1
|
Pollack IF, Felker J, Frederico SC, Raphael I, Kohanbash G. Immunotherapy for pediatric low-grade gliomas. Childs Nerv Syst 2024; 40:3263-3275. [PMID: 38884777 DOI: 10.1007/s00381-024-06491-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 06/01/2024] [Indexed: 06/18/2024]
Abstract
Pediatric low-grade gliomas (pLGGs) are the most common brain tumor types affecting children. Although gross-total resection remains the treatment of choice, many tumors are not amenable to complete removal, because they either involve midline structures, such as the optic chiasm or hypothalamus, and are not conducive to aggressive resection, or have diffuse biological features and blend with the surrounding brain. Historically, radiation therapy was used as the second-line option for disease control, but with the recognition that this often led to adverse long-term sequelae, particularly in young children, conventional chemotherapy assumed a greater role in initial therapy for unresectable tumors. A variety of agents demonstrated activity, but long-term disease control was suboptimal, with more than 50% of tumors exhibiting disease progression within 5 years. More recently, it has been recognized that a high percentage of these tumors in children exhibit constitutive activation of the mitogen-activated protein kinase (MAPK) pathway because of BRAF translocations or mutations, NFI mutations, or a host of other anomalies that converged on MAPK. This led to phase 1, 2, and 3 trials that explored the activity of blocking this signaling pathway, and the efficacy of this approach compared to conventional chemotherapy. Despite initial promise of these strategies, not all children tolerate this therapy, and many tumors resume growth once MAPK inhibition is stopped, raising concern that long-term and potentially life-long treatment will be required to maintain tumor control, even among responders. This observation has led to interest in other treatments, such as immunotherapy, that may delay or avoid the need for additional treatments. This chapter will summarize the place of immunotherapy in the current armamentarium for these tumors and discuss prior results and future options to improve disease control, with a focus on our prior efforts and experience in this field.
Collapse
Affiliation(s)
- Ian F Pollack
- Department of Neurosurgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
- University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
- Department of Neurosurgery, UPMC Children's Hospital of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA, 15224, USA.
| | - James Felker
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Neurosurgery, UPMC Children's Hospital of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA, 15224, USA
| | - Stephen C Frederico
- University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Neurosurgery, UPMC Children's Hospital of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA, 15224, USA
| | - Itay Raphael
- Department of Neurosurgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Neurosurgery, UPMC Children's Hospital of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA, 15224, USA
| | - Gary Kohanbash
- University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Neurosurgery, UPMC Children's Hospital of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA, 15224, USA
| |
Collapse
|
2
|
Plant-Fox AS, Tabori U. Future perspective of targeted treatments in pediatric low-grade glioma (pLGG): the evolution of standard-of-care and challenges of a new era. Childs Nerv Syst 2024; 40:3291-3299. [PMID: 39085626 DOI: 10.1007/s00381-024-06504-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 06/16/2024] [Indexed: 08/02/2024]
Abstract
While surgery, when possible, remains the mainstay of pediatric low-grade glioma (pLGG) management, adjuvant therapy has significantly evolved over time. Radiation therapy was commonly used in the late 1990s for tumors that could not be resected or recurred. This resulted in significant late morbidity in this population and mortality related to secondary malignancies and chronic health conditions. Chemotherapy became the mainstay of adjuvant therapy but children still experienced late morbidity secondary to exposure to multiple lines of treatment over time. Targeted therapies emerged after the identification of frequent genetic alterations in the mitogen activated protein kinase (MAPK) pathway including KIAA1549-BRAF fusions and BRAF-V600 mutations and the near universal upregulation of the MAPK pathway in these tumors. Both BRAF and MEK inhibitors have shown efficacy in the treatment of pLGG and have led to prolonged stability in some cases. Multiple phase III clinical trials are now comparing targeted therapy to standard-of-care chemotherapy regimens setting the stage for targeted therapy to replace chemotherapy as the first-line treatment in some cases. Targeted therapy, however, is not without its challenges. There are clear examples of resistance and mechanisms of resistance have not been fully elucidated. There is also no clear duration for these therapies and rebound growth is a well-known phenomenon especially in BRAF-V600 mutant tumors. Targeted therapies are also fairly recent developments and long-term toxicities and functional outcomes are still being monitored. Very young and adolescent/young adult LGGs also carry molecular features that may not be addressed by inhibition of the MAPK pathway. Adjuvant therapy for pLGG has evolved from radiation for all unresectable or residual tumors to molecularly driven targeted therapies with improved quality of life, late effects, and less off-target toxicities. While there is still much to learn in regard to newer targeted therapies for pLGG, the era of targeted therapies for pediatric LGG is upon us.
Collapse
Affiliation(s)
- Ashley S Plant-Fox
- Ann & Robert H. Lurie Children's Hospital, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| | - Uri Tabori
- The Hospital for Sick Children, University of Toronto, Toronto, Canada
| |
Collapse
|
3
|
Levine AB, Hawkins CE. Molecular markers for pediatric low-grade glioma. Childs Nerv Syst 2024; 40:3223-3228. [PMID: 39379532 DOI: 10.1007/s00381-024-06639-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 09/05/2024] [Indexed: 10/10/2024]
Abstract
Over the past decade, our understanding of the molecular drivers of pediatric low-grade glioma (PLGG) has expanded dramatically. These tumors are predominantly driven by RAS/MAPK pathway activating alterations (fusions and point mutations), most frequently in BRAF, FGFR1, and NF1. Furthermore, additional second hits in tumor suppressor genes (TP53, ATRX, CDKN2A) can portend more aggressive behaviour. Accordingly, comprehensive molecular profiling-specifically genetic sequencing, often plus copy number profiling-has become critical for guiding the diagnosis and management of PLGG. In this review, we discuss the most important genetic alterations that inform on classification and prognosis of PLGG, highlighting their diagnostic and therapeutic relevance.
Collapse
Affiliation(s)
- Adrian B Levine
- Department of Pediatric Laboratory Medicine, Hospital for Sick Children, Toronto, ON, Canada
- Arthur and Sonia Labatt Brain Tumour Research Centre, Hospital for Sick Children, Toronto, Canada
- Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Cynthia E Hawkins
- Department of Pediatric Laboratory Medicine, Hospital for Sick Children, Toronto, ON, Canada.
- Arthur and Sonia Labatt Brain Tumour Research Centre, Hospital for Sick Children, Toronto, Canada.
- Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.
| |
Collapse
|
4
|
Lassaletta A, Zapotocky M, Bouffet E. Chemotherapy in pediatric low-grade gliomas (PLGG). Childs Nerv Syst 2024; 40:3229-3239. [PMID: 38819670 DOI: 10.1007/s00381-024-06458-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 05/13/2024] [Indexed: 06/01/2024]
Abstract
Pediatric low-grade gliomas (PLGG) are commonly treated with a combination of surgery, radiotherapy, and chemotherapy. Recent trends prioritize reducing long-term morbidities, particularly in younger patients. While historically chemotherapy was reserved for cases progressing after radiotherapy, evolving recommendations now advocate for its early use, particularly in younger age groups. The carboplatin and vincristine (CV) combination stands as a standard systemic therapy for PLGG, varying in dosage and administration between North America and Europe. Clinical trials have shown promising response rates, albeit with varying toxicity profiles. Vinblastine has emerged as another effective regimen with minimal toxicity. TPCV, a regimen combining thioguanine, procarbazine, lomustine, and vincristine, was compared to CV in a Children's Oncology Group trial, showing comparable outcomes, but more toxicity. Vinorelbine, temozolomide, and metronomic chemotherapy have also been explored, with varied success rates and toxicity profiles. Around 40-50% of PLGG patients require subsequent chemotherapy lines. Studies have shown varied efficacy in subsequent lines, with NF1 patients generally exhibiting better outcomes. The identification of molecular drivers like BRAF mutations has led to targeted therapies' development, showing promise in specific molecular subgroups. Trials comparing targeted therapy to conventional chemotherapy aim to delineate optimal treatment strategies based on molecular profiles. The landscape of chemotherapy in PLGG is evolving, with a growing focus on molecular subtyping and targeted therapies. Understanding the role of chemotherapy in conjunction with novel treatments is crucial for optimizing outcomes in pediatric patients with low-grade gliomas.
Collapse
Affiliation(s)
- Alvaro Lassaletta
- Pediatric Neuro-Oncology Unit, Pediatric Hematology Oncology Department, Hospital Infantil Universitario Niño Jesús, Avda. Menendez Pelayo 65, Madrid, 28009, Spain.
| | - Michal Zapotocky
- Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Eric Bouffet
- Division of Pediatric Neuro-Oncology, The Hospital for Sick Children, Toronto, ON, Canada
| |
Collapse
|
5
|
Dandapath I, Das S, Charan BD, Garg A, Suri A, Kedia S, Sharma MC, Sarkar C, Khonglah Y, Ahmed S, Suri V. Evaluation of KIAA1549::BRAF fusions and clinicopathological insights of pilocytic astrocytomas. Ann Diagn Pathol 2024; 72:152318. [PMID: 38733671 DOI: 10.1016/j.anndiagpath.2024.152318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/07/2024] [Accepted: 04/15/2024] [Indexed: 05/13/2024]
Abstract
BACKGROUND Pilocytic astrocytoma (PAs) represents a significant portion of childhood primary brain tumors, with distinct histological and radiological features. The prevalence of KIAA1549::BRAF fusion in PAs has been well-established, this study aims to assess the prevalence of KIAA1549::BRAF fusions and explore their associations with tumor characteristics, radiological findings, and patient outcomes in PAs. METHODS Histologically confirmed cases of PAs from a 5-year period were included in the study. Demographic, histopathological, and radiological data were collected, and immunohistochemistry was performed to characterize tumor markers. FISH and qRT-PCR assays were employed to detect KIAA1549::BRAF fusions. Statistical analyses were conducted to examine associations between fusion status and various other parameters. RESULTS Histological analysis revealed no significant differences in tumor features based on fusion status. However, younger age groups showed higher fusion prevalence. Radiologically, fusion-positive cases were distributed across different tumor subtypes SE, CWE and NCWE. Survival analysis did not demonstrate a significant impact of fusion status on overall survival, however most cases with recurrence and death harboured KIAA1549::BRAF fusion. Of 200 PAs, KIAA1549::BRAF fusions were detected in 64 % and 74 % of cases via qRT-PCR and FISH, respectively. Concordance between the two platforms was substantial (86 %). CONCLUSION KIAA1549::BRAF fusions are prevalent in PAs and can be reliably detected using both FISH and qRT-PCR assays. Cost considerations suggest qRT-PCR as a more economical option for fusion detection in routine clinical practice.
Collapse
Affiliation(s)
- Iman Dandapath
- Neuropathology Laboratory, Neurosciences Centre, All India Institute of Medical Sciences, New Delhi, India
| | - Sumanta Das
- Neuropathology Laboratory, Neurosciences Centre, All India Institute of Medical Sciences, New Delhi, India
| | - Bheru Dan Charan
- Department of Neuroradiology, All, India Institute of Medical Science, New Delhi, India
| | - Ajay Garg
- Department of Neuroradiology, All, India Institute of Medical Science, New Delhi, India
| | - Ashish Suri
- Department of Neurosurgery, All India Institute of Medical Sciences, New Delhi, India
| | - Shweta Kedia
- Department of Neurosurgery, All India Institute of Medical Sciences, New Delhi, India
| | - Mehar Chand Sharma
- Neuropathology Laboratory, Neurosciences Centre, All India Institute of Medical Sciences, New Delhi, India
| | - Chitra Sarkar
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Yookarin Khonglah
- Department of Pathology, North Eastern Indira Gandhi Regional Institute of Health and Medical Sciences, Shillong, Meghalaya, India
| | - Shabnam Ahmed
- Department of Pathology, GNRC Hospitals, Dispur, Assam, India
| | - Vaishali Suri
- Neuropathology Laboratory, Neurosciences Centre, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
6
|
Siegel BI, Duke ES, Kilburn LB, Packer RJ. Molecular-targeted therapy for childhood low-grade glial and glioneuronal tumors. Childs Nerv Syst 2024; 40:3251-3262. [PMID: 38877124 DOI: 10.1007/s00381-024-06486-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 06/01/2024] [Indexed: 06/16/2024]
Abstract
Since the discovery of the association between BRAF mutations and fusions in the development of childhood low-grade gliomas and the subsequent recognition that most childhood low-grade glial and glioneuronal tumors have aberrant signaling through the RAS/RAF/MAP kinase pathway, there has been a dramatic change in how these tumors are conceptualized. Many of the fusions and mutations present in these tumors are associated with molecular targets, which have agents in development or already in clinical use. Various agents, including MEK inhibitors, BRAF inhibitors, MTOR inhibitors and, in small subsets of patients NTRK inhibitors, have been used successfully to treat children with recurrent disease, after failure of conventional approaches such as surgery or chemotherapy. The relative benefits of chemotherapy as compared to molecular-targeted therapy for children with newly diagnosed gliomas and neuroglial tumors are under study. Already the combination of an MEK inhibitor and a BRAF inhibitor has been shown superior to conventional chemotherapy (carboplatin and vincristine) in newly diagnosed children with BRAF-V600E mutated low-grade gliomas and neuroglial tumors. However, the long-term effects of such molecular-targeted treatment are unknown. The potential use of molecular-targeted therapy in early treatment has made it mandatory that the molecular make-up of the majority of low-grade glial and glioneuronal tumors is known before initiation of therapy. The primary exception to this rule is in children with neurofibromatosis type 1 who, by definition, have NF1 loss; however, even in this population, gliomas arising in late childhood and adolescence or those not responding to conventional treatment may be candidates for biopsy, especially before entry on molecular-targeted therapy trials.
Collapse
Affiliation(s)
- Benjamin I Siegel
- Brain Tumor Institute, Children's National Hospital, 111 Michigan Ave NW, Washington, DC, 20010, USA.
- Gilbert Family Neurofibromatosis Institute, Children's National Hospital, Washington, DC, USA.
- Division of Neurology, Children's National Hospital, Washington, DC, USA.
- Division of Oncology, Children's National Hospital, Washington, DC, USA.
| | - Elizabeth S Duke
- Brain Tumor Institute, Children's National Hospital, 111 Michigan Ave NW, Washington, DC, 20010, USA
- Division of Neurology, Children's National Hospital, Washington, DC, USA
| | - Lindsay B Kilburn
- Brain Tumor Institute, Children's National Hospital, 111 Michigan Ave NW, Washington, DC, 20010, USA
- Division of Oncology, Children's National Hospital, Washington, DC, USA
| | - Roger J Packer
- Brain Tumor Institute, Children's National Hospital, 111 Michigan Ave NW, Washington, DC, 20010, USA
- Gilbert Family Neurofibromatosis Institute, Children's National Hospital, Washington, DC, USA
- Division of Neurology, Children's National Hospital, Washington, DC, USA
| |
Collapse
|
7
|
Lorincz KN, Gorodezki D, Schittenhelm J, Zipfel J, Tellermann J, Tatagiba M, Ebinger M, Schuhmann MU. Role of surgery in the treatment of pediatric low-grade glioma with various degrees of brain stem involvement. Childs Nerv Syst 2024; 40:3037-3050. [PMID: 39145885 PMCID: PMC11511697 DOI: 10.1007/s00381-024-06561-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 07/25/2024] [Indexed: 08/16/2024]
Abstract
OBJECTIVE Posterior fossa pediatric low-grade glioma involving the brainstem and cerebellar peduncles (BS-pLGG) are a subgroup with higher risks at surgery. We retrospectively analyzed the role of surgery in the interdisciplinary armamentarium of treatment options in our institutional series of BS-pLGG with various degrees of brainstem involvement. MATERIAL AND METHODS We analyzed data of 52 children with BS-pLGG after surgical intervention for clinical/molecular characteristics, neurological outcome, factors influencing recurrence/progression pattern, and tumor volumetric analysis of exclusively surgically treated patients to calculate tumor growth velocity (TGV). Tumors were stratified according to primary tumor origin in four groups: (1) cerebellar peduncle, (2) 4th ventricle, (3) pons, (4) medulla oblongata. RESULTS The mean FU was 6.44 years. Overall survival was 98%. The mean PFS was 34.07 months. Two patients had biopsies only. Fifty-two percent of patients underwent remission or remained in stable disease (SD) after initial surgery. Patients with progression underwent further 23 resections, 15 chemotherapies, 4 targeted treatments, and 2 proton radiations. TGV decreased after the 2nd surgery compared to TGV after the 1st surgery (p < 0.05). The resection rates were significantly higher in Groups 1 and 2 and lowest in medulla oblongata tumors (Group 4) (p < 0.05). More extended resections were achieved in tumors with KIAA1549::BRAF fusion (p = 0.021), which mostly occurred in favorable locations (Groups 1 and 2). Thirty-one patients showed postoperatively new neurological deficits. A total of 27/31 improved within 12 months. At the end of FU, 6% had moderate deficits, 52% had mild deficits not affecting activities, and 36% had none. Fifty percent of patients were free of disease or showed remission, 38% were in SD, and 10% showed progression. CONCLUSION The first surgical intervention in BS-pLGG can control disease alone in overall 50% of cases, with rates differing greatly according to location (Groups 1 > 2 > 3 > 4), with acceptable low morbidity. The second look surgery is warranted except in medullary tumors. With multimodality treatments almost 90% of patients can obtain remission or stable disease after > 5 years of follow-up. An integrated multimodal and multidisciplinary approach aiming at minimal safe residual disease, combining surgery, chemo-, targeted therapy, and, as an exception, radiation therapy, is mandatory.
