1
|
Xu C, Chen G, Yu B, Sun B, Zhang Y, Zhang M, Yang Y, Xiao Y, Cheng S, Li Y, Feng H. TRIM24 Cooperates with Ras Mutation to Drive Glioma Progression through snoRNA Recruitment of PHAX and DNA-PKcs. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400023. [PMID: 38828688 PMCID: PMC11304257 DOI: 10.1002/advs.202400023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 05/16/2024] [Indexed: 06/05/2024]
Abstract
The factors driving glioma progression remain poorly understood. Here, the epigenetic regulator TRIM24 is identified as a driver of glioma progression, where TRIM24 overexpression promotes HRasV12 anaplastic astrocytoma (AA) progression into epithelioid GBM (Ep-GBM)-like tumors. Co-transfection of TRIM24 with HRasV12 also induces Ep-GBM-like transformation of human neural stem cells (hNSCs) with tumor protein p53 gene (TP53) knockdown. Furthermore, TRIM24 is highly expressed in clinical Ep-GBM specimens. Using single-cell RNA-sequencing (scRNA-Seq), the authors show that TRIM24 overexpression impacts both intratumoral heterogeneity and the tumor microenvironment. Mechanically, HRasV12 activates phosphorylated adaptor for RNA export (PHAX) and upregulates U3 small nucleolar RNAs (U3 snoRNAs) to recruit Ku-dependent DNA-dependent protein kinase catalytic subunit (DNA-PKcs). Overexpressed TRIM24 is also recruited by PHAX to U3 snoRNAs, thereby facilitating DNA-PKcs phosphorylation of TRIM24 at S767/768 residues. Phosphorylated TRIM24 induces epigenome and transcription factor network reprogramming and promotes Ep-GBM-like transformation. Targeting DNA-PKcs with the small molecule inhibitor NU7441 synergizes with temozolomide to reduce Ep-GBM tumorigenicity and prolong animal survival. These findings provide new insights into the epigenetic regulation of Ep-GBM-like transformation and suggest a potential therapeutic strategy for patients with Ep-GBM.
Collapse
Affiliation(s)
- Chenxin Xu
- State Key Laboratory of Systems Medicine for CancerRenji‐Med X Clinical Stem Cell Research CenterRen Ji HospitalShanghai Cancer InstituteSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
| | - Guoyu Chen
- State Key Laboratory of Systems Medicine for CancerRenji‐Med X Clinical Stem Cell Research CenterRen Ji HospitalShanghai Cancer InstituteSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
| | - Bo Yu
- State Key Laboratory of Systems Medicine for CancerRenji‐Med X Clinical Stem Cell Research CenterRen Ji HospitalShanghai Cancer InstituteSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
| | - Bowen Sun
- State Key Laboratory of Systems Medicine for CancerRenji‐Med X Clinical Stem Cell Research CenterRen Ji HospitalShanghai Cancer InstituteSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
| | - Yingwen Zhang
- State Key Laboratory of Systems Medicine for CancerRenji‐Med X Clinical Stem Cell Research CenterRen Ji HospitalShanghai Cancer InstituteSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
| | - Mingda Zhang
- State Key Laboratory of Systems Medicine for CancerRenji‐Med X Clinical Stem Cell Research CenterRen Ji HospitalShanghai Cancer InstituteSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
| | - Yi Yang
- Pediatric Translational Medicine InstituteDepartment of Hematology & OncologyShanghai Children's Medical CenterSchool of MedicineShanghai Jiao Tong UniversityNational Health Committee Key Laboratory of Pediatric Hematology & OncologyShanghai200127China
| | - Yichuan Xiao
- CAS Key Laboratory of Tissue Microenvironment and TumorShanghai Institute of Nutrition and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
| | - Shi‐Yuan Cheng
- Department of NeurologyLou and Jean Malnati Brain Tumor InstituteThe Robert H. Lurie Comprehensive Cancer CenterSimpson Querrey Institute for EpigeneticsNorthwestern University Feinberg School of MedicineChicagoIL60611USA
| | - Yanxin Li
- Pediatric Translational Medicine InstituteDepartment of Hematology & OncologyShanghai Children's Medical CenterSchool of MedicineShanghai Jiao Tong UniversityNational Health Committee Key Laboratory of Pediatric Hematology & OncologyShanghai200127China
| | - Haizhong Feng
- State Key Laboratory of Systems Medicine for CancerRenji‐Med X Clinical Stem Cell Research CenterRen Ji HospitalShanghai Cancer InstituteSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
| |
Collapse
|
2
|
Tabnak P, Hasanzade Bashkandi A, Ebrahimnezhad M, Soleimani M. Forkhead box transcription factors (FOXOs and FOXM1) in glioma: from molecular mechanisms to therapeutics. Cancer Cell Int 2023; 23:238. [PMID: 37821870 PMCID: PMC10568859 DOI: 10.1186/s12935-023-03090-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 10/04/2023] [Indexed: 10/13/2023] Open
Abstract
Glioma is the most aggressive and malignant type of primary brain tumor, comprises the majority of central nervous system deaths, and is categorized into different subgroups according to its histological characteristics, including astrocytomas, oligodendrogliomas, glioblastoma multiforme (GBM), and mixed tumors. The forkhead box (FOX) transcription factors comprise a collection of proteins that play various roles in numerous complex molecular cascades and have been discovered to be differentially expressed in distinct glioma subtypes. FOXM1 and FOXOs have been recognized as crucial transcription factors in tumor cells, including glioma cells. Accumulating data indicates that FOXM1 acts as an oncogene in various types of cancers, and a significant part of studies has investigated its function in glioma. Although recent studies considered FOXO subgroups as tumor suppressors, there are pieces of evidence that they may have an oncogenic role. This review will discuss the subtle functions of FOXOs and FOXM1 in gliomas, dissecting their regulatory network with other proteins, microRNAs and their role in glioma progression, including stem cell differentiation and therapy resistance/sensitivity, alongside highlighting recent pharmacological progress for modulating their expression.
Collapse
Affiliation(s)
- Peyman Tabnak
- Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
- Imam Reza Hospital, Tabriz University of Medical Sciences, Tabriz, Iran.
| | | | - Mohammad Ebrahimnezhad
- Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Imam Reza Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdieh Soleimani
- Imam Reza Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
3
|
Zhi F, Li B, Zhang C, Xia F, Wang R, Xie W, Cai S, Zhang D, Kong R, Hu Y, Yang Y, Peng Y, Cui J. NLRP6 potentiates PI3K/AKT signalling by promoting autophagic degradation of p85α to drive tumorigenesis. Nat Commun 2023; 14:6069. [PMID: 37770465 PMCID: PMC10539329 DOI: 10.1038/s41467-023-41739-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 09/01/2023] [Indexed: 09/30/2023] Open
Abstract
The PI3K/AKT pathway plays an essential role in tumour development. NOD-like receptors (NLRs) regulate innate immunity and are implicated in cancer, but whether they are involved in PI3K/AKT pathway regulation is poorly understood. Here, we report that NLRP6 potentiates the PI3K/AKT pathway by binding and destabilizing p85α, the regulatory subunit of PI3K. Mechanistically, NLRP6 recruits the E3 ligase RBX1 to p85α and ubiquitinates lysine 256 on p85α, which is recognized by the autophagy cargo receptor OPTN, causing selective autophagic degradation of p85α and subsequent activation of the PI3K/AKT pathway by reducing PTEN stability. We further show that loss of NLRP6 suppresses cell proliferation, colony formation, cell migration, and tumour growth in glioblastoma cells in vitro and in vivo. Disruption of the NLRP6/p85α interaction using the Pep9 peptide inhibits the PI3K/AKT pathway and generates potent antitumour effects. Collectively, our results suggest that NLRP6 promotes p85α degradation via selective autophagy to drive tumorigenesis, and the interaction between NLRP6 and p85α can be a promising therapeutic target for tumour treatment.
Collapse
Affiliation(s)
- Feng Zhi
- Department of Neurosurgery, Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Bowen Li
- Department of Neurosurgery, Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Chuanxia Zhang
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Medical Research Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Fan Xia
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Rong Wang
- Department of Neurosurgery, Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Weihong Xie
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Sihui Cai
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Dawei Zhang
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou, Jiangsu, China
| | - Ren Kong
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou, Jiangsu, China
| | - Yiqiao Hu
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School and School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Yilin Yang
- Department of Neurosurgery, Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Ya Peng
- Department of Neurosurgery, Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China.
| | - Jun Cui
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
4
|
Sanati M, Afshari AR, Ahmadi SS, Moallem SA, Sahebkar A. Modulation of the ubiquitin-proteasome system by phytochemicals: Therapeutic implications in malignancies with an emphasis on brain tumors. Biofactors 2023; 49:782-819. [PMID: 37162294 DOI: 10.1002/biof.1958] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 04/20/2023] [Indexed: 05/11/2023]
Abstract
Regarding the multimechanistic nature of cancers, current chemo- or radiotherapies often fail to eradicate disease pathology, and frequent relapses or resistance to therapies occur. Brain malignancies, particularly glioblastomas, are difficult-to-treat cancers due to their highly malignant and multidimensional biology. Unfortunately, patients suffering from malignant tumors often experience poor prognoses and short survival periods. Thus far, significant efforts have been conducted to discover novel and more effective modalities. To that end, modulation of the ubiquitin-proteasome system (UPS) has attracted tremendous interest since it affects the homeostasis of proteins critically engaged in various cell functions, for example, cell metabolism, survival, proliferation, and differentiation. With their safe and multimodal actions, phytochemicals are among the promising therapeutic tools capable of turning the operation of various UPS elements. The present review, along with an updated outline of the role of UPS dysregulation in multiple cancers, provided a detailed discussion on the impact of phytochemicals on the UPS function in malignancies, especially brain tumors.
Collapse
Affiliation(s)
- Mehdi Sanati
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
- Experimental and Animal Study Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Amir R Afshari
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
- Department of Physiology and Pharmacology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Seyed Sajad Ahmadi
- Department of Ophthalmology, Khatam-Ol-Anbia Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Adel Moallem
- Department of Pharmacology and Toxicology, College of Pharmacy, Al-Zahraa University for Women, Karbala, Iraq
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
5
|
Tian X, Chen Y, Peng Z, Lin Q, Sun A. NEDD4 E3 ubiquitin ligases: promising biomarkers and therapeutic targets for cancer. Biochem Pharmacol 2023:115641. [PMID: 37307883 DOI: 10.1016/j.bcp.2023.115641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/02/2023] [Accepted: 06/06/2023] [Indexed: 06/14/2023]
Abstract
Accumulating evidence has demonstrated that NEDD4 E3 ubiquitin ligase family plays a pivotal oncogenic role in a variety of malignancies via mediating ubiquitin dependent degradation processes. Moreover, aberrant expression of NEDD4 E3 ubiquitin ligases is often indicative of cancer progression and correlated with poor prognosis. In this review, we are going to address association of expression of NEDD4 E3 ubiquitin ligases with cancers, the signaling pathways and the molecular mechanisms by which the NEDD4 E3 ubiquitin ligases regulate oncogenesis and progression, and the therapies targeting the NEDD4 E3 ubiquitin ligases. This review provides the systematic and comprehensive summary of the latest research status of E3 ubiquitin ligases in the NEDD4 subfamily, and proposes that NEDD4 family E3 ubiquitin ligases are promising anti-cancer drug targets, aiming to provide research direction for clinical targeting of NEDD4 E3 ubiquitin ligase therapy.
Collapse
Affiliation(s)
- Xianyan Tian
- School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, China
| | - Yifei Chen
- School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, China
| | - Ziluo Peng
- School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, China
| | - Qiong Lin
- School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, China
| | - Aiqin Sun
- School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, China.
| |
Collapse
|
6
|
Jayaprakash S, Hegde M, BharathwajChetty B, Girisa S, Alqahtani MS, Abbas M, Sethi G, Kunnumakkara AB. Unraveling the Potential Role of NEDD4-like E3 Ligases in Cancer. Int J Mol Sci 2022; 23:ijms232012380. [PMID: 36293239 PMCID: PMC9604169 DOI: 10.3390/ijms232012380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/28/2022] [Accepted: 10/04/2022] [Indexed: 11/06/2022] Open
Abstract
Cancer is a deadly disease worldwide, with an anticipated 19.3 million new cases and 10.0 million deaths occurring in 2020 according to GLOBOCAN 2020. It is well established that carcinogenesis and cancer development are strongly linked to genetic changes and post-translational modifications (PTMs). An important PTM process, ubiquitination, regulates every aspect of cellular activity, and the crucial enzymes in the ubiquitination process are E3 ubiquitin ligases (E3s) that affect substrate specificity and must therefore be carefully regulated. A surfeit of studies suggests that, among the E3 ubiquitin ligases, neuronal precursor cell-expressed developmentally downregulated 4 (NEDD4)/NEDD4-like E3 ligases show key functions in cellular processes by controlling subsequent protein degradation and substrate ubiquitination. In addition, it was demonstrated that NEDD4 mainly acts as an oncogene in various cancers, but also plays a tumor-suppressive role in some cancers. In this review, to comprehend the proper function of NEDD4 in cancer development, we summarize its function, both its tumor-suppressive and oncogenic role, in multiple types of malignancies. Moreover, we briefly explain the role of NEDD4 in carcinogenesis and progression, including cell survival, cell proliferation, autophagy, cell migration, invasion, metastasis, epithelial-mesenchymal transition (EMT), chemoresistance, and multiple signaling pathways. In addition, we briefly explain the significance of NEDD4 as a possible target for cancer treatment. Therefore, we conclude that targeting NEDD4 as a therapeutic method for treating human tumors could be a practical possibility.
