1
|
Poklepovic AS, Shah P, Tombes MB, Shrader E, Bandyopadhyay D, Deng X, Roberts CH, Ryan AA, Hudson D, Sankala H, Kmieciak M, Dent P, Malkin MG. Phase 2 Study of Sorafenib, Valproic Acid, and Sildenafil in the Treatment of Recurrent High-Grade Glioma. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.04.23.24304634. [PMID: 38712133 PMCID: PMC11071549 DOI: 10.1101/2024.04.23.24304634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Here we report the results of a single-center phase 2 clinical trial combining sorafenib tosylate, valproic acid, and sildenafil for the treatment of patients with recurrent high-grade glioma (NCT01817751). Clinical toxicities were grade 1 and grade 2, with one grade 3 toxicity for maculopapular rash (6.4%). For all evaluable patients, the median progression-free survival was 3.65 months and overall survival (OS) 10.0 months. There was promising evidence showing clinical activity and benefit. In the 33 evaluable patients, low protein levels of the chaperone GRP78 (HSPA5) was significantly associated with a better OS (p < 0.0026). A correlation between the expression of PDGFRα and OS approached significance (p < 0.0728). Five patients presently have a mean OS of 73.6 months and remain alive. This is the first therapeutic intervention glioblastoma trial to significantly associate GRP78 expression to OS. Our data suggest that the combination of sorafenib tosylate, valproic acid, and sildenafil requires additional clinical development in the recurrent glioma population.
Collapse
Affiliation(s)
- Andrew S Poklepovic
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia. USA
| | - Palak Shah
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia. USA
| | - Mary Beth Tombes
- Department of Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia. USA
| | - Ellen Shrader
- Department of Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia. USA
| | | | - Xiaoyan Deng
- Department of Biostatistics, Virginia Commonwealth University, Richmond, Virginia. USA
| | - Catherine H Roberts
- Department of Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia. USA
| | - Alison A Ryan
- Department of Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia. USA
| | - Daniel Hudson
- Department of Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia. USA
| | - Heidi Sankala
- Department of Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia. USA
| | - Maciej Kmieciak
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia. USA
| | - Paul Dent
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia. USA
- Departments of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia. USA
| | - Mark G Malkin
- Department of Neurology, Virginia Commonwealth University, Richmond, Virginia. USA
| |
Collapse
|
2
|
Afrin F, Mateen S, Oman J, Lai JCK, Barrott JJ, Pashikanti S. Natural Products and Small Molecules Targeting Cellular Ceramide Metabolism to Enhance Apoptosis in Cancer Cells. Cancers (Basel) 2023; 15:4645. [PMID: 37760612 PMCID: PMC10527029 DOI: 10.3390/cancers15184645] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
Molecular targeting strategies have been used for years in order to control cancer progression and are often based on targeting various enzymes involved in metabolic pathways. Keeping this in mind, it is essential to determine the role of each enzyme in a particular metabolic pathway. In this review, we provide in-depth information on various enzymes such as ceramidase, sphingosine kinase, sphingomyelin synthase, dihydroceramide desaturase, and ceramide synthase which are associated with various types of cancers. We also discuss the physicochemical properties of well-studied inhibitors with natural product origins and their related structures in terms of these enzymes. Targeting ceramide metabolism exhibited promising mono- and combination therapies at preclinical stages in preventing cancer progression and cemented the significance of sphingolipid metabolism in cancer treatments. Targeting ceramide-metabolizing enzymes will help medicinal chemists design potent and selective small molecules for treating cancer progression at various levels.
Collapse
Affiliation(s)
- Farjana Afrin
- Biomedical and Pharmaceutical Sciences, Kasiska Division of Health Sciences, College of Pharmacy, Idaho State University, Pocatello, ID 83209, USA; (F.A.); (S.M.); (J.O.); (J.C.K.L.)
| | - Sameena Mateen
- Biomedical and Pharmaceutical Sciences, Kasiska Division of Health Sciences, College of Pharmacy, Idaho State University, Pocatello, ID 83209, USA; (F.A.); (S.M.); (J.O.); (J.C.K.L.)
| | - Jordan Oman
- Biomedical and Pharmaceutical Sciences, Kasiska Division of Health Sciences, College of Pharmacy, Idaho State University, Pocatello, ID 83209, USA; (F.A.); (S.M.); (J.O.); (J.C.K.L.)
| | - James C. K. Lai
- Biomedical and Pharmaceutical Sciences, Kasiska Division of Health Sciences, College of Pharmacy, Idaho State University, Pocatello, ID 83209, USA; (F.A.); (S.M.); (J.O.); (J.C.K.L.)
| | - Jared J. Barrott
- Cell Biology and Physiology, College of Life Sciences, Brigham Young University, Provo, UT 84602, USA;
| | - Srinath Pashikanti
- Biomedical and Pharmaceutical Sciences, Kasiska Division of Health Sciences, College of Pharmacy, Idaho State University, Pocatello, ID 83209, USA; (F.A.); (S.M.); (J.O.); (J.C.K.L.)
| |
Collapse
|
3
|
Abbotto E, Scarano N, Piacente F, Millo E, Cichero E, Bruzzone S. Virtual Screening in the Identification of Sirtuins’ Activity Modulators. Molecules 2022; 27:molecules27175641. [PMID: 36080416 PMCID: PMC9457788 DOI: 10.3390/molecules27175641] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/26/2022] [Accepted: 08/30/2022] [Indexed: 11/23/2022] Open
Abstract
Sirtuins are NAD+-dependent deac(et)ylases with different subcellular localization. The sirtuins’ family is composed of seven members, named SIRT-1 to SIRT-7. Their substrates include histones and also an increasing number of different proteins. Sirtuins regulate a wide range of different processes, ranging from transcription to metabolism to genome stability. Thus, their dysregulation has been related to the pathogenesis of different diseases. In this review, we discussed the pharmacological approaches based on sirtuins’ modulators (both inhibitors and activators) that have been attempted in in vitro and/or in in vivo experimental settings, to highlight the therapeutic potential of targeting one/more specific sirtuin isoform(s) in cancer, neurodegenerative disorders and type 2 diabetes. Extensive research has already been performed to identify SIRT-1 and -2 modulators, while compounds targeting the other sirtuins have been less studied so far. Beside sections dedicated to each sirtuin, in the present review we also included sections dedicated to pan-sirtuins’ and to parasitic sirtuins’ modulators. A special focus is dedicated to the sirtuins’ modulators identified by the use of virtual screening.
Collapse
Affiliation(s)
- Elena Abbotto
- Department of Experimental Medicine, Section of Biochemistry, University of Genoa, Viale Benedetto XV 1, 16132 Genoa, Italy
| | - Naomi Scarano
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Benedetto XV, 3, 16132 Genoa, Italy
| | - Francesco Piacente
- Department of Experimental Medicine, Section of Biochemistry, University of Genoa, Viale Benedetto XV 1, 16132 Genoa, Italy
| | - Enrico Millo
- Department of Experimental Medicine, Section of Biochemistry, University of Genoa, Viale Benedetto XV 1, 16132 Genoa, Italy
| | - Elena Cichero
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Benedetto XV, 3, 16132 Genoa, Italy
| | - Santina Bruzzone
- Department of Experimental Medicine, Section of Biochemistry, University of Genoa, Viale Benedetto XV 1, 16132 Genoa, Italy
- Correspondence:
| |
Collapse
|
4
|
Al Subeh ZY, Poschel DB, Redd PS, Klement JD, Merting AD, Yang D, Mehta M, Shi H, Colson YL, Oberlies NH, Pearce CJ, Colby AH, Grinstaff MW, Liu K. Lipid Nanoparticle Delivery of Fas Plasmid Restores Fas Expression to Suppress Melanoma Growth In Vivo. ACS NANO 2022; 16:12695-12710. [PMID: 35939651 PMCID: PMC9721370 DOI: 10.1021/acsnano.2c04420] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Fas ligand (FasL), expressed on the surface of activated cytotoxic T lymphocytes (CTLs), is the physiological ligand for the cell surface death receptor, Fas. The Fas-FasL engagement initiates diverse signaling pathways, including the extrinsic cell death signaling pathway, which is one of the effector mechanisms that CTLs use to kill tumor cells. Emerging clinical and experimental data indicate that Fas is essential for the efficacy of CAR-T cell immunotherapy. Furthermore, loss of Fas expression is a hallmark of human melanoma. We hypothesize that restoring Fas expression in tumor cells reverses human melanoma resistance to T cell cytotoxicity. DNA hypermethylation, at the FAS promoter, down-regulates FAS expression and confers melanoma cell resistance to FasL-induced cell death. Forced expression of Fas in tumor cells overcomes melanoma resistance to FasL-induced cell death in vitro. Lipid nanoparticle-encapsulated mouse Fas-encoding plasmid therapy eliminates Fas+ tumor cells and suppresses established melanoma growth in immune-competent syngeneic mice. Similarly, lipid nanoparticle-encapsulated human FAS-encoding plasmid (hCOFAS01) therapy significantly increases Fas protein levels on tumor cells of human melanoma patient-derived xenograft (PDX) and suppresses the established human melanoma PDX growth in humanized NSG mice. In human melanoma patients, FasL is expressed in activated and exhausted T cells, Fas mRNA level positively correlates with melanoma patient survival, and nivolumab immunotherapy increases FAS expression in tumor cells. Our data demonstrate that hCOFAS01 is an effective immunotherapeutic agent for human melanoma therapy with dual efficacy in increasing tumor cell FAS expression and in enhancing CTL tumor infiltration.
Collapse
Affiliation(s)
- Zeinab Y. Al Subeh
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA 30912, USA
- Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Dakota B. Poschel
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA 30912, USA
- Georgia Cancer Center, Medical College of Georgia, Augusta, GA 30912, USA
- Charlie Norwood VA Medical Center, Augusta, GA 30904, USA
| | - Priscilla S. Redd
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA 30912, USA
- Georgia Cancer Center, Medical College of Georgia, Augusta, GA 30912, USA
- Charlie Norwood VA Medical Center, Augusta, GA 30904, USA
| | - John D. Klement
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA 30912, USA
- Georgia Cancer Center, Medical College of Georgia, Augusta, GA 30912, USA
- Charlie Norwood VA Medical Center, Augusta, GA 30904, USA
| | - Alyssa D. Merting
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA 30912, USA
- Georgia Cancer Center, Medical College of Georgia, Augusta, GA 30912, USA
- Charlie Norwood VA Medical Center, Augusta, GA 30904, USA
| | - Dafeng Yang
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA 30912, USA
- Georgia Cancer Center, Medical College of Georgia, Augusta, GA 30912, USA
- Charlie Norwood VA Medical Center, Augusta, GA 30904, USA
| | - Megh Mehta
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA 30912, USA
| | - Huidong Shi
- Georgia Cancer Center, Medical College of Georgia, Augusta, GA 30912, USA
| | - Yolonda L. Colson
- Division of Thoracic Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114. USA
| | - Nicholas H. Oberlies
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC 27402, USA
| | | | - Aaron H. Colby
- Ionic Pharmaceuticals, Brookline, MA 02445, USA
- Department of Biomedical Engineering, Boston University, Boston, MA 02215. USA
| | - Mark W. Grinstaff
- Ionic Pharmaceuticals, Brookline, MA 02445, USA
- Department of Biomedical Engineering, Boston University, Boston, MA 02215. USA
| | - Kebin Liu
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA 30912, USA
- Georgia Cancer Center, Medical College of Georgia, Augusta, GA 30912, USA
- Charlie Norwood VA Medical Center, Augusta, GA 30904, USA
| |
Collapse
|
5
|
Abstract
OBJECTIVES The drug GZ17-6.02 is undergoing phase I in solid tumor patients (NCT03775525). The present studies initially determined the impact of prolonged exposure of colorectal tumors to GZ17-6.02, and to determine whether GZ17-6.02 enhanced the efficacy of an anti-PD1 antibody. Subsequently, studies defined the evolutionary resistance mechanisms in tumor cells previously exposed to GZ17-6.02. METHODS IACUC-approved animal studies were performed. In cell immunoblotting, cell transfections and trypan blue death assays were performed. RESULTS Prolonged exposure of colorectal tumors to GZ17-6.02 enhanced the efficacy of 5-fluorouracil and of an anti-PD1 antibody, significantly prolonging animal survival. Tumor cells previously exposed to GZ17-6.02 in vivo had elevated their expression of ERBB2 and ERBB3, and increased phosphorylation of ERBB1, ERBB3, PDGFRβ, AKT T308, ERK1/2, p70 S6K T389, STAT5 Y694 and c-SRC Y416. The phosphorylation of c-SRC Y527 declined. The efficacy of ERBB receptor inhibitors at killing these resistant tumor cells was unaltered by prior GZ17-6.02 exposure whereas the efficacy of multi-kinase/PDGFRβ inhibitors was significantly reduced. Treatment of colon cancer cells with GZ17-6.02 rapidly reduced the levels of multiple HDAC proteins and altered their subcellular localization. Isolates from resistant tumors expressed less CD95 and FAS-L. HDAC inhibitors enhanced CD95 and FAS-L levels in the resistant cells via activation of NFκB and HDAC inhibitors restored the efficacy of GZ17-6.02 to near control levels. CONCLUSIONS Our findings demonstrate that GZ17-6.02 has the potential to be developed as a colon cancer therapeutic and that resistance to the drug can be partially reversed by HDAC inhibitors.
