1
|
Liu X, Shen B, Zhou J, Hao J, Wang J. The L-type calcium channel CaV1.3: A potential target for cancer therapy. J Cell Mol Med 2024; 28:e70123. [PMID: 39365143 PMCID: PMC11451265 DOI: 10.1111/jcmm.70123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 03/11/2024] [Accepted: 09/20/2024] [Indexed: 10/05/2024] Open
Abstract
Cancer remains a prominent cause to life expectancy, and targeted cancer therapy stands as a pivotal approach in contemporary therapy. Calcium (Ca2+) signalling plays a multifaceted role in cancer progression, such as proliferation, invasion and distant metastasis. Otherwise, it also exerts an important influence on the efficacy of clinical treatment, including cancer therapy resistance. In this review we discuss the role of the L-type calcium channel CaV1.3 (calcium voltage-gated channel subunit alpha1 D) in different types of cancers, highlighting its potential as a therapeutic target for certain cancer types. The development of selective blockers of the CaV1.3 channel has been of great interest and is expected to be a new option for the treatment of cancers such as prostate cancer and endometrial cancer. We present the pharmacological properties of CaV1.3 and the current status of selective blocker development, and analyse the challenges and possible directions for breakthroughs in the development of tailored medicines.
Collapse
Affiliation(s)
- Xuerun Liu
- Department of Gynecology and ObstetricsPeking University People's HospitalBeijingChina
| | - Boqiang Shen
- Department of Gynecology and ObstetricsPeking University People's HospitalBeijingChina
| | - Jingyi Zhou
- Department of Gynecology and ObstetricsPeking University People's HospitalBeijingChina
| | - Juan Hao
- Department of Gynecology and ObstetricsPeking University People's HospitalBeijingChina
| | - Jianliu Wang
- Department of Gynecology and ObstetricsPeking University People's HospitalBeijingChina
| |
Collapse
|
2
|
Feitosa PMFA, Hirth CG, Silva-Fernandes IJDL, Dornelas CA. The relevance of ERG immunoexpression intensity for prostatic adenocarcinoma in radical prostatectomy of 635 samples. APMIS 2023; 131:465-471. [PMID: 37439391 DOI: 10.1111/apm.13330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 04/27/2023] [Indexed: 07/14/2023]
Abstract
Prostate cancer is the world's most frequently diagnosed malignancy in men. Recent work suggests that patients with high ERG expression intensity are significantly more likely to develop biochemical relapse and metastasis, and die of prostate cancer. The objective of this study was to determine the relationship between the intensity of ERG protein expression and the staging of prostate cancer and the formation of metastases in 635 samples. A retrospective cohort analysis was performed using immunohistochemistry reactions in tissue microarray samples taken from non-neoplastic and neoplastic prostate tissue from patients who underwent radical prostatectomies at a reference hospital from 2009 to 2016. For the ERG marker analysis, the samples were scored for the presence or absence of nuclear signals. Weak, moderate, or strong intensity of the nuclei of the observable tumor cells was considered to be positive markers. All told, 635 samples were evaluated, and the ERG expression was inconclusive in 9% of cases, while 30% were positive and 61% were negative. Of the samples with positive result: 25.8% were weak and focal, 53.2% were moderate, and 21% were strong. Finally, 21% of the cases with a positive ERG had a high Gleason score. Metastasis was detected in 41% of the patients who were ERG positive, and of these, the majority had moderate marking and were aged older than 60 years, although there was no statistically significant difference between the older and younger age groups. Patients with moderate to strong ERG staining had higher staging compared to the others, and no increase in metastasis was detected in patients with more intense ERG expression. More studies should be carried out to corroborate these results and to reach a consensus on the intensity and scoring of the expression levels of ERG markers.
Collapse
Affiliation(s)
- Priscilla Mariana Freitas Aguiar Feitosa
- Department of Pathology and Forensic Medicine, Federal University of Ceará, Fortaleza, Brazil
- Argos Laboratory in Fortaleza, Ceará, Brazil
- Federal University of Ceará, Fortaleza, Brazil
| | - Carlos Gustavo Hirth
- Department of Pathology and Forensic Medicine, Federal University of Ceará, Fortaleza, Brazil
- Federal University of Ceará, Fortaleza, Brazil
| | | | - Conceição Aparecida Dornelas
- Department of Pathology and Forensic Medicine, Federal University of Ceará, Fortaleza, Brazil
- Federal University of Ceará, Fortaleza, Brazil
- Faculty of Medicine, Medical-Surgical Medical Sciences, Federal University of Ceará, Fortaleza, Brazil
- State University of Rio de Janeiro, Rio de janeiro, Brazil
| |
Collapse
|
3
|
Wang J, Ben-David R, Mehrazin R, Yang W, Tewari AK, Kyprianou N. Novel signatures of prostate cancer progression and therapeutic resistance. Expert Opin Ther Targets 2023; 27:1195-1206. [PMID: 38108262 DOI: 10.1080/14728222.2023.2293757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 12/07/2023] [Indexed: 12/19/2023]
Abstract
INTRODUCTION The extensive heterogeneity of prostate cancer (PCa) and multilayered complexity of progression to castration-resistant prostate cancer (CRPC) have contributed to the challenges of accurately monitoring advanced disease. Profiling of the tumor microenvironment with large-scale transcriptomic studies have identified gene signatures that predict biochemical recurrence, lymph node invasion, metastases, and development of therapeutic resistance through critical determinants driving CRPC. AREAS COVERED This review encompasses understanding of the role of different molecular determinants of PCa progression to lethal disease including the phenotypic dynamic of cell plasticity, EMT-MET interconversion, and signaling-pathways driving PCa cells to advance and metastasize. The value of liquid biopsies encompassing circulating tumor cells and extracellular vesicles to detect disease progression and emergence of therapeutic resistance in patients progressing to lethal disease is discussed. Relevant literature was added from PubMed portal. EXPERT OPINION Despite progress in the tumor-targeted therapeutics and biomarker discovery, distant metastasis and therapeutic resistance remain the major cause of mortality in patients with advanced CRPC. No single signature can encompass the tremendous phenotypic and genomic heterogeneity of PCa, but rather multi-threaded omics-derived and phenotypic markers tailored and validated into a multimodal signature.
Collapse
Affiliation(s)
- Jason Wang
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Reuben Ben-David
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Reza Mehrazin
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Wei Yang
- Department of Pathology, Stony Brook University, New York, NY, USA
| | - Ashutosh K Tewari
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Natasha Kyprianou
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pathology & Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
4
|
Fernandez-Perez MP, Perez-Navarro E, Alonso-Gordoa T, Conteduca V, Font A, Vázquez-Estévez S, González-Del-Alba A, Wetterskog D, Antonarakis ES, Mellado B, Fernandez-Calvo O, Méndez-Vidal MJ, Climent MA, Duran I, Gallardo E, Rodriguez Sanchez A, Santander C, Sáez MI, Puente J, Tudela J, Martínez A, López-Andreo MJ, Padilla J, Lozano R, Hervas D, Luo J, de Giorgi U, Castellano D, Attard G, Grande E, Gonzalez-Billalabeitia E. A correlative biomarker study and integrative prognostic model in chemotherapy-naïve metastatic castration-resistant prostate cancer treated with enzalutamide. Prostate 2023; 83:376-384. [PMID: 36564933 PMCID: PMC10107622 DOI: 10.1002/pros.24469] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/06/2022] [Accepted: 11/20/2022] [Indexed: 12/25/2022]
Abstract
BACKGROUND There is a considerable need to incorporate biomarkers of resistance to new antiandrogen agents in the management of castration-resistant prostate cancer (CRPC). METHODS We conducted a phase II trial of enzalutamide in first-line chemo-naïve asymptomatic or minimally symptomatic mCRPC and analyzed the prognostic value of TMPRSS2-ERG and other biomarkers, including circulating tumor cells (CTCs), androgen receptor splice variant (AR-V7) in CTCs and plasma Androgen Receptor copy number gain (AR-gain). These biomarkers were correlated with treatment response and survival outcomes and developed a clinical-molecular prognostic model using penalized cox-proportional hazard model. This model was validated in an independent cohort. RESULTS Ninety-eight patients were included. TMPRSS2-ERG fusion gene was detected in 32 patients with no differences observed in efficacy outcomes. CTC detection was associated with worse outcome and AR-V7 in CTCs was associated with increased rate of progression as best response. Plasma AR gain was strongly associated with an adverse outcome, with worse median prostate specific antigen (PSA)-PFS (4.2 vs. 14.7 m; p < 0.0001), rad-PFS (4.5 vs. 27.6 m; p < 0.0001), and OS (12.7 vs. 38.1 m; p < 0.0001). The clinical prognostic model developed in PREVAIL was validated (C-Index 0.70) and the addition of plasma AR (C-Index 0.79; p < 0.001) increased its prognostic ability. We generated a parsimonious model including alkaline phosphatase (ALP); PSA and AR gain (C-index 0.78) that was validated in an independent cohort. CONCLUSIONS TMPRSS2-ERG detection did not correlate with differential activity of enzalutamide in first-line mCRPC. However, we observed that CTCs and plasma AR gain were the most relevant biomarkers.
Collapse
Affiliation(s)
- María P Fernandez-Perez
- Department of Haematology and Medical Oncology, Hospital Universitario Morales Meseguer, IMIB, Murcia, Spain
| | - Enrique Perez-Navarro
- Department of Medical Oncology, Instituto de Investigación, Hospital Universitario 12 de Octubre, Madrid, Spain
| | | | - Vicenza Conteduca
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) "Dino Amadori" IRCCS, Meldola, Italy
| | - Albert Font
- Department of Medical Oncology, Catalan Institute of Oncology, Badalona Applied Research Group in Oncology (BARGO), Badalona, Spain
| | | | | | - Daniel Wetterskog
- University College London Cancer Institute, Paul O'Gorman Building, London, UK
| | - Emmanuel S Antonarakis
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Begona Mellado
- Department of Medical Oncology, IDIBAPS, Hospital Clinic, Universidad de Barcelona, Barcelona, Spain
| | - Ovidio Fernandez-Calvo
- Department of Medical Oncology, Complejo Hospitalario Universitario Ourense, Orense, Spain
| | - María J Méndez-Vidal
- Department of Medical Oncology, Hospital Universitario Reina Sofía (HURS), Maimonides Institute for biomedical research of Córdoba (IMIBIC), Córdoba, Spain
| | - Miguel A Climent
- Servicio de Oncología Médica, Instituto Valenciano de Oncología, Valencia, Spain
| | - Ignacio Duran
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Enrique Gallardo
- Department of Medical Oncology, Servicio de Oncología Médica, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí I3PT, Universitat Autònoma de Barcelona, Sabadell, Spain
| | | | - Carmen Santander
- Department of Medical Oncology, Hospital Universitario Miguel Servet, Zaragoza, Spain
| | - Maria I Sáez
- Medical Oncology Intercenter Unit, Regional and Virgen de la Victoria University Hospitals, IBIMA, Málaga, Spain
| | - Javier Puente
- Department of Medical Oncology, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), CIBERONC, Madrid, Spain
| | - Julian Tudela
- Department of Pathology, Hospital Morales Meseguer, Murcia, Spain
| | | | | | - José Padilla
- Department of Haematology and Medical Oncology, Hospital Universitario Morales Meseguer, IMIB, Murcia, Spain
| | - Rebeca Lozano
- Prostate Cancer Clinical Research Unit, Spanish National Cancer Research Centre, Madrid, Spain
- Genitourinary Translational Research Group, Instituto de Investigación Biomédica de Málaga, Málaga, Spain
| | - David Hervas
- Data Science Unit, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - Jun Luo
- Department of Urology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Ugo de Giorgi
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) "Dino Amadori" IRCCS, Meldola, Italy
| | - Daniel Castellano
- Department of Medical Oncology, Instituto de Investigación, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Gerhardt Attard
- University College London Cancer Institute, Paul O'Gorman Building, London, UK
| | | | - Enrique Gonzalez-Billalabeitia
- Department of Haematology and Medical Oncology, Hospital Universitario Morales Meseguer, IMIB, Murcia, Spain
- Department of Medical Oncology, Instituto de Investigación, Hospital Universitario 12 de Octubre, Madrid, Spain
- Universidad Católica San Antonio de Murcia-UCAM, Murcia, Spain
| |
Collapse
|
5
|
Giannareas N, Zhang Q, Yang X, Na R, Tian Y, Yang Y, Ruan X, Huang D, Yang X, Wang C, Zhang P, Manninen A, Wang L, Wei GH. Extensive germline-somatic interplay contributes to prostate cancer progression through HNF1B co-option of TMPRSS2-ERG. Nat Commun 2022; 13:7320. [PMID: 36443337 PMCID: PMC9705428 DOI: 10.1038/s41467-022-34994-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 11/15/2022] [Indexed: 11/29/2022] Open
Abstract
Genome-wide association studies have identified 270 loci conferring risk for prostate cancer (PCa), yet the underlying biology and clinical impact remain to be investigated. Here we observe an enrichment of transcription factor genes including HNF1B within PCa risk-associated regions. While focused on the 17q12/HNF1B locus, we find a strong eQTL for HNF1B and multiple potential causal variants involved in the regulation of HNF1B expression in PCa. An unbiased genome-wide co-expression analysis reveals PCa-specific somatic TMPRSS2-ERG fusion as a transcriptional mediator of this locus and the HNF1B eQTL signal is ERG fusion status dependent. We investigate the role of HNF1B and find its involvement in several pathways related to cell cycle progression and PCa severity. Furthermore, HNF1B interacts with TMPRSS2-ERG to co-occupy large proportion of genomic regions with a remarkable enrichment of additional PCa risk alleles. We finally show that HNF1B co-opts ERG fusion to mediate mechanistic and biological effects of the PCa risk-associated locus 17p13.3/VPS53/FAM57A/GEMIN4. Taken together, we report an extensive germline-somatic interaction between TMPRSS2-ERG fusion and genetic variations underpinning PCa risk association and progression.
Collapse
Affiliation(s)
- Nikolaos Giannareas
- Disease Networks Research Unit, Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Qin Zhang
- Disease Networks Research Unit, Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Xiayun Yang
- Disease Networks Research Unit, Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Rong Na
- Division of Urology, Department of Surgery, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong, China
| | - Yijun Tian
- Department of Tumour Biology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Yuehong Yang
- Disease Networks Research Unit, Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Xiaohao Ruan
- Department of Urology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Da Huang
- Department of Urology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiaoqun Yang
- Department of Pathology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Chaofu Wang
- Department of Pathology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Peng Zhang
- Fudan University Shanghai Cancer Center & MOE Key Laboratory of Metabolism and Molecular Medicine and Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Aki Manninen
- Disease Networks Research Unit, Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Liang Wang
- Department of Tumour Biology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Gong-Hong Wei
- Disease Networks Research Unit, Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Oulu, Finland.
- Fudan University Shanghai Cancer Center & MOE Key Laboratory of Metabolism and Molecular Medicine and Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China.
| |
Collapse
|
6
|
Basak D, Gregori L, Johora F, Deb S. Preclinical and Clinical Research Models of Prostate Cancer: A Brief Overview. LIFE (BASEL, SWITZERLAND) 2022; 12:life12101607. [PMID: 36295041 PMCID: PMC9605520 DOI: 10.3390/life12101607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 11/11/2022]
Abstract
The incidence and mortality from prostate cancer (PCa) are on the rise which poses a major public health concern worldwide. In this narrative review, we have summarized the characteristics of major in vitro and in vivo PCa models including their utility in developing treatment strategies. Androgens, particularly, testosterone and dihydrotestosterone (DHT) activate the androgen receptor (AR) signaling pathway that facilitates the development and progression of castration resistant PCa. Several enzymes namely, CYP17A1, HSD17B, and SRD5A are essential to furnishing DHT from dehydroepiandrosterone in the classical pathway while DHT is formed from androstanediol in the backdoor pathway. The advancement in delineating the molecular heterogeneity of PCa has been possible through the development of several in vitro and in vivo research models. Generally, tissue culture models are advantageous to understand PCa biology and investigate the efficacy and toxicity of novel agents; nevertheless, animal models are indispensable to studying the PCa etiology and treatment since they can simulate the tumor microenvironment that plays a central role in initiation and progression of the disease. Moreover, the availability of several genetically engineered mouse models has made it possible to study the metastasis process. However, the conventional models are not devoid of limitations. For example, the lack of heterogeneity in tissue culture models and the variation of metastatic characteristics in xenograft models are obviously challenging. Additionally, due to the racial and ethnic disparities in PCa pathophysiology, a new model that can represent PCa encompassing different ethnicities is urgently needed. New models should continue to evolve to address the genetic and molecular complexities as well as to further elucidate the finer details of the steroidogenic pathway associated with PCa.
