1
|
Zeng Q, Zeng S, Dai X, Ding Y, Huang C, Ruan R, Xiong J, Tang X, Deng J. MDM2 inhibitors in cancer immunotherapy: Current status and perspective. Genes Dis 2024; 11:101279. [PMID: 39263534 PMCID: PMC11388719 DOI: 10.1016/j.gendis.2024.101279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/13/2024] [Accepted: 02/21/2024] [Indexed: 09/13/2024] Open
Abstract
Murine double minute 2 (MDM2) plays an essential role in the cell cycle, apoptosis, DNA repair, and oncogene activation through p53-dependent and p53-independent signaling pathways. Several preclinical studies have shown that MDM2 is involved in tumor immune evasion. Therefore, MDM2-based regulation of tumor cell-intrinsic immunoregulation and the immune microenvironment has attracted increasing research attention. In recent years, immune checkpoint inhibitors targeting PD-1/PD-L1 have been widely used in the clinic. However, the effectiveness of a single agent is only approximately 20%-40%, which may be related to primary and secondary drug resistance caused by the dysregulation of oncoproteins. Here, we reviewed the role of MDM2 in regulating the immune microenvironment, tumor immune evasion, and hyperprogression during immunotherapy. In addition, we summarized preclinical and clinical findings on the use of MDM2 inhibitors in combination with immunotherapy in tumors with MDM2 overexpression or amplification. The results reveal that the inhibition of MDM2 could be a promising strategy for enhancing immunotherapy.
Collapse
Affiliation(s)
- Qinru Zeng
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
- Jiangxi Key Laboratory for Individual Cancer Therapy, Nanchang, Jiangxi 330006, China
| | - Shaocheng Zeng
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
- Jiangxi Key Laboratory for Individual Cancer Therapy, Nanchang, Jiangxi 330006, China
| | - Xiaofeng Dai
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
- Jiangxi Key Laboratory for Individual Cancer Therapy, Nanchang, Jiangxi 330006, China
| | - Yun Ding
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
- Jiangxi Key Laboratory for Individual Cancer Therapy, Nanchang, Jiangxi 330006, China
| | - Chunye Huang
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
- Jiangxi Key Laboratory for Individual Cancer Therapy, Nanchang, Jiangxi 330006, China
| | - Ruiwen Ruan
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
- Jiangxi Key Laboratory for Individual Cancer Therapy, Nanchang, Jiangxi 330006, China
| | - Jianping Xiong
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
- Jiangxi Key Laboratory for Individual Cancer Therapy, Nanchang, Jiangxi 330006, China
| | - Xiaomei Tang
- Department of Oncology, Jiangxi Chest Hospital, Nanchang, Jiangxi 330006, China
| | - Jun Deng
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
- Jiangxi Key Laboratory for Individual Cancer Therapy, Nanchang, Jiangxi 330006, China
- Postdoctoral Innovation Practice Base, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| |
Collapse
|
2
|
Shi S, Zhang L, Zheng A, Xie F, Kesse S, Yang Y, Peng J, Xu Y. Enhanced anti-tumor efficacy of electroporation (EP)-mediated DNA vaccine boosted by allogeneic lymphocytes in pre-established tumor models. Cancer Immunol Immunother 2024; 73:248. [PMID: 39358555 PMCID: PMC11447239 DOI: 10.1007/s00262-024-03838-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 09/17/2024] [Indexed: 10/04/2024]
Abstract
BACKGROUND Tumor-reactive T cells play a crucial role in anti-tumor responses, but T cells induced by DNA vaccination are time-consuming processes and exhibit limited anti-tumor efficacy. Therefore, we evaluated the anti-tumor effectiveness of reactive T cells elicited by electroporation (EP)-mediated DNA vaccine targeting epidermal growth factor receptor variant III (pEGFRvIII plasmid), in conjunction with adoptive cell therapy (ACT), involving the transfer of lymphocytes from a pEGFRvIII EP-vaccinated healthy donor. METHODS The validation of the established pEGFRvIII plasmid and EGFRvIII-positive cell model was confirmed through immunofluorescence and western blot analysis. Flow cytometry and cytotoxicity assays were performed to evaluate the functionality of antigen-specific reactive T cells induced by EP-mediated pEGFRvIII vaccines, ACT, or their combination. The anti-tumor effectiveness of EP-mediated pEGFRvIII vaccines alone or combined with ACT was evaluated in the B16F10-EGFRvIII tumor model. RESULTS EP-mediated pEGFRvIII vaccines elicited serum antibodies and a robust cellular immune response in both healthy and tumor-bearing mice. However, this response only marginally inhibited early-stage tumor growth in established tumor models. EP-mediated pEGFRvIII vaccination followed by adoptive transfer of lymphocytes from vaccinated healthy donors led to notable anti-tumor efficacy, attributed to the synergistic action of antigen-specific CD4+ Th1 cells supplemented by ACT and antigen-specific CD8+ T cells elicited by the EP-mediated DNA vaccination. CONCLUSIONS Our preclinical studies results demonstrate an enhanced anti-tumor efficacy of EP-mediated DNA vaccination boosted with adoptively transferred, vaccinated healthy donor-derived allogeneic lymphocytes.
Collapse
Affiliation(s)
- Sanyuan Shi
- School of Pharmacy, Shanghai Jiao Tong University, No.800, Dongchuan Rd, Shanghai, 200240, People's Republic of China
| | - Luchen Zhang
- School of Pharmacy, Shanghai Jiao Tong University, No.800, Dongchuan Rd, Shanghai, 200240, People's Republic of China
| | - Anjie Zheng
- School of Pharmacy, Shanghai Jiao Tong University, No.800, Dongchuan Rd, Shanghai, 200240, People's Republic of China
| | - Fang Xie
- School of Pharmacy, Shanghai Jiao Tong University, No.800, Dongchuan Rd, Shanghai, 200240, People's Republic of China
| | - Samuel Kesse
- School of Pharmacy, Shanghai Jiao Tong University, No.800, Dongchuan Rd, Shanghai, 200240, People's Republic of China
| | - Yang Yang
- School of Pharmacy, Shanghai Jiao Tong University, No.800, Dongchuan Rd, Shanghai, 200240, People's Republic of China
| | - Jinliang Peng
- School of Pharmacy, Shanghai Jiao Tong University, No.800, Dongchuan Rd, Shanghai, 200240, People's Republic of China.
| | - Yuhong Xu
- School of Pharmacy, Shanghai Jiao Tong University, No.800, Dongchuan Rd, Shanghai, 200240, People's Republic of China.