Collapse
Affiliation(s)
- Sujitha Jayaprakash
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati 781039, Assam, India
| | - Mangala Hegde
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati 781039, Assam, India
| | - Bandari BharathwajChetty
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati 781039, Assam, India
| | - Sosmitha Girisa
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati 781039, Assam, India
| | - Mohammed S. Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia
- BioImaging Unit, Space Research Centre, Michael Atiyah Building, University of Leicester, Leicester LE1 7RH, UK
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia
- Electronics and Communications Department, College of Engineering, Delta University for Science and Technology, Gamasa 35712, Egypt
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
- Correspondence: (G.S.); (A.B.K.)
| | - Ajaikumar B. Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati 781039, Assam, India
- Correspondence: (G.S.); (A.B.K.)
| |
Collapse
|
7
|
A lignan from Alnus japonica inhibits glioblastoma tumorspheres by suppression of FOXM1. Sci Rep 2022; 12:13990. [PMID: 35978012 PMCID: PMC9385634 DOI: 10.1038/s41598-022-18185-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 08/08/2022] [Indexed: 11/08/2022] Open
Abstract
Forkhead Box M1 (FOXM1) is known to regulate cell proliferation, apoptosis and tumorigenesis. The lignan, (-)-(2R,3R)-1,4-O-diferuloylsecoisolariciresinol (DFS), from Alnus japonica has shown anti-cancer effects against colon cancer cells by suppressing FOXM1. The present study hypothesized that DFS can have anti-cancer effects against glioblastoma (GBM) tumorspheres (TSs). Immunoprecipitation and luciferase reporter assays were performed to evaluate the ability of DFS to suppress nuclear translocation of β-catenin through β-catenin/FOXM1 binding. DFS-pretreated GBM TSs were evaluated to assess the ability of DFS to inhibit GBM TSs and their transcriptional profiles. The in vivo efficacy was examined in orthotopic xenograft models of GBM. Expression of FOXM1 was higher in GBM than in normal tissues. DFS-induced FOXM1 protein degradation blocked β-catenin translocation into the nucleus and consequently suppressed downstream target genes of FOXM1 pathways. DFS inhibited cell viability and ATP levels, while increasing apoptosis, and it reduced tumorsphere formation and the invasiveness of GBM TSs. And DFS reduced the activities of transcription factors related to tumorigenesis, stemness, and invasiveness. DFS significantly inhibited tumor growth and prolonged the survival rate of mice in orthotopic xenograft models of GBM. It suggests that DFS inhibits the proliferation of GBM TSs by suppressing FOXM1. DFS may be a potential therapeutic agent to treat GBM.
Collapse
|
8
|
Wang K, Liu J, Li YL, Li JP, Zhang R. Ubiquitination/de-ubiquitination: A promising therapeutic target for PTEN reactivation in cancer. Biochim Biophys Acta Rev Cancer 2022; 1877:188723. [DOI: 10.1016/j.bbcan.2022.188723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/01/2022] [Accepted: 03/15/2022] [Indexed: 02/07/2023]
|
9
|
Yu C, Chen H, Zhao Y, Zhang Y. Forkhead Box Protein M1 Promotes Nasopharyngeal Carcinoma Cell Tumorigenesis Possibly via the Wnt/β-Catenin Signaling Pathway. Med Sci Monit 2021; 27:e931970. [PMID: 34911926 PMCID: PMC8690047 DOI: 10.12659/msm.931970] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 09/02/2021] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Forkhead box protein M1 (FoxM1) is an important transcription factor involved in the development and progression of various malignancies. However, its role in nasopharyngeal carcinoma (NPC) remains largely unknown. This study aimed to assess the effect of FoxM1 on NPC cell tumorigenesis as well as the underlying mechanism. MATERIAL AND METHODS NPC cell lines CNE-1 and CNE-2 were treated with vehicle and FoxM1 inhibitor thiostrepton or transfected with small interfering RNA. CCK-8 assay, flow cytometric assay, and Hoechst 33258 staining were performed to assess the viability, apoptosis and nuclear morphological impairment, and cell cycle, respectively. The expression of apoptosis-related caspase-3 and caspase-9 was detected by western blot analysis The tumor growth in the mouse xenograft model of NPC treated with thiostrepton or control was assessed. The expression of Wnt/ß-catenin signaling proteins p27, FoxM1, S phase kinase-associated protein 2 (SKP2), and Cyclin D1 were determined both in cells and xenograft tissues by western blot analysis. RESULTS Inhibition of FoxM1 by thiostrepton significantly suppressed NPC cell viability, induced apoptosis, increased cell cycle arrest, impaired nuclear morphology, and reduced NPC cell-derived tumor xenograft growth. Mechanistically, inhibition or knockdown of FoxM1 inactivated the Wnt/ß-catenin signaling pathway, as demonstrated by altered expression of Wnt/ß-catenin signaling-related genes, including p27, SKP2, and cyclin D1, in both NPC cells and xenograft tissues. CONCLUSIONS We identified FoxM1 as a novel regulator of NPC cell tumorigenesis in vitro and in vivo. Targeting FoxM1 could be a promising therapeutic strategy against NPC.
Collapse
Affiliation(s)
- Chao Yu
- Department of Otolaryngology, Head and Neck Surgery, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, PR China
| | - Hongyan Chen
- Department of Otolaryngology, Head and Neck Surgery, First Affiliated Hospital of Chongqing Medical University, Chongqing, PR China
| | - Yanli Zhao
- Department of Otolaryngology, Head and Neck Surgery, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, PR China
| | - Yuedong Zhang
- Department of Otolaryngology, Head and Neck Surgery, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, PR China
| |
Collapse
|
10
|
Sasai K, Tabu K, Saito T, Matsuba Y, Saido TC, Tanaka S. Difference in the malignancy between RAS and GLI1-transformed astrocytes is associated with frequency of p27 KIP1-positive cells in xenograft tissues. Pathol Res Pract 2021; 223:153465. [PMID: 33989885 DOI: 10.1016/j.prp.2021.153465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 05/02/2021] [Accepted: 05/02/2021] [Indexed: 10/21/2022]
Abstract
We demonstrate that the introduction of GLI1 is sufficient for immortalized human astrocytes to be transformed whereas FOXM1 fails to induce malignant transformation, suggesting differences between GLI1 and FOXM1 in terms of transforming ability despite both transcription factors being overexpressed in malignant gliomas. Moreover, in investigations of mechanisms underlying relatively less-malignant features of GLI1-transformed astrocytes, we found that p27KIP1-positive cells were frequently observed in xenografts derived from GLI1-transformed astrocytes compared to those from RAS-transformed cells. As shRNA-mediated knockdown of p27KIP1 accelerates tumor progression of GLI1-transformed astrocytes, downregulation of p27KIP1 contributes to malignant features of transformed astrocytes. We propose that the models using immortalized/transformed astrocytes are useful to identify the minimal and most crucial set of changes required for glioma formation.
Collapse
Affiliation(s)
- Ken Sasai
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, N15 W7, Kita-ku, Sapporo, 060-8638, Japan.
| | - Kouichi Tabu
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, N15 W7, Kita-ku, Sapporo, 060-8638, Japan
| | - Takashi Saito
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Yukio Matsuba
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Takaomi C Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Shinya Tanaka
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, N15 W7, Kita-ku, Sapporo, 060-8638, Japan; WPI Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, N21 W10, Kita-ku, Sapporo, 001-0021, Japan
| |
Collapse
|
11
|
Zhang C, Xie C, Lu Y. Local Anesthetic Lidocaine and Cancer: Insight Into Tumor Progression and Recurrence. Front Oncol 2021; 11:669746. [PMID: 34249706 PMCID: PMC8264592 DOI: 10.3389/fonc.2021.669746] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 06/03/2021] [Indexed: 12/11/2022] Open
Abstract
Cancer is a leading contributor to deaths worldwide. Surgery is the primary treatment for resectable cancers. Nonetheless, it also results in inflammatory response, angiogenesis, and stimulated metastasis. Local anesthetic lidocaine can directly and indirectly effect different cancers. The direct mechanisms are inhibiting proliferation and inducing apoptosis via regulating PI3K/AKT/mTOR and caspase-dependent Bax/Bcl2 signaling pathways or repressing cytoskeleton formation. Repression invasion, migration, and angiogenesis through influencing the activation of TNFα-dependent, Src-induced AKT/NO/ICAM and VEGF/PI3K/AKT signaling pathways. Moreover, the indirect influences are immune regulation, anti-inflammation, and postoperative pain relief. This review summarizes the latest evidence that revealed potential clinical benefits of lidocaine in cancer treatment to explore the probable molecular mechanisms and the appropriate dose.
Collapse
Affiliation(s)
- Caihui Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Cuiyu Xie
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yao Lu
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Ambulatory Surgery Center, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
12
|
McCarty MF, DiNicolantonio JJ, Lerner A. A Fundamental Role for Oxidants and Intracellular Calcium Signals in Alzheimer's Pathogenesis-And How a Comprehensive Antioxidant Strategy May Aid Prevention of This Disorder. Int J Mol Sci 2021; 22:2140. [PMID: 33669995 PMCID: PMC7926325 DOI: 10.3390/ijms22042140] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/16/2021] [Accepted: 02/18/2021] [Indexed: 12/13/2022] Open
Abstract
Oxidative stress and increased cytoplasmic calcium are key mediators of the detrimental effects on neuronal function and survival in Alzheimer's disease (AD). Pathways whereby these perturbations arise, and then prevent dendritic spine formation, promote tau hyperphosphorylation, further amplify amyloid β generation, and induce neuronal apoptosis, are described. A comprehensive program of nutraceutical supplementation, comprised of the NADPH oxidase inhibitor phycocyanobilin, phase two inducers, the mitochondrial antioxidant astaxanthin, and the glutathione precursor N-acetylcysteine, may have important potential for antagonizing the toxic effects of amyloid β on neurons and thereby aiding prevention of AD. Moreover, nutraceutical antioxidant strategies may oppose the adverse impact of amyloid β oligomers on astrocyte clearance of glutamate, and on the ability of brain capillaries to export amyloid β monomers/oligomers from the brain. Antioxidants, docosahexaenoic acid (DHA), and vitamin D, have potential for suppressing microglial production of interleukin-1β, which potentiates the neurotoxicity of amyloid β. Epidemiology suggests that a health-promoting lifestyle, incorporating a prudent diet, regular vigorous exercise, and other feasible measures, can cut the high risk for AD among the elderly by up to 60%. Conceivably, complementing such lifestyle measures with long-term adherence to the sort of nutraceutical regimen outlined here may drive down risk for AD even further.
Collapse
Affiliation(s)
| | | | - Aaron Lerner
- Chaim Sheba Medical Center, The Zabludowicz Research Center for Autoimmune Diseases, Tel Hashomer 5262000, Israel
| |
Collapse
|
13
|
Kalathil D, John S, Nair AS. FOXM1 and Cancer: Faulty Cellular Signaling Derails Homeostasis. Front Oncol 2021; 10:626836. [PMID: 33680951 PMCID: PMC7927600 DOI: 10.3389/fonc.2020.626836] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 12/30/2020] [Indexed: 12/13/2022] Open
Abstract
Forkhead box transcription factor, FOXM1 is implicated in several cellular processes such as proliferation, cell cycle progression, cell differentiation, DNA damage repair, tissue homeostasis, angiogenesis, apoptosis, and redox signaling. In addition to being a boon for the normal functioning of a cell, FOXM1 turns out to be a bane by manifesting in several disease scenarios including cancer. It has been given an oncogenic status based on several evidences indicating its role in tumor development and progression. FOXM1 is highly expressed in several cancers and has also been implicated in poor prognosis. A comprehensive understanding of various aspects of this molecule has revealed its role in angiogenesis, invasion, migration, self- renewal and drug resistance. In this review, we attempt to understand various mechanisms underlying FOXM1 gene and protein regulation in cancer including the different signaling pathways, post-transcriptional and post-translational modifications. Identifying crucial molecules associated with these processes can aid in the development of potential pharmacological approaches to curb FOXM1 mediated tumorigenesis.
Collapse
Affiliation(s)
- Dhanya Kalathil
- Cancer Research Program-4, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | - Samu John
- Cancer Research Program-4, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India.,Research Centre, University of Kerala, Thiruvananthapuram, India
| | - Asha S Nair
- Cancer Research Program-4, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India.,Research Centre, University of Kerala, Thiruvananthapuram, India
| |
Collapse
|
14
|
The role of E3 ubiquitin ligases in the development and progression of glioblastoma. Cell Death Differ 2021; 28:522-537. [PMID: 33432111 PMCID: PMC7862665 DOI: 10.1038/s41418-020-00696-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 11/17/2020] [Accepted: 11/20/2020] [Indexed: 12/15/2022] Open
Abstract
Despite recent advances in our understanding of the disease, glioblastoma (GB) continues to have limited treatment options and carries a dismal prognosis for patients. Efforts to stratify this heterogeneous malignancy using molecular classifiers identified frequent alterations in targetable proteins belonging to several pathways including the receptor tyrosine kinase (RTK) and mitogen-activated protein kinase (MAPK) signalling pathways. However, these findings have failed to improve clinical outcomes for patients. In almost all cases, GB becomes refractory to standard-of-care therapy, and recent evidence suggests that disease recurrence may be associated with a subpopulation of cells known as glioma stem cells (GSCs). Therefore, there remains a significant unmet need for novel therapeutic strategies. E3 ubiquitin ligases are a family of >700 proteins that conjugate ubiquitin to target proteins, resulting in an array of cellular responses, including DNA repair, pro-survival signalling and protein degradation. Ubiquitin modifications on target proteins are diverse, ranging from mono-ubiquitination through to the formation of polyubiquitin chains and mixed chains. The specificity in substrate tagging and chain elongation is dictated by E3 ubiquitin ligases, which have essential regulatory roles in multiple aspects of brain cancer pathogenesis. In this review, we begin by briefly summarising the histological and molecular classification of GB. We comprehensively describe the roles of E3 ubiquitin ligases in RTK and MAPK, as well as other, commonly altered, oncogenic and tumour suppressive signalling pathways in GB. We also describe the role of E3 ligases in maintaining glioma stem cell populations and their function in promoting resistance to ionizing radiation (IR) and chemotherapy. Finally, we consider how our knowledge of E3 ligase biology may be used for future therapeutic interventions in GB, including the use of blood-brain barrier permeable proteolysis targeting chimeras (PROTACs).
