1
|
Torres JA, Holznecht N, Asplund DA, Kroes BC, Amarlkhagva T, Haeffner MM, Sharpe EH, Koestner S, Strubl S, Schimmel MF, Kruger S, Agrawal S, Aceves BA, Thangaraju M, Weimbs T. β-hydroxybutyrate recapitulates the beneficial effects of ketogenic metabolic therapy in polycystic kidney disease. iScience 2024; 27:110773. [PMID: 39314240 PMCID: PMC11418134 DOI: 10.1016/j.isci.2024.110773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 05/30/2024] [Accepted: 08/15/2024] [Indexed: 09/25/2024] Open
Abstract
Autosomal-dominant polycystic kidney disease (ADPKD) is a common monogenic disease characterized by the formation of fluid-filled renal cysts, loss of mitochondrial function, decreased fatty acid oxidation, increased glycolysis, and likely renal failure. We previously demonstrated that inducing a state of ketosis ameliorates or reverses PKD progression in multiple animal models. In this study, we compare time-restricted feeding and 48-h periodic fasting regimens in both juvenile and adult Cy/+ rats. Both fasting regimens potently prevent juvenile disease progression and partially reverse PKD in adults. To explore the mechanism of fasting, we administered β-hydroxybutyrate (BHB) to Cy/+ rats and orthologous mouse models of PKD (Pkd1 RC/RC , Pkd1-Ksp:Cre). BHB recapitulated the effects of fasting in these models independent of stereoisomer, suggesting the effects of BHB are largely due to its signaling functions. These findings implicate the use of ketogenic metabolic therapy and BHB supplementation as potential disease modifiers of PKD and point toward underlying mechanisms.
Collapse
Affiliation(s)
- Jacob A. Torres
- Department of Molecular, Cellular, Developmental Biology, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Nickolas Holznecht
- Department of Molecular, Cellular, Developmental Biology, University of California Santa Barbara, Santa Barbara, CA, USA
| | - David A. Asplund
- Department of Molecular, Cellular, Developmental Biology, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Bradley C. Kroes
- Department of Molecular, Cellular, Developmental Biology, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Tselmeg Amarlkhagva
- Department of Molecular, Cellular, Developmental Biology, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Matthias M. Haeffner
- Department of Molecular, Cellular, Developmental Biology, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Elizabeth H. Sharpe
- Department of Molecular, Cellular, Developmental Biology, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Stella Koestner
- Department of Molecular, Cellular, Developmental Biology, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Sebastian Strubl
- Department of Molecular, Cellular, Developmental Biology, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Margaret F. Schimmel
- Department of Molecular, Cellular, Developmental Biology, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Samantha Kruger
- Department of Molecular, Cellular, Developmental Biology, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Shagun Agrawal
- Department of Molecular, Cellular, Developmental Biology, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Brina A. Aceves
- Department of Molecular, Cellular, Developmental Biology, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Muthusamy Thangaraju
- Department of Biochemistry and Molecular Biology, University of Augusta, Augusta, GA, USA
| | - Thomas Weimbs
- Department of Molecular, Cellular, Developmental Biology, University of California Santa Barbara, Santa Barbara, CA, USA
| |
Collapse
|
2
|
Selke P, Strauss C, Horstkorte R, Scheer M. Effect of Different Glucose Levels and Glycation on Meningioma Cell Migration and Invasion. Int J Mol Sci 2024; 25:10075. [PMID: 39337558 PMCID: PMC11432498 DOI: 10.3390/ijms251810075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/15/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
Meningiomas are predominantly benign tumors, but there are also malignant forms that are associated with a poor prognosis. Like almost all tumors, meningiomas metabolize glucose as part of aerobic glycolysis (Warburg effect) for energy supply, so there are attempts to influence the prognosis of tumor diseases using a glucose-reduced diet. This altered metabolism leads to so called hallmarks of cancer, such as glycation and glycosylation. In this study, we investigated the influence of low (3 mM), normal (5.5 mM) and high glucose (15 mM) on a malignant meningioma cell line (IOMM-Lee, WHO grade 3). In addition, the influence of methylglyoxal, a by-product of glycolysis and a precursor for glycation, was investigated. Impedance-based methods (ECIS and RTCA) were used to study migration and invasion, and immunoblotting was used to analyze the expression of proteins relevant to these processes, such as focal adhesion kinase (FAK), merlin or integrin ß1. We were able to show that low glucose reduced the invasive potential of the cells, which was associated with a reduced amount of sialic acid. Under high glucose, barrier function was impaired and adhesion decreased, which correlated with a decreased expression of FAK.
Collapse
Affiliation(s)
- Philipp Selke
- Institute for Physiological Chemistry, Medical Faculty, Martin-Luther-University Halle-Wittenberg, 06114 Halle (Saale), Germany
| | - Christian Strauss
- Department of Neurosurgery, Medical Faculty, Martin-Luther-University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120 Halle (Saale), Germany
| | - Rüdiger Horstkorte
- Institute for Physiological Chemistry, Medical Faculty, Martin-Luther-University Halle-Wittenberg, 06114 Halle (Saale), Germany
| | - Maximilian Scheer
- Department of Neurosurgery, Medical Faculty, Martin-Luther-University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120 Halle (Saale), Germany
| |
Collapse
|
3
|
Chen K, Li T, Diao H, Wang Q, Zhou X, Huang Z, Wang M, Mao Z, Yang Y, Yu W. SIRT7 knockdown promotes gemcitabine sensitivity of pancreatic cancer cell via upregulation of GLUT3 expression. Cancer Lett 2024; 598:217109. [PMID: 39002692 DOI: 10.1016/j.canlet.2024.217109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/04/2024] [Accepted: 07/04/2024] [Indexed: 07/15/2024]
Abstract
Gemcitabine serves as a first-line chemotherapeutic treatment for pancreatic cancer (PC), but it is prone to rapid drug resistance. Increasing the sensitivity of PC to gemcitabine has long been a focus of research. Fasting interventions may augment the effects of chemotherapy and present new options. SIRT7 is known to link metabolism with various cellular processes through post-translational modifications. We found upregulation of SIRT7 in PC cells is associated with poor prognosis and gemcitabine resistance. Cross-analysis of RNA-seq and ATAC-seq data suggested that GLUT3 might be a downstream target gene of SIRT7. Subsequent investigations demonstrated that SIRT7 directly interacts with the enhancer region of GLUT3 to desuccinylate H3K122. Our group's another study revealed that GLUT3 can transport gemcitabine in breast cancer cells. Here, we found GLUT3 KD reduces the sensitivity of PC cells to gemcitabine, and SIRT7 KD-associated gemcitabine-sensitizing could be reversed by GLUT3 KD. While fasting mimicking induced upregulation of SIRT7 expression in PC cells, knocking down SIRT7 enhanced sensitivity to gemcitabine through upregulating GLUT3 expression. We further confirmed the effect of SIRT7 deficiency on the sensitivity of gemcitabine under fasting conditions using a mouse xenograft model. In summary, our study demonstrates that SIRT7 can regulate GLUT3 expression by binding to its enhancer and altering H3K122 succinylation levels, thus affecting gemcitabine sensitivity in PC cells. Additionally, combining SIRT7 knockdown with fasting may improve the efficacy of gemcitabine. This unveils a novel mechanism by which SIRT7 influences gemcitabine sensitivity in PC and offer innovative strategies for clinical combination therapy with gemcitabine.
Collapse
Affiliation(s)
- Keyu Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Health Science Center, Beijing, 100191, China
| | - Tiane Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Health Science Center, Beijing, 100191, China
| | - Honglin Diao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Health Science Center, Beijing, 100191, China
| | - Qikai Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Health Science Center, Beijing, 100191, China
| | - Xiaojia Zhou
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Health Science Center, Beijing, 100191, China
| | - Zhihua Huang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Health Science Center, Beijing, 100191, China
| | - Mingyue Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Health Science Center, Beijing, 100191, China
| | - Zebin Mao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Health Science Center, Beijing, 100191, China.
| | - Yinmo Yang
- Department of General Surgery, Peking University First Hospital, Beijing, 100034, China.
| | - Wenhua Yu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Health Science Center, Beijing, 100191, China.
| |
Collapse
|
4
|
Rezaeian AH, Wei W. Molecular signaling and clinical implications in the human aging-cancer cycle. Semin Cancer Biol 2024; 106-107:28-42. [PMID: 39197809 DOI: 10.1016/j.semcancer.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/07/2024] [Accepted: 08/09/2024] [Indexed: 09/01/2024]
Abstract
It is well documented that aging is associated with cancer, and likewise, cancer survivors display accelerated aging. As the number of aging individuals and cancer survivors continues to grow, it raises additional concerns across society. Therefore, unraveling the molecular mechanisms of aging in tissues is essential to developing effective therapies to fight the aging and cancer diseases in cancer survivors and cancer patients. Indeed, cellular senescence is a critical response, or a natural barrier to suppress the transition of normal cells into cancer cells, however, hypoxia which is physiologically required to maintain the stem cell niche, is increased by aging and inhibits senescence in tissues. Interestingly, oxygen restriction or hypoxia increases longevity and slows the aging process in humans, but hypoxia can also drive angiogenesis to facilitate cancer progression. In addition, cancer treatment is considered as one of the major reasons that drive cellular senescence, subsequently followed by accelerated aging. Several clinical trials have recently evaluated inhibitors to eliminate senescent cells. However, some mechanisms of aging typically can also retard cancer cell growth and progression, which might require careful strategy for better clinical outcomes. Here we describe the molecular regulation of aging and cancer in crosstalk with DNA damage and hypoxia signaling pathways in cancer patients and cancer survivors. We also update several therapeutic strategies that might be critical in reversing the cancer treatment-associated aging process.
Collapse
Affiliation(s)
- Abdol-Hossein Rezaeian
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, United States.
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, United States.
| |
Collapse
|
5
|
Sheykhbahaei N, Tameemi AHA, Koopaie M. Effect of short-term fasting on the cisplatin activity in human oral squamous cell carcinoma cell line HN5 and chemotherapy side effects. BMC Cancer 2024; 24:989. [PMID: 39123141 PMCID: PMC11316436 DOI: 10.1186/s12885-024-12752-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024] Open
Abstract
BACKGROUND Ketogenic interventions like short-term fasting show potential as complementary therapies to enhance the effectiveness of chemotherapy for cancer. However, the specific effects of fasting on head and neck squamous cell carcinoma (HNSCC) cells and healthy oral mucosa cells during these treatments are not well understood. This study investigates whether short-term fasting can differentially impact HNSCC cell survival and viability compared to healthy keratinocytes while undergoing standard chemotherapy regimens. METHODS This study investigated the effects of fasting on cell viability in HN5 cell line and healthy oral keratinocyte cells. The HN5 cell line, derived from human tongue squamous cell carcinoma, and primary human keratinocytes isolated from the basal layer of gingival epithelium were divided into three groups: (1) control, (2) treated with the standard chemotherapeutic agent cisplatin, and (3) treated with cisplatin under fasting conditions achieved through 48-hour glucose restriction mimicking the blood glucose levels of fasted individuals. Cell proliferation was assessed at 48 and 72 h using the MTT assay, a colorimetric method based on mitochondrial dehydrogenase activity. Flow cytometry analysis with specific apoptosis and necrosis markers distinguished between early and late apoptotic, necrotic, and viable cells. RESULTS Cell viability in HN5 and healthy keratinocyte cells decreased in cisplatin with low glucose groups compared to cisplatin and control groups. The same results were observed for healthy keratinocyte cells; only a decrease in cell viability in cisplatin groups compared to control groups was observed, which was not statistically significant. Cell apoptosis in HN5 and healthy keratinocyte cells increased in cisplatin with low glucose groups compared to cisplatin and control groups. In healthy keratinocyte cells, the cisplatin with low glucose group showed an impressive increase in necrosis, late apoptosis, and early apoptosis and a significant decrease in live cells compared with other groups. CONCLUSION This study revealed that short-term fasting chemotherapy significantly improved HNSCC cell line apoptosis and necrosis.
Collapse
Affiliation(s)
- Nafiseh Sheykhbahaei
- Department of Oral Medicine, School of Dentistry, Tehran University of Medical Sciences, North Kargar St, Tehran, 14399-55991, Iran
| | - Ahmed Hayder Al Tameemi
- Dentist, Department of Oral Medicine, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Koopaie
- Department of Oral Medicine, School of Dentistry, Tehran University of Medical Sciences, North Kargar St, Tehran, 14399-55991, Iran.
| |
Collapse
|
6
|
Vernieri C, Ligorio F, Tripathy D, Longo VD. Cyclic fasting-mimicking diet in cancer treatment: Preclinical and clinical evidence. Cell Metab 2024; 36:1644-1667. [PMID: 39059383 DOI: 10.1016/j.cmet.2024.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 06/03/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024]
Abstract
In preclinical tumor models, cyclic fasting and fasting-mimicking diets (FMDs) produce antitumor effects that become synergistic when combined with a wide range of standard anticancer treatments while protecting normal tissues from treatment-induced adverse events. More recently, results of phase 1/2 clinical trials showed that cyclic FMD is safe, feasible, and associated with positive metabolic and immunomodulatory effects in patients with different tumor types, thus paving the way for larger clinical trials to investigate FMD anticancer activity in different clinical contexts. Here, we review the tumor-cell-autonomous and immune-system-mediated mechanisms of fasting/FMD antitumor effects, and we critically discuss new metabolic interventions that could synergize with nutrient starvation to boost its anticancer activity and prevent or reverse tumor resistance while minimizing toxicity to patients. Finally, we highlight potential future applications of FMD approaches in combination with standard anticancer strategies as well as strategies to implement the design and conduction of clinical trials.
Collapse
Affiliation(s)
- Claudio Vernieri
- Medical Oncology and Hematology-Oncology Department, University of Milan, 20122 Milan, Italy; IFOM ETS, the AIRC Institute of Molecular Oncology, 20139 Milan, Italy.
| | - Francesca Ligorio
- Medical Oncology and Hematology-Oncology Department, University of Milan, 20122 Milan, Italy; Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy
| | - Debu Tripathy
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Unit 1354, 1515 Holcombe Blvd, Houston, TX 77030-4009, USA
| | - Valter D Longo
- IFOM ETS, the AIRC Institute of Molecular Oncology, 20139 Milan, Italy; Longevity Institute, Davis School of Gerontology and Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
7
|
Zhang S, Zhong R, Tang S, Chen L, Zhang H. Metabolic regulation of the Th17/Treg balance in inflammatory bowel disease. Pharmacol Res 2024; 203:107184. [PMID: 38615874 DOI: 10.1016/j.phrs.2024.107184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/28/2024] [Accepted: 04/11/2024] [Indexed: 04/16/2024]
Abstract
Inflammatory bowel disease (IBD) is a long-lasting and inflammatory autoimmune condition affecting the gastrointestinal tract, impacting millions of individuals globally. The balance between T helper 17 (Th17) cells and regulatory T cells (Tregs) is pivotal in the pathogenesis and progression of IBD. This review summarizes the pivotal role of Th17/Treg balance in maintaining intestinal homeostasis, elucidating how its dysregulation contributes to the development and exacerbation of IBD. It comprehensively synthesizes the current understanding of how dietary factors regulate the metabolic pathways influencing Th17 and Treg cell differentiation and function. Additionally, this review presents evidence from the literature on the potential of dietary regimens to regulate the Th17/Treg balance as a strategy for the management of IBD. By exploring the intersection between diet, metabolic regulation, and Th17/Treg balance, the review reveals innovative therapeutic approaches for IBD treatment, offering a promising perspective for future research and clinical practice.
Collapse
Affiliation(s)
- Shunfen Zhang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Ruqing Zhong
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Shanlong Tang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Liang Chen
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
8
|
Pio R, Senent Y, Tavira B, Ajona D. Fasting and fasting-mimicking conditions in the cancer immunotherapy era. J Physiol Biochem 2024:10.1007/s13105-024-01020-3. [PMID: 38587595 DOI: 10.1007/s13105-024-01020-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/27/2024] [Indexed: 04/09/2024]
Abstract
Fasting and fasting-mimicking conditions modulate tumor metabolism and remodel the tumor microenvironment (TME), which could be exploited for the treatment of tumors. A body of evidence demonstrates that fasting and fasting-mimicking conditions can kill cancer cells, or sensitize them to the antitumor activity of standard-of-care drugs while protecting normal cells against their toxic side effects. Pre- and clinical data also suggest that immune responses are involved in these therapeutic effects. Therefore, there is increasing interest in evaluating the impact of fasting-like conditions in the efficacy of antitumor therapies based on the restoration or activation of antitumor immune responses. Here, we review the recent progress in the intersection of fasting-like conditions and current cancer treatments, with an emphasis on cancer immunotherapy.