Collapse
|
7
|
Raina K, Kant R, Prasad RR, Kandhari K, Tomar M, Mishra N, Kumar R, Fox JT, Sei S, Shoemaker RH, Chen Y, Maroni P, Agarwal C, Agarwal R. Characterization of stage-specific tumor progression in TMPRSS2-ERG (fusion)-driven and non-fusion-driven prostate cancer in GEM models. Mol Carcinog 2022; 61:717-734. [PMID: 35452553 PMCID: PMC10007524 DOI: 10.1002/mc.23413] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 03/24/2022] [Accepted: 03/28/2022] [Indexed: 01/29/2023]
Abstract
In the present study, we performed a comparative stage-specific pathological and molecular marker evaluation of TMPRSS2-ERG fusion and PTEN loss-driven (TMPRSS2-ERG. Ptenflox/flox ) versus non-fusion-driven prostate tumorigenesis (Hi-Myc) in mice. Anterior, ventral, and dorsolateral prostates were collected from mice at different ages (or time points post-Cre induction). Results indicated that growth and progression of prostatic intraepithelial lesions to adenocarcinoma stages occurred in both mice models albeit at different rates. In the TMPRSS2-ERG. Ptenflox/flox mice, the initiation of tumorigenesis was slow, but subsequent progression through different stages became increasingly faster. Adenocarcinoma stage was reached early on; however, no high-grade undifferentiated tumors were observed. Conversely, in the Hi-Myc+/- mice, tumorigenesis initiation was rapid; however, progression through different stages was relatively slower and it took a while to reach the more aggressive phenotype stage. Nevertheless, at the advanced stages in the Hi-Myc+/- mice, high-grade undifferentiated tumors were observed compared to the later stage tumors observed in the fusion-driven TMPRSS2-ERG. Ptenflox/flox mice. These results were corroborated by the stage specific-pattern in the molecular expression of proliferation markers (PCNA and c-Myc); androgen receptor (AR); fusion-resultant overexpression of ERG; Prostein (SLC45-A3); and angiogenesis marker (CD-31). Importantly, there was a significant increase in immune cell infiltrations, which increased with the stage of tumorigenesis, in the TMPRSS2-ERG fusion-positive tumors relative to fusion negative tumors. Together, these findings are both novel and highly significant in establishing a working preclinical model for evaluating the efficacy of interventions during different stages of tumorigenesis in TMPRSS2-ERG fusion-driven PCa.
Collapse
Affiliation(s)
- Komal Raina
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA.,Department of Pharmaceutical Sciences, South Dakota State University, Brookings, South Dakota, USA
| | - Rama Kant
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Ram R Prasad
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Kushal Kandhari
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Munendra Tomar
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Neha Mishra
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Robin Kumar
- Department of Pharmaceutical Sciences, South Dakota State University, Brookings, South Dakota, USA
| | - Jennifer T Fox
- Division of Cancer Prevention, Chemopreventive Agent Development Research Group, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Shizuko Sei
- Division of Cancer Prevention, Chemopreventive Agent Development Research Group, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Robert H Shoemaker
- Division of Cancer Prevention, Chemopreventive Agent Development Research Group, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Yu Chen
- Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| | - Paul Maroni
- Department of Surgery, Division of Urology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Chapla Agarwal
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Rajesh Agarwal
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA.,University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
8
|
Chimeric RNA Design Principles for RNA-Mediated Gene Fusion. Cells 2022; 11:cells11061002. [PMID: 35326453 PMCID: PMC8947500 DOI: 10.3390/cells11061002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/07/2022] [Accepted: 03/14/2022] [Indexed: 12/02/2022] Open
Abstract
One common genetic alteration in cancer is gene fusion resulting from chromosomal translocations. The mechanisms that create such oncogenic fusion genes are not well understood. Previously, we provided the direct evidence that expression of a designed chimeric RNA can drive the formation of TMPRSS2-ERG gene fusion. Central to this RNA-mediated gene fusion mechanism is a proposed three-way junction formed by RNA/DNA hybrid and the intergenic DNA stem formed by target genes. In this study, we determined the important parameters for chimeric RNA-mediated gene fusion using TMPRSS2-ERG fusion gene as the model. Our results indicate that both the chimeric RNA lengths and the sizes of unpaired bulges play important roles in inducing TMPRSS2-ERG gene fusion. The optimal length of unpaired bulges was about 35 nt, while the optimal chimeric RNA length was about 50 nt for targeting. These observations were consistent regardless of the target locations within TMPRSS2 and ERG genes. These empirically determined parameters provide important insight for searching cellular RNAs that may initiate oncogenic fusion genes. The knowledge could also facilitate the development of useful genomic technology for manipulating mammalian genomes.
Collapse
|
9
|
Lorenzin F, Demichelis F. Past, Current, and Future Strategies to Target ERG Fusion-Positive Prostate Cancer. Cancers (Basel) 2022; 14:cancers14051118. [PMID: 35267426 PMCID: PMC8909394 DOI: 10.3390/cancers14051118] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/14/2022] [Accepted: 02/16/2022] [Indexed: 12/27/2022] Open
Abstract
Simple Summary In addition to its role in development and in the vascular and hematopoietic systems, ERG plays a central role in prostate cancer. Approximately 40–50% of prostate cancer cases are characterized by ERG gene fusions, which lead to ERG overexpression. Importantly, inhibition of ERG activity in prostate cancer cells decreases their viability. Therefore, inhibiting ERG might represent an important step to improve treatment efficacy for patients with ERG-positive prostate tumors. Here, we summarize the attempts made over the past years to repress ERG activity, the current use of ERG fusion detection and the strategies that might be utilized in the future to treat ERG fusion-positive tumors. Abstract The ETS family member ERG is a transcription factor with physiological roles during development and in the vascular and hematopoietic systems. ERG oncogenic activity characterizes several malignancies, including Ewing’s sarcoma, leukemia and prostate cancer (PCa). In PCa, ERG rearrangements with androgen-regulated genes—mostly TMPRSS2—characterize a large subset of patients across disease progression and result in androgen receptor (AR)-mediated overexpression of ERG in the prostate cells. Importantly, PCa cells overexpressing ERG are dependent on ERG activity for survival, further highlighting its therapeutic potential. Here, we review the current understanding of the role of ERG and its partners in PCa. We discuss the strategies developed in recent years to inhibit ERG activity, the current therapeutic utility of ERG fusion detection in PCa patients, and the possible future approaches to target ERG fusion-positive tumors.
Collapse
Affiliation(s)
- Francesca Lorenzin
- Department of Cellular, Computational and Integrative Biology, CIBIO, University of Trento, 38123 Trento, Italy
- Correspondence: (F.L.); (F.D.)
| | - Francesca Demichelis
- Department of Cellular, Computational and Integrative Biology, CIBIO, University of Trento, 38123 Trento, Italy
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Al-Saud Institute for Computational Biomedicine, Weill Cornell Medical College, New York, NY 10021, USA
- The Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY 10021, USA
- Correspondence: (F.L.); (F.D.)
| |
Collapse
|
10
|
Calderon-Aparicio A, Wang BD. Prostate cancer: Alternatively spliced mRNA transcripts in tumor progression and their uses as therapeutic targets. Int J Biochem Cell Biol 2021; 141:106096. [PMID: 34653618 PMCID: PMC8639776 DOI: 10.1016/j.biocel.2021.106096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/08/2021] [Accepted: 10/10/2021] [Indexed: 10/20/2022]
Abstract
Prostate cancer is the most frequently diagnosed cancer and second leading cause of cancer deaths among American men. Current therapies show early antitumor responses, but ultimately lead to treatment resistance, relapse and poorer survival in patients. Alternative RNA splicing, a cell mechanism increasing the proteome diversity by producing multiple transcripts from a single gene, has been associated with prostate cancer development/progression. Reports showed that many aberrant mRNA splice variants are upregulated in prostate cancer, promoting malignancy through enhanced proliferation, metastasis, tumor growth, anti-apoptosis, and/or treatment resistance. Here, we discuss the oncogenic properties of aberrant splicing mechanisms underlying prostate cancer pathogenesis, as well as the uses of the splicing variants as potential diagnostics and treatment targets. Finally, we discuss the pharmacologic and molecular approaches for targeting aberrant splicing mechanisms as effective therapies to correct the splicing errors and overcome the drug resistance, ultimately improving the clinical outcome of prostate cancer patients.
Collapse
Affiliation(s)
- Ali Calderon-Aparicio
- Department of Pharmaceutical Sciences, School of Pharmacy and Health Professions, University of Maryland Eastern Shore, Princess Anne, MD 21853, USA
| | - Bi-Dar Wang
- Department of Pharmaceutical Sciences, School of Pharmacy and Health Professions, University of Maryland Eastern Shore, Princess Anne, MD 21853, USA.
| |
Collapse
|
11
|
Zhao Y, Hasse S, Bourgoin SG. Phosphatidylserine-specific phospholipase A1: A friend or the devil in disguise. Prog Lipid Res 2021; 83:101112. [PMID: 34166709 DOI: 10.1016/j.plipres.2021.101112] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/30/2021] [Accepted: 06/18/2021] [Indexed: 02/06/2023]
Abstract
Various human tissues and cells express phospholipase A1 member A (PLA1A), including the liver, lung, prostate gland, and immune cells. The enzyme belongs to the pancreatic lipase family. PLA1A specifically hydrolyzes sn-1 fatty acid of phosphatidylserine (PS) or 1-acyl-lysophosphatidylserine (1-acyl-lysoPS). PS externalized by activated cells or apoptotic cells or extracellular vesicles is a potential source of substrate for the production of unsaturated lysoPS species by PLA1A. Maturation and functions of many immune cells, such as T cells, dendritic cells, macrophages, and mast cells, can be regulated by PLA1A and lysoPS. Several lysoPS receptors, including GPR34, GPR174 and P2Y10, have been identified. High serum levels and high PLA1A expression are associated with autoimmune disorders such as Graves' disease and systemic lupus erythematosus. Increased expression of PLA1A is associated with metastatic melanomas. PLA1A may contribute to cardiometabolic disorders through mediating cholesterol transportation and producing lysoPS. Furthermore, PLA1A is necessary for hepatitis C virus assembly and can play a role in the antivirus innate immune response. This review summarizes recent findings on PLA1A expression, lysoPS and lysoPS receptors in autoimmune disorders, cancers, cardiometabolic disorders, antivirus immune responses, as well as regulations of immune cells.
Collapse
Affiliation(s)
- Yang Zhao
- Centre de recherche du CHU de Québec-Université Laval, Centre ARThrite de l'Université Laval, Département de microbiologie-infectiologie et d'immunologie, Université Laval, Québec, G1V 4G2, Canada
| | - Stephan Hasse
- Centre de recherche du CHU de Québec-Université Laval, Centre ARThrite de l'Université Laval, Département de microbiologie-infectiologie et d'immunologie, Université Laval, Québec, G1V 4G2, Canada
| | - Sylvain G Bourgoin
- Centre de recherche du CHU de Québec-Université Laval, Centre ARThrite de l'Université Laval, Département de microbiologie-infectiologie et d'immunologie, Université Laval, Québec, G1V 4G2, Canada.
| |
Collapse
|
12
|
Soleymani L, Zarrabi A, Hashemi F, Hashemi F, Zabolian A, Banihashemi SM, Moghadam SS, Hushmandi K, Samarghandian S, Ashrafizadeh M, Khan H. Role of ZEB family members in proliferation, metastasis and chemoresistance of prostate cancer cells: Revealing signaling networks. Curr Cancer Drug Targets 2021; 21:749-767. [PMID: 34077345 DOI: 10.2174/1568009621666210601114631] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 03/10/2021] [Accepted: 03/19/2021] [Indexed: 11/22/2022]
Abstract
Prostate cancer (PCa) is one of the leading causes of death worldwide. A variety of strategies including surgery, chemotherapy, radiotherapy and immunotherapy are applied for PCa treatment. PCa cells are responsive towards therapy at early stages, but they can obtain resistance in the advanced stage. Furthermore, their migratory ability is high in advanced stages. It seems that genetic and epigenetic factors play an important in this case. Zinc finger E-box-binding homeobox (ZEB) is a family of transcription with two key members including ZEB1 and ZEB2. ZEB family members are known due to their involvement in promoting cancer metastasis via EMT induction. Recent studies have shown their role in cancer proliferation and inducing therapy resistance. In the current review, we focus on revealing role of ZEB1 and ZEB2 in PCa. ZEB family members that are able to significantly promote proliferation and viability of cancer cells. ZEB1 and ZEB2 enhance migration and invasion of PCa cells via EMT induction. Overexpression of ZEB1 and ZEB2 is associated with poor prognosis of PCa. ZEB1 and ZEB2 upregulation occurs during PCa progression and can provide therapy resistance to cancer cells. PRMT1, Smad2, and non-coding RNAs can function as upstream mediators of the ZEB family. Besides, Bax, Bcl-2, MRP1, N-cadherin and E-cadherin can be considered as downstream targets of ZEB family in PCa.
Collapse
Affiliation(s)
- Leyla Soleymani
- Department of biology, school of science, Urmia university, Urmia, Iran
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956, Istanbul. Turkey
| | - Farid Hashemi
- Department of Comparative Biosciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Fardin Hashemi
- Student Research Committee, Department of Physiotherapy, Faculty of Rehabilitation, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Amirhossein Zabolian
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | - Shirin Sabouhi Moghadam
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology & Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Saeed Samarghandian
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite -Caddesi No. 27, Orhanlı, Tuzla, 34956 Istanbul. Turkey
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan, 23200. Pakistan
| |
Collapse
|
13
|
Scaravilli M, Koivukoski S, Latonen L. Androgen-Driven Fusion Genes and Chimeric Transcripts in Prostate Cancer. Front Cell Dev Biol 2021; 9:623809. [PMID: 33634124 PMCID: PMC7900491 DOI: 10.3389/fcell.2021.623809] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/14/2021] [Indexed: 12/15/2022] Open
Abstract
Androgens are steroid hormones governing the male reproductive development and function. As such, androgens and the key mediator of their effects, androgen receptor (AR), have a leading role in many diseases. Prostate cancer is a major disease where AR and its transcription factor function affect a significant number of patients worldwide. While disease-related AR-driven transcriptional programs are connected to the presence and activity of the receptor itself, also novel modes of transcriptional regulation by androgens are exploited by cancer cells. One of the most intriguing and ingenious mechanisms is to bring previously unconnected genes under the control of AR. Most often this occurs through genetic rearrangements resulting in fusion genes where an androgen-regulated promoter area is combined to a protein-coding area of a previously androgen-unaffected gene. These gene fusions are distinctly frequent in prostate cancer compared to other common solid tumors, a phenomenon still requiring an explanation. Interestingly, also another mode of connecting androgen regulation to a previously unaffected gene product exists via transcriptional read-through mechanisms. Furthermore, androgen regulation of fusion genes and transcripts is not linked to only protein-coding genes. Pseudogenes and non-coding RNAs (ncRNAs), including long non-coding RNAs (lncRNAs) can also be affected by androgens and de novo functions produced. In this review, we discuss the prevalence, molecular mechanisms, and functional evidence for androgen-regulated prostate cancer fusion genes and transcripts. We also discuss the clinical relevance of especially the most common prostate cancer fusion gene TMPRSS2-ERG, as well as present open questions of prostate cancer fusions requiring further investigation.
Collapse
Affiliation(s)
- Mauro Scaravilli
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Sonja Koivukoski
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Leena Latonen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
14
|
Endothelial ERG alleviates cardiac fibrosis via blocking endothelin-1-dependent paracrine mechanism. Cell Biol Toxicol 2021; 37:873-890. [PMID: 33469864 DOI: 10.1007/s10565-021-09581-5] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 01/07/2021] [Indexed: 12/12/2022]
Abstract
Cardiac endothelium communicates closely with adjacent cardiac cells by multiple cytokines and plays critical roles in regulating fibroblasts proliferation, activation, and collagen synthesis during cardiac fibrosis. E26 transformation-specific (ETS)-related gene (ERG) belongs to the ETS transcriptional factor family and is required for endothelial cells (ECs) homeostasis and cardiac development. This study aims at investigating the potential role and molecular basis of ERG in fibrotic remodeling within the adult heart. We observed that ERG was abundant in murine hearts, especially in cardiac ECs, but decreased during cardiac fibrosis. ERG knockdown within murine hearts caused spontaneously cardiac fibrosis and dysfunction, accompanied by the activation of multiple Smad-dependent and independent pathways. However, the direct silence of ERG in cardiac fibroblasts did not affect the expression of fibrotic markers. Intriguingly, ERG knockdown in human umbilical vein endothelial cells (HUVECs) promoted the secretion of endothelin-1 (ET-1), which subsequently accelerated the proliferation, phenotypic transition, and collagen synthesis of cardiac fibroblasts in a paracrine manner. Suppressing ET-1 with either a neutralizing antibody or a receptor blocker abolished ERG knockdown-mediated deleterious effect in vivo and in vitro. This pro-fibrotic effect was also negated by RGD (Arg-Gly-Asp)-peptide magnetic nanoparticles target delivery of ET-1 small interfering RNA to ECs in mice. More importantly, we proved that endothelial ERG overexpression notably prevented pressure overload-induced cardiac fibrosis. Collectively, endothelial ERG alleviates cardiac fibrosis via blocking ET-1-dependent paracrine mechanism and it functions as a candidate for treating cardiac fibrosis. • ERG is abundant in murine hearts, especially in cardiac ECs, but decreased during fibrotic remodeling. • ERG knockdown causes spontaneously cardiac fibrosis and dysfunction. • ERG silence in HUVECs promotes the secretion of endothelin-1, which in turn activates cardiac fibroblasts in a paracrine manner. • Endothelial ERG overexpression prevents pressure overload-induced cardiac fibrosis.