Collapse
Affiliation(s)
- Laurence Booth
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia
| | | | - Daniel Von Hoff
- Translational Genomics Research Institute (TGEN), Phoenix, Arizona, USA
| | - Paul Dent
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
6
|
Janneh AH, Ogretmen B. Targeting Sphingolipid Metabolism as a Therapeutic Strategy in Cancer Treatment. Cancers (Basel) 2022; 14:2183. [PMID: 35565311 PMCID: PMC9104917 DOI: 10.3390/cancers14092183] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/25/2022] [Accepted: 04/25/2022] [Indexed: 02/01/2023] Open
Abstract
Sphingolipids are bioactive molecules that have key roles in regulating tumor cell death and survival through, in part, the functional roles of ceramide accumulation and sphingosine-1-phosphate (S1P) production, respectively. Mechanistic studies using cell lines, mouse models, or human tumors have revealed crucial roles of sphingolipid metabolic signaling in regulating tumor progression in response to anticancer therapy. Specifically, studies to understand ceramide and S1P production pathways with their downstream targets have provided novel therapeutic strategies for cancer treatment. In this review, we present recent evidence of the critical roles of sphingolipids and their metabolic enzymes in regulating tumor progression via mechanisms involving cell death or survival. The roles of S1P in enabling tumor growth/metastasis and conferring cancer resistance to existing therapeutics are also highlighted. Additionally, using the publicly available transcriptomic database, we assess the prognostic values of key sphingolipid enzymes on the overall survival of patients with different malignancies and present studies that highlight their clinical implications for anticancer treatment.
Collapse
Affiliation(s)
| | - Besim Ogretmen
- Hollings Cancer Center, Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA;
| |
Collapse
|
7
|
Merting AD, Poschel DB, Lu C, Klement JD, Yang D, Li H, Shi H, Chapdelaine E, Montgomery M, Redman MT, Savage NM, Nayak-Kapoor A, Liu K. Restoring FAS Expression via Lipid-Encapsulated FAS DNA Nanoparticle Delivery Is Sufficient to Suppress Colon Tumor Growth In Vivo. Cancers (Basel) 2022; 14:cancers14020361. [PMID: 35053524 PMCID: PMC8773494 DOI: 10.3390/cancers14020361] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/21/2021] [Accepted: 12/29/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary A key feature of human colorectal tumor is loss of FAS expression. FAS is the death receptor for FASL of activated T cells. Loss of FAS expression therefore may promote tumor cell immune escape. We aimed at determining whether restoring FAS expression is sufficient to suppress colorectal tumor growth. Mouse and human FAS cDNA was synthesized and encapsulated into cationic lipid nanoparticle DOTAP-Cholesterol to formulate DOTAP-Chol-mFAS and DOTAP-Chol-hFAS, respectively. Restoring FAS expression in metastatic mouse colon-tumor cells enabled FASL-induced elimination of FAS+ tumor cells in vitro and suppressed colon-tumor growth and progression in tumor-bearing mice in vivo. Restoring FAS expression induced FAS receptor auto-oligomerization and tumor cell auto-apoptosis in metastatic human colon-tumor cells in vitro. DOTAP-Chol-hFAS therapy is also sufficient to suppress metastatic human colon tumor xenograft growth in athymic mice. Tumor-selective delivery of FAS DNA nanoparticle is potentially an effective therapy for human colorectal cancer. Abstract A hallmark of human colorectal cancer is lost expression of FAS, the death receptor for FASL of cytotoxic T lymphocytes (CTLs). However, it is unknown whether restoring FAS expression alone is sufficient to suppress csolorectal-cancer development. The FAS promoter is hypermethylated and inversely correlated with FAS mRNA level in human colorectal carcinomas. Analysis of single-cell RNA-Seq datasets revealed that FAS is highly expressed in epithelial cells and immune cells but down-regulated in colon-tumor cells in human colorectal-cancer patients. Codon usage-optimized mouse and human FAS cDNA was designed, synthesized, and encapsulated into cationic lipid to formulate nanoparticle DOTAP-Chol-mFAS and DOTAP-Chol-hFAS, respectively. Overexpression of codon usage-optimized FAS in metastatic mouse colon-tumor cells enabled FASL-induced elimination of FAS+ tumor cells in vitro, suppressed colon tumor growth, and increased the survival of tumor-bearing mice in vivo. Overexpression of codon-optimized FAS-induced FAS receptor auto-oligomerization and tumor cell auto-apoptosis in metastatic human colon-tumor cells. DOTAP-Chol-hFAS therapy is also sufficient to suppress metastatic human colon tumor xenograft growth in athymic mice. DOTAP-Chol-mFAS therapy exhibited no significant liver toxicity. Our data determined that tumor-selective delivery of FAS DNA nanoparticles is sufficient for suppression of human colon tumor growth in vivo.
Collapse
Affiliation(s)
- Alyssa D. Merting
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA 30912, USA; (A.D.M.); (D.B.P.); (C.L.); (J.D.K.); (D.Y.); (H.L.)
- Georgia Cancer Center, Medical College of Georgia, Augusta, GA 30912, USA; (H.S.); (A.N.-K.)
- Charlie Norwood VA Medical Center, Augusta, GA 30904, USA
| | - Dakota B. Poschel
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA 30912, USA; (A.D.M.); (D.B.P.); (C.L.); (J.D.K.); (D.Y.); (H.L.)
- Georgia Cancer Center, Medical College of Georgia, Augusta, GA 30912, USA; (H.S.); (A.N.-K.)
- Charlie Norwood VA Medical Center, Augusta, GA 30904, USA
| | - Chunwan Lu
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA 30912, USA; (A.D.M.); (D.B.P.); (C.L.); (J.D.K.); (D.Y.); (H.L.)
- Georgia Cancer Center, Medical College of Georgia, Augusta, GA 30912, USA; (H.S.); (A.N.-K.)
- Charlie Norwood VA Medical Center, Augusta, GA 30904, USA
| | - John D. Klement
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA 30912, USA; (A.D.M.); (D.B.P.); (C.L.); (J.D.K.); (D.Y.); (H.L.)
- Georgia Cancer Center, Medical College of Georgia, Augusta, GA 30912, USA; (H.S.); (A.N.-K.)
- Charlie Norwood VA Medical Center, Augusta, GA 30904, USA
| | - Dafeng Yang
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA 30912, USA; (A.D.M.); (D.B.P.); (C.L.); (J.D.K.); (D.Y.); (H.L.)
- Georgia Cancer Center, Medical College of Georgia, Augusta, GA 30912, USA; (H.S.); (A.N.-K.)
- Charlie Norwood VA Medical Center, Augusta, GA 30904, USA
| | - Honglin Li
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA 30912, USA; (A.D.M.); (D.B.P.); (C.L.); (J.D.K.); (D.Y.); (H.L.)
- Georgia Cancer Center, Medical College of Georgia, Augusta, GA 30912, USA; (H.S.); (A.N.-K.)
| | - Huidong Shi
- Georgia Cancer Center, Medical College of Georgia, Augusta, GA 30912, USA; (H.S.); (A.N.-K.)
| | | | | | | | - Natasha M. Savage
- Department of Pathology, Medical College of Georgia, Augusta, GA 30912, USA;
| | - Asha Nayak-Kapoor
- Georgia Cancer Center, Medical College of Georgia, Augusta, GA 30912, USA; (H.S.); (A.N.-K.)
| | - Kebin Liu
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA 30912, USA; (A.D.M.); (D.B.P.); (C.L.); (J.D.K.); (D.Y.); (H.L.)
- Georgia Cancer Center, Medical College of Georgia, Augusta, GA 30912, USA; (H.S.); (A.N.-K.)
- Charlie Norwood VA Medical Center, Augusta, GA 30904, USA
- Correspondence: ; Tel.: +1-706-721-9483
| |
Collapse
|
8
|
Xiang XS, Li PC, Wang WQ, Liu L. Histone deacetylases: A novel class of therapeutic targets for pancreatic cancer. Biochim Biophys Acta Rev Cancer 2022; 1877:188676. [PMID: 35016922 DOI: 10.1016/j.bbcan.2022.188676] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/31/2021] [Accepted: 01/05/2022] [Indexed: 12/24/2022]
Abstract
Pancreatic cancer is the seventh leading cause of cancer death worldwide, with a low 5-year survival rate. Novel agents are urgently necessary to treat the main pathological type, known as pancreatic ductal carcinoma (PDAC). The dysregulation of histone deacetylases (HDACs) has been identified in association with PDAC, which can be more easily targeted by small molecular inhibitors than gene mutations and may represent a therapeutic breakthrough for PDAC. However, the contributions of HDACs to PDAC remain controversial, and pharmacokinetic challenges have limited the application of HDAC inhibitors (HDACis) in PDAC. This review summarizes the mechanisms associated with success and failure of HDACis in PDAC and discusses the recent progress made in HDACi development and application, such as combination therapies designed to enhance efficacy. More precise strategies involving HDACis might eventually improve the outcomes of PDAC treatment.
Collapse
Affiliation(s)
- Xue-Song Xiang
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Peng-Cheng Li
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wen-Quan Wang
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Liang Liu
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
9
|
Dent P. Cell Signaling and Translational Developmental Therapeutics. COMPREHENSIVE PHARMACOLOGY 2022. [PMCID: PMC7538147 DOI: 10.1016/b978-0-12-820472-6.00002-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
The relationships between drug pharmacodynamics and subsequent changes in cellular signaling processes are complex. Many in vitro cell signaling studies often use drug concentrations above physiologically safe drug levels achievable in a patient's plasma. Drug companies develop agents to inhibit or modify the activities of specific target enzymes, often without a full consideration that their compounds have additional unknown targets. These two negative sequelae, when published together, become impediments against successful developmental therapeutics and translation because this data distorts our understanding of signaling mechanisms and reduces the probability of successfully translating drug-based concepts from the bench to the bedside. This article will discuss cellular signaling in isolation and as it relates to extant single and combined therapeutic drug interventions. This will lead to a hypothetical series standardized sequential approaches describing a rigorous concept to drug development and clinical translation.
Collapse
|
10
|
Vorinostat in autophagic cell death: A critical insight into autophagy-mediated, -associated and -dependent cell death for cancer prevention. Drug Discov Today 2022; 27:269-279. [PMID: 34400351 PMCID: PMC8714665 DOI: 10.1016/j.drudis.2021.08.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/23/2021] [Accepted: 08/09/2021] [Indexed: 01/03/2023]
Abstract
Histone deacetylases (HDACs) inhibit the acetylation of crucial autophagy genes, thereby deregulating autophagy and autophagic cell death (ACD) and facilitating cancer cell survival. Vorinostat, a broad-spectrum pan-HDAC inhibitor, inhibits the deacetylation of key autophagic markers and thus interferes with ACD. Vorinostat-regulated ACD can have an autophagy-mediated, -associated or -dependent mechanism depending on the involvement of apoptosis. Molecular insights revealed that hyperactivation of the PIK3C3/VPS34-BECN1 complex increases lysosomal disparity and enhances mitophagy. These changes are followed by reduced mitochondrial biogenesis and by secondary signals that enable superactivated, nonselective or bulk autophagy, leading to ACD. Although the evidence is limited, this review focuses on molecular insights into vorinostat-regulated ACD and describes critical concepts for clinical translation.
Collapse
|
11
|
Xing J, Yi J. Comprehensive analysis of LASS6 expression and prognostic value in ovarian cancer. J Ovarian Res 2021; 14:117. [PMID: 34488809 PMCID: PMC8422657 DOI: 10.1186/s13048-021-00868-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 08/20/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Ceramide plays an important role in the occurrence and development of tumor. The synthesis of ceramide needs the participation of LASS. Current studies have shown that different LASS family members play different functions in tumors, especially LASS6, has been proved to play a key role in breast cancer, gastric cancer, melanoma and so on, but the research on ovarian cancer is very limited. METHODS Bioinformatics web resources, including Oncomine, UALCAN, Kaplan-Meier Plotter and TIMER were used to analyze the expression profile, prognostic value and immune infiltration of LASS6. The related genes of LASS6 in ovarian cancer were mined by Regulome Explorer and LinkedOmics database, and cluster analysis was done by DAVID. The PPI network involving LASS6 was constructed by STRING database. Finally, the correlation between 10 genes and LASS6 was analyzed by GEPIA database, and their prognostic value in ovarian cancer was analyzed by Kaplan-Meier plotter. RESULTS The expression of LASS6 was up-regulated in ovarian cancer, which was related to the progression and poor prognosis of ovarian cancer. Through GO/KEGG cluster analysis, we also found that LASS6 may affect calcium ion channel and its transport pathways. The analysis of regulatory network involved in LASS6 showed that the high mRNAs of 7 key genes were associated with poor prognosis of OS in patients with ovarian cancer, among which DEGS1 was the most significant. CONCLUSIONS LASS6 may play an important role in the regulation of calcium pathway and become a new therapeutic target and potential prognostic marker in ovarian cancer.