Collapse
Affiliation(s)
- Ruben Pio
- Laboratory of Translational Oncology, Program in Solid Tumors, Cima Universidad de Navarra, Cancer Center Clínica Universidad de Navarra (CCUN), Pamplona, Spain
- Department of Biochemistry and Genetics, School of Sciences, Universidad de Navarra, Pamplona, Spain
- Navarra's Health Research Institute (IDISNA), Pamplona, Spain
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain
| | - Yaiza Senent
- Laboratory of Translational Oncology, Program in Solid Tumors, Cima Universidad de Navarra, Cancer Center Clínica Universidad de Navarra (CCUN), Pamplona, Spain
- Department of Biochemistry and Genetics, School of Sciences, Universidad de Navarra, Pamplona, Spain
- Navarra's Health Research Institute (IDISNA), Pamplona, Spain
| | - Beatriz Tavira
- Laboratory of Translational Oncology, Program in Solid Tumors, Cima Universidad de Navarra, Cancer Center Clínica Universidad de Navarra (CCUN), Pamplona, Spain
- Department of Biochemistry and Genetics, School of Sciences, Universidad de Navarra, Pamplona, Spain
- Navarra's Health Research Institute (IDISNA), Pamplona, Spain
- Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, Pamplona, Spain
| | - Daniel Ajona
- Laboratory of Translational Oncology, Program in Solid Tumors, Cima Universidad de Navarra, Cancer Center Clínica Universidad de Navarra (CCUN), Pamplona, Spain.
- Department of Biochemistry and Genetics, School of Sciences, Universidad de Navarra, Pamplona, Spain.
- Navarra's Health Research Institute (IDISNA), Pamplona, Spain.
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain.
| |
Collapse
|
9
|
Jacques C, Marchand F, Chatelais M, Albinet V, Coustal C, Floris I. The Micro-Immunotherapy Medicine 2LPAPI ® Displays Immune-Modulatory Effects in a Model of Human Papillomavirus Type-16 L1-Protein Capsid-Treated Human Peripheral Blood Mononuclear Cells and Antiproliferative Effects in a Model of Cervical Cancer Cells. Cancers (Basel) 2024; 16:1421. [PMID: 38611099 PMCID: PMC11010933 DOI: 10.3390/cancers16071421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 03/28/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024] Open
Abstract
Human papillomavirus (HPV) is the second most common infectious agent causing cancer. Persistent infection with high-risk (HR)-HPV can lead to cervical intra-epithelial neoplasia and cervical carcinomas (CC). While host immune response is necessary for viral clearance, chronic immune activation contributes to a low-grade inflammation that can ultimately lead to carcinogenesis. The micro-immunotherapy medicine (MIM) 2LPAPI® could be a valuable tool to manage the clearance of the virus and reduce the risk of developing CC. In this in vitro study, we aimed to investigate its mode of action. We showed that actives from the MIM increased the IL-6, IFN-γ, and IP-10 secretion in human peripheral blood mononuclear cells (PBMCs) exposed to peptides derived from the HPV-16 capsid (HPV16(L1)). This could reflect an increase in the immune activity toward HPV-16. At the same time, some active substances reduced the lympho-proliferation and the expression of T-cell activation markers. Finally, some of the MIM actives displayed antiproliferative effects in CC-derived HeLa cells under serum-starvation conditions. Altogether, this body of data highlighted for the first time the dual effect of MIM in the framework of HR-HPV infections as a potential (i) immune modulator of HPV16(L1)-treated PBMCs and (ii) antiproliferative agent of HPV-positive CC cells.
Collapse
Affiliation(s)
- Camille Jacques
- Preclinical Research Department, Labo’Life France, Pescalis-Les Magnys, 79320 Moncoutant-sur-Sevre, France;
| | - Flora Marchand
- ProfileHIT, 7 rue du Buisson, 44680 Sainte-Pazanne, France; (F.M.); (M.C.)
| | - Mathias Chatelais
- ProfileHIT, 7 rue du Buisson, 44680 Sainte-Pazanne, France; (F.M.); (M.C.)
| | - Virginie Albinet
- Imavita S.A.S., Canal Biotech 1&2, 3 rue des Satellites, Parc Technologique du Canal, 31400 Toulouse, France; (V.A.); (C.C.)
| | - Claire Coustal
- Imavita S.A.S., Canal Biotech 1&2, 3 rue des Satellites, Parc Technologique du Canal, 31400 Toulouse, France; (V.A.); (C.C.)
| | - Ilaria Floris
- Preclinical Research Department, Labo’Life France, Pescalis-Les Magnys, 79320 Moncoutant-sur-Sevre, France;
| |
Collapse
|
10
|
Strilbytska O, Klishch S, Storey KB, Koliada A, Lushchak O. Intermittent fasting and longevity: From animal models to implication for humans. Ageing Res Rev 2024; 96:102274. [PMID: 38499159 DOI: 10.1016/j.arr.2024.102274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 02/16/2024] [Accepted: 03/13/2024] [Indexed: 03/20/2024]
Abstract
In recent years, intermittent fasting (IF) and its numerous modifications have been increasingly suggested as a promising therapy for age-related problems and a non-pharmacological strategy to extend lifespan. Despite the great variability in feeding schedules that we describe in the current work, underlying physiological processes are the same and include a periodic switch from glucose metabolism (generated by glycogenolysis) to fatty acids and fatty acid-derived ketones. Many of the beneficial effects of IF appear to be mediated by optimization of energy utilization. Findings to date from both human and animal experiments indicate that fasting improves physiological function, enhances performance, and slows aging and disease processes. In this review, we discuss some of the remarkable discoveries about the beneficial effects of IF on metabolism, endocrine and cardiovascular systems, cancer prevention, brain health, neurodegeneration and aging. Experimental studies on rodent models and human investigations are summarized to compare the outcomes and underlying mechanisms of IF. Metabolic and cellular responses triggered by IF could help to achieve the aim of preventing disease, and maximizing healthspan and longevity with minimal side effects.
Collapse
Affiliation(s)
- Olha Strilbytska
- Deparment of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, Shevchenka 57, Ivano-Frankivsk 76018, Ukraine
| | - Svitlana Klishch
- Deparment of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, Shevchenka 57, Ivano-Frankivsk 76018, Ukraine
| | - Kenneth B Storey
- Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ontario, Ottawa K1S 5B6, Canada
| | - Alexander Koliada
- D.F. Chebotarev Institute of Gerontology, NAMS, 67 Vyshgorodska str., Kyiv 04114, Ukraine
| | - Oleh Lushchak
- Deparment of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, Shevchenka 57, Ivano-Frankivsk 76018, Ukraine; Research and Development University, 13a Shota Rustaveli str., Ivano-Frankivsk 76018, Ukraine.
| |
Collapse
|
11
|
Song X, Wei J, Li Y, Zhu W, Cai Z, Li K, Wei J, Lu J, Pan W, Li M. An integrative pan-cancer analysis of the molecular characteristics of dietary restriction in tumour microenvironment. EBioMedicine 2024; 102:105078. [PMID: 38507875 PMCID: PMC10965464 DOI: 10.1016/j.ebiom.2024.105078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/28/2024] [Accepted: 03/07/2024] [Indexed: 03/22/2024] Open
Abstract
BACKGROUND Dietary restriction (DR), a general term for dieting, has been demonstrated as an effective intervention in reducing the occurrence of cancers. Molecular activities associated with DR are crucial in mediating its anti-cancer effects, yet a comprehensive exploration of the landscape of these activities at the pan-cancer level is still lacking. METHODS We proposed a computational approach for quantifying DR-related molecular activities and delineating the landscape of these activities across 33 cancer types and 30 normal tissues within 27,320 samples. We thoroughly examined the associations between DR-related molecular activities and various factors, including the tumour microenvironment, immunological phenotypes, genomic features, and clinical prognosis. Meanwhile, we identified two DR genes that show potential as prognostic predictors in hepatocellular carcinoma and verified them by immunohistochemical assays in 90 patients. FINDINGS We found that DR-related molecular activities showed a close association with tumour immunity and hold potential for predicting immunotherapy responses in various cancers. Importantly, a higher level of DR-related molecular activities is associated with improved overall survival and cancer-specific survival. FZD1 and G6PD are two DR genes that serve as biomarkers for predicting the prognosis of patients with hepatocellular carcinoma. INTERPRETATION This study presents a robust link between DR-related molecular activities and tumour immunity across multiple cancer types. Our research could open the path for further investigation of DR-related molecular processes in cancer treatment. FUNDING National Natural Science Foundation of China (Grant No. 82000628) and the Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine Foundation of Guangdong Province (Grant No. 2023LSYS001).
Collapse
Affiliation(s)
- Xiaoyi Song
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, China; Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, China
| | - Jiaxing Wei
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, China; Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, China
| | - Yang Li
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, China; Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, China
| | - Wen Zhu
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, China; Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, China
| | - Zhiyuan Cai
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, China; Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, China
| | - Kunwei Li
- Department of Radiology, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, China
| | - Jingyue Wei
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, China; Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, China
| | - Jieyu Lu
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, China; Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, China
| | - Wanping Pan
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, China; Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, China
| | - Man Li
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, China; Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, China; Biobank, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, China; Department of Information Technology and Data Center, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, China.
| |
Collapse
|
12
|
Raucci F, Vernieri C, Di Tano M, Ligorio F, Blaževitš O, Lazzeri S, Shmahala A, Fragale G, Salvadori G, Varano G, Casola S, Buono R, Visco E, de Braud F, Longo VD. Cyclic Fasting-Mimicking Diet Plus Bortezomib and Rituximab Is an Effective Treatment for Chronic Lymphocytic Leukemia. Cancer Res 2024; 84:1133-1148. [PMID: 38241703 PMCID: PMC10982641 DOI: 10.1158/0008-5472.can-23-0295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 10/12/2023] [Accepted: 01/18/2024] [Indexed: 01/21/2024]
Abstract
Cyclic fasting-mimicking diet (FMD) is an experimental nutritional intervention with potent antitumor activity in preclinical models of solid malignancies. FMD cycles are also safe and active metabolically and immunologically in cancer patients. Here, we reported on the outcome of FMD cycles in two patients with chronic lymphocytic leukemia (CLL) and investigated the effects of fasting and FMD cycles in preclinical CLL models. Fasting-mimicking conditions in murine CLL models had mild cytotoxic effects, which resulted in apoptosis activation mediated in part by lowered insulin and IGF1 concentrations. In CLL cells, fasting conditions promoted an increase in proteasome activity that served as a starvation escape pathway. Pharmacologic inhibition of this escape mechanism with the proteasome inhibitor bortezomib resulted in a strong enhancement of the proapoptotic effects of starvation conditions in vitro. In mouse CLL models, combining cyclic fasting/FMD with bortezomib and rituximab, an anti-CD20 antibody, delayed CLL progression and resulted in significant prolongation of mouse survival. Overall, the effect of proteasome inhibition in combination with FMD cycles in promoting CLL death supports the targeting of starvation escape pathways as an effective treatment strategy that should be tested in clinical trials. SIGNIFICANCE Chronic lymphocytic leukemia cells resist fasting-mimicking diet by inducing proteasome activation to escape starvation, which can be targeted using proteasome inhibition by bortezomib treatment to impede leukemia progression and prolong survival.
Collapse
Affiliation(s)
- Franca Raucci
- IFOM ETS, the AIRC Institute of Molecular Oncology, Milan, Italy
| | - Claudio Vernieri
- IFOM ETS, the AIRC Institute of Molecular Oncology, Milan, Italy
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Maira Di Tano
- IFOM ETS, the AIRC Institute of Molecular Oncology, Milan, Italy
- Weill Cornell Medical College, Department of Medicine, Cornell University, New York, New York
| | - Francesca Ligorio
- IFOM ETS, the AIRC Institute of Molecular Oncology, Milan, Italy
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Olga Blaževitš
- IFOM ETS, the AIRC Institute of Molecular Oncology, Milan, Italy
| | - Samuel Lazzeri
- IFOM ETS, the AIRC Institute of Molecular Oncology, Milan, Italy
| | | | - Giuseppe Fragale
- IFOM ETS, the AIRC Institute of Molecular Oncology, Milan, Italy
| | - Giulia Salvadori
- IFOM ETS, the AIRC Institute of Molecular Oncology, Milan, Italy
| | - Gabriele Varano
- IFOM ETS, the AIRC Institute of Molecular Oncology, Milan, Italy
| | - Stefano Casola
- IFOM ETS, the AIRC Institute of Molecular Oncology, Milan, Italy
| | - Roberta Buono
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, California
- Longevity Institute, Davis School of Gerontology and Department of Biological Sciences, University of Southern California, Los Angeles, California
| | - Euplio Visco
- IFOM ETS, the AIRC Institute of Molecular Oncology, Milan, Italy
| | - Filippo de Braud
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Valter D. Longo
- IFOM ETS, the AIRC Institute of Molecular Oncology, Milan, Italy
- Longevity Institute, Davis School of Gerontology and Department of Biological Sciences, University of Southern California, Los Angeles, California
| |
Collapse
|
13
|
Xiao YL, Gong Y, Qi YJ, Shao ZM, Jiang YZ. Effects of dietary intervention on human diseases: molecular mechanisms and therapeutic potential. Signal Transduct Target Ther 2024; 9:59. [PMID: 38462638 PMCID: PMC10925609 DOI: 10.1038/s41392-024-01771-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 02/05/2024] [Accepted: 02/18/2024] [Indexed: 03/12/2024] Open
Abstract
Diet, serving as a vital source of nutrients, exerts a profound influence on human health and disease progression. Recently, dietary interventions have emerged as promising adjunctive treatment strategies not only for cancer but also for neurodegenerative diseases, autoimmune diseases, cardiovascular diseases, and metabolic disorders. These interventions have demonstrated substantial potential in modulating metabolism, disease trajectory, and therapeutic responses. Metabolic reprogramming is a hallmark of malignant progression, and a deeper understanding of this phenomenon in tumors and its effects on immune regulation is a significant challenge that impedes cancer eradication. Dietary intake, as a key environmental factor, can influence tumor metabolism. Emerging evidence indicates that dietary interventions might affect the nutrient availability in tumors, thereby increasing the efficacy of cancer treatments. However, the intricate interplay between dietary interventions and the pathogenesis of cancer and other diseases is complex. Despite encouraging results, the mechanisms underlying diet-based therapeutic strategies remain largely unexplored, often resulting in underutilization in disease management. In this review, we aim to illuminate the potential effects of various dietary interventions, including calorie restriction, fasting-mimicking diet, ketogenic diet, protein restriction diet, high-salt diet, high-fat diet, and high-fiber diet, on cancer and the aforementioned diseases. We explore the multifaceted impacts of these dietary interventions, encompassing their immunomodulatory effects, other biological impacts, and underlying molecular mechanisms. This review offers valuable insights into the potential application of these dietary interventions as adjunctive therapies in disease management.
Collapse
Affiliation(s)
- Yu-Ling Xiao
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yue Gong
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Ying-Jia Qi
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Zhi-Ming Shao
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yi-Zhou Jiang
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
14
|
Dutta A, Thakur S, Dey DK, Kumar A. Cisplatin and Starvation Differently Sensitize Autophagy in Renal Carcinoma: A Potential Therapeutic Pathway to Target Variegated Drugs Resistant Cancerous Cells. Cells 2024; 13:471. [PMID: 38534315 DOI: 10.3390/cells13060471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/26/2024] [Accepted: 03/03/2024] [Indexed: 03/28/2024] Open
Abstract
Cisplatin, a powerful chemotherapy medication, has long been a cornerstone in the fight against cancer due to chemotherapeutic failure. The mechanism of cisplatin resistance/failure is a multifaceted and complex issue that consists mainly of apoptosis inhibition through autophagy sensitization. Currently, researchers are exploring ways to regulate autophagy in order to tip the balance in favor of effective chemotherapy. Based on this notion, the current study primarily identifies the differentially expressed genes (DEGs) in cisplatin-treated autophagic ACHN cells through the Illumina Hi-seq platform. A protein-protein interaction network was constructed using the STRING database and KEGG. GO classifiers were implicated to identify genes and their participating biological pathways. ClueGO, David, and MCODE detected ontological enrichment and sub-networking. The network topology was further examined using 12 different algorithms to identify top-ranked hub genes through the Cytoscape plugin Cytohubba to identify potential targets, which established profound drug efficacy under an autophagic environment. Considerable upregulation of genes related to autophagy and apoptosis suggests that autophagy boosts cisplatin efficacy in malignant ACHN cells with minimal harm to normal HEK-293 growth. Furthermore, the determination of cellular viability and apoptosis by AnnexinV/FITC-PI assay corroborates with in silico data, indicating the reliability of the bioinformatics method followed by qRT-PCR. Altogether, our data provide a clear molecular insight into drug efficacy under starved conditions to improve chemotherapy and will likely prompt more clinical trials on this aspect.