Collapse
Affiliation(s)
- Katalin Nora Lorincz
- Section of Pediatric Neurosurgery, University Hospital of Tuebingen, Tuebingen, Germany.
- Department of Neurosurgery and Neurotechnology, University Hospital of Tuebingen, Hoppe-Seyler Str. 3, 72076, Tuebingen, Germany.
| | - David Gorodezki
- Department of Pediatric Oncology, University Children's Hospital of Tuebingen, Tuebingen, Germany
| | - Jens Schittenhelm
- Department of Neuropathology, Institute of Pathology and Neuropathology, University Hospital of Tuebingen, Tuebingen, Germany
| | - Julian Zipfel
- Section of Pediatric Neurosurgery, University Hospital of Tuebingen, Tuebingen, Germany
- Department of Neurosurgery and Neurotechnology, University Hospital of Tuebingen, Hoppe-Seyler Str. 3, 72076, Tuebingen, Germany
| | - Jonas Tellermann
- Section of Pediatric Neurosurgery, University Hospital of Tuebingen, Tuebingen, Germany
- Department of Neurosurgery and Neurotechnology, University Hospital of Tuebingen, Hoppe-Seyler Str. 3, 72076, Tuebingen, Germany
| | - Marcos Tatagiba
- Department of Neurosurgery and Neurotechnology, University Hospital of Tuebingen, Hoppe-Seyler Str. 3, 72076, Tuebingen, Germany
| | - Martin Ebinger
- Department of Pediatric Oncology, University Children's Hospital of Tuebingen, Tuebingen, Germany
| | - Martin Ulrich Schuhmann
- Section of Pediatric Neurosurgery, University Hospital of Tuebingen, Tuebingen, Germany
- Department of Neurosurgery and Neurotechnology, University Hospital of Tuebingen, Hoppe-Seyler Str. 3, 72076, Tuebingen, Germany
| |
Collapse
|
8
|
Ohara K, Al Assaad M, McNulty SN, Alnajar H, Sboner A, Wilkes DC, He F, Xiang JZ, Mathew S, Elemento O, Pisapia DJ, Mosquera JM. Detection of rare and novel gene fusions in patients with diffuse glioma: An institutional retrospective study. J Neuropathol Exp Neurol 2024:nlae105. [PMID: 39340835 DOI: 10.1093/jnen/nlae105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2024] Open
Affiliation(s)
- Kentaro Ohara
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, United States
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, United States
| | - Majd Al Assaad
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, United States
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, United States
| | | | - Hussein Alnajar
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, United States
| | - Andrea Sboner
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, United States
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, United States
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, United States
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, United States
| | - David C Wilkes
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, United States
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, United States
| | - Feng He
- Genomics Resources Core Facility, Weill Cornell Medicine, New York, NY, United States
| | - Jenny Zhaoying Xiang
- Genomics Resources Core Facility, Weill Cornell Medicine, New York, NY, United States
| | - Susan Mathew
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, United States
| | - Olivier Elemento
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, United States
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, United States
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, United States
| | - David J Pisapia
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, United States
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, United States
| | - Juan Miguel Mosquera
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, United States
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, United States
| |
Collapse
|
9
|
Chen MF, Yang SR, Tao JJ, Desilets A, Diamond EL, Wilhelm C, Rosen E, Gong Y, Mullaney K, Torrisi J, Young RJ, Somwar R, Yu HA, Kris MG, Riely GJ, Arcila ME, Ladanyi M, Donoghue MTA, Rosen N, Yaeger R, Drilon A, Murciano-Goroff YR, Offin M. Tumor-Agnostic Genomic and Clinical Analysis of BRAF Fusions Identifies Actionable Targets. Clin Cancer Res 2024; 30:3812-3823. [PMID: 38922339 PMCID: PMC11371517 DOI: 10.1158/1078-0432.ccr-23-3981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/18/2024] [Accepted: 06/21/2024] [Indexed: 06/27/2024]
Abstract
PURPOSE Even though BRAF fusions are increasingly detected in standard multigene next-generation sequencing panels, few reports have explored their structure and impact on clinical course. EXPERIMENTAL DESIGN We collected data from patients with BRAF fusion-positive cancers identified through a genotyping protocol of 97,024 samples. Fusions were characterized and reviewed for oncogenic potential (in-frame status, non-BRAF partner gene, and intact BRAF kinase domain). RESULTS We found 241 BRAF fusion-positive tumors from 212 patients with 82 unique 5' fusion partners spanning 52 histologies. Thirty-nine fusion partners were not previously reported, and 61 were identified once. BRAF fusion incidence was enriched in pilocytic astrocytomas, gangliogliomas, low-grade neuroepithelial tumors, and acinar cell carcinoma of the pancreas. Twenty-four patients spanning multiple histologies were treated with MAPK-directed therapies, of which 20 were evaluable for RECIST. Best response was partial response (N = 2), stable disease (N = 11), and progressive disease (N = 7). The median time on therapy was 1 month with MEK plus BRAF inhibitors [(N = 11), range 0-18 months] and 8 months for MEK inhibitors [(N = 14), range 1-26 months]. Nine patients remained on treatment for longer than 6 months [pilocytic astrocytomas (N = 6), Erdheim-Chester disease (N = 1), extraventricular neurocytoma (N = 1), and melanoma (N = 1)]. Fifteen patients had acquired BRAF fusions. CONCLUSIONS BRAF fusions are found across histologies and represent an emerging actionable target. BRAF fusions have a diverse set of fusion partners. Durable responses to MAPK therapies were seen, particularly in pilocytic astrocytomas. Acquired BRAF fusions were identified after targeted therapy, underscoring the importance of postprogression biopsies to optimize treatment at relapse in these patients.
Collapse
Affiliation(s)
- Monica F Chen
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Soo-Ryum Yang
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jessica J Tao
- Department of Medicine, Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland
| | - Antoine Desilets
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Eli L Diamond
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Clare Wilhelm
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ezra Rosen
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Yixiao Gong
- Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Kerry Mullaney
- Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jean Torrisi
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Robert J Young
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Romel Somwar
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Helena A Yu
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Mark G Kris
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Gregory J Riely
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Maria E Arcila
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Marc Ladanyi
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Mark T A Donoghue
- Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Neal Rosen
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Rona Yaeger
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Alexander Drilon
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Medicine, Weill Cornell Medical College, New York, New York
| | | | - Michael Offin
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Medicine, Weill Cornell Medical College, New York, New York
| |
Collapse
|
10
|
Nussinov R, Yavuz BR, Jang H. Single cell spatial biology over developmental time can decipher pediatric brain pathologies. Neurobiol Dis 2024; 199:106597. [PMID: 38992777 DOI: 10.1016/j.nbd.2024.106597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/18/2024] [Accepted: 07/07/2024] [Indexed: 07/13/2024] Open
Abstract
Pediatric low grade brain tumors and neurodevelopmental disorders share proteins, signaling pathways, and networks. They also share germline mutations and an impaired prenatal differentiation origin. They may differ in the timing of the events and proliferation. We suggest that their pivotal distinct, albeit partially overlapping, outcomes relate to the cell states, which depend on their spatial location, and timing of gene expression during brain development. These attributes are crucial as the brain develops sequentially, and single-cell spatial organization influences cell state, thus function. Our underlying premise is that the root cause in neurodevelopmental disorders and pediatric tumors is impaired prenatal differentiation. Data related to pediatric brain tumors, neurodevelopmental disorders, brain cell (sub)types, locations, and timing of expression in the developing brain are scant. However, emerging single cell technologies, including transcriptomic, spatial biology, spatial high-resolution imaging performed over the brain developmental time, could be transformational in deciphering brain pathologies thereby pharmacology.
Collapse
Affiliation(s)
- Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA; Cancer Innovation Laboratory, National Cancer Institute at Frederick, Frederick, MD 21702, USA; Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.
| | - Bengi Ruken Yavuz
- Cancer Innovation Laboratory, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - Hyunbum Jang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA; Cancer Innovation Laboratory, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| |
Collapse
|
11
|
Jeon H, Tkacik E, Eck MJ. Signaling from RAS to RAF: The Molecules and Their Mechanisms. Annu Rev Biochem 2024; 93:289-316. [PMID: 38316136 DOI: 10.1146/annurev-biochem-052521-040754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
RAF family protein kinases are a key node in the RAS/RAF/MAP kinase pathway, the signaling cascade that controls cellular proliferation, differentiation, and survival in response to engagement of growth factor receptors on the cell surface. Over the past few years, structural and biochemical studies have provided new understanding of RAF autoregulation, RAF activation by RAS and the SHOC2 phosphatase complex, and RAF engagement with HSP90-CDC37 chaperone complexes. These studies have important implications for pharmacologic targeting of the pathway. They reveal RAF in distinct regulatory states and show that the functional RAF switch is an integrated complex of RAF with its substrate (MEK) and a 14-3-3 dimer. Here we review these advances, placing them in the context of decades of investigation of RAF regulation. We explore the insights they provide into aberrant activation of the pathway in cancer and RASopathies (developmental syndromes caused by germline mutations in components of the pathway).
Collapse
Affiliation(s)
- Hyesung Jeon
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA;
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | - Emre Tkacik
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA;
- Systems, Synthetic, and Quantitative Biology PhD Program, Harvard Medical School, Boston, Massachusetts, USA
| | - Michael J Eck
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA;
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
12
|
Gorodezki D, Schuhmann MU, Ebinger M, Schittenhelm J. Dissecting the Natural Patterns of Progression and Senescence in Pediatric Low-Grade Glioma: From Cellular Mechanisms to Clinical Implications. Cells 2024; 13:1215. [PMID: 39056798 PMCID: PMC11274692 DOI: 10.3390/cells13141215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
Pediatric low-grade gliomas (PLGGs) comprise a heterogeneous set of low-grade glial and glioneuronal tumors, collectively representing the most frequent CNS tumors of childhood and adolescence. Despite excellent overall survival rates, the chronic nature of the disease bears a high risk of long-term disease- and therapy-related morbidity in affected patients. Recent in-depth molecular profiling and studies of the genetic landscape of PLGGs led to the discovery of the paramount role of frequent upregulation of RAS/MAPK and mTOR signaling in tumorigenesis and progression of these tumors. Beyond, the subsequent unveiling of RAS/MAPK-driven oncogene-induced senescence in these tumors may shape the understanding of the molecular mechanisms determining the versatile progression patterns of PLGGs, potentially providing a promising target for novel therapies. Recent in vitro and in vivo studies moreover indicate a strong dependence of PLGG formation and growth on the tumor microenvironment. In this work, we provide an overview of the current understanding of the multilayered cellular mechanisms and clinical factors determining the natural progression patterns and the characteristic biological behavior of these tumors, aiming to provide a foundation for advanced stratification for the management of these tumors within a multimodal treatment approach.
Collapse
Affiliation(s)
- David Gorodezki
- Department of Hematology and Oncology, University Children’s Hospital Tübingen, 72076 Tübingen, Germany;
| | - Martin U. Schuhmann
- Section of Pediatric Neurosurgery, Department of Neurosurgery, University Hospital Tübingen, 72076 Tübingen, Germany
| | - Martin Ebinger
- Department of Hematology and Oncology, University Children’s Hospital Tübingen, 72076 Tübingen, Germany;
| | - Jens Schittenhelm
- Department of Neuropathology, Institute of Pathology, University Hospital Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
13
|
Loreto Palacio P, Pan X, Jones D, Otero JJ. Exploring a distinct FGFR2::DLG5 rearrangement in a low-grade neuroepithelial tumor: A case report and mini-review of protein fusions in brain tumors. J Neuropathol Exp Neurol 2024; 83:567-578. [PMID: 38833313 DOI: 10.1093/jnen/nlae040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024] Open
Abstract
We report the novel clinical presentation of a primary brain neoplasm in a 30-year-old man with a mass-like area in the anteromedial temporal lobe. Histopathological analysis revealed a low-grade neuroepithelial tumor with cytologically abnormal neurons and atypical glial cells within the cerebral cortex. Molecular analysis showed a previously undescribed FGFR2::DLG5 rearrangement. We discuss the clinical significance and molecular implications of this fusion event, shedding light on its potential impact on tumor development and patient prognosis. Additionally, an extensive review places the finding in this case in the context of protein fusions in brain tumors in general and highlights their diverse manifestations, underlying molecular mechanisms, and therapeutic implications.
Collapse
Affiliation(s)
- Paola Loreto Palacio
- Abigail Wexner Center Research Institute, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Xiaokang Pan
- James Molecular Laboratory, James Cancer Hospital, Columbus, Ohio, USA
| | - Dan Jones
- The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA
| | - José Javier Otero
- Neuropathology Division, Pathology Department, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| |
Collapse
|
14
|
Chen Y, Yu J, Ge S, Jia R, Song X, Wang Y, Fan X. An Overview of Optic Pathway Glioma With Neurofibromatosis Type 1: Pathogenesis, Risk Factors, and Therapeutic Strategies. Invest Ophthalmol Vis Sci 2024; 65:8. [PMID: 38837168 PMCID: PMC11160950 DOI: 10.1167/iovs.65.6.8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 05/14/2024] [Indexed: 06/06/2024] Open
Abstract
Optic pathway gliomas (OPGs) are most predominant pilocytic astrocytomas, which are typically diagnosed within the first decade of life. The majority of affected children with OPGs also present with neurofibromatosis type 1 (NF1), the most common tumor predisposition syndrome. OPGs in individuals with NF1 primarily affect the optic pathway and lead to visual disturbance. However, it is challenging to assess risk in asymptomatic patients without valid biomarkers. On the other hand, for symptomatic patients, there is still no effective treatment to prevent or recover vision loss. Therefore, this review summarizes current knowledge regarding the pathogenesis of NF1-associated OPGs (NF1-OPGs) from preclinical studies to seek potential prognostic markers and therapeutic targets. First, the loss of the NF1 gene activates 3 distinct Ras effector pathways, including the PI3K/AKT/mTOR pathway, the MEK/ERK pathway, and the cAMP pathway, which mediate glioma tumorigenesis. Meanwhile, non-neoplastic cells from the tumor microenvironment (microglia, T cells, neurons, etc.) also contribute to gliomagenesis via various soluble factors. Subsequently, we investigated potential genetic risk factors, molecularly targeted therapies, and neuroprotective strategies for tumor prevention and vision recovery. Last, potential directions and promising preclinical models of NF1-OPGs are presented for further research. On the whole, NF1-OPGs develop as a result of the interaction between glioma cells and the tumor microenvironment. Developing effective treatments require a better understanding of tumor molecular characteristics, as well as multistage interventions targeting both neoplastic cells and non-neoplastic cells.
Collapse
Affiliation(s)
- Ying Chen
- Department of Ophthalmology, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, P.R. China
| | - Jie Yu
- Department of Ophthalmology, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, P.R. China
| | - Shengfang Ge
- Department of Ophthalmology, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, P.R. China
| | - Renbing Jia
- Department of Ophthalmology, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, P.R. China
| | - Xin Song
- Department of Ophthalmology, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, P.R. China
| | - Yefei Wang
- Department of Ophthalmology, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, P.R. China
| | - Xianqun Fan
- Department of Ophthalmology, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, P.R. China
| |
Collapse
|
15
|
Schaff LR, Ioannou M, Geurts M, van den Bent MJ, Mellinghoff IK, Schreck KC. State of the Art in Low-Grade Glioma Management: Insights From Isocitrate Dehydrogenase and Beyond. Am Soc Clin Oncol Educ Book 2024; 44:e431450. [PMID: 38723228 DOI: 10.1200/edbk_431450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Low-grade gliomas present a formidable challenge in neuro-oncology because of the challenges imposed by the blood-brain barrier, predilection for the young adult population, and propensity for recurrence. In the past two decades, the systematic examination of genomic alterations in adults and children with primary brain tumors has uncovered profound new insights into the pathogenesis of these tumors, resulting in more accurate tumor classification and prognostication. It also identified several common recurrent genomic alterations that now define specific brain tumor subtypes and have provided a new opportunity for molecularly targeted therapeutic intervention. Adult-type diffuse low-grade gliomas are frequently associated with mutations in isocitrate dehydrogenase 1 and 2 (IDH1/2), resulting in production of 2-hydroxyglutarate, an oncometabolite important for tumorigenesis. Recent studies of IDH inhibitors have yielded promising results in patients at early stages of disease with prolonged progression-free survival (PFS) and delayed time to radiation and chemotherapy. Pediatric-type gliomas have high rates of alterations in BRAF, including BRAF V600E point mutations or BRAF-KIAA1549 rearrangements. BRAF inhibitors, often combined with MEK inhibitors, have resulted in radiographic response and improved PFS in these patients. This article reviews emerging approaches to the treatment of low-grade gliomas, including a discussion of targeted therapies and how they integrate with the current treatment modalities of surgical resection, chemotherapy, and radiation.