Collapse
Affiliation(s)
- Jinshan Xing
- Department of Neurosurgery, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Jingyan Yi
- Department of Medical Cell Biology and Genetics, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, 646000, China.
| |
Collapse
|
12
|
Abstract
Pancreatic cancer is an almost incurable malignancy whose incidence has increased over the past 30 years. Instead of pursuing the development of modalities utilizing 'traditional' cytotoxic chemotherapeutic agents, we have explored the possibilities of developing novel multi-kinase inhibitor drug combinations to kill this tumor type. Several approaches using the multi-kinase inhibitors sorafenib, regorafenib, and neratinib have been safely translated from the bench to the bedside, with objective anti-tumor responses. This review will discuss our prior preclinical and clinical studies and discuss future clinical opportunities in this disease.
Collapse
|
13
|
Neratinib decreases pro-survival responses of [sorafenib + vorinostat] in pancreatic cancer. Biochem Pharmacol 2020; 178:114067. [PMID: 32504550 DOI: 10.1016/j.bcp.2020.114067] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/01/2020] [Accepted: 06/01/2020] [Indexed: 12/20/2022]
Abstract
The combination of the multi-kinase and chaperone inhibitor sorafenib and the histone deacetylase inhibitor vorinostat in pancreatic cancer patients has proven to be a safe and efficacious modality (NCT02349867). We determined the evolutionary mechanisms by with pancreatic tumors become resistant to [sorafenib + vorinostat] and developed a new three-drug therapy to circumvent the resistant phenotype. Pancreatic tumors previously exposed to [sorafenib + vorinostat] evolved to activate the receptors ERBB1, ERBB2, ERBB3, c-MET and the intracellular kinase AKT. The irreversible ERBB receptor family and MAP4K inhibitor neratinib significantly enhanced the anti-tumor efficacy of [sorafenib + vorinostat]. We then determined the mechanisms by which neratinib enhanced the efficacy of [sorafenib + vorinostat]. Compared to [sorafenib + vorinostat] or to neratinib alone, the three-drug combination further enhanced the phosphorylation of eIF2α and NFκB and the expression of Beclin1, ATG5 and CD95; and suppressed the levels of β-catenin. Knock down of Beclin1, ATG5, CD95, eIF2 α or NFκB suppressed cell killing whereas knock down of β-catenin enhanced killing. The drugs interacted to increase autophagosome formation; and autophagy and cell killing were suppressed by expression of activated mTOR. A portion of the killing mechanism required CD95 signaling and knock down of NFκB prevented the drugs from increasing CD95 expression. We conclude that neratinib, by down-regulation of evolutionary activated growth factor receptors, may represent a novel follow-on clinical concept after the completion of NCT02349867.
Collapse
|
14
|
Canals D, Salamone S, Santacreu BJ, Nemeth E, Aguilar D, Hernandez-Corbacho MJ, Adada M, Staquicini DI, Arap W, Pasqualini R, Haley J, Obeid LM, Hannun YA. Ceramide launches an acute anti-adhesion pro-migration cell signaling program in response to chemotherapy. FASEB J 2020; 34:7610-7630. [PMID: 32307766 PMCID: PMC8265206 DOI: 10.1096/fj.202000205r] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/21/2020] [Accepted: 03/24/2020] [Indexed: 12/11/2022]
Abstract
Chemotherapy has been reported to upregulate sphingomylinases and increase cellular ceramide, often linked to the induction to cell death. In this work, we show that sublethal doses of doxorubicin and vorinostat still increased cellular ceramide, which was located predominantly at the plasma membrane. To interrogate possible functions of this specific pool of ceramide, we used recombinant enzymes to mimic physiological levels of ceramide at the plasma membrane upon chemotherapy treatment. Using mass spectrometry and network analysis, followed by experimental confirmation, the results revealed that this pool of ceramide acutely regulates cell adhesion and cell migration pathways with weak connections to commonly established ceramide functions (eg, cell death). Neutral sphingomyelinase 2 (nSMase2) was identified as responsible for the generation of plasma membrane ceramide upon chemotherapy treatment, and both ceramide at the plasma membrane and nSMase2 were necessary and sufficient to mediate these "side" effects of chemotherapy on cell adhesion and migration. This is the first time a specific pool of ceramide is interrogated for acute signaling functions, and the results define plasma membrane ceramide as an acute signaling effector necessary and sufficient for regulation of cell adhesion and cell migration under chemotherapeutical stress.
Collapse
Affiliation(s)
- Daniel Canals
- Department of Medicine, Stony Brook University, Stony Brook, NY, United States
| | - Silvia Salamone
- Department of Medicine, Stony Brook University, Stony Brook, NY, United States
| | - Bruno Jaime Santacreu
- Department of Medicine, Stony Brook University, Stony Brook, NY, United States
- Facultad de Farmacia y Bioquímica, Cátedra de Biología Celular y Molecular, Buenos Aires, Argentina
| | - Erika Nemeth
- Department of Medicine, Stony Brook University, Stony Brook, NY, United States
| | - Daniel Aguilar
- Biomedical Research Networking Center in Hepatic and Digestive Diseases (CIBEREHD), Barcelona, Catalunya, Spain
| | | | - Mohamad Adada
- Department of Medicine, Stony Brook University, Stony Brook, NY, United States
| | - Daniela I. Staquicini
- Rutgers Cancer Institute of New Jersey, Newark, NJ, United States
- Division of Cancer Biology, Department of Radiation Oncology, Rutgers New Jersey Medical School, Newark, NJ, United States
| | - Wadih Arap
- Rutgers Cancer Institute of New Jersey, Newark, NJ, United States
- Division of Hematology/Oncology, Department of Medicine, Rutgers New Jersey Medical School, Newark, NJ, United States
| | - Renata Pasqualini
- Rutgers Cancer Institute of New Jersey, Newark, NJ, United States
- Division of Cancer Biology, Department of Radiation Oncology, Rutgers New Jersey Medical School, Newark, NJ, United States
| | - John Haley
- Department of Medicine, Stony Brook University, Stony Brook, NY, United States
- Department of Pathology, Stony Brook University, Stony Brook, NY, United States
| | - Lina M Obeid
- Department of Medicine, Stony Brook University, Stony Brook, NY, United States
- Northport VA Hospital
- Stony Brook Cancer Center, Stony Brook, NY, United States
| | - Yusuf A Hannun
- Department of Medicine, Stony Brook University, Stony Brook, NY, United States
- Department of Biochemistry, Stony Brook University
- Stony Brook Cancer Center, Stony Brook, NY, United States
| |
Collapse
|
15
|
Jakobi K, Beyer S, Koch A, Thomas D, Schwalm S, Zeuzem S, Pfeilschifter J, Grammatikos G. Sorafenib Treatment and Modulation of the Sphingolipid Pathway Affect Proliferation and Viability of Hepatocellular Carcinoma In Vitro. Int J Mol Sci 2020; 21:ijms21072409. [PMID: 32244391 PMCID: PMC7177910 DOI: 10.3390/ijms21072409] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 03/26/2020] [Accepted: 03/27/2020] [Indexed: 02/08/2023] Open
Abstract
Hepatocellular carcinoma (HCC) shows a remarkable heterogeneity and is recognized as a chemoresistant tumor with dismal prognosis. In previous studies, we observed significant alterations in the serum sphingolipids of patients with HCC. This study aimed to investigate the in vitro effects of sorafenib, which is the most widely used systemic HCC medication, on the sphingolipid pathway as well as the effects of inhibiting the sphingolipid pathway in HCC. Huh7.5 and HepG2 cells were stimulated with sorafenib, and inhibitors of the sphingolipid pathway and cell proliferation, viability, and concentrations of bioactive metabolites were assessed. We observed a significant downregulation of cell proliferation and viability and a simultaneous upregulation of dihydroceramides upon sorafenib stimulation. Interestingly, fumonisin B1 (FB1) and the general sphingosine kinase inhibitor SKI II were able to inhibit cell proliferation more prominently in HepG2 and Huh7.5 cells, whereas there were no consistent effects on the formation of dihydroceramides, thus implying an involvement of distinct metabolic pathways. In conclusion, our study demonstrates a significant downregulation of HCC proliferation upon sorafenib, FB1, and SKI II treatment, whereas it seems they exert antiproliferative effects independently from sphingolipids. Certainly, further data would be required to elucidate the potential of FB1 and SKI II as putative novel therapeutic targets in HCC.
Collapse
Affiliation(s)
- Katja Jakobi
- Medizinische Klinik 1, University Hospital, Goethe University Frankfurt am Main, 60590 Frankfurt, Germany; (K.J.); (S.Z.)
- Institut für Allgemeine Pharmakologie und Toxikologie, University Hospital, Goethe University Frankfurt am Main, 60590 Frankfurt, Germany; (S.B.); (A.K.); (S.S.); (J.P.)
| | - Sandra Beyer
- Institut für Allgemeine Pharmakologie und Toxikologie, University Hospital, Goethe University Frankfurt am Main, 60590 Frankfurt, Germany; (S.B.); (A.K.); (S.S.); (J.P.)
| | - Alexander Koch
- Institut für Allgemeine Pharmakologie und Toxikologie, University Hospital, Goethe University Frankfurt am Main, 60590 Frankfurt, Germany; (S.B.); (A.K.); (S.S.); (J.P.)
| | - Dominique Thomas
- Institut für Klinische Pharmakologie und Toxikologie, University Hospital, Goethe University Frankfurt am Main, 60590 Frankfurt, Germany;
| | - Stephanie Schwalm
- Institut für Allgemeine Pharmakologie und Toxikologie, University Hospital, Goethe University Frankfurt am Main, 60590 Frankfurt, Germany; (S.B.); (A.K.); (S.S.); (J.P.)
| | - Stefan Zeuzem
- Medizinische Klinik 1, University Hospital, Goethe University Frankfurt am Main, 60590 Frankfurt, Germany; (K.J.); (S.Z.)
| | - Josef Pfeilschifter
- Institut für Allgemeine Pharmakologie und Toxikologie, University Hospital, Goethe University Frankfurt am Main, 60590 Frankfurt, Germany; (S.B.); (A.K.); (S.S.); (J.P.)
| | - Georgios Grammatikos
- Medizinische Klinik 1, University Hospital, Goethe University Frankfurt am Main, 60590 Frankfurt, Germany; (K.J.); (S.Z.)
- Institut für Allgemeine Pharmakologie und Toxikologie, University Hospital, Goethe University Frankfurt am Main, 60590 Frankfurt, Germany; (S.B.); (A.K.); (S.S.); (J.P.)
- St Luke’s Hospital, 55236 Thessaloniki, Greece
- Correspondence: ; Tel.: +30-2316-014-910
| |
Collapse
|
16
|
Iessi E, Marconi M, Manganelli V, Sorice M, Malorni W, Garofalo T, Matarrese P. On the role of sphingolipids in cell survival and death. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 351:149-195. [PMID: 32247579 DOI: 10.1016/bs.ircmb.2020.02.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Sphingolipids, universal components of biological membranes of all eukaryotic organisms, from yeasts to mammals, in addition of playing a structural role, also play an important part of signal transduction pathways. They participate or, also, ignite several fundamental subcellular signaling processes but, more in general, they directly contribute to key biological activities such as cell motility, growth, senescence, differentiation as well as cell fate, i.e., survival or death. The sphingolipid metabolic pathway displays an intricate network of reactions that result in the formation of multiple sphingolipids, including ceramide, and sphingosine-1-phosphate. Different sphingolipids, that have key roles in determining cell fate, can induce opposite effects: as a general rule, sphingosine-1-phosphate promotes cell survival and differentiation, whereas ceramide is known to induce apoptosis. Furthermore, together with cholesterol, sphingolipids also represent the basic lipid component of lipid rafts, cholesterol- and sphingolipid-enriched membrane microdomains directly involved in cell death and survival processes. In this review, we briefly describe the characteristics of sphingolipids and lipid membrane microdomains. In particular, we will consider the involvement of various sphingolipids per se and of lipid rafts in apoptotic pathway, both intrinsic and extrinsic, in nonapoptotic cell death, in autophagy, and in cell differentiation. In addition, their roles in the most common physiological and pathological contexts either as pathogenetic elements or as biomarkers of diseases will be considered. We would also hint how the manipulation of sphingolipid metabolism could represent a potential therapeutic target to be investigated and functionally validated especially for those diseases for which therapeutic options are limited or ineffective.