Collapse
Affiliation(s)
- Ankita Dutta
- Advanced Nanoscale Molecular Oncology Laboratory (ANMOL), Department of Biotechnology, University of North Bengal, Siliguri 734013, West Bengal, India
| | - Subarna Thakur
- Department of Bioinformatics, University of North Bengal, Siliguri 734013, West Bengal, India
| | - Debasish Kumar Dey
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Anoop Kumar
- Advanced Nanoscale Molecular Oncology Laboratory (ANMOL), Department of Biotechnology, University of North Bengal, Siliguri 734013, West Bengal, India
| |
Collapse
|
15
|
Menyhárt O, Győrffy B. Dietary approaches for exploiting metabolic vulnerabilities in cancer. Biochim Biophys Acta Rev Cancer 2024; 1879:189062. [PMID: 38158024 DOI: 10.1016/j.bbcan.2023.189062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 12/20/2023] [Accepted: 12/20/2023] [Indexed: 01/03/2024]
Abstract
Renewed interest in tumor metabolism sparked an enthusiasm for dietary interventions to prevent and treat cancer. Changes in diet impact circulating nutrient levels in the plasma and the tumor microenvironment, and preclinical studies suggest that dietary approaches, including caloric and nutrient restrictions, can modulate tumor initiation, progression, and metastasis. Cancers are heterogeneous in their metabolic dependencies and preferred energy sources and can be addicted to glucose, fructose, amino acids, or lipids for survival and growth. This dependence is influenced by tumor type, anatomical location, tissue of origin, aberrant signaling, and the microenvironment. This review summarizes nutrient dependencies and the related signaling pathway activations that provide targets for nutritional interventions. We examine popular dietary approaches used as adjuvants to anticancer therapies, encompassing caloric restrictions, including time-restricted feeding, intermittent fasting, fasting-mimicking diets (FMDs), and nutrient restrictions, notably the ketogenic diet. Despite promising results, much of the knowledge on dietary restrictions comes from in vitro and animal studies, which may not accurately reflect real-life situations. Further research is needed to determine the optimal duration, timing, safety, and efficacy of dietary restrictions for different cancers and treatments. In addition, well-designed human trials are necessary to establish the link between specific metabolic vulnerabilities and targeted dietary interventions. However, low patient compliance in clinical trials remains a significant challenge.
Collapse
Affiliation(s)
- Otília Menyhárt
- Semmelweis University, Department of Bioinformatics, Tűzoltó u. 7-9, H-1094 Budapest, Hungary; Research Centre for Natural Sciences, Cancer Biomarker Research Group, Institute of Enzymology, Magyar tudósok krt. 2, H-1117 Budapest, Hungary; National Laboratory for Drug Research and Development, Magyar tudósok krt. 2, H-1117 Budapest, Hungary
| | - Balázs Győrffy
- Semmelweis University, Department of Bioinformatics, Tűzoltó u. 7-9, H-1094 Budapest, Hungary; Research Centre for Natural Sciences, Cancer Biomarker Research Group, Institute of Enzymology, Magyar tudósok krt. 2, H-1117 Budapest, Hungary; National Laboratory for Drug Research and Development, Magyar tudósok krt. 2, H-1117 Budapest, Hungary.
| |
Collapse
|
16
|
Ghashang SK, Suwandi A, Buettner M, Hamdan I, Grassl GA, Gutenbrunner C, Nugraha B. Alterations in anthropometric, inflammatory and mental health parameters during Ramadan intermittent fasting in a group of healthy people: a prospective cohort study. Front Nutr 2024; 11:1298281. [PMID: 38362105 PMCID: PMC10867316 DOI: 10.3389/fnut.2024.1298281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 01/15/2024] [Indexed: 02/17/2024] Open
Abstract
Fasting has been practiced with different time span in different areas of the world and for various reasons. One of the types of fasting regimens is Ramadan intermittent fasting (RIF), which is described as intermittent dry fasting and known as the most commonly practiced form of religious fasting. Different studies have shown its effects on body composition parameters and mental health, fatigue and quality of life (QoL). Elucidating the relationship of RIF on biological parameters would also be of importance to show its mechanism. Therefore, we evaluated several biological mediators related to mental health, such as ß-nerve growth factor (ß-NGF), brain-derived neurotrophic factor (BDNF), glial cell line-derived neurotrophic factor (GDNF), and insulin-like growth factor-1 (IGF-1), interleukin-8 (IL-8), tumor necrosis factor-α (TNF-α), and matrix-metalloproteinase-9 (MMP-9). This study consisted of fasting (FG; n = 25) and non-fasting group (NFG; n = 25). Four different time points were assessed for FG: one week before (T1), mid (T2), last days (T3), and one week after (T4) RIF. T1 and T3 were the assessment time points for NFG. Biological mediators were determined from serum samples by using Human Magnetic Luminex and enzyme-linked immunosorbent assay. Furthermore, we then performed correlation analyses between biological mediators and our previously published clinical parameters including body composition and mental health parameters at all time points. Significant alterations were shown in FG for ß-NGF (T2vsT3, p < 0.05; T2vsT4, p < 0.05), GDNF (T1vsT4, p < 0.05; T2vsT4, p < 0.05), IL-8 (T2vsT3, p < 0.05; T3vsT4, p < 0.05), TNF-α (T1vsT3, p < 0.05; T1vsT4, p < 0.001; T2vsT4, p < 0.001), and MMP-9 (T1vsT4, p < 0.01). There were no statistically significant differences between FG and NFG in all biological mediators at T1 and T3. Correlation analysis showed that MMP-9 levels had negative correlation with body mass index (BMI) at T3. At T3 BDNF levels had negative correlation with Epworth Sleepiness Scale (ESS) as one of measured QoL parameters. ß-NGF, GDNF, TNF-α, and MMP-9 had positive correlation with some of body composition and mental health parameters. Findings demonstrate that RIF altered different biological mediators could give benefit to health. Its benefit is mediated by the alteration of biological mediators.
Collapse
Affiliation(s)
- Samaneh Khosandam Ghashang
- Department of Rehabilitation and Sport Medicine, Hannover Medical School, Hannover, Germany
- Department of Dermatology, Johannes Wesling Medical Centre, Minden, Germany
| | - Abdulhadi Suwandi
- Institute of Cell Biochemistry, Hannover Medical School, Hannover, Germany
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
- German Center for Infection Research (DZIF), Partner-Site Hannover-Braunschweig, Hannover, Germany
| | - Manuela Buettner
- Institute for Laboratory Animal Science, Hannover Medical School, Hannover, Germany
| | - Imad Hamdan
- Department of Rehabilitation and Sport Medicine, Hannover Medical School, Hannover, Germany
| | - Guntram A. Grassl
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
- German Center for Infection Research (DZIF), Partner-Site Hannover-Braunschweig, Hannover, Germany
| | - Christoph Gutenbrunner
- Department of Rehabilitation and Sport Medicine, Hannover Medical School, Hannover, Germany
- Hannover Rehabilitation Services and Science Consulting, Hannover, Germany
| | - Boya Nugraha
- Department of Rehabilitation and Sport Medicine, Hannover Medical School, Hannover, Germany
- Hannover Rehabilitation Services and Science Consulting, Hannover, Germany
| |
Collapse
|
17
|
Ma W, Arima Y, Umemoto T, Yokomizo T, Xu Y, Miharada K, Tanaka Y, Suda T. Metabolic regulation in erythroid differentiation by systemic ketogenesis in fasted mice. Exp Hematol 2024; 129:104124. [PMID: 37898316 DOI: 10.1016/j.exphem.2023.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 10/13/2023] [Accepted: 10/22/2023] [Indexed: 10/30/2023]
Abstract
Erythroid terminal differentiation and maturation depend on an enormous energy supply. During periods of fasting, ketone bodies from the liver are transported into circulation and utilized as crucial fuel for peripheral tissues. However, the effects of fasting or ketogenesis on erythroid behavior remain unknown. Here, we generated a mouse model with insufficient ketogenesis by conditionally knocking out the gene encoding the hepatocyte-specific ketogenic enzyme hydroxymethylglutary-CoA synthase 2 (Hmgcs2 KO). Intriguingly, erythroid maturation was enhanced with boosted fatty acid synthesis in the bone marrow of a hepatic Hmgcs2 KO mouse under fasting conditions, suggesting that systemic ketogenesis has a profound effect on erythropoiesis. Moreover, we observed significantly activated fatty acid synthesis and mevalonate pathways along with reduced histone acetylation in immature erythrocytes under a less systemic ketogenesis condition. Our findings revealed a new insight into erythroid differentiation, in which metabolic homeostasis and histone acetylation mediated by ketone bodies are essential factors in adaptation toward nutrient deprivation and stressed erythropoiesis.
Collapse
Affiliation(s)
- Wenjuan Ma
- International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan
| | - Yuichiro Arima
- International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan
| | - Terumasa Umemoto
- International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan
| | - Tomomasa Yokomizo
- International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan
| | - Yuqing Xu
- International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan
| | - Kenichi Miharada
- International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan
| | - Yosuke Tanaka
- International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan
| | - Toshio Suda
- International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan; Cancer Science Institute of Singapore, Centre for Translation Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
18
|
Mishra A, Giuliani G, Longo VD. Nutrition and dietary restrictions in cancer prevention. Biochim Biophys Acta Rev Cancer 2024; 1879:189063. [PMID: 38147966 DOI: 10.1016/j.bbcan.2023.189063] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 11/15/2023] [Accepted: 12/20/2023] [Indexed: 12/28/2023]
Abstract
The composition and pattern of dietary intake have emerged as key factors influencing aging, regeneration, and consequently, healthspan and lifespan. Cancer is one of the major diseases more tightly linked with aging, and age-related mortality. Although the role of nutrition in cancer incidence is generally well established, we are far from a consensus on how diet influences tumour development in different tissues. In this review, we will discuss how diet and dietary restrictions affect cancer risk and the molecular mechanisms potentially responsible for their effects. We will cover calorie restriction, intermittent fasting, prolonged fasting, fasting-mimicking diet, time-restricted eating, ketogenic diet, high protein diet, Mediterranean diet, and the vegan and vegetarian diets.
Collapse
Affiliation(s)
- Amrendra Mishra
- Longevity Institute and Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Giacomo Giuliani
- Longevity Institute and Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Valter D Longo
- Longevity Institute and Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA; IFOM, FIRC Institute of Molecular Oncology, Via Adamello, 16, 20139 Milano, Italy.
| |
Collapse
|
19
|
Ceci C, García-Chico C, Atzori MG, Lacal PM, Lista S, Santos-Lozano A, Graziani G, Pinto-Fraga J. Impact of Physical Exercise on Melanoma Hallmarks: Current Status of Preclinical and Clinical Research. J Cancer 2024; 15:1-19. [PMID: 38164270 PMCID: PMC10751671 DOI: 10.7150/jca.88559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/16/2023] [Indexed: 01/03/2024] Open
Abstract
In recent years, accumulating evidence from preclinical and clinical studies consistently indicated that physical activity/exercise plays a crucial role in reducing the incidence and recurrence of various malignancies, by exerting a beneficial modulation of cancer hallmarks. Moreover, physical activity is suggested to attenuate certain adverse effects of anticancer therapy, including the reduction of cardiovascular toxicity and symptoms related to depression and anxiety, among others, while preserving muscular strength. In the case of melanoma, the relationship with physical activity has been critically debated. Historically, several cohort studies and meta-analyses reported a positive association between physical activity/exercise and melanoma risk. This association was primarily attributed to outdoor activities that may expose the skin to UV radiation, a well-known risk factor for melanocyte transformation. However, more recent evidence does not support such association and recognizes physical activity/exercise role in both melanoma prevention and progression. Nevertheless, sun protection is recommended during outdoor training to minimize UV radiation exposure. This narrative review summarizes preclinical and clinical data about physical activity effects on melanoma hallmarks. Specifically, experimental evidence is reported concerning (i) invasion and metastasis, (ii) reprogramming of energy metabolism, (iii) angiogenesis, (iv) resistance to cell death, (v) evasion from immune destruction, and (vi) tumor-promoting inflammation.
Collapse
Affiliation(s)
- Claudia Ceci
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Celia García-Chico
- i+HeALTH Strategic Research Group, Department of Health Sciences, Miguel de Cervantes European University (UEMC), 47012 Valladolid, Spain
| | | | | | - Simone Lista
- i+HeALTH Strategic Research Group, Department of Health Sciences, Miguel de Cervantes European University (UEMC), 47012 Valladolid, Spain
| | - Alejandro Santos-Lozano
- i+HeALTH Strategic Research Group, Department of Health Sciences, Miguel de Cervantes European University (UEMC), 47012 Valladolid, Spain
| | - Grazia Graziani
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - José Pinto-Fraga
- i+HeALTH Strategic Research Group, Department of Health Sciences, Miguel de Cervantes European University (UEMC), 47012 Valladolid, Spain
| |
Collapse
|
20
|
Mackieh R, Al-Bakkar N, Kfoury M, Okdeh N, Pietra H, Roufayel R, Legros C, Fajloun Z, Sabatier JM. Unlocking the Benefits of Fasting: A Review of its Impact on Various Biological Systems and Human Health. Curr Med Chem 2024; 31:1781-1803. [PMID: 38018193 DOI: 10.2174/0109298673275492231121062033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/26/2023] [Accepted: 10/17/2023] [Indexed: 11/30/2023]
Abstract
Fasting has gained significant attention in recent years for its potential health benefits in various body systems. This review aims to comprehensively examine the effects of fasting on human health, specifically focusing on its impact on different body's physiological systems. The cardiovascular system plays a vital role in maintaining overall health, and fasting has shown promising effects in improving cardiovascular health markers such as blood pressure, cholesterol levels, and triglyceride levels. Additionally, fasting has been suggested to enhance insulin sensitivity, promote weight loss, and improve metabolic health, thus offering potential benefits to individuals with diabetes and metabolic disorders. Furthermore, fasting can boost immune function, reduce inflammation, enhance autophagy, and support the body's defense against infections, cancer, and autoimmune diseases. Fasting has also demonstrated a positive effect on the brain and nervous system. It has been associated with neuroprotective properties, improving cognitive function, and reducing the risk of neurodegenerative diseases, besides the ability of increasing the lifespan. Hence, understanding the potential advantages of fasting can provide valuable insights for individuals and healthcare professionals alike in promoting health and wellbeing. The data presented here may have significant implications for the development of therapeutic approaches and interventions using fasting as a potential preventive and therapeutic strategy.