Collapse
Affiliation(s)
- Lauren R Schaff
- Memorial Sloan Kettering Cancer Center, Weill Cornell Medical College, New York, NY
| | - Maria Ioannou
- Johns Hopkins University School of Medicine, Baltimore, MD
| | - Marjolein Geurts
- Brain Tumor Center at Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | | | - Ingo K Mellinghoff
- Memorial Sloan Kettering Cancer Center, Weill Cornell Medical College, New York, NY
| | - Karisa C Schreck
- Johns Hopkins University School of Medicine Departments of Neurology and Oncology, Baltimore, MD
| |
Collapse
|
16
|
Sathyakumar S, Martinez M, Perreault S, Legault G, Bouffet E, Jabado N, Larouche V, Renzi S. Advances in pediatric gliomas: from molecular characterization to personalized treatments. Eur J Pediatr 2024; 183:2549-2562. [PMID: 38558313 DOI: 10.1007/s00431-024-05540-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 03/12/2024] [Accepted: 03/21/2024] [Indexed: 04/04/2024]
Abstract
Pediatric gliomas, consisting of both pediatric low-grade (pLGG) and high-grade gliomas (pHGG), are the most frequently occurring brain tumors in children. Over the last decade, several milestone advancements in treatments have been achieved as a result of stronger understanding of the molecular biology behind these tumors. This review provides an overview of pLGG and pHGG highlighting their clinical presentation, molecular characteristics, and latest advancements in therapeutic treatments. Conclusion: The increasing understanding of the molecular biology characterizing pediatric low and high grade gliomas has revolutionized treatment options for these patients, especially in pLGG. The implementation of next generation sequencing techniques for these tumors is crucial in obtaining less toxic and more efficacious treatments. What is Known: • Pediatric Gliomas are the most common brain tumour in children. They are responsible for significant morbidity and mortality in this population. What is New: • Over the last two decades, there has been a significant increase in our global understanding of the molecular background of pediatric low and high grade gliomas. • The implementation of next generation sequencing techniques for these tumors is crucial in obtaining less toxic and more efficacious treatments, with the ultimate goal of improving both the survival and the quality of life of these patients.
Collapse
Affiliation(s)
| | - Matthew Martinez
- Department of Social Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Sébastien Perreault
- Division of Pediatric Neurology, Department of Neurosciences, CHU Sainte-Justine, Montreal, Québec, Canada
| | - Geneviève Legault
- Department of Pediatrics, Division of Neurology, Montreal Children's Hospital - McGill University Health Center, Montreal, Québec, Canada
- The Research Institute of the McGill University Health Centre, Montreal, Québec, Canada
| | - Eric Bouffet
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
- Division of Haematology/Oncology, Department of Pediatrics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Nada Jabado
- Division of Experimental Medicine, Montreal Children's Hospital, McGill University and McGill University Health Centre, Montreal, Québec, Canada
- Department of Pediatrics, McGill University, Montreal, Québec, Canada
| | - Valérie Larouche
- Division of Hemato-Oncology, Department of Pediatrics, CHU de Québec-Université Laval, 2705 Boulevard, Laurier, G1V 4G2, Québec, Canada
| | - Samuele Renzi
- Division of Hemato-Oncology, Department of Pediatrics, CHU de Québec-Université Laval, 2705 Boulevard, Laurier, G1V 4G2, Québec, Canada.
| |
Collapse
|
17
|
Scardaci R, Berlinska E, Scaparone P, Vietti Michelina S, Garbo E, Novello S, Santamaria D, Ambrogio C. Novel RAF-directed approaches to overcome current clinical limits and block the RAS/RAF node. Mol Oncol 2024; 18:1355-1377. [PMID: 38362705 PMCID: PMC11161739 DOI: 10.1002/1878-0261.13605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/30/2023] [Accepted: 01/30/2024] [Indexed: 02/17/2024] Open
Abstract
Mutations in the RAS-RAF-MEK-ERK pathway are frequent alterations in cancer and RASopathies, and while RAS oncogene activation alone affects 19% of all patients and accounts for approximately 3.4 million new cases every year, less frequent alterations in the cascade's downstream effectors are also involved in cancer etiology. RAS proteins initiate the signaling cascade by promoting the dimerization of RAF kinases, which can act as oncoproteins as well: BRAFV600E is the most common oncogenic driver, mutated in the 8% of all malignancies. Research in this field led to the development of drugs that target the BRAFV600-like mutations (Class I), which are now utilized in clinics, but cause paradoxical activation of the pathway and resistance development. Furthermore, they are ineffective against non-BRAFV600E malignancies that dimerize and could be either RTK/RAS independent or dependent (Class II and III, respectively), which are still lacking an effective treatment. This review discusses the recent advances in anti-RAF therapies, including paradox breakers, dimer-inhibitors, immunotherapies, and other novel approaches, critically evaluating their efficacy in overcoming the therapeutic limitations, and their putative role in blocking the RAS pathway.
Collapse
Affiliation(s)
- Rossella Scardaci
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology CenterUniversity of TorinoItaly
| | - Ewa Berlinska
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology CenterUniversity of TorinoItaly
| | - Pietro Scaparone
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology CenterUniversity of TorinoItaly
| | - Sandra Vietti Michelina
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology CenterUniversity of TorinoItaly
| | - Edoardo Garbo
- Department of OncologyUniversity of Torino, San Luigi HospitalOrbassanoItaly
| | - Silvia Novello
- Department of OncologyUniversity of Torino, San Luigi HospitalOrbassanoItaly
| | - David Santamaria
- Centro de Investigación del CáncerCSIC‐Universidad de SalamancaSpain
| | - Chiara Ambrogio
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology CenterUniversity of TorinoItaly
| |
Collapse
|
18
|
Abe E, Suzuki M, Ichimura K, Arakawa A, Satomi K, Ogino I, Hara T, Iwamuro H, Ohara Y, Kondo A. Implications of DNA Methylation Classification in Diagnosing Ependymoma. World Neurosurg 2024; 185:e1019-e1029. [PMID: 38479644 DOI: 10.1016/j.wneu.2024.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/02/2024] [Accepted: 03/04/2024] [Indexed: 04/04/2024]
Abstract
BACKGROUND Ependymoma is a central nervous system (CNS) tumor that arises from the ependymal cells of the brain's ventricles and spinal cord. The histopathology of ependymomas is indistinguishable regardless of the site of origin, and the prognosis varies. Recent studies have revealed that the development site and prognosis reflect the genetic background. In this study, we used genome-wide DNA methylation array analysis to investigate the epigenetic background of ependymomas from different locations treated at our hospital. METHODS Four cases of posterior fossa ependymomas and 11 cases of spinal ependymomas were analyzed. RESULTS DNA methylation profiling using the DKFZ methylation classifier showed that the methylation diagnoses of the 2 cases differed from the histopathological diagnoses, and 2 cases could not be classified. Tumor that spread from the brain to the spinal cord was molecularly distinguishable from other primary spinal tumors. CONCLUSIONS Although adding DNA methylation classification to conventional diagnostic methods may be helpful, the diagnosis in some cases remains undetermined. This may affect decision-making regarding treatment strategies and follow-up. Further investigations are required to improve the diagnostic accuracy of these tumors.
Collapse
Affiliation(s)
- Eiji Abe
- Department of Neurosurgery, Juntendo University Graduate School of Medicine, Tokyo, Japan.
| | - Mario Suzuki
- Department of Neurosurgery, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Koichi Ichimura
- Department of Neurosurgery, Juntendo University Graduate School of Medicine, Tokyo, Japan; Department of Brain Disease Translational Research, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Atsushi Arakawa
- Department of Human Pathology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Kaishi Satomi
- Department of Pathology, Kyorin University Faculty of Medicine, Tokyo, Japan
| | - Ikuko Ogino
- Department of Neurosurgery, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Takeshi Hara
- Department of Neurosurgery, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hirokazu Iwamuro
- Department of Neurosurgery, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yukoh Ohara
- Department of Neurosurgery, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Akihide Kondo
- Department of Neurosurgery, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
19
|
Hammad R, Nobre L, Ryall S, Arnoldo A, Siddaway R, Bennett J, Tabori U, Hawkins C. The Clinical Utility of a Tiered Approach to Pediatric Glioma Molecular Characterization for Resource-Limited Settings. JCO Glob Oncol 2024; 10:e2300269. [PMID: 38754050 DOI: 10.1200/go.23.00269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 02/09/2024] [Accepted: 02/23/2024] [Indexed: 05/18/2024] Open
Abstract
PURPOSE Molecular characterization is key to optimally diagnose and manage cancer. The complexity and cost of routine genomic analysis have unfortunately limited its use and denied many patients access to precision medicine. A possible solution is to rationalize use-creating a tiered approach to testing which uses inexpensive techniques for most patients and limits expensive testing to patients with the highest needs. Here, we tested the utility of this approach to molecularly characterize pediatric glioma in a cost- and time-sensitive manner. METHODS We used a tiered testing pipeline of immunohistochemistry (IHC), customized fusion panels or fluorescence in situ hybridization (FISH), and targeted RNA sequencing in pediatric gliomas. Two distinct diagnostic algorithms were used for low- and high-grade gliomas (LGGs and HGGs). The percentage of driver alterations identified, associated testing costs, and turnaround time (TAT) are reported. RESULTS The tiered approach successfully characterized 96% (95 of 99) of gliomas. For 82 LGGs, IHC, targeted fusion panel or FISH, and targeted RNA sequencing solved 35% (29 of 82), 29% (24 of 82), and 30% (25 of 82) of cases, respectively. A total of 64% (53 of 82) of samples were characterized without targeted RNA sequencing. Of 17 HGG samples, 13 were characterized by IHC and four were characterized by targeted RNA sequencing. The average cost per sample was more affordable when using the tiered approach as compared with up-front targeted RNA sequencing in LGG ($405 US dollars [USD] v $745 USD) and HGGs ($282 USD v $745 USD). The average TAT per sample was also shorter using the tiered approach (10 days for LGG, 5 days for HGG v 14 days for targeted RNA sequencing). CONCLUSION Our tiered approach molecularly characterized 96% of samples in a cost- and time-sensitive manner. Such an approach may be feasible in neuro-oncology centers worldwide, particularly in resource-limited settings.
Collapse
Affiliation(s)
- Rawan Hammad
- Haematology Department, Faculty of Medicine, King Abdulaziz University Hospital, King Abdulaziz University, Jeddah, Saudi Arabia
- Division of Pediatric Haematology Oncology, The Hospital for Sick Children, Toronto, Canada
| | - Liana Nobre
- Division of Pediatric Haematology Oncology, The Hospital for Sick Children, Toronto, Canada
- Division of Hematology, Oncology and Palliative Care, Department of Pediatrics, University of Alberta & Stollery Children's Hospital, Edmonton, Canada
| | - Scott Ryall
- Division of Pathology, Department of Pediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, Canada
- The Hospital for Sick Children, Arthur and Sonia Labatt Brain Tumour Research Centre, Toronto, Canada
| | - Anthony Arnoldo
- Division of Pathology, Department of Pediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, Canada
| | - Robert Siddaway
- Division of Pathology, Department of Pediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, Canada
- The Hospital for Sick Children, Arthur and Sonia Labatt Brain Tumour Research Centre, Toronto, Canada
| | - Julie Bennett
- Division of Pediatric Haematology Oncology, The Hospital for Sick Children, Toronto, Canada
- The Hospital for Sick Children, Arthur and Sonia Labatt Brain Tumour Research Centre, Toronto, Canada
- Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto, Canada
| | - Uri Tabori
- Division of Pediatric Haematology Oncology, The Hospital for Sick Children, Toronto, Canada
- The Hospital for Sick Children, Arthur and Sonia Labatt Brain Tumour Research Centre, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Cynthia Hawkins
- Division of Pathology, Department of Pediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, Canada
- The Hospital for Sick Children, Arthur and Sonia Labatt Brain Tumour Research Centre, Toronto, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| |
Collapse
|
20
|
del Río RJ, Cicutti SE, Moreira DC, Ramos JDG. New CNS tumor classification: The importance in pediatric neurosurgical practice. Surg Neurol Int 2024; 15:130. [PMID: 38742003 PMCID: PMC11090558 DOI: 10.25259/sni_681_2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 03/26/2024] [Indexed: 05/16/2024] Open
Abstract
Background The management of the central nervous system (CNS) tumors in the pediatric population is crucial in neurosurgical practice. The World Health Organization (WHO) has evolved its classification of CNS tumors from the 19th century to the 5th edition, published in 2021, incorporating molecular advancements. This transition from morphology to molecular characterization is ongoing. Methods This manuscript analyzes the modifications introduced in the 5th edition of WHO's CNS tumor classification, particularly focusing on pediatric tumor families. The paper integrates clinical, morphological, and molecular information, aiming to guide pediatric neurosurgeons in their daily practice and interdisciplinary discussions. Results The 5th edition of the WHO classification introduces a hybrid taxonomy that incorporates both molecular and histological components. The terminology shifts from "entity" to "type" and "subtype," aiming to standardize terminology. Tumor grading experiences changes, integrating molecular biomarkers for prognosis. The concept of integrated layered diagnosis is emphasized, where molecular and histological information is combined systematically. Conclusion The 5th edition of the WHO CNS classification signifies a paradigm shift toward molecular characterization. The incorporation of molecular advances, the layered diagnostic approach, and the inclusion of clinical, morphological, and molecular information aim to provide comprehensive insights into pediatric CNS tumors. This classification offers valuable guidance for pediatric neurosurgeons, aiding in precise diagnosis and treatment planning for these complex neoplasms.
Collapse
Affiliation(s)
- Ramiro José del Río
- Department of Neurosurgery, Hospital de Pediatría Juan P. Garrahan, Ciudad Autónoma de Buenos Aires, Argentina
| | - Santiago Ezequiel Cicutti
- Department of Neurosurgery, Hospital de Pediatría Juan P. Garrahan, Ciudad Autónoma de Buenos Aires, Argentina
| | - Daniel C. Moreira
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, United States
| | | |
Collapse
|
21
|
Ziegler DS, Lehmann R, Eisenstat DD. A paradigm shift in how we treat pediatric low-grade glioma-Targeting the molecular drivers. Neuro Oncol 2024; 26:593-595. [PMID: 38243845 PMCID: PMC10995501 DOI: 10.1093/neuonc/noae008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Indexed: 01/22/2024] Open
Affiliation(s)
- David S Ziegler
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, New South Wales, Australia
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Sydney, New South Wales, Australia
- Kids Cancer Centre, Sydney Children’s Hospital, Randwick, New South Wales, Australia
| | - Rebecca Lehmann
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, New South Wales, Australia
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Sydney, New South Wales, Australia
| | - David D Eisenstat
- Children’s Cancer Centre, Royal Children’s Hospital, Parkville, Victoria, Australia
- Murdoch Children’s Research Institute, Parkville, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
22
|
Moritsubo M, Furuta T, Negoto T, Nakamura H, Uchiyama Y, Morioka M, Oshima K, Sugita Y. A case of a pilocytic astrocytoma with histological features of anaplasia and unprecedent genetic alterations. Neuropathology 2024; 44:161-166. [PMID: 37779355 DOI: 10.1111/neup.12946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/07/2023] [Accepted: 09/18/2023] [Indexed: 10/03/2023]
Abstract
We report a case of pediatric glioma with uncommon imaging, morphological, and genetic features. A one-year-old boy incidentally presented with a tumor in the fourth ventricle. The tumor was completely resected surgically and investigated pathologically. The mostly circumscribed tumor had piloid features but primitive and anaplastic histology, such as increasing cellularity and mitosis. The Ki-67 staining index was 25% at the hotspot. KIAA1549::BRAF fusion and KIAA1549 partial deletions were detected by direct PCR, supported by Sanger sequencing. To the best of our knowledge, this is the first report of a glioma with both deletion of KIAA1549 p.P1771_P1899 and fusion of KIAA1549::BRAF. The tumor could not be classified using DNA methylome analysis. The present tumor fell into the category of pilocytic astrocytoma with histological features of anaplasia (aPA). Further studies are needed to establish pediatric aPA.
Collapse
Affiliation(s)
- Mayuko Moritsubo
- Department of Pathology, Kurume University School of Medicine, Kurume, Japan
| | - Takuya Furuta
- Department of Pathology, Kurume University School of Medicine, Kurume, Japan
| | - Tetsuya Negoto
- Department of Neurosurgery, Kurume University School of Medicine, Kurume, Japan
| | - Hideo Nakamura
- Department of Neurosurgery, Kurume University School of Medicine, Kurume, Japan
| | - Yusuke Uchiyama
- Department of Radiology, Kurume University School of Medicine, Kurume, Japan
| | - Motohiro Morioka
- Department of Neurosurgery, Kurume University School of Medicine, Kurume, Japan
| | - Koichi Oshima
- Department of Pathology, Kurume University School of Medicine, Kurume, Japan
| | - Yasuo Sugita
- Department of Pathology, Kurume University School of Medicine, Kurume, Japan
- Department of Neuropathology, St. Mary's Hospital, Kurume, Japan
| |
Collapse
|
23
|
Ye F, Xie Y, Lin M, Liu Y, Fang Y, Chen K, Zhang Y, Ding Y. KIAA1549 promotes the development and chemoresistance of colorectal cancer by upregulating ERCC2. Mol Cell Biochem 2024; 479:629-642. [PMID: 37140813 DOI: 10.1007/s11010-023-04751-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/24/2023] [Indexed: 05/05/2023]
Abstract
Colorectal cancer (CRC) is the third most commonly diagnosed cancer worldwide. Chemotherapy is the mainstay of treatment for patients with CRC in II-IV stages. Resistance to chemotherapy occurs commonly, which results in treatment failure. Therefore, the identification of novel functional biomarkers is essential for recognizing high-risk patients, predicting recurrence, and developing new therapeutic strategies. Herein, we assessed the roles of KIAA1549 in promoting tumor development and chemoresistance in colorectal cancer. As a result, we found that KIAA1549 expression is up-regulation in CRC. Public databases revealed a progressive up-regulation of KIAA1549 expression from adenomas to carcinomas. Functional characterization uncovered that KIAA1549 promotes tumor malignant phenotypes and boosts the chemoresistance of CRC cells in an ERCC2-dependent manner. Inhibition of KIAA1549 and ERCC2 effectively enhanced the sensitivity to chemotherapeutic drugs oxaliplatin and 5-fluorouracil. Our findings suggest that endogenous KIAA1549 might function as a tumor development-promoting role and trigger chemoresistance in colorectal cancer partly by upregulating DNA repair protein ERCC2. Hence, KIAA1549 could be an effective therapeutic target for CRC and inhibition of KIAA1549 combined with chemotherapy might be a potential therapeutic strategy in the future.