- School of Pharmacy, Dali University, No. 22, Snowman Rd, Dali City, 671000, People's Republic of China.
| |
Collapse
|
3
|
de Graaf JF, Pesic T, Spitzer FS, Oosterhuis K, Camps MG, Zoutendijk I, Teunisse B, Zhu W, Arakelian T, Zondag GC, Arens R, van Bergen J, Ossendorp F. Neoantigen-specific T cell help outperforms non-specific help in multi-antigen DNA vaccination against cancer. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200835. [PMID: 39040850 PMCID: PMC11261851 DOI: 10.1016/j.omton.2024.200835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/22/2024] [Accepted: 06/13/2024] [Indexed: 07/24/2024]
Abstract
CD4+ T helper antigens are essential components of cancer vaccines, but the relevance of the source of these MHC class II-restricted antigens remains underexplored. To compare the effectiveness of tumor-specific versus tumor-unrelated helper antigens, we designed three DNA vaccines for the murine MC-38 colon carcinoma, encoding CD8+ T cell neoantigens alone (noHELP) or in combination with either "universal" helper antigens (uniHELP) or helper neoantigens (neoHELP). Both types of helped vaccines increased the frequency of vaccine-induced CD8+ T cells, and particularly uniHELP increased the fraction of KLRG1+ and PD-1low effector cells. However, when mice were subsequently injected with MC-38 cells, only neoHELP vaccination resulted in significantly better tumor control than noHELP. In contrast to uniHELP, neoHELP-induced tumor control was dependent on the presence of CD4+ T cells, while both vaccines relied on CD8+ T cells. In line with this, neoHELP variants containing wild-type counterparts of the CD4+ or CD8+ T cell neoantigens displayed reduced tumor control. These data indicate that optimal personalized cancer vaccines should include MHC class II-restricted neoantigens to elicit tumor-specific CD4+ T cell help.
Collapse
Affiliation(s)
| | - Tamara Pesic
- Department of Immunology, Leiden University Medical Center, 2300 RC Leiden, the Netherlands
| | - Felicia S. Spitzer
- Department of Immunology, Leiden University Medical Center, 2300 RC Leiden, the Netherlands
| | | | - Marcel G.M. Camps
- Department of Immunology, Leiden University Medical Center, 2300 RC Leiden, the Netherlands
| | | | | | - Wahwah Zhu
- Synvolux BV, 2333 CH Leiden, the Netherlands
| | - Tsolere Arakelian
- Department of Immunology, Leiden University Medical Center, 2300 RC Leiden, the Netherlands
| | - Gerben C. Zondag
- Immunetune BV, 2333 CH Leiden, the Netherlands
- Synvolux BV, 2333 CH Leiden, the Netherlands
| | - Ramon Arens
- Department of Immunology, Leiden University Medical Center, 2300 RC Leiden, the Netherlands
| | | | - Ferry Ossendorp
- Department of Immunology, Leiden University Medical Center, 2300 RC Leiden, the Netherlands
| |
Collapse
|
4
|
Du W, Yang F, Hui Z, Zhang J, Shen M, Ren X, Wei F. Examining the spatial distribution of tumor-infiltrating immune cells in patients with stage I to IIIA LUAD. J Leukoc Biol 2024; 116:536-543. [PMID: 38236199 DOI: 10.1093/jleuko/qiae012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/16/2023] [Accepted: 12/29/2023] [Indexed: 01/19/2024] Open
Abstract
This study aimed to examine the spatial distribution of immune cells by application of Gcross function in 170 patients with stage I to IIIA lung adenocarcinoma (LUAD) and explore its prognostic value. A total of 170 stage I to IIIA LUAD patients who underwent radical surgery were enrolled. Paraffinized tumor sections were collected for 2 panels of multicolor immunofluorescence staining (panel 1: CD4, CD8, FOXP3, CD69, CD39, CD73, and DAPI; panel 2: CD68, CD163, CD20, CD11c, PDL1, IDO, and DAPI). The immune cells were categorized as CD8+, CD4+ T helper cell (CD4Th), regulatory T cell, macrophage type 1 (M1), M2, dendritic cell (DC), and B cell. The immune cell numbers were enumerated, and the immune cell proximity score was calculated employing the Gcross function. The correlation between immune cell variables and disease-free survival (DFS) was explored through univariate Cox regression analyses. Factors with P < 0.05 were subjected to multivariate analyses. According to univariate Cox regression analyses, total PDL1+ and PDL1+ DC counts were negative factors (P = 0.003 and 0.031, respectively). CD4Th and IDO-DC counts were positive factors (P = 0.022 and 0.024, respectively). The proximity score (M1 to M2) was a positive factor for DFS (P = 0.032), and the proximity score (PDL1 + DC to M1) was a negative factor (P = 0.009) according to univariate Cox analyses. In multivariate analyses, stage (IIIA vs I + II) (hazard ratio [HR]: 1.77 [95% confidence interval (CI): 1.18-2.64], P = 0.006) and proximity score (PDL1 + DC to M1) (HR: 1.60 [95% CI: 1.07-2.37], P = 0.021) were independent negative factors and CD4Th counts (HR: 0.60 [95% CI: 0.40-0.90], P = 0.013) was an independent positive factor. Our study indicated that a higher level of tumor-infiltrating CD4Th cells predicted longer DFS, and a closer proximity of PDL1+ DCs to M1 cells was associated with dismal DFS in stage I to IIIA LUAD patients.
