1
|
Jin M, Ji L, Ran M, Bi Y, Zhang H, Tao Y, Xu H, Zou S, Zhang H, Yu T, Yin L. Interactions between ABC gene polymorphisms and processing speed in predicting depression severity. BMC Psychiatry 2025; 25:102. [PMID: 39910465 PMCID: PMC11800503 DOI: 10.1186/s12888-025-06507-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/15/2025] [Indexed: 02/07/2025] Open
Abstract
BACKGROUND ABC family genes encode ATP-binding cassette proteins, which are involved in the transport of various substances and are associated with major depressive disorder (MDD); however, their clinical significance in MDD remains unclear. Therefore, this study aimed to investigate whether ABC family genes are associated with cognitive function, and the combined effects of genes and cognitive function on the severity of depression. METHOD Linear models or logistic regression models were used to investigate the associations of ABC family gene variants with clinical symptoms and cognitive function in 805 MDD patients (12-65 years old) and 1493 age-matched healthy controls (HCs). Seven single nucleotide polymorphisms (rs28401781, rs4148739, rs3747802, rs1109866, rs1109867, rs3731885, and rs3755047) of ABCB1 and ABCB6 were selected. The cognitive function was assessed by the Wisconsin Card Sorting Test (WCST), Tower of Hanoi Test (TOH), Trail Making Test (TMT), and Verbal Fluency Test (VF). RESULTS Significant differences in gene frequency and genotype frequency were observed at the rs1109866 (X2 = 8.22, p = 0.004; X2 = 9.82, p = 0.007) and rs1109867 (X2 = 7.35, p = 0.007; X2 = 9.15, p = 0.010) between MDD patients and HCs, even after correction. While rs28401781 (t = 2.78, p = 0.006) and rs4148739 (t = 3.08, p = 0.003) were associated with the TOH test. And both rs1109866 and rs1109867 interacted with TMT results to influence depression severity in MDD patients. CONCLUSION The results suggest that ABC family genes influence the severity of depression through cognitive functioning, providing possible evidence for genetic markers in MDD patients.
Collapse
Affiliation(s)
- Meijiang Jin
- Psychological Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Lei Ji
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China
| | - Maojia Ran
- Psychological Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yan Bi
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China
| | - Hang Zhang
- Psychological Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yuanmei Tao
- Psychological Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Hanmei Xu
- Psychological Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Shoukang Zou
- Psychological Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Hong Zhang
- Psychological Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Tao Yu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China.
| | - Li Yin
- Psychological Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
2
|
Jin M, Ji L, Ran M, Wang Z, Bi Y, Zhang H, Tao Y, Xu H, Zou S, Zhang H, Yu T, Yin L. ABC Family Gene Polymorphisms and Cognitive Functions Interact to Influence Antidepressant Efficacy. PHARMACOPSYCHIATRY 2025; 58:25-32. [PMID: 39542023 DOI: 10.1055/a-2437-1751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
INTRODUCTION The importance of identifying relevant indicators of antidepressant efficacy is highlighted by the low response rates to antidepressant treatment for depression. The ABC gene family, encoding ATP-dependent transport proteins facilitating the transport of psychotropic drugs, has drawn attention. This study delved into the relationship between antidepressant efficacy and seven single nucleotide polymorphisms of ABCB1 and ABCB6 genes. METHODS A total of 549 depressed patients participated in the study, and all completed a 6-week course of antidepressant treatment. Cognitive function was assessed at baseline and post-treatment. Patients were categorized based on post-treatment HAMD-17 scores (with HAMD≤7 indicating remission), and comparisons were made between different groups in terms of allelic gene frequencies and genotypes. Logistic regression was used to explore the interaction between cognitive function and genotype on efficacy. Dual-luciferase reporter assays were performed to compare the regulatory effects of rs1109866 allele variants on the ABCB6 promoter. RESULTS There were no notable differences in allelic gene frequencies and genotypes between the remission and non-remission groups. Nonetheless, a significant interaction was identified between the rs1109866 genotype and language fluency-related indicators concerning efficacy (p=0.029) before correction. The dual-luciferase reporter assays demonstrated markedly higher fluorescence intensity of rs1109866-C compared to that of rs1109866-T (p<0.001). DISCUSSION Relying solely on genetic polymorphisms of ABC family genes as predictors of antidepressant treatment response may not be sufficient. However, the interaction between the rs1109866 and cognition plays a pivotal role. The potentially enhanced transcriptional activity of rs1109866-C might offer insight into its impact on antidepressant efficacy.
Collapse
Affiliation(s)
- Meijiang Jin
- Department of Psychiatry, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Lei Ji
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, Shanghai, China
| | - Maojia Ran
- Department of Psychiatry, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Zhujun Wang
- Department of Psychiatry, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Yan Bi
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, Shanghai, China
| | - Hang Zhang
- Department of Psychiatry, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Yuanmei Tao
- Department of Psychiatry, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Hanmei Xu
- Department of Psychiatry, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Shoukang Zou
- Department of Psychiatry, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Hong Zhang
- Department of Psychiatry, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Tao Yu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, Shanghai, China
| | - Li Yin
- Department of Psychiatry, West China Hospital of Sichuan University, Chengdu, Sichuan, China
- Institute for System Genetics, Frontiers Science Center for Disease-related Molecular Networks, Chengdu, Sichuan, China
- Sichuan Clinical Medical Research Center for Mental Disorders, Chengdu, Sichuan, China
| |
Collapse
|
3
|
Thévenod F, Lee WK. Cadmium transport by mammalian ATP-binding cassette transporters. Biometals 2024; 37:697-719. [PMID: 38319451 PMCID: PMC11101381 DOI: 10.1007/s10534-024-00582-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 01/04/2024] [Indexed: 02/07/2024]
Abstract
Cellular responses to toxic metals depend on metal accessibility to intracellular targets, reaching interaction sites, and the intracellular metal concentration, which is mainly determined by uptake pathways, binding/sequestration and efflux pathways. ATP-binding cassette (ABC) transporters are ubiquitous in the human body-usually in epithelia-and are responsible for the transfer of indispensable physiological substrates (e.g. lipids and heme), protection against potentially toxic substances, maintenance of fluid composition, and excretion of metabolic waste products. Derailed regulation and gene variants of ABC transporters culminate in a wide array of pathophysiological disease states, such as oncogenic multidrug resistance or cystic fibrosis. Cadmium (Cd) has no known physiological role in mammalians and poses a health risk due to its release into the environment as a result of industrial activities, and eventually passes into the food chain. Epithelial cells, especially within the liver, lungs, gastrointestinal tract and kidneys, are particularly susceptible to the multifaceted effects of Cd because of the plethora of uptake pathways available. Pertinent to their broad substrate spectra, ABC transporters represent a major cellular efflux pathway for Cd and Cd complexes. In this review, we summarize current knowledge concerning transport of Cd and its complexes (mainly Cd bound to glutathione) by the ABC transporters ABCB1 (P-glycoprotein, MDR1), ABCB6, ABCC1 (multidrug resistance related protein 1, MRP1), ABCC7 (cystic fibrosis transmembrane regulator, CFTR), and ABCG2 (breast cancer related protein, BCRP). Potential detoxification strategies underlying ABC transporter-mediated efflux of Cd and Cd complexes are discussed.
Collapse
Affiliation(s)
- Frank Thévenod
- Institute for Physiology, Pathophysiology and Toxicology & ZBAF, Witten/Herdecke University, 58453, Witten, Germany
- Physiology and Pathophysiology of Cells and Membranes, Medical School OWL, Bielefeld University, Morgenbreede 1, 33615, Bielefeld, Germany
| | - Wing-Kee Lee
- Physiology and Pathophysiology of Cells and Membranes, Medical School OWL, Bielefeld University, Morgenbreede 1, 33615, Bielefeld, Germany.
| |
Collapse
|
4
|
Choi SH, Lee SS, Lee HY, Kim S, Kim JW, Jin MS. Cryo-EM structure of cadmium-bound human ABCB6. Commun Biol 2024; 7:672. [PMID: 38822018 PMCID: PMC11143254 DOI: 10.1038/s42003-024-06377-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 05/23/2024] [Indexed: 06/02/2024] Open
Abstract
ATP-binding cassette transporter B6 (ABCB6), a protein essential for heme biosynthesis in mitochondria, also functions as a heavy metal efflux pump. Here, we present cryo-electron microscopy structures of human ABCB6 bound to a cadmium Cd(II) ion in the presence of antioxidant thiol peptides glutathione (GSH) and phytochelatin 2 (PC2) at resolutions of 3.2 and 3.1 Å, respectively. The overall folding of the two structures resembles the inward-facing apo state but with less separation between the two halves of the transporter. Two GSH molecules are symmetrically bound to the Cd(II) ion in a bent conformation, with the central cysteine protruding towards the metal. The N-terminal glutamate and C-terminal glycine of GSH do not directly interact with Cd(II) but contribute to neutralizing positive charges of the binding cavity by forming hydrogen bonds and van der Waals interactions with nearby residues. In the presence of PC2, Cd(II) binding to ABCB6 is similar to that observed with GSH, except that two cysteine residues of each PC2 molecule participate in Cd(II) coordination to form a tetrathiolate. Structural comparison of human ABCB6 and its homologous Atm-type transporters indicate that their distinct substrate specificity might be attributed to variations in the capping residues situated at the top of the substrate-binding cavity.
Collapse
Affiliation(s)
- Seung Hun Choi
- School of Life Sciences, GIST, 123 Cheomdangwagi-ro, Buk-gu, Gwangju, Republic of Korea
| | - Sang Soo Lee
- School of Life Sciences, GIST, 123 Cheomdangwagi-ro, Buk-gu, Gwangju, Republic of Korea
| | - Hyeon You Lee
- School of Life Sciences, GIST, 123 Cheomdangwagi-ro, Buk-gu, Gwangju, Republic of Korea
| | - Subin Kim
- School of Life Sciences, GIST, 123 Cheomdangwagi-ro, Buk-gu, Gwangju, Republic of Korea
| | - Ji Won Kim
- Department of Life Sciences, POSTECH, 77 Cheongam-Ro, Nam-gu, Pohang, Republic of Korea
| | - Mi Sun Jin
- School of Life Sciences, GIST, 123 Cheomdangwagi-ro, Buk-gu, Gwangju, Republic of Korea.
| |
Collapse
|
5
|
Xiao HN, Zhao ZY, Li JP, Li AY. Comprehensive pan-cancer analysis: essential role of ABCB family genes in cancer. Transl Cancer Res 2024; 13:1642-1664. [PMID: 38737683 PMCID: PMC11082675 DOI: 10.21037/tcr-23-2050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 03/12/2024] [Indexed: 05/14/2024]
Abstract
Background The adenosine triphosphate-binding-cassette (ABC) transporter orchestrates the transmembrane transport of diverse substrates with the aid of ATP as an energy source. ABC transporter constitutes a widespread superfamily of transporters prominently present on the cellular membrane of organisms. Advancements in understanding have unveiled additional roles beyond mere intracellular or extracellular transport functions for the ABC protein family, encompassing involvement in DNA repair, protein translation, and gene expression regulation. Yet its role in tumors is still unknown. Methods This study drew support from multiple databases, including Gene Expression Omnibus (GEO), European Genome-phenome Archive (EGA), The Cancer Genome Atlas (TCGA), and employed multidimensional bioinformatics analyses, incorporating online databases and the R-project. Through a comprehensive analysis, we seek to discern transcriptional-level disparities among genes and their consequential impacts on prognosis, tumor microenvironment (TME), stemness score, immune subtypes, clinical characteristics, and drug sensitivity across human cancers. Results ABC transporter subfamily B (ABCB) family genes exhibited heightened expression across diverse tumors, demonstrating a significant correlation with overall prognosis in pan-cancer contexts. Notably, gene expression levels manifested substantial associations with TME, stemness score, immune subtypes, clinical characteristics, and drug sensitivity in specific cancers, including kidney renal papillary cell carcinoma (KIRP), liver hepatocellular carcinoma (LIHC), and pancreatic adenocarcinoma (PAAD). Within this subset, transporter associated with antigen processing 1 (TAP1), TAP2, and ABCB6 emerged as noteworthy oncogenes. Conclusions The outcomes of this study contribute to a comprehensive understanding of the implications of ABCB family genes in tumor progression, offering insights into potential therapeutic targets for cancer. Notably, the identification of ABCB6 as a significant oncogene suggests promising avenues for targeted therapies in KIRP, LIHC, and PAAD.