Collapse
Affiliation(s)
- Feng Ye
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yuwen Xie
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Mingdao Lin
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, The First School of Clinical Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yang Liu
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yuan Fang
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Keli Chen
- Huiqiao Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yaowei Zhang
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yi Ding
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
24
|
van Tilburg CM, Kilburn LB, Perreault S, Schmidt R, Azizi AA, Cruz-Martínez O, Zápotocký M, Scheinemann K, Meeteren AYNSV, Sehested A, Opocher E, Driever PH, Avula S, Ziegler DS, Capper D, Koch A, Sahm F, Qiu J, Tsao LP, Blackman SC, Manley P, Milde T, Witt R, Jones DTW, Hargrave D, Witt O. LOGGIC/FIREFLY-2: a phase 3, randomized trial of tovorafenib vs. chemotherapy in pediatric and young adult patients with newly diagnosed low-grade glioma harboring an activating RAF alteration. BMC Cancer 2024; 24:147. [PMID: 38291372 PMCID: PMC10826080 DOI: 10.1186/s12885-024-11820-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 01/02/2024] [Indexed: 02/01/2024] Open
Abstract
BACKGROUND Pediatric low-grade glioma (pLGG) is essentially a single pathway disease, with most tumors driven by genomic alterations affecting the mitogen-activated protein kinase/ERK (MAPK) pathway, predominantly KIAA1549::BRAF fusions and BRAF V600E mutations. This makes pLGG an ideal candidate for MAPK pathway-targeted treatments. The type I BRAF inhibitor, dabrafenib, in combination with the MEK inhibitor, trametinib, has been approved by the United States Food and Drug Administration for the systemic treatment of BRAF V600E-mutated pLGG. However, this combination is not approved for the treatment of patients with tumors harboring BRAF fusions as type I RAF inhibitors are ineffective in this setting and may paradoxically enhance tumor growth. The type II RAF inhibitor, tovorafenib (formerly DAY101, TAK-580, MLN2480), has shown promising activity and good tolerability in patients with BRAF-altered pLGG in the phase 2 FIREFLY-1 study, with an objective response rate (ORR) per Response Assessment in Neuro-Oncology high-grade glioma (RANO-HGG) criteria of 67%. Tumor response was independent of histologic subtype, BRAF alteration type (fusion vs. mutation), number of prior lines of therapy, and prior MAPK-pathway inhibitor use. METHODS LOGGIC/FIREFLY-2 is a two-arm, randomized, open-label, multicenter, global, phase 3 trial to evaluate the efficacy, safety, and tolerability of tovorafenib monotherapy vs. current standard of care (SoC) chemotherapy in patients < 25 years of age with pLGG harboring an activating RAF alteration who require first-line systemic therapy. Patients are randomized 1:1 to either tovorafenib, administered once weekly at 420 mg/m2 (not to exceed 600 mg), or investigator's choice of prespecified SoC chemotherapy regimens. The primary objective is to compare ORR between the two treatment arms, as assessed by independent review per RANO-LGG criteria. Secondary objectives include comparisons of progression-free survival, duration of response, safety, neurologic function, and clinical benefit rate. DISCUSSION The promising tovorafenib activity data, CNS-penetration properties, strong scientific rationale combined with the manageable tolerability and safety profile seen in patients with pLGG led to the SIOPe-BTG-LGG working group to nominate tovorafenib for comparison with SoC chemotherapy in this first-line phase 3 trial. The efficacy, safety, and functional response data generated from the trial may define a new SoC treatment for newly diagnosed pLGG. TRIAL REGISTRATION ClinicalTrials.gov: NCT05566795. Registered on October 4, 2022.
Collapse
Affiliation(s)
- Cornelis M van Tilburg
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Pediatric Oncology, Hematology, Immunology and Pulmonology, Heidelberg University Hospital, Heidelberg, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | | | | | - Rene Schmidt
- Institute of Biostatistics and Clinical Research, Münster, Germany
| | - Amedeo A Azizi
- Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Ofelia Cruz-Martínez
- Neuro-oncology Unit, Pediatric Cancer Center, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Michal Zápotocký
- Department of Paediatric Haematology and Oncology, Charles University, Second Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
| | - Katrin Scheinemann
- Division of Oncology-Hematology, Children's Hospital of Eastern Switzerland, St. Gallen, Switzerland
- Faculty of Health Sciences and Medicine, University of Lucerne, Lucerne, Switzerland
- Department of Pediatrics, McMaster Children's Hospital and McMaster University, Hamilton, Canada
| | | | - Astrid Sehested
- Department of Pediatrics and Adolescent Medicine, Rigshospitalet, Copenhagen, Denmark
| | - Enrico Opocher
- Pediatric Hematology, Oncology and Stem Cell Transplant Division, Padua University Hospital, Padua, Italy
| | - Pablo Hernáiz Driever
- German HIT-LOGGIC-Registry for LGG in Children and Adolescents, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Shivaram Avula
- Department of Radiology, Alder Hey Children's Hospital NHS Foundation Trust, Liverpool, UK
| | - David S Ziegler
- Kids Cancer Centre, Sydney Children's Hospital, Randwick, NSW, Australia
- Lowy Cancer Research Centre, Children's Cancer Institute, University of New South Wales, Sydney, NSW, Australia
- School of Clinical Medicine, University of New South Wales, Sydney, NSW, Australia
| | - David Capper
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, Berlin, Germany
- DKTK Partner Site, Berlin, Germany
| | - Arend Koch
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Felix Sahm
- Department of Neuropathology, German Cancer Research Center (DKFZ), University Hospital Heidelberg and CCU Neuropathology, German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
| | - Jiaheng Qiu
- Day One Biopharmaceuticals, Brisbane, CA, USA
| | - Li-Pen Tsao
- Day One Biopharmaceuticals, Brisbane, CA, USA
| | | | | | - Till Milde
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Pediatric Oncology, Hematology, Immunology and Pulmonology, Heidelberg University Hospital, Heidelberg, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Ruth Witt
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - David T W Jones
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
- Division of Pediatric Glioma Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Darren Hargrave
- UCL Great Ormond Street Institute of Child Health and Great Ormond Street Hospital for Children, London, UK
| | - Olaf Witt
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Department of Pediatric Oncology, Hematology, Immunology and Pulmonology, Heidelberg University Hospital, Heidelberg, Germany.
- German Cancer Consortium (DKTK), Heidelberg, Germany.
- National Center for Tumor Diseases (NCT), Heidelberg, Germany.
| |
Collapse
|
25
|
Yvone GM, Breunig JJ. Pediatric low-grade glioma models: advances and ongoing challenges. Front Oncol 2024; 13:1346949. [PMID: 38318325 PMCID: PMC10839015 DOI: 10.3389/fonc.2023.1346949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 12/29/2023] [Indexed: 02/07/2024] Open
Abstract
Pediatric low-grade gliomas represent the most common childhood brain tumor class. While often curable, some tumors fail to respond and even successful treatments can have life-long side effects. Many clinical trials are underway for pediatric low-grade gliomas. However, these trials are expensive and challenging to organize due to the heterogeneity of patients and subtypes. Advances in sequencing technologies are helping to mitigate this by revealing the molecular landscapes of mutations in pediatric low-grade glioma. Functionalizing these mutations in the form of preclinical models is the next step in both understanding the disease mechanisms as well as for testing therapeutics. However, such models are often more difficult to generate due to their less proliferative nature, and the heterogeneity of tumor microenvironments, cell(s)-of-origin, and genetic alterations. In this review, we discuss the molecular and genetic alterations and the various preclinical models generated for the different types of pediatric low-grade gliomas. We examined the different preclinical models for pediatric low-grade gliomas, summarizing the scientific advances made to the field and therapeutic implications. We also discuss the advantages and limitations of the various models. This review highlights the importance of preclinical models for pediatric low-grade gliomas while noting the challenges and future directions of these models to improve therapeutic outcomes of pediatric low-grade gliomas.
Collapse
Affiliation(s)
- Griselda Metta Yvone
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Joshua J. Breunig
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Center for Neural Sciences in Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
26
|
Ali RH, Almanabri M, Ali NY, Alsaber AR, Khalifa NM, Hussein R, Alateeqi M, Mohammed EMA, Jama H, Almarzooq A, Benobaid N, Alqallaf Z, Ahmed AA, Bahzad S, Almurshed M. Clinicopathological analysis of BRAF and non-BRAF MAPK pathway-altered gliomas in paediatric and adult patients: a single-institution study of 40 patients. J Clin Pathol 2024:jcp-2023-209318. [PMID: 38195220 DOI: 10.1136/jcp-2023-209318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 12/28/2023] [Indexed: 01/11/2024]
Abstract
AIMS Mitogen-activated protein kinase (MAPK) pathway alteration is a major oncogenic driver in paediatric low-grade gliomas (LGG) and some adult gliomas, encompassing BRAF (most common) and non-BRAF alterations. The aim was to determine the frequency, molecular spectrum and clinicopathological features of MAPK-altered gliomas in paediatric and adult patients at our neuropathology site in Kuwait. METHODS We retrospectively searched the data of molecularly sequenced gliomas between 2018 and 2023 for MAPK alterations, revised the pathology in view of the 2021 WHO classification and evaluated the clinicopathological data for possible correlations. RESULTS Of 272 gliomas, 40 (15%) harboured a MAPK pathway alteration in 19 paediatric (median 9.6 years; 1.2-17.6) and 21 adult patients (median 37 years; 18.9-89.2), comprising 42% and 9% of paediatric and adult cases, respectively. Pilocytic astrocytoma and glioblastoma were the most frequent diagnoses in children (47%) and adults (43%), respectively. BRAF V600E (n=17, 43%) showed a wide distribution across age groups, locations and pathological diagnoses while KIAA1549::BRAF fusion (n=8, 20%) was spatially and histologically restricted to cerebellar paediatric LGGs. Non-V600E variants and BRAF amplifications accompanied other molecular aberrations in high-grade tumours. Non-BRAF MAPK alterations (n=8) included mutations and gene fusions involving FGFR1, NTRK2, NF1, ROS1 and MYB. Fusions included KANK1::NTRK2, GOPC::ROS1 (both infant hemispheric gliomas), FGFR1::TACC1 (diffuse LGG), MYB::QKI (angiocentric glioma) and BCR::NTRK2 (glioblastoma). Paradoxical H3 K27M/MAPK co-mutations were observed in two LGGs. CONCLUSION The study provided insights into MAPK-altered gliomas in Kuwait highlighting the differences among paediatric and adult patients and providing a framework for planning therapeutic polices.
Collapse
Affiliation(s)
- Rola H Ali
- Department of Pathology, College of Medicine, Kuwait University, Jabriya, Hawalli, Kuwait
- Department of Histopathology, Al Sabah Hospital, Shuwaikh, Al Asimah, Kuwait
| | - Mohamad Almanabri
- Department of Neurosurgery, Ibn Sina Hospital, Shuwaikh, Al Asimah, Kuwait
| | - Nawal Y Ali
- Department of Radiology, Ibn Sina Hospital, Shuwaikh, Al Asimah, Kuwait
| | - Ahmad R Alsaber
- Department of Management, College of Business and Economics, American University of Kuwait, Salmiya, Hawalli, Kuwait
| | - Nisreen M Khalifa
- Department of Pediatric Hematology/Oncology, NBK Children's Hospital, Shuwaikh, Al Asimah, Kuwait
| | - Rania Hussein
- Department of Radiation Oncology, Kuwait Cancer Control Center, Shuwaikh, Al Asimah, Kuwait
| | - Mona Alateeqi
- Molecular Genetics Laboratory, Kuwait Cancer Control Center, Shuwaikh, Al Asimah, Kuwait
| | - Eiman M A Mohammed
- Molecular Genetics Laboratory, Kuwait Cancer Control Center, Shuwaikh, Al Asimah, Kuwait
| | - Hiba Jama
- Molecular Genetics Laboratory, Kuwait Cancer Control Center, Shuwaikh, Al Asimah, Kuwait
| | - Ammar Almarzooq
- Molecular Genetics Laboratory, Kuwait Cancer Control Center, Shuwaikh, Al Asimah, Kuwait
| | - Noelle Benobaid
- Molecular Genetics Laboratory, Kuwait Cancer Control Center, Shuwaikh, Al Asimah, Kuwait
| | - Zainab Alqallaf
- Molecular Genetics Laboratory, Kuwait Cancer Control Center, Shuwaikh, Al Asimah, Kuwait
| | - Amir A Ahmed
- Molecular Genetics Laboratory, Kuwait Cancer Control Center, Shuwaikh, Al Asimah, Kuwait
| | - Shakir Bahzad
- Molecular Genetics Laboratory, Kuwait Cancer Control Center, Shuwaikh, Al Asimah, Kuwait
| | - Maryam Almurshed
- Department of Histopathology, Al Sabah Hospital, Shuwaikh, Al Asimah, Kuwait
| |
Collapse
|
27
|
Fangusaro J, Jones DT, Packer RJ, Gutmann DH, Milde T, Witt O, Mueller S, Fisher MJ, Hansford JR, Tabori U, Hargrave D, Bandopadhayay P. Pediatric low-grade glioma: State-of-the-art and ongoing challenges. Neuro Oncol 2024; 26:25-37. [PMID: 37944912 PMCID: PMC10768984 DOI: 10.1093/neuonc/noad195] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023] Open
Abstract
The most common childhood central nervous system (CNS) tumor is pediatric low-grade glioma (pLGG), representing 30%-40% of all CNS tumors in children. Although there is high associated morbidity, tumor-related mortality is relatively rare. pLGG is now conceptualized as a chronic disease, underscoring the importance of functional outcomes and quality-of-life measures. A wealth of data has emerged about these tumors, including a better understanding of their natural history and their molecular drivers, paving the way for the use of targeted inhibitors. While these treatments have heralded tremendous promise, challenges remain about how to best optimize their use, and the long-term toxicities associated with these inhibitors remain unknown. The International Pediatric Low-Grade Glioma Coalition (iPLGGc) is a global group of physicians and scientists with expertise in pLGG focused on addressing key pLGG issues. Here, the iPLGGc provides an overview of the current state-of-the-art in pLGG, including epidemiology, histology, molecular landscape, treatment paradigms, survival outcomes, functional outcomes, imaging response, and ongoing challenges. This paper also serves as an introduction to 3 other pLGG manuscripts on (1) pLGG preclinical models, (2) consensus framework for conducting early-phase clinical trials in pLGG, and (3) pLGG resistance, rebound, and recurrence.