Collapse
|
15
|
Scholz N, Kurian KM, Siebzehnrubl FA, Licchesi JDF. Targeting the Ubiquitin System in Glioblastoma. Front Oncol 2020; 10:574011. [PMID: 33324551 PMCID: PMC7724090 DOI: 10.3389/fonc.2020.574011] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 10/07/2020] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma is the most common primary brain tumor in adults with poor overall outcome and 5-year survival of less than 5%. Treatment has not changed much in the last decade or so, with surgical resection and radio/chemotherapy being the main options. Glioblastoma is highly heterogeneous and frequently becomes treatment-resistant due to the ability of glioblastoma cells to adopt stem cell states facilitating tumor recurrence. Therefore, there is an urgent need for novel therapeutic strategies. The ubiquitin system, in particular E3 ubiquitin ligases and deubiquitinating enzymes, have emerged as a promising source of novel drug targets. In addition to conventional small molecule drug discovery approaches aimed at modulating enzyme activity, several new and exciting strategies are also being explored. Among these, PROteolysis TArgeting Chimeras (PROTACs) aim to harness the endogenous protein turnover machinery to direct therapeutically relevant targets, including previously considered "undruggable" ones, for proteasomal degradation. PROTAC and other strategies targeting the ubiquitin proteasome system offer new therapeutic avenues which will expand the drug development toolboxes for glioblastoma. This review will provide a comprehensive overview of E3 ubiquitin ligases and deubiquitinating enzymes in the context of glioblastoma and their involvement in core signaling pathways including EGFR, TGF-β, p53 and stemness-related pathways. Finally, we offer new insights into how these ubiquitin-dependent mechanisms could be exploited therapeutically for glioblastoma.
Collapse
Affiliation(s)
- Nico Scholz
- Department of Biology & Biochemistry, University of Bath, Bath, United Kingdom
| | - Kathreena M. Kurian
- Brain Tumour Research Group, Institute of Clinical Neurosciences, University of Bristol, Bristol, United Kingdom
| | - Florian A. Siebzehnrubl
- Cardiff University School of Biosciences, European Cancer Stem Cell Research Institute, Cardiff, United Kingdom
| | | |
Collapse
|
16
|
Tian H, Lian R, Li Y, Liu C, Liang S, Li W, Tao T, Wu X, Ye Y, Yang X, Han J, Chen X, Li J, He Y, Li M, Wu J, Cai J. AKT-induced lncRNA VAL promotes EMT-independent metastasis through diminishing Trim16-dependent Vimentin degradation. Nat Commun 2020; 11:5127. [PMID: 33046716 PMCID: PMC7550350 DOI: 10.1038/s41467-020-18929-0] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 09/21/2020] [Indexed: 02/08/2023] Open
Abstract
Despite the importance of AKT overactivation in tumor progression, results from clinical trials of various AKT inhibitors remain suboptimal, suggesting that AKT-driven tumor metastasis needs to be further understood. Herein, based on long non-coding RNA (lncRNA) profiling induced by active AKT, we identify that VAL (Vimentin associated lncRNA, LINC01546), which is directly induced by AKT/STAT3 signaling, functions as a potent pro-metastatic molecule and is essential for active AKT-induced tumor invasion, metastasis and anoikis resistance in lung adenocarcinoma (LAD). Impressively, chemosynthetic siRNAs against VAL shows great therapeutic potential in AKT overactivation-driven metastasis. Interestingly, similar to activated AKT in LAD cells, although unable to induce epithelial-mesenchymal transition (EMT), VAL exerts potent pro-invasive and pro-metastatic effects through directly binding to Vimentin and competitively abrogating Trim16-depedent Vimentin polyubiquitination and degradation. Taken together, our study provides an interesting demonstration of a lncRNA-mediated mechanism for active AKT-driven EMT-independent LAD metastasis and indicates the great potential of targeting VAL or Vimentin stability as a therapeutic approach.
Collapse
Affiliation(s)
- Han Tian
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
| | - Rong Lian
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
| | - Yun Li
- Institute of Tissue Transplantation and Immunology, Department of Immunobiology, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Chenying Liu
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
| | - Shujun Liang
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
| | - Wei Li
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
| | - Tianyu Tao
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
| | - Xingui Wu
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
| | - Yaokai Ye
- Clinical Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
| | - Xia Yang
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
| | - Jian Han
- Cancer Institute, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Xuwei Chen
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
| | - Jun Li
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
| | - Yukai He
- Department of Medicine and Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Mengfeng Li
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China.,Cancer Institute, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Jueheng Wu
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China.
| | - Junchao Cai
- Department of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China. .,Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
17
|
Jeon SA, Kim DW, Lee DB, Cho JY. NEDD4 Plays Roles in the Maintenance of Breast Cancer Stem Cell Characteristics. Front Oncol 2020; 10:1680. [PMID: 33014839 PMCID: PMC7509455 DOI: 10.3389/fonc.2020.01680] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/29/2020] [Indexed: 12/31/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive type with poor prognosis among the breast cancers and has a high population of cancer stem cells (CSCs), which are the main target to cure and inhibit TNBC. In this study, we examined the role of neural precursor cell expressed developmentally downregulated protein 4 (NEDD4) in the proliferation, migration, and CSC characteristics of MDA-MB-231, a TNBC cell line. Interestingly, the Kaplan–Meier plotter showed that the survival rate of patients with a higher expression level of NEDD4 was significantly shorter than those of patients with a lower expression only in relatively aggressive and higher stage (grade 3) breast cancer patients. The knockdown of NEDD4 drastically decreased the proliferation, migration, and mammosphere formation in MDA-MB-231 cells. A proteomic analysis revealed the alteration of CSC-related proteins; notably, Myc targets stem cell-like signatures in siNEDD4-treated MDA-MB-231. An immunoassay also showed that the expression and the activity of breast CSC markers are decreased in NEDD4-deleted MDA-MB-231. Taken together, these results indicate that NEDD4 is involved in the maintenance of populations and characteristics of breast CSCs.
Collapse
Affiliation(s)
- Seon-Ae Jeon
- Department of Veterinary Biochemistry, BK21 Plus and Research Institute for Veterinary Science, School of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - Dong Wook Kim
- Department of Veterinary Biochemistry, BK21 Plus and Research Institute for Veterinary Science, School of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - Da-Bin Lee
- Department of Veterinary Biochemistry, BK21 Plus and Research Institute for Veterinary Science, School of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - Je-Yoel Cho
- Department of Veterinary Biochemistry, BK21 Plus and Research Institute for Veterinary Science, School of Veterinary Medicine, Seoul National University, Seoul, South Korea
| |
Collapse
|
18
|
Xia Q, Ali S, Liu L, Li Y, Liu X, Zhang L, Dong L. Role of Ubiquitination in PTEN Cellular Homeostasis and Its Implications in GB Drug Resistance. Front Oncol 2020; 10:1569. [PMID: 32984016 PMCID: PMC7492558 DOI: 10.3389/fonc.2020.01569] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 07/21/2020] [Indexed: 12/15/2022] Open
Abstract
Glioblastoma (GB) is the most common and aggressive brain malignancy, characterized by heterogeneity and drug resistance. PTEN, a crucial tumor suppressor, exhibits phosphatase-dependent (PI3K-AKT-mTOR pathway)/independent (nucleus stability) activities to maintain the homeostatic regulation of numerous physiological processes. Premature and absolute loss of PTEN activity usually tends to cellular senescence. However, monoallelic loss of PTEN is frequently observed at tumor inception, and absolute loss of PTEN activity also occurs at the late stage of gliomagenesis. Consequently, aberrant PTEN homeostasis, mainly regulated at the post-translational level, renders cells susceptible to tumorigenesis and drug resistance. Ubiquitination-mediated degradation or deregulated intracellular localization of PTEN hijacks cell growth rheostat control for neoplastic remodeling. Functional inactivation of PTEN mediated by the overexpression of ubiquitin ligases (E3s) renders GB cells adaptive to PTEN loss, which confers resistance to EGFR tyrosine kinase inhibitors and immunotherapies. In this review, we discuss how glioma cells develop oncogenic addiction to the E3s-PTEN axis, promoting their growth and proliferation. Antitumor strategies involving PTEN-targeting E3 ligase inhibitors can restore the tumor-suppressive environment. E3 inhibitors collectively reactivate PTEN and may represent next-generation treatment against deadly malignancies such as GB.
Collapse
Affiliation(s)
- Qin Xia
- School of Life Sciences, Beijing Institute of Technology, Beijing, China
| | - Sakhawat Ali
- School of Life Sciences, Beijing Institute of Technology, Beijing, China
| | - Liqun Liu
- School of Life Sciences, Beijing Institute of Technology, Beijing, China
| | - Yang Li
- School of Life Sciences, Beijing Institute of Technology, Beijing, China
| | - Xuefeng Liu
- School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Lingqiang Zhang
- State Key Laboratory of Proteomics, National Center for Protein Sciences, Beijing Institute of Lifeomics, Beijing, China
| | - Lei Dong
- School of Life Sciences, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
19
|
Xie Z, Janczyk PŁ, Zhang Y, Liu A, Shi X, Singh S, Facemire L, Kubow K, Li Z, Jia Y, Schafer D, Mandell JW, Abounader R, Li H. A cytoskeleton regulator AVIL drives tumorigenesis in glioblastoma. Nat Commun 2020; 11:3457. [PMID: 32651364 PMCID: PMC7351761 DOI: 10.1038/s41467-020-17279-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 06/18/2020] [Indexed: 12/21/2022] Open
Abstract
Glioblastoma is a deadly cancer, with no effective therapies. Better understanding and identification of selective targets are urgently needed. We found that advillin (AVIL) is overexpressed in all the glioblastomas we tested including glioblastoma stem/initiating cells, but hardly detectable in non-neoplastic astrocytes, neural stem cells or normal brain. Glioma patients with increased AVIL expression have a worse prognosis. Silencing AVIL nearly eradicated glioblastoma cells in culture, and dramatically inhibited in vivo xenografts in mice, but had no effect on normal control cells. Conversely, overexpressing AVIL promoted cell proliferation and migration, enabled fibroblasts to escape contact inhibition, and transformed immortalized astrocytes, supporting AVIL being a bona fide oncogene. We provide evidence that the tumorigenic effect of AVIL is partly mediated by FOXM1, which regulates LIN28B, whose expression also correlates with clinical prognosis. AVIL regulates the cytoskeleton through modulating F-actin, while mutants disrupting F-actin binding are defective in its tumorigenic capabilities. Genes that modulate the cytoskeleton have been associated with increased cell proliferation and migration. Here, the authors show that AVIL, an actin regulatory protein, is overexpressed in glioblastomas and mediates oncogenic effects through regulation of FOXM1 stability and LIN28B expression.
Collapse
Affiliation(s)
- Zhongqiu Xie
- Department of Pathology, School of Medicine, University of Virginia, Charlottesville, VA, 22908, USA
| | - Pawel Ł Janczyk
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Virginia, Charlottesville, VA, 22908, USA
| | - Ying Zhang
- Department of Microbiology, Immunology, and Cancer Biology, School of Medicine, University of Virginia, Charlottesville, VA, 22908, USA
| | - Aiqun Liu
- Tumor Hospital, Guangxi Medical University, Nanning, 530021, China
| | - Xinrui Shi
- Department of Pathology, School of Medicine, University of Virginia, Charlottesville, VA, 22908, USA
| | - Sandeep Singh
- Department of Pathology, School of Medicine, University of Virginia, Charlottesville, VA, 22908, USA
| | - Loryn Facemire
- Department of Pathology, School of Medicine, University of Virginia, Charlottesville, VA, 22908, USA
| | - Kristopher Kubow
- Department of Biology, James Madison University, Harrisonburg, VA, 22807, USA
| | - Zi Li
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Yuemeng Jia
- Department of Pathology, School of Medicine, University of Virginia, Charlottesville, VA, 22908, USA
| | - Dorothy Schafer
- Department of Biology, University of Virginia, Charlottesville, VA, 22908, USA
| | - James W Mandell
- Department of Pathology, School of Medicine, University of Virginia, Charlottesville, VA, 22908, USA
| | - Roger Abounader
- Department of Microbiology, Immunology, and Cancer Biology, School of Medicine, University of Virginia, Charlottesville, VA, 22908, USA
| | - Hui Li
- Department of Pathology, School of Medicine, University of Virginia, Charlottesville, VA, 22908, USA. .,Department of Biochemistry and Molecular Genetics, School of Medicine, University of Virginia, Charlottesville, VA, 22908, USA.
| |
Collapse
|
20
|
Delgado‐Martín B, Medina MÁ. Advances in the Knowledge of the Molecular Biology of Glioblastoma and Its Impact in Patient Diagnosis, Stratification, and Treatment. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1902971. [PMID: 32382477 PMCID: PMC7201267 DOI: 10.1002/advs.201902971] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 01/24/2020] [Indexed: 05/07/2023]
Abstract
Gliomas are the most common primary brain tumors in adults. They arise in the glial tissue and primarily occur in the brain. Low-grade tumors of World Health Organization (WHO) grade II tend to progress to high-grade gliomas of WHO grade III and, eventually, glioblastoma of WHO grade IV, which is the most common and deadly glioma, with a median survival of 12-15 months after final diagnosis. Knowledge of the molecular biology and genetics of glioblastoma has increased significantly in the past few years, giving rise to classification methods that can help in management and stratification of glioblastoma patients. However, glioblastoma remains an incurable disease. Glioblastoma cells have acquired genetic and metabolic adaptations in order to sustain tumor growth and progression, including changes in energetic metabolism, invasive capacity, migration, and angiogenesis, that make it very difficult to find suitable therapeutic targets and to develop effective drugs. The current standard of care for glioblastoma patients is surgery followed by radiotherapy plus concomitant and adjuvant chemotherapy with temozolomide. Although progress in glioblastoma therapies in recent years has been more limited than in other tumors, numerous drugs and targets are being proposed and many clinical trials are underway to develop effective subtype-specific treatments.