Collapse
Affiliation(s)
- Hui-Ni Xiao
- Department of Gastroenterology, the Second Affiliated Hospital, University of South China, Hengyang, China
| | - Zi-Yue Zhao
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China
- Orthopedic Biomedical Materials Engineering Laboratory of Hunan Province, Changsha, China
| | - Jin-Ping Li
- Department of Orthopedics, Changsha Central Hospital, the Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
| | - Ao-Yu Li
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China
- Orthopedic Biomedical Materials Engineering Laboratory of Hunan Province, Changsha, China
| |
Collapse
|
6
|
Wang Y, Yao Y, Zhang Y, Qian X, Guo D, Coates BS. A chromosome-level genome assembly of the soybean pod borer: insights into larval transcriptional response to transgenic soybean expressing the pesticidal Cry1Ac protein. BMC Genomics 2024; 25:355. [PMID: 38594617 PMCID: PMC11005160 DOI: 10.1186/s12864-024-10216-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 03/12/2024] [Indexed: 04/11/2024] Open
Abstract
BACKGROUND Genetically modified (GM) crop plants with transgenic expression of Bacillus thuringiensis (Bt) pesticidal proteins are used to manage feeding damage by pest insects. The durability of this technology is threatened by the selection for resistance in pest populations. The molecular mechanism(s) involved in insect physiological response or evolution of resistance to Bt is not fully understood. RESULTS To investigate the response of a susceptible target insect to Bt, the soybean pod borer, Leguminivora glycinivorella (Lepidoptera: Tortricidae), was exposed to soybean, Glycine max, expressing Cry1Ac pesticidal protein or the non-transgenic parental cultivar. Assessment of larval changes in gene expression was facilitated by a third-generation sequenced and scaffolded chromosome-level assembly of the L. glycinivorella genome (657.4 Mb; 27 autosomes + Z chromosome), and subsequent structural annotation of 18,197 RefSeq gene models encoding 23,735 putative mRNA transcripts. Exposure of L. glycinivorella larvae to transgenic Cry1Ac G. max resulted in prediction of significant differential gene expression for 204 gene models (64 up- and 140 down-regulated) and differential splicing among isoforms for 10 genes compared to unexposed cohorts. Differentially expressed genes (DEGs) included putative peritrophic membrane constituents, orthologs of Bt receptor-encoding genes previously linked or associated with Bt resistance, and those involved in stress responses. Putative functional Gene Ontology (GO) annotations assigned to DEGs were significantly enriched for 36 categories at GO level 2, respectively. Most significantly enriched cellular component (CC), biological process (BP), and molecular function (MF) categories corresponded to vacuolar and microbody, transport and metabolic processes, and binding and reductase activities. The DEGs in enriched GO categories were biased for those that were down-regulated (≥ 0.783), with only MF categories GTPase and iron binding activities were bias for up-regulation genes. CONCLUSIONS This study provides insights into pathways and processes involved larval response to Bt intoxication, which may inform future unbiased investigations into mechanisms of resistance that show no evidence of alteration in midgut receptors.
Collapse
Affiliation(s)
- Yangzhou Wang
- Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Yao Yao
- Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Yunyue Zhang
- Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Xueyan Qian
- Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Dongquan Guo
- Jilin Academy of Agricultural Sciences, Changchun, 130033, China.
| | - Brad S Coates
- United States Department of Agriculture, Agricultural Research Service, Corn Insects & Crop Genetics Research Unit, 532 Science II, 2310 Pammel Dr., Ames, IA, 50011, USA.
| |
Collapse
|
7
|
Lee SS, Park JG, Jang E, Choi SH, Kim S, Kim JW, Jin MS. W546 stacking disruption traps the human porphyrin transporter ABCB6 in an outward-facing transient state. Commun Biol 2023; 6:960. [PMID: 37735522 PMCID: PMC10514269 DOI: 10.1038/s42003-023-05339-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 09/11/2023] [Indexed: 09/23/2023] Open
Abstract
Human ATP-binding cassette transporter subfamily B6 (ABCB6) is a mitochondrial ATP-driven pump that translocates porphyrins from the cytoplasm into mitochondria for heme biosynthesis. Within the transport pathway, a conserved aromatic residue W546 located in each monomer plays a pivotal role in stabilizing the occluded conformation via π-stacking interactions. Herein, we employed cryo-electron microscopy to investigate the structural consequences of a single W546A mutation in ABCB6, both in detergent micelles and nanodiscs. The results demonstrate that the W546A mutation alters the conformational dynamics of detergent-purified ABCB6, leading to entrapment of the transporter in an outward-facing transient state. However, in the nanodisc system, we observed a direct interaction between the transporter and a phospholipid molecule that compensates for the absence of the W546 residue, thereby facilitating the normal conformational transition of the transporter toward the occluded state following ATP hydrolysis. The findings also reveal that adoption of the outward-facing conformation causes charge repulsion between ABCB6 and the bound substrate, and rearrangement of key interacting residues at the substrate-binding site. Consequently, the affinity for the substrate is significantly reduced, facilitating its release from the transporter.
Collapse
Affiliation(s)
- Sang Soo Lee
- School of Life Sciences, GIST, 123 Cheomdan-gwagiro, Buk-gu, Gwangju, 61005, Republic of Korea
| | - Jun Gyou Park
- School of Life Sciences, GIST, 123 Cheomdan-gwagiro, Buk-gu, Gwangju, 61005, Republic of Korea
| | - Eunhong Jang
- School of Life Sciences, GIST, 123 Cheomdan-gwagiro, Buk-gu, Gwangju, 61005, Republic of Korea
| | - Seung Hun Choi
- School of Life Sciences, GIST, 123 Cheomdan-gwagiro, Buk-gu, Gwangju, 61005, Republic of Korea
| | - Subin Kim
- School of Life Sciences, GIST, 123 Cheomdan-gwagiro, Buk-gu, Gwangju, 61005, Republic of Korea
| | - Ji Won Kim
- Department of Life Sciences, POSTECH, 77 Cheongam-Ro, Nam-gu, Pohang, 37673, Republic of Korea
| | - Mi Sun Jin
- School of Life Sciences, GIST, 123 Cheomdan-gwagiro, Buk-gu, Gwangju, 61005, Republic of Korea.
| |
Collapse
|
8
|
Qi B, Kong L, Lai X, Wang L, Liu F, Ji W, Wei D. Plasma exosome proteomics reveals the pathogenesis mechanism of post-stroke cognitive impairment. Aging (Albany NY) 2023; 15:204738. [PMID: 37211381 DOI: 10.18632/aging.204738] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 05/01/2023] [Indexed: 05/23/2023]
Abstract
Exploration and utilization of exosome biomarkers and their related functions provide the possibility for the diagnosis and treatment of post-stroke cognitive impairment (PSCI). To identify the new diagnostic and prognostic biomarkers of plasma exosome were uzed label-free quantitative proteomics and biological information analysis in PSCI patients. Behavioral assessments were performed, including the Mini-Mental Status Examination (MMSE), the Montreal Cognitive Assessment (MoCA), the Barthel index, the Morse Fall Seale (MFS) between control group (n = 10) and PSCI group (n = 10). The blood samples were collected to analyse the biomarker and differentially expressed proteins of plasma exosome using label-free quantitative proteomics and biological information. The exosomes marker proteins were determined by Western blot. The exosome morphology was observed by transmission electron microscopy. The scores of MMSE and MoCA were significantly decreased in the PSCI group. The PT% and high-density lipoprotein decreased and the INR ratio increased in PSCI group. The mean size of exosome was approximately 71.6 nm and the concentration was approximately 6.8E+7 particles/mL. Exosome proteomics identified 259 differentially expressed proteins. The mechanisms of cognitive impairment are related to regulate the degradation of ubiquitinated proteins, calcium dependent protein binding, cell adhesive protein binding, formation of fibrin clot, lipid metabolism and ATP-dependent degradation of ubiquitinated proteins in plasma exosome of PSCI patients. Plasma levels of YWHAZ and BAIAP2 were significantly increased while that of IGHD, ABCB6 and HSPD1 were significantly decreased in PSCI patients. These proteins might be target-related proteins and provide global insights into pathogenesis mechanisms of PSCI at plasma exosome proteins level.
Collapse
Affiliation(s)
- Baoyun Qi
- The Eastern Area, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 101121, China
| | - Lingbo Kong
- The Eastern Area, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 101121, China
| | - Xinxing Lai
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
- Institute for Brain Disorders, Beijing University of Chinese Medicine, Beijing 100013, China
| | - Linshuang Wang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Fei Liu
- Department of Neurology, Hohhot Mongolian Medicine of Traditional Chinese Medicine Hospital, Hohhot 010020, China
| | - Weiwei Ji
- Institute of Information on Traditional Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Dongfeng Wei
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| |
Collapse
|
9
|
Kim S, Lee SS, Park JG, Kim JW, Ju S, Choi SH, Kim S, Kim NJ, Hong S, Kang JY, Jin MS. Structural Insights into Porphyrin Recognition by the Human ATP-Binding Cassette Transporter ABCB6. Mol Cells 2022; 45:575-587. [PMID: 35950458 PMCID: PMC9385563 DOI: 10.14348/molcells.2022.0040] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/07/2022] [Accepted: 04/07/2022] [Indexed: 11/27/2022] Open
Abstract
Human ABCB6 is an ATP-binding cassette transporter that regulates heme biosynthesis by translocating various porphyrins from the cytoplasm into the mitochondria. Here we report the cryo-electron microscopy (cryo-EM) structures of human ABCB6 with its substrates, coproporphyrin III (CPIII) and hemin, at 3.5 and 3.7 Å resolution, respectively. Metalfree porphyrin CPIII binds to ABCB6 within the central cavity, where its propionic acids form hydrogen bonds with the highly conserved Y550. The resulting structure has an overall fold similar to the inward-facing apo structure, but the two nucleotide-binding domains (NBDs) are slightly closer to each other. In contrast, when ABCB6 binds a metal-centered porphyrin hemin in complex with two glutathione molecules (1 hemin: 2 glutathione), the two NBDs end up much closer together, aligning them to bind and hydrolyze ATP more efficiently. In our structures, a glycine-rich and highly flexible "bulge" loop on TM helix 7 undergoes significant conformational changes associated with substrate binding. Our findings suggest that ABCB6 utilizes at least two distinct mechanisms to fine-tune substrate specificity and transport efficiency.