Collapse
Affiliation(s)
- Jason Fangusaro
- Department of Hematology and Oncology, Children’s Healthcare of Atlanta and Emory University, Atlanta, Georgia, USA
| | - David T Jones
- Translational Program, Hopp Children’s Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- German Cancer Research Center (DKFZ), University Hospital Heidelberg, Heidelberg, Germany
| | - Roger J Packer
- Brain Tumor Institute, Daniel and Jennifer Gilbert Neurofibromatosis Institute, Neuroscience and Behavioral Medicine, Children’s National Medical Center, Washington, District of Columbia, USA
| | - David H Gutmann
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Till Milde
- Translational Program, Hopp Children’s Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- German Cancer Research Center (DKFZ), University Hospital Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
- KiTZ Clinical Trial Unit (ZIPO), Department of Pediatric Hematology, Oncology, Immunology and Pulmonology, Heidelberg University Hospital; National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Olaf Witt
- Translational Program, Hopp Children’s Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- German Cancer Research Center (DKFZ), University Hospital Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
- KiTZ Clinical Trial Unit (ZIPO), Department of Pediatric Hematology, Oncology, Immunology and Pulmonology, Heidelberg University Hospital; National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Sabine Mueller
- Department of Neurological Surgery, University of California, San Francisco, California, USA
- Department of Pediatrics, University of California, San Francisco, California, USA
- Department of Neurology, University of California, San Francisco, California, USA
- Department of Oncology, University Children’s Hospital Zürich, Zürich, Switzerland
| | - Michael J Fisher
- Division of Oncology, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Jordan R Hansford
- Michael Rice Centre for Hematology and Oncology, Women’s and Children’s Hospital, Adelaide, South Australia, Australia
- South Australia Health and Medical Research Institute, Adelaide, South Australia, Australia
- South Australia ImmunoGENomics Cancer Institute, University of Adelaide, Adelaide, South Australia, Australia
| | - Uri Tabori
- The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Darren Hargrave
- University College London Great Ormond Street Institute of Child Health, London, UK
| | - Pratiti Bandopadhayay
- Department of Pediatric Oncology, Dana-Farber/Boston Children’s Cancer and Blood Disorders Center, Boston, Massachusetts, USA
| |
Collapse
|
28
|
Tauziède-Espariat A, Hasty L, Métais A, Varlet P. Infantile pilocytic astrocytoma with persisting external granular layer of the cerebellum: a potential diagnostic pitfall. FREE NEUROPATHOLOGY 2024; 5:25. [PMID: 39435434 PMCID: PMC11491936 DOI: 10.17879/freeneuropathology-2024-5891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 10/07/2024] [Indexed: 10/23/2024]
Affiliation(s)
- Arnault Tauziède-Espariat
- Department of Neuropathology, GHU Paris - Psychiatry and Neuroscience, Sainte-Anne Hospital, 75014 Paris, France
- Université de Paris, UMR S1266, INSERM, IMA-BRAIN, Institute of Psychiatry and Neurosciences of Paris, 75014 Paris, France
| | - Lauren Hasty
- Department of Neuropathology, GHU Paris - Psychiatry and Neuroscience, Sainte-Anne Hospital, 75014 Paris, France
| | - Alice Métais
- Department of Neuropathology, GHU Paris - Psychiatry and Neuroscience, Sainte-Anne Hospital, 75014 Paris, France
- Université de Paris, UMR S1266, INSERM, IMA-BRAIN, Institute of Psychiatry and Neurosciences of Paris, 75014 Paris, France
| | - Pascale Varlet
- Department of Neuropathology, GHU Paris - Psychiatry and Neuroscience, Sainte-Anne Hospital, 75014 Paris, France
- Université de Paris, UMR S1266, INSERM, IMA-BRAIN, Institute of Psychiatry and Neurosciences of Paris, 75014 Paris, France
| |
Collapse
|
29
|
Krynina O, de Ståhl TD, Jylhä C, Arthur C, Giraud G, Nyman P, Fritzberg A, Sandgren J, Tham E, Sandvik U. The potential of liquid biopsy for detection of the KIAA1549-BRAF fusion in circulating tumor DNA from children with pilocytic astrocytoma. Neurooncol Adv 2024; 6:vdae008. [PMID: 38371226 PMCID: PMC10874216 DOI: 10.1093/noajnl/vdae008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024] Open
Abstract
Background Low-grade gliomas (LGGs) represent children's most prevalent central nervous system tumor, necessitating molecular profiling to diagnose and determine the most suitable treatment. Developing highly sensitive screening techniques for liquid biopsy samples is particularly beneficial, as it enables the early detection and molecular characterization of tumors with minimally invasive samples. Methods We examined CSF and plasma samples from patients with pilocytic astrocytoma (PA) using custom multiplexed droplet digital polymerase chain reaction (ddPCR) assays based on whole genome sequencing data. These assays included a screening test to analyze BRAF duplication and a targeted assay for the detection of patient-specific KIAA1549::BRAF fusion junction sequences or single nucleotide variants. Results Our findings revealed that 5 out of 13 individual cerebrospinal fluid (CSF) samples tested positive for circulating tumor DNA (ctDNA). Among these cases, 3 exhibited the KIAA1549::BRAF fusion, which was detected through copy number variation (CNV) analysis (n = 1) or a fusion-specific probe (n = 2), while 1 case each displayed the BRAF V600E mutation and the FGFR1 N577K mutation. Additionally, a quantitative analysis of cell-free DNA (cfDNA) concentrations in PA CSF samples showed that most cases had low cfDNA levels, below the limit of detection of our assay (<1.9 ng). Conclusions While CNV analysis of CSF samples from LGGs still has some limitations, it has the potential to serve as a valuable complementary tool. Furthermore, it can also be multiplexed with other aberrations, for example, to the BRAF V600 test, to provide important insights into the molecular characteristics of LGGs.
Collapse
Affiliation(s)
- Olha Krynina
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | | | - Cecilia Jylhä
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Clinical Genetics and Genomics, Karolinska University Hospital, Stockholm, Sweden
| | - Cecilia Arthur
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Clinical Genetics and Genomics, Karolinska University Hospital, Stockholm, Sweden
| | - Geraldine Giraud
- Department of Immunology, Genetic and Pathology, Neuro-oncology, and Neurodegeneration Program Rudbeck Laboratory, Uppsala, Sweden
- Department of Women and Children’s Health, Akademiska University Hospital, Uppsala, Sweden
| | - Per Nyman
- Department of Health, Crown Princess Victoria Children´s Hospital, Linköping University Hospital, Linköping, Sweden
- Department of Medicine and Caring Sciences, Linköping University, Linköping, Sweden
- Centre for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
| | - Anders Fritzberg
- Daycare Unit of Oncology and Hematology, Clinic of Pediatrics Falun Hospital, Dalarna Region, Sweden
| | - Johanna Sandgren
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- Clinical Pathology and Cancer Diagnostics, Karolinska University Hospital, Stockholm, Sweden
| | - Emma Tham
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Clinical Genetics and Genomics, Karolinska University Hospital, Stockholm, Sweden
| | - Ulrika Sandvik
- Department of Clinical Neuroscience, Division of Neurosurgery, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
30
|
Barros Guinle MI, Nirschl JJ, Xing YL, Nettnin EA, Arana S, Feng ZP, Nasajpour E, Pronina A, Garcia CA, Grant GA, Vogel H, Yeom KW, Prolo LM, Petritsch CK. CDC42BPA::BRAF represents a novel fusion in desmoplastic infantile ganglioglioma/desmoplastic infantile astrocytoma. Neurooncol Adv 2024; 6:vdae050. [PMID: 38741773 PMCID: PMC11089409 DOI: 10.1093/noajnl/vdae050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024] Open
Affiliation(s)
| | - Jeffrey J Nirschl
- Division of Neuropathology, Department of Pathology, Stanford University School of Medicine, Palo Alto, California, USA
| | - Yao Lulu Xing
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, California, USA
| | - Ella A Nettnin
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, California, USA
| | - Sophia Arana
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, California, USA
| | - Zhi-Ping Feng
- The Australian National University Bioinformatics Consultancy, John Curtin School of Medical Research, The Australian National University, ACT 2600, Australia
| | - Emon Nasajpour
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, California, USA
| | - Anna Pronina
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, California, USA
| | - Cesar A Garcia
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, California, USA
| | - Gerald A Grant
- Department of Neurosurgery, Duke University School of Medicine, Durham, NC 27710, USA
| | - Hannes Vogel
- Division of Neuropathology, Department of Pathology, Stanford University School of Medicine, Palo Alto, California, USA
| | - Kristen W Yeom
- Department of Radiology, Stanford University School of Medicine, Palo Alto, California, USA
| | - Laura M Prolo
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, California, USA
- Division of Pediatric Neurosurgery, Lucile Packard Children’s Hospital, Palo Alto, California, USA
| | - Claudia K Petritsch
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, California, USA
| |
Collapse
|
31
|
Apostolides M, Li M, Arnoldo A, Ku M, Husić M, Ramani AK, Brudno M, Turinsky A, Hawkins C, Siddaway R. Clinical Implementation of MetaFusion for Accurate Cancer-Driving Fusion Detection from RNA Sequencing. J Mol Diagn 2023; 25:921-931. [PMID: 37748705 DOI: 10.1016/j.jmoldx.2023.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 08/15/2023] [Accepted: 09/07/2023] [Indexed: 09/27/2023] Open
Abstract
Oncogenic fusion genes may be identified from next-generation sequencing data, typically RNA-sequencing. However, in a clinical setting, identifying these alterations is challenging against a background of nonrelevant fusion calls that reduce workflow precision and specificity. Furthermore, although numerous algorithms have been developed to detect fusions in RNA-sequencing, there are variations in their individual sensitivities. Here this problem was addressed by introducing MetaFusion into clinical use. Its utility was illustrated when applied to both whole-transcriptome and targeted sequencing data sets. MetaFusion combines ensemble fusion calls from eight individual fusion-calling algorithms with practice-informed identification of gene fusions that are known to be clinically relevant. In doing so, it allows oncogenic fusions to be identified with near-perfect sensitivity and high precision and specificity, significantly outperforming the individual fusion callers it uses as well as existing clinical-grade software. MetaFusion enhances clinical yield over existing methods and is able to identify fusions that have patient relevance for the purposes of diagnosis, prognosis, and treatment.
Collapse
Affiliation(s)
- Michael Apostolides
- Centre for Computational Medicine, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Michael Li
- Centre for Computational Medicine, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Anthony Arnoldo
- Division of Pathology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Michelle Ku
- The Arthur and Sonia Labatt Brain Tumour Research Centre, Hospital for Sick Children, Toronto, Ontario, Canada; Cell Biology Program, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Mia Husić
- Centre for Computational Medicine, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Arun K Ramani
- Centre for Computational Medicine, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Michael Brudno
- Centre for Computational Medicine, Hospital for Sick Children, Toronto, Ontario, Canada; Department of Computer Science, University of Toronto, Toronto, Ontario, Canada; University Health Network, Toronto, Ontario, Canada
| | - Andrei Turinsky
- Centre for Computational Medicine, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Cynthia Hawkins
- Division of Pathology, Hospital for Sick Children, Toronto, Ontario, Canada; The Arthur and Sonia Labatt Brain Tumour Research Centre, Hospital for Sick Children, Toronto, Ontario, Canada; Cell Biology Program, Hospital for Sick Children, Toronto, Ontario, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.
| | - Robert Siddaway
- Division of Pathology, Hospital for Sick Children, Toronto, Ontario, Canada; The Arthur and Sonia Labatt Brain Tumour Research Centre, Hospital for Sick Children, Toronto, Ontario, Canada; Cell Biology Program, Hospital for Sick Children, Toronto, Ontario, Canada.
| |
Collapse
|
32
|
Werner T, Fahrner M, Schilling O. Using proteomics for stratification and risk prediction in patients with solid tumors. PATHOLOGIE (HEIDELBERG, GERMANY) 2023; 44:176-182. [PMID: 37999758 DOI: 10.1007/s00292-023-01261-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/19/2023] [Indexed: 11/25/2023]
Abstract
Proteomics, the study of proteins and their functions, has greatly evolved due to advances in analytical chemistry and computational biology. Unlike genomics or transcriptomics, proteomics captures the dynamic and diverse nature of proteins, which play crucial roles in cellular processes. This is exemplified in cancer, where genomic and transcriptomic information often falls short in reflecting actual protein expression and interactions. Liquid chromatography-mass spectrometry (LC-MS) is pivotal in proteomic data generation, enabling high-throughput analysis of protein samples. The MS-based workflow involves protein digestion, chromatographic separation, ionization, and fragmentation, leading to peptide identification and quantification. Computational biostatistics, particularly using tools in R (R Foundation for Statistical Computing, Vienna, Austria; www.R-project.org ), aid in data analysis, revealing protein expression patterns and correlations with clinical variables. Proteomic studies can be explorative, aiming to characterize entire proteomes, or targeted, focusing on specific proteins of interest. The integration of proteomics with genomics addresses database limitations and enhances peptide identification. Case studies in intrahepatic cholangiocarcinoma, glioblastoma multiforme, and pancreatic ductal adenocarcinoma highlight proteomics' clinical applications, from subtyping cancers to identifying diagnostic markers. Moreover, proteomic data augment molecular tumor boards by providing deeper insights into pathway activities and genomic mutations, supporting personalized treatment decisions. Overall, proteomics contributes significantly to advancing our understanding of cellular biology and improving clinical care.
Collapse
Affiliation(s)
- Tilman Werner
- Institute for Surgical Pathology, Faculty of Medicine, University Medical Centre Freiburg, University of Freiburg, Breisacher Str. 115a, 79106, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
| | - Matthias Fahrner
- Institute for Surgical Pathology, Faculty of Medicine, University Medical Centre Freiburg, University of Freiburg, Breisacher Str. 115a, 79106, Freiburg, Germany
- German Cancer Consortium (DKTK) and Cancer Research Center (DKFZ), Freiburg, Germany
| | - Oliver Schilling
- Institute for Surgical Pathology, Faculty of Medicine, University Medical Centre Freiburg, University of Freiburg, Breisacher Str. 115a, 79106, Freiburg, Germany.
- German Cancer Consortium (DKTK) and Cancer Research Center (DKFZ), Freiburg, Germany.
| |
Collapse
|
33
|
Hardin EC, Schmid S, Sommerkamp A, Bodden C, Heipertz AE, Sievers P, Wittmann A, Milde T, Pfister SM, von Deimling A, Horn S, Herz NA, Simon M, Perera AA, Azizi A, Cruz O, Curry S, Van Damme A, Garami M, Hargrave D, Kattamis A, Kotnik BF, Lähteenmäki P, Scheinemann K, Schouten-van Meeteren AYN, Sehested A, Viscardi E, Wormdal OM, Zapotocky M, Ziegler DS, Koch A, Hernáiz Driever P, Witt O, Capper D, Sahm F, Jones DTW, van Tilburg CM. LOGGIC Core BioClinical Data Bank: Added clinical value of RNA-Seq in an international molecular diagnostic registry for pediatric low-grade glioma patients. Neuro Oncol 2023; 25:2087-2097. [PMID: 37075810 PMCID: PMC10628936 DOI: 10.1093/neuonc/noad078] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Indexed: 04/21/2023] Open
Abstract
BACKGROUND The international, multicenter registry LOGGIC Core BioClinical Data Bank aims to enhance the understanding of tumor biology in pediatric low-grade glioma (pLGG) and provide clinical and molecular data to support treatment decisions and interventional trial participation. Hence, the question arises whether implementation of RNA sequencing (RNA-Seq) using fresh frozen (FrFr) tumor tissue in addition to gene panel and DNA methylation analysis improves diagnostic accuracy and provides additional clinical benefit. METHODS Analysis of patients aged 0 to 21 years, enrolled in Germany between April 2019 and February 2021, and for whom FrFr tissue was available. Central reference histopathology, immunohistochemistry, 850k DNA methylation analysis, gene panel sequencing, and RNA-Seq were performed. RESULTS FrFr tissue was available in 178/379 enrolled cases. RNA-Seq was performed on 125 of these samples. We confirmed KIAA1549::BRAF-fusion (n = 71), BRAF V600E-mutation (n = 12), and alterations in FGFR1 (n = 14) as the most frequent alterations, among other common molecular drivers (n = 12). N = 16 cases (13%) presented rare gene fusions (eg, TPM3::NTRK1, EWSR1::VGLL1, SH3PXD2A::HTRA1, PDGFB::LRP1, GOPC::ROS1). In n = 27 cases (22%), RNA-Seq detected a driver alteration not otherwise identified (22/27 actionable). The rate of driver alteration detection was hereby increased from 75% to 97%. Furthermore, FGFR1 internal tandem duplications (n = 6) were only detected by RNA-Seq using current bioinformatics pipelines, leading to a change in analysis protocols. CONCLUSIONS The addition of RNA-Seq to current diagnostic methods improves diagnostic accuracy, making precision oncology treatments (MEKi/RAFi/ERKi/NTRKi/FGFRi/ROSi) more accessible. We propose to include RNA-Seq as part of routine diagnostics for all pLGG patients, especially when no common pLGG alteration was identified.