Collapse
Affiliation(s)
- Elisabetta Iessi
- Center for Gender-Specific Medicine, Oncology Unit, Istituto Superiore di Sanità, Rome, Italy
| | - Matteo Marconi
- Center for Gender-Specific Medicine, Oncology Unit, Istituto Superiore di Sanità, Rome, Italy
| | | | - Maurizio Sorice
- Department of Experimental Medicine, Sapienza University, Rome, Italy
| | - Walter Malorni
- Center for Gender-Specific Medicine, Oncology Unit, Istituto Superiore di Sanità, Rome, Italy; Department of Biology, University of Rome Tor Vergata, Rome, Italy.
| | - Tina Garofalo
- Department of Experimental Medicine, Sapienza University, Rome, Italy
| | - Paola Matarrese
- Center for Gender-Specific Medicine, Oncology Unit, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
17
|
The multi-kinase inhibitor lenvatinib interacts with the HDAC inhibitor entinostat to kill liver cancer cells. Cell Signal 2020; 70:109573. [PMID: 32087304 DOI: 10.1016/j.cellsig.2020.109573] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/14/2020] [Accepted: 02/17/2020] [Indexed: 12/15/2022]
Abstract
Prior studies from our group have combined the multi-kinase inhibitor sorafenib with HDAC inhibitors in GI tumor cells that resulted in the trials NCT02349867 and NCT01075113. The multi-kinase inhibitor lenvatinib, for the treatment of liver cancer, has fewer negative sequelae than sorafenib. We determined the mechanisms by which lenvatinib interacted with the HDAC inhibitor entinostat to kill hepatoma cells. Lenvatinib and entinostat interacted in an additive to greater-than-additive fashion to kill liver cancer cells. The drugs inactivated mTORC1 and mTORC2 and interacted to further increase the phosphorylation of ATM, ATG13 and eIF2α. Elevated eIF2α phosphorylation was responsible for reduced MCL-1 and BCL-XL expression and for increased Beclin1 and ATG5 expression. Over-expression of BCL-XL or knock down of Beclin1 or ATG5, significantly reduced killing. The drugs synergized to elevate ROS production; activation of ATM was ROS-dependent. ATM activation was required for enhanced phosphorylation of γH2AX, eIF2α and ATG13 S318. The drug combination reduced histone deacetylase protein expression which required autophagy. Knock down of HDACs1/2/3 prevented the lenvatinib and entinostat combination from regulating PD-L1 and MHCA expression. Collectively, our data demonstrate that lenvatinib and entinostat interact to kill liver cancer cells via ROS-dependent activation of ATM and inactivation of eIF2α, resulting in greater levels of toxic autophagosome formation and reduced expression of protective mitochondrial proteins.
Collapse
|
18
|
Dent P, Booth L, Roberts JL, Poklepovic A, Hancock JF. Fingolimod Augments Monomethylfumarate Killing of GBM Cells. Front Oncol 2020; 10:22. [PMID: 32047722 PMCID: PMC6997152 DOI: 10.3389/fonc.2020.00022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 01/08/2020] [Indexed: 12/26/2022] Open
Abstract
Previously we demonstrated that the multiple sclerosis drug dimethyl fumarate (DMF) and its plasma breakdown product MMF could interact with chemotherapeutic agents to kill both GBM cells and activated microglia. The trial NCT02337426 demonstrated the safety of DMF in newly diagnosed GBM patients when combined with the standard of care Stupp protocol. We hypothesized that another multiple sclerosis drug, fingolimod (FTY720) would synergize with MMF to kill GBM cells. MMF and fingolimod interacted in a greater than additive fashion to kill PDX GBM isolates. MMF and fingolimod radiosensitized glioma cells and enhanced the lethality of temozolomide. Exposure to [MMF + fingolimod] activated an ATM-dependent toxic autophagy pathway, enhanced protective endoplasmic reticulum stress signaling, and inactivated protective PI3K, STAT, and YAP function. The drug combination reduced the expression of protective c-FLIP-s, MCL-1, BCL-XL, and in parallel caused cell-surface clustering of the death receptor CD95. Knock down of CD95 or over-expression of c-FLIP-s or BCL-XL suppressed killing. Fingolimod and MMF interacted in a greater than additive fashion to rapidly enhance reactive oxygen species production and over-expression of either thioredoxin or super-oxide dismutase two significantly reduced the drug-induced phosphorylation of ATM, autophagosome formation and [MMF + fingolimod] lethality. In contrast, the production of ROS was only marginally reduced in cells lacking ATM, CD95, or Beclin1. Collectively, our data demonstrate that the primary generation of ROS by [MMF + fingolimod] plays a key role, via the induction of toxic autophagy and death receptor signaling, in the killing of GBM cells.
Collapse
Affiliation(s)
- Paul Dent
- Departments of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, United States
| | - Laurence Booth
- Departments of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, United States
| | - Jane L Roberts
- Departments of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, United States
| | - Andrew Poklepovic
- Departments of Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | - John F Hancock
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center, Houston, TX, United States
| |
Collapse
|
19
|
Abstract
Mechanistic details for the roles of sphingolipids and their downstream targets in the regulation of tumor growth, response to chemo/radiotherapy, and metastasis have been investigated in recent studies using innovative molecular, genetic and pharmacologic tools in various cancer models. Induction of ceramide generation in response to cellular stress by chemotherapy, radiation, or exogenous ceramide analog drugs mediates cell death via apoptosis, necroptosis, or mitophagy. In this chapter, distinct functions and mechanisms of action of endogenous ceramides with different fatty acyl chain lengths in the regulation of cancer cell death versus survival will be discussed. In addition, importance of ceramide subcellular localization, trafficking, and lipid-protein binding between ceramide and various target proteins in cancer cells will be reviewed. Moreover, clinical trials from structure-function-based studies to restore antiproliferative ceramide signaling by activating ceramide synthesis will also be analyzed. Future studies are important to understand the mechanistic involvement of ceramide-mediated cell death in anticancer therapy, including immunotherapy.
Collapse
Affiliation(s)
- Rose Nganga
- Department of Biochemistry and Molecular Biology, and Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States
| | - Natalia Oleinik
- Department of Biochemistry and Molecular Biology, and Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States
| | - Besim Ogretmen
- Department of Biochemistry and Molecular Biology, and Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
20
|
Dent P, Booth L, Poklepovic A, Hancock JF. Signaling alterations caused by drugs and autophagy. Cell Signal 2019; 64:109416. [PMID: 31520735 DOI: 10.1016/j.cellsig.2019.109416] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 09/10/2019] [Accepted: 09/10/2019] [Indexed: 12/12/2022]
Abstract
Autophagy is an evolutionary conserved process that recycles cellular materials in times of nutrient restriction to maintain viability. In cancer therapeutics, the role of autophagy in response to multi-kinase inhibitors, alone or when combined with histone deacetylase (HDAC) inhibitors acts, generally, to facilitate the killing of tumor cells. Furthermore, the formation of autophagosomes and subsequent degradation of their contents can reduce the expression of HDAC proteins themselves as well as of other signaling regulatory molecules such as protein chaperones and mutated RAS proteins. Reduced levels of HDAC6 causes the acetylation and inactivation of heat shock protein 90, and, together with reduced expression of the chaperones HSP70 and GRP78, generates a strong endoplasmic reticulum (ER) stress response. Prolonged intense ER stress signaling causes tumor cell death. Reduced expression of HDACs 1, 2 and 3 causes the levels of programed death ligand 1 (PD-L1) to decline and the expression of Class I MHCA to increase which correlates with elevated immunogenicity of the tumor cells in vivo. This review will specifically focus on the downstream implications that result from autophagic-degradation of HDACs, RAS and protein chaperones.
Collapse
Affiliation(s)
- Paul Dent
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA 23298, USA.
| | - Laurence Booth
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Andrew Poklepovic
- Department of Biochemistry and Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - John F Hancock
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center, Houston, TX 77030, USA
| |
Collapse
|
21
|
Brachtendorf S, El-Hindi K, Grösch S. WITHDRAWN: Ceramide synthases in cancer therapy and chemoresistance. Prog Lipid Res 2019:100992. [PMID: 31442523 DOI: 10.1016/j.plipres.2019.100992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 04/02/2019] [Accepted: 04/02/2019] [Indexed: 10/26/2022]
Affiliation(s)
- Sebastian Brachtendorf
- Institute of Clinical Pharmacology, Faculty of Medicine, Goethe University Frankfurt, Theodor-Stern Kai 7, Frankfurt 60590, Germany
| | - Khadija El-Hindi
- Institute of Clinical Pharmacology, Faculty of Medicine, Goethe University Frankfurt, Theodor-Stern Kai 7, Frankfurt 60590, Germany
| | - Sabine Grösch
- Institute of Clinical Pharmacology, Faculty of Medicine, Goethe University Frankfurt, Theodor-Stern Kai 7, Frankfurt 60590, Germany
| |
Collapse
|
22
|
Abstract
Biomarker discovery and validation are necessary for improving the prediction of clinical outcomes and patient monitoring. Despite considerable interest in biomarker discovery and development, improvements in the range and quality of biomarkers are still needed. The main challenge is how to integrate preclinical data to obtain a reliable biomarker that can be measured with acceptable costs in routine clinical practice. Epigenetic alterations are already being incorporated as valuable candidates in the biomarker field. Furthermore, their reversible nature offers a promising opportunity to ameliorate disease symptoms by using epigenetic-based therapy. Thus, beyond helping to understand disease biology, clinical epigenetics is being incorporated into patient management in oncology, as well as being explored for clinical applicability for other human pathologies such as neurological and infectious diseases and immune system disorders.
Collapse
|
23
|
Brachtendorf S, El-Hindi K, Grösch S. Ceramide synthases in cancer therapy and chemoresistance. Prog Lipid Res 2019; 74:160-185. [DOI: 10.1016/j.plipres.2019.04.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 04/02/2019] [Accepted: 04/02/2019] [Indexed: 12/24/2022]
|
24
|
Magaye RR, Savira F, Hua Y, Kelly DJ, Reid C, Flynn B, Liew D, Wang BH. The role of dihydrosphingolipids in disease. Cell Mol Life Sci 2019; 76:1107-1134. [PMID: 30523364 PMCID: PMC11105797 DOI: 10.1007/s00018-018-2984-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 11/06/2018] [Accepted: 11/26/2018] [Indexed: 12/29/2022]
Abstract
Dihydrosphingolipids refer to sphingolipids early in the biosynthetic pathway that do not contain a C4-trans-double bond in the sphingoid backbone: 3-ketosphinganine (3-ketoSph), dihydrosphingosine (dhSph), dihydrosphingosine-1-phosphate (dhS1P) and dihydroceramide (dhCer). Recent advances in research related to sphingolipid biochemistry have shed light on the importance of sphingolipids in terms of cellular signalling in health and disease. However, dihydrosphingolipids have received less attention and research is lacking especially in terms of their molecular mechanisms of action. This is despite studies implicating them in the pathophysiology of disease, for example dhCer in predicting type 2 diabetes in obese individuals, dhS1P in cardiovascular diseases and dhSph in hepato-renal toxicity. This review gives a comprehensive summary of research in the last 10-15 years on the dihydrosphingolipids, 3-ketoSph, dhSph, dhS1P and dhCer, and their relevant roles in different diseases. It also highlights gaps in research that could be of future interest.
Collapse
Affiliation(s)
- Ruth R Magaye
- Monash Centre of Cardiovascular Research and Education in Therapeutics, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Feby Savira
- Monash Centre of Cardiovascular Research and Education in Therapeutics, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Yue Hua
- Monash Centre of Cardiovascular Research and Education in Therapeutics, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Darren J Kelly
- Department of Medicine, St Vincent's Hospital, University of Melbourne, Fitzroy, VIC, Australia
| | - Christopher Reid
- Monash Centre of Cardiovascular Research and Education in Therapeutics, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Bernard Flynn
- Australian Translational Medicinal Chemistry Facility, Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Australia
| | - Danny Liew
- Monash Centre of Cardiovascular Research and Education in Therapeutics, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Bing H Wang
- Monash Centre of Cardiovascular Research and Education in Therapeutics, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia.
| |
Collapse
|
25
|
Gravett AM, Dalgleish AG, Copier J. In vitro culture with gemcitabine augments death receptor and NKG2D ligand expression on tumour cells. Sci Rep 2019; 9:1544. [PMID: 30733494 PMCID: PMC6367314 DOI: 10.1038/s41598-018-38190-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 12/06/2018] [Indexed: 01/11/2023] Open
Abstract
Much effort has been made to try to understand the relationship between chemotherapeutic treatment of cancer and the immune system. Whereas much of that focus has been on the direct effect of chemotherapy drugs on immune cells and the release of antigens and danger signals by malignant cells killed by chemotherapy, the effect of chemotherapy on cells surviving treatment has often been overlooked. In the present study, tumour cell lines: A549 (lung), HCT116 (colon) and MCF-7 (breast), were treated with various concentrations of the chemotherapeutic drugs cyclophosphamide, gemcitabine (GEM) and oxaliplatin (OXP) for 24 hours in vitro. In line with other reports, GEM and OXP upregulated expression of the death receptor CD95 (fas) on live cells even at sub-cytotoxic concentrations. Further investigation revealed that the increase in CD95 in response to GEM sensitised the cells to fas ligand treatment, was associated with increased phosphorylation of stress activated protein kinase/c-Jun N-terminal kinase and that other death receptors and activatory immune receptors were co-ordinately upregulated with CD95 in certain cell lines. The upregulation of death receptors and NKG2D ligands together on cells after chemotherapy suggest that although the cells have survived preliminary treatment with chemotherapy they may now be more susceptible to immune cell-mediated challenge. This re-enforces the idea that chemotherapy-immunotherapy combinations may be useful clinically and has implications for the make-up and scheduling of such treatments.