Collapse
Affiliation(s)
- Songwon Kim
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
| | - Sang Soo Lee
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
| | - Jun Gyou Park
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
| | - Ji Won Kim
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Seulgi Ju
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
| | - Seung Hun Choi
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
| | - Subin Kim
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
| | - Na Jin Kim
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
| | - Semi Hong
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
| | - Jin Young Kang
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Mi Sun Jin
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
| |
Collapse
|
10
|
Chen J, Han S, Li S, Wang M, Zhu H, Qiao T, Lin T, Zhu T. Comparative Transcriptomics and Gene Knockout Reveal Virulence Factors of Neofusicoccum parvum in Walnut. Front Microbiol 2022; 13:926620. [PMID: 35910616 PMCID: PMC9335079 DOI: 10.3389/fmicb.2022.926620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/17/2022] [Indexed: 12/11/2022] Open
Abstract
Neofusicoccum parvum can cause stem and branch blight of walnut (Juglans spp.), resulting in great economic losses and ecological damage. A total of two strains of N. parvum were subjected to RNA-sequencing after being fed on different substrates, sterile water (K1/K2), and walnut (T1/T2), and the function of ABC1 was verified by gene knockout. There were 1,834, 338, and 878 differentially expressed genes (DEGs) between the K1 vs. K2, T1 vs. K1, and T2 vs. K2 comparison groups, respectively. The expression changes in thirty DEGs were verified by fluorescent quantitative PCR. These thirty DEGs showed the same expression patterns under both RNA-seq and PCR. In addition, ΔNpABC1 showed weaker virulence due to gene knockout, and the complementary strain NpABC1c showed the same virulence as the wild-type strain. Compared to the wild-type and complemented strains, the relative growth of ΔNpABC1 was significantly decreased when grown with H2O2, NaCl, Congo red, chloramphenicol, MnSO4, and CuSO4. The disease index of walnuts infected by the mutants was significantly lower than those infected by the wild-type and complementary strains. This result indicates that ABC1 gene is required for the stress response and virulence of N. parvum and may be involved in heavy metal resistance.
Collapse
Affiliation(s)
- Jie Chen
- Department of Forest Protection, College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Shan Han
- Department of Forest Protection, College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Shujiang Li
- Department of Forest Protection, College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Ming Wang
- Ecological Institute, Academy of Sichuan Forestry and Grassland Inventory and Planning, Chengdu, China
| | - Hanmingyue Zhu
- Department of Forest Protection, College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Tianmin Qiao
- Department of Forest Protection, College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Tiantian Lin
- Department of Forest Protection, College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Tianhui Zhu
- Department of Forest Protection, College of Forestry, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
11
|
She Q, Dong Y, Li D, An R, Zhou T, Nie X, Pan R, Deng Y. ABCB6 knockdown suppresses melanogenesis through the GSK3-β/β-catenin signaling axis in human melanoma and melanocyte cell lines. J Dermatol Sci 2022; 106:101-110. [DOI: 10.1016/j.jdermsci.2022.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/04/2022] [Accepted: 04/08/2022] [Indexed: 10/18/2022]
|
12
|
Coates BS, Deleury E, Gassmann AJ, Hibbard BE, Meinke LJ, Miller NJ, Petzold-Maxwell J, French BW, Sappington TW, Siegfried BD, Guillemaud T. Up-regulation of apoptotic- and cell survival-related gene pathways following exposures of western corn rootworm to B. thuringiensis crystalline pesticidal proteins in transgenic maize roots. BMC Genomics 2021; 22:639. [PMID: 34479486 PMCID: PMC8418000 DOI: 10.1186/s12864-021-07932-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 08/04/2021] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Resistance of pest insect species to insecticides, including B. thuringiensis (Bt) pesticidal proteins expressed by transgenic plants, is a threat to global food security. Despite the western corn rootworm, Diabrotica virgifera virgifera, being a major pest of maize and having populations showing increasing levels of resistance to hybrids expressing Bt pesticidal proteins, the cell mechanisms leading to mortality are not fully understood. RESULTS Twenty unique RNA-seq libraries from the Bt susceptible D. v. virgifera inbred line Ped12, representing all growth stages and a range of different adult and larval exposures, were assembled into a reference transcriptome. Ten-day exposures of Ped12 larvae to transgenic Bt Cry3Bb1 and Gpp34/Tpp35Ab1 maize roots showed significant differential expression of 1055 and 1374 transcripts, respectively, compared to cohorts on non-Bt maize. Among these, 696 were differentially expressed in both Cry3Bb1 and Gpp34/Tpp35Ab1 maize exposures. Differentially-expressed transcripts encoded protein domains putatively involved in detoxification, metabolism, binding, and transport, were, in part, shared among transcripts that changed significantly following exposures to the entomopathogens Heterorhabditis bacteriophora and Metarhizium anisopliae. Differentially expressed transcripts in common between Bt and entomopathogen treatments encode proteins in general stress response pathways, including putative Bt binding receptors from the ATP binding cassette transporter superfamily. Putative caspases, pro- and anti-apoptotic factors, as well as endoplasmic reticulum (ER) stress-response factors were identified among transcripts uniquely up-regulated following exposure to either Bt protein. CONCLUSIONS Our study suggests that the up-regulation of genes involved in ER stress management and apoptotic progression may be important in determining cell fate following exposure of susceptible D. v. virgifera larvae to Bt maize roots. This study provides novel insights into insect response to Bt intoxication, and a possible framework for future investigations of resistance mechanisms.
Collapse
Affiliation(s)
- Brad S Coates
- USDA-ARS, Corn Insects & Crop Genetics Research Unit, 103 Genetics Laboratory, Iowa State University, Ames, IA, 50011, USA.
| | | | | | | | - Lance J Meinke
- Department of Entomology, University of Nebraska, Lincoln, NE, USA
| | | | | | - B Wade French
- USDA-ARS, North Central Agricultural Research Laboratory, Brookings, SD, USA
| | - Thomas W Sappington
- USDA-ARS, Corn Insects & Crop Genetics Research Unit, 103 Genetics Laboratory, Iowa State University, Ames, IA, 50011, USA
| | | | | |
Collapse
|
13
|
Abstract
ABCB6 plays a crucial role in energy-dependent porphyrin transport, drug resistance, toxic metal resistance, porphyrin biosynthesis, protection against stress, and encoding a blood group system Langereis antigen. However, the mechanism underlying porphyrin transport is still unclear. Here, we determined the cryo-electron microscopy (cryo-EM) structures of nanodisc-reconstituted human ABCB6 trapped in an apo-state and an ATP-bound state at resolutions of 3.6 and 3.5 Å, respectively. Our structures reveal a unique loop in the transmembrane domain (TMD) of ABCB6, which divides the TMD into two cavities. It restrains the access of substrates in the inward-facing state and is removed by ATP-driven conformational change. No ligand cavities were observed in the nucleotide-bound state, indicating a state following substrate release but prior to ATP hydrolysis. Structural analyses and functional characterizations suggest an "ATP-switch" model and further reveal the conformational changes of the substrate-binding pockets triggered by the ATP-driven regulation.
Collapse
|
14
|
Identification of a novel glycolysis-related gene signature for predicting the prognosis of osteosarcoma patients. Aging (Albany NY) 2021; 13:12896-12918. [PMID: 33952718 PMCID: PMC8148463 DOI: 10.18632/aging.202958] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 03/02/2021] [Indexed: 12/13/2022]
Abstract
Glycolysis ensures energy supply to cancer cells, thereby facilitating tumor progression. Here, we identified glycolysis-related genes that could predict the prognosis of patients with osteosarcoma. We examined 198 glycolysis-related genes that showed differential expression in metastatic and non-metastatic osteosarcoma samples in the TARGET database, and identified three genes (P4HA1, ABCB6, and STC2) for the establishment of a risk signature. Based on the signature, patients in the high-risk group had poor outcomes. An independent Gene Expression Omnibus database GSE21257 was selected as the validation cohort. Receiver operating characteristic curve analysis was performed and the accuracy of predicting the 1- and 3-year survival rates was shown by the areas under the curve. The results were 0.884 and 0.790 in the TARGET database, and 0.740 and 0.759 in the GSE21257, respectively. Furthermore, we applied ESTIMATE algorithm and performed single sample gene set enrichment analysis to compare tumor immunity between high- and low-risk groups. We found that the low-risk group had higher immune scores and immune infiltration levels than the high-risk group. Finally, we chose P4HA1 as a representative gene to verify the function of risk genes in vitro and in vivo and found that P4HA1 could promote the metastasis of osteosarcoma cells. Our study established a novel glycolysis-related risk signature that could predict the prognosis of patients with osteosarcoma.
Collapse
|
15
|
Kanamori S, Cádiz A, Díaz LM, Ishii Y, Nakayama T, Kawata M. Detection of genes positively selected in Cuban Anolis lizards that naturally inhabit hot and open areas and currently thrive in urban areas. Ecol Evol 2021; 11:1719-1728. [PMID: 33613999 PMCID: PMC7882966 DOI: 10.1002/ece3.7161] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 12/12/2020] [Accepted: 12/14/2020] [Indexed: 11/28/2022] Open
Abstract
Species of Anolis lizards of the West Indies that naturally inhabit hot and open areas also tend to thrive in urban areas. In this study, transcriptome was sequenced for nine species of Cuban Anolis lizards that are closely related to each other, but inhabit different thermal microhabitats. Using PAML and HyPhy software, we attempted to identify genes and amino acid sites under positive selection in the common ancestral branch of A. porcatus and A. allisoni, and the branch of A. sagrei, which inhabit hot and open areas, and thrive in urban areas. Although there were no genes where positive selection was commonly detected on both of the tested branches, positive selection was detected in genes involved in the stress response (e.g., DNA damage and oxidative stress) and cardiac function, which could be related to adaptive evolution of tolerance to heat or ultraviolet radiation, on both branches. These findings suggest that adaptive evolution of the response to stress caused by heat or ultraviolet radiation might have occurred in ancestors of Anolis species inhabiting hot and open areas and might be related to the current thriving in urban areas of them.