Collapse
Affiliation(s)
- Rawan Mackieh
- Department of Biology, Faculty of Sciences, Lebanese University, Campus Michel Slayman Ras Maska, Tripoli 1352, Lebanon
| | - Nadia Al-Bakkar
- Faculty of Health Sciences, College of Life Sciences, Beirut Arab University, Beirut Campus, P.O. Box 11 50 20, Riad El Solh, Beirut 11072809, Lebanon
| | - Milena Kfoury
- Department of Biology, Faculty of Sciences, Lebanese University, Campus Michel Slayman Ras Maska, Tripoli 1352, Lebanon
| | - Nathalie Okdeh
- Department of Biology, Faculty of Sciences, Lebanese University, Campus Michel Slayman Ras Maska, Tripoli 1352, Lebanon
| | - Hervé Pietra
- Association Esprit Jeûne & Fasting Spirit, 226, Chemin du Pélican, Toulon 83000, France
| | - Rabih Roufayel
- College of Engineering and Technology, American University of the Middle East, Hadiya, Kuwait
| | - Christian Legros
- Univ Angers, INSERM, CNRS, MITOVASC, Team 2 CarMe, SFR ICAT, Angers 49000, France
| | - Ziad Fajloun
- Department of Biology, Faculty of Sciences, Lebanese University, Campus Michel Slayman Ras Maska, Tripoli 1352, Lebanon
- Laboratory of Applied Biotechnology (LBA3B), Azm Center for Research in Biotechnology and its Applications, EDST, Lebanese University, Tripoli 1300, Lebanon
| | - Jean-Marc Sabatier
- Aix-- Marseille Université, CNRS, INP, Inst Neurophysiopathol, Marseille 13385, France
| |
Collapse
|
21
|
de Gruil N, Böhringer S, de Groot S, Pijl H, Kroep JR, Swen JJ. IGF1 and Insulin Receptor Single Nucleotide Variants Associated with Response in HER2-Negative Breast Cancer Patients Treated with Neoadjuvant Chemotherapy with or without a Fasting Mimicking Diet (BOOG 2013-04 DIRECT Trial). Cancers (Basel) 2023; 15:5872. [PMID: 38136416 PMCID: PMC10742143 DOI: 10.3390/cancers15245872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/13/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
AIM We aimed to investigate associations between IGF1R and INSR single nucleotide variants (SNVs) and clinical response in patients with breast cancer treated with neoadjuvant chemotherapy with or without a fasting mimicking diet (FMD) from the DIRECT trial (NCT02126449), since insulin-like growth factor 1 (IGF1) and the insulin pathway are heavily involved in tumor growth and progression. METHODS Germline DNA from 113 patients was tested for 17 systematically selected candidate SNVs in IGF1R and INSR with pathological and radiological response. RESULTS IGF1R variants A > G (rs3743259) and G > A (rs3743258) are associated with worse pathological response compared to reference alleles p = 0.002, OR = 0.42 (95%CI: 0.24; 0.73); p = 0.0016; OR = 0.40 (95%CI: 0.23; 0.70). INSR T > C (rs1051690) may be associated with worse radiological response p = 0.02, OR = 2.92 (95%CI: 1.16; 7.36), although not significant after Bonferroni correction. Exploratory interaction analysis suggests that IGF1R SNVs rs2684787 and rs2654980 interact negatively with the FMD group regarding radiological response p = 0.036, OR = 5.13 (95%CI: 1.12; 23.63); p = 0.024, OR = 5.71 (95%CI: 1.26; 25.85). CONCLUSIONS The IGF1R variants rs3743259 and rs3743258 are negatively associated with pathological response in this cohort, suggesting potential relevance as a predictive biomarker. Further research is needed to validate these findings and elucidate the underlying mechanisms and interaction with FMD.
Collapse
Affiliation(s)
- Nadia de Gruil
- Department of Medical Oncology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands;
| | - Stefan Böhringer
- Department of Medical Statistics and Bioinformatics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands;
| | - Stefanie de Groot
- Department of Medical Oncology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands;
| | - Hanno Pijl
- Department of Endocrinology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands;
| | - Judith R. Kroep
- Department of Medical Oncology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands;
| | - Jesse J. Swen
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands;
| |
Collapse
|
22
|
Buono R, Tucci J, Cutri R, Guidi N, Mangul S, Raucci F, Pellegrini M, Mittelman SD, Longo VD. Fasting-Mimicking Diet Inhibits Autophagy and Synergizes with Chemotherapy to Promote T-Cell-Dependent Leukemia-Free Survival. Cancers (Basel) 2023; 15:5870. [PMID: 38136414 PMCID: PMC10741737 DOI: 10.3390/cancers15245870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/07/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Fasting mimicking diets (FMDs) are effective in the treatment of many solid tumors in mouse models, but their effect on hematologic malignancies is poorly understood, particularly in combination with standard therapies. Here we show that cycles of a 3-day FMD given to high-fat-diet-fed mice once a week increased the efficacy of vincristine to improve survival from BCR-ABL B acute lymphoblastic leukemia (ALL). In mice fed a standard diet, FMD cycles in combination with vincristine promoted cancer-free survival. RNA seq and protein assays revealed a vincristine-dependent decrease in the expression of multiple autophagy markers, which was exacerbated by the fasting/FMD conditions. The autophagy inhibitor chloroquine could substitute for fasting/FMD to promote cancer-free survival in combination with vincristine. In vitro, targeted inhibition of autophagy genes ULK1 and ATG9a strongly potentiated vincristine's toxicity. Moreover, anti-CD8 antibodies reversed the effects of vincristine plus fasting/FMD in promoting leukemia-free survival in mice, indicating a central role of the immune system in this response. Thus, the inhibition of autophagy and enhancement of immune responses appear to be mediators of the fasting/FMD-dependent cancer-free survival in ALL mice.
Collapse
Affiliation(s)
- Roberta Buono
- Department of Biological Sciences, Longevity Institute, School of Gerontology, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089, USA
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697, USA
| | - Jonathan Tucci
- Center for Endocrinology, Diabetes & Metabolism, Children’s Hospital Los Angeles, 4650 Sunset Blvd, Los Angeles, CA 90027, USA
| | - Raffaello Cutri
- Department of Biological Sciences, Longevity Institute, School of Gerontology, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089, USA
| | - Novella Guidi
- Department of Biological Sciences, Longevity Institute, School of Gerontology, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089, USA
| | - Serghei Mangul
- Department of Computer Science, University of California Los Angeles, 580 Portola Plaza, Los Angeles, CA 90095, USA
- Institute for Quantitative and Computational Biosciences, Boyer Hall, 611 Charles Young Drive, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Franca Raucci
- IFOM AIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Matteo Pellegrini
- Institute for Quantitative and Computational Biosciences, Boyer Hall, 611 Charles Young Drive, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, 801 Hilgard Avenue, Los Angeles, CA 90095, USA
| | - Steven D. Mittelman
- Center for Endocrinology, Diabetes & Metabolism, Children’s Hospital Los Angeles, 4650 Sunset Blvd, Los Angeles, CA 90027, USA
- Division of Pediatric Endocrinology, UCLA Mattel Children’s Hospital, 10833 Le Conte Avenue, MDCC 22-315, Los Angeles, CA 90095, USA
| | - Valter D. Longo
- Department of Biological Sciences, Longevity Institute, School of Gerontology, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089, USA
- IFOM AIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research at USC, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
23
|
Cismas S, Pasca S, Crudden C, Trocoli Drakensjo I, Suleymanova N, Zhang S, Gebhard B, Song D, Neo S, Shibano T, Smith TJ, Calin GA, Girnita A, Girnita L. Competing Engagement of β-arrestin Isoforms Balances IGF1R/p53 Signaling and Controls Melanoma Cell Chemotherapeutic Responsiveness. Mol Cancer Res 2023; 21:1288-1302. [PMID: 37584671 DOI: 10.1158/1541-7786.mcr-22-0871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 05/01/2023] [Accepted: 08/14/2023] [Indexed: 08/17/2023]
Abstract
Constraints on the p53 tumor suppressor pathway have long been associated with the progression, therapeutic resistance, and poor prognosis of melanoma, the most aggressive form of skin cancer. Likewise, the insulin-like growth factor type 1 receptor (IGF1R) is recognized as an essential coordinator of transformation, proliferation, survival, and migration of melanoma cells. Given that β-arrestin (β-arr) system critically governs the anti/pro-tumorigenic p53/IGF1R signaling pathways through their common E3 ubiquitin-protein ligase MDM2, we explore whether unbalancing this system downstream of IGF1R can enhance the response of melanoma cells to chemotherapy. Altering β-arr expression demonstrated that both β-arr1-silencing and β-arr2-overexpression (-β-arr1/+β-arr2) facilitated nuclear-to-cytosolic MDM2 translocation accompanied by decreased IGF1R expression, while increasing p53 levels, resulting in reduced cell proliferation/survival. Imbalance towards β-arr2 (-β-arr1/+β-arr2) synergizes with the chemotherapeutic agent, dacarbazine, in promoting melanoma cell toxicity. In both 3D spheroid models and in vivo in zebrafish models, this combination strategy, through dual IGF1R downregulation/p53 activation, limits melanoma cell growth, survival and metastatic spread. In clinical settings, analysis of the TCGA-SKCM patient cohort confirms β-arr1-/β-arr2+ imbalance as a metastatic melanoma vulnerability that may enhance therapeutic benefit. Our findings suggest that under steady-state conditions, IGF1R/p53-tumor promotion/suppression status-quo is preserved by β-arr1/2 homeostasis. Biasing this balance towards β-arr2 can limit the protumorigenic IGF1R activities while enhancing p53 activity, thus reducing multiple cancer-sustaining mechanisms. Combined with other therapeutics, this strategy improves patient responses and outcomes to therapies relying on p53 or IGF1R pathways. IMPLICATIONS Altogether, β-arrestin system bias downstream IGF1R is an important metastatic melanoma vulnerability that may be conductive for therapeutic benefit.
Collapse
Affiliation(s)
- Sonia Cismas
- Department of Oncology and Pathology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Sylvya Pasca
- Department of Oncology and Pathology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Caitrin Crudden
- Department of Oncology and Pathology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
- Department of Pathology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Iara Trocoli Drakensjo
- Department of Oncology and Pathology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Naida Suleymanova
- Department of Oncology and Pathology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Simin Zhang
- Department of Oncology and Pathology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Benjamin Gebhard
- Department of Oncology and Pathology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Dawei Song
- Department of Oncology and Pathology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Shiyong Neo
- Department of Oncology and Pathology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
- Singapore Immunology Network SIgN, Agency for Science, Technology and Research, Singapore, Republic of Singapore
| | - Takashi Shibano
- Department of Oncology and Pathology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Terry J Smith
- Kellogg Eye Center, Department of Ophthalmology and Visual Sciences, University of Michigan Medical School, Ann Arbor, Michigan
- Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan
| | - George A Calin
- Department of Experimental Therapeutics, The University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Ada Girnita
- Department of Oncology and Pathology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
- Dermatology Department, Karolinska University Hospital, Stockholm, Sweden
| | - Leonard Girnita
- Department of Oncology and Pathology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
24
|
Zhang J, Li X, Yin Y, Cao G, Wang H. A Biodegradable Nucleotide Coordination Polymer for Enhanced NSCLC Therapy in Combination with Metabolic Modulation. Adv Healthc Mater 2023; 12:e2302187. [PMID: 37607115 DOI: 10.1002/adhm.202302187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/09/2023] [Indexed: 08/24/2023]
Abstract
Epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) in the treatment of non-small cell lung cancer (NSCLC) still face challenges of acquired resistance and non-negligible side effects. To overcome these limitations, a biodegradable coordination polymer using guanine deoxynucleotide and ferrous iron (dGNP) is developed for targeted delivery of EGFR-TKIs. dGNPs can efficiently target nucleoside transporters in tumor cells that are regulated by fasting-mimicking diet (FMD). Meanwhile, FMD can augment the therapeutic efficacy of EGFR-TKIs by suppressing EGFR tyrosine kinase phosphorylation and related downstream pathways. In vivo results demonstrate that EGFR-TKIs-laden dGNPs combined with FMD treatment exhibit superior antitumor efficacy and reduced side effect. This study provides an innovative approach to enhance the therapeutic efficacy of EGFR-TKIs through nucleotide nanocarrier and metabolic modulation.
Collapse
Affiliation(s)
- Jie Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoyang Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Yue Yin
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Guoliang Cao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Hai Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
25
|
Xue Y, Lu F, Chang Z, Li J, Gao Y, Zhou J, Luo Y, Lai Y, Cao S, Li X, Zhou Y, Li Y, Tan Z, Cheng X, Li X, Chen J, Wang W. Intermittent dietary methionine deprivation facilitates tumoral ferroptosis and synergizes with checkpoint blockade. Nat Commun 2023; 14:4758. [PMID: 37553341 PMCID: PMC10409767 DOI: 10.1038/s41467-023-40518-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 07/27/2023] [Indexed: 08/10/2023] Open
Abstract
Dietary methionine interventions are beneficial to apoptosis-inducing chemotherapy and radiotherapy for cancer, while their effects on ferroptosis-targeting therapy and immunotherapy are unknown. Here we show the length of time methionine deprivation affects tumoral ferroptosis differently. Prolonged methionine deprivation prevents glutathione (GSH) depletion from exceeding the death threshold by blocking cation transport regulator homolog 1 (CHAC1) protein synthesis. Whereas, short-term methionine starvation accelerates ferroptosis by stimulating CHAC1 transcription. In vivo, dietary methionine with intermittent but not sustained deprivation augments tumoral ferroptosis. Intermittent methionine deprivation also sensitizes tumor cells against CD8+ T cell-mediated cytotoxicity and synergize checkpoint blockade therapy by CHAC1 upregulation. Clinically, tumor CHAC1 correlates with clinical benefits and improved survival in cancer patients treated with checkpoint blockades. Lastly, the triple combination of methionine intermittent deprivation, system xc- inhibitor and PD-1 blockade shows superior antitumor efficacy. Thus, intermittent methionine deprivation is a promising regimen to target ferroptosis and augment cancer immunotherapy.
Collapse
Affiliation(s)
- Ying Xue
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fujia Lu
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhenzhen Chang
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Li
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuan Gao
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jie Zhou
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Luo
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yongfeng Lai
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Siyuan Cao
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoxiao Li
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuhan Zhou
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Li
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zheng Tan
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiang Cheng
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiong Li
- Department of Gynecology & Obstetrics, the Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Chen
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weimin Wang
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Cell Architecture Research Institute, Huazhong University of Science and Technology, Wuhan, China.
- Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China.
| |
Collapse
|
26
|
Cortellino S, Longo VD. Metabolites and Immune Response in Tumor Microenvironments. Cancers (Basel) 2023; 15:3898. [PMID: 37568713 PMCID: PMC10417674 DOI: 10.3390/cancers15153898] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/27/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
The remodeled cancer cell metabolism affects the tumor microenvironment and promotes an immunosuppressive state by changing the levels of macro- and micronutrients and by releasing hormones and cytokines that recruit immunosuppressive immune cells. Novel dietary interventions such as amino acid restriction and periodic fasting mimicking diets can prevent or dampen the formation of an immunosuppressive microenvironment by acting systemically on the release of hormones and growth factors, inhibiting the release of proinflammatory cytokines, and remodeling the tumor vasculature and extracellular matrix. Here, we discuss the latest research on the effects of these therapeutic interventions on immunometabolism and tumor immune response and future scenarios pertaining to how dietary interventions could contribute to cancer therapy.
Collapse
Affiliation(s)
- Salvatore Cortellino
- Laboratory of Pre-Clinical and Translational Research, IRCCS-CROB, Referral Cancer Center of Basilicata, 85028 Rionero in Vulture, Italy;
| | - Valter D. Longo
- IFOM, The AIRC Institute of Molecular Oncology, 20139 Milan, Italy
- Longevity Institute, Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
27
|
Schmidt MW, Brenner W, Gebhard S, Schmidt M, Singer S, Weidenbach L, Hahn H, Puzankova D, Blau-Schneider B, Lehnert A, Battista MJ, Almstedt K, Lütkemeyer A, Radsak MP, Mähringer-Kunz A, Krajnak S, Linz VC, Schwab R, Gabriel B, Hasenburg A, Anic K. Effects of intermittent fasting on quality of life tolerance of chemotherapy in patients with gynecological cancers: study protocol of a randomized-controlled multi-center trial. Front Oncol 2023; 13:1222573. [PMID: 37538111 PMCID: PMC10396395 DOI: 10.3389/fonc.2023.1222573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 06/27/2023] [Indexed: 08/05/2023] Open
Abstract
Fatigue is a very common side effect during intravenous chemotherapy. Unfortunately, only few effective therapeutic options are available, mostly based on daily activity. In our pilot trial we were able to demonstrate that intermittent fasting can reduce fatigue in healthy people, thus we aimed to assess the effects of the fasting dietary on quality of life during chemotherapy in patients with gynecological cancer, especially on the domain of fatigue. The IFAST trial is designed as a prospective, randomized-controlled, multi-center trial. Participation will be offered to women with gynecological cancers (breast cancer, ovarian cancer including peritoneal and fallopian tube cancers, endometrial cancer and cervical cancer) who are planned to receive intravenous chemotherapy for at least three months. Eligible patients will be randomized 1:1, stratified by tumor type and study center. Primary endpoint is the difference in mean change in fatigue, assessed with the Functional Assessment of Chronic Illness Therapy-Fatigue Scale (FACIT- FS©). Exploratory secondary endpoints will include general Quality of Life impairment, tolerance of chemotherapy, immunological changes, peripheral cell damage in blood cells, as well as tumor response to chemotherapy. There is new evidence that prolonged fasting periods of 46-96 hours during chemotherapy can positively influence the quality of life during chemotherapy. However, these fasting regiments are not feasible for many patients. Intermittent fasting could be a feasible (manageable) option for many patients to actively improve their quality of life and tolerance to chemotherapy and possibly even enhance the effectiveness of chemotherapy. Trial Registration https://drks.de, identifier DRKS00031429.