Collapse
Affiliation(s)
- Weijiao Du
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Huanhuxi Road, Hexi District, Tianjin 300060, China
- Tianjin's Clinical Research Center for Cancer, Huanhuxi Road, Hexi District, Tianjin 300060, China
- Key Laboratory of Cancer Immunology and Biotherapy, Huanhuxi Road, Hexi District, Tianjin 300060, China
- Department of Biotherapy, Tianjin Medical University Cancer Institute and Hospital, Huanhuxi Road, Hexi District, Tianjin 300060, China
| | - Fan Yang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Huanhuxi Road, Hexi District, Tianjin 300060, China
- Tianjin's Clinical Research Center for Cancer, Huanhuxi Road, Hexi District, Tianjin 300060, China
- Key Laboratory of Cancer Immunology and Biotherapy, Huanhuxi Road, Hexi District, Tianjin 300060, China
- Department of Biotherapy, Tianjin Medical University Cancer Institute and Hospital, Huanhuxi Road, Hexi District, Tianjin 300060, China
| | - Zhenzhen Hui
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Huanhuxi Road, Hexi District, Tianjin 300060, China
- Tianjin's Clinical Research Center for Cancer, Huanhuxi Road, Hexi District, Tianjin 300060, China
- Key Laboratory of Cancer Immunology and Biotherapy, Huanhuxi Road, Hexi District, Tianjin 300060, China
- Department of Biotherapy, Tianjin Medical University Cancer Institute and Hospital, Huanhuxi Road, Hexi District, Tianjin 300060, China
| | - Jiali Zhang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Huanhuxi Road, Hexi District, Tianjin 300060, China
- Tianjin's Clinical Research Center for Cancer, Huanhuxi Road, Hexi District, Tianjin 300060, China
- Key Laboratory of Cancer Immunology and Biotherapy, Huanhuxi Road, Hexi District, Tianjin 300060, China
- Department of Biotherapy, Tianjin Medical University Cancer Institute and Hospital, Huanhuxi Road, Hexi District, Tianjin 300060, China
| | - Meng Shen
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Huanhuxi Road, Hexi District, Tianjin 300060, China
- Tianjin's Clinical Research Center for Cancer, Huanhuxi Road, Hexi District, Tianjin 300060, China
- Key Laboratory of Cancer Immunology and Biotherapy, Huanhuxi Road, Hexi District, Tianjin 300060, China
- Department of Biotherapy, Tianjin Medical University Cancer Institute and Hospital, Huanhuxi Road, Hexi District, Tianjin 300060, China
| | - Xiubao Ren
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Huanhuxi Road, Hexi District, Tianjin 300060, China
- Tianjin's Clinical Research Center for Cancer, Huanhuxi Road, Hexi District, Tianjin 300060, China
- Key Laboratory of Cancer Immunology and Biotherapy, Huanhuxi Road, Hexi District, Tianjin 300060, China
- Department of Biotherapy, Tianjin Medical University Cancer Institute and Hospital, Huanhuxi Road, Hexi District, Tianjin 300060, China
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Huanhuxi Road, Hexi District, Tianjin 300060, China
- Haihe Laboratory of Cell Ecosystem, Tianjin 300060, China
| | - Feng Wei
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Huanhuxi Road, Hexi District, Tianjin 300060, China
- Tianjin's Clinical Research Center for Cancer, Huanhuxi Road, Hexi District, Tianjin 300060, China
- Key Laboratory of Cancer Immunology and Biotherapy, Huanhuxi Road, Hexi District, Tianjin 300060, China
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Huanhuxi Road, Hexi District, Tianjin 300060, China
- Haihe Laboratory of Cell Ecosystem, Tianjin 300060, China
| |
Collapse
|
5
|
Hu J, Toyozumi T, Murakami K, Endo S, Matsumoto Y, Otsuka R, Shiraishi T, Iida S, Morishita H, Makiyama T, Nishioka Y, Uesato M, Hayano K, Nakano A, Matsubara H. Prognostic value of tumor-infiltrating lymphocytes and PD-L1 expression in esophageal squamous cell carcinoma. Cancer Med 2024; 13:e70179. [PMID: 39264227 PMCID: PMC11391568 DOI: 10.1002/cam4.70179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/05/2024] [Accepted: 08/21/2024] [Indexed: 09/13/2024] Open
Abstract
BACKGROUND Tumor cells (TC) participate in tumor progression by altering the immune responses in the tumor microenvironment. However, the clinical relevance and prognostic effect of PD-L1 expression and tumor-infiltrating lymphocytes (TILs) in esophageal squamous cell carcinoma (ESCC) are unknown. The purpose of this study was to investigate the interactions and clinical significance of PD-L1 expression and TILs in ESCC. METHODS Tissue specimens were collected from 126 patients with ESCC who underwent curative esophagectomy. Immunohistochemical analysis and multiplex immunofluorescence for CD4, CD8, CD25, FOXP3, and PD-L1 in the tumor were used to identify multiple tumor-infiltrating immune cells (TIIC), Tregs, and TC. RESULTS PD-L1 was expressed in tumor cells (PD-L1 TC). PD-L1 TIIC and PD-L1 TC affected the biological behavior of TC. The positive expression rate of PD-L1 TC and CD8+ TILs was 27.8% (35/126) and 31.7% (40/126), respectively. Kaplan-Meier analysis showed that overall survival (OS) was significantly associated with decreased CD8+ TILs and PD-L1 TC-positive expression, which promote ESCC progression and metastasis. CONCLUSION Tumor depth, CD8, and PD-L1 TC were independent prognostic factors in ESCC, and a predictive nomogram with these three risk factors improved the accuracy of predicting OS in patients with ESCC after surgical resection. The conjoint analysis of multiple immune-related factors is beneficial for stratifying patient survival risk.
Collapse
Affiliation(s)
- Jie Hu
- Department of Frontier SurgeryGraduate School of Medicine, Chiba UniversityChibaJapan
| | - Takeshi Toyozumi
- Department of Frontier SurgeryGraduate School of Medicine, Chiba UniversityChibaJapan
| | - Kentaro Murakami
- Department of Frontier SurgeryGraduate School of Medicine, Chiba UniversityChibaJapan
| | - Satoshi Endo
- Department of Frontier SurgeryGraduate School of Medicine, Chiba UniversityChibaJapan
| | - Yasunori Matsumoto
- Department of Frontier SurgeryGraduate School of Medicine, Chiba UniversityChibaJapan
| | - Ryota Otsuka
- Department of Frontier SurgeryGraduate School of Medicine, Chiba UniversityChibaJapan
| | - Tadashi Shiraishi
- Department of Frontier SurgeryGraduate School of Medicine, Chiba UniversityChibaJapan
| | - Shinichiro Iida
- Department of Frontier SurgeryGraduate School of Medicine, Chiba UniversityChibaJapan
| | - Hiroki Morishita
- Department of Frontier SurgeryGraduate School of Medicine, Chiba UniversityChibaJapan
| | - Tenshi Makiyama
- Department of Frontier SurgeryGraduate School of Medicine, Chiba UniversityChibaJapan
| | - Yuri Nishioka
- Department of Frontier SurgeryGraduate School of Medicine, Chiba UniversityChibaJapan
| | - Masaya Uesato
- Department of Frontier SurgeryGraduate School of Medicine, Chiba UniversityChibaJapan
| | - Koichi Hayano
- Department of Frontier SurgeryGraduate School of Medicine, Chiba UniversityChibaJapan
| | - Akira Nakano
- Department of Frontier SurgeryGraduate School of Medicine, Chiba UniversityChibaJapan
| | - Hisahiro Matsubara
- Department of Frontier SurgeryGraduate School of Medicine, Chiba UniversityChibaJapan
| |
Collapse
|
6
|
Patin EC, Nenclares P, Chan Wah Hak C, Dillon MT, Patrikeev A, McLaughlin M, Grove L, Foo S, Soliman H, Barata JP, Marsden J, Baldock H, Gkantalis J, Roulstone V, Kyula J, Burley A, Hubbard L, Pedersen M, Smith SA, Clancy-Thompson E, Melcher AA, Ono M, Rullan A, Harrington KJ. Sculpting the tumour microenvironment by combining radiotherapy and ATR inhibition for curative-intent adjuvant immunotherapy. Nat Commun 2024; 15:6923. [PMID: 39134540 PMCID: PMC11319479 DOI: 10.1038/s41467-024-51236-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 07/19/2024] [Indexed: 08/15/2024] Open
Abstract
The combination of radiotherapy/chemoradiotherapy and immune checkpoint blockade can result in poor outcomes in patients with locally advanced head and neck squamous cell carcinoma (HNSCC). Here, we show that combining ATR inhibition (ATRi) with radiotherapy (RT) increases the frequency of activated NKG2A+PD-1+ T cells in animal models of HNSCC. Compared with the ATRi/RT treatment regimen alone, the addition of simultaneous NKG2A and PD-L1 blockade to ATRi/RT, in the adjuvant, post-radiotherapy setting induces a robust antitumour response driven by higher infiltration and activation of cytotoxic T cells in the tumour microenvironment. The efficacy of this combination relies on CD40/CD40L costimulation and infiltration of activated, proliferating memory CD8+ and CD4+ T cells with persistent or new T cell receptor (TCR) signalling, respectively. We also observe increased richness in the TCR repertoire and emergence of numerous and large TCR clonotypes that cluster based on antigen specificity in response to NKG2A/PD-L1/ATRi/RT. Collectively, our data point towards potential combination approaches for the treatment of HNSCC.