Collapse
Affiliation(s)
| | - Antonio Cádiz
- Graduate School of Life SciencesTohoku UniversitySendaiJapan
- Department of BiologyUniversity of MiamiCoral GablesUSA
| | - Luis M. Díaz
- National Museum of Natural History of CubaHavanaCuba
| | - Yuu Ishii
- Graduate School of Life SciencesTohoku UniversitySendaiJapan
| | - Takuro Nakayama
- Graduate School of Life SciencesTohoku UniversitySendaiJapan
| | - Masakado Kawata
- Graduate School of Life SciencesTohoku UniversitySendaiJapan
| |
Collapse
|
16
|
|
17
|
Szakacs G, Abele R. An inventory of lysosomal ABC transporters. FEBS Lett 2020; 594:3965-3985. [DOI: 10.1002/1873-3468.13967] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/23/2020] [Accepted: 10/15/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Gergely Szakacs
- Institute of Enzymology Research Centre of Natural Sciences Eötvös Loránd Research Network Budapest Hungary
- Institute of Cancer Research Medical University of Vienna Vienna Austria
| | - Rupert Abele
- Institute of Biochemistry Goethe‐University Frankfurt am Main Frankfurt am Main Germany
| |
Collapse
|
18
|
Wang C, Cao C, Wang N, Wang X, Wang X, Zhang XC. Cryo-electron microscopy structure of human ABCB6 transporter. Protein Sci 2020; 29:2363-2374. [PMID: 33007128 DOI: 10.1002/pro.3960] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/24/2020] [Accepted: 09/25/2020] [Indexed: 01/12/2023]
Abstract
Human ATP-binding cassette transporter 6 of subfamily B (ABCB6) is an ABC transporter involved in the translocation toxic metals and anti-cancer drugs. Using cryo-electron microscopy, we determined the molecular structure of full-length ABCB6 in an apo state. The structure of ABCB6 unravels the architecture of a full-length ABCB transporter that harbors two N-terminal transmembrane domains which is indispensable for its ATPase activity in our in vitro assay. A slit-like substrate binding pocket of ABCB6 may accommodate the planar shape of porphyrins, and the existence of a secondary cavity near the mitochondrial intermembrane space side would further facilitate substrate release. Furthermore, the ATPase activity of ABCB6 stimulated with a variety of porphyrin substrates showed different profiles in the presence of glutathione (GSH), suggesting the action of a distinct substrate translocation mechanism depending on the use of GSH as a cofactor.
Collapse
Affiliation(s)
- Chunyu Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Can Cao
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Nan Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xiangxi Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xianping Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xuejun C Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
19
|
Mares L, Vilchis F, Chávez B, Ramos L. Isolation and sex steroid effects on the expression of the ATP-binding cassette transporter ABCB6 in Harderian glands of hamster (Mesocricetus auratus). Comp Biochem Physiol A Mol Integr Physiol 2019; 232:40-46. [PMID: 30878759 DOI: 10.1016/j.cbpa.2019.03.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 02/25/2019] [Accepted: 03/08/2019] [Indexed: 10/27/2022]
Abstract
ATP-Binding Cassette, subfamily B, member 6 (ABCB6) is a transporter that is upregulated by elevated intracellular porphyrin concentrations. In the Harderian gland (HG), the synthesis of porphyrins appears to be under the influence of gonadal steroids and to exhibit a dimorphic pattern. To explore whether ABCB6 is also influenced by sex steroids, we isolated its specific cDNA sequence and investigated its mRNA levels in the HGs of hamsters. ABCB6's cDNA sequence presents an open reading frame (ORF) of 2529 bp that encodes a predicted 842-amino acid (aa) protein with a molecular weight of 93 kDa. Multiple sequence alignments showed that ABCB6's aa sequence is highly conserved and shares the highest homology (93%) with mouse ABCB6. RT-qPCR analysis indicated that ABCB6 is expressed in all the tissues examined, exhibiting high expression levels in the liver, adrenal glands, and testis. The mRNA concentrations of ABCB6 in HGs were very similar between males and in females; similarly, gonadectomy and treatment with sex steroids appear to scarcely affect ABCB6 mRNA levels. The intraglandular content of ABCB6 mRNA showed discrete, though non-significant, variations through the estrous cycle. The results provide evidence that gonadal steroids have a minimal physiological role on the regulation of ABCB6 expression and might indicate that this transporter has a small effect on porphyrin trafficking in the HGs of hamsters.
Collapse
Affiliation(s)
- L Mares
- Department of Reproductive Biology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México City, México
| | - F Vilchis
- Department of Reproductive Biology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México City, México
| | - B Chávez
- Department of Reproductive Biology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México City, México
| | - L Ramos
- Department of Reproductive Biology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México City, México.
| |
Collapse
|
20
|
The impact of cigarette smoke exposure, COPD, or asthma status on ABC transporter gene expression in human airway epithelial cells. Sci Rep 2019; 9:153. [PMID: 30655622 PMCID: PMC6336805 DOI: 10.1038/s41598-018-36248-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 11/14/2018] [Indexed: 02/06/2023] Open
Abstract
ABC transporters are conserved in prokaryotes and eukaryotes, with humans expressing 48 transporters divided into 7 classes (ABCA, ABCB, ABCC, ABCD, ABDE, ABCF, and ABCG). Throughout the human body, ABC transporters regulate cAMP levels, chloride secretion, lipid transport, and anti-oxidant responses. We used a bioinformatic approach complemented with in vitro experimental methods for validation of the 48 known human ABC transporters in airway epithelial cells using bronchial epithelial cell gene expression datasets available in NCBI GEO from well-characterized patient populations of healthy subjects and individuals that smoke cigarettes, or have been diagnosed with COPD or asthma, with validation performed in Calu-3 airway epithelial cells. Gene expression data demonstrate that ABC transporters are variably expressed in epithelial cells from different airway generations, regulated by cigarette smoke exposure (ABCA13, ABCB6, ABCC1, and ABCC3), and differentially expressed in individuals with COPD and asthma (ABCA13, ABCC1, ABCC2, ABCC9). An in vitro cell culture model of cigarette smoke exposure was able to recapitulate select observed in situ changes. Our work highlights select ABC transporter candidates of interest and a relevant in vitro model that will enable a deeper understanding of the contribution of ABC transporters in the respiratory mucosa in lung health and disease.
Collapse
|
21
|
Abstract
The transport of specific molecules across lipid membranes is an essential function of all living organisms. The processes are usually mediated by specific transporters. One of the largest transporter families is the ATP-binding cassette (ABC) family. More than 40 ABC transporters have been identified in human, which are divided into 7 subfamilies (ABCA to ABCG) based on their gene structure, amino acid sequence, domain organization, and phylogenetic analysis. Of them, at least 11 ABC transporters including P-glycoprotein (P-GP/ABCB1), multidrug resistance-associated proteins (MRPs/ABCCs), and breast cancer resistance protein (BCRP/ABCG2) are involved in multidrug resistance (MDR) development. These ABC transporters are expressed in various tissues such as the liver, intestine, kidney, and brain, playing important roles in absorption, distribution, and excretion of drugs. Some ABC transporters are also involved in diverse cellular processes such as maintenance of osmotic homeostasis, antigen processing, cell division, immunity, cholesterol, and lipid trafficking. Several human diseases such as cystic fibrosis, sitosterolemia, Tangier disease, intrahepatic cholestasis, and retinal degeneration are associated with mutations in corresponding transporters. This chapter will describe function and expression of several ABC transporters (such as P-GP, BCRP, and MRPs), their substrates and inhibitors, as well as their clinical significance.
Collapse
Affiliation(s)
- Xiaodong Liu
- China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
22
|
Levings DC, Wang X, Kohlhase D, Bell DA, Slattery M. A distinct class of antioxidant response elements is consistently activated in tumors with NRF2 mutations. Redox Biol 2018; 19:235-249. [PMID: 30195190 PMCID: PMC6128101 DOI: 10.1016/j.redox.2018.07.026] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 07/23/2018] [Accepted: 07/31/2018] [Indexed: 12/17/2022] Open
Abstract
NRF2 is a redox-responsive transcription factor that regulates expression of cytoprotective genes via its interaction with DNA sequences known as antioxidant response elements (AREs). NRF2 activity is induced by oxidative stress, but oxidative stress is not the only context in which NRF2 can be activated. Mutations that disrupt the interaction between NRF2 and KEAP1, an inhibitor of NRF2, lead to NRF2 hyperactivation and promote oncogenesis. The mechanisms underlying NRF2's oncogenic properties remain unclear, but likely involve aberrant expression of select NRF2 target genes. We tested this possibility using an integrative genomics approach to get a precise view of the direct NRF2 target genes dysregulated in tumors with NRF2 hyperactivating mutations. This approach revealed a core set of 32 direct NRF2 targets that are consistently upregulated in NRF2 hyperactivated tumors. This set of NRF2 "cancer target genes" includes canonical redox-related NRF2 targets, as well as target genes that have not been previously linked to NRF2 activation. Importantly, NRF2-driven upregulation of this gene set is largely independent of the organ system where the tumor developed. One key distinguishing feature of these NRF2 cancer target genes is that they are regulated by high affinity AREs that fall within genomic regions possessing a ubiquitously permissive chromatin signature. This implies that these NRF2 cancer target genes are responsive to oncogenic NRF2 in most tissues because they lack the regulatory constraints that restrict expression of most other NRF2 target genes. This NRF2 cancer target gene set also serves as a reliable proxy for NRF2 activity, and high NRF2 activity is associated with significant decreases in survival in multiple cancer types. Overall, the pervasive upregulation of these NRF2 cancer targets across multiple cancers, and their association with negative outcomes, suggests that these will be central to dissecting the functional implications of NRF2 hyperactivation in several cancer contexts.
Collapse
Affiliation(s)
- Daniel C Levings
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812, USA
| | - Xuting Wang
- Environmental Epigenomics and Disease Group, Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Derek Kohlhase
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812, USA
| | - Douglas A Bell
- Environmental Epigenomics and Disease Group, Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Matthew Slattery
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812, USA.
| |
Collapse
|
23
|
Sajja RK, Kaisar MA, Vijay V, Desai VG, Prasad S, Cucullo L. In Vitro Modulation of Redox and Metabolism Interplay at the Brain Vascular Endothelium: Genomic and Proteomic Profiles of Sulforaphane Activity. Sci Rep 2018; 8:12708. [PMID: 30139948 PMCID: PMC6107504 DOI: 10.1038/s41598-018-31137-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 08/13/2018] [Indexed: 12/11/2022] Open
Abstract
Sulforaphane (SFN) has been shown to protect the brain vascular system and effectively reduce ischemic injuries and cognitive deficits. Given the robust cerebrovascular protection afforded by SFN, the objective of this study was to profile these effects in vitro using primary mouse brain microvascular endothelial cells and focusing on cellular redox, metabolism and detoxification functions. We used a mouse MitoChip array developed and validated at the FDA National Center for Toxicological Research (NCTR) to profile a host of genes encoded by nuclear and mt-DNA following SFN treatment (0-5 µM). Corresponding protein expression levels were assessed (ad hoc) by qRT-PCR, immunoblots and immunocytochemistry (ICC). Gene ontology clustering revealed that SFN treatment (24 h) significantly up-regulated ~50 key genes (>1.5 fold, adjusted p < 0.0001) and repressed 20 genes (<0.7 fold, adjusted p < 0.0001) belonging to oxidative stress, phase 1 & 2 drug metabolism enzymes (glutathione system), iron transporters, glycolysis, oxidative phosphorylation (OXPHOS), amino acid metabolism, lipid metabolism and mitochondrial biogenesis. Our results show that SFN stimulated the production of ATP by promoting the expression and activity of glucose transporter-1, and glycolysis. In addition, SFN upregulated anti-oxidative stress responses, redox signaling and phase 2 drug metabolism/detoxification functions, thus elucidating further the previously observed neurovascular protective effects of this compound.