Collapse
|
15
|
Cellular and Molecular Progression of Prostate Cancer: Models for Basic and Preclinical Research. Cancers (Basel) 2020; 12:cancers12092651. [PMID: 32957478 PMCID: PMC7563251 DOI: 10.3390/cancers12092651] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/10/2020] [Accepted: 09/11/2020] [Indexed: 02/08/2023] Open
Abstract
Simple Summary The molecular progression of prostate cancer is complex and elusive. Biological research relies heavily on in vitro and in vivo models that can be used to examine gene functions and responses to the external agents in laboratory and preclinical settings. Over the years, several models have been developed and found to be very helpful in understanding the biology of prostate cancer. Here we describe these models in the context of available information on the cellular and molecular progression of prostate cancer to suggest their potential utility in basic and preclinical prostate cancer research. The information discussed herein should serve as a hands-on resource for scholars engaged in prostate cancer research or to those who are making a transition to explore the complex biology of prostate cancer. Abstract We have witnessed noteworthy progress in our understanding of prostate cancer over the past decades. This basic knowledge has been translated into efficient diagnostic and treatment approaches leading to the improvement in patient survival. However, the molecular pathogenesis of prostate cancer appears to be complex, and histological findings often do not provide an accurate assessment of disease aggressiveness and future course. Moreover, we also witness tremendous racial disparity in prostate cancer incidence and clinical outcomes necessitating a deeper understanding of molecular and mechanistic bases of prostate cancer. Biological research heavily relies on model systems that can be easily manipulated and tested under a controlled experimental environment. Over the years, several cancer cell lines have been developed representing diverse molecular subtypes of prostate cancer. In addition, several animal models have been developed to demonstrate the etiological molecular basis of the prostate cancer. In recent years, patient-derived xenograft and 3-D culture models have also been created and utilized in preclinical research. This review is an attempt to succinctly discuss existing information on the cellular and molecular progression of prostate cancer. We also discuss available model systems and their tested and potential utility in basic and preclinical prostate cancer research.
Collapse
|
16
|
Shah N, Kesten N, Font-Tello A, Chang MEK, Vadhi R, Lim K, Flory MR, Cejas P, Mohammed H, Long HW, Brown M. ERG-Mediated Coregulator Complex Formation Maintains Androgen Receptor Signaling in Prostate Cancer. Cancer Res 2020; 80:4612-4619. [PMID: 32934023 DOI: 10.1158/0008-5472.can-20-2044] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/11/2020] [Accepted: 09/10/2020] [Indexed: 11/16/2022]
Abstract
The TMPRSS2-ERG fusion is the most common genomic rearrangement in human prostate cancer. However, in established adenocarcinoma, it is unknown how the ERG oncogene promotes a cancerous phenotype and maintains downstream androgen receptor (AR) signaling pathways. In this study, we utilized a murine prostate organoid system to explore the effects of ERG on tumorigenesis and determined the mechanism underlying prostate cancer dependence on ERG. Prostate organoids lacking PTEN and overexpressing ERG (Pten-/- R26-ERG) faithfully recapitulated distinct stages of prostate cancer disease progression. In this model, deletion of ERG significantly dampened AR-dependent gene expression. While ERG was able to reprogram the AR cistrome in the process of prostate carcinogenesis, ERG knockout in established prostate cancer organoids did not drastically alter AR binding, H3K27ac enhancer, or open chromatin profiles at these reprogrammed sites. Proteomic analysis of DNA-bound AR complexes demonstrated that ERG deletion causes a loss of recruitment of critical AR coregulators and basal transcriptional machinery, including NCOA3 and RNA polymerase II, but does not alter AR binding itself. Together, these data reveal a novel mechanism of ERG oncogene addiction in prostate cancer, whereby ERG facilitates AR signaling by maintaining coregulator complexes at AR bound sites across the genome. SIGNIFICANCE: These findings exploit murine organoid models to uncover the mechanism of ERG-mediated tumorigenesis and subsequent oncogenic dependencies in prostate cancer.
Collapse
Affiliation(s)
- Neel Shah
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts.,Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Nikolas Kesten
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts.,Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Alba Font-Tello
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts.,Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Matthew E K Chang
- Knight Cancer Institute, Oregon Health & Science University Hospital, Portland, Oregon
| | - Raga Vadhi
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts.,Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Klothilda Lim
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts.,Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Mark R Flory
- Knight Cancer Institute, Oregon Health & Science University Hospital, Portland, Oregon
| | - Paloma Cejas
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts.,Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Hisham Mohammed
- Knight Cancer Institute, Oregon Health & Science University Hospital, Portland, Oregon.,Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, Oregon
| | - Henry W Long
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts.,Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Myles Brown
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts. .,Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts
| |
Collapse
|
17
|
Li L, Hobson L, Perry L, Clark B, Heavey S, Haider A, Sridhar A, Shaw G, Kelly J, Freeman A, Wilson I, Whitaker H, Nurmemmedov E, Oltean S, Porazinski S, Ladomery M. Targeting the ERG oncogene with splice-switching oligonucleotides as a novel therapeutic strategy in prostate cancer. Br J Cancer 2020; 123:1024-1032. [PMID: 32581342 PMCID: PMC7493922 DOI: 10.1038/s41416-020-0951-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 05/11/2020] [Accepted: 06/04/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The ERG oncogene, a member of the ETS family of transcription factor encoding genes, is a genetic driver of prostate cancer. It is activated through a fusion with the androgen-responsive TMPRSS2 promoter in 50% of cases. There is therefore significant interest in developing novel therapeutic agents that target ERG. We have taken an antisense approach and designed morpholino-based oligonucleotides that target ERG by inducing skipping of its constitutive exon 4. METHODS We designed antisense morpholino oligonucleotides (splice-switching oligonucleotides, SSOs) that target both the 5' and 3' splice sites of ERG's exon 4. We tested their efficacy in terms of inducing exon 4 skipping in two ERG-positive cell lines, VCaP prostate cancer cells and MG63 osteosarcoma cells. We measured their effect on cell proliferation, migration and apoptosis. We also tested their effect on xenograft tumour growth in mice and on ERG protein expression in a human prostate cancer radical prostatectomy sample ex vivo. RESULTS In VCaP cells, both SSOs were effective at inducing exon 4 skipping, which resulted in a reduction of overall ERG protein levels up to 96 h following a single transfection. SSO-induced ERG reduction decreased cell proliferation, cell migration and significantly increased apoptosis. We observed a concomitant reduction in protein levels for cyclin D1, c-Myc and the Wnt signalling pathway member β-catenin as well as a marker of activated Wnt signalling, p-LRP6. We tested the 3' splice site SSO in MG63 xenografts in mice and observed a reduction in tumour growth. We also demonstrated that the 3' splice site SSO caused a reduction in ERG expression in a patient-derived prostate tumour tissue cultured ex vivo. CONCLUSIONS We have successfully designed and tested morpholino-based SSOs that cause a marked reduction in ERG expression, resulting in decreased cell proliferation, a reduced migratory phenotype and increased apoptosis. Our initial tests on mouse xenografts and a human prostate cancer radical prostatectomy specimen indicate that SSOs can be effective for oncogene targeting in vivo. As such, this study encourages further in vivo therapeutic studies using SSOs targeting the ERG oncogene.
Collapse
Affiliation(s)
- Ling Li
- Institute of Biomedical & Clinical Sciences, University of Exeter Medical School, Exeter, UK
| | - Lisa Hobson
- Faculty of Health and Applied Sciences, University of the West of England, Bristol, UK
| | - Laura Perry
- Faculty of Health and Applied Sciences, University of the West of England, Bristol, UK
| | - Bethany Clark
- Faculty of Health and Applied Sciences, University of the West of England, Bristol, UK
| | - Susan Heavey
- Molecular Diagnostics and Therapeutics Group, University College London, London, UK
| | - Aiman Haider
- Department of Pathology, UCLH NHS Foundation Trust, London, UK
| | - Ashwin Sridhar
- Department of Urology, UCLH NHS Foundation Trust, London, UK
| | - Greg Shaw
- Department of Urology, UCLH NHS Foundation Trust, London, UK
| | - John Kelly
- Department of Urology, UCLH NHS Foundation Trust, London, UK
| | - Alex Freeman
- Department of Pathology, UCLH NHS Foundation Trust, London, UK
| | - Ian Wilson
- Faculty of Health and Applied Sciences, University of the West of England, Bristol, UK
| | - Hayley Whitaker
- Molecular Diagnostics and Therapeutics Group, University College London, London, UK
| | - Elmar Nurmemmedov
- John Wayne Cancer Institute, Providence Saint John's Health Center, Santa Monica, USA
| | - Sebastian Oltean
- Institute of Biomedical & Clinical Sciences, University of Exeter Medical School, Exeter, UK
| | - Sean Porazinski
- Faculty of Health and Applied Sciences, University of the West of England, Bristol, UK.
- Faculty of Medicine, St Vincent's Clinical School, University of NSW, Darlinghurst, Sydney, NSW, 2010, Australia.
| | - Michael Ladomery
- Faculty of Health and Applied Sciences, University of the West of England, Bristol, UK.
| |
Collapse
|
18
|
Hong Z, Zhang W, Ding D, Huang Z, Yan Y, Cao W, Pan Y, Hou X, Weroha SJ, Karnes RJ, Wang D, Wu Q, Wu D, Huang H. DNA Damage Promotes TMPRSS2-ERG Oncoprotein Destruction and Prostate Cancer Suppression via Signaling Converged by GSK3β and WEE1. Mol Cell 2020; 79:1008-1023.e4. [PMID: 32871104 DOI: 10.1016/j.molcel.2020.07.028] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/02/2020] [Accepted: 07/29/2020] [Indexed: 11/27/2022]
Abstract
TMPRSS2-ERG gene fusion occurs in approximately 50% of cases of prostate cancer (PCa), and the fusion product is a key driver of prostate oncogenesis. However, how to leverage cellular signaling to ablate TMPRSS2-ERG oncoprotein for PCa treatment remains elusive. Here, we demonstrate that DNA damage induces proteasomal degradation of wild-type ERG and TMPRSS2-ERG oncoprotein through ERG threonine-187 and tyrosine-190 phosphorylation mediated by GSK3β and WEE1, respectively. The dual phosphorylation triggers ERG recognition and degradation by the E3 ubiquitin ligase FBW7 in a manner independent of a canonical degron. DNA damage-induced TMPRSS2-ERG degradation was abolished by cancer-associated PTEN deletion or GSK3β inactivation. Blockade of DNA damage-induced TMPRSS2-ERG oncoprotein degradation causes chemotherapy-resistant growth of fusion-positive PCa cells in culture and in mice. Our findings uncover a previously unrecognized TMPRSS2-ERG protein destruction mechanism and demonstrate that intact PTEN and GSK3β signaling are essential for effective targeting of ERG protein by genotoxic therapeutics in fusion-positive PCa.
Collapse
Affiliation(s)
- Zhe Hong
- Department of Urology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China; Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Wei Zhang
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA; Basic Medical College, Jilin Medical University, Jilin, Jilin 132013, China
| | - Donglin Ding
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Zhenlin Huang
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Yuqian Yan
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - William Cao
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Yunqian Pan
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Xiaonan Hou
- Department of Oncology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Saravut J Weroha
- Department of Oncology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - R Jeffrey Karnes
- Department of Urology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA; Mayo Clinic Cancer Center, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Dejie Wang
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Qiang Wu
- Department of Urology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China; Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA.
| | - Denglong Wu
- Department of Urology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China.
| | - Haojie Huang
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA; Department of Urology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA; Mayo Clinic Cancer Center, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA.
| |
Collapse
|
19
|
Merging new-age biomarkers and nanodiagnostics for precision prostate cancer management. Nat Rev Urol 2020; 16:302-317. [PMID: 30962568 DOI: 10.1038/s41585-019-0178-2] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The accurate identification and stratified treatment of clinically significant early-stage prostate cancer have been ongoing concerns since the outcomes of large international prostate cancer screening trials were reported. The controversy surrounding clinical and cost benefits of prostate cancer screening has highlighted the lack of strategies for discriminating high-risk disease (that requires early treatment) from low-risk disease (that could be managed using watchful waiting or active surveillance). Advances in molecular subtyping and multiomics nanotechnology-based prostate cancer risk delineation can enable refinement of prostate cancer molecular taxonomy into clinically meaningful and treatable subtypes. Furthermore, the presence of intertumoural and intratumoural heterogeneity in prostate cancer warrants the development of novel nanodiagnostic technologies to identify clinically significant prostate cancer in a rapid, cost-effective and accurate manner. Circulating and urinary next-generation prostate cancer biomarkers for disease molecular subtyping and the newest complementary nanodiagnostic platforms for enhanced biomarker detection are promising tools for precision prostate cancer management. However, challenges in merging both aspects and clinical translation still need to be overcome.
Collapse
|
20
|
Mus LM, Lambertz I, Claeys S, Kumps C, Van Loocke W, Van Neste C, Umapathy G, Vaapil M, Bartenhagen C, Laureys G, De Wever O, Bexell D, Fischer M, Hallberg B, Schulte J, De Wilde B, Durinck K, Denecker G, De Preter K, Speleman F. The ETS transcription factor ETV5 is a target of activated ALK in neuroblastoma contributing to increased tumour aggressiveness. Sci Rep 2020; 10:218. [PMID: 31937834 PMCID: PMC6959226 DOI: 10.1038/s41598-019-57076-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 12/05/2019] [Indexed: 02/08/2023] Open
Abstract
Neuroblastoma is an aggressive childhood cancer arising from sympatho-adrenergic neuronal progenitors. The low survival rates for high-risk disease point to an urgent need for novel targeted therapeutic approaches. Detailed molecular characterization of the neuroblastoma genomic landscape indicates that ALK-activating mutations are present in 10% of primary tumours. Together with other mutations causing RAS/MAPK pathway activation, ALK mutations are also enriched in relapsed cases and ALK activation was shown to accelerate MYCN-driven tumour formation through hitherto unknown ALK-driven target genes. To gain further insight into how ALK contributes to neuroblastoma aggressiveness, we searched for known oncogenes in our previously reported ALK-driven gene signature. We identified ETV5, a bona fide oncogene in prostate cancer, as robustly upregulated in neuroblastoma cells harbouring ALK mutations, and show high ETV5 levels downstream of the RAS/MAPK axis. Increased ETV5 expression significantly impacted migration, invasion and colony formation in vitro, and ETV5 knockdown reduced proliferation in a murine xenograft model. We also established a gene signature associated with ETV5 knockdown that correlates with poor patient survival. Taken together, our data highlight ETV5 as an intrinsic component of oncogenic ALK-driven signalling through the MAPK axis and propose that ETV5 upregulation in neuroblastoma may contribute to tumour aggressiveness.