Collapse
Affiliation(s)
- Emmanuel C Patin
- Targeted Therapy Team, The Institute of Cancer Research, London, UK.
| | - Pablo Nenclares
- Targeted Therapy Team, The Institute of Cancer Research, London, UK
- The Royal Marsden Hospital, London, UK
| | - Charleen Chan Wah Hak
- Targeted Therapy Team, The Institute of Cancer Research, London, UK
- The Royal Marsden Hospital, London, UK
| | - Magnus T Dillon
- Targeted Therapy Team, The Institute of Cancer Research, London, UK
- The Royal Marsden Hospital, London, UK
| | - Anton Patrikeev
- Targeted Therapy Team, The Institute of Cancer Research, London, UK
| | | | - Lorna Grove
- Targeted Therapy Team, The Institute of Cancer Research, London, UK
- The Royal Marsden Hospital, London, UK
| | - Shane Foo
- Targeted Therapy Team, The Institute of Cancer Research, London, UK
| | | | | | | | - Holly Baldock
- Targeted Therapy Team, The Institute of Cancer Research, London, UK
| | - Jim Gkantalis
- Targeted Therapy Team, The Institute of Cancer Research, London, UK
| | | | - Joan Kyula
- Targeted Therapy Team, The Institute of Cancer Research, London, UK
| | - Amy Burley
- Targeted Therapy Team, The Institute of Cancer Research, London, UK
| | - Lisa Hubbard
- Targeted Therapy Team, The Institute of Cancer Research, London, UK
| | - Malin Pedersen
- Targeted Therapy Team, The Institute of Cancer Research, London, UK
| | | | | | - Alan A Melcher
- Translational Immunotherapy Team, The Institute of Cancer Research, London, UK
| | - Masahiro Ono
- Department of Life Sciences, Imperial College London, London, UK
| | - Antonio Rullan
- Targeted Therapy Team, The Institute of Cancer Research, London, UK
- The Royal Marsden Hospital, London, UK
| | - Kevin J Harrington
- Targeted Therapy Team, The Institute of Cancer Research, London, UK
- The Royal Marsden Hospital, London, UK
| |
Collapse
|
7
|
Kono M, Wakisaka R, Komatsuda H, Hayashi R, Kumai T, Yamaki H, Sato R, Nagato T, Ohkuri T, Kosaka A, Ohara K, Kishibe K, Kobayashi H, Hayashi T, Takahara M. Immunotherapy targeting tumor-associated antigen in a mouse model of head and neck cancer. Head Neck 2024; 46:2056-2067. [PMID: 38390628 DOI: 10.1002/hed.27703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 02/08/2024] [Accepted: 02/09/2024] [Indexed: 02/24/2024] Open
Abstract
BACKGROUND The identification of epitope peptides from tumor-associated antigens (TAAs) is informative for developing tumor-specific immunotherapy. However, only a few epitopes have been detected in mouse TAAs of head and neck cancer (HNSCC). METHODS Novel mouse c-Met-derived T-cell epitopes were predicted by computer-based algorithms. Mouse HNSCC cell line-bearing mice were treated with a c-Met peptide vaccine. The effects of CD8 and/or CD4 T-cell depletion, and vaccine combination with immune checkpoint inhibitors (ICIs) were evaluated. Tumor re-inoculation was performed to assess T-cell memory. RESULTS We identified c-Met-derived short and long epitopes that elicited c-Met-reactive antitumor CD8 and/or CD4 T-cell responses. Vaccination using these peptides showed remarkable antitumor responses via T cells in which ICIs were not required. The c-Met peptide-vaccinated mice rejected the re-inoculated tumors. CONCLUSIONS We demonstrated that novel c-Met peptide vaccines can induce antitumor T-cell response, and could be a potent immunotherapy in a syngeneic mouse HNSCC model.
Collapse
Affiliation(s)
- Michihisa Kono
- Department of Otolaryngology-Head & Neck Surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Risa Wakisaka
- Department of Otolaryngology-Head & Neck Surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Hiroki Komatsuda
- Department of Otolaryngology-Head & Neck Surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Ryusuke Hayashi
- Department of Otolaryngology-Head & Neck Surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Takumi Kumai
- Department of Otolaryngology-Head & Neck Surgery, Asahikawa Medical University, Asahikawa, Japan
- Department of Innovative Head & Neck Cancer Research and Treatment, Asahikawa Medical University, Asahikawa, Japan
| | - Hidekiyo Yamaki
- Department of Otolaryngology-Head & Neck Surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Ryosuke Sato
- Department of Otolaryngology-Head & Neck Surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Toshihiro Nagato
- Department of Pathology, Asahikawa Medical University, Asahikawa, Japan
| | - Takayuki Ohkuri
- Department of Pathology, Asahikawa Medical University, Asahikawa, Japan
| | - Akemi Kosaka
- Department of Pathology, Asahikawa Medical University, Asahikawa, Japan
| | - Kenzo Ohara
- Department of Otolaryngology-Head & Neck Surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Kan Kishibe
- Department of Otolaryngology-Head & Neck Surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Hiroya Kobayashi
- Department of Pathology, Asahikawa Medical University, Asahikawa, Japan
| | - Tatsuya Hayashi
- Department of Otolaryngology-Head & Neck Surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Miki Takahara
- Department of Otolaryngology-Head & Neck Surgery, Asahikawa Medical University, Asahikawa, Japan
- Department of Innovative Head & Neck Cancer Research and Treatment, Asahikawa Medical University, Asahikawa, Japan
| |
Collapse
|
8
|
Chen X, Ma C, Li Y, Liang Y, Chen T, Han D, Luo D, Zhang N, Zhao W, Wang L, Chen B, Guo H, Yang Q. Trim21-mediated CCT2 ubiquitination suppresses malignant progression and promotes CD4 +T cell activation in breast cancer. Cell Death Dis 2024; 15:542. [PMID: 39079960 PMCID: PMC11289294 DOI: 10.1038/s41419-024-06944-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 07/15/2024] [Accepted: 07/23/2024] [Indexed: 08/02/2024]
Abstract
Breast cancer remains a significant global health challenge, and its mechanisms of progression and metastasis are still not fully understood. In this study, analysis of TCGA and GEO datasets revealed a significant increase in CCT2 expression in breast cancer tissues, which was associated with poor prognosis in breast cancer patients. Functional analysis revealed that CCT2 promoted breast cancer growth and metastasis through activation of the JAK2/STAT3 signaling pathway. Additionally, the E3 ubiquitin ligase Trim21 facilitated CCT2 ubiquitination and degradation, significantly reversing the protumor effects of CCT2. Most interestingly, we discovered that exosomal CCT2 derived from breast cancer cells suppressed the activation and proinflammatory cytokine secretion of CD4+ T cell. Mechanistically, exosomal CCT2 constrained Ca2+-NFAT1 signaling, thereby reducing CD40L expression on CD4+ T cell. These findings highlight CCT2 upregulation as a potential driver of breast cancer progression and immune evasion. Our study provides new insights into the molecular mechanisms underlying breast cancer progression, suggesting that CCT2 is a promising therapeutic target and prognostic predictor for breast cancer.