Collapse
Affiliation(s)
- Ravi K Sajja
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA
| | - Mohammad A Kaisar
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA
| | - Vikrant Vijay
- Division of Systems Biology, National Center for Toxicological Research, US FDA, Jefferson, AR, 72079, USA
| | - Varsha G Desai
- Division of Systems Biology, National Center for Toxicological Research, US FDA, Jefferson, AR, 72079, USA
| | - Shikha Prasad
- Department of Neurology, Northwestern University - The Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Luca Cucullo
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA. .,Center for Blood Brain Barrier Research, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA.
| |
Collapse
|
24
|
Boswell-Casteel RC, Fukuda Y, Schuetz JD. ABCB6, an ABC Transporter Impacting Drug Response and Disease. AAPS JOURNAL 2017; 20:8. [PMID: 29192381 DOI: 10.1208/s12248-017-0165-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 10/16/2017] [Indexed: 12/11/2022]
Abstract
Recent findings have discovered how insufficiency of ATP-binding cassette (ABC) transporter, ABCB6, can negatively impact human health. These advances were made possible by, first, finding that ABCB6 deficiency was the genetic basis for some severe transfusion reactions and by, second, determining that functionally impaired ABCB6 variants enhanced the severity of porphyria, i.e., diseases associated with defects in heme synthesis. ABCB6 is a broad-spectrum porphyrin transporter that is capable of both exporting and importing heme and its precursors across the plasma membrane and outer mitochondrial membrane, respectively. Biochemical studies have demonstrated that while ABCB6 influences the antioxidant system by reducing the levels of reactive oxygen species, the exact mechanism is currently unknown, though effects on heme synthesis are likely. Furthermore, it is unknown what biochemical or cellular signals determine where ABCB6 localizes in the cell. This review highlights the major recent findings on ABCB6 and focuses on details of its structure, mechanism, transport, contributions to cellular stress, and current clinical implications.
Collapse
Affiliation(s)
- Rebba C Boswell-Casteel
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee, 38105-2794, USA
| | - Yu Fukuda
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee, 38105-2794, USA
| | - John D Schuetz
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee, 38105-2794, USA.
| |
Collapse
|
25
|
Fukuda Y, Cheong PL, Lynch J, Brighton C, Frase S, Kargas V, Rampersaud E, Wang Y, Sankaran VG, Yu B, Ney PA, Weiss MJ, Vogel P, Bond PJ, Ford RC, Trent RJ, Schuetz JD. The severity of hereditary porphyria is modulated by the porphyrin exporter and Lan antigen ABCB6. Nat Commun 2016; 7:12353. [PMID: 27507172 PMCID: PMC4987512 DOI: 10.1038/ncomms12353] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 06/23/2016] [Indexed: 01/10/2023] Open
Abstract
Hereditary porphyrias are caused by mutations in genes that encode haem biosynthetic enzymes with resultant buildup of cytotoxic metabolic porphyrin intermediates. A long-standing open question is why the same causal porphyria mutations exhibit widely variable penetrance and expressivity in different individuals. Here we show that severely affected porphyria patients harbour variant alleles in the ABCB6 gene, also known as Lan, which encodes an ATP-binding cassette (ABC) transporter. Plasma membrane ABCB6 exports a variety of disease-related porphyrins. Functional studies show that most of these ABCB6 variants are expressed poorly and/or have impaired function. Accordingly, homozygous disruption of the Abcb6 gene in mice exacerbates porphyria phenotypes in the Fechm1Pas mouse model, as evidenced by increased porphyrin accumulation, and marked liver injury. Collectively, these studies support ABCB6 role as a genetic modifier of porphyria and suggest that porphyrin-inducing drugs may produce excessive toxicities in individuals with the rare Lan(−) blood type. Accumulation of intermediates of haem biosynthesis, porphyrins, is harmful and usually inherited, but it is unclear how the same mutation may make some individuals more ill than others. Here, the authors show that a porphyrin transporter ABCB6 is a modulator of porphyria, and that patients with functionally defective ABCB6 show more severe symptoms.
Collapse
Affiliation(s)
- Yu Fukuda
- Department of Pharmaceutical Sciences, St Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Pak Leng Cheong
- Department of Medical Genomics, Royal Prince Alfred Hospital, Sydney, New South Wales 2050, Australia.,Sydney Medical School, University of Sydney, Sydney, New South Wales 2006, Australia
| | - John Lynch
- Department of Pharmaceutical Sciences, St Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Cheryl Brighton
- Department of Pharmaceutical Sciences, St Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Sharon Frase
- Department of Tissue Cell Biology, St Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Vasileios Kargas
- Department of Structural Biology, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| | - Evadnie Rampersaud
- Department of Computational Biology, St Jude Children's Research Hospital, Memphis, Tennessee 38105, USA.,Department of Hematology, St Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Yao Wang
- Department of Pharmaceutical Sciences, St Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Vijay G Sankaran
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, Massachusetts 02115, USA
| | - Bing Yu
- Department of Medical Genomics, Royal Prince Alfred Hospital, Sydney, New South Wales 2050, Australia.,Sydney Medical School, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Paul A Ney
- New York Blood Center, New York, New York 10065, USA
| | - Mitchell J Weiss
- Department of Hematology, St Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Peter Vogel
- Department of Pathology, St Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Peter J Bond
- Bioinformatics Institute, 30 Biopolis Street, Singapore 138671, Singapore.,Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore
| | - Robert C Ford
- Department of Structural Biology, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| | - Ronald J Trent
- Department of Medical Genomics, Royal Prince Alfred Hospital, Sydney, New South Wales 2050, Australia.,Sydney Medical School, University of Sydney, Sydney, New South Wales 2006, Australia
| | - John D Schuetz
- Department of Pharmaceutical Sciences, St Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| |
Collapse
|
26
|
Kleingardner JG, Bren KL. Biological significance and applications of heme c proteins and peptides. Acc Chem Res 2015; 48:1845-52. [PMID: 26083801 DOI: 10.1021/acs.accounts.5b00106] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Hemes are ubiquitous in biology and carry out a wide range of functions. The heme group is largely invariant across proteins with different functions, although there are a few variations seen in nature. The most common variant is heme c, which is formed by a post-translational modification in which heme is covalently linked to two Cys residues on the polypeptide via thioether bonds. In this Account, the influence of this covalent attachment on heme c properties and function is discussed, and examples of how covalent attachment has been used in selected applications are presented. Proteins that bind heme c are among the most well-characterized proteins in biochemistry. Most of these proteins are cytochromes c (cyts c) that serve as electron carriers in photosynthesis and respiration. Despite the intense study of cyts c, the functional significance of heme covalent attachment has remained elusive. One observation is that heme c reaches a lower reduction potential in nature than its noncovalently linked counterpart, heme b, when comparing proteins with the same axial ligands. Furthermore, covalent attachment is known to enhance protein stability and allow the heme to be relatively solvent exposed. However, an inorganic chemistry perspective on the effects of covalent attachment has been lacking. Spectroscopic measurements and computations on cyts c and model systems reveal a number of effects of covalent attachment on heme electronic structure and reactivity. One is that the predominant nonplanar ruffling distortion seen in heme c lowers heme reduction potential. Another is that covalent attachment influences the interaction of the heme iron with the proximal His ligand. Heme ruffling also has been shown to influence electronic coupling to redox partners and, therefore, electron transfer rates by altering the distribution of the orbital hole on the porphyrin in oxidized cyt c. Another consequence of heme covalent attachment is the strong vibrational coupling seen between the iron and the protein surface as revealed by nuclear resonance vibrational spectroscopy studies. Finally, heme covalent attachment is proposed to be an important feature supporting multiple roles of cyt c in programmed cell death (apoptosis). Heme covalent attachment is not only vital for the biological functions of cyt c but also provides a useful handle in a number of applications. For one, the engineering of heme c onto an exposed portion of a protein of interest has been shown to provide a visible affinity purification tag. In addition, peptides with covalently attached heme, known as microperoxidases, have been studied as model compounds and oxidation catalysts and, more recently, in applications for energy conversion and storage. The wealth of insight gained about heme c through fundamental studies of cyts c forms a basis for future efforts toward engineering natural and artificial cytochromes for a variety of applications.
Collapse
Affiliation(s)
- Jesse G. Kleingardner
- Department
of Chemistry, Ithaca College, Ithaca, New York 14850, United States
- Department
of Chemistry, University of Rochester, Rochester, New York 14618, United States
| | - Kara L. Bren
- Department
of Chemistry, University of Rochester, Rochester, New York 14618, United States
| |
Collapse
|
27
|
Chavan H, Li F, Tessman R, Mickey K, Dorko K, Schmitt T, Kumer S, Gunewardena S, Gaikwad N, Krishnamurthy P. Functional coupling of ATP-binding cassette transporter Abcb6 to cytochrome P450 expression and activity in liver. J Biol Chem 2015; 290:7871-86. [PMID: 25623066 DOI: 10.1074/jbc.m114.605386] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Although endogenous mechanisms that negatively regulate cytochrome P450 (P450) monooxygenases in response to physiological and pathophysiological signals are not well understood, they are thought to result from alterations in the level of endogenous metabolites, involved in maintaining homeostasis. Here we show that homeostatic changes in hepatic metabolite profile in Abcb6 (mitochondrial ATP-binding cassette transporter B6) deficiency results in suppression of a specific subset of hepatic P450 activity. Abcb6 null mice are more susceptible to pentobarbital-induced sleep and zoxazolamine-induced paralysis, secondary to decreased expression and activity of Cyp3a11 and Cyp2b10. The knock-out mice also show decrease in both basal and xeno-inducible expression and activity of a subset of hepatic P450s that appear to be related to changes in hepatic metabolite profile. These data, together with the observation that liver extracts from Abcb6-deficient mice suppress P450 expression in human primary hepatocytes, suggest that this mouse model may provide an opportunity to understand the physiological signals and the mechanisms involved in negative regulation of P450s.
Collapse
Affiliation(s)
| | - Feng Li
- From the Departments of Pharmacology, Toxicology and Therapeutics
| | - Robert Tessman
- From the Departments of Pharmacology, Toxicology and Therapeutics
| | - Kristen Mickey
- From the Departments of Pharmacology, Toxicology and Therapeutics
| | - Kenneth Dorko
- From the Departments of Pharmacology, Toxicology and Therapeutics, the Cell Isolation Core, University of Kansas Medical Center, Kansas City, Kansas 66160 and
| | | | | | | | - Nilesh Gaikwad
- the Departments of Nutrition and Environmental Toxicology and the West Coast Metabolomics Center, University of California, Davis, California 95616
| | | |
Collapse
|
28
|
Abstract
Acute myeloid leukemia (AML) is a heterogeneous disease caused by aberrant proliferation and/or differentiation of myeloid progenitors. However, only ~65% of AML patients respond to induction chemotherapy and the overall survival rate for AML remains low (~24% for 5-year survival). The conventional view suggests that ATP-binding cassette (ABC) transporters contribute to treatment failure due to their drug-effluxing capabilities. This might be overly simplistic. Some ABC transporters export endogenous substrates that have defined roles in normal hematopoietic progenitors. It is conceivable that these substances also provide an advantage to leukemic progenitors. This review will highlight how certain endogenous substrates impact normal hematopoietic cells and suggest that ABC transporters facilitate export of these substances to affect both normal hematopoietic and leukemic progenitors. For example, the ability to export certain endogenous ligands may facilitate leukemogenesis by modifying leukemic progenitor cell proliferation or survival. If so, the addition of ABC transporter inhibitors to traditional chemotherapy might improve therapeutic efficacy by not just increasing intracellular drug accumulation but also blocking the beneficial effects ABC transporter ligands have on cell survival.