Collapse
Affiliation(s)
- Andrew M Gravett
- Oncology Group, Institute for Infection and Immunity, St. George's, University of London, London, UK.
| | - Angus G Dalgleish
- Oncology Group, Institute for Infection and Immunity, St. George's, University of London, London, UK
| | - John Copier
- Oncology Group, Institute for Infection and Immunity, St. George's, University of London, London, UK
| |
Collapse
|
26
|
Raman D, Pervaiz S. Redox inhibition of protein phosphatase PP2A: Potential implications in oncogenesis and its progression. Redox Biol 2019; 27:101105. [PMID: 30686777 PMCID: PMC6859563 DOI: 10.1016/j.redox.2019.101105] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 01/04/2019] [Accepted: 01/09/2019] [Indexed: 01/17/2023] Open
Abstract
Cellular processes are dictated by the active signaling of proteins relaying messages to regulate cell proliferation, apoptosis, signal transduction and cell communications. An intricate web of protein kinases and phosphatases are critical to the proper transmission of signals across such cascades. By governing 30–50% of all protein dephosphorylation in the cell, with prominent substrate proteins being key regulators of signaling cascades, the phosphatase PP2A has emerged as a celebrated player in various developmental and tumorigenic pathways, thereby posing as an attractive target for therapeutic intervention in various pathologies wherein its activity is deregulated. This review is mainly focused on refreshing our understanding of the structural and functional complexity that cocoons the PP2A phosphatase, and its expression in cancers. Additionally, we focus on its physiological regulation as well as into recent advents and strategies that have shown promise in countering the deregulation of the phosphatase through its targeted reactivation. Finally, we dwell upon one of the key regulators of PP2A in cancer cells-cellular redox status-its multifarious nature, and its integration into the reactome of PP2A, highlighting some of the significant impacts that ROS can inflict on the structural modifications and functional aspect of PP2A.
Collapse
Affiliation(s)
- Deepika Raman
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Shazib Pervaiz
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Medical Science Cluster Cancer Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; National University Cancer Institute, National University Health System, Singapore, Singapore; NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore.
| |
Collapse
|
27
|
Booth L, Roberts JL, Poklepovic A, Dent P. Prior exposure of pancreatic tumors to [sorafenib + vorinostat] enhances the efficacy of an anti-PD-1 antibody. Cancer Biol Ther 2018; 20:109-121. [PMID: 30142009 DOI: 10.1080/15384047.2018.1507258] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Checkpoint immunotherapy antibodies have not shown efficacy in pancreatic adenocarcinoma. Pre-clinical studies and subsequently an on-going phase I trial have demonstrated the safety and efficacy of combinatorial radio-chemotherapy plus surgery in this malignancy, including the combination of sorafenib and vorinostat. The lethality of [sorafenib + vorinostat] was enhanced by gemcitabine. Exposure to [sorafenib + vorinostat] reduced the expression of β-catenin, ERBB1, BCL-XL and MCL-1, and the phosphorylation of AKT T308, AKT S473, GSK3 S9/21, mTORC1 and mTORC2. The drug combination increased the expression of Beclin1 and the phosphorylation of eIF2α S51. The drug combination rapidly reduced the levels of multiple HDAC proteins that was directly associated with the previously noted changes in tumor cell biology, as well as with alterations in the expression of biomarkers predictive for a response to checkpoint inhibitor antibodies. In vivo studies using the PAN02 model in its syngeneic mouse demonstrated that an anti-PD-1 antibody had no impact on tumor growth whereas a transient exposure to [sorafenib + vorinostat] significantly suppressed growth. The combination of [sorafenib + vorinostat] with an anti-PD-1 antibody caused a significant further reduction in tumor growth compared to the drug combination alone. Tumors transiently exposed three weeks earlier to [sorafenib + vorinostat] contained elevated levels of CD8+ cells, M1 macrophages and natural killer cells. Drug exposure plus an anti-PD-1 antibody further significantly enhanced the levels of these immune cells in the tumor. Our data argue for performing a new phase I trial in pancreatic cancer combining immunotherapy with [sorafenib + vorinostat]. Abbreviations: ERK: extracellular regulated kinase; PI3K: phosphatidyl inositol 3 kinase; ca: constitutively active; dn: dominant negative; ER: endoplasmic reticulum; AIF: apoptosis inducing factor; AMPK: AMP-dependent protein kinase; mTOR: mammalian target of rapamycin; JAK: Janus Kinase; STAT: Signal Transducers and Activators of Transcription; MAPK: mitogen activated protein kinase; PTEN: phosphatase and tensin homologue on chromosome ten; ROS: reactive oxygen species; CMV: empty vector plasmid or virus; si: small interfering; SCR: scrambled; IP: immunoprecipitation; VEH: vehicle; HDAC: histone deacetylase.
Collapse
Affiliation(s)
- Laurence Booth
- a Departments of Biochemistry and Molecular Biology , Virginia Commonwealth University , Richmond , VA , USA
| | - Jane Lisa Roberts
- a Departments of Biochemistry and Molecular Biology , Virginia Commonwealth University , Richmond , VA , USA
| | | | - Paul Dent
- a Departments of Biochemistry and Molecular Biology , Virginia Commonwealth University , Richmond , VA , USA
| |
Collapse
|
28
|
Booth L, Roberts JL, Rais R, Poklepovic A, Dent P. Valproate augments Niraparib killing of tumor cells. Cancer Biol Ther 2018; 19:797-808. [PMID: 29923797 DOI: 10.1080/15384047.2018.1472190] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
PARP1 inhibitors are approved therapeutic agents in ovarian carcinomas, and have clinical activity in some breast cancers. As a single agent, niraparib killed ovarian and mammary tumor cells via an ATM-AMPK-ULK1 pathway which resulted in mTOR inactivation and the formation of autophagosomes, temporally followed by autolysosome formation. In parallel, niraparib activated a CD95-FADD-caspase 8 pathway, and collectively these signals caused tumor cell death that was suppressed by knock down of Beclin1, ATG5, CD95, FADD or AIF; or by expression of c-FLIP-s, BCL-XL or dominant negative caspase 9. The HDAC inhibitors AR42 and sodium valproate enhanced niraparib lethality in a greater than additive fashion. HDAC inhibitors enhanced niraparib lethality by increasing activation of the ATM-AMPK-ULK1-autophagy and CD95-FADD-caspase 8 pathways. Knock down of eIF2α, ATM, AMPKα, ULK1, Beclin1 or ATG5 reduced tumor cell killing by the niraparib plus HDAC inhibitor combination. Blockade of either caspase 9 function or that of cathepsin B partially prevented cell death. As a single agent niraparib delayed tumor growth, but did not significantly alter the tumor control rate. Tumors previously exposed to niraparib had activated the ERK1/2 and AKT-mTOR pathways that correlated with increased plasma levels of IL-8, MIF, EGF, uPA and IL-12. Collectively our findings argue that the addition of HDAC inhibitors to niraparib enhances the anti-cancer activity of the PARP1 inhibitor niraparib.
Collapse
Affiliation(s)
- Laurence Booth
- a Departments of Biochemistry and Molecular Biology , Virginia Commonwealth University , Richmond , VA , USA
| | - Jane L Roberts
- a Departments of Biochemistry and Molecular Biology , Virginia Commonwealth University , Richmond , VA , USA
| | - Rumeesa Rais
- a Departments of Biochemistry and Molecular Biology , Virginia Commonwealth University , Richmond , VA , USA
| | | | - Paul Dent
- a Departments of Biochemistry and Molecular Biology , Virginia Commonwealth University , Richmond , VA , USA
| |
Collapse
|
29
|
Booth L, Roberts JL, Poklepovic A, Dent P. [pemetrexed + sildenafil], via autophagy-dependent HDAC downregulation, enhances the immunotherapy response of NSCLC cells. Cancer Biol Ther 2018; 18:705-714. [PMID: 28812434 DOI: 10.1080/15384047.2017.1362511] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Pemetrexed is an approved therapeutic in NSCLC and ovarian cancer. Our studies focused on the ability of [pemetrexed + sildenafil] exposure to alter the immunogenicity of lung and ovarian cancer cells. Treatment of lung and ovarian cancer cells with [pemetrexed + sildenafil] in vitro rapidly reduced the expression of PD-L1, PD-L2 and ornithine decarboxylase (ODC), and increased the expression of class I MHCA. In a cell-specific fashion, some cells also released the immunogenic nuclear protein HMGB1 into the extracellular environment. [Pemetrexed + sildenafil] reduced the expression of multiple histone deacetylases that was blocked by knock down of autophagy regulatory proteins. [Pemetrexed + sildenafil] lethality was enhanced by the histone deacetylase inhibitors AR42 and sodium valproate; AR42 and valproate as single agents also rapidly reduced the expression of PD-L1, PD-L2 and ODC, and increased expression of MHCA and CerS6. Nitric oxide and CerS6 signaling was required for drug-induced death receptor activation and tumor cell killing. In vivo, [pemetrexed + sildenafil] lethality against lung cancer cells was enhanced by sodium valproate. Using syngeneic mouse lung cancer cells [pemetrexed + sildenafil] enhanced the anti-tumor effects of antibodies directed to inhibit PD-1 or CTLA4. [Pemetrexed + sildenafil] interacted with the anti-PD-1 antibody to strongly enhance tumor infiltration by M1 macrophages; activated NK cells and activated T cells. Our data demonstrate that treatment of tumor cells with [pemetrexed + sildenafil] results in tumor cell killing and via autophagy-dependent downregulation of HDACs, it opsonizes the remaining tumor cells to anti-tumor immunotherapy antibodies.
Collapse
Affiliation(s)
- Laurence Booth
- a Departments of Biochemistry and Molecular Biology , Virginia Commonwealth University , Richmond , VA
| | - Jane L Roberts
- a Departments of Biochemistry and Molecular Biology , Virginia Commonwealth University , Richmond , VA
| | - Andrew Poklepovic
- b Departments of Medicine , Virginia Commonwealth University , Richmond , VA
| | - Paul Dent
- a Departments of Biochemistry and Molecular Biology , Virginia Commonwealth University , Richmond , VA
| |
Collapse
|
30
|
Ceramide activates lysosomal cathepsin B and cathepsin D to attenuate autophagy and induces ER stress to suppress myeloid-derived suppressor cells. Oncotarget 2018; 7:83907-83925. [PMID: 27880732 PMCID: PMC5356634 DOI: 10.18632/oncotarget.13438] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 11/07/2016] [Indexed: 12/31/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are immune suppressive cells that are hallmarks of human cancer. MDSCs inhibit cytotoxic T lymphocytes (CTLs) and NK cell functions to promote tumor immune escape and progression, and therefore are considered key targets in cancer immunotherapy. Recent studies determined a key role of the apoptosis pathways in tumor-induced MDSC homeostasis and it is known that ceramide plays a key role in regulation of mammalian cell apoptosis. In this study, we aimed to determine the efficacy and underlying molecular mechanism of ceramide in suppression of MDSCs. Treatment of tumor-bearing mice with LCL521, a lysosomotropic inhibitor of acid ceramidase, significantly decreased MDSC accumulation in vivo. Using a MDSC-like myeloid cell model, we determined that LCL521 targets lysosomes and increases total cellular C16 ceramide level. Although MDSC-like cells have functional apoptosis pathways, LCL521-induced MDSC death occurs in an apoptosis- and necroptosis-independent mechanism. LCL521 treatment resulted in an increase in the number of autophagic vesicles, heterolysosomes and swollen ERs. Finally, concomitant inhibition of cathepsin B and cathepsin D was required to significantly decrease LCL521-induced cell death. Our observations indicate that LCL521 targets lysosomes to activate cathepsin B and cathepsin D, resulting in interrupted autophagy and ER stress that culminates in MDSC death. Therefore, a ceramidase inhibitor is potentially an effective adjunct therapeutic agent for suppression of MDSCs to enhance the efficacy of CTL-based cancer immunotherapy.