Collapse
Affiliation(s)
- Mona Wanda Schmidt
- Department of Gynecology and Obstetrics, University Medical Center of Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Walburgis Brenner
- Department of Gynecology and Obstetrics, Management of the Scientific laboratories, University Medical Center of Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Susanne Gebhard
- Department of Gynecology and Obstetrics, Management of the Scientific laboratories, University Medical Center of Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Marcus Schmidt
- Department of Gynecology and Obstetrics, University Medical Center of Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Susanne Singer
- Division of Epidemiology and Health Services Research, Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center of Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Lina Weidenbach
- Department of Gynecology and Obstetrics, University Medical Center of Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Harriett Hahn
- Department of Gynecology and Obstetrics, University Medical Center of Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Diana Puzankova
- Department of Gynecology and Obstetrics, University Medical Center of Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Bettina Blau-Schneider
- Department of Obstetrics and Gynecology, St. Josefs Hospital Wiesbaden Academic Teaching Hospital, Wiesbaden, Germany
| | - Antje Lehnert
- Department of Obstetrics and Gynecology, St. Josefs Hospital Wiesbaden Academic Teaching Hospital, Wiesbaden, Germany
| | - Marco Johannes Battista
- Department of Gynecology and Obstetrics, University Medical Center of Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Katrin Almstedt
- Department of Gynecology and Obstetrics, University Medical Center of Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Anja Lütkemeyer
- Department of Gynecology and Obstetrics, University Medical Center of Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Markus Philipp Radsak
- IIIrd Department of Medicine, Medical Center of the Johannes Gutenberg-University of Mainz, Mainz, Germany
| | - Aline Mähringer-Kunz
- Department of Radiology, University Medical Center of Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Slavomir Krajnak
- Department of Gynecology and Obstetrics, University Medical Center of Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Valerie Cathrine Linz
- Department of Gynecology and Obstetrics, University Medical Center of Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Roxana Schwab
- Department of Gynecology and Obstetrics, University Medical Center of Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Boris Gabriel
- Division of Epidemiology and Health Services Research, Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center of Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Annette Hasenburg
- Department of Gynecology and Obstetrics, University Medical Center of Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Katharina Anic
- Department of Gynecology and Obstetrics, University Medical Center of Johannes Gutenberg University of Mainz, Mainz, Germany
| |
Collapse
|
28
|
Cai Y, Liu Y, Wu Z, Wang J, Zhang X. Effects of Diet and Exercise on Circadian Rhythm: Role of Gut Microbiota in Immune and Metabolic Systems. Nutrients 2023; 15:2743. [PMID: 37375647 DOI: 10.3390/nu15122743] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/12/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
A close relationship exists between the intestinal microbiota and the circadian rhythm, which is mainly regulated by the central-biological-clock system and the peripheral-biological-clock system. At the same time, the intestinal flora also reflects a certain rhythmic oscillation. A poor diet and sedentary lifestyle will lead to immune and metabolic diseases. A large number of studies have shown that the human body can be influenced in its immune regulation, energy metabolism and expression of biological-clock genes through diet, including fasting, and exercise, with intestinal flora as the vector, thereby reducing the incidence rates of diseases. This article mainly discusses the effects of diet and exercise on the intestinal flora and the immune and metabolic systems from the perspective of the circadian rhythm, which provides a more effective way to prevent immune and metabolic diseases by modulating intestinal microbiota.
Collapse
Affiliation(s)
- Yidan Cai
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China
| | - Yanan Liu
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China
| | - Zufang Wu
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China
| | - Jing Wang
- China Rural Technology Development Center, Beijing 100045, China
| | - Xin Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China
| |
Collapse
|
29
|
Ferro Y, Maurotti S, Tarsitano MG, Lodari O, Pujia R, Mazza E, Lascala L, Russo R, Pujia A, Montalcini T. Therapeutic Fasting in Reducing Chemotherapy Side Effects in Cancer Patients: A Systematic Review and Meta-Analysis. Nutrients 2023; 15:2666. [PMID: 37375570 PMCID: PMC10303481 DOI: 10.3390/nu15122666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/12/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
The aim of this study was to assess the available evidence regarding the effect of a variety of fasting-like regimens on preventing chemotherapy-related side effects. PubMed, Scopus and Embase were used to select the studies for this review, which concluded on 24 November 2022. All types of clinical trials and case series reporting chemotherapy toxicity associated with fasting regimens and any comparison were considered. A total of 283 records were identified, of which 274 were excluded, leaving only nine studies that met the inclusion criteria. Five of these trials were randomized. Overall, moderate to high-quality evidence showed that several fasting regimens did not provide benefits compared to a conventional diet or other comparators in reducing the risk of adverse events. The overall pooled estimate for a variety of fasting regime when compared to non-fasting, indicated no significant difference in the side effects (RR = 1.10; 95% CI: 0.77-1.59; I2 = 10%, p = 0.60), including neutropenia alone (RR = 1.33; 95% CI: 0.90-1.97; I2 = 0%, p = 0.15). A sensitivity analysis confirmed these results. Based on our systematic review and meta-analysis, there is currently no evidence supporting the superiority of therapeutic fasting over non-fasting in preventing chemotherapy toxicity. The development of cancer treatment that do not entail toxicities remains imperative.
Collapse
Affiliation(s)
- Yvelise Ferro
- Department of Medical and Surgical Science, University Magna Grecia, 88100 Catanzaro, Italy; (Y.F.); (M.G.T.); (R.P.); (R.R.); (A.P.)
| | - Samantha Maurotti
- Department of Clinical and Experimental Medicine, University Magna Grecia, 88100 Catanzaro, Italy; (S.M.); (O.L.); (L.L.); (T.M.)
| | - Maria Grazia Tarsitano
- Department of Medical and Surgical Science, University Magna Grecia, 88100 Catanzaro, Italy; (Y.F.); (M.G.T.); (R.P.); (R.R.); (A.P.)
| | - Oscar Lodari
- Department of Clinical and Experimental Medicine, University Magna Grecia, 88100 Catanzaro, Italy; (S.M.); (O.L.); (L.L.); (T.M.)
| | - Roberta Pujia
- Department of Medical and Surgical Science, University Magna Grecia, 88100 Catanzaro, Italy; (Y.F.); (M.G.T.); (R.P.); (R.R.); (A.P.)
| | - Elisa Mazza
- Department of Medical and Surgical Science, University Magna Grecia, 88100 Catanzaro, Italy; (Y.F.); (M.G.T.); (R.P.); (R.R.); (A.P.)
| | - Lidia Lascala
- Department of Clinical and Experimental Medicine, University Magna Grecia, 88100 Catanzaro, Italy; (S.M.); (O.L.); (L.L.); (T.M.)
| | - Raffaella Russo
- Department of Medical and Surgical Science, University Magna Grecia, 88100 Catanzaro, Italy; (Y.F.); (M.G.T.); (R.P.); (R.R.); (A.P.)
| | - Arturo Pujia
- Department of Medical and Surgical Science, University Magna Grecia, 88100 Catanzaro, Italy; (Y.F.); (M.G.T.); (R.P.); (R.R.); (A.P.)
- Research Center for the Prevention and Treatment of Metabolic Diseases, University Magna Grecia, 88100 Catanzaro, Italy
| | - Tiziana Montalcini
- Department of Clinical and Experimental Medicine, University Magna Grecia, 88100 Catanzaro, Italy; (S.M.); (O.L.); (L.L.); (T.M.)
- Research Center for the Prevention and Treatment of Metabolic Diseases, University Magna Grecia, 88100 Catanzaro, Italy
| |
Collapse
|
30
|
Peng K, Zeng C, Gao Y, Liu B, Li L, Xu K, Yin Y, Qiu Y, Zhang M, Ma F, Wang Z. Overexpressed SIRT6 ameliorates doxorubicin-induced cardiotoxicity and potentiates the therapeutic efficacy through metabolic remodeling. Acta Pharm Sin B 2023; 13:2680-2700. [PMID: 37425037 PMCID: PMC10326298 DOI: 10.1016/j.apsb.2023.03.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 02/12/2023] [Accepted: 03/02/2023] [Indexed: 07/11/2023] Open
Abstract
Since the utilization of anthracyclines in cancer therapy, severe cardiotoxicity has become a major obstacle. The major challenge in treating cancer patients with anthracyclines is minimizing cardiotoxicity without compromising antitumor efficacy. Herein, histone deacetylase SIRT6 expression was reduced in plasma of patients treated with anthracyclines-based chemotherapy regimens. Furthermore, overexpression of SIRT6 alleviated doxorubicin-induced cytotoxicity in cardiomyocytes, and potentiated cytotoxicity of doxorubicin in multiple cancer cell lines. Moreover, SIRT6 overexpression ameliorated doxorubicin-induced cardiotoxicity and potentiated antitumor efficacy of doxorubicin in mice, suggesting that SIRT6 overexpression could be an adjunctive therapeutic strategy during doxorubicin treatment. Mechanistically, doxorubicin-impaired mitochondria led to decreased mitochondrial respiration and ATP production. And SIRT6 enhanced mitochondrial biogenesis and mitophagy by deacetylating and inhibiting Sgk1. Thus, SIRT6 overexpression coordinated metabolic remodeling from glycolysis to mitochondrial respiration during doxorubicin treatment, which was more conducive to cardiomyocyte metabolism, thus protecting cardiomyocytes but not cancer cells against doxorubicin-induced energy deficiency. In addition, ellagic acid, a natural compound that activates SIRT6, alleviated doxorubicin-induced cardiotoxicity and enhanced doxorubicin-mediated tumor regression in tumor-bearing mice. These findings provide a preclinical rationale for preventing cardiotoxicity by activating SIRT6 in cancer patients undergoing chemotherapy, but also advancing the understanding of the crucial role of SIRT6 in mitochondrial homeostasis.
Collapse
Affiliation(s)
- Kezheng Peng
- The Ministry of Education Key Laboratory of Protein Science, School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Chenye Zeng
- The Ministry of Education Key Laboratory of Protein Science, School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Yuqi Gao
- The Ministry of Education Key Laboratory of Protein Science, School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Binliang Liu
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Liyuan Li
- The Ministry of Education Key Laboratory of Protein Science, School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Kang Xu
- The Ministry of Education Key Laboratory of Protein Science, School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Yuemiao Yin
- The Ministry of Education Key Laboratory of Protein Science, School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Ying Qiu
- School of Medicine, Tsinghua University, Beijing 100084, China
| | - Mingkui Zhang
- Department of Cardiac Surgery, First Hospital of Tsinghua University, Beijing 100016, China
| | - Fei Ma
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Zhao Wang
- The Ministry of Education Key Laboratory of Protein Science, School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
31
|
Nong S, Han X, Xiang Y, Qian Y, Wei Y, Zhang T, Tian K, Shen K, Yang J, Ma X. Metabolic reprogramming in cancer: Mechanisms and therapeutics. MedComm (Beijing) 2023; 4:e218. [PMID: 36994237 PMCID: PMC10041388 DOI: 10.1002/mco2.218] [Citation(s) in RCA: 43] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 01/22/2023] [Accepted: 01/30/2023] [Indexed: 03/29/2023] Open
Abstract
Cancer cells characterized by uncontrolled growth and proliferation require altered metabolic processes to maintain this characteristic. Metabolic reprogramming is a process mediated by various factors, including oncogenes, tumor suppressor genes, changes in growth factors, and tumor-host cell interactions, which help to meet the needs of cancer cell anabolism and promote tumor development. Metabolic reprogramming in tumor cells is dynamically variable, depending on the tumor type and microenvironment, and reprogramming involves multiple metabolic pathways. These metabolic pathways have complex mechanisms and involve the coordination of various signaling molecules, proteins, and enzymes, which increases the resistance of tumor cells to traditional antitumor therapies. With the development of cancer therapies, metabolic reprogramming has been recognized as a new therapeutic target for metabolic changes in tumor cells. Therefore, understanding how multiple metabolic pathways in cancer cells change can provide a reference for the development of new therapies for tumor treatment. Here, we systemically reviewed the metabolic changes and their alteration factors, together with the current tumor regulation treatments and other possible treatments that are still under investigation. Continuous efforts are needed to further explore the mechanism of cancer metabolism reprogramming and corresponding metabolic treatments.
Collapse
Affiliation(s)
- Shiqi Nong
- State Key Laboratory of Oral DiseasesWest China Hospital of StomatologyWest China School of StomatologyNational Clinical Research Center for Oral DiseasesSichuan UniversityChengduSichuanChina
| | - Xiaoyue Han
- State Key Laboratory of Oral DiseasesWest China Hospital of StomatologyWest China School of StomatologyNational Clinical Research Center for Oral DiseasesSichuan UniversityChengduSichuanChina
| | - Yu Xiang
- Department of BiotherapyCancer CenterWest China HospitalSichuan UniversityChengduSichuanChina
| | - Yuran Qian
- State Key Laboratory of Oral DiseasesWest China Hospital of StomatologyWest China School of StomatologyNational Clinical Research Center for Oral DiseasesSichuan UniversityChengduSichuanChina
| | - Yuhao Wei
- Department of Clinical MedicineWest China School of MedicineWest China HospitalSichuan UniversityChengduSichuanChina
| | - Tingyue Zhang
- State Key Laboratory of Oral DiseasesWest China Hospital of StomatologyWest China School of StomatologyNational Clinical Research Center for Oral DiseasesSichuan UniversityChengduSichuanChina
| | - Keyue Tian
- State Key Laboratory of Oral DiseasesWest China Hospital of StomatologyWest China School of StomatologyNational Clinical Research Center for Oral DiseasesSichuan UniversityChengduSichuanChina
| | - Kai Shen
- Department of OncologyFirst Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Jing Yang
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Xuelei Ma
- State Key Laboratory of Oral DiseasesWest China Hospital of StomatologyWest China School of StomatologyNational Clinical Research Center for Oral DiseasesSichuan UniversityChengduSichuanChina
- Department of Biotherapy and Cancer CenterState Key Laboratory of BiotherapyCancer CenterWest China HospitalSichuan UniversityChengduSichuanChina
| |
Collapse
|
32
|
Pateras IS, Williams C, Gianniou DD, Margetis AT, Avgeris M, Rousakis P, Legaki AI, Mirtschink P, Zhang W, Panoutsopoulou K, Delis AD, Pagakis SN, Tang W, Ambs S, Warpman Berglund U, Helleday T, Varvarigou A, Chatzigeorgiou A, Nordström A, Tsitsilonis OE, Trougakos IP, Gilthorpe JD, Frisan T. Short term starvation potentiates the efficacy of chemotherapy in triple negative breast cancer via metabolic reprogramming. J Transl Med 2023; 21:169. [PMID: 36869333 PMCID: PMC9983166 DOI: 10.1186/s12967-023-03935-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 01/27/2023] [Indexed: 03/05/2023] Open
Abstract
BACKGROUND Chemotherapy (CT) is central to the treatment of triple negative breast cancer (TNBC), but drug toxicity and resistance place strong restrictions on treatment regimes. Fasting sensitizes cancer cells to a range of chemotherapeutic agents and also ameliorates CT-associated adverse effects. However, the molecular mechanism(s) by which fasting, or short-term starvation (STS), improves the efficacy of CT is poorly characterized. METHODS The differential responses of breast cancer or near normal cell lines to combined STS and CT were assessed by cellular viability and integrity assays (Hoechst and PI staining, MTT or H2DCFDA staining, immunofluorescence), metabolic profiling (Seahorse analysis, metabolomics), gene expression (quantitative real-time PCR) and iRNA-mediated silencing. The clinical significance of the in vitro data was evaluated by bioinformatical integration of transcriptomic data from patient data bases: The Cancer Genome Atlas (TCGA), European Genome-phenome Archive (EGA), Gene Expression Omnibus (GEO) and a TNBC cohort. We further examined the translatability of our findings in vivo by establishing a murine syngeneic orthotopic mammary tumor-bearing model. RESULTS We provide mechanistic insights into how preconditioning with STS enhances the susceptibility of breast cancer cells to CT. We showed that combined STS and CT enhanced cell death and increased reactive oxygen species (ROS) levels, in association with higher levels of DNA damage and decreased mRNA levels for the NRF2 targets genes NQO1 and TXNRD1 in TNBC cells compared to near normal cells. ROS enhancement was associated with compromised mitochondrial respiration and changes in the metabolic profile, which have a significant clinical prognostic and predictive value. Furthermore, we validate the safety and efficacy of combined periodic hypocaloric diet and CT in a TNBC mouse model. CONCLUSIONS Our in vitro, in vivo and clinical findings provide a robust rationale for clinical trials on the therapeutic benefit of short-term caloric restriction as an adjuvant to CT in triple breast cancer treatment.