Collapse
|
29
|
Affiliation(s)
- Oliver Soehnlein
- From the Institute for Cardiovascular Prevention, LMU Munich, Germany; Academic Medical Center, Department of Pathology, Amsterdam University, The Netherlands; and DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| |
Collapse
|
30
|
The NRF2-KEAP1 pathway is an early responsive gene network in arsenic exposed lymphoblastoid cells. PLoS One 2014; 9:e88069. [PMID: 24516582 PMCID: PMC3917856 DOI: 10.1371/journal.pone.0088069] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 01/05/2014] [Indexed: 12/18/2022] Open
Abstract
Inorganic arsenic (iAs), a major environmental contaminant, has risen as an important health problem worldwide. More detailed identification of the molecular mechanisms associated with iAs exposure would help to establish better strategies for prevention and treatment. Although chronic iAs exposures have been previously studied there is little to no information regarding the early events of exposure to iAs. To better characterize the early mechanisms of iAs exposure we conducted gene expression studies using sublethal doses of iAs at two different time-points. The major transcripts differentially regulated at 2 hrs of iAs exposure included antioxidants, detoxificants and chaperones. Moreover, after 12 hrs of exposure many of the down-regulated genes were associated with DNA replication and S phase cell cycle progression. Interestingly, the most affected biological pathway by both 2 or 12 hrs of iAs exposure were the Nrf2-Keap1 pathway, represented by the highly up-regulated HMOX1 transcript, which is transcriptionally regulated by the transcription factor Nrf2. Additional Nrf2 targets included SQSTM1 and ABCB6, which were not previously associated with acute iAs exposure. Signalling pathways such as interferon, B cell receptor and AhR route were also responsive to acute iAs exposure. Since HMOX1 expression increased early (20 min) and was responsive to low iAs concentrations (0.1 µM), this gene could be a suitable early biomarker for iAs exposure. In addition, the novel Nrf2 targets SQSTM1 and ABCB6 could play an important and previously unrecognized role in cellular protection against iAs.
Collapse
|
31
|
Murphy AJ, Sarrazy V, Wang N, Bijl N, Abramowicz S, Westerterp M, Welch CB, Schuetz JD, Yvan-Charvet L. Deficiency of ATP-binding cassette transporter B6 in megakaryocyte progenitors accelerates atherosclerosis in mice. Arterioscler Thromb Vasc Biol 2014; 34:751-8. [PMID: 24504733 DOI: 10.1161/atvbaha.113.302613] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE The ATP-binding cassette (ABC) transporter B6 (ABCB6) is highly expressed in megakaryocyte progenitors, but its role in platelet production and disease has not been elucidated. APPROACH AND RESULTS Among various ABC transporters, ABCB6 was highly expressed in megakaryocyte progenitors, exhibiting the same pattern of expression of genes involved in heme synthesis pathway. Transplantation of Abcb6 deficient (Abcb6(-/-)) bone marrow into low density lipoprotein receptor deficient recipient mice resulted in expansion and proliferation of megakaryocyte progenitors, attributable to increased reactive oxygen species production in response to porphyrin loading. The enhanced megakaryopoiesis in Abcb6(-/-) bone marrow-transplanted mice was further illustrated by increased platelet counts, mean platelet volume, and platelet activity. Platelets from Abcb6(-/-) bone marrow-transplanted mice had higher levels of chemokine (C-C motif) ligand 5, which was associated with increased plasma chemokine (C-C motif) ligand 5 levels. There were also increased platelet-leukocyte aggregates, which resulted in leukocyte activation. Abcb6(-/-) bone marrow-transplanted mice had accelerated atherosclerosis which was associated with deposition of the chemotactic agent, chemokine (C-C motif) ligand 5 in atherosclerotic plaques, resulting in increased macrophage accumulation. CONCLUSIONS Our findings identify a new role of ABCB6 in preventing atherosclerosis development by dampening platelet production, reactivity, and chemokine (C-C motif) ligand 5 deposition in atherosclerotic lesions.
Collapse
Affiliation(s)
- Andrew J Murphy
- From Haematopoiesis and Leukocyte Biology, Baker IDI Heart and Diabetes Institute, Melbourne, Australia (A.J.M.); Department of Immunology, Monash University, Melbourne, Australia (A.J.M.); Institut National de la Sante et de la Recherche Medicale U1065, Centre Mediterraneen de Medecine Molecuaire (C3M), Atip-Avenir, Nice, France (V.S., L.Y.-C.); Department of Medicine, Division of Molecular Medicine, Columbia University, New York, NY (N.W., N.B., S.A., M.W., C.B.W.); and Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN (J.D.S.)
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Liu L, Martínez JL, Liu Z, Petranovic D, Nielsen J. Balanced globin protein expression and heme biosynthesis improve production of human hemoglobin in Saccharomyces cerevisiae. Metab Eng 2014; 21:9-16. [DOI: 10.1016/j.ymben.2013.10.010] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Revised: 08/19/2013] [Accepted: 10/04/2013] [Indexed: 11/30/2022]
|
33
|
Bayeva M, Khechaduri A, Wu R, Burke MA, Wasserstrom JA, Singh N, Liesa M, Shirihai OS, Langer NB, Paw BH, Ardehali H. ATP-binding cassette B10 regulates early steps of heme synthesis. Circ Res 2013; 113:279-87. [PMID: 23720443 DOI: 10.1161/circresaha.113.301552] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE Heme plays a critical role in gas exchange, mitochondrial energy production, and antioxidant defense in cardiovascular system. The mitochondrial transporter ATP-binding cassette (ABC) B10 has been suggested to export heme out of the mitochondria and is required for normal hemoglobinization of erythropoietic cells and protection against ischemia-reperfusion injury in the heart; however, its primary function has not been established. OBJECTIVE The aim of this study was to identify the function of ABCB10 in heme synthesis in cardiac cells. METHODS AND RESULTS Knockdown of ABCB10 in cardiac myoblasts significantly reduced heme levels and the activities of heme-containing proteins, whereas supplementation with δ-aminolevulinic acid reversed these defects. Overexpression of mitochondrial δ-aminolevulinic acid synthase 2, the rate-limiting enzyme upstream of δ-aminolevulinic acid export, failed to restore heme levels in cells with ABCB10 downregulation. ABCB10 and heme levels were increased by hypoxia, and reversal of ABCB10 upregulation caused oxidative stress and cell death. Furthermore, ABCB10 knockdown in neonatal rat cardiomyocytes resulted in a significant delay of calcium removal from the cytoplasm, suggesting a relaxation defect. Finally, ABCB10 expression and heme levels were altered in failing human hearts and mice with ischemic cardiomyopathy. CONCLUSIONS ABCB10 plays a critical role in heme synthesis pathway by facilitating δ-aminolevulinic acid production or export from the mitochondria. In contrast to previous reports, we show that ABCB10 is not a heme exporter and instead is required for the early mitochondrial steps of heme biosynthesis.
Collapse
Affiliation(s)
- Marina Bayeva
- Feinberg Cardiovascular Research Institute, Northwestern University School of Medicine, Chicago, IL
| | - Arineh Khechaduri
- Feinberg Cardiovascular Research Institute, Northwestern University School of Medicine, Chicago, IL
| | - Rongxue Wu
- Feinberg Cardiovascular Research Institute, Northwestern University School of Medicine, Chicago, IL
| | - Michael A Burke
- Feinberg Cardiovascular Research Institute, Northwestern University School of Medicine, Chicago, IL
| | - J Andrew Wasserstrom
- Feinberg Cardiovascular Research Institute, Northwestern University School of Medicine, Chicago, IL
| | - Neha Singh
- Feinberg Cardiovascular Research Institute, Northwestern University School of Medicine, Chicago, IL
| | - Marc Liesa
- Department of Medicine, Obesity and Nutrition Section, Mitochondria ARC, Evans Biomedical Research Center, Boston University School of Medicine, 650 Albany St., Boston, MA 02118, USA
| | - Orian S Shirihai
- Department of Medicine, Obesity and Nutrition Section, Mitochondria ARC, Evans Biomedical Research Center, Boston University School of Medicine, 650 Albany St., Boston, MA 02118, USA
| | - Nathaniel B Langer
- Hematology Division, Brigham & Women's Hospital; Hematology-Oncology Division, Children's Hospital Boston; Harvard Medical School, Boston, MA
| | - Barry H Paw
- Hematology Division, Brigham & Women's Hospital; Hematology-Oncology Division, Children's Hospital Boston; Harvard Medical School, Boston, MA
| | - Hossein Ardehali
- Feinberg Cardiovascular Research Institute, Northwestern University School of Medicine, Chicago, IL
| |
Collapse
|
34
|
Liesa M, Qiu W, Shirihai OS. Mitochondrial ABC transporters function: the role of ABCB10 (ABC-me) as a novel player in cellular handling of reactive oxygen species. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1823:1945-57. [PMID: 22884976 DOI: 10.1016/j.bbamcr.2012.07.013] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Revised: 07/24/2012] [Accepted: 07/27/2012] [Indexed: 12/22/2022]
Abstract
Mitochondria are one of the major sources of reactive oxygen species (ROS) in the cell. When exceeding the capacity of antioxidant mechanisms, ROS production may lead to different pathologies, such as ischemia-reperfusion injury, neurodegeneration, anemia and ageing. As a consequence of the endosymbiotic origin of mitochondria, eukaryotic cells have developed different transport mechanisms that coordinate mitochondrial function with other cellular compartments. Four mitochondrial ATP-binding cassette (ABC) transporters have been described to date in mammals: ABCB6, ABCB8, ABCB7 and ABCB10. ABCB10 is located in the inner mitochondrial membrane forming homodimers, with the ATP binding domain facing the mitochondrial matrix. ABCB10 expression is highly induced during erythroid differentiation and its overexpression increases hemoglobin synthesis in erythroid cells. However, ABCB10 is also expressed in nonerythroid tissues, suggesting a role not directly related to hemoglobin synthesis. Recent evidence points toward ABCB10 as an important player in the protection from oxidative stress in mammals. In this regard, ABCB10 is required for normal erythropoiesis and cardiac recovery after ischemia-reperfusion, processes intimately related to mitochondrial ROS generation. Here, we review the current knowledge on mitochondrial ABC transporters and ABCB10 and discuss the potential mechanisms by which ABCB10 and its transport activity may regulate oxidative stress. We discuss ABCB10 as a potential therapeutic target for diseases in which increased mitochondrial ROS production and oxidative stress play a major role.