Collapse
Affiliation(s)
- Xi Chen
- Department of Breast Surgery, General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Chenao Ma
- Department of Breast Surgery, General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yaming Li
- Department of Breast Surgery, General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yiran Liang
- Department of Breast Surgery, General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Tong Chen
- Department of Breast Surgery, General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Dianwen Han
- Department of Breast Surgery, General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Dan Luo
- Department of Breast Surgery, General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Ning Zhang
- Department of Breast Surgery, General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Wenjing Zhao
- Biological Resource Center, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Lijuan Wang
- Biological Resource Center, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Bing Chen
- Biological Resource Center, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Hong Guo
- Shandong Desheng Bioengineering Company Limited, Jinan, Shandong, China
| | - Qifeng Yang
- Department of Breast Surgery, General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
- Biological Resource Center, Qilu Hospital of Shandong University, Jinan, Shandong, China.
- Research Institute of Breast Cancer, Shandong University, Jinan, Shandong, China.
| |
Collapse
|
9
|
Espinosa-Carrasco G, Chiu E, Scrivo A, Zumbo P, Dave A, Betel D, Kang SW, Jang HJ, Hellmann MD, Burt BM, Lee HS, Schietinger A. Intratumoral immune triads are required for immunotherapy-mediated elimination of solid tumors. Cancer Cell 2024; 42:1202-1216.e8. [PMID: 38906155 PMCID: PMC11413804 DOI: 10.1016/j.ccell.2024.05.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 03/11/2024] [Accepted: 05/29/2024] [Indexed: 06/23/2024]
Abstract
Tumor-specific CD8+ T cells are frequently dysfunctional and unable to halt tumor growth. We investigated whether tumor-specific CD4+ T cells can be enlisted to overcome CD8+ T cell dysfunction within tumors. We find that the spatial positioning and interactions of CD8+ and CD4+ T cells, but not their numbers, dictate anti-tumor responses in the context of adoptive T cell therapy as well as immune checkpoint blockade (ICB): CD4+ T cells must engage with CD8+ T cells on the same dendritic cell during the effector phase, forming a three-cell-type cluster (triad) to license CD8+ T cell cytotoxicity and cancer cell elimination. When intratumoral triad formation is disrupted, tumors progress despite equal numbers of tumor-specific CD8+ and CD4+ T cells. In patients with pleural mesothelioma treated with ICB, triads are associated with clinical responses. Thus, CD4+ T cells and triads are required for CD8+ T cell cytotoxicity during the effector phase and tumor elimination.
Collapse
Affiliation(s)
| | - Edison Chiu
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Aurora Scrivo
- Department of Developmental and Molecular Biology, and Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Paul Zumbo
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA; Applied Bioinformatics Core, Weill Cornell Medicine, New York, NY, USA
| | - Asim Dave
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Doron Betel
- Applied Bioinformatics Core, Weill Cornell Medicine, New York, NY, USA; Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA; Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Sung Wook Kang
- Systems Onco-Immunology Laboratory, David J. Sugarbaker Division of Thoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, USA
| | - Hee-Jin Jang
- Systems Onco-Immunology Laboratory, David J. Sugarbaker Division of Thoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, USA
| | - Matthew D Hellmann
- Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Bryan M Burt
- Systems Onco-Immunology Laboratory, David J. Sugarbaker Division of Thoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, USA; Division of Thoracic Surgery, University of California Los Angeles, Los Angeles, CA, USA
| | - Hyun-Sung Lee
- Systems Onco-Immunology Laboratory, David J. Sugarbaker Division of Thoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, USA
| | - Andrea Schietinger
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA.
| |
Collapse
|
10
|
Feng G, Zhang L, Bao W, Ni J, Wang Y, Huang Y, Lyv J, Cao X, Chen T, You K, Khan H, Shen X. Gentisic acid prevents colorectal cancer metastasis via blocking GPR81-mediated DEPDC5 degradation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155615. [PMID: 38615493 DOI: 10.1016/j.phymed.2024.155615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/27/2024] [Accepted: 04/09/2024] [Indexed: 04/16/2024]
Abstract
BACKGROUND Metastasis driven by epithelial-mesenchymal transition (EMT) remains a significant contributor to the poor prognosis of colorectal cancer (CRC), and requires more effective interventions. GPR81 signaling has been linked to tumor metastasis, while lacks an efficient specific inhibitor. PURPOSE Our study aimed to investigate the effect and mechanism of Gentisic acid on colorectal cancer (CRC) metastasis. STUDY DESIGN A lung metastasis mouse model induced by tail vein injection and a subcutaneous graft tumor model were used. Gentisic acid (GA) was administered by an intraperitoneal injection. HCT116 was treated with lactate to establish an in vitro model. METHODS MC38 cells with mCherry fluorescent protein were injected into tail vein to investigate lung metastasis ability in vivo. GA was administered by intraperitoneal injection for 3 weeks. The therapeutic effect was evaluated by survival rates, histochemical analysis, RT-qPCR and live imaging. The mechanism was explored using small interfering RNA (siRNA), Western blotting, RT-qPCR and immunofluorescence. RESULTS GA had a therapeutic effect on CRC metastasis and improved survival rates and pathological changes in dose-dependent manner. GA emerged as an GPR81 inhibitor, effectively suppressed EMT and mTOR signaling in CRC induced by lactate both in vivo and in vitro. Mechanistically, GA halted lactate-induce degradation of DEPDC5 through impeding the activation of Chaperone-mediated autophagy (CMA). CONCLUSION CMA-mediated DEPDC5 degradation is crucial for lactate/GPR81-induced CRC metastasis, and GA may be a promising candidate for metastasis by inhibiting GPR81 signaling.