Collapse
Affiliation(s)
- Ioannis S Pateras
- 2nd Department of Pathology, "Attikon" University Hospital, Medical School, National and Kapodistrian University of Athens, 124 62, Athens, Greece.
| | - Chloe Williams
- Department of Integrative Medical Biology, Umeå University, 901 87, Umeå, Sweden
| | - Despoina D Gianniou
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, 157 84, Athens, Greece
| | - Aggelos T Margetis
- 2nd Department of Internal Medicine, Athens Naval and Veterans Hospital, 115 21, Athens, Greece
| | - Margaritis Avgeris
- Laboratory of Clinical Biochemistry-Molecular Diagnostics, Second Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, "P. & A. Kyriakou" Children's Hospital, 115 27, Athens, Greece
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 157 71, Athens, Greece
| | - Pantelis Rousakis
- Department of Biology, School of Science, National and Kapodistrian University of Athens, 157 84, Athens, Greece
| | - Aigli-Ioanna Legaki
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 115 27, Athens, Greece
| | - Peter Mirtschink
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine, Technische Universität Dresden, 013 07, Dresden, Germany
| | - Wei Zhang
- Swedish Metabolomics Centre, Department of Plant Physiology, Umeå University, 901 87, Umeå, Sweden
| | - Konstantina Panoutsopoulou
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 157 71, Athens, Greece
| | - Anastasios D Delis
- Centre for Basic Research, Bioimaging Unit, Biomedical Research Foundation, Academy of Athens, 115 27, Athens, Greece
| | - Stamatis N Pagakis
- Centre for Basic Research, Bioimaging Unit, Biomedical Research Foundation, Academy of Athens, 115 27, Athens, Greece
| | - Wei Tang
- Molecular Epidemiology Section, Laboratory of Human Carcinogenesis, Center for Cancer Research (CCR), NCI, NIH, Bethesda, MD, 20892-4258, USA
- Data Science & Artificial Intelligence, R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Stefan Ambs
- Molecular Epidemiology Section, Laboratory of Human Carcinogenesis, Center for Cancer Research (CCR), NCI, NIH, Bethesda, MD, 20892-4258, USA
| | - Ulrika Warpman Berglund
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, 171 76, Stockholm, Sweden
| | - Thomas Helleday
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, 171 76, Stockholm, Sweden
- Weston Park Cancer Centre, Department of Oncology and Metabolism, University of Sheffield, Sheffield, S10 2RX, UK
| | - Anastasia Varvarigou
- Department of Paediatrics, University of Patras Medical School, General University Hospital, 265 04, Patras, Greece
| | - Antonios Chatzigeorgiou
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 115 27, Athens, Greece
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine, Technische Universität Dresden, 013 07, Dresden, Germany
| | - Anders Nordström
- Swedish Metabolomics Centre, Department of Plant Physiology, Umeå University, 901 87, Umeå, Sweden
| | - Ourania E Tsitsilonis
- Department of Biology, School of Science, National and Kapodistrian University of Athens, 157 84, Athens, Greece
| | - Ioannis P Trougakos
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, 157 84, Athens, Greece
| | - Jonathan D Gilthorpe
- Department of Integrative Medical Biology, Umeå University, 901 87, Umeå, Sweden
| | - Teresa Frisan
- Department of Molecular Biology and Umeå Centre for Microbial Research (UCMR), Umeå University, 901 87, Umeå, Sweden.
| |
Collapse
|
33
|
Blaževitš O, Di Tano M, Longo VD. Fasting and fasting mimicking diets in cancer prevention and therapy. Trends Cancer 2023; 9:212-222. [PMID: 36646607 DOI: 10.1016/j.trecan.2022.12.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 12/10/2022] [Accepted: 12/15/2022] [Indexed: 01/15/2023]
Abstract
Fasting mimicking diets (FMDs) are emerging as effective dietary interventions with the potential to improve healthspan and decrease the incidence of cancer and other age-related diseases. Unlike chronic dietary restrictions or water-only fasting, FMDs represent safer and less challenging options for cancer patients. FMD cycles increase protection in healthy cells while sensitizing cancer cells to various therapies, partly by generating complex environments that promote differential stress resistance (DSR) and differential stress sensitization (DSS), respectively. More recent data indicate that FMD cycles enhance the efficacy of a range of drugs targeting different cancers in mice by stimulating antitumor immunity. Here, we report on the effects of FMD cycles on cancer prevention and treatment and the mechanisms implicated in these effects.
Collapse
Affiliation(s)
- Olga Blaževitš
- IFOM ETS, the AIRC Institute of Molecular Oncology, Milan, Italy
| | - Maira Di Tano
- Division of Endocrinology, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA; Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA
| | - Valter D Longo
- IFOM ETS, the AIRC Institute of Molecular Oncology, Milan, Italy; Longevity Institute, Davis School of Gerontology and Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
34
|
Liu X, Peng S, Tang G, Xu G, Xie Y, Shen D, Zhu M, Huang Y, Wang X, Yu H, Huang M, Luo Y. Fasting-mimicking diet synergizes with ferroptosis against quiescent, chemotherapy-resistant cells. EBioMedicine 2023; 90:104496. [PMID: 36863257 PMCID: PMC9996234 DOI: 10.1016/j.ebiom.2023.104496] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 03/04/2023] Open
Abstract
BACKGROUND More than ten randomized clinical trials are being tested to evaluate the efficacy, effectiveness and safety of a fasting-mimicking diet (FMD) combined with different antitumor agents. METHODS UMI-mRNA sequencing, Cell-cycle analysis, Label retention, metabolomics, Multilabeling et al. were used to explore mechanisms. A tandem mRFP-GFP-tagged LC3B, Annexin-V-FITC Apoptosis, TUNEL, H&E, Ki-67 and animal model was used to search for synergistic drugs. FINDINGS Here we showed that fasting or FMD retards tumor growth more effectively but does not increase 5-fluorouracil/oxaliplatin (5-FU/OXA) sensitivity to apoptosis in vitro and in vivo. Mechanistically, we demonstrated that CRC cells would switch from an active proliferative to a slow-cycling state during fasting. Furthermore, metabolomics shows cell proliferation was decreased to survive nutrient stress in vivo, as evidenced by a low level of adenosine and deoxyadenosine monophosphate. CRC cells would decrease proliferation to achieve increased survival and relapse after chemotherapy. In addition, these fasting-induced quiescent cells were more prone to develop drug-tolerant persister (DTP) tumor cells postulated to be responsible for cancer relapse and metastasis. Then, UMI-mRNA sequencing uncovered the ferroptosis pathway as the pathway most influenced by fasting. Combining fasting with ferroptosis inducer treatment leads to tumor inhibition and eradication of quiescent cells by boosting autophagy. INTERPRETATION Our results suggest that ferroptosis could improve the antitumor activity of FMD + chemotherapy and highlight a potential therapeutic opportunity to avoid DTP cells-driven tumor relapse and therapy failure. FUNDING A full list of funding bodies can be found in the Acknowledgements section.
Collapse
Affiliation(s)
- Xiaoxia Liu
- Department of Colorectal Surgery, Department of General Surgery, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Institute of Gastroenterology, Guangzhou, Guangdong, 510655, China.
| | - Shaoyong Peng
- Department of Colorectal Surgery, Department of General Surgery, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Guannan Tang
- Department of Colorectal Surgery, Department of General Surgery, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Institute of Gastroenterology, Guangzhou, Guangdong, 510655, China
| | - Gaopo Xu
- Department of Colorectal Surgery, Department of General Surgery, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Institute of Gastroenterology, Guangzhou, Guangdong, 510655, China
| | - Yumo Xie
- Department of Colorectal Surgery, Department of General Surgery, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Institute of Gastroenterology, Guangzhou, Guangdong, 510655, China
| | - Dingcheng Shen
- Department of Colorectal Surgery, Department of General Surgery, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Institute of Gastroenterology, Guangzhou, Guangdong, 510655, China
| | - Mingxuan Zhu
- Department of Colorectal Surgery, Department of General Surgery, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Institute of Gastroenterology, Guangzhou, Guangdong, 510655, China
| | - Yaoyi Huang
- Department of Colorectal Surgery, Department of General Surgery, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiaolin Wang
- Department of Colorectal Surgery, Department of General Surgery, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Institute of Gastroenterology, Guangzhou, Guangdong, 510655, China
| | - Huichuan Yu
- Department of Colorectal Surgery, Department of General Surgery, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Institute of Gastroenterology, Guangzhou, Guangdong, 510655, China
| | - Meijin Huang
- Department of Colorectal Surgery, Department of General Surgery, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yanxin Luo
- Department of Colorectal Surgery, Department of General Surgery, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Institute of Gastroenterology, Guangzhou, Guangdong, 510655, China.
| |
Collapse
|
35
|
Anemoulis M, Vlastos A, Kachtsidis V, Karras SN. Intermittent Fasting in Breast Cancer: A Systematic Review and Critical Update of Available Studies. Nutrients 2023; 15:nu15030532. [PMID: 36771239 PMCID: PMC9920353 DOI: 10.3390/nu15030532] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/11/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
Breast cancer (BC) is the most-frequent malignancy amongst women, whereas obesity and excess caloric consumption increase the risk for developing the disease. The objective of this systematic review was to examine the impact of intermittent fasting (IF) on previously diagnosed BC patients, regarding quality of life (QoL) scores during chemotherapy, chemotherapy-induced toxicity, radiological response and BC recurrence, endocrine-related outcomes, as well as IF-induced adverse effects in these populations. A comprehensive search was conducted between 31 December 2010 and 31 October 2022, using the PubMed, CINAHL, Cochrane, Web of Science, and Scopus databases. Two investigators independently performed abstract screenings, full-text screenings, and data extraction, and the Mixed Method Appraisal Tool (MMAT) was used to evaluate the quality of the selected studies. We screened 468 papers, 10 of which were selected for data synthesis. All patients were female adults whose age ranged between 27 and 78 years. Participants in all studies were women diagnosed with BC of one of the following stages: I, II (HER2-/+), III (HER2-/+), IV, LUMINAL-A, LUMINAL-B (HER2-/+). Notably, IF during chemotherapy was found to be feasible, safe and able to relieve chemotherapy-induced adverse effects and cytotoxicity. IF seemed to improve QoL during chemotherapy, through the reduction of fatigue, nausea and headaches, however data were characterized as low quality. IF was found to reduce chemotherapy-induced DNA damage and augmented optimal glycemic regulation, improving serum glucose, insulin, and IGF-1 concentrations. A remarkable heterogeneity of duration of dietary patterns was observed among available studies. In conclusion, we failed to identify any IF-related beneficial effects on the QoL, response after chemotherapy or related symptoms, as well as measures of tumor recurrence in BC patients. We identified a potential beneficial effect of IF on chemotherapy-induced toxicity, based on markers of DNA and leukocyte damage; however, these results were derived from three studies and require further validation. Further studies with appropriate design and larger sample sizes are warranted to elucidate its potential standard incorporation in daily clinical practice.
Collapse
Affiliation(s)
- Marios Anemoulis
- Medical School, Aristotle University, 55535 Thessaloniki, Greece
| | - Antonios Vlastos
- Medical School, Aristotle University, 55535 Thessaloniki, Greece
| | | | - Spyridon N. Karras
- Laboratory of Biological Chemistry, Medical School, Aristotle University, 55535 Thessaloniki, Greece
- Correspondence: ; Tel.: +30-2310324863
| |
Collapse
|
36
|
Ruze R, Chen Y, Xu R, Song J, Yin X, Wang C, Xu Q. Obesity, diabetes mellitus, and pancreatic carcinogenesis: Correlations, prevention, and diagnostic implications. Biochim Biophys Acta Rev Cancer 2023; 1878:188844. [PMID: 36464199 DOI: 10.1016/j.bbcan.2022.188844] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/13/2022] [Accepted: 11/26/2022] [Indexed: 12/03/2022]
Abstract
The prevalence of obesity, diabetes mellitus (DM), and pancreatic cancer (PC) has been consistently increasing in the last two decades worldwide. Sharing various influential risk factors in genetics and environmental inducers in pathogenesis, the close correlations of these three diseases have been demonstrated in plenty of clinical studies using multiple parameters among different populations. On the contrary, most measures aimed to manage and treat obesity and DM effectively reduce the risk and prevent PC occurrence, yet certain drugs can inversely promote pancreatic carcinogenesis instead. Most importantly, an elevation of blood glucose with or without a reduction in body weight, along with other potential tools, may provide valuable clues for detecting PC at an early stage in patients with obesity and DM, favoring a timely intervention and prolonging survival. Herein, the epidemiological and etiological correlations among these three diseases and the supporting clinical evidence of their connections are first summarized to favor a better and more thorough understanding of obesity- and DM-related pancreatic carcinogenesis. After comparing the distinct impacts of different weight-lowering and anti-diabetic treatments on the risk of PC, the possible diagnostic implications of hyperglycemia and weight loss in PC screening are also addressed in detail.
Collapse
Affiliation(s)
- Rexiati Ruze
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing Street, Beijing, China; Chinese Academy of Medical Sciences and Peking Union Medical College, No. 9 Dongdan Santiao, Beijing, China
| | - Yuan Chen
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing Street, Beijing, China; Chinese Academy of Medical Sciences and Peking Union Medical College, No. 9 Dongdan Santiao, Beijing, China
| | - Ruiyuan Xu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing Street, Beijing, China; Chinese Academy of Medical Sciences and Peking Union Medical College, No. 9 Dongdan Santiao, Beijing, China
| | - Jianlu Song
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing Street, Beijing, China; Chinese Academy of Medical Sciences and Peking Union Medical College, No. 9 Dongdan Santiao, Beijing, China
| | - Xinpeng Yin
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing Street, Beijing, China; Chinese Academy of Medical Sciences and Peking Union Medical College, No. 9 Dongdan Santiao, Beijing, China
| | - Chengcheng Wang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing Street, Beijing, China.
| | - Qiang Xu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing Street, Beijing, China.
| |
Collapse
|
37
|
Muacevic A, Adler JR, Konanur Srinivasa NK, Gande A, Anusha M, Dar H. Nutrition Care in Cancer Surgery Patients: A Narrative Review of Nutritional Screening and Assessment Methods and Nutritional Considerations. Cureus 2022; 14:e33094. [PMID: 36721576 PMCID: PMC9884126 DOI: 10.7759/cureus.33094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/27/2022] [Indexed: 12/30/2022] Open
Abstract
Malignancy is a catabolic state, which is precipitated with surgical intervention. Malnutrition is one of the main risk factors for poor outcomes of cancer surgery. We need to screen oncological patients for malnutrition using standardized screening tools, by which patients found to be at nutritional risk are then referred to a registered dietitian for further management. A detailed assessment is required in such patients, which helps in categorizing the patients based on the severity and rendering proper care. Preoperative nutrition care is often overlooked because of the urgency of operating on a cancer patient. Still, studies have shown preoperative nutritional building gives better surgical outcomes and good postoperative quality of life. Preoperative nutrition care includes both early and late preoperative care. For efficient preoperative nutrition care publishing, standard operating procedures at every healthcare center are recommended. Postoperative nutrition care is given to build the patient tackle the surgical trauma, and their diet mainly includes protein to minimize catabolism. Regardless of the route of nutrition delivery, providing appropriate nutrition care in the postoperative period improves cancer patients' condition drastically. Early postoperative nutrition is studied in different cancer surgeries and is considered ideal in cancer surgical patients. There is a need for consensus on the composition of postoperative nutrition. The diet of a cancer patient should include micronutrients like vitamins D and B and minerals along with the usual nutrition care. The use of special diets like branched-chain amino acids and immune nutrition is to be considered on a case-by-case basis and introducing them into the routine care of a patient needs to be studied extensively.