Collapse
Affiliation(s)
- Emily C Hardin
- Hopp Children’s Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK)
- Department of Pediatric Oncology, Hematology, Immunology and Pulmonology, Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Medical Faculty, University of Heidelberg, Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Simone Schmid
- Department of Neuropathology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Alexander Sommerkamp
- Hopp Children’s Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Division of Pediatric Glioma Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Paediatrics and Adolescent Medicine, The University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Carina Bodden
- Hopp Children’s Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK)
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Anna-Elisa Heipertz
- Hopp Children’s Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK)
- Department of Pediatric Oncology, Hematology, Immunology and Pulmonology, Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Medical Faculty, University of Heidelberg, Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Philipp Sievers
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neuropathology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Andrea Wittmann
- Hopp Children’s Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Division of Pediatric Glioma Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Till Milde
- Hopp Children’s Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK)
- Department of Pediatric Oncology, Hematology, Immunology and Pulmonology, Heidelberg University Hospital, Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Stefan M Pfister
- Hopp Children’s Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Department of Pediatric Oncology, Hematology, Immunology and Pulmonology, Heidelberg University Hospital, Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Andreas von Deimling
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neuropathology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
- Department of Pediatric Hematology and Oncology, Saint Luc University Hospital, Brussels, Belgium
| | - Svea Horn
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, HIT-LOGGIC German Registry for children and adolescents with low-grade glioma, Berlin, Germany
| | - Nina A Herz
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, HIT-LOGGIC German Registry for children and adolescents with low-grade glioma, Berlin, Germany
| | - Michèle Simon
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, HIT-LOGGIC German Registry for children and adolescents with low-grade glioma, Berlin, Germany
- Department of Pediatric Oncology/Hematology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Ashwyn A Perera
- Hopp Children’s Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Heidelberg Medical Faculty, University of Heidelberg, Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Division of Pediatric Glioma Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Amedeo Azizi
- Division of Neonatology, Pediatric Intensive Care and Neuropediatrics, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Ofelia Cruz
- Neuro-Oncology Unit, Pediatric Cancer Center, Hospital Sant Joan de Deu, Barcelona, Spain
| | - Sarah Curry
- Department of Haematology and Oncology, Children’s Health Ireland at Crumlin, Dublin, Ireland
| | - An Van Damme
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neuropathology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
- Department of Pediatric Hematology and Oncology, Saint Luc University Hospital, Brussels, Belgium
| | - Miklos Garami
- 2nd Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Darren Hargrave
- Great Ormond Street Hospital for Children NHS Trust London, London, UK
| | - Antonis Kattamis
- Department of Neuropathology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- First Department of Paediatrics, “Aghia Sophia” Children’s Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Barbara Faganel Kotnik
- Department of Haematology and Oncology, University Children’s Hospital, University Medical Centre Ljubljana (UMC), Ljubljana, Slovenia
| | - Päivi Lähteenmäki
- Turku University and University Hospital, Turku, Finland
- Swedish Childhood Cancer Registry, Karolinska Institutet, Stockholm, Sweden
| | - Katrin Scheinemann
- Division of Pediatric Oncology – Hematology, Department of Pediatrics, Kantonsspital Aarau, Aarau, Switzerland
- Department of Health Sciences and Medicine, University of Lucerne, Lucerne, Switzerland
- Department of Paediatrics, McMaster Children’s Hospital and McMaster University, Hamilton, Canada
| | | | - Astrid Sehested
- Hopp Children’s Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Division of Pediatric Glioma Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Paediatrics and Adolescent Medicine, The University Hospital Rigshospitalet, Copenhagen, Denmark
| | | | - Ole Mikal Wormdal
- Section of Pediatric Oncology, UNN University Hospital of Northern Norway, Tromsø, Norway
| | - Michal Zapotocky
- Department of Pediatric Hematology and Oncology, Second Faculty of Medicine, University Hospital Motol, Charles University, Prague, Czech Republic
| | - David S Ziegler
- Kids Cancer Centre, Sydney Children’s Hospital, High St, Randwick, NSW, Australia
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, Australia
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Sydney, NSW, Australia
| | - Arend Koch
- Department of Neuropathology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- First Department of Paediatrics, “Aghia Sophia” Children’s Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Pablo Hernáiz Driever
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, HIT-LOGGIC German Registry for children and adolescents with low-grade glioma, Berlin, Germany
- Department of Pediatric Oncology/Hematology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Olaf Witt
- Hopp Children’s Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK)
- Department of Pediatric Oncology, Hematology, Immunology and Pulmonology, Heidelberg University Hospital, Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - David Capper
- Department of Neuropathology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Cancer Consortium (DKTK), Partner Site Berlin, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Felix Sahm
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neuropathology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - David T W Jones
- Hopp Children’s Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Division of Pediatric Glioma Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Cornelis M van Tilburg
- Hopp Children’s Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK)
- Department of Pediatric Oncology, Hematology, Immunology and Pulmonology, Heidelberg University Hospital, Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
| |
Collapse
|
34
|
Apfelbaum A, Bandopadhayay P. "LOGGIC" of RNA-sequencing in enhancing diagnoses of pediatric low-grade gliomas. Neuro Oncol 2023; 25:2098-2099. [PMID: 37531270 PMCID: PMC10628933 DOI: 10.1093/neuonc/noad142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Indexed: 08/04/2023] Open
Affiliation(s)
- April Apfelbaum
- Dana-Farber/Boston Children’s Cancer and Blood Disorders Center, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Pratiti Bandopadhayay
- Dana-Farber/Boston Children’s Cancer and Blood Disorders Center, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| |
Collapse
|
35
|
Milde T, Fangusaro J, Fisher MJ, Hawkins C, Rodriguez FJ, Tabori U, Witt O, Zhu Y, Gutmann DH. Optimizing preclinical pediatric low-grade glioma models for meaningful clinical translation. Neuro Oncol 2023; 25:1920-1931. [PMID: 37738646 PMCID: PMC10628935 DOI: 10.1093/neuonc/noad125] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/24/2023] Open
Abstract
Pediatric low-grade gliomas (pLGGs) are the most common brain tumor in young children. While they are typically associated with good overall survival, children with these central nervous system tumors often experience chronic tumor- and therapy-related morbidities. Moreover, individuals with unresectable tumors frequently have multiple recurrences and persistent neurological symptoms. Deep molecular analyses of pLGGs reveal that they are caused by genetic alterations that converge on a single mitogenic pathway (MEK/ERK), but their growth is heavily influenced by nonneoplastic cells (neurons, T cells, microglia) in their local microenvironment. The interplay between neoplastic cell MEK/ERK pathway activation and stromal cell support necessitates the use of predictive preclinical models to identify the most promising drug candidates for clinical evaluation. As part of a series of white papers focused on pLGGs, we discuss the current status of preclinical pLGG modeling, with the goal of improving clinical translation for children with these common brain tumors.
Collapse
Affiliation(s)
- Till Milde
- Hopp Children’s Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
- KiTZ Clinical Trial Unit (ZIPO), Department of Pediatric Hematology, Oncology, Immunology and Pulmonology, Heidelberg University Hospital, Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Jason Fangusaro
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Michael J Fisher
- Division of Oncology, Children’s Hospital of Philadelphia, Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Cynthia Hawkins
- Department of Laboratory Medicine and Pathobiology, Hospital for Sick Children, Toronto, Canada
| | - Fausto J Rodriguez
- Department of Pathology, University of California Los Angeles, Los Angeles, California, USA
| | - Uri Tabori
- Department of Medical Biophysics, Institute of Medical Science and Paediatrics, University of Toronto, Toronto, Canada
| | - Olaf Witt
- Hopp Children’s Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
- KiTZ Clinical Trial Unit (ZIPO), Department of Pediatric Hematology, Oncology, Immunology and Pulmonology, Heidelberg University Hospital, Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Yuan Zhu
- Gilbert Family Neurofibromatosis Institute Center for Cancer and Immunology Research, Children’s National Hospital, Washington, DC, USA
| | - David H Gutmann
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
36
|
Howell MC, Green R, Cianne J, Dayhoff GW, Uversky VN, Mohapatra S, Mohapatra S. EGFR TKI resistance in lung cancer cells using RNA sequencing and analytical bioinformatics tools. J Biomol Struct Dyn 2023; 41:9808-9827. [PMID: 36524419 PMCID: PMC10272293 DOI: 10.1080/07391102.2022.2153269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 11/07/2022] [Indexed: 12/23/2022]
Abstract
Epidermal Growth Factor Receptor (EGFR) signaling and EGFR mutations play key roles in cancer pathogenesis, particularly in the development of drug resistance. For the ∼20% of all non-small cell lung cancer (NSCLC) patients that harbor an activating mutation, EGFR tyrosine kinase inhibitors (TKIs) provide initial clinical responses. However, long-term efficacy is not possible due to acquired drug resistance. Despite a gradually increasing knowledge of the mechanisms underpinning the development of resistance in tumors, there has been very little success in overcoming it and it is probable that many additional mechanisms are still unknown. Herein, publicly available RNASeq (RNA sequencing) datasets comparing lung cancer cell lines treated with EGFR TKIs until resistance developed with their corresponding parental cells and protein array data from our own EGFR TKI treated xenograft tumors, were analyzed for differential gene expression, with the intent to investigate the potential mechanisms of drug resistance to EGFR TKIs. Pathway analysis, as well as structural disorder analysis of proteins in these pathways, revealed several key proteins, including DUSP1, DUSP6, GAB2, and FOS, that could be targeted using novel combination therapies to overcome EGFR TKI resistance in lung cancer.
Collapse
Affiliation(s)
- Mark C Howell
- Department of Molecular Medicine, University of South Florida, Tampa, FL, USA
- Center for Research & Education in Nanobioengineering, Division of Translational Medicine, Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Ryan Green
- Department of Molecular Medicine, University of South Florida, Tampa, FL, USA
- Center for Research & Education in Nanobioengineering, Division of Translational Medicine, Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Junior Cianne
- Department of Molecular Medicine, University of South Florida, Tampa, FL, USA
| | - Guy W Dayhoff
- Department of Chemistry, College of Art and Sciences, University of South Florida, Tampa, FL, USA
| | - Vladimir N Uversky
- Department of Molecular Medicine, University of South Florida, Tampa, FL, USA
| | - Shyam Mohapatra
- Center for Research & Education in Nanobioengineering, Division of Translational Medicine, Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
- James A. Haley Veterans Hospital, Tampa, FL, USA
| | - Subhra Mohapatra
- Department of Molecular Medicine, University of South Florida, Tampa, FL, USA
- James A. Haley Veterans Hospital, Tampa, FL, USA
| |
Collapse
|
37
|
XIAO P, ZHONG D. [Research Progress of BRAF Fusion in Non-small Cell Lung Cancer]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2023; 26:782-788. [PMID: 37989341 PMCID: PMC10663773 DOI: 10.3779/j.issn.1009-3419.2023.101.28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Indexed: 11/23/2023]
Abstract
In advanced non-small cell lung cancer (NSCLC), V-Raf murine sarcoma viral oncogene homolog B1 (BRAF) mutation is highly malignant and has poor prognosis, and currently Dabrafenib in combination with Trametinib is approved for first-line treatment of patients with BRAF V600 mutation. In addition to mutations, BRAF fusion can also occur. With the development of gene detection, the detection of BRAF fusion is gradually increasing, but there is a lack of effective therapeutic strategies for BRAF fusion. In this paper, we review the clinical characteristics, mechanism of action, and clinical treatment of BRAF fusion to provide a basis for the treatment of BRAF fusion in NSCLC patients.
.
Collapse
|
38
|
Sahm F, Brandner S, Bertero L, Capper D, French PJ, Figarella-Branger D, Giangaspero F, Haberler C, Hegi ME, Kristensen BW, Kurian KM, Preusser M, Tops BBJ, van den Bent M, Wick W, Reifenberger G, Wesseling P. Molecular diagnostic tools for the World Health Organization (WHO) 2021 classification of gliomas, glioneuronal and neuronal tumors; an EANO guideline. Neuro Oncol 2023; 25:1731-1749. [PMID: 37279174 PMCID: PMC10547522 DOI: 10.1093/neuonc/noad100] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Indexed: 06/08/2023] Open
Abstract
In the 5th edition of the WHO CNS tumor classification (CNS5, 2021), multiple molecular characteristics became essential diagnostic criteria for many additional CNS tumor types. For those tumors, an integrated, "histomolecular" diagnosis is required. A variety of approaches exists for determining the status of the underlying molecular markers. The present guideline focuses on the methods that can be used for assessment of the currently most informative diagnostic and prognostic molecular markers for the diagnosis of gliomas, glioneuronal and neuronal tumors. The main characteristics of the molecular methods are systematically discussed, followed by recommendations and information on available evidence levels for diagnostic measures. The recommendations cover DNA and RNA next-generation-sequencing, methylome profiling, and select assays for single/limited target analyses, including immunohistochemistry. Additionally, because of its importance as a predictive marker in IDH-wildtype glioblastomas, tools for the analysis of MGMT promoter methylation status are covered. A structured overview of the different assays with their characteristics, especially their advantages and limitations, is provided, and requirements for input material and reporting of results are clarified. General aspects of molecular diagnostic testing regarding clinical relevance, accessibility, cost, implementation, regulatory, and ethical aspects are discussed as well. Finally, we provide an outlook on new developments in the landscape of molecular testing technologies in neuro-oncology.
Collapse
Affiliation(s)
- Felix Sahm
- Department of Neuropathology, University Hospital Heidelberg, Heidelberg, Germany
- CCU Neuropathology, German Concortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sebastian Brandner
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology and Division of Neuropathology, The National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, UK
| | - Luca Bertero
- Pathology Unit, Department of Medical Sciences, University of Turin, Turin, Italy
| | - David Capper
- Department of Neuropathology, Charité, Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Cancer Consortium (DKTK), Partner Site Berlin, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Pim J French
- Department of Neurology, Brain Tumor Center at Erasmus MC Cancer Center, 3015 GD Rotterdam, The Netherlands
| | - Dominique Figarella-Branger
- Aix-Marseille University, APHM, CNRS, INP, Institute Neurophysiopathol, CHU Timone, Service d’Anatomie Pathologique et de Neuropathologie, Marseille, France
| | - Felice Giangaspero
- Department of Radiological, Oncological and Anatomo-Pathological Sciences, University Sapienza of Rome, Rome, Italy
| | - Christine Haberler
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Austria
| | - Monika E Hegi
- Neuroscience Research Center and Neurosurgery, Lausanne University Hospital and University of Lausanne, Switzerland
| | - Bjarne W Kristensen
- Department of Clinical Medicine and Biotech Research and Innovation Center (BRIC), University of Copenhagen, Denmark
- Department of Pathology, The Bartholin Institute, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | | | - Matthias Preusser
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Austria
| | - Bastiaan B J Tops
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Martin van den Bent
- The Brain Tumor Center at Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Wolfgang Wick
- Department of Neurology and Neurooncology Program, National Center for Tumor Diseases, Heidelberg University Hospital
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Guido Reifenberger
- Institute of Neuropathology, Heinrich Heine University, Medical Faculty, and University Hospital Düsseldorf, and German Cancer Consortium (DKTK), Partner Site Essen/Düsseldorf, Düsseldorf, Germany
| | - Pieter Wesseling
- Department of Pathology, Amsterdam University Medical Centers, Amsterdam, The Netherlands
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands (P.W.)
| |
Collapse
|
39
|
Chehrazi-Raffle A, Tukachinsky H, Toye E, Sivakumar S, Schrock AB, Bergom HE, Ebrahimi H, Pal S, Dorff T, Agarwal N, Mahal BA, Oxnard GR, Hwang J, Antonarakis ES. Unique Spectrum of Activating BRAF Alterations in Prostate Cancer. Clin Cancer Res 2023; 29:3948-3957. [PMID: 37477913 PMCID: PMC10543965 DOI: 10.1158/1078-0432.ccr-23-1393] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/17/2023] [Accepted: 07/20/2023] [Indexed: 07/22/2023]
Abstract
PURPOSE Alterations in BRAF have been reported in 3% to 5% of prostate cancer, although further characterization is lacking. Here, we describe the nature of BRAF alterations in prostate cancer using a large cohort from commercially available tissue and liquid biopsies subjected to comprehensive genomic profiling (CGP). EXPERIMENTAL DESIGN Tissue and liquid biopsies from patients with prostate cancer were profiled using FoundationOne CDx and FoundationOne Liquid CDx CGP assays, respectively. Tissue biopsies from non-prostate cancer types were used for comparison (n = 275,151). Genetic ancestry was predicted using a single-nucleotide polymorphism (SNP) based approach. RESULTS Among 15,864 tissue biopsies, BRAF-activating alterations were detected in 520 cases (3.3%). The majority (463 samples, 2.9%) harbored class II alterations, including BRAF rearrangements (243 samples, 1.5%), K601E (101 samples, 0.6%), and G469A (58 samples, 0.4%). BRAF-altered prostate cancers were enriched for CDK12 mutations (OR, 1.87; 9.2% vs. 5.2%; P = 0.018), but depleted in TMPRSS2 fusions (OR, 0.25; 11% vs. 32%; P < 0.0001), PTEN alterations (OR, 0.47; 17% vs. 31%; P < 0.0001), and APC alterations (OR, 0.48; 4.4% vs. 8.9%; P = 0.018) relative to BRAF wild-type (WT) disease. Compared with patients of European ancestry, BRAF alterations were more common in tumors from patients of African ancestry (5.1% vs. 2.9%, P < 0.0001) and Asian ancestry (6.0% vs. 2.9%, P < 0.001). CONCLUSIONS Activating BRAF alterations were detected in approximately 3% of prostate cancers, and most were class II mutations and rearrangements; BRAF V600 mutations were exceedingly rare. These findings suggest that BRAF activation in prostate cancer is unique from other cancers and supports further clinical investigation of therapeutics targeting the mitogen-activated protein kinase (MAPK) pathway.
Collapse
Affiliation(s)
| | | | - Eamon Toye
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | | | | | - Hannah E. Bergom
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Hedyeh Ebrahimi
- City of Hope Comprehensive Cancer Center, Duarte, California
| | - Sumanta Pal
- City of Hope Comprehensive Cancer Center, Duarte, California
| | - Tanya Dorff
- City of Hope Comprehensive Cancer Center, Duarte, California
| | - Neeraj Agarwal
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - Brandon A. Mahal
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida
| | | | - Justin Hwang
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | | |
Collapse
|
40
|
Lin R, Kenyon A, Wang ZX, Cai J, Iacovitti L, Kenyon LC. Pilocytic astrocytoma harboring a novel GNAI3-BRAF fusion. Neuropathology 2023; 43:391-395. [PMID: 36786200 DOI: 10.1111/neup.12896] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 01/23/2023] [Accepted: 01/29/2023] [Indexed: 02/15/2023]
Abstract
Pilocytic astrocytoma (PA), a central nervous system (CNS) World Health Organization grade 1 tumor, is mainly seen in children or young adults aged 5-19. Surgical resection often provides excellent outcomes, but residual tumors may still remain. This low-grade tumor is well recognized for its classic radiological and morphological features; however, some unique molecular findings have been unveiled by the application of next-generation sequencing (NGS). Among the genetic abnormalities identified in this low-grade tumor, increasing evidence indicates that BRAF alterations, especially BRAF fusions, play an essential role in PA tumorigenesis. Among the several fusion partner genes identified in PAs, KIAA1549-BRAF fusion is notably the most common detectable genetic alteration, especially in the cerebellar PAs. Here, we report a case of a young adult patient with a large, right-sided posterior fossa cerebellar and cerebellopontine angle region mass consistent with a PA. Of note, NGS detected a novel GNAI3-BRAF fusion, which results in an in-frame fusion protein containing the kinase domain of BRAF. This finding expands the knowledge of BRAF fusions in the tumorigenesis of PAs, provides an additional molecular signature for diagnosis, and a target for future therapy.