Collapse
Affiliation(s)
- Guize Feng
- Department of Pharmacology & the Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China
| | - Lijie Zhang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Weilian Bao
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai, China
| | - Jiahui Ni
- Department of Pharmacology & the Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China
| | - Yirui Wang
- Artificial Intelligence Innovation and Incubation (AI³) Institute, Fudan University, Shanghai, China
| | - Yuran Huang
- Department of Pharmacology & the Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China
| | - Jiaren Lyv
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai, China
| | - Xinyue Cao
- Department of Pharmacology & the Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China
| | - Tongqing Chen
- Department of Pharmacology & the Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China
| | - Keyuan You
- Department of Pharmacology & the Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, Pakistan
| | - Xiaoyan Shen
- Department of Pharmacology & the Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China; Shanghai Fifth People's Hospital, Fudan University, Shanghai, China; Artificial Intelligence Innovation and Incubation (AI³) Institute, Fudan University, Shanghai, China; MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Fudan University, Shanghai, China.
| |
Collapse
|
11
|
Kirkpatrick C, Lu YCW. Deciphering CD4 + T cell-mediated responses against cancer. Mol Carcinog 2024; 63:1209-1220. [PMID: 38725218 PMCID: PMC11166516 DOI: 10.1002/mc.23730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 04/05/2024] [Indexed: 05/15/2024]
Abstract
It's been long thought that CD8+ cytotoxic T cells play a major role in T cell-mediated antitumor responses, whereas CD4+ T cells merely provide some assistance to CD8+ T cells as the "helpers." In recent years, numerous studies support the notion that CD4+ T cells play an indispensable role in antitumor responses. Here, we summarize and discuss the current knowledge regarding the roles of CD4+ T cells in antitumor responses and immunotherapy, with a focus on the molecular and cellular mechanisms behind these observations. These new insights on CD4+ T cells may pave the way to further optimize cancer immunotherapy.
Collapse
Affiliation(s)
- Catherine Kirkpatrick
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Yong-Chen William Lu
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| |
Collapse
|
12
|
Miao Y, Li Z, Feng J, Lei X, Shan J, Qian C, Li J. The Role of CD4 +T Cells in Nonalcoholic Steatohepatitis and Hepatocellular Carcinoma. Int J Mol Sci 2024; 25:6895. [PMID: 39000005 PMCID: PMC11240980 DOI: 10.3390/ijms25136895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/14/2024] [Accepted: 06/19/2024] [Indexed: 07/14/2024] Open
Abstract
Hepatocellular carcinoma (HCC) has become the fourth leading cause of cancer-related deaths worldwide; annually, approximately 830,000 deaths related to liver cancer are diagnosed globally. Since early-stage HCC is clinically asymptomatic, traditional treatment modalities, including surgical ablation, are usually not applicable or result in recurrence. Immunotherapy, particularly immune checkpoint blockade (ICB), provides new hope for cancer therapy; however, immune evasion mechanisms counteract its efficiency. In addition to viral exposure and alcohol addiction, nonalcoholic steatohepatitis (NASH) has become a major cause of HCC. Owing to NASH-related aberrant T cell activation causing tissue damage that leads to impaired immune surveillance, NASH-associated HCC patients respond much less efficiently to ICB treatment than do patients with other etiologies. In addition, abnormal inflammation contributes to NASH progression and NASH-HCC transition, as well as to HCC immune evasion. Therefore, uncovering the detailed mechanism governing how NASH-associated immune cells contribute to NASH progression would benefit HCC prevention and improve HCC immunotherapy efficiency. In the following review, we focused our attention on summarizing the current knowledge of the role of CD4+T cells in NASH and HCC progression, and discuss potential therapeutic strategies involving the targeting of CD4+T cells for the treatment of NASH and HCC.
Collapse
Affiliation(s)
- Yadi Miao
- School of Medicine, Chongqing University, Chongqing 400030, China
| | - Ziyong Li
- School of Medicine, Chongqing University, Chongqing 400030, China
| | - Juan Feng
- Center for Precision Medicine of Cancer, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing 400030, China
| | - Xia Lei
- School of Medicine, Chongqing University, Chongqing 400030, China
| | - Juanjuan Shan
- School of Medicine, Chongqing University, Chongqing 400030, China
- Center for Precision Medicine of Cancer, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing 400030, China
| | - Cheng Qian
- School of Medicine, Chongqing University, Chongqing 400030, China
- Center for Precision Medicine of Cancer, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing 400030, China
| | - Jiatao Li
- School of Medicine, Chongqing University, Chongqing 400030, China
- Center for Precision Medicine of Cancer, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing 400030, China
| |
Collapse
|
13
|
Dekojová T, Gmucová H, Macečková D, Klieber R, Ostašov P, Leba M, Vlas T, Jungová A, Caputo VS, Čedíková M, Lysák D, Jindra P, Holubová M. Lymphocyte profile in peripheral blood of patients with multiple myeloma. Ann Hematol 2024:10.1007/s00277-024-05820-x. [PMID: 38832999 DOI: 10.1007/s00277-024-05820-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 05/27/2024] [Indexed: 06/06/2024]
Abstract
Multiple myeloma (MM) is a disease which remains incurable. One of the main reasons is a weakened immune system that allows MM cells to survive. Therefore, the current research is focused on the study of immune system imbalance in MM to find the most effective immunotherapy strategies. Aiming to identify the key points of immune failure in MM patients, we analysed peripheral lymphocytes subsets from MM patients (n = 57) at various stages of the disease course and healthy individuals (HI, n = 15) focusing on T, NK, iNKT, B cells and NK-cell cytokines. Our analysis revealed that MM patients exhibited immune alterations in all studied immune subsets. Compared to HI, MM patients had a significantly lower proportion of CD4 + T cells (19.55% vs. 40.85%; p < 0.001) and CD4 + iNKT cells (18.8% vs. 40%; p < 0.001), within B cells an increased proportion of CD21LCD38L subset (4.5% vs. 0.4%; p < 0.01) and decreased level of memory cells (unswitched 6.1% vs. 14.7%; p < 0.001 and switched 7.8% vs. 11.2%; NS), NK cells displaying signs of activation and exhaustion characterised by a more than 2-fold increase in SLAMF7 MFI (p < 0.001), decreased expression of NKG2D (MFI) and NKp46 (%) on CD16 + 56 + and CD16 + 56- subset respectively (p < 0.05), Effective immunotherapy needs to consider these immune defects and monitoring of the immune status of MM patients is essential to define better interventions in the future.