Collapse
|
31
|
Poklepovic A, Gordon S, Shafer DA, Roberts JD, Bose P, Geyer CE, McGuire WP, Tombes MB, Shrader E, Strickler K, Quigley M, Wan W, Kmieciak M, Massey HD, Booth L, Moran RG, Dent P. Phase I study of pemetrexed with sorafenib in advanced solid tumors. Oncotarget 2018; 7:42625-42638. [PMID: 27213589 PMCID: PMC5173162 DOI: 10.18632/oncotarget.9434] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 04/16/2016] [Indexed: 01/16/2023] Open
Abstract
Purpose To determine if combination treatment with pemetrexed and sorafenib is safe and tolerable in patients with advanced solid tumors. Results Thirty-seven patients were enrolled and 36 patients were treated (24 in cohort A; 12 in cohort B). The cohort A dose schedule resulted in problematic cumulative toxicity, while the cohort B dose schedule was found to be more tolerable. The maximum tolerated dose (MTD) was pemetrexed 750 mg/m2 every 14 days with oral sorafenib 400 mg given twice daily on days 1–5. Because dosing delays and modifications were associated with the MTD, the recommended phase II dose was declared to be pemetrexed 500 mg/m2 every 14 days with oral sorafenib 400 mg given twice daily on days 1–5. Thirty-three patients were evaluated for antitumor activity. One complete response and 4 partial responses were observed (15% overall response rate). Stable disease was seen in 15 patients (45%). Four patients had a continued response at 6 months, including 2 of 5 patients with triple-negative breast cancer. Experimental Design A phase I trial employing a standard 3 + 3 design was conducted in patients with advanced solid tumors. Cohort A involved a novel dose escalation schema exploring doses of pemetrexed every 14 days with continuous sorafenib. Cohort B involved a modified schedule of sorafenib dosing on days 1–5 of each 14-day pemetrexed cycle. Radiographic assessments were conducted every 8 weeks. Conclusions Pemetrexed and intermittent sorafenib therapy is a safe and tolerable combination for patients, with promising activity seen in patients with breast cancer.
Collapse
Affiliation(s)
- Andrew Poklepovic
- Departments of Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, USA.,Departments of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Sarah Gordon
- Departments of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Danielle A Shafer
- Departments of Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, USA.,Departments of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - John D Roberts
- Departments of Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, USA.,Departments of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia, USA.,Current address: Department of Medical Oncology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Prithviraj Bose
- Departments of Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, USA.,Departments of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia, USA.,Current address: Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Charles E Geyer
- Departments of Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, USA.,Departments of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - William P McGuire
- Departments of Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, USA.,Departments of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Mary Beth Tombes
- Departments of Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Ellen Shrader
- Departments of Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Katie Strickler
- Departments of Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Maria Quigley
- Departments of Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Wen Wan
- Departments of Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, USA.,Departments of Biostatistics, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Maciej Kmieciak
- Departments of Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, USA
| | - H Davis Massey
- Departments of Pathology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Laurence Booth
- Departments of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Richard G Moran
- Departments of Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, USA.,Departments of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Paul Dent
- Departments of Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, USA.,Departments of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia, USA
| |
Collapse
|
32
|
Dual abrogation of MNK and mTOR: a novel therapeutic approach for the treatment of aggressive cancers. Future Med Chem 2017; 9:1539-1555. [PMID: 28841037 DOI: 10.4155/fmc-2017-0062] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Targeting the translational machinery has emerged as a promising therapeutic option for cancer treatment. Cancer cells require elevated protein synthesis and exhibit augmented activity to meet the increased metabolic demand. Eukaryotic translation initiation factor 4E is necessary for mRNA translation, its availability and phosphorylation are regulated by the PI3K/AKT/mTOR and MNK1/2 pathways. The phosphorylated form of eIF4E drives the expression of oncogenic proteins including those involved in metastasis. In this article, we will review the role of eIF4E in cancer, its regulation and discuss the benefit of dual inhibition of upstream pathways. The discernible interplay between the MNK and mTOR signaling pathways provides a novel therapeutic opportunity to target aggressive migratory cancers through the development of hybrid molecules.
Collapse
|
33
|
Camp ER, Patterson LD, Kester M, Voelkel-Johnson C. Therapeutic implications of bioactive sphingolipids: A focus on colorectal cancer. Cancer Biol Ther 2017; 18:640-650. [PMID: 28686076 DOI: 10.1080/15384047.2017.1345396] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Therapy of colorectal cancer (CRC), especially a subset known as locally advanced rectal cancer, is challenged by progression and recurrence. Sphingolipids, a lipid subtype with vital roles in cellular function, play an important role in CRC and impact on therapeutic outcomes. In this review we discuss how dietary sphingolipids or the gut microbiome via alterations in sphingolipids influence CRC carcinogenesis. In addition, we discuss the expression of sphingolipid enzymes in the gastro-intestinal tract, their alterations in CRC, and the implications for therapy responsiveness. Lastly, we highlight some novel therapeutics that target sphingolipid signaling and have potential applications in the treatment of CRC. Understanding how sphingolipid metabolism impacts cell death susceptibility and drug resistance will be critical toward improving therapeutic outcomes.
Collapse
Affiliation(s)
- E Ramsay Camp
- a Department of Surgery Medical University of South Carolina , Charleston SC , USA
| | - Logan D Patterson
- b Department of Pharmacology , University of Virginia , Charlottesville VA , USA
| | - Mark Kester
- b Department of Pharmacology , University of Virginia , Charlottesville VA , USA
| | - Christina Voelkel-Johnson
- c Department of Microbiology & Immunology , Medical University of South Carolina , Charleston SC , USA
| |
Collapse
|
34
|
The HDAC inhibitor AR42 interacts with pazopanib to kill trametinib/dabrafenib-resistant melanoma cells in vitro and in vivo. Oncotarget 2017; 8:16367-16386. [PMID: 28146421 PMCID: PMC5369969 DOI: 10.18632/oncotarget.14829] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 01/19/2017] [Indexed: 12/11/2022] Open
Abstract
Studies focused on the killing of activated B-RAF melanoma cells by the histone deacetylase (HDAC) inhibitor AR42. Compared to other tumor cell lines, PDX melanoma isolates were significantly more sensitive to AR42-induced killing. AR42 and the multi-kinase inhibitor pazopanib interacted to activate: an eIF2α–Beclin1 pathway causing autophagosome formation; an eIF2α–DR4/DR5/CD95 pathway; and an eIF2α-dependent reduction in the expression of c-FLIP-s, MCL-1 and BCL-XL. AR42 did not alter basal chaperone activity but increased the ability of pazopanib to inhibit HSP90, HSP70 and GRP78. AR42 and pazopanib caused HSP90/HSP70 dissociation from RAF-1 and B-RAF that resulted in reduced ‘RAF’ expression. The drug combination activated a DNA-damage-ATM-AMPK pathway that was associated with: NFκB activation; reduced mTOR S2448 and ULK-1 S757 phosphorylation; and increased ULK-1 S317 and ATG13 S318 phosphorylation. Knock down of PERK, eIF2α, Beclin1, ATG5 or AMPKα, or expression of IκB S32A S36A, ca-mTOR or TRX, reduced cell killing. AR42, via lysosomal degradation, reduced the protein expression of HDACs 2/5/6/10/11. In vivo, a 3-day exposure of dabrafenib/trametinib resistant melanoma cells to the AR42 pazopanib combination reduced tumor growth and enhanced survival from ∼25 to ∼40 days. Tumor cells that had adapted through therapy exhibited elevated HGF expression and the c-MET inhibitor crizotinib enhanced AR42 pazopanib lethality in this evolved drug-resistant population.
Collapse
|
35
|
HDAC inhibitors enhance the immunotherapy response of melanoma cells. Oncotarget 2017; 8:83155-83170. [PMID: 29137331 PMCID: PMC5669957 DOI: 10.18632/oncotarget.17950] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 05/03/2017] [Indexed: 12/11/2022] Open
Abstract
We focused on the ability of the pan-histone deacetylase (HDAC) inhibitors AR42 and sodium valproate to alter the immunogenicity of melanoma cells. Treatment of melanoma cells with HDAC inhibitors rapidly reduced the expression of multiple HDAC proteins as well as the levels of PD-L1, PD-L2 and ODC, and increased expression of MHCA. In a cell-specific fashion, melanoma isolates released the immunogenic protein HMGB1 into the extracellular environment. Very similar data were obtained in ovarian and H&NSCC PDX isolates, and in established tumor cell lines from the lung and kidney. Knock down of HDAC1, HDAC3, HDAC8 and HDAC10, but not HDAC6, recapitulated the effects of the HDAC inhibitors on the immunotherapy biomarkers. Using B16 mouse melanoma cells we discovered that pre-treatment with AR42 or sodium valproate enhanced the anti-tumor efficacy of an anti-PD-1 antibody and of an anti-CTLA4 antibody. In the B16 model, both AR42 and sodium valproate enhanced the anti-tumor efficacy of the multi-kinase inhibitor pazopanib. In plasma from animals exposed to [HDAC inhibitor + anti-PD-1], but not [HDAC inhibitor + anti-CTLA4], the levels of CCL2, CCL5, CXCL9 and CXCL2 were increased. The cytokine data from HDAC inhibitor plus anti-PD-1 exposed tumors correlated with increased activated T cell, M1 macrophage, neutrophil and NK cell infiltration. Collectively, our data support the use of pan-HDAC inhibitors in combination with kinase inhibitors or with checkpoint inhibitor antibodies as novel melanoma therapeutic strategies.
Collapse
|
36
|
Jiang SW, Xu S, Chen H, Liu X, Tang Z, Cui Y, Liu J. Pathologic significance of SET/I2PP2A-mediated PP2A and non-PP2A pathways in polycystic ovary syndrome (PCOS). Clin Chim Acta 2017; 464:155-159. [PMID: 27836688 DOI: 10.1016/j.cca.2016.11.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Revised: 11/06/2016] [Accepted: 11/07/2016] [Indexed: 02/05/2023]
Abstract
SET (SE translocation, SET), a constitutive inhibitor of protein phosphatase 2A (PP2A), is a multifunctional oncoprotein involved in DNA replication, histone modification, nucleosome assembly, gene transcription and cell proliferation. It is widely expressed in human tissues including the gonadal system and brain. Intensive studies have shown that overexpressed SET plays an important role in the development of Alzheimer's disease (AD), and may also contribute to the malignant transformation of breast and ovarian cancers. Recent studies indicated that through interaction with PP2A, SET may upregulate androgen biosynthesis and contribute to hyperandrogenism in polycystic ovary syndrome (PCOS) patients. This review article summarizes data concerning the SET expression in ovaries from PCOS and normal women, and analyzes the role/regulatory mechanism of SET for androgen biosynthesis in PCOS, as well as the significance of this action in the development of PCOS. The potential value of SET-triggered pathway as a therapeutic target and the application of anti-SET reagents for treating hyperandrogenism in PCOS patients are also discussed.
Collapse
Affiliation(s)
- Shi-Wen Jiang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Department of Biomedical Science, Mercer University School of Medicine, Savannah, GA, USA.
| | - Siliang Xu
- Department of Biomedical Science, Mercer University School of Medicine, Savannah, GA, USA; The State Key Laboratory of Reproductive Medicine, Clinical Center of Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Haibin Chen
- Department of Histology and Embryology, Shantou University Medical College, Shantou, Guangdong 515000, China
| | - Xiaoqiang Liu
- The Third People's Hospital of Qingdao, Department of Obstetrics and Gynecology, Qingdao, Shandong 266041, China; Department of Medical Genetics and Developmental Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Zuoqing Tang
- Department of Medical Genetics, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Yugui Cui
- The State Key Laboratory of Reproductive Medicine, Clinical Center of Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Jiayin Liu
- The State Key Laboratory of Reproductive Medicine, Clinical Center of Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, China.
| |
Collapse
|
37
|
Chakrabandhu K, Hueber AO. Fas Versatile Signaling and Beyond: Pivotal Role of Tyrosine Phosphorylation in Context-Dependent Signaling and Diseases. Front Immunol 2016; 7:429. [PMID: 27799932 PMCID: PMC5066474 DOI: 10.3389/fimmu.2016.00429] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Accepted: 09/30/2016] [Indexed: 12/18/2022] Open
Abstract
The Fas/FasL system is known, first and foremost, as a potent apoptosis activator. While its proapoptotic features have been studied extensively, evidence that the Fas/FasL system can elicit non-death signals has also accumulated. These non-death signals can promote survival, proliferation, migration, and invasion of cells. The key molecular mechanism that determines the shift from cell death to non-death signals had remained unclear until the recent identification of the tyrosine phosphorylation in the death domain of Fas as the reversible signaling switch. In this review, we present the connection between the recent findings regarding the control of Fas multi-signals and the context-dependent signaling choices. This information can help explain variable roles of Fas signaling pathway in different pathologies.
Collapse
|
38
|
de Lera AR, Ganesan A. Epigenetic polypharmacology: from combination therapy to multitargeted drugs. Clin Epigenetics 2016; 8:105. [PMID: 27752293 PMCID: PMC5062873 DOI: 10.1186/s13148-016-0271-9] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 09/21/2016] [Indexed: 12/20/2022] Open
Abstract
The modern drug discovery process has largely focused its attention in the so-called magic bullets, single chemical entities that exhibit high selectivity and potency for a particular target. This approach was based on the assumption that the deregulation of a protein was causally linked to a disease state, and the pharmacological intervention through inhibition of the deregulated target was able to restore normal cell function. However, the use of cocktails or multicomponent drugs to address several targets simultaneously is also popular to treat multifactorial diseases such as cancer and neurological disorders. We review the state of the art with such combinations that have an epigenetic target as one of their mechanisms of action. Epigenetic drug discovery is a rapidly advancing field, and drugs targeting epigenetic enzymes are in the clinic for the treatment of hematological cancers. Approved and experimental epigenetic drugs are undergoing clinical trials in combination with other therapeutic agents via fused or linked pharmacophores in order to benefit from synergistic effects of polypharmacology. In addition, ligands are being discovered which, as single chemical entities, are able to modulate multiple epigenetic targets simultaneously (multitarget epigenetic drugs). These multiple ligands should in principle have a lower risk of drug-drug interactions and drug resistance compared to cocktails or multicomponent drugs. This new generation may rival the so-called magic bullets in the treatment of diseases that arise as a consequence of the deregulation of multiple signaling pathways provided the challenge of optimization of the activities shown by the pharmacophores with the different targets is addressed.