Collapse
Affiliation(s)
- Liselot M Mus
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Irina Lambertz
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Shana Claeys
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Candy Kumps
- Department of Uro-gynaecology, Ghent University Hospital, Ghent, Belgium
| | - Wouter Van Loocke
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Christophe Van Neste
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Ganesh Umapathy
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Marica Vaapil
- Translational Cancer Research, Lund University, Lund, Sweden
| | - Christoph Bartenhagen
- Department of Experimental Pediatric Oncology, University Children's Hospital of Cologne, Medical Faculty, University of Cologne, 50937, Cologne, Germany.,Centre for Molecular Medicine Cologne (CMMC), University of Cologne, 50931, Cologne, Germany
| | - Genevieve Laureys
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium.,Department of Paediatric Haematology and Oncology, Ghent University Hospital, Ghent, Belgium
| | - Olivier De Wever
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium.,Laboratory of Experimental Cancer Research, Ghent University, Ghent, Belgium
| | - Daniel Bexell
- Translational Cancer Research, Lund University, Lund, Sweden
| | - Matthias Fischer
- Department of Experimental Pediatric Oncology, University Children's Hospital of Cologne, Medical Faculty, University of Cologne, 50937, Cologne, Germany.,Centre for Molecular Medicine Cologne (CMMC), University of Cologne, 50931, Cologne, Germany
| | - Bengt Hallberg
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Johannes Schulte
- Department of Paediatric Oncology and Haematology, University Children's Hospital Essen, Essen, Germany.,Department of Paediatric Oncology and Haematology, Charité University Medical Centre Berlin, Berlin, Germany.,German Cancer Consortium (DKTK), Berlin, Germany.,German Cancer Research Centre (DKFZ), Heidelberg, Germany
| | - Bram De Wilde
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent, Belgium.,Department of Paediatric Haematology and Oncology, Ghent University Hospital, Ghent, Belgium
| | - Kaat Durinck
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Geertrui Denecker
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Katleen De Preter
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Frank Speleman
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium. .,Cancer Research Institute Ghent (CRIG), Ghent, Belgium.
| |
Collapse
|
21
|
Shao L, Kahraman N, Yan G, Wang J, Ozpolat B, Ittmann M. Targeting the TMPRSS2/ERG fusion mRNA using liposomal nanovectors enhances docetaxel treatment in prostate cancer. Prostate 2020; 80:65-73. [PMID: 31614005 PMCID: PMC6925833 DOI: 10.1002/pros.23918] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 10/02/2019] [Indexed: 11/07/2022]
Abstract
BACKGROUND The TMPRSS2/ERG (TE) fusion gene is present in half of the prostate cancers (PCas). The TMPRSS2 and ERG junction of the fusion messenger RNA (mRNA) constitutes a cancer-specific target. Although docetaxel-based chemotherapy is the second line of therapy following development resistance to androgen ablation therapies, it is not curative. Therefore, the development of nontoxic novel monotherapies for targeting TE mRNA in PCa patients and for increasing the clinical efficacy of docetaxel treatment are needed. METHODS We evaluated multiple approaches to enhance the delivery of TE small interfering RNA (siRNA) containing liposomes including PEGylation, topical treatment with nitroglycerin (NG) to increase permeability and retention, and three different PEG modifications: folate, RGD cyclic peptide, and a bFGF fibroblast growth factor receptor-targeting peptide. The efficacy of the optimized TE siRNA liposome in combination with docetaxel was then evaluated in vivo with or without topical NG in vivo using a VCaP xenograft model. TE fusion protein knockdown in residual tumors was assessed using Western blotting and immunohistochemistry. RESULTS In vivo therapeutic targeting of TE fusion gene by systemic delivery of RGD-peptide-coated liposomal siRNA nanovectors led to sustained target silencing, suppressed tumor growth in xenograft models and enhanced the efficacy of docetaxel chemotherapy. Simultaneous application of the vasodilator NG to the skin further increased tissue the delivery of siRNA and enhanced target knockdown. CONCLUSION TE-targeted gene silencing therapy using liposomal nanovectors is a potential therapeutic strategy as a monotherapy and to enhance the efficacy of chemotherapy in patients with advanced PCa.
Collapse
Affiliation(s)
- Longjiang Shao
- Dept. of Pathology & Immunology, Baylor College of Medicine and Michael E. DeBakey Dept. of Veterans Affairs Medical Center, Houston, Texas 77030
| | - Nermin Kahraman
- Departments of Experimental Therapeutics, The University of Texas M. D. Anderson Cancer Center, Houston,Texas 77030
| | - Ge Yan
- Dept. of Pathology & Immunology, Baylor College of Medicine and Michael E. DeBakey Dept. of Veterans Affairs Medical Center, Houston, Texas 77030
| | - Jianghua Wang
- Dept. of Pathology & Immunology, Baylor College of Medicine and Michael E. DeBakey Dept. of Veterans Affairs Medical Center, Houston, Texas 77030
| | - Bulent Ozpolat
- Departments of Experimental Therapeutics, The University of Texas M. D. Anderson Cancer Center, Houston,Texas 77030
| | - Michael Ittmann
- Dept. of Pathology & Immunology, Baylor College of Medicine and Michael E. DeBakey Dept. of Veterans Affairs Medical Center, Houston, Texas 77030
| |
Collapse
|
22
|
Semaan L, Mander N, Cher ML, Chinni SR. TMPRSS2-ERG fusions confer efficacy of enzalutamide in an in vivo bone tumor growth model. BMC Cancer 2019; 19:972. [PMID: 31638934 PMCID: PMC6802314 DOI: 10.1186/s12885-019-6185-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 09/20/2019] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Castrate Resistant Prostate Cancer (CRPC) is an advanced disease resistant to systemic traditional medical or surgical castration, and resistance is primarily attributed to reactivation of AR through multiple mechanisms. TMPRSS2-ERG fusions have been shown to regulate AR signaling, interfere with pro-differentiation functions, and mediate oncogenic signaling. We have recently shown that ERG regulates intra-tumoral androgen synthesis and thereby facilitates AR function in prostate cancer cells. We hypothesize that enzalutamide treatment will be more effective in cells/tumors with TMPRSS2-ERG translocations because these tumors have increased AR signaling. METHODS ERG knockdown was performed with VCaP cells using lentiviral infections to generate VCaP ERGshRNA cells and control VCaP scr cells with scrambled shRNA. Cell-growth analysis was performed to determine the effect of enzalutamide. Reverse transcription, quantitative real-time PCR (RT-qPCR) was used to determine the expression of AR responsive genes. Luciferase tagged VCaP scr and shRNA infected cells were used in an intra-tibial animal model for bone tumor growth analysis and enzalutamide treatment used to inhibit AR signaling in bone tumors. Western blotting analyzed VCaP bone tumor samples for ERG, AR, AKR1C3 and HSD3B1 and HSD3B2 expression. RESULTS Enzalutamide inhibited the growth of VCaP scr cells more effectively than shERG cells. Analysis of AR responsive genes shows that Enzalutamide treatment at 5 micromolar concentration inhibited by 85-90% in VCaP Scr cells whereas these genes were inhibited to a lesser extent in VCaP shERG cells. Enzalutamide treatment resulted in severe growth inhibition in VCaP scr shRNA cells compared to VCaP shERG cells. In bone tumor growth experiment, VCaP ERG shRNA cells grew at slower than VCaP scr shRNA cells. Androgen biosynthetic enzyme expression is lower VCaP shERG bone tumors compared to VCaP scr shRNA bone tumors and enzalutamide inhibited the enzyme expression in both types of tumors. CONCLUSIONS These data suggest that ERG transcription factor regulates androgen biosynthetic enzyme expression that enzalutamide treatment is more effective against VCaP bone tumors with an intact ERG expression, and that knocking down ERG in VCaP cells leads to a lesser response to enzalutamide therapy. Thus, ERG expression status in tumors could help stratify patients for enzalutamide therapy.
Collapse
Affiliation(s)
- Louie Semaan
- Department of Urology, Wayne State University School of Medicine, 9245 Scott Hall, 540 E. Canfield Avenue, Detroit, MI 48201 USA
| | - Navneet Mander
- Department of Urology, Wayne State University School of Medicine, 9245 Scott Hall, 540 E. Canfield Avenue, Detroit, MI 48201 USA
| | - Michael L. Cher
- Department of Urology, Wayne State University School of Medicine, 9245 Scott Hall, 540 E. Canfield Avenue, Detroit, MI 48201 USA
- Department of Pathology, Wayne State University School of Medicine, Detroit, MI 48201 USA
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201 USA
| | - Sreenivasa R. Chinni
- Department of Urology, Wayne State University School of Medicine, 9245 Scott Hall, 540 E. Canfield Avenue, Detroit, MI 48201 USA
- Department of Pathology, Wayne State University School of Medicine, Detroit, MI 48201 USA
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201 USA
| |
Collapse
|
23
|
Neckles C, Sundara Rajan S, Caplen NJ. Fusion transcripts: Unexploited vulnerabilities in cancer? WILEY INTERDISCIPLINARY REVIEWS-RNA 2019; 11:e1562. [PMID: 31407506 PMCID: PMC6916338 DOI: 10.1002/wrna.1562] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 07/05/2019] [Accepted: 07/08/2019] [Indexed: 12/12/2022]
Abstract
Gene fusions are an important class of mutations in several cancer types and include genomic rearrangements that fuse regulatory or coding elements from two different genes. Analysis of the genetics of cancers harboring fusion oncogenes and the proteins they encode have enhanced cancer diagnosis and in some cases patient treatment. However, the effect of the complex structure of fusion genes on the biogenesis of the resulting chimeric transcripts they express is not well studied. There are two potential RNA‐related vulnerabilities inherent to fusion‐driven cancers: (a) the processing of the fusion precursor messenger RNA (pre‐mRNA) to the mature mRNA and (b) the mature mRNA. In this study, we discuss the effects that the genetic organization of fusion oncogenes has on the generation of translatable mature RNAs and the diversity of fusion transcripts expressed in different cancer subtypes, which can fundamentally influence both tumorigenesis and treatment. We also discuss functional genomic approaches that can be utilized to identify proteins that mediate the processing of fusion pre‐mRNAs. Furthermore, we assert that an enhanced understanding of fusion transcript biogenesis and the diversity of the chimeric RNAs present in fusion‐driven cancers will increase the likelihood of successful application of RNA‐based therapies in this class of tumors. This article is categorized under:RNA Processing > RNA Editing and Modification RNA Processing > Splicing Regulation/Alternative Splicing RNA in Disease and Development > RNA in Disease
Collapse
Affiliation(s)
- Carla Neckles
- Functional Genetics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, DHHS, Bethesda, Maryland
| | - Soumya Sundara Rajan
- Functional Genetics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, DHHS, Bethesda, Maryland
| | - Natasha J Caplen
- Functional Genetics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, DHHS, Bethesda, Maryland
| |
Collapse
|
24
|
Lee RS, Zhang L, Berger A, Lawrence MG, Song J, Niranjan B, Davies RG, Lister NL, Sandhu SK, Rubin MA, Risbridger GP, Taylor RA, Rickman DS, Horvath LG, Daly RJ. Characterization of the ERG-regulated Kinome in Prostate Cancer Identifies TNIK as a Potential Therapeutic Target. Neoplasia 2019; 21:389-400. [PMID: 30901730 PMCID: PMC6426874 DOI: 10.1016/j.neo.2019.02.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 02/05/2019] [Accepted: 02/26/2019] [Indexed: 12/22/2022] Open
Abstract
Approximately 50% of prostate cancers harbor the TMPRSS2:ERG fusion, resulting in elevated expression of the ERG transcription factor. Despite the identification of this subclass of prostate cancers, no personalized therapeutic strategies have achieved clinical implementation. Kinases are attractive therapeutic targets as signaling networks are commonly perturbed in cancers. The impact of elevated ERG expression on kinase signaling networks in prostate cancer has not been investigated. Resolution of this issue may identify novel therapeutic approaches for ERG-positive prostate cancers. In this study, we used quantitative mass spectrometry-based kinomic profiling to identify ERG-mediated changes to cellular signaling networks. We identified 76 kinases that were differentially expressed and/or phosphorylated in DU145 cells engineered to express ERG. In particular, the Traf2 and Nck-interacting kinase (TNIK) was markedly upregulated and phosphorylated on multiple sites upon ERG overexpression. Importantly, TNIK has not previously been implicated in prostate cancer. To validate the clinical relevance of these findings, we characterized expression of TNIK and TNIK phosphorylated at serine 764 (pS764) in a localized prostate cancer patient cohort and showed that nuclear enrichment of TNIK (pS764) was significantly positively correlated with ERG expression. Moreover, TNIK protein levels were dependent upon ERG expression in VCaP cells and primary cells established from a prostate cancer patient-derived xenograft. Furthermore, reduction of TNIK expression and activity by silencing TNIK expression or using the TNIK inhibitor NCB-0846 reduced cell viability, colony formation and anchorage independent growth. Therefore, TNIK represents a novel and actionable therapeutic target for ERG-positive prostate cancers that could be exploited to develop new treatments for these patients.
Collapse
Affiliation(s)
- Rachel S Lee
- Cancer Program, Biomedicine Discovery Institute, Monash University, Victoria, Australia; Department of Biochemistry and Molecular Biology, Monash University, Victoria, Australia
| | - Luxi Zhang
- Cancer Program, Biomedicine Discovery Institute, Monash University, Victoria, Australia; Department of Biochemistry and Molecular Biology, Monash University, Victoria, Australia
| | - Adeline Berger
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Mitchell G Lawrence
- Cancer Program, Biomedicine Discovery Institute, Monash University, Victoria, Australia; Department of Anatomy and Developmental Biology, Monash University, Victoria, Australia; Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Jiangning Song
- Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Victoria, Australia; Monash Centre for Data Science, Faculty of Information Technology, Monash University, Victoria, Australia
| | - Birunthi Niranjan
- Cancer Program, Biomedicine Discovery Institute, Monash University, Victoria, Australia; Department of Anatomy and Developmental Biology, Monash University, Victoria, Australia
| | - Rebecca G Davies
- Department of Biochemistry and Molecular Biology, Monash University, Victoria, Australia
| | - Natalie L Lister
- Cancer Program, Biomedicine Discovery Institute, Monash University, Victoria, Australia; Department of Anatomy and Developmental Biology, Monash University, Victoria, Australia
| | - Shahneen K Sandhu
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia; Division of Cancer Medicine, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Mark A Rubin
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA; Meyer Cancer Center, Weill Cornell Medicine, New York, New York, USA; Englander Institute for Precision Medicine, New York-Presbyterian Hospital, Weill Cornell Medicine, New York, New York, USA; Department of Physiology and Biophysics, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, New York, USA
| | - Gail P Risbridger
- Cancer Program, Biomedicine Discovery Institute, Monash University, Victoria, Australia; Department of Anatomy and Developmental Biology, Monash University, Victoria, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia; Division of Cancer Medicine, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Renea A Taylor
- Cancer Program, Biomedicine Discovery Institute, Monash University, Victoria, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia; Department of Physiology, Monash University, Victoria, Australia
| | - David S Rickman
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA; Meyer Cancer Center, Weill Cornell Medicine, New York, New York, USA; Englander Institute for Precision Medicine, New York-Presbyterian Hospital, Weill Cornell Medicine, New York, New York, USA
| | - Lisa G Horvath
- Chris O'Brien Lifehouse, Sydney, New South Wales, Australia; Sydney Medical School, The University of Sydney, New South Wales, Australia; Department of Medical Oncology, Royal Prince Alfred Hospital, New South Wales, Australia; Garvan Institute for Medical Research, New South Wales, Australia
| | - Roger J Daly
- Cancer Program, Biomedicine Discovery Institute, Monash University, Victoria, Australia; Department of Biochemistry and Molecular Biology, Monash University, Victoria, Australia.
| |
Collapse
|
25
|
Suppression of prostate tumor cell survival by antisense oligonucleotide-mediated inhibition of AR-V7 mRNA synthesis. Oncogene 2019; 38:3696-3709. [PMID: 30664691 PMCID: PMC6756119 DOI: 10.1038/s41388-019-0696-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 12/12/2018] [Accepted: 01/04/2019] [Indexed: 12/19/2022]
Abstract
One of the mechanisms by which advanced prostate cancer develops resistance to androgen deprivation therapy is the elevated expression of C-terminally truncated androgen receptor (AR) variants. These variants, such as AR-V7, originate from aberrant splicing of the AR pre-mRNA and the inclusion of a cryptic exon containing a premature stop codon in the mRNA. The resulting loss of the ligand-binding domain allows AR-V7 to act as a constitutively active transcription factor. Here, we designed two antisense oligonucleotides (AONs) directed against cryptic splicing signals within the AR pre-mRNA. These two AONs, AON-ISE and AON-ESE, demonstrated high efficiency in silencing AR-V7 splicing without affecting full-length AR expression. The subsequent downregulation of AR-V7-target gene UBE2C was accompanied by inhibition of androgen-independent cell proliferation and induction of apoptosis in castration-resistant prostate cancer (CRPC)-derived cell line models 22Rv1, DuCaP, and VCaP. Our results show that splicing-directed AONs can efficiently prevent expression of AR-V7, providing an attractive new therapeutic option for the treatment of CRPC.