Collapse
|
38
|
Qian F, Xu H, Zhang Y, Li L, Yu R. Methionine deprivation inhibits glioma growth through downregulation of CTSL. Am J Cancer Res 2022; 12:5004-5018. [PMID: 36504894 PMCID: PMC9729907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 09/13/2022] [Indexed: 12/15/2022] Open
Abstract
The metabolism of tumor cells is characterized by the regulation of demand, nutrient supply and metabolic enzymes, which are different in cancer tissues from those in corresponding healthy tissues. There is growing evidence that dietary composition influences biological processes that contribute to tumor incidence and progression as much as genetic status. One possibility for specific dietary interventions in cancer patients is to limit methionine intake. The role of methionine metabolism in tumors suggests that interference with the methionine metabolism network by either drug or environmental effects may show substantial therapeutic effects, but the molecular mechanism is not completely clear. In this study, methionine deprivation was found to downregulate cathepsin L (CTSL) and induce proliferation inhibition in glioma cells. We also demonstrated that CTSL is a tumor-related gene, and promotes the proliferation and invasion of glioma. Our results showed that the treatment of methionine metabolism and CTSL related genes in glioma cells may be a novel strategy for glioma therapy in the future.
Collapse
Affiliation(s)
- Feng Qian
- Institute of Nervous System Diseases, Xuzhou Medical UniversityXuzhou 221002, Jiangsu, China,Department of Neurosurgery, The First People’s Hospital of ChangzhouChangzhou 213003, Jiangsu, China
| | - Haoyue Xu
- Institute of Nervous System Diseases, Xuzhou Medical UniversityXuzhou 221002, Jiangsu, China
| | - Yongkang Zhang
- Institute of Nervous System Diseases, Xuzhou Medical UniversityXuzhou 221002, Jiangsu, China
| | - Linfeng Li
- Institute of Nervous System Diseases, Xuzhou Medical UniversityXuzhou 221002, Jiangsu, China
| | - Rutong Yu
- Institute of Nervous System Diseases, Xuzhou Medical UniversityXuzhou 221002, Jiangsu, China,Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical UniversityXuzhou 221002, Jiangsu, China
| |
Collapse
|
39
|
Anic K, Schmidt MW, Furtado L, Weidenbach L, Battista MJ, Schmidt M, Schwab R, Brenner W, Ruckes C, Lotz J, Lackner KJ, Hasenburg A, Hasenburg A. Intermittent Fasting-Short- and Long-Term Quality of Life, Fatigue, and Safety in Healthy Volunteers: A Prospective, Clinical Trial. Nutrients 2022; 14:nu14194216. [PMID: 36235868 PMCID: PMC9571750 DOI: 10.3390/nu14194216] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/14/2022] [Accepted: 09/19/2022] [Indexed: 11/25/2022] Open
Abstract
Background: Intermittent fasting (IF) is defined as an eating pattern without calorie restrictions, alternating between periods of fasting and eating. In the past decades IF has not only become a popular weight-reducing diet but is thought to improve Quality of Life (QoL) and fatigue. However, very little evidence exists for the general population. Thus, we aimed to assess the impact of a 16-h fasting period per day over a three-month study period on QoL and especially fatigue in healthy people. Methods: We conducted a prospective cohort study including healthy subjects. All participants fasted 16 h for at least five days a week while maintaining their normal lifestyle. In the study, we analysed blood samples as well as QoL through standardized questionnaires (WHO-5 questionnaire, Short Form Health 36). Furthermore, we measured the degree of fatigue with the Fatigue Assessment Scale (FAS) and Fatigue Severity Scale (FSS) as well as compliance, activity records, and weight alterations. All endpoints were evaluated at baseline, after two weeks, four weeks, and three months of IF. Results: A total of 30 participants fasted for the entire study period. The results of the WHO-5 questionnaire (15.6 ± 4.6 vs. 18 ± 3.6, p < 0.0019) demonstrated a significant increase in QoL. For long-term QoL six out of eight domains measured by the Short Form Health 36 (SF-36) significantly improved (e.g., physical health: 92.3 ± 11.6 vs. 96.5 ± 6.3, p = 0.015; mental health: 75.5 ± 12.0 vs. 81.7 ± 9.0; p < 0.001 and body pain: 74.1 ± 31.8 vs. 89.5 ± 14.9; p = 0.008) after three months. Fatigue significantly decreased from 10.3 ± 3.2 to 8.4 ± 2.5; p = 0.002 for mental fatigue and from 12.6 ± 3.8 to 10.7 ± 3.3; p = 0.002 measured by the FAS. The mean FSS-Score at baseline was 3.5 ± 1.2 compared to 2.9 ± 1.1 (scale 1−7) after three months (p < 0.001). Notably, the proliferation marker IGF-1 was significantly reduced. No clinically significant changes in laboratory parameters were observed that would have endangered a participant’s safety. Conclusions: IF according to the 16:8 regime over a fasting period of three months significantly improved several aspects of the QoL and decreased fatigue in healthy people, while maintaining a good safety profile. The practicability of this diet was also demonstrated for shift workers and people with a high percentage of active labour. Apart from the improvement in QoL and fatigue, the significant reduction in IGF-1, which can act as an accelerator of tumour development and progression, might be an indicator of the potential benefits of IF for patients with cancer.
Collapse
Affiliation(s)
- Katharina Anic
- Department of Gynecology and Obstetrics, University Medical Center of Johannes Gutenberg, University Mainz, 55131 Mainz, Germany
- Correspondence: ; Tel.: +49-6131-5303
| | - Mona W. Schmidt
- Department of Gynecology and Obstetrics, University Medical Center of Johannes Gutenberg, University Mainz, 55131 Mainz, Germany
| | - Larissa Furtado
- Department of Gynecology and Obstetrics, University Medical Center of Johannes Gutenberg, University Mainz, 55131 Mainz, Germany
| | - Lina Weidenbach
- Department of Gynecology and Obstetrics, University Medical Center of Johannes Gutenberg, University Mainz, 55131 Mainz, Germany
| | - Marco J. Battista
- Department of Gynecology and Obstetrics, University Medical Center of Johannes Gutenberg, University Mainz, 55131 Mainz, Germany
| | - Marcus Schmidt
- Department of Gynecology and Obstetrics, University Medical Center of Johannes Gutenberg, University Mainz, 55131 Mainz, Germany
| | - Roxana Schwab
- Department of Gynecology and Obstetrics, University Medical Center of Johannes Gutenberg, University Mainz, 55131 Mainz, Germany
| | - Walburgis Brenner
- Department of Gynecology and Obstetrics, University Medical Center of Johannes Gutenberg, University Mainz, 55131 Mainz, Germany
| | - Christian Ruckes
- Interdisciplinary Center Clinical Trials, University Medical Center Mainz, 55131 Mainz, Germany
| | - Johannes Lotz
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center of Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Karl J. Lackner
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center of Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | | | - Annette Hasenburg
- Department of Gynecology and Obstetrics, University Medical Center of Johannes Gutenberg, University Mainz, 55131 Mainz, Germany
| |
Collapse
|
40
|
Tiwari S, Sapkota N, Han Z. Effect of fasting on cancer: A narrative review of scientific evidence. Cancer Sci 2022; 113:3291-3302. [PMID: 35848874 PMCID: PMC9530862 DOI: 10.1111/cas.15492] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 06/28/2022] [Accepted: 07/03/2022] [Indexed: 11/30/2022] Open
Abstract
Emerging evidence suggests that fasting could play a key role in cancer treatment by fostering conditions that limit cancer cells' adaptability, survival, and growth. Fasting could increase the effectiveness of cancer treatments and limit adverse events. Yet, we lack an integrated mechanistic model for how these two complicated systems interact, limiting our ability to understand, prevent, and treat cancer using fasting. Here, we review recent findings at the interface of oncology and fasting metabolism, with an emphasis on human clinical studies of intermittent fasting. We recommend combining prolonged periodic fasting with a standard conventional therapeutic approach to promote cancer-free survival, treatment efficacy and reduce side effects in cancer patients.
Collapse
Affiliation(s)
- Sagun Tiwari
- Department of Neurology and RehabilitationSeventh People's Hospital of Shanghai University of TCMShanghaiChina
- Shanghai University of TCMShanghaiChina
- Life Care HospitalBagmatiNepal
| | - Namrata Sapkota
- University of Chinese Academy of SciencesBeijingChina
- Shenzhen Institute of Advanced Technology, Chinese Academy of SciencesShenzhenChina
- Net Fresh HospitalBagmatiNepal
| | - Zhenxiang Han
- Department of Neurology and RehabilitationSeventh People's Hospital of Shanghai University of TCMShanghaiChina
| |
Collapse
|
41
|
Barradas M, Plaza A, Colmenarejo G, Lázaro I, Costa-Machado LF, Martín-Hernández R, Micó V, López-Aceituno JL, Herranz J, Pantoja C, Tejero H, Diaz-Ruiz A, Al-Shahrour F, Daimiel L, Loria-Kohen V, de Molina AR, Efeyan A, Serrano M, Pozo OJ, Sala-Vila A, Fernandez-Marcos PJ. Fatty acids homeostasis during fasting predicts protection from chemotherapy toxicity. Nat Commun 2022; 13:5677. [PMID: 36167809 PMCID: PMC9515185 DOI: 10.1038/s41467-022-33352-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 09/09/2022] [Indexed: 12/27/2022] Open
Abstract
Fasting exerts beneficial effects in mice and humans, including protection from chemotherapy toxicity. To explore the involved mechanisms, we collect blood from humans and mice before and after 36 or 24 hours of fasting, respectively, and measure lipid composition of erythrocyte membranes, circulating micro RNAs (miRNAs), and RNA expression at peripheral blood mononuclear cells (PBMCs). Fasting coordinately affects the proportion of polyunsaturated versus saturated and monounsaturated fatty acids at the erythrocyte membrane; and reduces the expression of insulin signaling-related genes in PBMCs. When fasted for 24 hours before and 24 hours after administration of oxaliplatin or doxorubicin, mice show a strong protection from toxicity in several tissues. Erythrocyte membrane lipids and PBMC gene expression define two separate groups of individuals that accurately predict a differential protection from chemotherapy toxicity, with important clinical implications. Our results reveal a mechanism of fasting associated with lipid homeostasis, and provide biomarkers of fasting to predict fasting-mediated protection from chemotherapy toxicity. Fasting has been reported to protect from chemotherapy-associated toxicity. Here, the authors show that fatty acid profiles in erythrocyte membranes and gene expression from peripheral blood mononuclear cells are associated to the fasting-mediated benefits during cancer treatment in mice and patients.
Collapse
Affiliation(s)
- Marta Barradas
- Metabolic Syndrome Group-BIOPROMET, CEI UAM+CSIC, Madrid Institute for Advanced Studies-IMDEA Food, Madrid, Spain.
| | - Adrián Plaza
- Metabolic Syndrome Group-BIOPROMET, CEI UAM+CSIC, Madrid Institute for Advanced Studies-IMDEA Food, Madrid, Spain.
| | - Gonzalo Colmenarejo
- Biostatistics and Bioinformatics Unit, CEI UAM+CSIC, Madrid Institute for Advanced Studies-IMDEA Food, Madrid, Spain
| | - Iolanda Lázaro
- Cardiovascular risk and nutrition, Hospital del Mar Medical Research Institute-IMIM, Barcelona, Spain
| | - Luis Filipe Costa-Machado
- Metabolic Syndrome Group-BIOPROMET, CEI UAM+CSIC, Madrid Institute for Advanced Studies-IMDEA Food, Madrid, Spain
| | - Roberto Martín-Hernández
- Biostatistics and Bioinformatics Unit, CEI UAM+CSIC, Madrid Institute for Advanced Studies-IMDEA Food, Madrid, Spain
| | - Victor Micó
- Nutritional Genomics of Cardiovascular Disease and Obesity, Madrid Institute for Advanced Studies-IMDEA Food, Madrid, Spain
| | - José Luis López-Aceituno
- Metabolic Syndrome Group-BIOPROMET, CEI UAM+CSIC, Madrid Institute for Advanced Studies-IMDEA Food, Madrid, Spain
| | - Jesús Herranz
- Biostatistics and Bioinformatics Unit, CEI UAM+CSIC, Madrid Institute for Advanced Studies-IMDEA Food, Madrid, Spain
| | - Cristina Pantoja
- Metabolic Syndrome Group-BIOPROMET, CEI UAM+CSIC, Madrid Institute for Advanced Studies-IMDEA Food, Madrid, Spain
| | - Hector Tejero
- Bioinformatics Unit, Spanish National Cancer Research Centre-CNIO, Madrid, Spain
| | - Alberto Diaz-Ruiz
- Nutritional Interventions Group, Precision Nutrition and Aging, CEI UAM+CSIC, Madrid Institute for Advanced Studies-IMDEA Food, Madrid, Spain
| | - Fatima Al-Shahrour
- Bioinformatics Unit, Spanish National Cancer Research Centre-CNIO, Madrid, Spain
| | - Lidia Daimiel
- Nutritional Genomics of Cardiovascular Disease and Obesity, Madrid Institute for Advanced Studies-IMDEA Food, Madrid, Spain
| | - Viviana Loria-Kohen
- Nutrition and Clinical Trials Unit, Platform GENYAL, CEI UAM+CSIC, Madrid Institute for Advanced Studies-IMDEA Food, Madrid, Spain
| | - Ana Ramirez de Molina
- Nutrition and Clinical Trials Unit, Platform GENYAL, CEI UAM+CSIC, Madrid Institute for Advanced Studies-IMDEA Food, Madrid, Spain.,Molecular Oncology and Nutritional Genomics of Cancer Group, CEI UAM+CSIC, Madrid Institute for Advanced Studies-IMDEA Food, Madrid, Spain
| | - Alejo Efeyan
- Metabolism and Cell Signaling Group, Spanish National Cancer Research Centre-CNIO, Madrid, Spain
| | - Manuel Serrano
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Oscar J Pozo
- Applied Metabolomics Research Group, Hospital del Mar Medical Research Institute-(IMIM), Barcelona, Spain
| | - Aleix Sala-Vila
- Cardiovascular risk and nutrition, Hospital del Mar Medical Research Institute-IMIM, Barcelona, Spain.,Fatty Acid Research Institute, Sioux Falls, SD, USA
| | - Pablo J Fernandez-Marcos
- Metabolic Syndrome Group-BIOPROMET, CEI UAM+CSIC, Madrid Institute for Advanced Studies-IMDEA Food, Madrid, Spain.
| |
Collapse
|
42
|
Omar EM, Omran GA, Mustafa MF, El-Khodary NM. Intermittent fasting during adjuvant chemotherapy may promote differential stress resistance in breast cancer patients. J Egypt Natl Canc Inst 2022; 34:38. [DOI: 10.1186/s43046-022-00141-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 07/22/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Preclinical studies prove that short-term fasting secures healthy cells against chemotherapy side effects and makes malignant cells more vulnerable to them. This study aimed to examine the effects of intermittent fasting (IF) during adjuvant chemotherapy AC (doxorubicin, cyclophosphamide) protocol in breast cancer (BC) patients.
Methods
Forty-eight newly diagnosed human epidermal growth factor receptor 2-negative (HER2 negative) BC patients were divided equally into two groups (24 each). The first group was recruited to fast intermittently for three consecutive days around chemotherapy for 18 h a day from 12 am to 6 pm and eats through 6 h a day from 6 pm to 12 am with permission of drinking water during fasting hours (IF group). This IF was repeated every 3 weeks for four cycles. The second group is a non-fasting (NF) group that was allowed to eat regularly. Toxicity in the two groups was compared. Hematologic, metabolic, and inflammatory parameters were measured and compared.
Results
Toxicity related to the gastrointestinal tract (GIT) was reduced in the IF group. Hematologic parameters showed no significant variations between the two studied groups after cycle 4. There was a significant increase in median glucose and median insulin levels (P < 0.001 and P = 0.001, respectively) in the NF group between baseline and after cycle 4. In addition, there was a significant decrease in the median insulin level (P = 0.002) in the IF group between the two time points.