Collapse
Affiliation(s)
- Belén Delgado‐Martín
- Department of Molecular Biology and BiochemistryFaculty of SciencesCampus de Teatinos s/nUniversity of MálagaMálagaE‐29071Spain
| | - Miguel Ángel Medina
- Department of Molecular Biology and BiochemistryFaculty of SciencesCampus de Teatinos s/nUniversity of MálagaMálagaE‐29071Spain
- IBIMA (Biomedical Research Institute of Málaga)MálagaE‐29071Spain
- CIBER de Enfermedades Raras (CIBERER)MálagaE‐29071Spain
| |
Collapse
|
21
|
Wang ZW, Hu X, Ye M, Lin M, Chu M, Shen X. NEDD4 E3 ligase: Functions and mechanism in human cancer. Semin Cancer Biol 2020; 67:92-101. [PMID: 32171886 DOI: 10.1016/j.semcancer.2020.03.006] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/03/2020] [Accepted: 03/07/2020] [Indexed: 12/11/2022]
Abstract
A growing amount of evidence indicates that the neuronally expressed developmentally downregulated 4 (NEDD4, also known as NEDD4-1) E3 ligase plays a critical role in a variety of cellular processes via the ubiquitination-mediated degradation of multiple substrates. The abnormal regulation of NEDD4 protein has been implicated in cancer development and progression. In this review article, we briefly delineate the downstream substrates and upstream regulators of NEDD4, which are involved in carcinogenesis. Moreover, we succinctly elucidate the functions of NEDD4 protein in tumorigenesis and progression, including cell proliferation, apoptosis, cell cycle, migration, invasion, epithelial mesenchymal transition (EMT), cancer stem cells, and drug resistance. The findings regarding NEDD4 functions are further supported by knockout mouse models and human tumor tissue studies. This review could provide a promising and optimum anticancer therapeutic strategy via targeting the NEDD4 protein.
Collapse
Affiliation(s)
- Zhi-Wei Wang
- Center of Scientific Research, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China; Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| | - Xiaoli Hu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Miaomiao Ye
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Min Lin
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Man Chu
- Center of Scientific Research, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Xian Shen
- Department of Gastrointestinal Surgery, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China.
| |
Collapse
|
22
|
Yang Y, Luo M, Zhang K, Zhang J, Gao T, Connell DO, Yao F, Mu C, Cai B, Shang Y, Chen W. Nedd4 ubiquitylates VDAC2/3 to suppress erastin-induced ferroptosis in melanoma. Nat Commun 2020; 11:433. [PMID: 31974380 PMCID: PMC6978386 DOI: 10.1038/s41467-020-14324-x] [Citation(s) in RCA: 250] [Impact Index Per Article: 62.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Accepted: 12/16/2019] [Indexed: 12/30/2022] Open
Abstract
Ferroptosis is a newly defined form of regulated cell death characterized by the iron-dependent accumulation of lipid hydroperoxides. Erastin, the ferroptosis activator, binds to voltage-dependent anion channels VDAC2 and VDCA3, but treatment with erastin can result in the degradation of the channels. Here, the authors show that Nedd4 is induced following erastin treatment, which leads to the ubiquitination and subsequent degradation of the channels. Depletion of Nedd4 limits the protein degradation of VDAC2/3, which increases the sensitivity of cancer cells to erastin. By understanding the molecular mechanism of erastin-induced cellular resistance, we can discover how cells adapt to new molecules to maintain homeostasis. Furthermore, erastin-induced resistance mediated by FOXM1-Nedd4-VDAC2/3 negative feedback loop provides an initial framework for creating avenues to overcome the drug resistance of ferroptosis activators. Erastin, the ferroptosis activator, binds to voltage gated ion channels CDAC2 and VDCA3 but treatment with erastin can result in the degradation of the channels. Here, the authors show that Nedd4 is induced following erastin treatment, which leads to the ubiquitination and subsequent degradation of the channels.
Collapse
Affiliation(s)
- Yongfei Yang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China. .,Beijing Institute of Biotechnology, Beijing, 100071, China.
| | - Meiying Luo
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China.,Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Kexin Zhang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Jun Zhang
- Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Tongtong Gao
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Douglas O' Connell
- College of Osteopathic Medicine, Touro University, Vallejo, CA, 94592, USA
| | - Fengping Yao
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Changwen Mu
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Bingyu Cai
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Yuxue Shang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Wei Chen
- Beijing Institute of Biotechnology, Beijing, 100071, China.
| |
Collapse
|
23
|
Wan L, Liu T, Hong Z, Pan Y, Sizemore ST, Zhang J, Ma Z. NEDD4 expression is associated with breast cancer progression and is predictive of a poor prognosis. Breast Cancer Res 2019; 21:148. [PMID: 31856858 PMCID: PMC6923956 DOI: 10.1186/s13058-019-1236-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 11/28/2019] [Indexed: 12/12/2022] Open
Abstract
Background A role for neural precursor cell-expressed developmentally downregulated gene 4 (NEDD4) in tumorigenesis has been suggested. However, information is lacking on its role in breast tumor biology. The purpose of this study was to determine the role of NEDD4 in the promotion of the growth and progression of breast cancer (BC) and to evaluate the clinicopathologic and prognostic significance of NEDD4. Methods The impact of NEDD4 expression in BC cell growth was determined by Cell Counting Kit-8 and colony formation assays. Formalin-fixed paraffin-embedded specimens were collected from 133 adjacent normal tissues (ANTs), 445 BC cases composed of pre-invasive ductal carcinoma in situ (DCIS, n = 37), invasive ductal carcinomas (IDC, n = 408, 226 without and 182 with lymph node metastasis), and 116 invaded lymph nodes. The expression of NEDD4 was analyzed by immunohistochemistry. The association between NEDD4 expression and clinicopathological characteristics was analyzed by chi-square test. Survival was evaluated using the Kaplan–Meier method, and curves were compared using a log-rank test. Univariate and multivariate analyses were performed using the Cox regression method. Results NEDD4 promoted BC growth in vitro. In clinical retrospective studies, 16.5% of ANTs (22/133) demonstrated positive NEDD4 staining. Strikingly, the proportion of cases showing NEDD4-positive staining increased to 51.4% (19/37) in DCIS, 58.4% (132/226) in IDC without lymph node metastasis, and 73.1% (133/182) in BC with lymph node metastasis (BCLNM). In addition, NEDD4-positive staining was associated with clinical parameters, including tumor size (P = 0.030), nodal status (P = 0.001), estrogen receptor status (P = 0.035), and progesterone receptor status (P = 0.023). Moreover, subset analysis in BCLNM revealed that high NEDD4 expression correlated with an elevated risk of relapse (P = 0.0276). Further, NEDD4 expression was an independent prognostic predictor. Lastly, the rates for 10-year overall survival and disease-free survival were significantly lower in patients with positive NEDD4 staining than those in BC patients with negative NEDD4 staining BC (P = 0.0024 and P = 0.0011, respectively). Conclusions NEDD4 expression is elevated in BC and is associated with BC growth. NEDD4 correlated with clinicopathological parameters and predicts a poor prognosis. Thus, NEDD4 is a potential biomarker of poor prognosis and a potential therapeutic target for BC treatment.
Collapse
Affiliation(s)
- Lingfeng Wan
- Department of Breast Surgery, The First Affiliated Hospital, Sun Yat-sen University, No.58 of Zhongshan 2nd Road, Yuexiu District, Guangzhou, 510080, China.,Department of Radiation Oncology, The Ohio State University, Arthur G. James Comprehensive Cancer Center and Richard L. Solove Research Institute, 460 West 12th Ave, Columbus, OH, 43210, USA
| | - Tao Liu
- Department of Breast Surgery, The First Affiliated Hospital, Sun Yat-sen University, No.58 of Zhongshan 2nd Road, Yuexiu District, Guangzhou, 510080, China.,Department of Radiation Oncology, The Ohio State University, Arthur G. James Comprehensive Cancer Center and Richard L. Solove Research Institute, 460 West 12th Ave, Columbus, OH, 43210, USA
| | - Zhipeng Hong
- Department of Radiation Oncology, The Ohio State University, Arthur G. James Comprehensive Cancer Center and Richard L. Solove Research Institute, 460 West 12th Ave, Columbus, OH, 43210, USA.,Department of Breast Surgery, Affiliated Quanzhou First Hospital of Fujian Medical University, Quanzhou, 362000, China
| | - You Pan
- Department of Breast Surgery, The First Affiliated Hospital, Sun Yat-sen University, No.58 of Zhongshan 2nd Road, Yuexiu District, Guangzhou, 510080, China
| | - Steven T Sizemore
- Department of Radiation Oncology, The Ohio State University, Arthur G. James Comprehensive Cancer Center and Richard L. Solove Research Institute, 460 West 12th Ave, Columbus, OH, 43210, USA
| | - Junran Zhang
- Department of Radiation Oncology, The Ohio State University, Arthur G. James Comprehensive Cancer Center and Richard L. Solove Research Institute, 460 West 12th Ave, Columbus, OH, 43210, USA.
| | - Zhefu Ma
- Department of Breast Surgery, The First Affiliated Hospital, Sun Yat-sen University, No.58 of Zhongshan 2nd Road, Yuexiu District, Guangzhou, 510080, China. .,Department of Breast Surgery and Plastic Surgery, Cancer Hospital of China Medical University, 44 Xiaoheyan Road, Dadong District, Shenyang, 110042, China.
| |
Collapse
|
24
|
Jeon SA, Kim DW, Cho JY. Neural precursor cell-expressed, developmentally down-regulated 4 (NEDD4) regulates hydrogen peroxide-induced cell proliferation and death through inhibition of Hippo signaling. FASEB J 2019; 33:14772-14783. [PMID: 31690112 DOI: 10.1096/fj.201901404r] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
E3 ubiquitin ligases are involved in the regulation of oxidative stress-induced cell death. In this study, we investigated the role of neural precursor cell-expressed, developmentally down-regulated protein 4 (NEDD4) in regulation of hydrogen peroxide (H2O2)-induced cell proliferation and apoptosis in human bone marrow-derived stem cells (hBMSCs). Cell proliferation was increased in low doses of H2O2 (10-4 to 10-2 μM), whereas sublethal concentrations of H2O2 (>200 μM) induced apoptosis. A chromatin immunoprecipitation assay identified that recruitment of NF-κB onto the promoter region of NEDD4 mediated H2O2-induced NEDD4 expression. The increase of NEDD4 expression by H2O2 induced translocation of yes-associated protein (YAP) into the nucleus by decreasing the stability of large tumor suppressor kinase (LATS). Thus, the phosphorylation of serine 127 residue of YAP by LATS upstream kinase is decreased and thereby increased the transcriptional activity of YAP. The mRNA expression levels of catalase and manganese superoxide dismutase, which are well-known targets of YAP, were increased by H2O2 treatment but down-regulated by NEDD4 silencing using a specific small interfering RNA targeting NEDD4 (siNEDD4). H2O2-induced scavenging capacity of reactive oxygen species was also decreased by siNEDD4 in hBMSCs. Finally, hBMSC differentiation into osteoblast was decreased by siNEDD4 but reverted by reintroduction of the S127A mutant construction of YAP. Taken together, these results indicate that NEDD4 regulates H2O2-induced alteration of cell status through regulation of the Hippo signaling pathway.-Jeon, S.-A., Kim, D. W., Cho, J.-Y. Neural precursor cell-expressed, developmentally down-regulated 4 (NEDD4) regulates hydrogen peroxide-induced cell proliferation and death through inhibition of Hippo signaling.
Collapse
Affiliation(s)
- Seon-Ae Jeon
- Department of Veterinary Biochemistry, BK21 Plus and Research Institute for Veterinary Science, School of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - Dong Wook Kim
- Department of Veterinary Biochemistry, BK21 Plus and Research Institute for Veterinary Science, School of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - Je-Yoel Cho
- Department of Veterinary Biochemistry, BK21 Plus and Research Institute for Veterinary Science, School of Veterinary Medicine, Seoul National University, Seoul, South Korea
| |
Collapse
|
25
|
Yarushkin AA, Mazin ME, Pustylnyak YA, Prokopyeva EA, Pustylnyak VO. Promotion of liver growth by CAR is accompanied by Akt pathway activation and FoxM1-Nedd4-mediated repression of PTEN. Arch Biochem Biophys 2019; 672:108065. [DOI: 10.1016/j.abb.2019.108065] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/15/2019] [Accepted: 08/05/2019] [Indexed: 01/06/2023]
|
26
|
Rocchio F, Tapella L, Manfredi M, Chisari M, Ronco F, Ruffinatti FA, Conte E, Canonico PL, Sortino MA, Grilli M, Marengo E, Genazzani AA, Lim D. Gene expression, proteome and calcium signaling alterations in immortalized hippocampal astrocytes from an Alzheimer's disease mouse model. Cell Death Dis 2019; 10:24. [PMID: 30631041 PMCID: PMC6328590 DOI: 10.1038/s41419-018-1264-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 12/03/2018] [Accepted: 12/05/2018] [Indexed: 12/29/2022]
Abstract
Evidence is rapidly growing regarding a role of astroglial cells in the pathogenesis of Alzheimer’s disease (AD), and the hippocampus is one of the important brain regions affected in AD. While primary astroglial cultures, both from wild-type mice and from rodent models of AD, have been useful for studying astrocyte-specific alterations, the limited cell number and short primary culture lifetime have limited the use of primary hippocampal astrocytes. To overcome these limitations, we have now established immortalized astroglial cell lines from the hippocampus of 3xTg-AD and wild-type control mice (3Tg-iAstro and WT-iAstro, respectively). Both 3Tg-iAstro and WT-iAstro maintain an astroglial phenotype and markers (glutamine synthetase, aldehyde dehydrogenase 1 family member L1 and aquaporin-4) but display proliferative potential until at least passage 25. Furthermore, these cell lines maintain the potassium inward rectifying (Kir) current and present transcriptional and proteomic profiles compatible with primary astrocytes. Importantly, differences between the 3Tg-iAstro and WT-iAstro cell lines in terms of calcium signaling and in terms of transcriptional changes can be re-conducted to the changes previously reported in primary astroglial cells. To illustrate the versatility of this model we performed shotgun mass spectrometry proteomic analysis and found that proteins related to RNA binding and ribosome are differentially expressed in 3Tg-iAstro vs WT-iAstro. In summary, we present here immortalized hippocampal astrocytes from WT and 3xTg-AD mice that might be a useful model to speed up research on the role of astrocytes in AD.