Collapse
Affiliation(s)
- Marc Liesa
- Department of Medicine, Obesity and Nutrition Section, Mitochondria ARC, Evans Biomedical Research Center, Boston University School of Medicine, Boston, MA 02118, USA
| | | | | |
Collapse
|
35
|
Polireddy K, Khan MMT, Chavan H, Young S, Ma X, Waller A, Garcia M, Perez D, Chavez S, Strouse JJ, Haynes MK, Bologa CG, Oprea TI, Tegos GP, Sklar LA, Krishnamurthy P. A novel flow cytometric HTS assay reveals functional modulators of ATP binding cassette transporter ABCB6. PLoS One 2012; 7:e40005. [PMID: 22808084 PMCID: PMC3393737 DOI: 10.1371/journal.pone.0040005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 05/30/2012] [Indexed: 11/18/2022] Open
Abstract
ABCB6 is a member of the adenosine triphosphate (ATP)-binding cassette family of transporter proteins that is increasingly recognized as a relevant physiological and therapeutic target. Evaluation of modulators of ABCB6 activity would pave the way toward a more complete understanding of the significance of this transport process in tumor cell growth, proliferation and therapy-related drug resistance. In addition, this effort would improve our understanding of the function of ABCB6 in normal physiology with respect to heme biosynthesis, and cellular adaptation to metabolic demand and stress responses. To search for modulators of ABCB6, we developed a novel cell-based approach that, in combination with flow cytometric high-throughput screening (HTS), can be used to identify functional modulators of ABCB6. Accumulation of protoporphyrin, a fluorescent molecule, in wild-type ABCB6 expressing K562 cells, forms the basis of the HTS assay. Screening the Prestwick Chemical Library employing the HTS assay identified four compounds, benzethonium chloride, verteporfin, tomatine hydrochloride and piperlongumine, that reduced ABCB6 mediated cellular porphyrin levels. Validation of the identified compounds employing the hemin-agarose affinity chromatography and mitochondrial transport assays demonstrated that three out of the four compounds were capable of inhibiting ABCB6 mediated hemin transport into isolated mitochondria. However, only verteporfin and tomatine hydrochloride inhibited ABCB6's ability to compete with hemin as an ABCB6 substrate. This assay is therefore sensitive, robust, and suitable for automation in a high-throughput environment as demonstrated by our identification of selective functional modulators of ABCB6. Application of this assay to other libraries of synthetic compounds and natural products is expected to identify novel modulators of ABCB6 activity.
Collapse
Affiliation(s)
- Kishore Polireddy
- Department of Pharmacology, Toxicology, and Therapeutics, The University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Mohiuddin Md. Taimur Khan
- Center for Molecular Discovery, University of New Mexico, Albuquerque, New Mexico, United States of America
- Division of Biocomputing, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, United States of America
- Department of Pathology, University of New Mexico School of Medicine, Albuquerque, New Mexico, United States of America
| | - Hemantkumar Chavan
- Department of Pharmacology, Toxicology, and Therapeutics, The University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Susan Young
- Center for Molecular Discovery, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Xiaochao Ma
- Department of Pharmacology, Toxicology, and Therapeutics, The University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Anna Waller
- Center for Molecular Discovery, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Matthew Garcia
- Center for Molecular Discovery, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Dominique Perez
- Center for Molecular Discovery, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Stephanie Chavez
- Center for Molecular Discovery, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Jacob J. Strouse
- Center for Molecular Discovery, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Mark K. Haynes
- Center for Molecular Discovery, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Cristian G. Bologa
- Center for Molecular Discovery, University of New Mexico, Albuquerque, New Mexico, United States of America
- Division of Biocomputing, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, United States of America
| | - Tudor I. Oprea
- Center for Molecular Discovery, University of New Mexico, Albuquerque, New Mexico, United States of America
- Division of Biocomputing, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, United States of America
| | - George P. Tegos
- Center for Molecular Discovery, University of New Mexico, Albuquerque, New Mexico, United States of America
- Department of Pathology, University of New Mexico School of Medicine, Albuquerque, New Mexico, United States of America
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Dermatology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Larry A. Sklar
- Center for Molecular Discovery, University of New Mexico, Albuquerque, New Mexico, United States of America
- Division of Biocomputing, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, United States of America
- Department of Pathology, University of New Mexico School of Medicine, Albuquerque, New Mexico, United States of America
| | - Partha Krishnamurthy
- Department of Pharmacology, Toxicology, and Therapeutics, The University of Kansas Medical Center, Kansas City, Kansas, United States of America
| |
Collapse
|
36
|
Chavan H, Krishnamurthy P. Polycyclic aromatic hydrocarbons (PAHs) mediate transcriptional activation of the ATP binding cassette transporter ABCB6 gene via the aryl hydrocarbon receptor (AhR). J Biol Chem 2012; 287:32054-68. [PMID: 22761424 DOI: 10.1074/jbc.m112.371476] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Liver is endowed with a mechanism to induce hepatic cytochromes P450 (CYP450s) in response to therapeutic drugs and environmental contaminants, leading to increased detoxification and elimination of the xenobiotics. Each CYP450 is composed of an apoprotein moiety and a heme prosthetic group, which is required for CYP450 activity. Thus, under conditions of CYP450 induction, there is a coordinate increase in heme biosynthesis to compensate for the increased expression of CYP450s. ABCB6, a mitochondrial ATP binding cassette transporter, which regulates coproporphyrinogen transport from the cytoplasm into the mitochondria to complete heme biosynthesis, represents a previously unrecognized rate-limiting step in heme biosynthesis. However, it is not known if exposure to drugs and environmental contaminants induces ABCB6 expression, to assure an adequate and apparently coordinated supply of heme for the generation of functional cytochrome holoprotein. In the present study, we demonstrate that polycyclic aromatic hydrocarbons (PAHs), the widely distributed environmental toxicants shown to induce porphyrin accumulation causing hepatic porphyria, up-regulate ABCB6 expression in both mice and humans. Using siRNA technology and Abcb6 knock-out mice, we demonstrate that PAH-mediated increase in hepatic porphyrins is compromised in the absence of ABCB6. Moreover, in vivo studies in aryl hydrocarbon receptor (AhR) knock-out mice demonstrate that PAH induction of ABCB6 is mediated by AhR. Promoter activation studies combined with electrophoretic mobility shift assay and chromatin immunoprecipitation assay demonstrate direct interactions between the AhR binding sites in the ABCB6 promoter and the AhR receptor, implicating drug activation mechanisms for ABCB6 similar to those found in inducible cytochrome P450s. These studies are the first to describe direct transcriptional activation of both mouse and human ABCB6 by xenobiotics.
Collapse
Affiliation(s)
- Hemantkumar Chavan
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | | |
Collapse
|
37
|
Kiss K, Brozik A, Kucsma N, Toth A, Gera M, Berry L, Vallentin A, Vial H, Vidal M, Szakacs G. Shifting the paradigm: the putative mitochondrial protein ABCB6 resides in the lysosomes of cells and in the plasma membrane of erythrocytes. PLoS One 2012; 7:e37378. [PMID: 22655043 PMCID: PMC3360040 DOI: 10.1371/journal.pone.0037378] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Accepted: 04/18/2012] [Indexed: 11/19/2022] Open
Abstract
ABCB6, a member of the adenosine triphosphate–binding cassette (ABC) transporter family, has been proposed to be responsible for the mitochondrial uptake of porphyrins. Here we show that ABCB6 is a glycoprotein present in the membrane of mature erythrocytes and in exosomes released from reticulocytes during the final steps of erythroid maturation. Consistent with its presence in exosomes, endogenous ABCB6 is localized to the endo/lysosomal compartment, and is absent from the mitochondria of cells. Knock-down studies demonstrate that ABCB6 function is not required for de novo heme biosynthesis in differentiating K562 cells, excluding this ABC transporter as a key regulator of porphyrin synthesis. We confirm the mitochondrial localization of ABCB7, ABCB8 and ABCB10, suggesting that only three ABC transporters should be classified as mitochondrial proteins. Taken together, our results challenge the current paradigm linking the expression and function of ABCB6 to mitochondria.
Collapse
Affiliation(s)
- Katalin Kiss
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Anna Brozik
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Nora Kucsma
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Alexandra Toth
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Melinda Gera
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Laurence Berry
- Unité Mixte de Recherche 5235 (Dynamique des Interactions Membranaires Normales et Pathologiques), Centre National de la Recherche Scientifique, Université Montpellier II, Montpellier, France
| | - Alice Vallentin
- Unité Mixte de Recherche 5235 (Dynamique des Interactions Membranaires Normales et Pathologiques), Centre National de la Recherche Scientifique, Université Montpellier II, Montpellier, France
| | - Henri Vial
- Unité Mixte de Recherche 5235 (Dynamique des Interactions Membranaires Normales et Pathologiques), Centre National de la Recherche Scientifique, Université Montpellier II, Montpellier, France
| | - Michel Vidal
- Unité Mixte de Recherche 5235 (Dynamique des Interactions Membranaires Normales et Pathologiques), Centre National de la Recherche Scientifique, Université Montpellier II, Montpellier, France
| | - Gergely Szakacs
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
- * E-mail:
| |
Collapse
|
38
|
Ulrich DL, Lynch J, Wang Y, Fukuda Y, Nachagari D, Du G, Sun D, Fan Y, Tsurkan L, Potter PM, Rehg JE, Schuetz JD. ATP-dependent mitochondrial porphyrin importer ABCB6 protects against phenylhydrazine toxicity. J Biol Chem 2012; 287:12679-90. [PMID: 22294697 DOI: 10.1074/jbc.m111.336180] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Abcb6 is a mammalian mitochondrial ATP-binding cassette (ABC) transporter that regulates de novo porphyrin synthesis. In previous studies, haploinsufficient (Abcb6(+/-)) embryonic stem cells showed impaired porphyrin synthesis. Unexpectedly, Abcb6(-/-) mice derived from these stem cells appeared phenotypically normal. We hypothesized that other ATP-dependent and/or -independent mechanisms conserve porphyrins. Here, we demonstrate that Abcb6(-/-) mice lack mitochondrial ATP-driven import of coproporphyrin III. Gene expression analysis revealed that loss of Abcb6 results in up-regulation of compensatory porphyrin and iron pathways, associated with elevated protoporphyrin IX (PPIX). Phenylhydrazine-induced stress caused higher mortality in Abcb6(-/-) mice, possibly because of sustained elevation of PPIX and an inability to convert PPIX to heme despite elevated ferrochelatase levels. Therefore, Abcb6 is the sole ATP-dependent porphyrin importer, and loss of Abcb6 produces up-regulation of heme and iron pathways necessary for normal development. However, under extreme demand for porphyrins (e.g. phenylhydrazine stress), these adaptations appear inadequate, which suggests that under these conditions Abcb6 is important for optimal survival.
Collapse
Affiliation(s)
- Dagny L Ulrich
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Chen C, Paw BH. Cellular and mitochondrial iron homeostasis in vertebrates. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1823:1459-67. [PMID: 22285816 DOI: 10.1016/j.bbamcr.2012.01.003] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Revised: 01/07/2012] [Accepted: 01/07/2012] [Indexed: 02/08/2023]
Abstract
Iron plays an essential role in cellular metabolism and biological processes. However, due to its intrinsic redox activity, free iron is a potentially toxic molecule in cellular biochemistry. Thus, organisms have developed sophisticated ways to import, sequester, and utilize iron. The transferrin cycle is a well-studied iron uptake pathway that is important for most vertebrate cells. Circulating iron can also be imported into cells by mechanisms that are independent of transferrin. Once imported into erythroid cells, iron is predominantly consumed by the mitochondria for the biosynthesis of heme and iron sulfur clusters. This review focuses on canonical transferrin-mediated and the newly discovered, non-transferrin mediated iron uptake pathways, as well as, mitochondrial iron homeostasis in higher eukaryotes. This article is part of a Special Issue entitled: Cell Biology of Metals.