Collapse
Affiliation(s)
- Angel R de Lera
- Departamento de Química Orgánica, Facultade de Química, Universidade de Vigo, CINBIO and IIS Galicia Sur, 36310 Vigo, Spain
| | - A Ganesan
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ UK
| |
Collapse
|
39
|
Ceramide mediates FasL-induced caspase 8 activation in colon carcinoma cells to enhance FasL-induced cytotoxicity by tumor-specific cytotoxic T lymphocytes. Sci Rep 2016; 6:30816. [PMID: 27487939 PMCID: PMC4973238 DOI: 10.1038/srep30816] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 07/11/2016] [Indexed: 12/13/2022] Open
Abstract
FasL-mediated cytotoxicity is one of the mechanisms that CTLs use to kill tumor cells. However, human colon carcinoma often deregulates the Fas signaling pathway to evade host cancer immune surveillance. We aimed at testing the hypothesis that novel ceramide analogs effectively modulate Fas function to sensitize colon carcinoma cells to FasL-induced apoptosis. We used rational design and synthesized twenty ceramide analogs as Fas function modulators. Five ceramide analogs, IG4, IG7, IG14, IG17, and IG19, exhibit low toxicity and potent activity in sensitization of human colon carcinoma cells to FasL-induced apoptosis. Functional deficiency of Fas limits both FasL and ceramide analogs in the induction of apoptosis. Ceramide enhances FasL-induced activation of the MAPK, NF-κB, and caspase 8 despite induction of potent tumor cell death. Finally, a sublethal dose of several ceramide analogs significantly increased CTL-mediated and FasL-induced apoptosis of colon carcinoma cells. We have therefore developed five novel ceramide analogs that act at a sublethal dose to enhance the efficacy of tumor-specific CTLs, and these ceramide analogs hold great promise for further development as adjunct agents in CTL-based colon cancer immunotherapy.
Collapse
|
40
|
Tavallai M, Booth L, Roberts JL, Poklepovic A, Dent P. Rationally Repurposing Ruxolitinib (Jakafi (®)) as a Solid Tumor Therapeutic. Front Oncol 2016; 6:142. [PMID: 27379204 PMCID: PMC4904019 DOI: 10.3389/fonc.2016.00142] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Accepted: 05/26/2016] [Indexed: 12/25/2022] Open
Abstract
We determined whether the approved myelofibrosis drug ruxolitinib (Jakafi®), an inhibitor of Janus kinases 1/2 (JAK1 and JAK2), could be repurposed as an anti-cancer agent for solid tumors. Ruxolitinib synergistically interacted with dual ERBB1/2/4 inhibitors to kill breast as well as lung, ovarian and brain cancer cells. Knock down of JAK1/2 or of ERBB1/2/3/4 recapitulated on-target drug effects. The combination of (ruxolitinib + ERBB1/2/4 inhibitor) rapidly inactivated AKT, mTORC1, mTORC2, STAT3, and STAT5, and activated eIF2α. In parallel, the drug combination reduced expression of MCL-1, BCL-XL, HSP90, HSP70, and GRP78, and increased expression of Beclin1. Activated forms of STAT3, AKT, or mTOR prevented the drug-induced decline in BCL-XL, MCL-1, HSP90, and HSP70 levels. Over-expression of chaperones maintained AKT/mTOR activity in the presence of drugs and protected tumor cells from the drug combination. Expression of dominant negative eIF2α S51A prevented the increase in Beclin1 expression and protected tumor cells from the drug combination. Loss of mTOR activity was associated with increased ATG13 S318 phosphorylation and with autophagosome formation. Autophagosomes initially co-localized with mitochondria and subsequently with lysosomes. Knock down of Beclin1 suppressed: drug-induced mitophagy; the activation of the toxic BH3 domain proteins BAX and BAK; and tumor cell killing. Knock down of apoptosis-inducing factor (AIF) protected tumor cells from the drug combination, whereas blockade of caspase 9 signaling did not. The drug combination released AIF into the cytosol and increased nuclear AIF: eIF3A co-localization. A 4-day transient exposure of orthotopic tumors to (ruxolitinib + afatinib) profoundly reduced mammary tumor growth over the following 35 days. Re-grown tumors exhibited high levels of BAD S112 phosphorylation and activation of ERK1/2 and NFκB. Our data demonstrate that mitophagy is an essential component of (ruxolitinib + ERBB inhibitor) lethality and that this drug combination should be explored in a phase I trial in solid tumor patients.
Collapse
Affiliation(s)
- Mehrad Tavallai
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University , Richmond, VA , USA
| | - Laurence Booth
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University , Richmond, VA , USA
| | - Jane L Roberts
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University , Richmond, VA , USA
| | - Andrew Poklepovic
- Department of Medicine, Virginia Commonwealth University , Richmond, VA , USA
| | - Paul Dent
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University , Richmond, VA , USA
| |
Collapse
|
41
|
Booth L, Roberts JL, Tavallai M, Chuckalovcak J, Stringer DK, Koromilas AE, Boone DL, McGuire WP, Poklepovic A, Dent P. [Pemetrexed + Sorafenib] lethality is increased by inhibition of ERBB1/2/3-PI3K-NFκB compensatory survival signaling. Oncotarget 2016; 7:23608-32. [PMID: 27015562 PMCID: PMC5029651 DOI: 10.18632/oncotarget.8281] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 03/15/2016] [Indexed: 12/13/2022] Open
Abstract
In the completed phase I trial NCT01450384 combining the anti-folate pemetrexed and the multi-kinase inhibitor sorafenib it was observed that 20 of 33 patients had prolonged stable disease or tumor regression, with one complete response and multiple partial responses. The pre-clinical studies in this manuscript were designed to determine whether [pemetrexed + sorafenib] -induced cell killing could be rationally enhanced by additional signaling modulators. Multiplex assays performed on tumor material that survived and re-grew after [pemetrexed + sorafenib] exposure showed increased phosphorylation of ERBB1 and of NFκB and IκB; with reduced IκB and elevated G-CSF and KC protein levels. Inhibition of JAK1/2 downstream of the G-CSF/KC receptors did not enhance [pemetrexed + sorafenib] lethality whereas inhibition of ERBB1/2/4 using kinase inhibitory agents or siRNA knock down of ERBB1/2/3 strongly promoted killing. Inhibition of ERBB1/2/4 blocked [pemetrexed + sorafenib] stimulated NFκB activation and SOD2 expression; and expression of IκB S32A S36A significantly enhanced [pemetrexed + sorafenib] lethality. Sorafenib inhibited HSP90 and HSP70 chaperone ATPase activities and reduced the interactions of chaperones with clients including c-MYC, CDC37 and MCL-1. In vivo, a 5 day transient exposure of established mammary tumors to lapatinib or vandetanib significantly enhanced the anti-tumor effect of [pemetrexed + sorafenib], without any apparent normal tissue toxicities. Identical data to that in breast cancer were obtained in NSCLC tumors using the ERBB1/2/4 inhibitor afatinib. Our data argue that the combination of pemetrexed, sorafenib and an ERBB1/2/4 inhibitor should be explored in a new phase I trial in solid tumor patients.
Collapse
Affiliation(s)
- Laurence Booth
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, USA
| | - Jane L. Roberts
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, USA
| | - Mehrad Tavallai
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, USA
| | | | | | - Antonis E. Koromilas
- Department of Oncology, Lady Davis Institute for Medical Research, Montreal, QC, Canada
| | - David L. Boone
- Department of Microbiology and Immunology, Indiana University School of Medicine-South Bend, South Bend, IN, USA
| | | | - Andrew Poklepovic
- Department of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Paul Dent
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
42
|
Cruickshanks N, Roberts JL, Bareford MD, Tavallai M, Poklepovic A, Booth L, Spiegel S, Dent P. Differential regulation of autophagy and cell viability by ceramide species. Cancer Biol Ther 2016; 16:733-42. [PMID: 25803131 DOI: 10.1080/15384047.2015.1026509] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The present studies sought to determine whether the anti-folate pemetrexed (Alimta) and the sphingosine-1-phosphate receptor modulator FTY720 (Fingolimod, Gilenya) interacted to kill tumor cells. FTY720 and pemetrexed interacted in a greater than additive fashion to kill breast, brain and colorectal cancer cells. Loss of p53 function weakly enhanced the toxicity of FTY720 whereas deletion of activated RAS strongly or expression of catalytically inactive AKT facilitated killing. Combined drug exposure reduced the activity of AKT, p70 S6K and mTOR and activated JNK and p38 MAPK. Expression of activated forms of AKT, p70 S6K and mTOR or inhibition of JNK and p38 MAPK suppressed the interaction between FTY720 and pemetrexed. Treatment of cells with FTY720 and pemetrexed increased the numbers of early autophagosomes but not autolysosomes, which correlated with increased LC3II processing and increased p62 levels, suggestive of stalled autophagic flux. Knock down of ATG5 or Beclin1 suppressed autophagosome formation and cell killing. Knock down of ceramide synthase 6 suppressed autophagosome production and cell killing whereas knock down of ceramide synthase 2 enhanced vesicle formation and facilitated death. Collectively our findings argue that pemetrexed and FTY720 could be a novel adjunct modality for breast cancer treatment.
Collapse
Key Words
- Ad, adenovirus
- Alimta
- CMV, empty vector plasmid or virus
- CerS, ceramide synthase
- CerS2
- CerS6
- ER, endoplasmic reticulum
- ERK, extracellular regulated kinase
- FTY720
- Gilenya
- IP, immunoprecipitation
- LASS, longevity assurance gene
- MAPK, mitogen activated protein kinase
- MEK, mitogen activated extracellular regulated kinase
- PI3K, phosphatidyl inositol 3 kinase
- PTEN, phosphatase and tensin homolog on chromosome 10
- PTX, pemetrexed
- Pemetrexed
- ROS, reactive oxygen species
- S1P
- SCR, scrambled
- VEH, vehicle.
- autophagy
- ca, constitutively active
- ceramide
- dn, dominant negative
- mTOR, mammalian target of rapamycin
- si, small interfering
Collapse
Affiliation(s)
- Nichola Cruickshanks
- a Department of Biochemistry and Molecular Biology; Virginia Commonwealth University ; Richmond , VA , USA
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Ali SM, Watson J, Wang K, Chung JH, McMahon C, Ross JS, Dicke KA. A Combination of Targeted Therapy with Chemotherapy Backbone Induces Response in a Treatment-Resistant Triple-Negative MCL1-Amplified Metastatic Breast Cancer Patient. Case Rep Oncol 2016; 9:112-8. [PMID: 27293397 PMCID: PMC4899635 DOI: 10.1159/000443371] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
After failure of anthracycline- and platinum-based therapy, no effective therapies exist for management of metastatic triple-negative breast cancer (TNBC). We report a case of metastatic TNBC harboring MCL1 amplification, as identified by comprehensive genomic profiling in the course of clinical care. MCL1 is an antiapoptotic gene in the BCL2 family, and MCL1 amplification is common in TNBC (at least 20%). A personalized dose-reduced regimen centered on a combination of sorafenib and vorinostat was implemented, based on preclinical evidence demonstrating treatment synergy in the setting of MCL1 amplification. Although hospice care was being considered before treatment initiation, the personalized regimen yielded 6 additional months of life for this patient. Further rigorous studies are needed to confirm that this regimen or derivatives thereof can benefit the MCL1-amplified subset of TNBC patients.
Collapse
Affiliation(s)
- Siraj M Ali
- Foundation Medicine Inc., Cambridge, Mass., USA
| | | | - Kai Wang
- Foundation Medicine Inc., Cambridge, Mass., USA
| | - Jon H Chung
- Foundation Medicine Inc., Cambridge, Mass., USA
| | | | - Jeffrey S Ross
- Foundation Medicine Inc., Cambridge, Mass., USA; Albany Medical College, Albany, N.Y., USA
| | | |
Collapse
|
44
|
Tzou YM, Bailey SK, Yuan K, Shin R, Zhang W, Chen Y, Singh RK, Shevde LA, Krishna NR. Identification of initial leads directed at the calmodulin-binding region on the Src-SH2 domain that exhibit anti-proliferation activity against pancreatic cancer. Bioorg Med Chem Lett 2016; 26:1237-44. [PMID: 26803204 PMCID: PMC4747798 DOI: 10.1016/j.bmcl.2016.01.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 01/07/2016] [Accepted: 01/11/2016] [Indexed: 01/18/2023]
Abstract
Cellular calmodulin binds to the SH2 domain of Src kinase, and upon Fas activation it recruits Src into the death-inducing signaling complex. This results in Src-ERK activation of cell survival pathway through which pancreatic cancer cells survive and proliferate. We had proposed that the inhibition of the interaction of calmodulin with Src-SH2 domain is an attractive strategy to inhibit the proliferation of pancreatic cancer. Thus we have performed screening of compound libraries by a combination of methods and identified some compounds (initial leads) that target the calmodulin-binding region on the SH2 domain and inhibit the proliferation of pancreatic cancer cells in in vitro assays. Most of these compounds also exhibited varying degrees of cytotoxicity when tested against immortalized breast epithelial cell line (MCF10A). These initial leads are likely candidates for development in targeted delivery of compounds to cancer cells without affecting normal cells.