Collapse
Affiliation(s)
- Tereza Dekojová
- Department of Haematology and Oncology, University Hospital Pilsen, Pilsen, 323 00, Czech Republic
- Department of Histology and Embryology, Faculty of Medicine in Pilsen, Charles University, Pilsen, 323 00, Czech Republic
- Laboratory of Tumor Biology and Immunotherapy, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, alej Svobody 1655/76, Pilsen, 323 00, Czech Republic
| | - Hana Gmucová
- Department of Haematology and Oncology, University Hospital Pilsen, Pilsen, 323 00, Czech Republic
| | - Diana Macečková
- Department of Histology and Embryology, Faculty of Medicine in Pilsen, Charles University, Pilsen, 323 00, Czech Republic
- Laboratory of Tumor Biology and Immunotherapy, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, alej Svobody 1655/76, Pilsen, 323 00, Czech Republic
| | - Robin Klieber
- Department of Haematology and Oncology, University Hospital Pilsen, Pilsen, 323 00, Czech Republic
- Laboratory of Tumor Biology and Immunotherapy, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, alej Svobody 1655/76, Pilsen, 323 00, Czech Republic
| | - Pavel Ostašov
- Department of Histology and Embryology, Faculty of Medicine in Pilsen, Charles University, Pilsen, 323 00, Czech Republic
- Laboratory of Tumor Biology and Immunotherapy, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, alej Svobody 1655/76, Pilsen, 323 00, Czech Republic
| | - Martin Leba
- Faculty of Applied Science, University of West Bohemia, Pilsen, 301 00, Czech Republic
| | - Tomáš Vlas
- Institute of Allergology and Immunology, University Hospital Pilsen, Pilsen, 323 00, Czech Republic
| | - Alexandra Jungová
- Department of Haematology and Oncology, University Hospital Pilsen, Pilsen, 323 00, Czech Republic
| | - Valentina S Caputo
- Cancer Biology and Therapy laboratory, School of Applied Sciences, London South Bank University, London, UK
| | - Miroslava Čedíková
- Laboratory of Tumor Biology and Immunotherapy, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, alej Svobody 1655/76, Pilsen, 323 00, Czech Republic
| | - Daniel Lysák
- Department of Haematology and Oncology, University Hospital Pilsen, Pilsen, 323 00, Czech Republic
| | - Pavel Jindra
- Department of Haematology and Oncology, University Hospital Pilsen, Pilsen, 323 00, Czech Republic
| | - Monika Holubová
- Department of Haematology and Oncology, University Hospital Pilsen, Pilsen, 323 00, Czech Republic.
- Laboratory of Tumor Biology and Immunotherapy, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, alej Svobody 1655/76, Pilsen, 323 00, Czech Republic.
| |
Collapse
|
14
|
Wolf SP, Anastasopoulou V, Drousch K, Diehl MI, Engels B, Yew PY, Kiyotani K, Nakamura Y, Schreiber K, Schreiber H, Leisegang M. One CD4+TCR and One CD8+TCR Targeting Autochthonous Neoantigens Are Essential and Sufficient for Tumor Eradication. Clin Cancer Res 2024; 30:1642-1654. [PMID: 38190111 PMCID: PMC11018470 DOI: 10.1158/1078-0432.ccr-23-2905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/24/2023] [Accepted: 01/04/2024] [Indexed: 01/09/2024]
Abstract
PURPOSE To achieve eradication of solid tumors, we examined how many neoantigens need to be targeted with how many T-cell receptors (TCR) by which type of T cells. EXPERIMENTAL DESIGN Unmanipulated, naturally expressed (autochthonous) neoantigens were targeted with adoptively transferred TCR-engineered autologous T cells (TCR-therapy). TCR-therapy used CD8+ T-cell subsets engineered with TCRs isolated from CD8+ T cells (CD8+TCR-therapy), CD4+ T-cell subsets engineered with TCRs isolated from CD4+ T cells (CD4+TCR-therapy), or combinations of both. The targeted tumors were established for at least 3 weeks and derived from primary autochthonous cancer cell cultures, resembling natural solid tumors and their heterogeneity as found in humans. RESULTS Relapse was common with CD8+TCR-therapy even when targeting multiple different autochthonous neoantigens on heterogeneous solid tumors. CD8+TCR-therapy was only effective against homogenous tumors artificially derived from a cancer cell clone. In contrast, a combination of CD8+TCR-therapy with CD4+TCR-therapy, each targeting one neoantigen, eradicated large and established solid tumors of natural heterogeneity. CD4+TCR-therapy targeted a mutant neoantigen on tumor stroma while direct cancer cell recognition by CD8+TCR-therapy was essential for cure. In vitro data were consistent with elimination of cancer cells requiring a four-cell cluster composed of TCR-engineered CD4+ and CD8+ T cells together with antigen-presenting cells and cancer cells. CONCLUSIONS Two cancer-specific TCRs can be essential and sufficient to eradicate heterogeneous solid tumors expressing unmanipulated, autochthonous targets. We demonstrate that simplifications to adoptive TCR-therapy are possible without compromising efficacy.
Collapse
Affiliation(s)
- Steven P. Wolf
- Department of Pathology, The University of Chicago, Chicago, IL 60637, USA
- David and Etta Jonas Center for Cellular Therapy, The University of Chicago, Chicago, IL 60637 USA
| | - Vasiliki Anastasopoulou
- Institute of Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany
- German Cancer Consortium (DKTK), partner site Berlin, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Kimberley Drousch
- Institute of Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Markus I. Diehl
- Department of Pathology, The University of Chicago, Chicago, IL 60637, USA
| | - Boris Engels
- Department of Pathology, The University of Chicago, Chicago, IL 60637, USA
| | - Poh Yin Yew
- Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Kazuma Kiyotani
- Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan
| | - Yusuke Nakamura
- Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan
| | - Karin Schreiber
- Department of Pathology, The University of Chicago, Chicago, IL 60637, USA
- David and Etta Jonas Center for Cellular Therapy, The University of Chicago, Chicago, IL 60637 USA
| | - Hans Schreiber
- Department of Pathology, The University of Chicago, Chicago, IL 60637, USA
- David and Etta Jonas Center for Cellular Therapy, The University of Chicago, Chicago, IL 60637 USA
- Committee on Cancer Biology, Committee on Immunology and the Cancer Center, The University of Chicago, Chicago, IL 60637, USA
- These authors contributed equally as senior authors
| | - Matthias Leisegang
- David and Etta Jonas Center for Cellular Therapy, The University of Chicago, Chicago, IL 60637 USA
- Institute of Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany
- German Cancer Consortium (DKTK), partner site Berlin, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- These authors contributed equally as senior authors
| |
Collapse
|
15
|
Wei C, Liang Y, Mo D, Lin Q, Liu Z, Li M, Qin Y, Fang M. Cost-effective prognostic evaluation of breast cancer: using a STAR nomogram model based on routine blood tests. Front Endocrinol (Lausanne) 2024; 15:1324617. [PMID: 38529388 PMCID: PMC10961337 DOI: 10.3389/fendo.2024.1324617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 02/26/2024] [Indexed: 03/27/2024] Open
Abstract
Background Breast cancer (BC) is the most common and prominent deadly disease among women. Predicting BC survival mainly relies on TNM staging, molecular profiling and imaging, hampered by subjectivity and expenses. This study aimed to establish an economical and reliable model using the most common preoperative routine blood tests (RT) data for survival and surveillance strategy management. Methods We examined 2863 BC patients, dividing them into training and validation cohorts (7:3). We collected demographic features, pathomics characteristics and preoperative 24-item RT data. BC risk factors were identified through Cox regression, and a predictive nomogram was established. Its performance was assessed using C-index, area under curves (AUC), calibration curve and decision curve analysis. Kaplan-Meier curves stratified patients into different risk groups. We further compared the STAR model (utilizing HE and RT methodologies) with alternative nomograms grounded in molecular profiling (employing second-generation short-read sequencing methodologies) and imaging (utilizing PET-CT methodologies). Results The STAR nomogram, incorporating subtype, TNM stage, age and preoperative RT data (LYM, LYM%, EOSO%, RDW-SD, P-LCR), achieved a C-index of 0.828 in the training cohort and impressive AUCs (0.847, 0.823 and 0.780) for 3-, 5- and 7-year OS rates, outperforming other nomograms. The validation cohort showed similar impressive results. The nomogram calculates a patient's total score by assigning values to each risk factor, higher scores indicating a poor prognosis. STAR promises potential cost savings by enabling less intensive surveillance in around 90% of BC patients. Compared to nomograms based on molecular profiling and imaging, STAR presents a more cost-effective, with potential savings of approximately $700-800 per breast cancer patient. Conclusion Combining appropriate RT parameters, STAR nomogram could help in the detection of patient anemia, coagulation function, inflammation and immune status. Practical implementation of the STAR nomogram in a clinical setting is feasible, and its potential clinical impact lies in its ability to provide an early, economical and reliable tool for survival prediction and surveillance strategy management. However, our model still has limitations and requires external data validation. In subsequent studies, we plan to mitigate the potential impact on model robustness by further updating and adjusting the data and model.