Conclusion
IF throughout chemotherapy was well tolerated and decreased the toxicity of chemotherapy. Additionally, IF-improved metabolic profiles of patients may have a positive impact on the clinical efficacy of chemotherapy.
Collapse
|
43
|
Muscogiuri G, Barrea L, Cantone MC, Guarnotta V, Mazzilli R, Verde L, Vetrani C, Colao A, Faggiano A. Neuroendocrine Tumors: A Comprehensive Review on Nutritional Approaches. Cancers (Basel) 2022; 14:cancers14184402. [PMID: 36139562 PMCID: PMC9496842 DOI: 10.3390/cancers14184402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/29/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022] Open
Abstract
Neuroendocrine neoplasms are a heterogeneous group of neoplasms with increasing incidence, high prevalence, and survival worldwide. About 90% of cases are well differentiated forms, the so-called neuroendocrine tumors (NETs), with slow proliferation rates and prolonged survival but frequent development of liver metastases and endocrine syndromes. Both the tumor itself and systemic therapy may have an impact on patient nutrition. Malnutrition has a negative impact on outcome in patients with NETs, as well as obesity. In addition, obesity and metabolic syndrome have been shown to be risk factors for both the development and prognosis of NET. Therefore, dietary assessment based on body composition and lifestyle modifications should be an integral part of the treatment of NET patients. Nutrition plans, properly formulated by a dietician, are an integral part of the multidisciplinary treatment team for patients with NETs because they allow an improvement in quality of life, providing a tailored approach based on nutritional needs and nutritional manageable signs and/or symptoms related to pharmacological treatment. The aim of this review is to condense the latest evidence on the role of the most used dietary models, the Mediterranean diet, the ketogenic diet, and intermittent fasting, in the context of NETs, while considering the clinical and molecular mechanisms by which these dietary models act.
Collapse
Affiliation(s)
- Giovanna Muscogiuri
- Centro Italiano per la cura e il Benessere del Paziente con Obesità (C.I.B.O), Unità di Endocrinologia, Dipartimento di Medicina Clinica e Chirurgia, Università Federico II, 80131 Naples, Italy
- Unità di Endocrinologia, Diabetologia ed Andrologia, Dipartimento di Medicina Clinica e Chirurgia, Università Federico II, 80131 Naples, Italy
- Cattedra Unesco “Educazione alla Salute e allo Sviluppo Sostenibile”, Università Federico II, 80131 Naples, Italy
- Correspondence: ; Tel.: +39-0817463779; Fax: +39-081-746-3688
| | - Luigi Barrea
- Centro Italiano per la cura e il Benessere del Paziente con Obesità (C.I.B.O), Unità di Endocrinologia, Dipartimento di Medicina Clinica e Chirurgia, Università Federico II, 80131 Naples, Italy
- Dipartimento di Scienze Umanistiche, Università Telematica Pegaso, Via Porzio, Centro Direzionale, Isola F2, 80143 Naples, Italy
| | - Maria Celeste Cantone
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), University of Milan, 20157 Milan, Italy
| | - Valentina Guarnotta
- Dipartimento di Promozione della Salute, Materno-Infantile, Medicina Interna e Specialistica di Eccellenza “G. D’Alessandro” (PROMISE), Sezione di Malattie Endocrine, del Ricambio e della Nutrizione, Università di Palermo, 90127 Palermo, Italy
| | - Rossella Mazzilli
- Department of Clinical and Molecular Medicine, Sant’Andrea Hospital, Sapienza University of Rome, 00185 Rome, Italy
| | - Ludovica Verde
- Centro Italiano per la cura e il Benessere del Paziente con Obesità (C.I.B.O), Unità di Endocrinologia, Dipartimento di Medicina Clinica e Chirurgia, Università Federico II, 80131 Naples, Italy
| | - Claudia Vetrani
- Unità di Endocrinologia, Diabetologia ed Andrologia, Dipartimento di Medicina Clinica e Chirurgia, Università Federico II, 80131 Naples, Italy
- Cattedra Unesco “Educazione alla Salute e allo Sviluppo Sostenibile”, Università Federico II, 80131 Naples, Italy
| | - Annamaria Colao
- Centro Italiano per la cura e il Benessere del Paziente con Obesità (C.I.B.O), Unità di Endocrinologia, Dipartimento di Medicina Clinica e Chirurgia, Università Federico II, 80131 Naples, Italy
- Unità di Endocrinologia, Diabetologia ed Andrologia, Dipartimento di Medicina Clinica e Chirurgia, Università Federico II, 80131 Naples, Italy
- Cattedra Unesco “Educazione alla Salute e allo Sviluppo Sostenibile”, Università Federico II, 80131 Naples, Italy
| | - Antongiulio Faggiano
- Department of Clinical and Molecular Medicine, Sant’Andrea Hospital, Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|
44
|
Metabolic targeting of malignant tumors: a need for systemic approach. J Cancer Res Clin Oncol 2022; 149:2115-2138. [PMID: 35925428 DOI: 10.1007/s00432-022-04212-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 07/14/2022] [Indexed: 12/09/2022]
Abstract
PURPOSE Dysregulated metabolism is now recognized as a fundamental hallmark of carcinogenesis inducing aggressive features and additional hallmarks. In this review, well-established metabolic changes displayed by tumors are highlighted in a comprehensive manner and corresponding therapeutical targets are discussed to set up a framework for integrating basic research findings with clinical translation in oncology setting. METHODS Recent manuscripts of high research impact and relevant to the field from PubMed (2000-2021) have been reviewed for this article. RESULTS Metabolic pathway disruption during tumor evolution is a dynamic process potentiating cell survival, dormancy, proliferation and invasion even under dismal conditions. Apart from cancer cells, though, tumor microenvironment has an acting role as extracellular metabolites, pH alterations and stromal cells reciprocally interact with malignant cells, ultimately dictating tumor-promoting responses, disabling anti-tumor immunity and promoting resistance to treatments. CONCLUSION In the field of cancer metabolism, there are several emerging prognostic and therapeutic targets either in the form of gene expression, enzyme activity or metabolites which could be exploited for clinical purposes; both standard-of-care and novel treatments may be evaluated in the context of metabolism rewiring and indeed, synergistic effects between metabolism-targeting and other therapies would be an attractive perspective for further research.
Collapse
|
45
|
Di Tano M, Longo VD. Fasting and cancer: from yeast to mammals. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2022; 373:81-106. [PMID: 36283768 DOI: 10.1016/bs.ircmb.2022.02.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Fasting and fasting mimicking diets extend lifespan and healthspan in mouse models and decrease risk factors for cancer and other age-related pathologies in humans. Normal cells respond to fasting and the consequent decrease in nutrients by down-regulating proto-oncogene pathways to enter a stress-resistant mode, which protects them from different cancer therapies. In contrast, oncogene mutations and the constitutive activation of pathways including RAS, AKT, and PKA allow cancer cells to disobey fasting-dependent anti-growth signal. Importantly, in different tumor types, fasting potentiates the toxicity of various therapies by increasing reactive oxygen species and oxidative stress, which ultimately leads to DNA damage and cell death. This effect is not limited to chemotherapy, since periodic fasting/FMD cycles potentiate the effects of tyrosine kinase inhibitors, hormone therapy, radiotherapy, and pharmacological doses of vitamin C. In addition, the anticancer effects of fasting/FMD can also be tumor-independent and involve an immunotherapy-like activation of T cell-dependent attack of tumor cells. Supported by a range of pre-clinical studies, clinical trials are beginning to confirm the safety and efficacy of fasting/FMD cycles in improving the potential of different cancer therapies, while decreasing side effects to healthy cells and tissues.
Collapse
Affiliation(s)
- Maira Di Tano
- IFOM, FIRC Institute of Molecular Oncology, Milan, Italy
| | - Valter D Longo
- IFOM, FIRC Institute of Molecular Oncology, Milan, Italy; Longevity Institute, Leonard Davis School of Gerontology and Department of Biological Sciences, University of Southern California, Los Angeles, CA, United States.
| |
Collapse
|
46
|
Caloric restriction reduces the pro-inflammatory eicosanoid 20- hydroxyeicosatetraenoic acid to protect from acute kidney injury. Kidney Int 2022; 102:560-576. [PMID: 35654224 DOI: 10.1016/j.kint.2022.04.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 04/13/2022] [Accepted: 04/22/2022] [Indexed: 11/22/2022]
Abstract
Acute kidney injury is a frequent complication in the clinical setting and associated with significant morbidity and mortality. Preconditioning with short-term caloric restriction is highly protective against kidney injury in rodent ischemia reperfusion injury models. However, the underlying mechanisms are unknown hampering clinical translation. Here, we examined the molecular basis of caloric restriction-mediated protection to elucidate the principles of kidney stress resistance. Analysis of an RNAseq dataset after caloric restriction identified Cyp4a12a, a cytochrome exclusively expressed in male mice, to be strongly downregulated after caloric restriction. Kidney ischemia reperfusion injury robustly induced acute kidney injury in male mice and this damage could be markedly attenuated by pretreatment with caloric restriction. In females, damage was significantly less pronounced and preconditioning with caloric restriction had only little effect. Tissue concentrations of the metabolic product of Cyp4a12a, 20-hydroxyeicosatetraenoic acid (20-HETE), were found to be significantly reduced by caloric restriction. Conversely, intraperitoneal supplementation of 20-HETE in preconditioned males partly abrogated the protective potential of caloric restriction. Interestingly, this effect was accompanied by a partial reversal of caloric restriction-induced changes in protein but not RNA expression pointing towards inflammation, endoplasmic reticulum stress and lipid metabolism. Thus, our findings provide an insight into the mechanisms underlying kidney protection by caloric restriction. Hence, understanding the mediators of preconditioning is an important pre-requisite for moving towards translation to the clinical setting.
Collapse
|
47
|
Autophagy and EMT in cancer and metastasis: Who controls whom? Biochim Biophys Acta Mol Basis Dis 2022; 1868:166431. [PMID: 35533903 DOI: 10.1016/j.bbadis.2022.166431] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/10/2022] [Accepted: 05/02/2022] [Indexed: 02/06/2023]
Abstract
Metastasis consists of hallmark events, including Epithelial-Mesenchymal Transition (EMT), angiogenesis, initiation of inflammatory tumor microenvironment, and malfunctions in apoptosis. Autophagy is known to play a pivotal role in the metastatic process. Autophagy has pulled researchers towards it in recent times because of its dual role in the maintenance of cancer cells. Evidence states that cells undergoing EMT need autophagy in order to survive during migration and dissemination. Additionally, it orchestrates EMT markers in certain cancers. On the other side of the coin, autophagy plays an oncosuppressive role in impeding early metastasis. This review aims to project the interrelationship between autophagy and EMT. Targeting EMT via autophagy as a useful strategy is discussed in this review. Furthermore, for the first time, we have covered the possible reciprocating roles of EMT and autophagy and its consequences in cancer metastasis.
Collapse
|
48
|
Short-Term Fasting Synergizes with Solid Cancer Therapy by Boosting Antitumor Immunity. Cancers (Basel) 2022; 14:cancers14061390. [PMID: 35326541 PMCID: PMC8946179 DOI: 10.3390/cancers14061390] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/04/2022] [Accepted: 03/07/2022] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Stimulating our body’s own immune response to fight cancer is important for the success of cancer treatment in general. To further improve current cancer therapy, preclinical research shows that short-term fasting diets enhance cancer therapy efficacy, such as chemotherapy. Short-term fasting diets are low-caloric and low in protein for 3–5 days; they are usually done every couple of weeks. This review summarizes preclinical and clinical evidence of fasting diets synergizing with cancer therapy by boosting antitumor immunity. Abstract Short-term fasting (STF), using a low caloric, low protein fasting mimicking diet (FMD), appears to be a promising strategy to enhance chemotherapy-based cancer efficacy, while potentially alleviating toxicity. Preclinical results suggest that enhanced tumor immunity and decreased growth signaling, via lowering of circulating insulin and insulin growth factor 1 (IGF-1) levels form the potential underlying mechanisms. STF may boost anti-tumor responses by promoting tumor immunogenicity and decreasing local immunosuppression. These findings warrant further studies focused on the combination of STF, not only with chemotherapy, but also with immunotherapy to evaluate the full range of benefits of STF in cancer treatment. Here, we delineate the underlying anticancer mechanisms of fasting. We summarize preclinical evidence of STF boosting antitumor immunity and alleviating immunosuppression, as well as the clinical findings reporting the immunomodulatory effects of STF during various cancer treatments, including immunotherapy.
Collapse
|
49
|
Zhou L, Zhang Z, Nice E, Huang C, Zhang W, Tang Y. Circadian rhythms and cancers: the intrinsic links and therapeutic potentials. J Hematol Oncol 2022; 15:21. [PMID: 35246220 PMCID: PMC8896306 DOI: 10.1186/s13045-022-01238-y] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 02/16/2022] [Indexed: 02/07/2023] Open
Abstract
The circadian rhythm is an evolutionarily conserved time-keeping system that comprises a wide variety of processes including sleep-wake cycles, eating-fasting cycles, and activity-rest cycles, coordinating the behavior and physiology of all organs for whole-body homeostasis. Acute disruption of circadian rhythm may lead to transient discomfort, whereas long-term irregular circadian rhythm will result in the dysfunction of the organism, therefore increasing the risks of numerous diseases especially cancers. Indeed, both epidemiological and experimental evidence has demonstrated the intrinsic link between dysregulated circadian rhythm and cancer. Accordingly, a rapidly increasing understanding of the molecular mechanisms of circadian rhythms is opening new options for cancer therapy, possibly by modulating the circadian clock. In this review, we first describe the general regulators of circadian rhythms and their functions on cancer. In addition, we provide insights into the mechanisms underlying how several types of disruption of the circadian rhythm (including sleep-wake, eating-fasting, and activity-rest) can drive cancer progression, which may expand our understanding of cancer development from the clock perspective. Moreover, we also summarize the potential applications of modulating circadian rhythms for cancer treatment, which may provide an optional therapeutic strategy for cancer patients.
Collapse
Affiliation(s)
- Li Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Zhe Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Edouard Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, 3800, Australia
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Wei Zhang
- Mental Health Center and Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Yong Tang
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Acupuncture and Chronobiology Laboratory of Sichuan Province, Chengdu, 610075, China.
| |
Collapse
|
50
|
Gabel K, Cares K, Varady K, Gadi V, Tussing-Humphreys L. Current Evidence and Directions for Intermittent Fasting During Cancer Chemotherapy. Adv Nutr 2022; 13:667-680. [PMID: 34788373 PMCID: PMC8970823 DOI: 10.1093/advances/nmab132] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/18/2021] [Accepted: 11/02/2021] [Indexed: 12/13/2022] Open
Abstract
Almost 40% of the adult population in the USA will be diagnosed with cancer in their lifetime. Diet is a modifiable factor which is known to affect cancer risk and recurrence. Yet, little is known about how diet influences cancer treatment outcomes. Intermittent fasting, characterized by periods of abstaining from foods and beverages alternated with periods of ad libitum intake, when adopted in the context of chemotherapy, has shown promise in preclinical models resulting in decreased vomiting, diarrhea, visible discomfort, and improved insulin sensitivity and efficacy of chemotherapeutic treatment. Although intermittent fasting during receipt of chemotherapy has been well-established in preclinical models, limited numbers of human studies are now being reported. This review aims to survey the current data examining the effect of intermittent fasting on chemotherapy efficacy, patient treatment outcomes, patient centered outcomes, and circulating biomarkers associated with cancer. Available data show that periodic fasting, a form of intermittent fasting, may hold potential to improve the effectiveness of chemotherapy, decrease treatment-related side effects and cancer-promoting factors such as insulin, while ameliorating treatment-related decreases in quality of life and daily functioning. Larger controlled periodic fasting trials, including exploration of alternate forms of intermittent fasting, are needed to better elucidate the effect of intermittent fasting on treatment and patient outcomes during chemotherapy.
Collapse
Affiliation(s)
- Kelsey Gabel
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL, USA.
| | - Kate Cares
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL, USA
| | - Krista Varady
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL, USA
| | - Vijayakrishna Gadi
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA; University of Illinois Cancer Center, Chicago, IL, USA
| | - Lisa Tussing-Humphreys
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL, USA; University of Illinois Cancer Center, Chicago, IL, USA
| |
Collapse
|