Collapse
Affiliation(s)
- Ruihe Lin
- Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University Hospital, Philadelphia, Pennsylvania, USA
| | - Alicia Kenyon
- Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Zi-Xuan Wang
- Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University Hospital, Philadelphia, Pennsylvania, USA
| | - Jingli Cai
- Department of Neuroscience, Vickie and Jack Farber Institute for Neuroscience, Thomas Jefferson University Hospital, Philadelphia, Pennsylvania, USA
| | - Lorraine Iacovitti
- Department of Neuroscience, Vickie and Jack Farber Institute for Neuroscience, Thomas Jefferson University Hospital, Philadelphia, Pennsylvania, USA
| | - Lawrence C Kenyon
- Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University Hospital, Philadelphia, Pennsylvania, USA
| |
Collapse
|
41
|
Liu X, Yin X, Li D, Li K, Zhang H, Lu J, Zhou L, Gao J, Wang J, Wu H, Liang Z. RNA Sequencing Reveals Novel Oncogenic Fusions and Depicts Detailed Fusion Transcripts of FN1-FGFR1 in Phosphaturic Mesenchymal Tumors. Mod Pathol 2023; 36:100266. [PMID: 37391169 DOI: 10.1016/j.modpat.2023.100266] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/29/2023] [Accepted: 06/14/2023] [Indexed: 07/02/2023]
Abstract
Phosphaturic mesenchymal tumors (PMTs) are rare neoplasms of soft tissue or bone. Although previous studies revealed that approximately 50% of PMTs harbor FN1::FGFR1 fusions, the molecular mechanisms in the remaining cases are largely unknown. In this study, fusion genes were investigated using RNA-based next-generation sequencing in 76 retrospectively collected PMTs. Novel fusions were validated with Sanger sequencing and fluorescence in situ hybridization. Fusion genes were detected in 52/76 (68.4%) PMTs, and 43/76 (56.6%) harbored FN1::FGFR1 fusions. Fusion transcripts and breakpoints of the FN1::FGFR1 fusions were diverse. The most common fusion transcript was between exon 20 of FN1 and exon 9 of FGFR1 (7/43, 16.3%). The most upstream breakpoint of the FN1 gene was located at the 3' end of exon 12, and the most downstream breakpoint of the FGFR1 gene was at the 5' end of exon 9, suggesting the inessential nature of the third fibronectin-type domain of FN1 and the necessity of the transmembrane domain of FGFR1 in the FN1::FGFR1 fusion protein, respectively. Moreover, the reciprocal FGFR1::FN1 fusions, which had not been identified in previous studies, were detected in 18.6% (8/43) of FN1::FGFR1 fusion-positive PMTs. Novel fusions were identified in 6/76 (7.9%) FN1::FGFR1 fusion-negative PMTs, including 2 involving FGFR: FGFR1::USP33 (1/76, 1.3%) and FGFR1::TLN1 (1/76, 1.3%). Other novel fusions identified were the PDGFRA::USP35 (1/76, 1.3%), SPTBN1::YWHAQ (1/76, 1.3%), GTF2I::RALGPS1 (1/76, 1.3%), and LTBP1::VWA8 (1/76, 1.3%) fusions. In addition to these novel fusions, FN1::FGFR2 (1/76, 1.3%), NIPBL::BEND2 (1/76, 1.3%), and KIAA1549::BRAF fusions (1/76, 1.3%) were also identified in FN1::FGFR1-negative cases arising from the thigh, ilium, and acetabulum, respectively. The frequency of oncogenic fusions was significantly higher (P = .012) in tumors derived from extremities (29/35, 82.9%) compared with other locations (23/41, 56.1%). No significant correlation was identified between fusions and recurrence (P = .786). In conclusion, we report fusion transcripts and breakpoints of FN1::FGFR1 in PMTs in detail, providing insights into fusion protein functions. We also revealed that a considerable proportion of PMTs without FN1::FGFR1 fusion carried novel fusions, providing further insight into the genetic basis of PMTs.
Collapse
Affiliation(s)
- Xiaoding Liu
- Department of Pathology, State Key Laboratory of Complex Severe and Rare Disease, Molecular Pathology Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xianglin Yin
- Department of Pathology, State Key Laboratory of Complex Severe and Rare Disease, Molecular Pathology Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Dongmei Li
- Department of Pathology, State Key Laboratory of Complex Severe and Rare Disease, Molecular Pathology Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Kaimi Li
- Department of Pathology, State Key Laboratory of Complex Severe and Rare Disease, Molecular Pathology Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hui Zhang
- Department of Pathology, State Key Laboratory of Complex Severe and Rare Disease, Molecular Pathology Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Junliang Lu
- Department of Pathology, State Key Laboratory of Complex Severe and Rare Disease, Molecular Pathology Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Liangrui Zhou
- Department of Pathology, State Key Laboratory of Complex Severe and Rare Disease, Molecular Pathology Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jie Gao
- Department of Pathology, State Key Laboratory of Complex Severe and Rare Disease, Molecular Pathology Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jing Wang
- Department of Pathology, State Key Laboratory of Complex Severe and Rare Disease, Molecular Pathology Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Huanwen Wu
- Department of Pathology, State Key Laboratory of Complex Severe and Rare Disease, Molecular Pathology Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Zhiyong Liang
- Department of Pathology, State Key Laboratory of Complex Severe and Rare Disease, Molecular Pathology Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
42
|
Matsumoto K, Kakazu N, Imataki O, Kondo A, Kanaji N, Kadowaki N. Hairy cell leukaemia with an IGH-BRAF fusion gene. Br J Haematol 2023; 202:e67-e70. [PMID: 37433466 DOI: 10.1111/bjh.18980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/30/2023] [Accepted: 07/04/2023] [Indexed: 07/13/2023]
Affiliation(s)
- Kensuke Matsumoto
- Department of Hematology/Oncology, Teikyo University School of Medicine, Tokyo, Japan
- Division of Hematology, Rheumatology and Respiratory Medicine, Department of Internal Medicine, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Naoki Kakazu
- University Health Center, Kyushu Institute of Technology, Fukuoka, Japan
| | - Osamu Imataki
- Division of Hematology, Rheumatology and Respiratory Medicine, Department of Internal Medicine, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Akihiro Kondo
- Department of Clinical Laboratory, Kagawa University Hospital, Kagawa, Japan
| | - Nobuhiro Kanaji
- Division of Hematology, Rheumatology and Respiratory Medicine, Department of Internal Medicine, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Norimitsu Kadowaki
- Division of Hematology, Rheumatology and Respiratory Medicine, Department of Internal Medicine, Faculty of Medicine, Kagawa University, Kagawa, Japan
| |
Collapse
|
43
|
Trkova K, Sumerauer D, Krskova L, Vicha A, Koblizek M, Votava T, Priban V, Zapotocky M. DIPG-like MYB-altered diffuse astrocytoma with durable response to intensive chemotherapy. Childs Nerv Syst 2023; 39:2509-2513. [PMID: 37165121 PMCID: PMC10432314 DOI: 10.1007/s00381-023-05976-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/29/2023] [Indexed: 05/12/2023]
Abstract
Pontine gliomas represent difficult to treat entity due to the location and heterogeneous biology varying from indolent low-grade gliomas to aggressive diffuse intrinsic pontine glioma (DIPG). Making the correct tumor diagnosis in the pontine location is thus critical. Here, we report a case study of a 14-month-old patient initially diagnosed as histone H3 wild-type DIPG. Due to the low age of the patient, the MRI appearance of DIPG, and anaplastic astrocytoma histology, intensive chemotherapy based on the HIT-SKK protocol with vinblastine maintenance chemotherapy was administered. Rapid clinical improvement and radiological regression of the tumor were observed with nearly complete remission with durable effect and excellent clinical condition more than 6.5 years after diagnosis. Based on this unexpected therapeutic outcome, genome-wide DNA methylation array was employed and the sample was classified into the methylation class "Low-grade glioma, MYB(L1) altered." Additionally, RT-PCR revealed the presence of MYB::QKI fusion. Taken together, the histopathological classification, molecular-genetic and epigenetic features, clinical behavior, and pontine location have led us to reclassify the tumor as a pontine MYB-altered glioma. Our case demonstrates that more intensive chemotherapy can achieve long-term clinical effect in the treatment of MYB-altered pontine gliomas compared to previously used LGG-based regimens or radiotherapy. It also emphasizes the importance of a biopsy and a thorough molecular investigation of pontine lesions.
Collapse
Affiliation(s)
- Katerina Trkova
- Prague Brain Tumor Research Group, Second Faculty of Medicine, Charles University and University Hospital Motol, V Uvalu 84, 15006, Prague 5, Czech Republic
- Pediatric Neurooncology Centre, University Hospital Motol, V Uvalu 84, 15006, Prague 5, Czech Republic
- Department of Pediatric Hematology and Oncology, Second Faculty of Medicine, Charles University Prague and University Hospital Motol, V Uvalu 84, 15006, Prague 5, Czech Republic
| | - David Sumerauer
- Prague Brain Tumor Research Group, Second Faculty of Medicine, Charles University and University Hospital Motol, V Uvalu 84, 15006, Prague 5, Czech Republic
- Pediatric Neurooncology Centre, University Hospital Motol, V Uvalu 84, 15006, Prague 5, Czech Republic
- Department of Pediatric Hematology and Oncology, Second Faculty of Medicine, Charles University Prague and University Hospital Motol, V Uvalu 84, 15006, Prague 5, Czech Republic
| | - Lenka Krskova
- Prague Brain Tumor Research Group, Second Faculty of Medicine, Charles University and University Hospital Motol, V Uvalu 84, 15006, Prague 5, Czech Republic
- Pediatric Neurooncology Centre, University Hospital Motol, V Uvalu 84, 15006, Prague 5, Czech Republic
- Department of Pathology and Molecular Medicine, Second Faculty of Medicine, Charles University Prague and University Hospital Motol, V Uvalu 84, 15006, Prague 5, Czech Republic
| | - Ales Vicha
- Prague Brain Tumor Research Group, Second Faculty of Medicine, Charles University and University Hospital Motol, V Uvalu 84, 15006, Prague 5, Czech Republic
- Pediatric Neurooncology Centre, University Hospital Motol, V Uvalu 84, 15006, Prague 5, Czech Republic
- Department of Pediatric Hematology and Oncology, Second Faculty of Medicine, Charles University Prague and University Hospital Motol, V Uvalu 84, 15006, Prague 5, Czech Republic
| | - Miroslav Koblizek
- Prague Brain Tumor Research Group, Second Faculty of Medicine, Charles University and University Hospital Motol, V Uvalu 84, 15006, Prague 5, Czech Republic
- Pediatric Neurooncology Centre, University Hospital Motol, V Uvalu 84, 15006, Prague 5, Czech Republic
- Department of Pathology and Molecular Medicine, Second Faculty of Medicine, Charles University Prague and University Hospital Motol, V Uvalu 84, 15006, Prague 5, Czech Republic
| | - Tomas Votava
- Department of Pediatrics, University Hospital in Pilsen, Alej Svobody 80, Pilsen-Lochotin, 323 00, Czech Republic
| | - Vladimir Priban
- Department of Neurosurgery, University Hospital in Pilsen, Alej Svobody 80, Pilsen-Lochotin, 323 00, Czech Republic
| | - Michal Zapotocky
- Prague Brain Tumor Research Group, Second Faculty of Medicine, Charles University and University Hospital Motol, V Uvalu 84, 15006, Prague 5, Czech Republic.
- Pediatric Neurooncology Centre, University Hospital Motol, V Uvalu 84, 15006, Prague 5, Czech Republic.
- Department of Pediatric Hematology and Oncology, Second Faculty of Medicine, Charles University Prague and University Hospital Motol, V Uvalu 84, 15006, Prague 5, Czech Republic.
| |
Collapse
|
44
|
Benhamida JK, Harmsen HJ, Ma D, William CM, Li BK, Villafania L, Sukhadia P, Mullaney KA, Dewan MC, Vakiani E, Karajannis MA, Snuderl M, Zagzag D, Ladanyi M, Rosenblum MK, Bale TA. Recurrent TRAK1::RAF1 Fusions in pediatric low-grade gliomas. Brain Pathol 2023; 33:e13185. [PMID: 37399073 PMCID: PMC10467040 DOI: 10.1111/bpa.13185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/16/2023] [Indexed: 07/05/2023] Open
Abstract
Fusions involving CRAF (RAF1) are infrequent oncogenic drivers in pediatric low-grade gliomas, rarely identified in tumors bearing features of pilocytic astrocytoma, and involving a limited number of known fusion partners. We describe recurrent TRAK1::RAF1 fusions, previously unreported in brain tumors, in three pediatric patients with low-grade glial-glioneuronal tumors. We present the associated clinical, histopathologic and molecular features. Patients were all female, aged 8 years, 15 months, and 10 months at diagnosis. All tumors were located in the cerebral hemispheres and predominantly cortical, with leptomeningeal involvement in 2/3 patients. Similar to previously described activating RAF1 fusions, the breakpoints in RAF1 all occurred 5' of the kinase domain, while the breakpoints in the 3' partner preserved the N-terminal kinesin-interacting domain and coiled-coil motifs of TRAK1. Two of the three cases demonstrated methylation profiles (v12.5) compatible with desmoplastic infantile ganglioglioma (DIG)/desmoplastic infantile astrocytoma (DIA) and have remained clinically stable and without disease progression/recurrence after resection. The remaining tumor was non-classifiable; with focal recurrence 14 months after initial resection; the patient remains symptom free and without further recurrence/progression (5 months post re-resection and 19 months from initial diagnosis). Our report expands the landscape of oncogenic RAF1 fusions in pediatric gliomas, which will help to further refine tumor classification and guide management of patients with these alterations.
Collapse
Affiliation(s)
- Jamal K. Benhamida
- Department of Pathology and Laboratory MedicineMemorial Sloan Kettering Cancer CenterNew YorkNew YorkUSA
| | - Hannah J. Harmsen
- Department of Pathology, Microbiology and ImmunologyVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Deqin Ma
- Department of PathologyUniversity of Iowa Hospitals and ClinicsIowa CityIowaUSA
| | | | - Bryan K. Li
- Department of PediatricsMemorial Sloan Kettering Cancer CenterNew YorkNew YorkUSA
- Present address:
Division of Pediatric Hematology/OncologyIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Liliana Villafania
- Department of Pathology and Laboratory MedicineMemorial Sloan Kettering Cancer CenterNew YorkNew YorkUSA
| | - Purvil Sukhadia
- Department of Pathology and Laboratory MedicineMemorial Sloan Kettering Cancer CenterNew YorkNew YorkUSA
| | - Kerry A. Mullaney
- Department of Pathology and Laboratory MedicineMemorial Sloan Kettering Cancer CenterNew YorkNew YorkUSA
| | - Michael C. Dewan
- Department of Neurological SurgeryVanderbilt University Medical Center
| | - Efsevia Vakiani
- Department of Pathology and Laboratory MedicineMemorial Sloan Kettering Cancer CenterNew YorkNew YorkUSA
| | | | - Matija Snuderl
- Department of PathologyNYU Langone HealthNew YorkNew YorkUSA
| | - David Zagzag
- Department of PathologyNYU Langone HealthNew YorkNew YorkUSA
- Department of NeurosurgeryNYU Langone HealthNew YorkNew YorkUSA
| | - Marc Ladanyi
- Department of Pathology and Laboratory MedicineMemorial Sloan Kettering Cancer CenterNew YorkNew YorkUSA
- Human Oncology and Pathogenesis ProgramMemorial Sloan Kettering Cancer CenterNew YorkNew YorkUSA
| | - Marc K. Rosenblum
- Department of Pathology and Laboratory MedicineMemorial Sloan Kettering Cancer CenterNew YorkNew YorkUSA
| | - Tejus A. Bale
- Department of Pathology and Laboratory MedicineMemorial Sloan Kettering Cancer CenterNew YorkNew YorkUSA
| |
Collapse
|
45
|
Al-Jilaihawi S, Lowis S. A Molecular Update and Review of Current Trials in Paediatric Low-Grade Gliomas. Pediatr Neurosurg 2023; 58:290-298. [PMID: 37604126 DOI: 10.1159/000533703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 08/18/2023] [Indexed: 08/23/2023]
Abstract
BACKGROUND Paediatric low-grade gliomas (pLGGs) are the most common primary brain tumour in children. Though considered benign, slow-growing lesions with excellent overall survival, their long-term morbidity can be significant, both from the tumour and secondary to treatment. Vast progress has been made in recent years to better understand the molecular biology underlying pLGGs, with promising implications for new targeted therapeutic strategies. SUMMARY A multi-layered classification system of biologic subgroups, integrating distinct molecular and histological features has evolved to further our clinical understanding of these heterogeneous tumours. Though surgery and chemotherapy are the mainstays of treatment for pLGGs, many tumours are not amenable to surgery and/or progress after conventional chemotherapy. Therapies targeting common genetic aberrations in the RAS-mitogen-activated protein kinase (RAS/MAPK) pathway have been the focus of many recent studies and offer new therapeutic possibilities. Here, we summarise the updated molecular classification of pLGGs and provide a review of current treatment strategies, novel agents, and open trials. KEY MESSAGES (1) There is a need for treatment strategies in pLGG that provide lasting tumour control and better quality of survival through minimising toxicity and protecting against neurological, cognitive, and endocrine deficits. (2) The latest World Health Organisation classification of pLGG incorporates a growing wealth of molecular genetic information by grouping tumours into more biologically and molecularly defined entities that may enable better risk stratification of patients, and consideration for targeted therapies in the future. (3) Novel agents and molecular-targeted therapies offer new therapeutic possibilities in pLGG and have been the subject of many recent and currently open clinical studies. (4) Adequate molecular characterisation of pLGG is therefore imperative in today's clinical trials, and treatment responses should not only be evaluated radiologically but also using neurological, visual, and quality of life outcomes to truly understand treatment benefits.