Collapse
Affiliation(s)
- Ywh-Min Tzou
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - Sarah K Bailey
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - Kaiyu Yuan
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - Ronald Shin
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL 35294, United States; Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - Wei Zhang
- Southern Research, Birmingham, AL 35205, United States
| | - Yabing Chen
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - Raj K Singh
- Vivo Biosciences, Inc., 1601 12th Ave South, Birmingham, AL 35205, United States
| | - Lalita A Shevde
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, United States; Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - N Rama Krishna
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, United States; Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, United States.
| |
Collapse
|
45
|
Das A, Durrant D, Mitchell C, Dent P, Batra SK, Kukreja RC. Sildenafil (Viagra) sensitizes prostate cancer cells to doxorubicin-mediated apoptosis through CD95. Oncotarget 2016; 7:4399-413. [PMID: 26716643 PMCID: PMC4826214 DOI: 10.18632/oncotarget.6749] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 11/26/2015] [Indexed: 01/16/2023] Open
Abstract
We previously reported that Sildenafil enhances apoptosis and antitumor efficacy of doxorubicin (DOX) while attenuating its cardiotoxic effect in prostate cancer. In the present study, we investigated the mechanism by which sildenafil sensitizes DOX in killing of prostate cancer (PCa) cells, DU145. The death receptor Fas (APO-1 or CD95) induces apoptosis in many carcinoma cells, which is negatively regulated by anti-apoptotic molecules such as FLIP (Fas-associated death domain (FADD) interleukin-1-converting enzyme (FLICE)-like inhibitory protein). Co-treatment of PCa cells with sildenafil and DOX for 48 hours showed reduced expression of both long and short forms of FLIP (FLIP-L and -S) as compared to individual drug treatment. Over-expression of FLIP-s with an adenoviral vector attentuated the enhanced cell-killing effect of DOX and sildenafil. Colony formation assays also confirmed that FLIP-S over-expression inhibited the DOX and sildenafil-induced synergistic killing effect as compared to the cells infected with an empty vector. Moreover, siRNA knock-down of CD95 abolished the effect of sildenafil in enhancing DOX lethality in cells, but had no effect on cell killing after treatment with a single agent. Sildenafil co-treatment with DOX inhibited DOX-induced NF-κB activity by reducing phosphorylation of IκB and nuclear translocation of the p65 subunit, in addition to down regulation of FAP-1 (Fas associated phosphatase-1, a known inhibitor of CD95-mediated apoptosis) expression. This data provides evidence that the CD95 is a key regulator of sildenafil and DOX mediated enhanced cell death in prostate cancer.
Collapse
Affiliation(s)
- Anindita Das
- Department of Internal Medicine, Pauley Heart Center, Virginia Commonwealth University, Richmond, VA, USA
| | - David Durrant
- Department of Internal Medicine, Pauley Heart Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Clint Mitchell
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, USA
| | - Paul Dent
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, USA
| | - Surinder K. Batra
- Department of Biochemistry and Molecular Biology, Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Rakesh C. Kukreja
- Department of Internal Medicine, Pauley Heart Center, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
46
|
Abstract
Studies over the past two decades have identified ceramide as a multifunctional central molecule in the sphingolipid biosynthetic pathway. Given its diverse tumor suppressive activities, molecular understanding of ceramide action will produce fundamental insights into processes that limit tumorigenesis and may identify key molecular targets for therapeutic intervention. Ceramide can be activated by a diverse array of stresses such as heat shock, genotoxic damage, oxidative stress and anticancer drugs. Ceramide triggers a variety of tumor suppressive and anti-proliferative cellular programs such as apoptosis, autophagy, senescence, and necroptosis by activating or repressing key effector molecules. Defects in ceramide generation and metabolism in cancer contribute to tumor cell survival and resistance to chemotherapy. The potent and versatile anticancer activity profile of ceramide has motivated drug development efforts to (re-)activate ceramide in established tumors. This review focuses on our current understanding of the tumor suppressive functions of ceramide and highlights the potential downstream targets of ceramide which are involved in its tumor suppressive action.
Collapse
|
47
|
Roberts JL, Tavallai M, Nourbakhsh A, Fidanza A, Cruz-Luna T, Smith E, Siembida P, Plamondon P, Cycon KA, Doern CD, Booth L, Dent P. GRP78/Dna K Is a Target for Nexavar/Stivarga/Votrient in the Treatment of Human Malignancies, Viral Infections and Bacterial Diseases. J Cell Physiol 2015; 230:2552-78. [PMID: 25858032 PMCID: PMC4843173 DOI: 10.1002/jcp.25014] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 04/06/2015] [Indexed: 01/10/2023]
Abstract
Prior tumor cell studies have shown that the drugs sorafenib (Nexavar) and regorafenib (Stivarga) reduce expression of the chaperone GRP78. Sorafenib/regorafenib and the multi‐kinase inhibitor pazopanib (Votrient) interacted with sildenafil (Viagra) to further rapidly reduce GRP78 levels in eukaryotes and as single agents to reduce Dna K levels in prokaryotes. Similar data were obtained in tumor cells in vitro and in drug‐treated mice for: HSP70, mitochondrial HSP70, HSP60, HSP56, HSP40, HSP10, and cyclophilin A. Prolonged ‘rafenib/sildenafil treatment killed tumor cells and also rapidly decreased the expression of: the drug efflux pumps ABCB1 and ABCG2; and NPC1 and NTCP, receptors for Ebola/Hepatitis A and B viruses, respectively. Pre‐treatment with the ‘Rafenib/sildenafil combination reduced expression of the Coxsackie and Adenovirus receptor in parallel with it also reducing the ability of a serotype 5 Adenovirus or Coxsackie virus B4 to infect and to reproduce. Sorafenib/pazopanib and sildenafil was much more potent than sorafenib/pazopanib as single agents at preventing Adenovirus, Mumps, Chikungunya, Dengue, Rabies, West Nile, Yellow Fever, and Enterovirus 71 infection and reproduction. ‘Rafenib drugs/pazopanib as single agents killed laboratory generated antibiotic resistant E. coli which was associated with reduced Dna K and Rec A expression. Marginally toxic doses of ‘Rafenib drugs/pazopanib restored antibiotic sensitivity in pan‐antibiotic resistant bacteria including multiple strains of blakpcKlebsiella pneumoniae. Thus, Dna K is an antibiotic target for sorafenib, and inhibition of GRP78/Dna K has therapeutic utility for cancer and for bacterial and viral infections. J. Cell. Physiol. 230: 2552–2578, 2015. © 2015 The Authors. Journal of Cellular Physiology published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jane L Roberts
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia
| | - Mehrad Tavallai
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia
| | - Aida Nourbakhsh
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia
| | | | | | | | | | | | | | - Christopher D Doern
- Department of Pathology, Virginia Commonwealth University, Richmond, Virginia
| | - Laurence Booth
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia
| | - Paul Dent
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
48
|
Tavallai M, Hamed HA, Roberts JL, Cruickshanks N, Chuckalovcak J, Poklepovic A, Booth L, Dent P. Nexavar/Stivarga and viagra interact to kill tumor cells. J Cell Physiol 2015; 230:2281-98. [PMID: 25704960 PMCID: PMC4835179 DOI: 10.1002/jcp.24961] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 02/12/2015] [Indexed: 12/29/2022]
Abstract
We determined whether the multi‐kinase inhibitor sorafenib or its derivative regorafenib interacted with phosphodiesterase 5 (PDE5) inhibitors such as Viagra (sildenafil) to kill tumor cells. PDE5 and PDGFRα/β were over‐expressed in liver tumors compared to normal liver tissue. In multiple cell types in vitro sorafenib/regorafenib and PDE5 inhibitors interacted in a greater than additive fashion to cause tumor cell death, regardless of whether cells were grown in 10 or 100% human serum. Knock down of PDE5 or of PDGFRα/β recapitulated the effects of the individual drugs. The drug combination increased ROS/RNS levels that were causal in cell killing. Inhibition of CD95/FADD/caspase 8 signaling suppressed drug combination toxicity. Knock down of ULK‐1, Beclin1, or ATG5 suppressed drug combination lethality. The drug combination inactivated ERK, AKT, p70 S6K, and mTOR and activated JNK. The drug combination also reduced mTOR protein expression. Activation of ERK or AKT was modestly protective whereas re‐expression of an activated mTOR protein or inhibition of JNK signaling almost abolished drug combination toxicity. Sildenafil and sorafenib/regorafenib interacted in vivo to suppress xenograft tumor growth using liver and colon cancer cells. From multiplex assays on tumor tissue and plasma, we discovered that increased FGF levels and ERBB1 and AKT phosphorylation were biomarkers that were directly associated with lower levels of cell killing by ‘rafenib + sildenafil. Our data are now being translated into the clinic for further determination as to whether this drug combination is a useful anti‐tumor therapy for solid tumor patients. J. Cell. Physiol. 230: 2281–2298, 2015. © 2015 The Authors. Journal of Cellular Physiology Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Mehrad Tavallai
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia
| | - Hossein A Hamed
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia
| | - Jane L Roberts
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia
| | - Nichola Cruickshanks
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia
| | | | - Andrew Poklepovic
- Department of Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Laurence Booth
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia
| | - Paul Dent
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
49
|
Wajant H. Principles and mechanisms of CD95 activation. Biol Chem 2015; 395:1401-16. [PMID: 25153377 DOI: 10.1515/hsz-2014-0212] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 08/06/2014] [Indexed: 11/15/2022]
Abstract
CD95 (Apo1/Fas) has been originally identified as the target of cell death-inducing antibodies. The recognition of CD95 as an apoptosis-triggering receptor represents one of the early milestones in the apoptosis field. Moreover, the research on CD95-induced cell death fostered various other discoveries of broad and general relevance in cell biology, for example, the identification of caspase 8 as the initiator caspase of the extrinsic apoptosis pathway. Activation of CD95-associated intracellular signaling pathways is not a simple consequence of ligand binding but is the fine-tuned result of a complex interplay of various molecular mechanisms that eventually determine the strength and quality of the CD95 response. There is growing evidence that different forms of CD95 stimulation trigger the assembly of CD95 signaling complexes of distinct composition. Moreover, the formation of signaling competent CD95 complexes is a multistep process and the subject of regulation by various cellular cues. This review addresses the relevance of the molecular nature of the CD95-stimulating agonist for the quality of the CD95 response and discusses the importance of modification, clustering, internalization, and lipid raft and actin association of CD95 for CD95 activity.
Collapse
|
50
|
Booth L, Roberts JL, Cruickshanks N, Tavallai S, Webb T, Samuel P, Conley A, Binion B, Young HF, Poklepovic A, Spiegel S, Dent P. PDE5 inhibitors enhance celecoxib killing in multiple tumor types. J Cell Physiol 2015; 230:1115-27. [PMID: 25303541 DOI: 10.1002/jcp.24843] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 10/02/2014] [Indexed: 12/20/2022]
Abstract
The present studies determined whether clinically relevant phosphodiesterase 5 (PDE5) inhibitors interacted with a clinically relevant NSAID, celecoxib, to kill tumor cells. Celecoxib and PDE5 inhibitors interacted in a greater than additive fashion to kill multiple tumor cell types. Celecoxib and sildenafil killed ex vivo primary human glioma cells as well as their associated activated microglia. Knock down of PDE5 recapitulated the effects of PDE5 inhibitor treatment; the nitric oxide synthase inhibitor L-NAME suppressed drug combination toxicity. The effects of celecoxib were COX2 independent. Over-expression of c-FLIP-s or knock down of CD95/FADD significantly reduced killing by the drug combination. CD95 activation was dependent on nitric oxide and ceramide signaling. CD95 signaling activated the JNK pathway and inhibition of JNK suppressed cell killing. The drug combination inactivated mTOR and increased the levels of autophagy and knock down of Beclin1 or ATG5 strongly suppressed killing by the drug combination. The drug combination caused an ER stress response; knock down of IRE1α/XBP1 enhanced killing whereas knock down of eIF2α/ATF4/CHOP suppressed killing. Sildenafil and celecoxib treatment suppressed the growth of mammary tumors in vivo. Collectively our data demonstrate that clinically achievable concentrations of celecoxib and sildenafil have the potential to be a new therapeutic approach for cancer.
Collapse
Affiliation(s)
- Laurence Booth
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|