Collapse
|
26
|
Hashmi AA, Khan EY, Irfan M, Ali R, Asif H, Naeem M, Nisar L, Faridi N, Khan A, Edhi MM. ERG oncoprotein expression in prostatic acinar adenocarcinoma; clinicopathologic significance. BMC Res Notes 2019; 12:35. [PMID: 30658688 PMCID: PMC6339396 DOI: 10.1186/s13104-019-4090-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 01/14/2019] [Indexed: 11/10/2022] Open
Abstract
Objectives T/E fusion results in constitutive expression of ERG oncoprotein resulting in enhanced proliferation and invasive potential of prostatic cancer cells. In the present study we aimed to evaluate the ERG overexpression in 78 cases prostate acinar adenocarcinoma and its association with other prognostic parameters. Results ERG protein expression was noted in 39.7% (31 cases), out of which 3 cases (3.8%) showed low ERG expression, 10 cases (12.8%) showed intermediate expression and 18 cases (23.1%) revealed high ERG expression. Significant association of ERG expression was noted with gleason score (p = 0.009), WHO grade group (p = 0.008) and perineural invasion (p = 0.043). We found a significant proportion of our patients of prostatic acinar adenocarcinoma to over-express ERG protein which can help in devising therapeutic protocols. Significant association of ERG protein expression with gleason score and perineural invasion signifies its prognostic significance in prostatic carcinoma. Moreover, we also suggest that molecular studies should be performed in patients with prostatic carcinoma to look for T/E fusion gene and its correlation with ERG protein expression.
Collapse
Affiliation(s)
- Atif Ali Hashmi
- Liaquat National Hospital and Medical College, Karachi, Pakistan
| | - Erum Yousuf Khan
- Liaquat National Hospital and Medical College, Karachi, Pakistan
| | - Muhammad Irfan
- Liaquat National Hospital and Medical College, Karachi, Pakistan
| | - Rabia Ali
- Liaquat National Hospital and Medical College, Karachi, Pakistan
| | - Huda Asif
- CMH Institute of Medical Sciences, Multan, Pakistan
| | - Maheen Naeem
- Liaquat National Hospital and Medical College, Karachi, Pakistan
| | - Laila Nisar
- Liaquat National Hospital and Medical College, Karachi, Pakistan
| | - Naveen Faridi
- Liaquat National Hospital and Medical College, Karachi, Pakistan
| | - Amir Khan
- Kandahar University, Kandahar, 3802, Afghanistan.
| | | |
Collapse
|
27
|
Nicholas TR, Strittmatter BG, Hollenhorst PC. Oncogenic ETS Factors in Prostate Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1210:409-436. [PMID: 31900919 DOI: 10.1007/978-3-030-32656-2_18] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Prostate cancer is unique among carcinomas in that a fusion gene created by a chromosomal rearrangement is a common driver of the disease. The TMPRSS2/ERG rearrangement drives aberrant expression of the ETS family transcription factor ERG in 50% of prostate tumors. Similar rearrangements promote aberrant expression of the ETS family transcription factors ETV1 and ETV4 in another 10% of cases. Together, these three ETS factors are thought to promote tumorigenesis in the majority of prostate cancers. A goal of precision medicine is to be able to apply targeted therapeutics that are specific to disease subtypes. ETS gene rearrangement positive tumors represent the largest molecular subtype of prostate cancer, but to date there is no treatment specific to this marker. In this chapter we will review the latest findings regarding the molecular mechanisms of ETS factor function in the prostate. These molecular details may provide a path towards new therapeutic targets for this subtype of prostate cancer. Further, we will describe efforts to target the oncogenic functions of ETS family transcription factors directly as well as indirectly.
Collapse
Affiliation(s)
| | - Brady G Strittmatter
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN, USA
| | - Peter C Hollenhorst
- Medical Sciences, Indiana University School of Medicine, Bloomington, IN, USA.
| |
Collapse
|
28
|
Wang BD, Lee NH. Aberrant RNA Splicing in Cancer and Drug Resistance. Cancers (Basel) 2018; 10:E458. [PMID: 30463359 PMCID: PMC6266310 DOI: 10.3390/cancers10110458] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 11/15/2018] [Accepted: 11/15/2018] [Indexed: 12/22/2022] Open
Abstract
More than 95% of the 20,000 to 25,000 transcribed human genes undergo alternative RNA splicing, which increases the diversity of the proteome. Isoforms derived from the same gene can have distinct and, in some cases, opposing functions. Accumulating evidence suggests that aberrant RNA splicing is a common and driving event in cancer development and progression. Moreover, aberrant splicing events conferring drug/therapy resistance in cancer is far more common than previously envisioned. In this review, aberrant splicing events in cancer-associated genes, namely BCL2L1, FAS, HRAS, CD44, Cyclin D1, CASP2, TMPRSS2-ERG, FGFR2, VEGF, AR and KLF6, will be discussed. Also highlighted are the functional consequences of aberrant splice variants (BCR-Abl35INS, BIM-γ, IK6, p61 BRAF V600E, CD19-∆2, AR-V7 and PIK3CD-S) in promoting resistance to cancer targeted therapy or immunotherapy. To overcome drug resistance, we discuss opportunities for developing novel strategies to specifically target the aberrant splice variants or splicing machinery that generates the splice variants. Therapeutic approaches include the development of splice variant-specific siRNAs, splice switching antisense oligonucleotides, and small molecule inhibitors targeting splicing factors, splicing factor kinases or the aberrant oncogenic protein isoforms.
Collapse
Affiliation(s)
- Bi-Dar Wang
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland Eastern Shore, Princess Anne, MD 21853, USA.
| | - Norman H Lee
- Department of Pharmacology and Physiology, School of Medicine and Health Sciences, George Washington University, GW Cancer Center, Washington, DC 20037, USA.
| |
Collapse
|
29
|
Jumbe SL, Porazinski SR, Oltean S, Mansell JP, Vahabi B, Wilson ID, Ladomery MR. The Evolutionarily Conserved Cassette Exon 7b Drives ERG's Oncogenic Properties. Transl Oncol 2018; 12:134-142. [PMID: 30296658 PMCID: PMC6174920 DOI: 10.1016/j.tranon.2018.09.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 09/07/2018] [Accepted: 09/07/2018] [Indexed: 02/08/2023] Open
Abstract
The oncogene ERG encodes an ETS family transcription factor and is implicated in blood, vascular, and bone development and in prostate, blood, and bone cancer. The ERG gene is alternatively spliced; of particular interest is its cassette exon 7b which adds 24 amino acids, in frame, to the transcriptional activation domain. Higher exon 7b inclusion rates are associated with increased cell proliferation and advanced prostate cancer. The 24 amino acids encoded by exon 7b show evolutionary conservation from humans to echinoderms, highlighting their functional importance. Throughout evolution, these 24 amino acids are encoded by a distinct short exon. Splice-switching oligonucleotides based on morpholino chemistry were designed to induce skipping of ERG exon 7b in MG63 osteosarcoma and VCaP prostate cancer cells. Induction of exon 7b skipping reduced cell proliferation and invasion, increased apoptosis in vitro, and reduced xenograft growth in vivo. We also show that ERG's exon 7b is required for the induction of tissue nonspecific alkaline phosphatase. Together, these findings show that the evolutionarily conserved cassette exon 7b is central to ERG's oncogenic properties.
Collapse
Affiliation(s)
- Samantha L Jumbe
- Faculty of Health and Applied Sciences, University of the West of England, Coldharbour Lane, Frenchay, Bristol BS16 1QY, United Kingdom
| | - Sean R Porazinski
- Faculty of Health and Applied Sciences, University of the West of England, Coldharbour Lane, Frenchay, Bristol BS16 1QY, United Kingdom
| | - Sebastian Oltean
- Institute of Biomedical & Clinical Sciences, University of Exeter Medical School, St Luke's Campus, Heavitree Rd, Exeter, EX1 2LU, United Kingdom
| | - Jason P Mansell
- Faculty of Health and Applied Sciences, University of the West of England, Coldharbour Lane, Frenchay, Bristol BS16 1QY, United Kingdom
| | - Bahareh Vahabi
- Faculty of Health and Applied Sciences, University of the West of England, Coldharbour Lane, Frenchay, Bristol BS16 1QY, United Kingdom
| | - Ian D Wilson
- Faculty of Health and Applied Sciences, University of the West of England, Coldharbour Lane, Frenchay, Bristol BS16 1QY, United Kingdom
| | - Michael R Ladomery
- Faculty of Health and Applied Sciences, University of the West of England, Coldharbour Lane, Frenchay, Bristol BS16 1QY, United Kingdom.
| |
Collapse
|
30
|
Antonopoulou E, Ladomery M. Targeting Splicing in Prostate Cancer. Int J Mol Sci 2018; 19:ijms19051287. [PMID: 29693622 PMCID: PMC5983716 DOI: 10.3390/ijms19051287] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 04/18/2018] [Accepted: 04/23/2018] [Indexed: 12/22/2022] Open
Abstract
Over 95% of human genes are alternatively spliced, expressing splice isoforms that often exhibit antagonistic functions. We describe genes whose alternative splicing has been linked to prostate cancer; namely VEGFA, KLF6, BCL2L2, ERG, and AR. We discuss opportunities to develop novel therapies that target specific splice isoforms, or that target the machinery of splicing. Therapeutic approaches include the development of small molecule inhibitors of splice factor kinases, splice isoform specific siRNAs, and splice switching oligonucleotides.
Collapse
Affiliation(s)
- Effrosyni Antonopoulou
- Faculty of Health and Applied Sciences, University of the West of England, Coldharbour Lane, Bristol BS16 1QY, UK.
| | - Michael Ladomery
- Faculty of Health and Applied Sciences, University of the West of England, Coldharbour Lane, Bristol BS16 1QY, UK.
| |
Collapse
|
31
|
SQUID: transcriptomic structural variation detection from RNA-seq. Genome Biol 2018; 19:52. [PMID: 29650026 PMCID: PMC5896115 DOI: 10.1186/s13059-018-1421-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 03/14/2018] [Indexed: 11/10/2022] Open
Abstract
Transcripts are frequently modified by structural variations, which lead to fused transcripts of either multiple genes, known as a fusion gene, or a gene and a previously non-transcribed sequence. Detecting these modifications, called transcriptomic structural variations (TSVs), especially in cancer tumor sequencing, is an important and challenging computational problem. We introduce SQUID, a novel algorithm to predict both fusion-gene and non-fusion-gene TSVs accurately from RNA-seq alignments. SQUID unifies both concordant and discordant read alignments into one model and doubles the precision on simulation data compared to other approaches. Using SQUID, we identify novel non-fusion-gene TSVs on TCGA samples.
Collapse
|
32
|
Butler MS, Roshan-Moniri M, Hsing M, Lau D, Kim A, Yen P, Mroczek M, Nouri M, Lien S, Axerio-Cilies P, Dalal K, Yau C, Ghaidi F, Guo Y, Yamazaki T, Lawn S, Gleave ME, Gregory-Evans CY, McIntosh LP, Cox ME, Rennie PS, Cherkasov A. Discovery and characterization of small molecules targeting the DNA-binding ETS domain of ERG in prostate cancer. Oncotarget 2018; 8:42438-42454. [PMID: 28465491 PMCID: PMC5522078 DOI: 10.18632/oncotarget.17124] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 04/04/2017] [Indexed: 12/23/2022] Open
Abstract
Genomic alterations involving translocations of the ETS-related gene ERG occur in approximately half of prostate cancer cases. These alterations result in aberrant, androgen-regulated production of ERG protein variants that directly contribute to disease development and progression. This study describes the discovery and characterization of a new class of small molecule ERG antagonists identified through rational in silico methods. These antagonists are designed to sterically block DNA binding by the ETS domain of ERG and thereby disrupt transcriptional activity. We confirmed the direct binding of a lead compound, VPC-18005, with the ERG-ETS domain using biophysical approaches. We then demonstrated VPC-18005 reduced migration and invasion rates of ERG expressing prostate cancer cells, and reduced metastasis in a zebrafish xenograft model. These results demonstrate proof-of-principal that small molecule targeting of the ERG-ETS domain can suppress transcriptional activity and reverse transformed characteristics of prostate cancers aberrantly expressing ERG. Clinical advancement of the developed small molecule inhibitors may provide new therapeutic agents for use as alternatives to, or in combination with, current therapies for men with ERG-expressing metastatic castration-resistant prostate cancer.
Collapse
Affiliation(s)
- Miriam S Butler
- Vancouver Prostate Centre and the Department of Urologic Sciences, University of British Columbia, Vancouver, BC V6H 3Z6, Canada
| | - Mani Roshan-Moniri
- Vancouver Prostate Centre and the Department of Urologic Sciences, University of British Columbia, Vancouver, BC V6H 3Z6, Canada
| | - Michael Hsing
- Vancouver Prostate Centre and the Department of Urologic Sciences, University of British Columbia, Vancouver, BC V6H 3Z6, Canada
| | - Desmond Lau
- Department of Biochemistry and Molecular Biology, Department of Chemistry, Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Ari Kim
- Vancouver Prostate Centre and the Department of Urologic Sciences, University of British Columbia, Vancouver, BC V6H 3Z6, Canada
| | - Paul Yen
- Vancouver Prostate Centre and the Department of Urologic Sciences, University of British Columbia, Vancouver, BC V6H 3Z6, Canada
| | - Marta Mroczek
- Vancouver Prostate Centre and the Department of Urologic Sciences, University of British Columbia, Vancouver, BC V6H 3Z6, Canada
| | - Mannan Nouri
- Vancouver Prostate Centre and the Department of Urologic Sciences, University of British Columbia, Vancouver, BC V6H 3Z6, Canada
| | - Scott Lien
- Vancouver Prostate Centre and the Department of Urologic Sciences, University of British Columbia, Vancouver, BC V6H 3Z6, Canada
| | - Peter Axerio-Cilies
- Vancouver Prostate Centre and the Department of Urologic Sciences, University of British Columbia, Vancouver, BC V6H 3Z6, Canada
| | - Kush Dalal
- Vancouver Prostate Centre and the Department of Urologic Sciences, University of British Columbia, Vancouver, BC V6H 3Z6, Canada
| | - Clement Yau
- Vancouver Prostate Centre and the Department of Urologic Sciences, University of British Columbia, Vancouver, BC V6H 3Z6, Canada
| | - Fariba Ghaidi
- Vancouver Prostate Centre and the Department of Urologic Sciences, University of British Columbia, Vancouver, BC V6H 3Z6, Canada
| | - Yubin Guo
- Vancouver Prostate Centre and the Department of Urologic Sciences, University of British Columbia, Vancouver, BC V6H 3Z6, Canada
| | - Takeshi Yamazaki
- Vancouver Prostate Centre and the Department of Urologic Sciences, University of British Columbia, Vancouver, BC V6H 3Z6, Canada
| | - Sam Lawn
- Vancouver Prostate Centre and the Department of Urologic Sciences, University of British Columbia, Vancouver, BC V6H 3Z6, Canada
| | - Martin E Gleave
- Vancouver Prostate Centre and the Department of Urologic Sciences, University of British Columbia, Vancouver, BC V6H 3Z6, Canada
| | - Cheryl Y Gregory-Evans
- Department of Ophthalmology and Visual Sciences, Eye Care Centre, University of British Columbia, Vancouver, BC V5Z 3N9, Canada
| | - Lawrence P McIntosh
- Department of Biochemistry and Molecular Biology, Department of Chemistry, Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Michael E Cox
- Vancouver Prostate Centre and the Department of Urologic Sciences, University of British Columbia, Vancouver, BC V6H 3Z6, Canada
| | - Paul S Rennie
- Vancouver Prostate Centre and the Department of Urologic Sciences, University of British Columbia, Vancouver, BC V6H 3Z6, Canada
| | - Artem Cherkasov
- Vancouver Prostate Centre and the Department of Urologic Sciences, University of British Columbia, Vancouver, BC V6H 3Z6, Canada
| |
Collapse
|
33
|
TMPRSS2:ERG gene fusion variants induce TGF-β signaling and epithelial to mesenchymal transition in human prostate cancer cells. Oncotarget 2018; 8:25115-25130. [PMID: 28445989 PMCID: PMC5421914 DOI: 10.18632/oncotarget.15931] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 02/15/2017] [Indexed: 01/17/2023] Open
Abstract
TMPRSS2:ERG (T/E) gene fusions are present in approximately 50% of all prostate cancer (PCa) cases. The expression of fusion mRNAs from distinct T/E variants is associated with clinicopathological parameters, while the underlying molecular processes remain unclear. We characterized the molecular mechanisms and functional implications caused by doxycycline (Dox)-inducible overexpression of the frequent T/E III and VI fusion variants in LNCaP cells. Induction of T/E expression resulted in increased cellular migratory and invasive potential, and reduced proliferation and accumulation in G1 phase. T/E overexpressing cells showed epithelial-to-mesenchymal transition (EMT), as demonstrated by upregulation of TGF-β and WNT pathway genes, mesenchymal markers, and increased phosphorylation of the p38 MAPK. Augmented secretion of TGF-β1 and –β2, and T/E-mediated regulation of ALK1, a member of the TGF-β receptor family, was detected. ALK1 inhibition in T/E overexpressing cells blocked p38 phosphorylation and reduced the expression of the TGF-β target genes VIM, MMP1, CDH2, and SNAI2. We found a T/E variant VI-specific induction of miR-503 associated with reduced expression of SMAD7 and CDH1. Overexpression of miR-503 led to increased levels of VIM and MMP1. Our findings indicate that TGF-β signaling is a major determinant of EMT in T/E overexpressing LNCaP cells. We provide evidence that T/E VI-specific transcriptional modulation by miR-503 accounts for differences in the activation of EMT pathway genes, promoting the aggressive phenotype of tumors expressing T/E variant VI. We suggest that ALK1-mediated TGF-β signaling is a novel oncogenic mechanism in T/E positive PCa.
