes in LFS cells and treatment for this cancer. Because loss of signaling mediated by TP53 is associated with the development and survival of many human tumors, identification of gene expression profiles in morphologically normal cells that carry "one-hit" p53 mutations may reveal novel biomarkers, enabling the discovery of potential targets for chemoprevention of sporadic tumors as well.
Collapse
MESH Headings
- Adolescent
- Adult
- Aza Compounds/pharmacology
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Breast Neoplasms/genetics
- Breast Neoplasms/pathology
- Bridged Bicyclo Compounds, Heterocyclic/pharmacology
- Carcinoma, Ductal, Breast/genetics
- Carcinoma, Ductal, Breast/pathology
- Cells, Cultured
- Epithelial Cells/metabolism
- Female
- Gene Expression Profiling
- Gene Expression Regulation, Neoplastic
- Genetic Predisposition to Disease
- Germ-Line Mutation/genetics
- Haploinsufficiency
- Humans
- Li-Fraumeni Syndrome/genetics
- Neoplasm Proteins/genetics
- Oligonucleotide Array Sequence Analysis
- Pyrimidines/pharmacology
- RNA, Messenger/genetics
- Reverse Transcriptase Polymerase Chain Reaction
- Stromal Cells/metabolism
- Tumor Suppressor Protein p53/antagonists & inhibitors
- Tumor Suppressor Protein p53/genetics
Collapse
Affiliation(s)
- Brittney-Shea Herbert
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana University Melvin and Bren Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Rebecca A. Chanoux
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Yunlong Liu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, USA
- Division of Biostatistics, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
- Center for Medical Genomics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Peter H. Baenziger
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Chirayu P. Goswami
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jeanette N. McClintick
- Center for Medical Genomics, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Howard J. Edenberg
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
- Center for Medical Genomics, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Robert E. Pennington
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Steven M. Lipkin
- Departments of Medicine and Genetic Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Levy Kopelovich
- Division of Cancer Prevention, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
35
|
Obrador-Hevia A, Chin SF, González S, Rees J, Vilardell F, Greenson JK, Cordero D, Moreno V, Caldas C, Capellá G. Oncogenic KRAS is not necessary for Wnt signalling activation in APC-associated FAP adenomas. J Pathol 2010; 221:57-67. [PMID: 20196079 DOI: 10.1002/path.2685] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Recent studies have suggested that APC loss alone may be insufficient to promote aberrant Wnt/beta-catenin signalling. Our aim was to comprehensively characterize Wnt signalling components in a set of APC-associated familial adenomatous polyposis (FAP) tumours. Sixty adenomas from six FAP patients with known pathogenic APC mutations were included. Somatic APC and KRAS mutations, beta-catenin immunostaining, and qRT-PCR of APC, MYC, AXIN2 and SFRP1 were analysed. Array-comparative genomic hybridization (aCGH) was also assessed in 26 FAP adenomas and 24 paired adenoma-carcinoma samples. A somatic APC alteration was present in 15 adenomas (LOH in 11 and four point mutations). KRAS mutations were detected in 10% of the cases. APC mRNA was overexpressed in adenomas. MYC and AXIN2 were also overexpressed, with significant intra-case heterogeneity. Increased cytoplasmic and/or nuclear beta-catenin staining was seen in 94% and 80% of the adenomas. beta-Catenin nuclear staining was strongly associated with MYC levels (p value 0.03) but not with KRAS mutations. Copy number aberrations were rare. However, the recurrent chromosome changes observed more frequently contained Wnt pathway genes (p value 0.012). Based on beta-catenin staining and Wnt pathway target genes alterations the Wnt pathway appears to be constitutively activated in all APC-FAP tumours, with alterations occurring both upstream and downstream of APC. Wnt aberrations are present at both the DNA and the RNA level. Somatic profiling of APC-FAP tumours provides new insights into the role of APC in tumourigenesis.
Collapse
Affiliation(s)
- Antònia Obrador-Hevia
- Cancer Cell Biology Group, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS)-Universitat de les Illes Balears, Mallorca, Illes Balears, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
This perspective on Bellacosa et al. (beginning on p. 48 in this issue of the journal) discusses the important biology of microscopically normal tissues in carriers of germ-line BRCA1 or BRCA2 mutations. The work of Bellacosa et al. is an important step toward discerning which pathways may be altered when one BRCA allele is inactivated.