Collapse
Affiliation(s)
- Francesca Rocchio
- Department of Pharmaceutical Sciences, Università degli Studi del Piemonte Orientale, Novara, Italy.,International Center for T1D, Pediatric Clinic Research Center Fondazione Romeo ed Enrica Invernizzi, Department of Biomedical and Clinical Science L. Sacco, University of Milan, Milan, Italy
| | - Laura Tapella
- Department of Pharmaceutical Sciences, Università degli Studi del Piemonte Orientale, Novara, Italy
| | - Marcello Manfredi
- Department of Sciences and Technological Innovation, Università degli Studi del Piemonte Orientale, Alessandria, Italy.,ISALIT S.r.l., Spin-off of Università degli Studi del Piemonte Orientale, Novara, Italy
| | - Mariangela Chisari
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Via Santa Sofia, 97, 95123, Catania, Italy
| | - Francesca Ronco
- Department of Pharmaceutical Sciences, Università degli Studi del Piemonte Orientale, Novara, Italy
| | | | - Eleonora Conte
- Department of Sciences and Technological Innovation, Università degli Studi del Piemonte Orientale, Alessandria, Italy
| | - Pier Luigi Canonico
- Department of Pharmaceutical Sciences, Università degli Studi del Piemonte Orientale, Novara, Italy
| | - Maria Angela Sortino
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Via Santa Sofia, 97, 95123, Catania, Italy
| | - Mariagrazia Grilli
- Department of Pharmaceutical Sciences, Università degli Studi del Piemonte Orientale, Novara, Italy
| | - Emilio Marengo
- Department of Sciences and Technological Innovation, Università degli Studi del Piemonte Orientale, Alessandria, Italy
| | - Armando A Genazzani
- Department of Pharmaceutical Sciences, Università degli Studi del Piemonte Orientale, Novara, Italy.
| | - Dmitry Lim
- Department of Pharmaceutical Sciences, Università degli Studi del Piemonte Orientale, Novara, Italy.
| |
Collapse
|
27
|
Eliassen E, Lum E, Pritchett J, Ongradi J, Krueger G, Crawford JR, Phan TL, Ablashi D, Hudnall SD. Human Herpesvirus 6 and Malignancy: A Review. Front Oncol 2018; 8:512. [PMID: 30542640 PMCID: PMC6277865 DOI: 10.3389/fonc.2018.00512] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 10/19/2018] [Indexed: 12/21/2022] Open
Abstract
In order to determine the role of human herpesvirus 6 (HHV-6) in human disease, several confounding factors, including methods of detection, types of controls, and the ubiquitous nature of the virus, must be considered. This is particularly problematic in the case of cancer, in which rates of detection vary greatly among studies. To determine what part, if any, HHV-6 plays in oncogenesis, a review of the literature was performed. There is evidence that HHV-6 is present in certain types of cancer; however, detection of the virus within tumor cells is insufficient for assigning a direct role of HHV-6 in tumorigenesis. Findings supportive of a causal role for a virus in cancer include presence of the virus in a large proportion of cases, presence of the virus in most tumor cells, and virus-induced in-vitro cell transformation. HHV-6, if not directly oncogenic, may act as a contributory factor that indirectly enhances tumor cell growth, in some cases by cooperation with other viruses. Another possibility is that HHV-6 may merely be an opportunistic virus that thrives in the immunodeficient tumor microenvironment. Although many studies have been carried out, it is still premature to definitively implicate HHV-6 in several human cancers. In some instances, evidence suggests that HHV-6 may cooperate with other viruses, including EBV, HPV, and HHV-8, in the development of cancer, and HHV-6 may have a role in such conditions as nodular sclerosis Hodgkin lymphoma, gastrointestinal cancer, glial tumors, and oral cancers. However, further studies will be required to determine the exact contributions of HHV-6 to tumorigenesis.
Collapse
Affiliation(s)
- Eva Eliassen
- HHV-6 Foundation, Santa Barbara, CA, United States
| | - Emily Lum
- HHV-6 Foundation, Santa Barbara, CA, United States
| | - Joshua Pritchett
- Department of Internal Medicine, Mayo Clinic, Rochester, MN, United States
| | - Joseph Ongradi
- Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary
| | - Gerhard Krueger
- Department of Pathology and Laboratory Medicine, University of Texas- Houston Medical School, Houston, TX, United States
| | - John R Crawford
- Department of Neurosciences and Pediatrics, University of California San Diego and Rady Children's Hospital, San Diego, CA, United States
| | - Tuan L Phan
- HHV-6 Foundation, Santa Barbara, CA, United States.,Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, United States
| | | | | |
Collapse
|
28
|
Wang Y, Su Y, Ji Z, Lv Z. High Expression of PTPN3 Predicts Progression and Unfavorable Prognosis of Glioblastoma. Med Sci Monit 2018; 24:7556-7562. [PMID: 30348936 PMCID: PMC6354633 DOI: 10.12659/msm.911531] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Background PTPN3 was demonstrated to be involved in the progression of several types of cancers, such as gastric adenocarcinoma, lung cancer, and intrahepatic cholangiocarcinoma. However, its clinical significance in glioblastoma (GBM) has not been elucidated. Material/Methods We investigated the expression of PTPN3 in 95 cases of GBM with immunohistochemistry and in 8 pairs of fresh GBMs and their adjacent tissues with qualitative polymerase chain reaction. Moreover, the correlation between PTPN3 and clinicopathological factors was evaluated by chi-square test. The prognostic value of PTPN3 was investigated with univariate analysis and multivariate analysis. With MTT assay and Transwell assay, the oncogenic functions of PTPN3 in GBM proliferation and invasion were further investigated. Results Expression of PTPN3 in GBM tissues was significantly higher than in their corresponding adjacent tissues. High expression of PTPN3 was significantly associated with unfavorable prognosis of GBM. Moreover, in GBM cell lines, PTPN3 promoted cell proliferation and invasion, and the PTP common inhibitor pervanadate suppressed GBM proliferation and invasion. Conclusions Our experiments show that PTPN3 is an independent prognostic factor in GBM and indicated that postoperative detection of PTPN3 can be used to identify high-risk patients and guide individual treatment.
Collapse
Affiliation(s)
- Yu Wang
- Department of Cardiology, Yidu Central Hospital of Qingzhou, Weifang, Shandong, China (mainland)
| | - Yan Su
- Department of Intensive Care, Yidu Central Hospital of Qingzhou, Weifang, Shandong, China (mainland)
| | - Zhiling Ji
- Department of Neurology, Yidu Central Hospital of Qingzhou, Weifang, Shandong, China (mainland)
| | - Zhonghua Lv
- Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China (mainland)
| |
Collapse
|
29
|
Yarushkin AA, Mazin ME, Yunusova AY, Korchagina KV, Pustylnyak YA, Prokopyeva EA, Pustylnyak VO. CAR-mediated repression of Cdkn1a(p21) is accompanied by the Akt activation. Biochem Biophys Res Commun 2018; 504:361-366. [PMID: 29890134 DOI: 10.1016/j.bbrc.2018.06.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 06/08/2018] [Indexed: 11/25/2022]
Abstract
It was shown that CAR participates in the regulation of many cell processes. Thus, the activation of CAR causes a proliferating effect in the liver, which provides grounds to consider CAR as a therapeutic target when having a partial resection of this organ. Even though a lot of work has been done on the function of CAR in regulating hepatocyte proliferation, very little has been done on its complex mediating mechanism. This study, therefore, showed that the liver growth resulting from CAR activation leads to the decline in the level of PTEN protein and subsequent Akt activation in mouse liver. The increase of Akt activation produced by CAR agonist was accompanied by a decrease in the level of Foxo1, which was correlated with decreased expression of Foxo1 target genes, including Cdkn1a(p21). Moreover, the study also demonstrated that there exists a negative regulatory impact of CAR on the relationship between Foxo1 and targeted Cdkn1a(p21) promoter. Therefore, the study results revealed an essential function of CAR-Akt-Foxo1 signalling pathway in controlling hepatocyte proliferation by repressing the cell cycle regulator Cdkn1a (p21).
Collapse
Affiliation(s)
- Andrei A Yarushkin
- Novosibirsk State University, Novosibirsk, Pirogova Street, 1, 630090, Russia; Federal Research Center of Fundamental and Translational Medicine, Novosibirsk, Timakova Street, 2/12, 630117, Russia
| | - Mark E Mazin
- Novosibirsk State University, Novosibirsk, Pirogova Street, 1, 630090, Russia
| | - Anastasia Y Yunusova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 8 Lavrentjev Avenue, 630090, Russia
| | - Kseniya V Korchagina
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 8 Lavrentjev Avenue, 630090, Russia
| | - Yuliya A Pustylnyak
- Novosibirsk State University, Novosibirsk, Pirogova Street, 1, 630090, Russia
| | - Elena A Prokopyeva
- Novosibirsk State University, Novosibirsk, Pirogova Street, 1, 630090, Russia; Federal Research Center of Fundamental and Translational Medicine, Novosibirsk, Timakova Street, 2/12, 630117, Russia
| | - Vladimir O Pustylnyak
- Novosibirsk State University, Novosibirsk, Pirogova Street, 1, 630090, Russia; Federal Research Center of Fundamental and Translational Medicine, Novosibirsk, Timakova Street, 2/12, 630117, Russia.
| |
Collapse
|
30
|
FOXM1 promotes proliferation in human hepatocellular carcinoma cells by transcriptional activation of CCNB1. Biochem Biophys Res Commun 2018; 500:924-929. [DOI: 10.1016/j.bbrc.2018.04.201] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 04/25/2018] [Indexed: 12/19/2022]
|
31
|
Li L, Wu D, Yu Q, Li L, Wu P. Prognostic value of FOXM1 in solid tumors: a systematic review and meta-analysis. Oncotarget 2018; 8:32298-32308. [PMID: 28427178 PMCID: PMC5458285 DOI: 10.18632/oncotarget.15764] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Accepted: 02/20/2017] [Indexed: 12/21/2022] Open
Abstract
Accumulated studies have provided controversial evidences of the association between Forkhead Box M1 (FOXM1) expression and survival of human solid tumors. To address this inconsistency, we performed a meta-analysis with 23 studies identified from PubMed and Medline. We found elevated FOXM1-protein expression was significantly associated with worse 3-year overall survival (OS) (OR = 3.30, 95% CI = 2.56 to 4.25, P < 0.00001) 5-year OS (OR =3.35, 95% CI = 2.64 to 4.26, P < 0.00001) and 10-year OS (OR = 5.24, 95% CI = 2.61 to 10.52, P < 0.00001) of human solid tumors. Similar results were observed when disease free survival (DFS) were analyzed. Subgroup analysis showed that FOXM1 overexpression was associated with poor prognosis of colorectal cancer, gastric cancer, hepatic cancer, lung cancer and ovarian cancer. High expression level of FOXM1 was also associated with advanced tumor stage. In conclusion, elevated FOXM1 expression is associated with poor survival in most solid tumors. FOXM1 is a potential biomarker for prognosis prediction and a promising therapeutic target in human solid tumors.
Collapse
Affiliation(s)
- Lijun Li
- Department of Surgery, Hangzhou Xixi Hospital, Hangzhou, China
| | - Dang Wu
- Department of Radiation Oncology, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Qun Yu
- Fourth Ward of Neurosurgery, Division of Nursing, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Lingdi Li
- Department of Oncology, Hangzhou Cancer Hospital, Hangzhou, China
| | - Pin Wu
- Department of Thoracic Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
32
|
Chen YH, Cimino PJ, Luo J, Dahiya S, Gutmann DH. ABCG1 maintains high-grade glioma survival in vitro and in vivo. Oncotarget 2018; 7:23416-24. [PMID: 26981778 PMCID: PMC5029636 DOI: 10.18632/oncotarget.8030] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 02/25/2016] [Indexed: 01/23/2023] Open
Abstract
The overall survival for adults with malignant glioma (glioblastoma) remains poor despite advances in radiation and chemotherapy. One of the mechanisms by which cancer cells develop relative resistance to treatment is through de-regulation of endoplasmic reticulum (ER) homeostasis. We have recently shown that ABCG1, an ATP-binding cassette transporter, maintains ER homeostasis and suppresses ER stress-induced apoptosis in low-grade glioma. Herein, we demonstrate that ABCG1 expression is increased in human adult glioblastoma, where it correlates with poor survival in individuals with the mesenchymal subtype. Leveraging a mouse model of mesenchymal glioblastoma (NPcis), shRNA-mediated Abcg1 knockdown (KD) increased CHOP ER stress protein expression and resulted in greater NPcis glioma cell death in vitro. Moreover, Abcg1 KD reduced NPcis glioma growth and increased mouse survival in vivo. Collectively, these results demonstrate that ABCG1 is critical for malignant glioma cell survival, and might serve as a future therapeutic target for these deadly brain cancers.
Collapse
Affiliation(s)
- Yi-Hsien Chen
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Patrick J Cimino
- Department of Pathology, Washington University School of Medicine, St. Louis, MO, USA
| | - Jingqin Luo
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Sonika Dahiya
- Department of Pathology, Washington University School of Medicine, St. Louis, MO, USA
| | - David H Gutmann
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
33
|
Weng M, Luo ZL, Wu XL, Zeng WZ. The E3 ubiquitin ligase NEDD4 is translationally upregulated and facilitates pancreatic cancer. Oncotarget 2017; 8:20288-20296. [PMID: 28423617 PMCID: PMC5386762 DOI: 10.18632/oncotarget.15446] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 01/06/2017] [Indexed: 01/05/2023] Open
Abstract
Aim To determine the regulation and function of the neural precursor cell expressed developmentally down regulated protein 4 (NEDD4) in PDAC and to determine its dependency on phosphatase and tensin homolog (PTEN) and PI3K/AKT signaling. Methods We investigated the expression of NEDD4 and the tumor suppressor PTEN in normal immortalized human pancreatic duct epithelial cell line and pancreatic adenocarcinoma (PDAC) cell lines. We further evaluated whether RNAi-mediated depletion of NEDD4 can attenuate PDAC cell proliferation and migration. We subsequently determined the crosstalk between NEDD4 expression and the PTEN/PI3K/AKT signaling pathway. Finally, we determined the mechanism behind differential NEDD4 protein expression in pancreatic cancer. Results The expression of NEDD4 was heterogeneous in PDAC cells, but was significantly higher compared to normal pancreatic ductal epithelial cells. Analogically, PTEN was decreased in the PDAC cells. A combination of MTT assay, wound healing migration assay, and transwell invasion assays confirmed that depletion of NEDD4 decreased the proliferation and migration ability of PDAC cells. Western blot and immunofluorescence results revealed that NEDD4 could affect PTEN/PI3K/AKT signaling pathway in PDAC cells. Polysomal profiling revealed that higher NEDD4 protein expression in PDAC cells was due to undefined mechanism involving translational activation. Conclusions Our results reveal a novel mechanism of upregulation of NEDD4 expression in PDAC. Our findings indicate that NEDD4 potentially plays a critical role in activating the PI3K/AKT signaling pathway by negatively regulating PTEN levels in PDAC cells, which promotes pancreatic cancer cell proliferation and metastasis. Therefore, NEDD4 may be a potential therapeutic target in PDAC.