Collapse
|
34
|
Shao L, Wang J, Karatas OF, Feng S, Zhang Y, Creighton CJ, Ittmann M. Fibroblast growth factor receptor signaling plays a key role in transformation induced by the TMPRSS2/ERG fusion gene and decreased PTEN. Oncotarget 2018; 9:14456-14471. [PMID: 29581856 PMCID: PMC5865682 DOI: 10.18632/oncotarget.24470] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 02/03/2018] [Indexed: 12/12/2022] Open
Abstract
Prostate cancer is the most common visceral malignancy and the second leading cause of cancer deaths in US men. Correlative studies in human prostate cancers reveal a frequent association of the TMPRSS2/ERG (TE) fusion gene with loss of PTEN and studies in mouse models reveal that ERG expression and PTEN loss synergistically promote prostate cancer progression. To determine the mechanism by which ERG overexpression and PTEN loss leads to transformation, we overexpressed the TE fusion gene and knocked down PTEN in an immortalized but non-transformed prostate epithelial cell line. We show that ERG overexpression in combination with PTEN loss can transform these immortalized but non-tumorigenic cells, while either alteration alone was not sufficient to fully transform these cells. Expression microarray analysis revealed extensive changes in gene expression in cells expressing the TE fusion with loss of PTEN. Among these gene expression changes was increased expression of multiple FGF ligands and receptors. We show that activation of fibroblast growth factor receptor signaling plays a key role in transformation induced by TE fusion gene expression in association with PTEN loss. In addition, in vitro and in silico analysis reveals PTEN loss is associated with widespread increases in FGF ligands and receptors in prostate cancer. Inhibitors of FGF receptor signaling are currently entering the clinic and our results suggests that FGF receptor signaling is a therapeutic target in cancers with TE fusion gene expression and PTEN loss.
Collapse
Affiliation(s)
- Longjiang Shao
- Deptartment of Pathology & Immunology, Baylor College of Medicine, Houston, Texas 77030, USA.,Michael E. DeBakey Department of Veterans Affairs Medical Center, Houston, Texas 77030, USA
| | - Jianghua Wang
- Deptartment of Pathology & Immunology, Baylor College of Medicine, Houston, Texas 77030, USA.,Michael E. DeBakey Department of Veterans Affairs Medical Center, Houston, Texas 77030, USA
| | - Omer Faruk Karatas
- Deptartment of Pathology & Immunology, Baylor College of Medicine, Houston, Texas 77030, USA.,Michael E. DeBakey Department of Veterans Affairs Medical Center, Houston, Texas 77030, USA
| | - Shu Feng
- Deptartment of Pathology & Immunology, Baylor College of Medicine, Houston, Texas 77030, USA.,Michael E. DeBakey Department of Veterans Affairs Medical Center, Houston, Texas 77030, USA
| | - Yiqun Zhang
- Department of Medicine, Baylor College of Medicine, Houston, Texas 77030, USA.,Dan L. Duncan Cancer Center Division of Biostatistics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Chad J Creighton
- Department of Medicine, Baylor College of Medicine, Houston, Texas 77030, USA.,Dan L. Duncan Cancer Center Division of Biostatistics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Michael Ittmann
- Deptartment of Pathology & Immunology, Baylor College of Medicine, Houston, Texas 77030, USA.,Michael E. DeBakey Department of Veterans Affairs Medical Center, Houston, Texas 77030, USA
| |
Collapse
|
35
|
Coarfa C, Florentin D, Putluri N, Ding Y, Au J, He D, Ragheb A, Frolov A, Michailidis G, Lee M, Kadmon D, Miles B, Smith C, Ittmann M, Rowley D, Sreekumar A, Creighton CJ, Ayala G. Influence of the neural microenvironment on prostate cancer. Prostate 2018; 78:128-139. [PMID: 29131367 PMCID: PMC5836952 DOI: 10.1002/pros.23454] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 10/19/2017] [Indexed: 01/22/2023]
Abstract
BACKGROUND Nerves are key factors in prostate cancer (PCa), but the functional role of innervation in prostate cancer is poorly understood. PCa induced neurogenesis and perineural invasion (PNI), are associated with aggressive disease. METHOD We denervated rodent prostates chemically and physically, before orthotopically implanting cancer cells. We also performed a human neoadjuvant clinical trial using botulinum toxin type A (Botox) and saline in the same patient, before prostatectomy. RESULT Bilateral denervation resulted in reduced tumor incidence and size in mice. Botox treatment in humans resulted in increased apoptosis of cancer cells in the Botox treated side. A similar denervation gene array profile was identified in tumors arising in denervated rodent prostates, in spinal cord injury patients and in the Botox treated side of patients. Denervation induced exhibited a signature gene profile, indicating translation and bioenergetic shutdown. Nerves also regulate basic cellular functions of non-neoplastic epithelial cells. CONCLUSION Nerves play a role in the homeostasis of normal epithelial tissues and are involved in prostate cancer tumor survival. This study confirms that interactions between human cancer and nerves are essential to disease progression. This work may make a major impact in general cancer treatment strategies, as nerve/cancer interactions are likely important in other cancers as well. Targeting the neural microenvironment may represent a therapeutic approach for the treatment of human prostate cancer.
Collapse
Affiliation(s)
- Christian Coarfa
- Department of Molecular & Cell BiologyBaylor College of MedicineHoustonTexas
| | - Diego Florentin
- Department of Internal MedicineDetroit Medical CenterWayne State UniversitySinai‐Grace HospitalDetroitMichigan
| | - NagiReddy Putluri
- Department of Molecular & Cell BiologyBaylor College of MedicineHoustonTexas
| | - Yi Ding
- Department of Pathology and Laboratory MedicineUniversity of Texas Health Sciences Center Medical SchoolHoustonTexas
| | - Jason Au
- Scott Department of UrologyBaylor College of MedicineHoustonTexas
| | - Dandan He
- Diana Helis Henry Medical Research FoundationNew OrleansLouisiana
| | - Ahmed Ragheb
- Faculty of MedicineDepartment of UrologyBeni Suef UniversityBeni SuefEgypt
| | - Anna Frolov
- Dan L. Duncan Cancer CenterBaylor College of MedicineHoustonTexas
| | | | - MinJae Lee
- Biostatistics/Epidemiology/Research Design (BERD) CoreDepartment of Internal MedicineUniversity of Texas Health Sciences Center Medical SchoolHoustonTexas
| | - Dov Kadmon
- Scott Department of UrologyBaylor College of MedicineHoustonTexas
| | - Brian Miles
- Department of UrologyThe Methodist HospitalHoustonTexas
| | | | - Michael Ittmann
- Department of Pathology & ImmunologyBaylor College of MedicineHoustonTexas
| | - David Rowley
- Department of Molecular & Cell BiologyBaylor College of MedicineHoustonTexas
| | - Arun Sreekumar
- Department of Molecular & Cell BiologyBaylor College of MedicineHoustonTexas
| | | | - Gustavo Ayala
- Department of Pathology and Laboratory MedicineUniversity of Texas Health Sciences Center Medical SchoolHoustonTexas
| |
Collapse
|
36
|
Li Z, Qin F, Li H. Chimeric RNAs and their implications in cancer. Curr Opin Genet Dev 2017; 48:36-43. [PMID: 29100211 DOI: 10.1016/j.gde.2017.10.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Revised: 09/06/2017] [Accepted: 10/02/2017] [Indexed: 11/26/2022]
Abstract
Chimeric RNAs have been believed to be solely produced by gene fusions resulting from chromosomal rearrangement, thus unique features of cancer. Detected chimeric RNAs have also been viewed as surrogates for the presence of gene fusions. However, more and more research has demonstrated that chimeric RNAs in general are not a hallmark of cancer, but rather widely present in non-cancerous cells and tissues. At the same time, they may be produced by other mechanisms other than chromosomal rearrangement. The field of non-canonical chimeric RNAs is still in its infancy, with many challenges ahead, including the lack of a unified terminology. However, we believe that these non-canonical chimeric RNAs will have significant impacts in cancer detection and treatment.
Collapse
Affiliation(s)
- Zi Li
- Department of Pathology, University of Virginia, Charlottesville, VA 22908, USA; Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Fujun Qin
- Department of Pathology, University of Virginia, Charlottesville, VA 22908, USA
| | - Hui Li
- Department of Pathology, University of Virginia, Charlottesville, VA 22908, USA.
| |
Collapse
|
37
|
Deplus R, Delliaux C, Marchand N, Flourens A, Vanpouille N, Leroy X, de Launoit Y, Duterque-Coquillaud M. TMPRSS2-ERG fusion promotes prostate cancer metastases in bone. Oncotarget 2017; 8:11827-11840. [PMID: 28055969 PMCID: PMC5355307 DOI: 10.18632/oncotarget.14399] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 12/16/2016] [Indexed: 12/13/2022] Open
Abstract
Bone metastasis is the major deleterious event in prostate cancer (PCa). TMPRSS2-ERG fusion is one of the most common chromosomic rearrangements in PCa. However, its implication in bone metastasis development is still unclear. Since bone metastasis starts with the tropism of cancer cells to bone through specific migratory and invasive processes involving osteomimetic capabilities, it is crucial to better our understanding of the influence of TMPRSS2-ERG expression in the mechanisms underlying the bone tropism properties of PCa cells. We developed bioluminescent cell lines expressing the TMPRSS2-ERG fusion in order to assess its role in tumor growth and bone metastasis appearance in a mouse model. First, we showed that the TMPRSS2-ERG fusion increases cell migration and subcutaneous tumor size. Second, using intracardiac injection experiments in mice, we showed that the expression of TMPRSS2-ERG fusion increases the number of metastases in bone. Moreover, TMPRSS2-ERG affects the pattern of metastatic spread by increasing the incidence of tumors in hind limbs and spine, which are two of the most frequent sites of human PCa metastases. Finally, transcriptome analysis highlighted a series of genes regulated by the fusion and involved in the metastatic process. Altogether, our work indicates that TMPRSS2-ERG increases bone tropism of PCa cells and metastasis development.
Collapse
Affiliation(s)
- Rachel Deplus
- University Lille, CNRS, Institut Pasteur de Lille, UMR 8161 (M3T) Mechanisms of Tumorigenesis and Target Therapies, F-59000 Lille, France
| | - Carine Delliaux
- University Lille, CNRS, Institut Pasteur de Lille, UMR 8161 (M3T) Mechanisms of Tumorigenesis and Target Therapies, F-59000 Lille, France
| | - Nathalie Marchand
- University Lille, CNRS, Institut Pasteur de Lille, UMR 8161 (M3T) Mechanisms of Tumorigenesis and Target Therapies, F-59000 Lille, France
| | - Anne Flourens
- University Lille, CNRS, Institut Pasteur de Lille, UMR 8161 (M3T) Mechanisms of Tumorigenesis and Target Therapies, F-59000 Lille, France
| | - Nathalie Vanpouille
- University Lille, CNRS, Institut Pasteur de Lille, UMR 8161 (M3T) Mechanisms of Tumorigenesis and Target Therapies, F-59000 Lille, France
| | - Xavier Leroy
- Institut de Pathologie Centre de Biologie Pathologie Centre Hospitalier Régional et Universitaire, F-59037 Lille, France
| | - Yvan de Launoit
- University Lille, CNRS, Institut Pasteur de Lille, UMR 8161 (M3T) Mechanisms of Tumorigenesis and Target Therapies, F-59000 Lille, France
| | - Martine Duterque-Coquillaud
- University Lille, CNRS, Institut Pasteur de Lille, UMR 8161 (M3T) Mechanisms of Tumorigenesis and Target Therapies, F-59000 Lille, France
| |
Collapse
|
38
|
Kedage V, Strittmatter BG, Dausinas PB, Hollenhorst PC. Phosphorylation of the oncogenic transcription factor ERG in prostate cells dissociates polycomb repressive complex 2, allowing target gene activation. J Biol Chem 2017; 292:17225-17235. [PMID: 28887309 DOI: 10.1074/jbc.m117.796458] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 08/05/2017] [Indexed: 01/15/2023] Open
Abstract
In ∼50% of prostate cancers, chromosomal rearrangements cause the fusion of the promoter and 5'-UTR of the androgen-regulated TMPRSS2 (transmembrane protease, serine 2) gene to the open reading frame of ERG, encoding an ETS family transcription factor. This fusion results in expression of full-length or N-terminally truncated ERG protein in prostate epithelia. ERG is not expressed in normal prostate epithelia, but when expressed, it promotes tumorigenesis via altered gene expression, stimulating epithelial-mesenchymal transition, cellular migration/invasion, and transformation. However, limited knowledge about the molecular mechanisms of ERG function in prostate cells has hampered efforts to therapeutically target ERG. ERK-mediated phosphorylation of ERG is required for ERG functions in prostate cells, but the reason for this requirement is unknown. Here, we report a mechanism whereby ERK-mediated phosphorylation of ERG at one serine residue causes a conformational change that allows ERK phosphorylation at a second serine residue, Ser-96. We found that the Ser-96 phosphorylation resulted in dissociation of EZH2 and SUZ12, components of polycomb repressive complex 2 (PRC2), transcriptional activation of ERG target genes, and increased cell migration. Conversely, loss of ERG phosphorylation at Ser-96 resulted in recruitment of EZH2 across the ERG-cistrome and a genome-wide loss of ERG-mediated transcriptional activation and cell migration. In conclusion, our findings have identified critical molecular mechanisms involving ERK-mediated ERG activation that could be exploited for therapeutic intervention in ERG-positive prostate cancers.
Collapse
Affiliation(s)
| | | | - Paige B Dausinas
- Medical Sciences, Indiana University, Bloomington, Indiana 47405
| | | |
Collapse
|
39
|
Kumari S, Senapati D, Heemers HV. Rationale for the development of alternative forms of androgen deprivation therapy. Endocr Relat Cancer 2017; 24:R275-R295. [PMID: 28566530 PMCID: PMC5886376 DOI: 10.1530/erc-17-0121] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 05/30/2017] [Indexed: 12/31/2022]
Abstract
With few exceptions, the almost 30,000 prostate cancer deaths annually in the United States are due to failure of androgen deprivation therapy. Androgen deprivation therapy prevents ligand-activation of the androgen receptor. Despite initial remission after androgen deprivation therapy, prostate cancer almost invariably progresses while continuing to rely on androgen receptor action. Androgen receptor's transcriptional output, which ultimately controls prostate cancer behavior, is an alternative therapeutic target, but its molecular regulation is poorly understood. Recent insights in the molecular mechanisms by which the androgen receptor controls transcription of its target genes are uncovering gene specificity as well as context-dependency. Heterogeneity in the androgen receptor's transcriptional output is reflected both in its recruitment to diverse cognate DNA binding motifs and in its preferential interaction with associated pioneering factors, other secondary transcription factors and coregulators at those sites. This variability suggests that multiple, distinct modes of androgen receptor action that regulate diverse aspects of prostate cancer biology and contribute differentially to prostate cancer's clinical progression are active simultaneously in prostate cancer cells. Recent progress in the development of peptidomimetics and small molecules, and application of Chem-Seq approaches indicate the feasibility for selective disruption of critical protein-protein and protein-DNA interactions in transcriptional complexes. Here, we review the recent literature on the different molecular mechanisms by which the androgen receptor transcriptionally controls prostate cancer progression, and we explore the potential to translate these insights into novel, more selective forms of therapies that may bypass prostate cancer's resistance to conventional androgen deprivation therapy.