Collapse
Affiliation(s)
- Caiyong Chen
- Department of Medicine, Hematology Division, Brigham & Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
40
|
Tang L, Bergevoet SM, Bakker-Verweij G, Harteveld CL, Giordano PC, Nijtmans L, de Witte T, Jansen JH, Raymakers RAP, van der Reijden BA. Human mitochondrial ATP-binding cassette transporter ABCB10 is required for efficient red blood cell development. Br J Haematol 2011; 157:151-4. [PMID: 22085049 DOI: 10.1111/j.1365-2141.2011.08936.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
41
|
Functional significance of the ATP-binding cassette transporter B6 in hepatocellular carcinoma. Mol Oncol 2011; 5:410-25. [PMID: 21849266 DOI: 10.1016/j.molonc.2011.07.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Accepted: 07/18/2011] [Indexed: 12/21/2022] Open
Abstract
ABCB6 is a mitochondrial transporter that regulates porphyrin biosynthesis. ABCB6 expression is upregulated in hepatocellular carcinoma (HCC) but the significance of this upregulation to HCC is not known. In the present study, we investigated: 1) ABCB6 expression in 18 resected human hepatocellular carcinoma (HCC) tissues and 3 human hepatoma cell lines; 2) pattern of ABCB6 expression during liver disease progression; and 3) functional significance of ABCB6 expression to HCC using the hepatoma cell line Huh7. ABCB6 expression was determined by real-time quantitative reverse transcription-polymerase chain reaction and western blotting. ABCB6 expression was upregulated in all the HCC specimens and the three-hepatoma cell lines. Increased ABCB6 expression correlated with liver disease progression with the pattern of expression being HCC > cirrhosis > steatosis. Small hairpin RNA (shRNA)-mediated knockdown of ABCB6 in Huh7 cells lead to decreased cellular proliferation and colony formation. Attenuation of ABCB6 expression did not affect Huh7 apoptosis but lead to a delay in G2/M phase of the cell cycle. In contrast, ABCB6 overexpression resulted in increased growth and proliferation of Huh7 cells. Since ABCB6 expression is induced in multiple tumor types we explored the role of ABCB6 in other cancer cells. ShRNA mediated knockdown of ABCB6 in HEK293 and K562 cells reduced cellular proliferation leading to a delay in G2/M phase, while ABCB6 overexpression promoted cell growth and proliferation. Collectively, these findings, obtained by loss of function and gain of function analysis, suggest that ABCB6 plays a role in cell growth and proliferation by targeting the cell cycle.
Collapse
|
42
|
Khan AA, Quigley JG. Control of intracellular heme levels: heme transporters and heme oxygenases. BIOCHIMICA ET BIOPHYSICA ACTA 2011; 1813:668-82. [PMID: 21238504 PMCID: PMC3079059 DOI: 10.1016/j.bbamcr.2011.01.008] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2010] [Revised: 12/31/2010] [Accepted: 01/06/2011] [Indexed: 12/19/2022]
Abstract
Heme serves as a co-factor in proteins involved in fundamental biological processes including oxidative metabolism, oxygen storage and transport, signal transduction and drug metabolism. In addition, heme is important for systemic iron homeostasis in mammals. Heme has important regulatory roles in cell biology, yet excessive levels of intracellular heme are toxic; thus, mechanisms have evolved to control the acquisition, synthesis, catabolism and expulsion of cellular heme. Recently, a number of transporters of heme and heme synthesis intermediates have been described. Here we review aspects of heme metabolism and discuss our current understanding of heme transporters, with emphasis on the function of the cell-surface heme exporter, FLVCR. Knockdown of Flvcr in mice leads to both defective erythropoiesis and disturbed systemic iron homeostasis, underscoring the critical role of heme transporters in mammalian physiology. This article is part of a Special Issue entitled: 11th European Symposium on Calcium.
Collapse
Affiliation(s)
- Anwar A. Khan
- Department of Medicine, Section of Hematology/Oncology, University of Illinois College of Medicine, 909 South Wolcott Avenue, Chicago, IL-60612
| | - John G. Quigley
- Department of Medicine, Section of Hematology/Oncology, University of Illinois College of Medicine, 909 South Wolcott Avenue, Chicago, IL-60612
| |
Collapse
|
43
|
Chavan H, Oruganti M, Krishnamurthy P. The ATP-binding cassette transporter ABCB6 is induced by arsenic and protects against arsenic cytotoxicity. Toxicol Sci 2011; 120:519-28. [PMID: 21266531 DOI: 10.1093/toxsci/kfr008] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Arsenic, an environmental carcinogen, remains a major public health problem. Arsenic damages biological systems through multiple mechanisms, including the generation of reactive oxygen species. ABCB6 is an ATP-binding cassette transporter that is highly expressed in cells resistant to arsenic. We have recently demonstrated that ABCB6 expression protects against cellular stressors. In the present study, we evaluated the significance of ABCB6 expression to arsenic toxicity both in mice and in cell culture. We show that sodium arsenite induces ABCB6 expression in a dose-dependent manner both in mice fed sodium arsenite in drinking water and in cells exposed to sodium arsenite in vitro. Arsenite-induced ABCB6 expression was transcriptionally regulated, but this induction was not mediated by the redox-sensitive transcription factor nuclear factor-erythroid 2-related factor 2 (Nrf2). We demonstrate that, in HepG2 and Hep3B cells, knockdown of ABCB6 expression using ABCB6-specific small interfering RNA sensitized the cells to arsenite toxicity. In contrast, stable overexpression of ABCB6 conferred a strong survival advantage toward arsenite-induced oxidative stress. Collectively, these results, obtained by both loss of function and gain of function analysis, suggest that ABCB6 expression in response to sodium arsenite might be an endogenous protective mechanism activated to protect cells against arsenite-induced oxidative stress.
Collapse
Affiliation(s)
- Hemantkumar Chavan
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | | | | |
Collapse
|
44
|
Fukuda Y, Aguilar-Bryan L, Vaxillaire M, Dechaume A, Wang Y, Dean M, Moitra K, Bryan J, Schuetz JD. Conserved intramolecular disulfide bond is critical to trafficking and fate of ATP-binding cassette (ABC) transporters ABCB6 and sulfonylurea receptor 1 (SUR1)/ABCC8. J Biol Chem 2011; 286:8481-8492. [PMID: 21199866 DOI: 10.1074/jbc.m110.174516] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The ATP-binding cassette (ABC) transporter ABCB6 is a mitochondrial porphyrin transporter that activates porphyrin biosynthesis. ABCB6 lacks a canonical mitochondrial targeting sequence but reportedly traffics to other cellular compartments such as the plasma membrane. How ABCB6 reaches these destinations is unknown. In this study, we show that endogenous ABCB6 is glycosylated in multiple cell types, indicating trafficking through the endoplasmic reticulum (ER), and has only one atypical site for glycosylation (NXC) in its amino terminus. ABCB6 remained glycosylated when the highly conserved cysteine (Cys-8) was substituted with serine to make a consensus site, NXS. However, this substitution blocked ER exit and produced ABCB6 degradation, which was mostly reversed by the proteasomal inhibitor MG132. The amino terminus of ABCB6 has an additional highly conserved ER luminal cysteine (Cys-26). When Cys-26 was mutated alone or in combination with Cys-8, it also resulted in instability and ER retention. Further analysis revealed that these two cysteines form a disulfide bond. We discovered that other ABC transporters with an amino terminus in the ER had similarly configured conserved cysteines. This analysis led to the discovery of a disease-causing mutation in the sulfonylurea receptor 1 (SUR1)/ABCC8 from a patient with hyperinsulinemic hypoglycemia. The mutant allele only contains a mutation in a conserved amino-terminal cysteine, producing SUR1 that fails to reach the cell surface. These results suggest that for ABC transporters the propensity to form a disulfide bond in the ER defines a unique checkpoint that determines whether a protein is ER-retained.
Collapse
Affiliation(s)
- Yu Fukuda
- From the Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee 38105,; Interdisciplinary Program, College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, Tennessee 38163
| | | | - Martine Vaxillaire
- CNRS UMR 8090 Unit, Institute of Biology and Pasteur Institute, Lille 59019, France, and
| | - Aurelie Dechaume
- CNRS UMR 8090 Unit, Institute of Biology and Pasteur Institute, Lille 59019, France, and
| | - Yao Wang
- From the Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee 38105
| | - Michael Dean
- Laboratory of Experimental Immunology, NCI, National Institutes of Health, Frederick, Maryland 21702
| | - Karobi Moitra
- Laboratory of Experimental Immunology, NCI, National Institutes of Health, Frederick, Maryland 21702
| | - Joseph Bryan
- Pacific Northwest Research Institute, Seattle, Washington 98122
| | - John D Schuetz
- From the Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee 38105,.
| |
Collapse
|
45
|
Tang L, Bergevoet SM, Gilissen C, de Witte T, Jansen JH, van der Reijden BA, Raymakers RAP. Hematopoietic stem cells exhibit a specific ABC transporter gene expression profile clearly distinct from other stem cells. BMC Pharmacol 2010; 10:12. [PMID: 20836839 PMCID: PMC2945345 DOI: 10.1186/1471-2210-10-12] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2010] [Accepted: 09/13/2010] [Indexed: 12/16/2022] Open
Abstract
Background ATP-binding cassette (ABC) transporters protect cells against unrelated (toxic) substances by pumping them across cell membranes. Earlier we showed that many ABC transporters are highly expressed in hematopoietic stem cells (HSCs) compared to more committed progenitor cells. The ABC transporter expression signature may guarantee lifelong protection of HSCs but may also preserve stem cell integrity by extrusion of agents that trigger their differentiation. Here we have studied whether non-hematopoietic stem cells (non-HSCs) exhibit a similar ABC transporter expression signature as HSCs. Results ABC transporter expression profiles were determined in non-hematopoietic stem cells (non-HSCs) from embryonic, neonatal and adult origin as well as in various mature blood cell types. Over 11,000 individual ABC transporter expression values were generated by Taqman Low Density Arrays (TLDA) to obtain a sensitivity comparable with quantitative real-time polymerase chain reactions. We found that the vast majority of transporters are significantly higher expressed in HSCs compared to non-HSCs. Furthermore, regardless their origin, non-HSCs exhibited strikingly similar ABC transporter expression profiles that were distinct from those in HSCs. Yet, sets of transporters characteristic for different stem cell types could be identified, suggesting restricted functions in stem cell physiology. Remarkably, in HSCs we could not pinpoint any single transporter expressed at an evidently elevated level when compared to all the mature blood cell types studied. Conclusions These findings challenge the concept that individual ABC transporters are implicated in maintaining stem cell integrity. Instead, a distinct ABC transporter expression signature may be essential for stem cell function. The high expression of specific transporters in non-HSCs and mature blood cells suggests a specialized, cell type dependent function and warrants further functional experiments to determine their exact roles in cellular (patho)physiology.
Collapse
Affiliation(s)
- Leilei Tang
- Department of Laboratory Medicine, Laboratory of Hematology, Radboud University Nijmegen Medical Centre/Nijmegen Centre for Molecular Life Sciences, Geert Grooteplein 8, 6525GA Nijmegen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|