Collapse
Affiliation(s)
- Min Weng
- Department of Gastroenterology, Chengdu Military General Hospital, Chengdu, Sichuan 610083, China
| | - Zhu-Lin Luo
- Department of General Surgery, Chengdu Military General Hospital, Chengdu, Sichuan 610083, China
| | - Xiao-Ling Wu
- Department of Gastroenterology, Chengdu Military General Hospital, Chengdu, Sichuan 610083, China
| | - Wei-Zheng Zeng
- Department of Gastroenterology, Chengdu Military General Hospital, Chengdu, Sichuan 610083, China
| |
Collapse
|
34
|
Wen W, Li J, Wang L, Xing Y, Li X, Ruan H, Xi X, Xiong J, Kuang R. Inhibition of NEDD4 inhibits cell growth and invasion and induces cell apoptosis in bladder cancer cells. Cell Cycle 2017; 16:1509-1514. [PMID: 28745938 DOI: 10.1080/15384101.2017.1338220] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
The neural precursor cell expressed developmentally downregulated protein 4 (NEDD4) plays a pivotal oncogenic role in various types of human cancers. However, the function of NEDD4 in bladder cancer has not been fully investigated. In the present study, we aim to explore whether NEDD4 governs cell proliferation, apoptosis, migration, and invasion in bladder cancer cells. Our results showed that downregulation of NEDD4 suppressed cell proliferation in bladder cancer cells. Moreover, we found that inhibition of NEDD4 significantly induced cell apoptosis. Furthermore, downregulation of NEDD4 retarded cell migration and invasion. Notably, overexpression of NEDD4 enhanced cell growth and inhibited apoptosis. Consistently, upregulation of NEDD4 promoted cell migration and invasion in bladder cancer cells. Mechanically, our Western blotting results revealed that downregulation of NEDD4 activated PTEN and inhibited Notch-1 expression, whereas upregulation of NEDD4 reduced PTEN level and increased Notch-1 level in bladder cancer cells. Our findings indicated that NEDD4 exerts its oncogenic function partly due to regulation of PTEN and Notch-1 in bladder cancer cells. These results further revealed that targeting NEDD4 could be a useful approach for the treatment of bladder cancer.
Collapse
Affiliation(s)
- Wu Wen
- a The Second Affiliated Hospital of Nanchang University , Jiangxi , China
| | - Jingying Li
- a The Second Affiliated Hospital of Nanchang University , Jiangxi , China
| | - Longwang Wang
- a The Second Affiliated Hospital of Nanchang University , Jiangxi , China
| | - Yifei Xing
- b The Union Hospital of Wuhan , Hubei , China
| | - Xuechao Li
- b The Union Hospital of Wuhan , Hubei , China
| | | | - Xiaoqing Xi
- a The Second Affiliated Hospital of Nanchang University , Jiangxi , China
| | - Jianhua Xiong
- a The Second Affiliated Hospital of Nanchang University , Jiangxi , China
| | - Renrui Kuang
- a The Second Affiliated Hospital of Nanchang University , Jiangxi , China
| |
Collapse
|
35
|
Wang X, Deng J, Yuan J, Tang X, Wang Y, Chen H, Liu Y, Zhou L. Curcumin exerts its tumor suppressive function via inhibition of NEDD4 oncoprotein in glioma cancer cells. Int J Oncol 2017. [PMID: 28627598 PMCID: PMC5505128 DOI: 10.3892/ijo.2017.4037] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Glioblastoma is the most common brain cancer in adults. It represents one of the top ten malignant tumors with an average survival time of nine months despite treatments with surgery, radiotherapy and chemotherapy. Curcumin is a phytochemical turmeric isolated from root of the Curcuma longa plant. Accumulating evidence have proved that curcumin targets numerous cancer signaling pathways. The E3 ubiquitin ligase NEDD4, neural precursor cell expressed developmentally downregulated protein 4, is frequently overexpressed in various cancers. However, whether curcumin regulates NEDD4 expression has not been described in human cancers. Therefore, in this study, we explored the roles of NEDD4 in glioma cell proliferation, apoptosis and mobility. We further investigated whether curcumin exerts its antitumor activities via suppressing NEDD4 expression. We found that curcumin reduced the expression of NEDD4 and Notch1 and pAKT, leading to glioma cell growth inhibition, apoptosis, and suppression of migration and invasion. Moreover, deletion of NEDD4 expression enhanced the sensitivity of glioma cells to curcumin treatment. Thus, inactivation of NEDD4 by curcumin could be a promising approach for therapeutic intervention.
Collapse
Affiliation(s)
- Xue Wang
- School of Life Science, Shandong University, Jinan, Shandong 250100, P.R. China
| | - Jiaojiao Deng
- Department of Neurosurgery and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, P.R. China
| | - Jinxia Yuan
- School of Life Science, Shandong University, Jinan, Shandong 250100, P.R. China
| | - Xin Tang
- Department of Neurosurgery and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, P.R. China
| | - Yuelong Wang
- Department of Neurosurgery and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, P.R. China
| | - Haifeng Chen
- Department of Neurosurgery and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, P.R. China
| | - Yi Liu
- Department of Neurosurgery and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, P.R. China
| | - Liangxue Zhou
- Department of Neurosurgery and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
36
|
Quan K, Zhang X, Fan K, Liu P, Yue Q, Li B, Wu J, Liu B, Xu Y, Hua W, Zhu W. Icariside II induces cell cycle arrest and apoptosis in human glioblastoma cells through suppressing Akt activation and potentiating FOXO3a activity. Am J Transl Res 2017; 9:2508-2519. [PMID: 28560001 PMCID: PMC5446533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 04/23/2017] [Indexed: 06/07/2023]
Abstract
Glioblastoma multiforme (GBM) is the most common primary malignant brain tumor, and currently chemotherapeutic options for GBM are very limited. Given the poor prognosis, the development of novel anti-GBM agents is quite urgent. Using two human glioma cells (U87 and A172 cells), we demonstrated that Icariside II (ICA II), an active flavonoid compound derived from Epimedium koreanum, could inhibit GBM cell growth in a dose dependent manner. Wound healing data suggested that ICA II also inhibited the migration of human glioma cells. Mechanistically, ICA II induced apoptosis and cell cycle arrest, and this cytotoxic effect was dependent on the reduction of Forkhead box O3a(FOXO3a) phosphorylation mediated by Akt and the enrichment of nuclear FOXO3a, which initiated the transcription of p21/p27. Importantly, the cytotoxic effect induced by ICA II could be reversed by silencing the expression of FOXO3a, suggesting the critical role of FOXO3a in this process. Taken together, we propose ICA II as a potential novel anti-GBM candidate with a mechanism of inhibiting cell proliferation and inducing apoptosis through suppressing Akt activation and potentiating FOXO3a activity.
Collapse
Affiliation(s)
- Kai Quan
- Department of Neurosurgery, Huashan Hospital, Fudan UniversityShanghai, P. R. China
| | - Xin Zhang
- Department of Neurosurgery, Huashan Hospital, Fudan UniversityShanghai, P. R. China
| | - Kun Fan
- Institutes of Biomedical Sciences, Fudan UniversityShanghai, P. R. China
| | - Peixi Liu
- Department of Neurosurgery, Huashan Hospital, Fudan UniversityShanghai, P. R. China
| | - Qi Yue
- Department of Neurosurgery, Huashan Hospital, Fudan UniversityShanghai, P. R. China
| | - Bo Li
- Department of Endocrinology, Xinhua Hospital, School of Medicine, Affiliated to Shanghai Jiao Tong UniversityShanghai, P. R. China
| | - Jinfeng Wu
- Department of Dermatology, Huashan Hospital, Fudan UniversityShanghai, P. R. China
| | - Baojun Liu
- Department of Traditional Chinese Medicine, Huashan Hospital, Fudan UniversityShanghai, P. R. China
| | - Yang Xu
- Department of Neurosurgery, Huashan Hospital, Fudan UniversityShanghai, P. R. China
| | - Wei Hua
- Department of Neurosurgery, Huashan Hospital, Fudan UniversityShanghai, P. R. China
| | - Wei Zhu
- Department of Neurosurgery, Huashan Hospital, Fudan UniversityShanghai, P. R. China
| |
Collapse
|
37
|
Li Y, Guo H, Jin C, Qiu C, Gao M, Zhang L, Liu Z, Kong B. Spliceosome-associated factor CTNNBL1 promotes proliferation and invasion in ovarian cancer. Exp Cell Res 2017; 357:124-134. [PMID: 28501461 DOI: 10.1016/j.yexcr.2017.05.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 04/28/2017] [Accepted: 05/08/2017] [Indexed: 01/20/2023]
Abstract
Ovarian cancer is the most lethal gynecologic malignancy and the molecular pathogenesis of high-grade serous ovarian carcinoma has not been completely characterized. Numerous studies have shown that altered splicing patterns and splicing factors were found to contribute to tumor development and progression. In this study, we demonstrated that spliceosome-associated factor CTNNBL1 was significantly upregulated in high-grade serous ovarian carcinoma, the elevated level of CTNNBL1 indicates poor prognosis in patients with high-grade serous ovarian carcinoma. Functional characterization revealed that CTNNBL1 promoted the proliferation and invasion of ovarian cancer cells in vitro. Furthermore, through transcriptome analysis, we found CTNNBL1 regulates multiple splicing events and gene expression in ovarian cancer cells. Importantly, we identified IFI16 and FOXM1 splicing was regulated by CTNNBL1. To our knowledge, this is the first study exploring the expression, functional roles and regulated splicing events of CTNNBL1 in ovarian cancer.
Collapse
Affiliation(s)
- Yingwei Li
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan 250012, China
| | - Haiyang Guo
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
| | - Chengjuan Jin
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan 250012, China
| | - Chunping Qiu
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan 250012, China
| | - Min Gao
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan 250012, China
| | - Lei Zhang
- School of Biological and Chemical Engineering, Zhejiang University of Science & Technology Hangzhou 310023, China
| | - Zhaojian Liu
- Department of Cell Biology, Shandong University School of Medicine, Jinan 250012, China.
| | - Beihua Kong
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan 250012, China.
| |
Collapse
|
38
|
Wang L, Zhu B, Wang S, Wu Y, Zhan W, Xie S, Shi H, Yu R. Regulation of glioma migration and invasion via modification of Rap2a activity by the ubiquitin ligase Nedd4-1. Oncol Rep 2017; 37:2565-2574. [PMID: 28405688 PMCID: PMC5428538 DOI: 10.3892/or.2017.5572] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 10/18/2016] [Indexed: 12/26/2022] Open
Abstract
Νeuronal precursor cell expressed and developmentally downregulated protein (Nedd4-1) is an E3 ubiquitin ligase with critical roles in the pathogenesis of cancer. Herein, we demonstrated that Nedd4-1 protein was upregulated in glioma tissues vs. that in non-cancerous tissues by western blotting and immunohistochemistry. Scratch migration and Transwell chamber assays indicated that downregulation of Nedd4-1 significantly reduced the migration and invasion of the glioma cell lines U251 and U87. Conversely, overexpression of Nedd4-1 obviously enhanced the migratory and invasive capacities in both cell lines. To investigate the role of Nedd4-1 and the intracellular pathways involved, we performed pull-down and co-immunoprecipitation assays, and recognized that Nedd4-1, TNIK and Rap2a formed a complex. Moreover, Nedd4-1 selectively ubiquitinated its specific substrates, the wild-type Rap2a (WT-Rap2a) and dominant-active Rap2a (DA-Rap2a) rather than the dominant-negative Rap2a (DN-Rap2a) in the U251 cells. Subsequently, we demonstrated that Rap2a was robustly ubiquitinated by Nedd4-1 along with the K63-linked, but not the K48-linked ubiquitin chain, which significantly inhibited GTP-Rap2a activity by GST-RalGDS pull-down assay. To further verify whether the ubiquitination of Rap2a by Nedd4-1 regulated the migration and invasion of glioma cells, Nedd4-1, HA-tagged ubiquitin and its mutants as well as WT-Rap2a were co-transfected in the U251 and U87 cell lines. The results confirmed that Nedd4-1 inhibited GTP-Rap2a activity, and promoted the migration and invasion of glioma cells. In brief, our findings demonstrated the important role of Nedd4-1 in regulating the migration and invasion of glioma cells via the Nedd4-1/Rap2a pathway, which may qualify Nedd4-1 as a viable therapeutic target for glioma.