Collapse
Affiliation(s)
- Sangeeta Kumari
- Department of Cancer BiologyCleveland Clinic, Cleveland, Ohio, USA
| | | | - Hannelore V Heemers
- Department of Cancer BiologyCleveland Clinic, Cleveland, Ohio, USA
- Department of UrologyCleveland Clinic, Cleveland, Ohio, USA
- Department of Hematology/Medical OncologyCleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
40
|
Vitamin D receptor activation reduces VCaP xenograft tumor growth and counteracts ERG activity despite induction of TMPRSS2:ERG. Oncotarget 2017; 8:44447-44464. [PMID: 28591703 PMCID: PMC5546493 DOI: 10.18632/oncotarget.17968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 05/04/2017] [Indexed: 11/25/2022] Open
Abstract
Whether vitamin D is chemopreventive and/or has potential therapeutically in prostate cancer is unresolved. One confounding factor is that many prostate cancers express a TMPRSS2:ERG fusion gene whose expression is increased both by androgens and by vitamin D receptor (VDR) activation. Two challenges that limit VDR agonist use clinically are hypercalcemia and the cooperation of VDR with ERG to hyper-induce the 1α,25-dihydroxyvitamin D3 metabolizing enzyme, CYP24A1, thus reducing VDR activity. Using the VCaP TMPRSS2:ERG positive cell line as a model, we found that a nonsecosteroidal CYP24A1 resistant VDR agonist, VDRM2, substantially reduces growth of xenograft tumors without inducing hypercalcemia. Utilizing next generation RNA sequencing, we found a very high overlap of 1,25D(OH)2D3 and VDRM2 regulated genes and by drawing upon previously published datasets to create an ERG signature, we found activation of VDR does not induce ERG activity above the already high basal levels present in VCaP cells. Moreover, we found VDR activation opposes 8 of the 10 most significant ERG regulated Hallmark gene set collection pathways from Gene Set Enrichment Analysis (GSEA). Thus, a CYP24A1 resistant VDR agonist may be beneficial for treatment of TMPRSS2:ERG positive prostate cancer; one negative consequence of TMPRSS2:ERG expression is inactivation of VDR signaling.
Collapse
|
41
|
Wang BD, Ceniccola K, Hwang S, Andrawis R, Horvath A, Freedman JA, Olender J, Knapp S, Ching T, Garmire L, Patel V, Garcia-Blanco MA, Patierno SR, Lee NH. Alternative splicing promotes tumour aggressiveness and drug resistance in African American prostate cancer. Nat Commun 2017; 8:15921. [PMID: 28665395 PMCID: PMC5497057 DOI: 10.1038/ncomms15921] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 05/15/2017] [Indexed: 12/12/2022] Open
Abstract
Clinical challenges exist in reducing prostate cancer (PCa) disparities. The RNA splicing landscape of PCa across racial populations has not been fully explored as a potential molecular mechanism contributing to race-related tumour aggressiveness. Here, we identify novel genome-wide, race-specific RNA splicing events as critical drivers of PCa aggressiveness and therapeutic resistance in African American (AA) men. AA-enriched splice variants of PIK3CD, FGFR3, TSC2 and RASGRP2 contribute to greater oncogenic potential compared with corresponding European American (EA)-expressing variants. Ectopic overexpression of the newly cloned AA-enriched variant, PIK3CD-S, in EA PCa cell lines enhances AKT/mTOR signalling and increases proliferative and invasive capacity in vitro and confers resistance to selective PI3Kδ inhibitor, CAL-101 (idelalisib), in mouse xenograft models. High PIK3CD-S expression in PCa specimens associates with poor survival. These results highlight the potential of RNA splice variants to serve as novel biomarkers and molecular targets for developmental therapeutics in aggressive PCa.
Collapse
Affiliation(s)
- Bi-Dar Wang
- Department of Pharmacology and Physiology, School of Medicine and Health Sciences, The George Washington University, Washington, District Of Columbia 20037, USA
- Department of Pharmaceutical Sciences, School of Pharmacy and Health Professions, University of Maryland Eastern Shore, Princess Anne, Maryland 21853, USA
| | - Kristin Ceniccola
- Department of Pharmacology and Physiology, School of Medicine and Health Sciences, The George Washington University, Washington, District Of Columbia 20037, USA
| | - SuJin Hwang
- Department of Microbiology, Immunology and Tropical Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, District Of Columbia 20037, USA
| | - Ramez Andrawis
- Department of Urology, School of Medicine and Health Sciences, The George Washington University, Washington, District Of Columbia 20037, USA
| | - Anelia Horvath
- Department of Pharmacology and Physiology, School of Medicine and Health Sciences, The George Washington University, Washington, District Of Columbia 20037, USA
| | - Jennifer A. Freedman
- Duke Cancer Institute and Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Jacqueline Olender
- Department of Pharmacology and Physiology, School of Medicine and Health Sciences, The George Washington University, Washington, District Of Columbia 20037, USA
| | - Stefan Knapp
- Department of Clinical Pharmacology, University of Oxford, Oxford OX3 7BN, UK
- The Nuffield Department of Clinical Medicine, Structural Genomics Consortium, University of Oxford, Oxford OX3 7BN, UK
| | - Travers Ching
- Cancer Epidemiology Program, University of Hawaii Cancer Center, Honolulu, Hawaii 96813, USA
| | - Lana Garmire
- Cancer Epidemiology Program, University of Hawaii Cancer Center, Honolulu, Hawaii 96813, USA
| | - Vyomesh Patel
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Mariano A. Garcia-Blanco
- Department of Biochemistry & Molecular Biology, The University of Texas Medical Branch at Galveston, Galveston, Texas 77555, USA
| | - Steven R. Patierno
- Duke Cancer Institute and Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Norman H. Lee
- Department of Pharmacology and Physiology, School of Medicine and Health Sciences, The George Washington University, Washington, District Of Columbia 20037, USA
| |
Collapse
|
42
|
ERF mutations reveal a balance of ETS factors controlling prostate oncogenesis. Nature 2017; 546:671-675. [PMID: 28614298 DOI: 10.1038/nature22820] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 05/04/2017] [Indexed: 01/16/2023]
Abstract
Half of all prostate cancers are caused by the TMPRSS2-ERG gene-fusion, which enables androgens to drive expression of the normally silent E26 transformation-specific (ETS) transcription factor ERG in prostate cells. Recent genomic landscape studies of such cancers have reported recurrent point mutations and focal deletions of another ETS member, the ETS2 repressor factor ERF. Here we show these ERF mutations cause decreased protein stability and mostly occur in tumours without ERG upregulation. ERF loss recapitulates the morphological and phenotypic features of ERG gain in normal mouse prostate cells, including expansion of the androgen receptor transcriptional repertoire, and ERF has tumour suppressor activity in the same genetic background of Pten loss that yields oncogenic activity by ERG. In the more common scenario of ERG upregulation, chromatin immunoprecipitation followed by sequencing indicates that ERG inhibits the ability of ERF to bind DNA at consensus ETS sites both in normal and in cancerous prostate cells. Consistent with a competition model, ERF overexpression blocks ERG-dependent tumour growth, and ERF loss rescues TMPRSS2-ERG-positive prostate cancer cells from ERG dependency. Collectively, these data provide evidence that the oncogenicity of ERG is mediated, in part, by competition with ERF and they raise the larger question of whether other gain-of-function oncogenic transcription factors might also inactivate endogenous tumour suppressors.
Collapse
|
43
|
Wang X, Qiao Y, Asangani IA, Ateeq B, Poliakov A, Cieślik M, Pitchiaya S, Chakravarthi BVSK, Cao X, Jing X, Wang CX, Apel IJ, Wang R, Tien JCY, Juckette KM, Yan W, Jiang H, Wang S, Varambally S, Chinnaiyan AM. Development of Peptidomimetic Inhibitors of the ERG Gene Fusion Product in Prostate Cancer. Cancer Cell 2017; 31:532-548.e7. [PMID: 28344039 PMCID: PMC5443258 DOI: 10.1016/j.ccell.2017.02.017] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 01/19/2017] [Accepted: 02/24/2017] [Indexed: 12/12/2022]
Abstract
Transcription factors play a key role in the development of diverse cancers, and therapeutically targeting them has remained a challenge. In prostate cancer, the gene encoding the transcription factor ERG is recurrently rearranged and plays a critical role in prostate oncogenesis. Here, we identified a series of peptides that interact specifically with the DNA binding domain of ERG. ERG inhibitory peptides (EIPs) and derived peptidomimetics bound ERG with high affinity and specificity, leading to proteolytic degradation of the ERG protein. The EIPs attenuated ERG-mediated transcription, chromatin recruitment, protein-protein interactions, cell invasion and proliferation, and tumor growth. Thus, peptidomimetic targeting of transcription factor fusion products may provide a promising therapeutic strategy for prostate cancer as well as other malignancies.
Collapse
Affiliation(s)
- Xiaoju Wang
- Michigan Center for Translational Pathology, University of Michigan, 1400 East Medical Center Drive, 5316 CCGC, Ann Arbor, MI 48109, USA; Department of Pathology, University of Michigan, 1400 East Medical Center Drive, 5316 CCGC, Ann Arbor, MI 48109, USA; Comprehensive Cancer Center, University of Michigan, 1400 East Medical Center Drive, 5316 CCGC, Ann Arbor, MI 48109, USA
| | - Yuanyuan Qiao
- Michigan Center for Translational Pathology, University of Michigan, 1400 East Medical Center Drive, 5316 CCGC, Ann Arbor, MI 48109, USA; Department of Pathology, University of Michigan, 1400 East Medical Center Drive, 5316 CCGC, Ann Arbor, MI 48109, USA
| | - Irfan A Asangani
- Michigan Center for Translational Pathology, University of Michigan, 1400 East Medical Center Drive, 5316 CCGC, Ann Arbor, MI 48109, USA; Department of Pathology, University of Michigan, 1400 East Medical Center Drive, 5316 CCGC, Ann Arbor, MI 48109, USA
| | - Bushra Ateeq
- Michigan Center for Translational Pathology, University of Michigan, 1400 East Medical Center Drive, 5316 CCGC, Ann Arbor, MI 48109, USA; Department of Pathology, University of Michigan, 1400 East Medical Center Drive, 5316 CCGC, Ann Arbor, MI 48109, USA; Department of Biological Sciences & Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India
| | - Anton Poliakov
- Michigan Center for Translational Pathology, University of Michigan, 1400 East Medical Center Drive, 5316 CCGC, Ann Arbor, MI 48109, USA; Department of Pathology, University of Michigan, 1400 East Medical Center Drive, 5316 CCGC, Ann Arbor, MI 48109, USA
| | - Marcin Cieślik
- Michigan Center for Translational Pathology, University of Michigan, 1400 East Medical Center Drive, 5316 CCGC, Ann Arbor, MI 48109, USA; Department of Pathology, University of Michigan, 1400 East Medical Center Drive, 5316 CCGC, Ann Arbor, MI 48109, USA
| | - Sethuramasundaram Pitchiaya
- Michigan Center for Translational Pathology, University of Michigan, 1400 East Medical Center Drive, 5316 CCGC, Ann Arbor, MI 48109, USA; Department of Pathology, University of Michigan, 1400 East Medical Center Drive, 5316 CCGC, Ann Arbor, MI 48109, USA
| | - Balabhadrapatruni V S K Chakravarthi
- Michigan Center for Translational Pathology, University of Michigan, 1400 East Medical Center Drive, 5316 CCGC, Ann Arbor, MI 48109, USA; Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Xuhong Cao
- Michigan Center for Translational Pathology, University of Michigan, 1400 East Medical Center Drive, 5316 CCGC, Ann Arbor, MI 48109, USA; Department of Pathology, University of Michigan, 1400 East Medical Center Drive, 5316 CCGC, Ann Arbor, MI 48109, USA
| | - Xiaojun Jing
- Michigan Center for Translational Pathology, University of Michigan, 1400 East Medical Center Drive, 5316 CCGC, Ann Arbor, MI 48109, USA; Department of Pathology, University of Michigan, 1400 East Medical Center Drive, 5316 CCGC, Ann Arbor, MI 48109, USA
| | - Cynthia X Wang
- Michigan Center for Translational Pathology, University of Michigan, 1400 East Medical Center Drive, 5316 CCGC, Ann Arbor, MI 48109, USA; Department of Pathology, University of Michigan, 1400 East Medical Center Drive, 5316 CCGC, Ann Arbor, MI 48109, USA
| | - Ingrid J Apel
- Michigan Center for Translational Pathology, University of Michigan, 1400 East Medical Center Drive, 5316 CCGC, Ann Arbor, MI 48109, USA; Department of Pathology, University of Michigan, 1400 East Medical Center Drive, 5316 CCGC, Ann Arbor, MI 48109, USA
| | - Rui Wang
- Michigan Center for Translational Pathology, University of Michigan, 1400 East Medical Center Drive, 5316 CCGC, Ann Arbor, MI 48109, USA; Department of Pathology, University of Michigan, 1400 East Medical Center Drive, 5316 CCGC, Ann Arbor, MI 48109, USA
| | - Jean Ching-Yi Tien
- Michigan Center for Translational Pathology, University of Michigan, 1400 East Medical Center Drive, 5316 CCGC, Ann Arbor, MI 48109, USA; Department of Pathology, University of Michigan, 1400 East Medical Center Drive, 5316 CCGC, Ann Arbor, MI 48109, USA
| | - Kristin M Juckette
- Michigan Center for Translational Pathology, University of Michigan, 1400 East Medical Center Drive, 5316 CCGC, Ann Arbor, MI 48109, USA; Department of Pathology, University of Michigan, 1400 East Medical Center Drive, 5316 CCGC, Ann Arbor, MI 48109, USA
| | - Wei Yan
- Michigan Center for Translational Pathology, University of Michigan, 1400 East Medical Center Drive, 5316 CCGC, Ann Arbor, MI 48109, USA; Department of Pathology, University of Michigan, 1400 East Medical Center Drive, 5316 CCGC, Ann Arbor, MI 48109, USA
| | - Hui Jiang
- Department of Biostatistics, University of Michigan, 1400 East Medical Center Drive, 5316 CCGC, Ann Arbor, MI 48109, USA; Center for Computational Medicine and Bioinformatics, University of Michigan, 1400 East Medical Center Drive, 5316 CCGC, Ann Arbor, MI 48109, USA
| | - Shaomeng Wang
- Michigan Center for Translational Pathology, University of Michigan, 1400 East Medical Center Drive, 5316 CCGC, Ann Arbor, MI 48109, USA; Department of Internal Medicine, University of Michigan, 1400 East Medical Center Drive, 5316 CCGC, Ann Arbor, MI 48109, USA; Comprehensive Cancer Center, University of Michigan, 1400 East Medical Center Drive, 5316 CCGC, Ann Arbor, MI 48109, USA; Department of Pharmacology, University of Michigan, 1400 East Medical Center Drive, 5316 CCGC, Ann Arbor, MI 48109, USA; Department of Medicinal Chemistry, University of Michigan, 1400 East Medical Center Drive, 5316 CCGC, Ann Arbor, MI 48109, USA
| | - Sooryanarayana Varambally
- Michigan Center for Translational Pathology, University of Michigan, 1400 East Medical Center Drive, 5316 CCGC, Ann Arbor, MI 48109, USA; Department of Pathology, University of Michigan, 1400 East Medical Center Drive, 5316 CCGC, Ann Arbor, MI 48109, USA; Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35233, USA; Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Arul M Chinnaiyan
- Michigan Center for Translational Pathology, University of Michigan, 1400 East Medical Center Drive, 5316 CCGC, Ann Arbor, MI 48109, USA; Department of Pathology, University of Michigan, 1400 East Medical Center Drive, 5316 CCGC, Ann Arbor, MI 48109, USA; Howard Hughes Medical Institute, University of Michigan, 1400 East Medical Center Drive, 5316 CCGC, Ann Arbor, MI 48109, USA; Department of Urology, University of Michigan, 1400 East Medical Center Drive, 5316 CCGC, Ann Arbor, MI 48109, USA; Comprehensive Cancer Center, University of Michigan, 1400 East Medical Center Drive, 5316 CCGC, Ann Arbor, MI 48109, USA.
| |
Collapse
|
44
|
Driehuis E, Clevers H. CRISPR-Induced TMPRSS2-ERG Gene Fusions in Mouse Prostate Organoids. JSM BIOTECHNOLOGY & BIOMEDICAL ENGINEERING 2017; 4:1076. [PMID: 30542657 PMCID: PMC6287496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
TMPRSS2-ERG fusions are common genetic events in prostate cancer. Until now, this genetic alteration was modelled by ERG overexpression. In this short communication, we report the creation of mouse prostate organoids that have undergone gene fusion through a CRISPR/Cas9-based strategy. The genetic fusion of TMPRSS2 and ERG results in ERG overexpression. This effect is androgen receptor-mediated, as expression of the fusion transcript can be restored to wildtype ERG levels by treatment with the androgen receptor antagonist Nilutamide.