Collapse
Affiliation(s)
- Maria D Iniesta
- Department of Internal Medicine, University of Michigan Comprehensive Cancer Center, University of Michigan, Ann Arbor, 48109, USA
| | | | | | | |
Collapse
|
37
|
Nikoulina SE, Andon NL, McCowen KM, Hendricks MD, Lowe C, Taylor SW. A primary colonic crypt model enriched in enteroendocrine cells facilitates a peptidomic survey of regulated hormone secretion. Mol Cell Proteomics 2010; 9:728-41. [PMID: 20081152 DOI: 10.1074/mcp.m900529-mcp200] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
To enable the first physiologically relevant peptidomic survey of gastrointestinal tissue, we have developed a primary mouse colonic crypt model enriched for enteroendocrine L-cells. The cells in this model were phenotypically profiled using PCR-based techniques and showed peptide hormone and secretory and processing marker expression at mRNA levels that were increased relative to the parent tissue. Co-localization of glucagon-like peptide-1 and peptide YY, a characteristic feature of L-cells, was demonstrated by double label immunocytochemistry. The L-cells displayed regulated hormone secretion in response to physiological and pharmacological stimuli as measured by immunoassay. Using a high resolution mass spectrometry-based platform, more than 50 endogenous peptides (<16 kDa), including all known major hormones, were identified a priori. The influence of culture conditions on peptide relative abundance and post-translational modification was characterized. The relative abundance of secreted peptides in the presence/absence of the stimulant forskolin was measured by label-free quantification. All peptides exhibiting a statistically significant increase in relative concentration in the culture media were derived from prohormones, consistent with a cAMP-coupled response. The only peptides that exhibited a statistically significant decrease in secretion on forskolin stimulation were derived from annexin A1 and calcyclin. Biophysical interactions between annexin A1 and calcyclin have been reported very recently and may have functional consequences. This work represents the first step in characterizing physiologically relevant peptidomic secretion of gastrointestinally derived primary cells and will aid in elucidating new endocrine function.
Collapse
|
38
|
Bellacosa A, Godwin AK, Peri S, Devarajan K, Caretti E, Vanderveer L, Bove B, Slater C, Zhou Y, Daly M, Howard S, Campbell KS, Nicolas E, Yeung AT, Clapper ML, Crowell JA, Lynch HT, Ross E, Kopelovich L, Knudson AG. Altered gene expression in morphologically normal epithelial cells from heterozygous carriers of BRCA1 or BRCA2 mutations. Cancer Prev Res (Phila) 2010; 3:48-61. [PMID: 20051372 PMCID: PMC2804937 DOI: 10.1158/1940-6207.capr-09-0078] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We hypothesized that cells bearing a single inherited "hit" in a tumor suppressor gene express an altered mRNA repertoire that may identify targets for measures that could delay or even prevent progression to carcinoma. We report here on the transcriptomes of primary breast and ovarian epithelial cells cultured from BRCA1 and BRCA2 mutation carriers and controls. Our comparison analyses identified multiple changes in gene expression, in both tissues for both mutations, which were validated independently by real-time reverse transcription-PCR analysis. Several of the differentially expressed genes had been previously proposed as cancer markers, including mammaglobin in breast cancer and serum amyloid in ovarian cancer. These findings show that heterozygosity for a mutant tumor suppressor gene can alter the expression profiles of phenotypically normal epithelial cells in a gene-specific manner; these detectable effects of "one hit" represent early molecular changes in tumorigenesis that may serve as novel biomarkers of cancer risk and as targets for chemoprevention.
Collapse
|
39
|
Huttlin EL, Chen X, Barrett-Wilt GA, Hegeman AD, Halberg RB, Harms AC, Newton MA, Dove WF, Sussman MR. Discovery and validation of colonic tumor-associated proteins via metabolic labeling and stable isotopic dilution. Proc Natl Acad Sci U S A 2009; 106:17235-40. [PMID: 19805096 PMCID: PMC2761368 DOI: 10.1073/pnas.0909282106] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2009] [Indexed: 12/12/2022] Open
Abstract
The unique biology of a neoplasm is reflected by its distinct molecular profile compared with normal tissue. To understand tumor development better, we have undertaken a quantitative proteomic search for abnormally expressed proteins in colonic tumors from Apc(Min/+) (Min) mice. By raising pairs of Min and wild-type mice on diets derived from natural-abundance or (15)N-labeled algae, we used metabolic labeling to compare protein levels in colonic tumor versus normal tissue. Because metabolic labeling allows internal control throughout sample preparation and analysis, technical error is minimized as compared with in vitro labeling. Several proteins displayed altered expression, and a subset was validated via stable isotopic dilution using synthetic peptide standards. We also compared gene and protein expression among tumor and nontumor tissue, revealing limited correlation. This divergence was especially pronounced for species showing biological change, highlighting the complementary perspectives provided by transcriptomics and proteomics. Our work demonstrates the power of metabolic labeling combined with stable isotopic dilution as an integrated strategy for the identification and validation of differentially expressed proteins using rodent models of human disease.
Collapse
Affiliation(s)
| | - Xiaodi Chen
- McArdle Laboratory for Cancer Research, Department of Oncology
| | | | - Adrian D. Hegeman
- Department of Horticultural Science, University of Minnesota, St. Paul, MN 55108
| | | | | | | | - William F. Dove
- McArdle Laboratory for Cancer Research, Department of Oncology
- Laboratory of Genetics, University of Wisconsin, Madison, WI 53706; and
| | | |
Collapse
|