Collapse
Affiliation(s)
- Lei Wang
- Insitute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, P.R. China
| | - Bingxin Zhu
- Insitute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, P.R. China
| | - Shiquan Wang
- Insitute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, P.R. China
| | - Yuxuan Wu
- Insitute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, P.R. China
| | - Wenjian Zhan
- Insitute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, P.R. China
| | - Shao Xie
- Insitute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, P.R. China
| | - Hengliang Shi
- Insitute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, P.R. China
| | - Rutong Yu
- Insitute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, P.R. China
| |
Collapse
|
39
|
Quirit JG, Lavrenov SN, Poindexter K, Xu J, Kyauk C, Durkin KA, Aronchik I, Tomasiak T, Solomatin YA, Preobrazhenskaya MN, Firestone GL. Indole-3-carbinol (I3C) analogues are potent small molecule inhibitors of NEDD4-1 ubiquitin ligase activity that disrupt proliferation of human melanoma cells. Biochem Pharmacol 2016; 127:13-27. [PMID: 27979631 DOI: 10.1016/j.bcp.2016.12.007] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 12/09/2016] [Indexed: 11/16/2022]
Abstract
The HECT domain-containing E3 ubiquitin ligase NEDD4-1 (Neural precursor cell Expressed Developmentally Down regulated gene 4-1) is frequently overexpressed in human cancers and displays oncogenic-like properties through the ubiquitin-dependent regulation of multiple protein substrates. However, little is known about small molecule enzymatic inhibitors of HECT domain-containing ubiquitin ligases. We now demonstrate that indole-3-carbinol (I3C), a natural anti-cancer phytochemical derived from cruciferous vegetables such as cabbage and broccoli, represents a new chemical scaffold of small molecule enzymatic inhibitors of NEDD4-1. Using in vitro ubiquitination assays, I3C, its stable synthetic derivative 1-benzyl-I3C and five novel synthetic analogues were shown to directly inhibit NEDD4-1 ubiquitination activity. Compared to I3C, which has an IC50 of 284μM, 1-benzyl-I3C was a significantly more potent NEDD4-1 enzymatic inhibitor with an IC50 of 12.3μM. Compounds 2242 and 2243, the two indolecarbinol analogues with added methyl groups that results in a more nucleophilic benzene ring π system, further enhanced potency with IC50s of 2.71μM and 7.59μM, respectively. Protein thermal shift assays that assess small ligand binding, in combination with in silico binding simulations with the crystallographic structure of NEDD4-1, showed that each of the indolecarbinol compounds bind to the purified catalytic HECT domain of NEDD4-1. The indolecarbinol compounds inhibited human melanoma cell proliferation in a manner that generally correlated with their effectiveness as NEDD4-1 enzymatic inhibitors. Taken together, we propose that I3C analogues represent a novel set of anti-cancer compounds for treatment of human melanomas and other cancers that express indolecarbinol-sensitive target enzymes.
Collapse
Affiliation(s)
- Jeanne G Quirit
- Dept. of Molecular and Cell Biology and The Cancer Research Laboratory, University of California at Berkeley, Berkeley, CA, USA.
| | - Sergey N Lavrenov
- Gause Institute of New Antibiotics, B. Pirogovskaya 11, Moscow 119021, Russia.
| | - Kevin Poindexter
- Dept. of Molecular and Cell Biology and The Cancer Research Laboratory, University of California at Berkeley, Berkeley, CA, USA.
| | - Janice Xu
- Dept. of Molecular and Cell Biology and The Cancer Research Laboratory, University of California at Berkeley, Berkeley, CA, USA.
| | - Christine Kyauk
- Dept. of Molecular and Cell Biology and The Cancer Research Laboratory, University of California at Berkeley, Berkeley, CA, USA
| | - Kathleen A Durkin
- Molecular Graphics and Computational Facility, College of Chemistry, University of California, Berkeley, CA, USA.
| | - Ida Aronchik
- Dept. of Molecular and Cell Biology and The Cancer Research Laboratory, University of California at Berkeley, Berkeley, CA, USA.
| | - Thomas Tomasiak
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA.
| | | | | | - Gary L Firestone
- Dept. of Molecular and Cell Biology and The Cancer Research Laboratory, University of California at Berkeley, Berkeley, CA, USA.
| |
Collapse
|
40
|
Nestal de Moraes G, Delbue D, Silva KL, Robaina MC, Khongkow P, Gomes AR, Zona S, Crocamo S, Mencalha AL, Magalhães LM, Lam EWF, Maia RC. FOXM1 targets XIAP and Survivin to modulate breast cancer survival and chemoresistance. Cell Signal 2015; 27:2496-505. [PMID: 26404623 DOI: 10.1016/j.cellsig.2015.09.013] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 09/15/2015] [Accepted: 09/18/2015] [Indexed: 12/11/2022]
Abstract
Drug resistance is a major hurdle for successful treatment of breast cancer, the leading cause of deaths in women throughout the world. The FOXM1 transcription factor is a potent oncogene that transcriptionally regulates a wide range of target genes involved in DNA repair, metastasis, cell invasion, and migration. However, little is known about the role of FOXM1 in cell survival and the gene targets involved. Here, we show that FOXM1-overexpressing breast cancer cells display an apoptosis-resistant phenotype, which associates with the upregulation of expression of XIAP and Survivin antiapoptotic genes. Conversely, FOXM1 knockdown results in XIAP and Survivin downregulation as well as decreased binding of FOXM1 to the promoter regions of XIAP and Survivin. Consistently, FOXM1, XIAP, and Survivin expression levels were higher in taxane and anthracycline-resistant cell lines when compared to their sensitive counterparts and could not be downregulated in response to drug treatment. In agreement with our in vitro findings, we found that FOXM1 expression is significantly associated with Survivin and XIAP expression in samples from patients with IIIa stage breast invasive ductal carcinoma. Importantly, patients co-expressing FOXM1, Survivin, and nuclear XIAP had significantly worst overall survival, further confirming the physiological relevance of the regulation of Survivin and XIAP by FOXM1. Together, these findings suggest that the overexpression of FOXM1, XIAP, and Survivin contributes to the development of drug-resistance and is associated with poor clinical outcome in breast cancer patients.
Collapse
Affiliation(s)
- Gabriela Nestal de Moraes
- Laboratório de Hemato-Oncologia Celular e Molecular, Programa de Hemato-Oncologia Molecular, Instituto Nacional de Câncer (INCA), Praça da Cruz Vermelha, 23/6° andar, Centro, 20230-130 Rio de Janeiro, Brazil; Department of Surgery and Cancer, Imperial College London, Imperial Centre for Translational and Experimental Medicine (ICTEM), Du Cane Road, London W12 0NN, UK
| | - Deborah Delbue
- Laboratório de Hemato-Oncologia Celular e Molecular, Programa de Hemato-Oncologia Molecular, Instituto Nacional de Câncer (INCA), Praça da Cruz Vermelha, 23/6° andar, Centro, 20230-130 Rio de Janeiro, Brazil
| | - Karina L Silva
- Programa de Biologia Celular, INCA, Rua André Cavalcanti, 37/5° andar, Centro, 20231-050 Rio de Janeiro, Brazil
| | - Marcela Cristina Robaina
- Laboratório de Hemato-Oncologia Celular e Molecular, Programa de Hemato-Oncologia Molecular, Instituto Nacional de Câncer (INCA), Praça da Cruz Vermelha, 23/6° andar, Centro, 20230-130 Rio de Janeiro, Brazil
| | - Pasarat Khongkow
- Department of Surgery and Cancer, Imperial College London, Imperial Centre for Translational and Experimental Medicine (ICTEM), Du Cane Road, London W12 0NN, UK
| | - Ana R Gomes
- Department of Surgery and Cancer, Imperial College London, Imperial Centre for Translational and Experimental Medicine (ICTEM), Du Cane Road, London W12 0NN, UK
| | - Stefania Zona
- Department of Surgery and Cancer, Imperial College London, Imperial Centre for Translational and Experimental Medicine (ICTEM), Du Cane Road, London W12 0NN, UK
| | - Susanne Crocamo
- Núcleo de Pesquisa Clínica, Hospital de Câncer III, INCA, Rua Visconde de Santa Isabel, 274, Vila Isabel, 20560-120 Rio de Janeiro, Brazil
| | - André Luiz Mencalha
- Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Av. 28 de Setembro, 87 fundos, 4° andar, Vila Isabel, 20551-030 Rio de Janeiro, Brazil
| | - Lídia M Magalhães
- Divisão de Anatomia Patológica, INCA, Rua Cordeiro da Graça, 156, Santo Cristo, 20220-400 Rio de Janeiro, Brazil
| | - Eric W-F Lam
- Department of Surgery and Cancer, Imperial College London, Imperial Centre for Translational and Experimental Medicine (ICTEM), Du Cane Road, London W12 0NN, UK
| | - Raquel C Maia
- Laboratório de Hemato-Oncologia Celular e Molecular, Programa de Hemato-Oncologia Molecular, Instituto Nacional de Câncer (INCA), Praça da Cruz Vermelha, 23/6° andar, Centro, 20230-130 Rio de Janeiro, Brazil.
| |
Collapse
|
41
|
Zou X, Levy-Cohen G, Blank M. Molecular functions of NEDD4 E3 ubiquitin ligases in cancer. Biochim Biophys Acta Rev Cancer 2015; 1856:91-106. [DOI: 10.1016/j.bbcan.2015.06.005] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 06/12/2015] [Accepted: 06/23/2015] [Indexed: 02/08/2023]
|
42
|
Zhang Y, Goodfellow R, Li Y, Yang S, Winters CJ, Thiel KW, Leslie KK, Yang B. NEDD4 ubiquitin ligase is a putative oncogene in endometrial cancer that activates IGF-1R/PI3K/Akt signaling. Gynecol Oncol 2015; 139:127-33. [PMID: 26193427 DOI: 10.1016/j.ygyno.2015.07.098] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 07/08/2015] [Accepted: 07/16/2015] [Indexed: 11/28/2022]
Abstract
OBJECTIVE The PI3K/Akt pathway is frequently dysregulated in endometrial cancer, the most common gynecologic malignancy. Emerging evidence identifies the ubiquitin ligase NEDD4 as a key regulator of the PI3K/Akt pathway via activation of insulin-like growth factor-1 receptor (IGF-1R). Our objective was to understand the role of NEDD4 in endometrial cancer. METHODS NEDD4 expression was assessed by immunohistochemistry in a tissue microarray with 77 endometrial lesions ranging from normal benign endometrium to tumor specimens of varying stage and grade. Studies were extended to a panel of eight endometrial cancer cell lines phenotypically representing the most common endometrial patient tumors. RESULTS Immunohistochemistry demonstrated robust staining of NEDD4 in endometrial tumor specimens, with greater NEDD4 expression in the most aggressive tumors. Expression of NEDD4 was detected in a majority of endometrial cancer cell lines surveyed. Exogenous overexpression of murine Nedd4 in endometrial cancer cell lines with modest endogenous NEDD4 expression resulted in a significant increase in the rate of proliferation. Nedd4 overexpression also promoted an increase in cell surface localization of IGF-1R and activation of Akt. Inhibition of PI3K/Akt signaling reversed the enhanced cell growth in Nedd4-overexpressing endometrial cancer cells. In addition, the expression of NEDD4 in endometrial tumors positively correlated with the Akt downstream effector FoxM1. CONCLUSIONS This study identifies NEDD4 as a putative oncogene in endometrial cancer that may augment activation of the IGF-1R/PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Yuping Zhang
- Department of Obstetrics and Gynecology, University of Iowa, Iowa City, IA 52242, USA.
| | - Renee Goodfellow
- Department of Obstetrics and Gynecology, University of Iowa, Iowa City, IA 52242, USA.
| | - Yujun Li
- Department of Obstetrics and Gynecology, University of Iowa, Iowa City, IA 52242, USA.
| | - Shujie Yang
- Department of Obstetrics and Gynecology, University of Iowa, Iowa City, IA 52242, USA; Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA.
| | - Christopher J Winters
- Department of Obstetrics and Gynecology, University of Iowa, Iowa City, IA 52242, USA.
| | - Kristina W Thiel
- Department of Obstetrics and Gynecology, University of Iowa, Iowa City, IA 52242, USA.
| | - Kimberly K Leslie
- Department of Obstetrics and Gynecology, University of Iowa, Iowa City, IA 52242, USA; Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA.
| | - Baoli Yang
- Department of Obstetrics and Gynecology, University of Iowa, Iowa City, IA 52242, USA; Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
43
|
Ye X, Wang L, Shang B, Wang Z, Wei W. NEDD4: a promising target for cancer therapy. Curr Cancer Drug Targets 2015; 14:549-56. [PMID: 25088038 DOI: 10.2174/1568009614666140725092430] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 05/11/2014] [Accepted: 07/11/2014] [Indexed: 11/22/2022]
Abstract
The Neuronally expressed developmentally downregulated 4 (NEDD4), functioning largely as an E3 ubiquitin ligase, has been demonstrated to play a critical role in the development and progression of human cancers. In this review, to understand the regulatory mechanism(s) of NEDD4 as well as the signaling pathways controlled by NEDD4, we briefly describe the NEDD4 upstream regulators and its downstream ubiquitin substrates. Moreover, we further discuss its oncogenic roles in human malignancies. Therefore, targeting NEDD4 could be a potential therapeutic strategy for treatment of human cancers.
Collapse
Affiliation(s)
| | | | | | | | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave., Boston, MA 02215, USA.
| |
Collapse
|
44
|
Kegelman TP, Hu B, Emdad L, Das SK, Sarkar D, Fisher PB. In vivo modeling of malignant glioma: the road to effective therapy. Adv Cancer Res 2015; 121:261-330. [PMID: 24889534 DOI: 10.1016/b978-0-12-800249-0.00007-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Despite an increased emphasis on developing new therapies for malignant gliomas, they remain among the most intractable tumors faced today as they demonstrate a remarkable ability to evade current treatment strategies. Numerous candidate treatments fail at late stages, often after showing promising preclinical results. This disconnect highlights the continued need for improved animal models of glioma, which can be used to both screen potential targets and authentically recapitulate the human condition. This review examines recent developments in the animal modeling of glioma, from more established rat models to intriguing new systems using Drosophila and zebrafish that set the stage for higher throughput studies of potentially useful targets. It also addresses the versatility of mouse modeling using newly developed techniques recreating human protocols and sophisticated genetically engineered approaches that aim to characterize the biology of gliomagenesis. The use of these and future models will elucidate both new targets and effective combination therapies that will impact on disease management.