Collapse
Affiliation(s)
- Else Driehuis
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), The Netherlands
- University Medical Center (UMC) Utrecht, The Netherlands
| | - Hans Clevers
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), The Netherlands
- Princess Maxima Center, The Netherlands
| |
Collapse
|
45
|
Rastogi A, Ali A, Tan SH, Banerjee S, Chen Y, Cullen J, Xavier CP, Mohamed AA, Ravindranath L, Srivastav J, Young D, Sesterhenn IA, Kagan J, Srivastava S, McLeod DG, Rosner IL, Petrovics G, Dobi A, Srivastava S, Srinivasan A. Autoantibodies against oncogenic ERG protein in prostate cancer: potential use in diagnosis and prognosis in a panel with C-MYC, AMACR and HERV-K Gag. Genes Cancer 2017; 7:394-413. [PMID: 28191285 PMCID: PMC5302040 DOI: 10.18632/genesandcancer.126] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Overdiagnosis and overtreatment of prostate cancer (CaP) is attributable to widespread reliance on PSA screening in the US. This has prompted us and others to search for improved biomarkers for CaP, to facilitate early detection and disease stratification. In this regard, autoantibodies (AAbs) against tumor antigens could serve as potential candidates for diagnosis and prognosis of CaP. Towards this, our goals were: i) To investigate whether AAbs against ERG oncoprotein (overexpressed in 25-50% of Caucasian American and African American CaP) are present in the sera of CaP patients; ii) To evaluate an AAb panel to enhance CaP detection. The results using an enzyme-linked immunosorbent assay (ELISA) showed that anti-ERG AAbs are present in a significantly higher proportion in the sera of CaP patients compared to healthy controls (p = 0.0001). Furthermore, a panel of AAbs against ERG, AMACR and human endogenous retrovirus-K Gag successfully differentiated CaP patient sera from healthy controls (AUC = 0.791). These results demonstrate for the first time that anti-ERG AAbs are present in the sera of CaP patients. In addition, the data also suggest that AAbs against ERG together with AMACR and HERV-K Gag may be a useful panel of biomarkers for diagnosis and prognosis of CaP.
Collapse
Affiliation(s)
- Anshu Rastogi
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Amina Ali
- Urology Service, Department of Surgery, Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Shyh-Han Tan
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Sreedatta Banerjee
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Yongmei Chen
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Jennifer Cullen
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Charles P Xavier
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Ahmed A Mohamed
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Lakshmi Ravindranath
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Jigisha Srivastav
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Denise Young
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | | | - Jacob Kagan
- Cancer Biomarkers Research Group, Division of Cancer Prevention, National Cancer Institute, Bethesda, MD, USA
| | - Sudhir Srivastava
- Cancer Biomarkers Research Group, Division of Cancer Prevention, National Cancer Institute, Bethesda, MD, USA
| | - David G McLeod
- Urology Service, Department of Surgery, Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Inger L Rosner
- Urology Service, Department of Surgery, Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Gyorgy Petrovics
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Albert Dobi
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Shiv Srivastava
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Alagarsamy Srinivasan
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| |
Collapse
|
46
|
Distinct outcomes of CRL-Nedd8 pathway inhibition reveal cancer cell plasticity. Cell Death Dis 2016; 7:e2505. [PMID: 27906189 PMCID: PMC5261022 DOI: 10.1038/cddis.2016.395] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 10/21/2016] [Accepted: 10/25/2016] [Indexed: 01/12/2023]
Abstract
Inhibition of protein degradation by blocking Cullin-RING E3 ligases (CRLs) is a new approach in cancer therapy though of unknown risk because CRL inhibition may stabilize both oncoproteins and tumor suppressors. Probing CRLs in prostate cancer cells revealed a remarkable plasticity of cells with TMPRSS2-ERG translocation. CRL suppression by chemical inhibition or knockdown of RING component RBX1 led to reversible G0/G1 cell cycle arrest that prevented cell apoptosis. Conversely, complete blocking of CRLs at a higher inhibitor dose-induced cytotoxicity that was amplified by knockdown of CRL regulator Cand1. We analyzed cell signaling to understand how varying degrees of CRL inhibition translated to distinct cell fates. Both tumor suppressor and oncogenic cell signaling pathways and transcriptional activities were affected, with pro-metastatic Wnt/β-catenin as the most upregulated. Suppression of the NF-κB pathway contributed to anti-apoptotic effect, and androgen receptor (AR) and ERG played decisive, though opposite, roles: AR was involved in protective quiescence, whereas ERG promoted apoptosis. These data define AR–ERG interaction as a key plasticity and survival determinant in prostate cancer and suggest supplementary treatments that may overcome drug resistance mechanisms regulated by AR–ERG interaction.
Collapse
|
47
|
Xiao L, Lanz RB, Frolov A, Castro PD, Zhang Z, Dong B, Xue W, Jung SY, Lydon JP, Edwards DP, Mancini MA, Feng Q, Ittmann MM, He B. The Germ Cell Gene TDRD1 as an ERG Target Gene and a Novel Prostate Cancer Biomarker. Prostate 2016; 76:1271-84. [PMID: 27272765 DOI: 10.1002/pros.23213] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 05/18/2016] [Indexed: 01/02/2023]
Abstract
BACKGROUND TMPRSS2-ERG fusion occurs in about half of prostate cancers and results in over-expression of the oncogenic ERG protein in the prostate. The mechanism by which ERG contributes to prostate cancer initiation and progression remains largely unknown. Because ERG is a transcriptional activator, we reasoned that the target genes regulated by ERG could contribute to prostate cancer development. METHODS In a search for ERG target genes, we took advantage of published datasets from the MSKCC Prostate Oncogene Project, in which a comprehensive analysis was applied to define transcriptomes in 150 prostate tumors. We retrieved the mRNA expression dataset, split them based on ERG expression, and identified genes whose expression levels are associated with ERG mRNA levels. RESULTS mRNA expression levels of 21 genes were found to be significantly increased, while for one gene it was decreased in ERG-positive prostate tumors. Among them, the expression of TDRD1 was the most significantly increased in ERG-positive tumors. Among 131 primary prostate tumors which were primarily from European American patients, TDRD1 is over-expressed in 68% of samples, while ERG is overexpressed in 48% of samples, suggesting an additional ERG-independent mechanism of TDRD1 overexpression. In African American prostate tumors, TDRD1 mRNA is expressed in 44%, while ERG is expressed in 24% of samples. In normal tissues, TDRD1 mRNA is exclusively expressed in germ cells and its protein is also known as cancer/testis antigen 41.1 (CT41.1). We generated a mouse monoclonal antibody that recognizes human TDRD1 protein with high specificity and sensitivity. By Western blot analysis and immunohistochemistry (IHC) staining, we demonstrate that TDRD1 protein is expressed in the majority of human prostate tumors, but not in normal prostate tissue. Finally, TDRD1 is not induced in the prostate of ERG overexpression transgenic mice, suggesting that such model does not fully recapitulate the TMPRSS2/ERG fusion-dependent human prostate cancer development. CONCLUSIONS Our results suggest TDRD1 as a novel prostate cancer biomarker. As an ERG target gene, TDRD1 might play an important role in human prostate cancer development, and as a cancer/testis antigen, TDRD1 might have long-term potential to be a therapeutic target for prostate cancer immunotherapy. Prostate 76:1271-1284, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Lijuan Xiao
- Departments of Medicine-Hematology and Oncology, Baylor College of Medicine, Houston, Texas
| | - Rainer B Lanz
- Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Anna Frolov
- Pathology and Immunology, Baylor College of Medicine, Houston, Texas
| | - Patricia D Castro
- Pathology and Immunology, Baylor College of Medicine, Houston, Texas
| | - Zheng Zhang
- Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Baijun Dong
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Wei Xue
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Sung Yun Jung
- Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - John P Lydon
- Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Dean P Edwards
- Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
- Pathology and Immunology, Baylor College of Medicine, Houston, Texas
| | - Michael A Mancini
- Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Qin Feng
- Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Michael M Ittmann
- Pathology and Immunology, Baylor College of Medicine, Houston, Texas
| | - Bin He
- Departments of Medicine-Hematology and Oncology, Baylor College of Medicine, Houston, Texas
- Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
48
|
Abstract
Prostate cancer is the most common cancer in US men and the second leading cause of cancer deaths. Fibroblast growth factor 23 (FGF23) is an endocrine FGF, normally expressed by osteocytes, which plays a critical role in phosphate homeostasis via a feedback loop involving the kidney and vitamin D. We now show that FGF23 is expressed as an autocrine growth factor in all prostate cancer cell lines tested and is present at increased levels in prostate cancer tissues. Exogenous FGF23 enhances proliferation, invasion and anchorage independent growth in vitro while FGF23 knockdown in prostate cancer cell lines decreases these phenotypes. FGF23 knockdown also decreases tumor growth in vivo. Given that classical FGFs and FGF19 are also increased in prostate cancer, we analyzed expression microarrays hybridized with RNAs from of LNCaP cells stimulated with FGF2, FGF19 or FGF23. The different FGF ligands induce overlapping as well as unique patterns of gene expression changes and thus are not redundant. We identified multiple genes whose expression is altered by FGF23 that are associated with prostate cancer initiation and progression. Thus FGF23 can potentially also act as an autocrine, paracrine and/or endocrine growth factor in prostate cancer that can promote prostate cancer progression.
Collapse
|
49
|
Shah AV, Birdsey GM, Randi AM. Regulation of endothelial homeostasis, vascular development and angiogenesis by the transcription factor ERG. Vascul Pharmacol 2016; 86:3-13. [PMID: 27208692 PMCID: PMC5404112 DOI: 10.1016/j.vph.2016.05.003] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 04/08/2016] [Accepted: 05/16/2016] [Indexed: 01/06/2023]
Abstract
Over the last few years, the ETS transcription factor ERG has emerged as a major regulator of endothelial function. Multiple studies have shown that ERG plays a crucial role in promoting angiogenesis and vascular stability during development and after birth. In the mature vasculature ERG also functions to maintain endothelial homeostasis, by transactivating genes involved in key endothelial functions, while repressing expression of pro-inflammatory genes. Its homeostatic role is lineage-specific, since ectopic expression of ERG in non-endothelial tissues such as prostate is detrimental and contributes to oncogenesis. This review summarises the main roles and pathways controlled by ERG in the vascular endothelium, its transcriptional targets and its functional partners and the emerging evidence on the pathways regulating ERG's activity and expression.
Collapse
Affiliation(s)
- Aarti V Shah
- Vascular Sciences, Imperial Centre for Translational and Experimental Medicine, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Graeme M Birdsey
- Vascular Sciences, Imperial Centre for Translational and Experimental Medicine, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Anna M Randi
- Vascular Sciences, Imperial Centre for Translational and Experimental Medicine, National Heart and Lung Institute, Imperial College London, London, United Kingdom.
| |
Collapse
|
50
|
Mounir Z, Korn JM, Westerling T, Lin F, Kirby CA, Schirle M, McAllister G, Hoffman G, Ramadan N, Hartung A, Feng Y, Kipp DR, Quinn C, Fodor M, Baird J, Schoumacher M, Meyer R, Deeds J, Buchwalter G, Stams T, Keen N, Sellers WR, Brown M, Pagliarini RA. ERG signaling in prostate cancer is driven through PRMT5-dependent methylation of the Androgen Receptor. eLife 2016; 5. [PMID: 27183006 PMCID: PMC4909395 DOI: 10.7554/elife.13964] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 05/06/2016] [Indexed: 11/17/2022] Open
Abstract
The TMPRSS2:ERG gene fusion is common in androgen receptor (AR) positive prostate cancers, yet its function remains poorly understood. From a screen for functionally relevant ERG interactors, we identify the arginine methyltransferase PRMT5. ERG recruits PRMT5 to AR-target genes, where PRMT5 methylates AR on arginine 761. This attenuates AR recruitment and transcription of genes expressed in differentiated prostate epithelium. The AR-inhibitory function of PRMT5 is restricted to TMPRSS2:ERG-positive prostate cancer cells. Mutation of this methylation site on AR results in a transcriptionally hyperactive AR, suggesting that the proliferative effects of ERG and PRMT5 are mediated through attenuating AR’s ability to induce genes normally involved in lineage differentiation. This provides a rationale for targeting PRMT5 in TMPRSS2:ERG positive prostate cancers. Moreover, methylation of AR at arginine 761 highlights a mechanism for how the ERG oncogene may coax AR towards inducing proliferation versus differentiation. DOI:http://dx.doi.org/10.7554/eLife.13964.001 Prostate cancers are among the most common types of cancer in men, which, like other cancers, are driven by genetic mutations. Roughly half of all prostate cancers contain a genetic change that incorrectly fuses two genes together, causing the cells to produce abnormally high levels of a protein called ERG. ERG is a transcription factor, a protein that binds to specific sequences of DNA to influence the activity of nearby genes. ERG represses genes that help to prevent prostate cancers from growing, and so promotes prostate cancer development. Like most other transcription factors, ERG is difficult to target with drugs and no therapies that directly prevent the activity of ERG currently exist. Mounir et al. wanted to find out whether ERG cooperates with other proteins to cause prostate cancer cells to grow, with the hope that these proteins could be more easily targeted with a drug. By using various biochemical techniques in human prostate cancer cell lines, Mounir et al. found that ERG interacts with an enzyme called PRMT5. This interaction enables PRMT5 to chemically modify other proteins to change their activity. In the case of prostate cancer cells, PRMT5 inappropriately modifies the androgen receptor, a protein that regulates the growth of normal prostate cells. This abnormal modification contributes to the excessive growth of the cancer cells. Although PRMT5 will be easier to target with drugs than ERG, it also has many other roles besides those described by Mounir et al. Much more work is therefore needed to investigate whether PRMT5 could be safely targeted to treat patients with prostate cancer. DOI:http://dx.doi.org/10.7554/eLife.13964.002
Collapse
Affiliation(s)
- Zineb Mounir
- Department of Oncology, Novartis Institutes for BioMedical Research, Cambridge, United States
| | - Joshua M Korn
- Department of Oncology, Novartis Institutes for BioMedical Research, Cambridge, United States
| | - Thomas Westerling
- Department of Medical Oncology, Harvard Medical School, Boston, United States.,Center for Functional Cancer Epigenetics, Harvard Medical School, Boston, United States.,Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States
| | - Fallon Lin
- Department of Oncology, Novartis Institutes for BioMedical Research, Cambridge, United States
| | - Christina A Kirby
- Center for Proteomic Chemistry, Novartis Institutes for BioMedical Research, Cambridge, United States
| | - Markus Schirle
- Developmental and Molecular Pathways, Novartis Institutes for Biomedical Research, Cambridge, United States
| | - Gregg McAllister
- Developmental and Molecular Pathways, Novartis Institutes for Biomedical Research, Cambridge, United States
| | - Greg Hoffman
- Developmental and Molecular Pathways, Novartis Institutes for Biomedical Research, Cambridge, United States
| | - Nadire Ramadan
- Developmental and Molecular Pathways, Novartis Institutes for Biomedical Research, Cambridge, United States
| | - Anke Hartung
- Genomics Institute of the Novartis Research Foundation, Novartis Institutes for Bio Medical Resarch, San Diego, United States
| | - Yan Feng
- Developmental and Molecular Pathways, Novartis Institutes for Biomedical Research, Cambridge, United States
| | - David Randal Kipp
- Department of Oncology, Novartis Institutes for BioMedical Research, Cambridge, United States
| | - Christopher Quinn
- Department of Oncology, Novartis Institutes for BioMedical Research, Cambridge, United States
| | - Michelle Fodor
- Department of Oncology, Novartis Institutes for BioMedical Research, Cambridge, United States
| | - Jason Baird
- Department of Oncology, Novartis Institutes for BioMedical Research, Cambridge, United States
| | - Marie Schoumacher
- Department of Oncology, Novartis Institutes for BioMedical Research, Cambridge, United States
| | - Ronald Meyer
- Department of Oncology, Novartis Institutes for BioMedical Research, Cambridge, United States
| | - James Deeds
- Department of Oncology, Novartis Institutes for BioMedical Research, Cambridge, United States
| | - Gilles Buchwalter
- Department of Medical Oncology, Harvard Medical School, Boston, United States.,Center for Functional Cancer Epigenetics, Harvard Medical School, Boston, United States.,Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States
| | - Travis Stams
- Center for Proteomic Chemistry, Novartis Institutes for BioMedical Research, Cambridge, United States
| | - Nicholas Keen
- Department of Oncology, Novartis Institutes for BioMedical Research, Cambridge, United States
| | - William R Sellers
- Department of Oncology, Novartis Institutes for BioMedical Research, Cambridge, United States
| | - Myles Brown
- Department of Medical Oncology, Harvard Medical School, Boston, United States.,Center for Functional Cancer Epigenetics, Harvard Medical School, Boston, United States.,Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States
| | - Raymond A Pagliarini
- Department of Oncology, Novartis Institutes for BioMedical Research, Cambridge, United States
| |
Collapse
|