Collapse
Affiliation(s)
- Sarah Al-Jilaihawi
- Department of Paediatric Oncology, Bristol Royal Hospital for Children, Bristol, UK
| | - Stephen Lowis
- Department of Paediatric Oncology, Bristol Royal Hospital for Children, Bristol, UK
| |
Collapse
|
46
|
Sigaud R, Albert TK, Hess C, Hielscher T, Winkler N, Kocher D, Walter C, Münter D, Selt F, Usta D, Ecker J, Brentrup A, Hasselblatt M, Thomas C, Varghese J, Capper D, Thomale UW, Hernáiz Driever P, Simon M, Horn S, Herz NA, Koch A, Sahm F, Hamelmann S, Faria-Andrade A, Jabado N, Schuhmann MU, Schouten-van Meeteren AYN, Hoving E, Brummer T, van Tilburg CM, Pfister SM, Witt O, Jones DTW, Kerl K, Milde T. MAPK inhibitor sensitivity scores predict sensitivity driven by the immune infiltration in pediatric low-grade gliomas. Nat Commun 2023; 14:4533. [PMID: 37500667 PMCID: PMC10374577 DOI: 10.1038/s41467-023-40235-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 07/18/2023] [Indexed: 07/29/2023] Open
Abstract
Pediatric low-grade gliomas (pLGG) show heterogeneous responses to MAPK inhibitors (MAPKi) in clinical trials. Thus, more complex stratification biomarkers are needed to identify patients likely to benefit from MAPKi therapy. Here, we identify MAPK-related genes enriched in MAPKi-sensitive cell lines using the GDSC dataset and apply them to calculate class-specific MAPKi sensitivity scores (MSSs) via single-sample gene set enrichment analysis. The MSSs discriminate MAPKi-sensitive and non-sensitive cells in the GDSC dataset and significantly correlate with response to MAPKi in an independent PDX dataset. The MSSs discern gliomas with varying MAPK alterations and are higher in pLGG compared to other pediatric CNS tumors. Heterogenous MSSs within pLGGs with the same MAPK alteration identify proportions of potentially sensitive patients. The MEKi MSS predicts treatment response in a small set of pLGG patients treated with trametinib. High MSSs correlate with a higher immune cell infiltration, with high expression in the microglia compartment in single-cell RNA sequencing data, while low MSSs correlate with low immune infiltration and increased neuronal score. The MSSs represent predictive tools for the stratification of pLGG patients and should be prospectively validated in clinical trials. Our data supports a role for microglia in the response to MAPKi.
Collapse
Affiliation(s)
- Romain Sigaud
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany.
- National Center for Tumor Diseases (NCT), Heidelberg, Germany.
| | - Thomas K Albert
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, Münster, Germany
| | - Caroline Hess
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Faculty of Biochemistry, Heidelberg University, Heidelberg, Germany
| | - Thomas Hielscher
- Division of Biostatistics, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
| | - Nadine Winkler
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Daniela Kocher
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Carolin Walter
- Institute of Medical Informatics, University of Münster, Münster, Germany
| | - Daniel Münter
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, Münster, Germany
| | - Florian Selt
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Diren Usta
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Jonas Ecker
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Angela Brentrup
- Neurosurgery Dept., University Hospital Münster, Münster, Germany
| | - Martin Hasselblatt
- Institute of Neuropathology, University Hospital Münster, Münster, Germany
| | - Christian Thomas
- Institute of Neuropathology, University Hospital Münster, Münster, Germany
| | - Julian Varghese
- Institute of Medical Informatics, University of Münster, Münster, Germany
| | - David Capper
- Berlin Institute of Health, Anna-Louisa-Karsch-Straße 2, 10178, Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neuropathology, Berlin, Germany
| | - Ulrich W Thomale
- Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Pediatric Neurosurgery, Berlin, Germany
| | - Pablo Hernáiz Driever
- Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, German HIT-LOGGIC-Registry for pLGG in children and adolescents, Department of Pediatric Oncology and Hematology, Berlin, Germany
| | - Michèle Simon
- Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, German HIT-LOGGIC-Registry for pLGG in children and adolescents, Department of Pediatric Oncology and Hematology, Berlin, Germany
| | - Svea Horn
- Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, German HIT-LOGGIC-Registry for pLGG in children and adolescents, Department of Pediatric Oncology and Hematology, Berlin, Germany
| | - Nina Annika Herz
- Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, German HIT-LOGGIC-Registry for pLGG in children and adolescents, Department of Pediatric Oncology and Hematology, Berlin, Germany
| | - Arend Koch
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neuropathology, Berlin, Germany
| | - Felix Sahm
- Department of Neuropathology, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stefan Hamelmann
- Department of Neuropathology, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Nada Jabado
- Department of Human Genetics, McGill University, Montreal, QC, H3A 0C7, Canada
- Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, QC, H4A 3J1, Canada
- Department of Pediatrics, McGill University, and The Research Institute of the McGill University Health Centre, Montreal, QC, H4A 3J1, Canada
| | - Martin U Schuhmann
- Section of Pediatric Neurosurgery, Department of Neurosurgery, University Hospital Tübingen, Tübingen, Germany
| | | | - Eelco Hoving
- Princess Màxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Tilman Brummer
- Institute of Molecular Medicine and Cell Research (IMMZ), Faculty of Medicine, University of Freiburg, Freiburg, Germany, Centre for Biological Signaling Studies BIOSS, University of Freiburg and German Consortium for Translational Cancer Research (DKTK), Freiburg, Germany, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Cornelis M van Tilburg
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Stefan M Pfister
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Olaf Witt
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - David T W Jones
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Glioma Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Kornelius Kerl
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, Münster, Germany
| | - Till Milde
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany.
- National Center for Tumor Diseases (NCT), Heidelberg, Germany.
- Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany.
| |
Collapse
|
47
|
Reyes Medina B, Wrede A, Schulz-Schaeffer WJ. [Neuropathology of pediatric brain tumors : Implications of the 5th edition of the WHO classification of central nervous system tumors]. RADIOLOGIE (HEIDELBERG, GERMANY) 2023:10.1007/s00117-023-01171-2. [PMID: 37477671 DOI: 10.1007/s00117-023-01171-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Accepted: 06/01/2023] [Indexed: 07/22/2023]
Abstract
BACKGROUND Already with the update of the 4th edition of the World Health Organization (WHO) classification of tumors of the central nervous system, it was pointed out that pediatric diffuse glioma do not follow the same molecular mechanisms used to characterize adult diffuse glioma. OBJECTIVES What changes result from the update of the classification of tumors of the central nervous system? METHODS With the 5th edition of the WHO classification of tumors of the central nervous system, a second level of information containing molecular changes besides the histological characterization and grading of tumors was established. RESULTS A new classification of diffuse pediatric brain tumors based on molecular tumor pathways was established. The most important tumor pathways, considered for the new classification, were the activation of receptor tyrosine kinases and histone H3 alterations that cause epigenetic changes. CONCLUSIONS Increasingly better understanding of mechanisms in the development of pediatric brain tumors gives hope for more specific therapeutic approaches.
Collapse
Affiliation(s)
- Bernardo Reyes Medina
- Institut für Neuropathologie, Medizinische Fakultät, Universität des Saarlandes und Universitätsklinikum des Saarlandes, Kirrberger Str. 100, Gebäude 90.3, 66421, Homburg, Deutschland
| | - Arne Wrede
- Institut für Neuropathologie, Medizinische Fakultät, Universität des Saarlandes und Universitätsklinikum des Saarlandes, Kirrberger Str. 100, Gebäude 90.3, 66421, Homburg, Deutschland
| | - Walter J Schulz-Schaeffer
- Institut für Neuropathologie, Medizinische Fakultät, Universität des Saarlandes und Universitätsklinikum des Saarlandes, Kirrberger Str. 100, Gebäude 90.3, 66421, Homburg, Deutschland.
| |
Collapse
|
48
|
van Belzen IAEM, Cai C, van Tuil M, Badloe S, Strengman E, Janse A, Verwiel ETP, van der Leest DFM, Kester L, Molenaar JJ, Meijerink J, Drost J, Peng WC, Kerstens HHD, Tops BBJ, Holstege FCP, Kemmeren P, Hehir-Kwa JY. Systematic discovery of gene fusions in pediatric cancer by integrating RNA-seq and WGS. BMC Cancer 2023; 23:618. [PMID: 37400763 DOI: 10.1186/s12885-023-11054-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 03/08/2023] [Indexed: 07/05/2023] Open
Abstract
BACKGROUND Gene fusions are important cancer drivers in pediatric cancer and their accurate detection is essential for diagnosis and treatment. Clinical decision-making requires high confidence and precision of detection. Recent developments show RNA sequencing (RNA-seq) is promising for genome-wide detection of fusion products but hindered by many false positives that require extensive manual curation and impede discovery of pathogenic fusions. METHODS We developed Fusion-sq to overcome existing disadvantages of detecting gene fusions. Fusion-sq integrates and "fuses" evidence from RNA-seq and whole genome sequencing (WGS) using intron-exon gene structure to identify tumor-specific protein coding gene fusions. Fusion-sq was then applied to the data generated from a pediatric pan-cancer cohort of 128 patients by WGS and RNA sequencing. RESULTS In a pediatric pan-cancer cohort of 128 patients, we identified 155 high confidence tumor-specific gene fusions and their underlying structural variants (SVs). This includes all clinically relevant fusions known to be present in this cohort (30 patients). Fusion-sq distinguishes healthy-occurring from tumor-specific fusions and resolves fusions in amplified regions and copy number unstable genomes. A high gene fusion burden is associated with copy number instability. We identified 27 potentially pathogenic fusions involving oncogenes or tumor-suppressor genes characterized by underlying SVs, in some cases leading to expression changes indicative of activating or disruptive effects. CONCLUSIONS Our results indicate how clinically relevant and potentially pathogenic gene fusions can be identified and their functional effects investigated by combining WGS and RNA-seq. Integrating RNA fusion predictions with underlying SVs advances fusion detection beyond extensive manual filtering. Taken together, we developed a method for identifying candidate gene fusions that is suitable for precision oncology applications. Our method provides multi-omics evidence for assessing the pathogenicity of tumor-specific gene fusions for future clinical decision making.
Collapse
Affiliation(s)
| | - Casey Cai
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Marc van Tuil
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Shashi Badloe
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Eric Strengman
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Alex Janse
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | | | | | - Lennart Kester
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Jan J Molenaar
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Department of Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Jules Meijerink
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Jarno Drost
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Weng Chuan Peng
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | | | - Bastiaan B J Tops
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | | | - Patrick Kemmeren
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands.
- Center for Molecular Medicine, UMC Utrecht and Utrecht University, Utrecht, The Netherlands.
| | - Jayne Y Hehir-Kwa
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands.
| |
Collapse
|
49
|
Rasco DW, Medina T, Corrie P, Pavlick AC, Middleton MR, Lorigan P, Hebert C, Plummer R, Larkin J, Agarwala SS, Daud AI, Qiu J, Bozon V, Kneissl M, Barry E, Olszanski AJ. Phase 1 study of the pan-RAF inhibitor tovorafenib in patients with advanced solid tumors followed by dose expansion in patients with metastatic melanoma. Cancer Chemother Pharmacol 2023; 92:15-28. [PMID: 37219686 PMCID: PMC10261210 DOI: 10.1007/s00280-023-04544-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 05/09/2023] [Indexed: 05/24/2023]
Abstract
PURPOSE Genomic alterations of BRAF and NRAS are oncogenic drivers in malignant melanoma and other solid tumors. Tovorafenib is an investigational, oral, selective, CNS-penetrant, small molecule, type II pan‑RAF inhibitor. This first-in-human phase 1 study explored the safety and antitumor activity of tovorafenib. METHODS This two-part study in adult patients with relapsed or refractory advanced solid tumors included a dose escalation phase and a dose expansion phase including molecularly defined cohorts of patients with melanoma. Primary objectives were to evaluate the safety of tovorafenib administered once every other day (Q2D) or once weekly (QW), and to determine the maximum-tolerated and recommended phase 2 dose (RP2D) on these schedules. Secondary objectives included evaluation of antitumor activity and tovorafenib pharmacokinetics. RESULTS Tovorafenib was administered to 149 patients (Q2D n = 110, QW n = 39). The RP2D of tovorafenib was defined as 200 mg Q2D or 600 mg QW. In the dose expansion phase, 58 (73%) of 80 patients in Q2D cohorts and 9 (47%) of 19 in the QW cohort had grade ≥ 3 adverse events. The most common of these overall were anemia (14 patients, 14%) and maculo-papular rash (8 patients, 8%). Responses were seen in 10 (15%) of 68 evaluable patients in the Q2D expansion phase, including in 8 of 16 (50%) patients with BRAF mutation-positive melanoma naïve to RAF and MEK inhibitors. In the QW dose expansion phase, there were no responses in 17 evaluable patients with NRAS mutation-positive melanoma naïve to RAF and MEK inhibitors; 9 patients (53%) had a best response of stable disease. QW dose administration was associated with minimal accumulation of tovorafenib in systemic circulation in the dose range of 400-800 mg. CONCLUSIONS The safety profile of both schedules was acceptable, with QW dosing at the RP2D of 600 mg QW preferred for future clinical studies. Antitumor activity of tovorafenib in BRAF-mutated melanoma was promising and justifies continued clinical development across multiple settings. CLINICALTRIALS GOV IDENTIFIER NCT01425008.
Collapse
Affiliation(s)
- Drew W Rasco
- South Texas Accelerated Research Therapeutics, LLC, San Antonio, TX, USA
| | | | - Pippa Corrie
- Department of Oncology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Anna C Pavlick
- Laura & Isaac Perlmutter Cancer Center at NYU Langone, New York, NY, USA
| | - Mark R Middleton
- Department of Oncology, NIHR Biomedical Research Centre, Oxford, UK
| | - Paul Lorigan
- The Christie NHS Foundation Trust and Division of Cancer Sciences, University of Manchester, Manchester, UK
| | - Chris Hebert
- Bristol Haematology and Oncology Centre, Bristol, UK
| | - Ruth Plummer
- The Northern Centre for Cancer Care, Freeman Hospital, Newcastle upon Tyne, UK
| | | | | | - Adil I Daud
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, CA, USA
| | - Jiaheng Qiu
- Day One Biopharmaceuticals, 2000 Sierra Point Parkway, Suite 501, Brisbane, CA, 94005, USA
| | - Viviana Bozon
- Millennium Pharmaceuticals, Inc., a wholly owned subsidiary of Takeda Pharmaceutical Company Limited, Cambridge, MA, USA
| | - Michelle Kneissl
- Millennium Pharmaceuticals, Inc., a wholly owned subsidiary of Takeda Pharmaceutical Company Limited, Cambridge, MA, USA
| | - Elly Barry
- Day One Biopharmaceuticals, 2000 Sierra Point Parkway, Suite 501, Brisbane, CA, 94005, USA.
| | | |
Collapse
|
50
|
Muniz TP, Mason WP. BRAF Mutations in CNS Tumors-Prognostic Markers and Therapeutic Targets. CNS Drugs 2023; 37:587-598. [PMID: 37268805 DOI: 10.1007/s40263-023-01016-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/16/2023] [Indexed: 06/04/2023]
Abstract
Gliomas are a heterogeneous group of brain tumors with limited therapeutic options. However, identification of BRAF V600E mutations in a subset of gliomas has provided a genomic-targeted approach for management of these diseases. In this review, we aimed to review the role of BRAF V600E in gliomagenesis, to characterize concurrent genomic alterations and their potential prognostic implications, and to review comprehensively the efficacy data of BRAF inhibitors (combined or not with MEK inhibitors) for the treatment of low- and high-grade gliomas. We also provide a summary of the toxicity of these agents and describe resistance mechanisms that may be circumvented by alternative genomic approaches. Although the efficacy of targeted therapy for management of BRAF V600E-mutant gliomas has mostly been assessed in small retrospective and phase 2 studies with heterogeneous populations, the data generated so far are a proof of concept that genomic-directed therapies improve outcomes of patients with refractory/relapsed glioma and underpin the need of comprehensive genomic assessments for these difficult-to-treat diseases. In the future, the role of targeted therapy in the first-line setting and of genomic-directed therapies to overcome resistance mechanisms should be assessed in well-designed clinical trials.
Collapse
Affiliation(s)
- Thiago P Muniz
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON, Canada.
| | - Warren P Mason
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON, Canada
| |
Collapse
|