Collapse
Affiliation(s)
- Timothy P Kegelman
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Bin Hu
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Luni Emdad
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Swadesh K Das
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Devanand Sarkar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Paul B Fisher
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA.
| |
Collapse
|
45
|
Chong DQ, Toh XY, Ho IAW, Sia KC, Newman JP, Yulyana Y, Ng WH, Lai SH, Ho MMF, Dinesh N, Tham CK, Lam PYP. Combined treatment of Nimotuzumab and rapamycin is effective against temozolomide-resistant human gliomas regardless of the EGFR mutation status. BMC Cancer 2015; 15:255. [PMID: 25886314 PMCID: PMC4408574 DOI: 10.1186/s12885-015-1191-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 03/13/2015] [Indexed: 11/11/2022] Open
Abstract
Background The treatment of glioblastoma multiforme (GBM) is an unmet clinical need. The 5-year survival rate of patients with GBM is less than 3%. Temozolomide (TMZ) remains the standard first-line treatment regimen for gliomas despite the fact that more than 90% of recurrent gliomas do not respond to TMZ after repeated exposure. We have also independently shown that many of the Asian-derived glioma cell lines and primary cells derived from Singaporean high-grade glioma patients are indeed resistant to TMZ. This issue highlights the need to develop new effective anti-cancer treatment strategies. In a recent study, wild-type epidermal growth factor receptor (wtEGFR) has been shown to phosphorylate a truncated EGFR (known as EGFRvIII), leading to the phosphorylation of STAT proteins and progression in gliomagenesis. Despite the fact that combination of EGFR targeting drugs and rapamycin has been used before, the effect of mono-treatment of Nimotuzumab, rapamycin and combination therapy in human glioma expressing different types of EGFR is not well-studied. Herein, we evaluated the efficacy of dual blockage using monoclonal antibody against EGFR (Nimotuzumab) and an mTOR inhibitor (rapamycin) in Caucasian patient-derived human glioma cell lines, Asian patient-derived human glioma cell lines, primary glioma cells derived from the Mayo GBM xenografts, and primary short-term glioma culture derived from high-grade glioma patients. Methods The combination effect of Nimotuzumab and rapamycin was examined in a series of primary human glioma cell lines and glioma cell lines. The cell viability was compared to TMZ treatment alone. Endogenous expressions of EGFR in various GBM cells were determined by western blotting. Results The results showed that combination of Nimotuzumab with rapamycin significantly enhanced the therapeutic efficacy of human glioma cells compared to single treatment. More importantly, many of the Asian patient-derived glioma cell lines and primary cells derived from Singaporean high-grade gliomas, which showed resistance to TMZ, were susceptible to the combined treatments. Conclusions In conclusion, our results strongly suggest that combination usage of Nimotuzumab and rapamycin exert higher cytotoxic activities than TMZ. Our data suggest that this combination may provide an alternative treatment for TMZ-resistant gliomas regardless of the EGFR status.
Collapse
Affiliation(s)
- Dawn Q Chong
- National Cancer Centre, 11 Hospital Drive, Singapore, 169610, Singapore.
| | - Xin Y Toh
- National Cancer Centre, 11 Hospital Drive, Singapore, 169610, Singapore.
| | - Ivy A W Ho
- National Cancer Centre, 11 Hospital Drive, Singapore, 169610, Singapore.
| | - Kian C Sia
- National Cancer Centre, 11 Hospital Drive, Singapore, 169610, Singapore.
| | - Jennifer P Newman
- National Cancer Centre, 11 Hospital Drive, Singapore, 169610, Singapore.
| | - Yulyana Yulyana
- National Cancer Centre, 11 Hospital Drive, Singapore, 169610, Singapore.
| | - Wai-Hoe Ng
- National Neuroscience Institute, Singapore, 308433, Singapore.
| | - Siang H Lai
- Department of Pathology, Singapore General Hospital, Singapore, 169608, Singapore.
| | - Mac M F Ho
- National Cancer Centre, 11 Hospital Drive, Singapore, 169610, Singapore.
| | - Nivedh Dinesh
- Division of Neurosurgery, National University Hospital, Singapore, 119074, Singapore.
| | - Chee K Tham
- National Cancer Centre, 11 Hospital Drive, Singapore, 169610, Singapore. tham.c.k.@nccs.com.sg
| | - Paula Y P Lam
- National Cancer Centre, 11 Hospital Drive, Singapore, 169610, Singapore. .,Department of Physiology, National University of Singapore, Singapore, 117597, Singapore. .,Cancer and Stem Cell Biology Program, Duke-NUS Graduate Medical School, Singapore, 169547, Singapore.
| |
Collapse
|
46
|
Liu J, Wan L, Liu P, Inuzuka H, Liu J, Wang Z, Wei W. SCF(β-TRCP)-mediated degradation of NEDD4 inhibits tumorigenesis through modulating the PTEN/Akt signaling pathway. Oncotarget 2015; 5:1026-37. [PMID: 24657926 PMCID: PMC4011580 DOI: 10.18632/oncotarget.1675] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The HECT domain-containing ubiquitin E3 ligase NEDD4 is widely expressed in mammalian tissues and plays a crucial role in governing a wide spectrum of cellular processes including cell growth, tissue development and homeostasis. Recent reports have indicated that NEDD4 might facilitate tumorigenesis through targeted degradation of multiple tumor suppressor proteins including PTEN. However, the molecular mechanism by which NEDD4 stability is regulated has not been fully elucidated. Here we report that SCF(β-TRCP) governs NEDD4 protein stability by targeting it for ubiquitination and subsequent degradation in a Casein Kinase-I (CKI) phosphorylation-dependent manner. Specifically, depletion of β-TRCP, or inactivation of CKI, stabilized NEDD4, leading to down-regulation of its ubiquitin target PTEN and subsequent activation of the mTOR/Akt oncogenic pathway. Furthermore, we found that CKIδ-mediated phosphorylation of Ser347 and Ser348 on NEDD4 promoted its interaction with SCF(β-TRCP) for subsequent ubiquitination and degradation. As a result, compared to ectopic expression of wild-type NEDD4, introducing a non-degradable NEDD4 (S347A/S348A-NEDD4) promoted cancer cell growth and migration. Hence, our findings revealed the CKI/SCF(β-TRCP) signaling axis as the upstream negative regulator of NEDD4, and further suggested that enhancing NEDD4 degradation, presumably with CKI or SCF(β-TRCP) agonists, could be a promising strategy for treating human cancers.
Collapse
Affiliation(s)
- Jia Liu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Frontier Institute of Life Science, FIST, Xi'an Jiaotong University, Xi'an, China
| | | | | | | | | | | | | |
Collapse
|
47
|
Boase NA, Kumar S. NEDD4: The founding member of a family of ubiquitin-protein ligases. Gene 2014; 557:113-22. [PMID: 25527121 DOI: 10.1016/j.gene.2014.12.020] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 12/01/2014] [Accepted: 12/10/2014] [Indexed: 01/31/2023]
Abstract
Ubiquitination plays a crucial role in regulating proteins post-translationally. The focus of this review is on NEDD4, the founding member of the NEDD4 family of ubiquitin ligases that is evolutionarily conserved in eukaryotes. Many potential substrates of NEDD4 have been identified and NEDD4 has been shown to play a critical role in the regulation of a number of membrane receptors, endocytic machinery components and the tumour suppressor PTEN. In this review we will discuss the diverse pathways in which NEDD4 is involved, and the patho-physiological significance of this important ubiquitin ligase.
Collapse
Affiliation(s)
- Natasha Anne Boase
- Centre for Cancer Biology, University of South Australia, Adelaide, SA 5001, Australia
| | - Sharad Kumar
- Centre for Cancer Biology, University of South Australia, Adelaide, SA 5001, Australia.
| |
Collapse
|
48
|
Chen PM, Cheng YW, Wang YC, Wu TC, Chen CY, Lee H. Up-regulation of FOXM1 by E6 oncoprotein through the MZF1/NKX2-1 axis is required for human papillomavirus-associated tumorigenesis. Neoplasia 2014; 16:961-71. [PMID: 25425970 PMCID: PMC4240922 DOI: 10.1016/j.neo.2014.09.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 09/20/2014] [Accepted: 09/22/2014] [Indexed: 12/21/2022] Open
Abstract
PURPOSE Foxhead box M1 (FOXM1) expression has been shown to be linked with human papillomavirus (HPV) 16/18-infected cervical cancer. However, the mechanism underlying the induction of FOXM1 in HPV 16/18-infected cancers remains elusive. EXPERIMENTAL DESIGN The mechanistic actions of FOXM1 induced by the E6/NKX2-1 axis in tumor aggressiveness were elucidated in cellular and animal models. The prognostic value of FOXM1 for overall survival (OS) and relapse-free survival (RFS) in HPV-positive oral and lung cancers was assessed using Kaplan-Meier and Cox regression models. RESULTS Herein, FOXM1 expression is upregulated by E6-mediated NKX2-1 in HPV-positive cervical, oral, and lung cancer cells. Induction of FOXM1 by E6 through the MZF1/NKX2-1 axis is responsible for HPV-mediated soft agar growth, invasiveness, and stemness through activating Wnt/β-catenin signaling pathway. In a nude mice model, metastatic lung tumor nodules in HPV 18 E6-positive GNM or HPV 16 E6-positive TL-1-injected nude mice were markedly decreased in both cell types with E6 knockdown, FOXM1 knockdown, or treatment with FOXM1 inhibitor (thiostrepton). Among the four subgroup patients, the worst FOXM1 prognostic value for OS and RFS was observed in HPV 16/18-positive patients with tumors with high-expressing FOXM1. CONCLUSIONS Induction of FOXM1 by E6 oncoprotein through the MZF1/NKX2-1 axis may be responsible for HPV 16/18-mediated tumor progression and poor outcomes in HPV-positive patients.
Collapse
Affiliation(s)
- Po-Ming Chen
- Graduate Institute of Cancer Biology and Drug Discovery, Taipei Medical University, Taipei, Taiwan
| | - Ya-Wen Cheng
- Graduate Institute of Cancer Biology and Drug Discovery, Taipei Medical University, Taipei, Taiwan
| | - Yao-Chen Wang
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan ; Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Tzu-Chin Wu
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan ; Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chih-Yi Chen
- Department of Surgery, China Medical University Hospital, Taichung, Taiwan
| | - Huei Lee
- Graduate Institute of Cancer Biology and Drug Discovery, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
49
|
Regulation of Mdm2 protein stability and the p53 response by NEDD4-1 E3 ligase. Oncogene 2014; 34:281-9. [PMID: 24413081 DOI: 10.1038/onc.2013.557] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 10/30/2013] [Accepted: 11/22/2013] [Indexed: 01/06/2023]
Abstract
Mdm2 is a critical negative regulator of the tumor suppressor protein p53. Mdm2 is an E3 ligase whose overexpression leads to functional inactivation of p53. Mdm2 protein stability is regulated by several mechanisms including RING (Really Interesting New Gene) domain-mediated autoubiquitination. Here we report biochemical identification of NEDD4-1 as an E3 ligase for Mdm2 that contributes to the regulation of Mdm2 protein stability in cells. NEDD4-1 was identified from Jurkat cytosolic fractions using an enzyme-dead Mdm2 mutant protein as a substrate for in vitro E3 ligase assays. We show that lysates from Nedd4-1 knockout (KO) mouse embryonic fibroblasts (MEFs) have significantly diminished E3 ligase activity toward Mdm2 compared with lysates from wild-type (WT) MEFs. Recombinant NEDD4-1 promotes Mdm2 ubiquitination in vitro in a concentration- and time-dependent manner. In cells, NEDD4-1 physically interacts with Mdm2 via the RING domain of Mdm2. Overexpression of NEDD4-1, but not an enzyme-dead NEDD4-1CS mutant, increases ubiquitination of Mdm2. NEDD4-1 catalyzes the formation of K63-type polyubiquitin chains on Mdm2 that are distinct from K48-type polyubiquitination chains mediated by the Mdm2/MdmX complex. Importantly, K63-type polyubiquitination by NEDD4-1 competes with K48-type polyubiquitination on Mdm2 in cells. As a result, NEDD4-1-mediated ubiquitination stabilizes Mdm2. NEDD4-1 knockdown reduces the t1/2 (half-life) of endogenous Mdm2 from 20 to 12 min in U2OS cells. Nedd4-1 KO MEFs manifest increased p53 levels and activity, a more robust DNA damage response and increased G1 arrest compared with WT MEFs. Similarly, NEDD4-1 knockdown in WT-p53-bearing cells increases basal p53 levels and activity in an Mdm2-dependent manner, causes stronger p53 responses to DNA damage and results in p53-dependent growth inhibition compared with corresponding NEDD4-1-proficient control cells. This study identifies NEDD4-1 as a novel component of the p53/Mdm2 regulatory feedback loop that controls p53 activity during stress responses.
Collapse
|
50
|
Huang C, Du J, Xie K. FOXM1 and its oncogenic signaling in pancreatic cancer pathogenesis. Biochim Biophys Acta Rev Cancer 2014; 1845:104-16. [PMID: 24418574 DOI: 10.1016/j.bbcan.2014.01.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2013] [Revised: 12/30/2013] [Accepted: 01/03/2014] [Indexed: 02/08/2023]
Abstract
Pancreatic cancer is a devastating disease with an overall 5-year survival rate less than 5%. Multiple signaling pathways are implicated in the pathogenesis of pancreatic cancer, such as Wnt/β-catenin, Notch, Hedgehog, hypoxia-inducible factor, signal transducer and activator of transcription, specificity proteins/Krüppel-like factors, and Forkhead box (FOX). Recently, increasing evidence has demonstrated that the transcription factor FOXM1 plays important roles in the initiation, progression, and metastasis of a variety of human tumors, including pancreatic cancer. In this review, we focus on the current understanding of the molecular pathogenesis of pancreatic cancer with a special focus on the function and regulation of FOXM1 and rationale for FOXM1 as a novel molecular target for pancreatic cancer prevention and treatment.
Collapse
Affiliation(s)
- Chen Huang
- Department of General Surgery, Shanghai Jiaotong University Affiliated First People's Hospital, Shanghai, People's Republic of China; Department of Gastroenterology, Hepatology & Nutrition, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Jiawei Du
- Department of Laboratory Medicine, Zhenjiang Second People's Hospital, Jiangsu University College of Medicine, Zhenjiang, People's Republic of China
| | - Keping Xie
- Department of Gastroenterology, Hepatology & Nutrition, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|