Collapse
Affiliation(s)
- Caibiao Wei
- Department of Clinical Laboratory, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
| | - Yihua Liang
- Department of Clinical Laboratory, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
| | - Dan Mo
- Department of Breast, Guangxi Zhuang Autonomous Region Maternal and Child Health Care Hospital, Nanning, China
| | - Qiumei Lin
- Department of Clinical Laboratory, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
| | - Zhimin Liu
- Department of Clinical Laboratory, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
| | - Meiqin Li
- Department of Clinical Laboratory, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
| | - Yuling Qin
- Department of Clinical Laboratory, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
| | - Min Fang
- Department of Clinical Laboratory, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
- Guangxi Clinical Research Center for Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
| |
Collapse
|
16
|
Ayala Ceja M, Khericha M, Harris CM, Puig-Saus C, Chen YY. CAR-T cell manufacturing: Major process parameters and next-generation strategies. J Exp Med 2024; 221:e20230903. [PMID: 38226974 PMCID: PMC10791545 DOI: 10.1084/jem.20230903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/02/2023] [Accepted: 12/14/2023] [Indexed: 01/17/2024] Open
Abstract
Chimeric antigen receptor (CAR)-T cell therapies have demonstrated strong curative potential and become a critical component in the array of B-cell malignancy treatments. Successful deployment of CAR-T cell therapies to treat hematologic and solid cancers, as well as other indications such as autoimmune diseases, is dependent on effective CAR-T cell manufacturing that impacts not only product safety and efficacy but also overall accessibility to patients in need. In this review, we discuss the major process parameters of autologous CAR-T cell manufacturing, as well as regulatory considerations and ongoing developments that will enable the next generation of CAR-T cell therapies.
Collapse
Affiliation(s)
- Melanie Ayala Ceja
- Department of Microbiology, Immunology, and Molecular Genetics, University of California−Los Angeles, Los Angeles, CA, USA
| | - Mobina Khericha
- Department of Microbiology, Immunology, and Molecular Genetics, University of California−Los Angeles, Los Angeles, CA, USA
| | - Caitlin M. Harris
- Department of Microbiology, Immunology, and Molecular Genetics, University of California−Los Angeles, Los Angeles, CA, USA
| | - Cristina Puig-Saus
- Department of Medicine, University of California−Los Angeles, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Center, University of California−Los Angeles, Los Angeles, CA, USA
- Parker Institute for Cancer Immunotherapy Center at University of California−Los Angeles, Los Angeles, CA, USA
| | - Yvonne Y. Chen
- Department of Microbiology, Immunology, and Molecular Genetics, University of California−Los Angeles, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Center, University of California−Los Angeles, Los Angeles, CA, USA
- Parker Institute for Cancer Immunotherapy Center at University of California−Los Angeles, Los Angeles, CA, USA
- Department of Chemical and Biomolecular Engineering, University of California−Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
17
|
Zhu Z, Yu Y, Wang B, Ding M, Tian Y, Jiang R, Sun G, Han R, Kang X, Yan F, Guo Y. Dietary supplementation with pseudostellaria heterophylla polysaccharide enhanced immunity and changed mRNA expression of spleen in chicks. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 151:105094. [PMID: 37951325 DOI: 10.1016/j.dci.2023.105094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/04/2023] [Accepted: 11/06/2023] [Indexed: 11/13/2023]
Abstract
In recent years, increasing interest has focused on natural components extracted from plants, among which plant polysaccharides as natural immunomodulators that can promote animal immunity. The present study was performed to investigate the effect of feed supplement Pseudostellaria Heterophylla Polysaccharide (PHP) on serum Immunoglobulins, T lymphocyte subpopulations, Cytokines and Lysozyme (LZM) activity in chicks. In addition, the influence of PHP on splenic gene expression was investigated by transcriptome sequencing. Four hundred 7-day-old Gushi cocks were randomly divided into four groups in a completely randomized design. The chicks were fed with a basal diet supplemented with 0 (CON-A), 100 (PHP-L), 200 (PHP-M) and 400 (PHP-H) mg/kg PHP. Blood and spleen samples were collected from 6 randomly selected chicks in each group at 14, 21, 28, and 35 days of age. The results showed that compared to the CON-A group, the PHP-M group exhibited significant increases in the levels of IgA, IgG, IgM, CD3, and LZM in the serum at 14, 21, 28, and 35 days (P < 0.05), and at 28 d, there was a significant quadratic relationship between the levels of dietary PHP and the levels of IgG, IgM, IFN-γ, IL-2, CD3, and LZM. Furthermore, a total of 470 differentially expressed genes (DEGs) were identified in spleen from PHP-M and CON-A at 28 d. These DEGs were significantly enriched in the Phagosome, Intestinal immune network for IgA production and Cytokine-cytokine receptor interaction pathways. The present investigation highlights the ameliorating effect of dietary PHP on immunological variables and spleen of chicks, the study suggests that PHP supplementation can enhance immunity and positively impact spleen mRNA expression in chicks.
Collapse
Affiliation(s)
- Zhaoyan Zhu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou, 450046, China
| | - Yange Yu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou, 450046, China
| | - Bingxin Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou, 450046, China
| | - Mengxia Ding
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou, 450046, China
| | - Yadong Tian
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou, 450046, China
| | - Ruirui Jiang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou, 450046, China
| | - Guirong Sun
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou, 450046, China
| | - Ruili Han
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou, 450046, China
| | - Xiangtao Kang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou, 450046, China
| | - Fengbin Yan
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou, 450046, China.
| | - Yujie Guo
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou, 450046, China.
| |
Collapse
|
18
|
Bawden EG, Wagner T, Schröder J, Effern M, Hinze D, Newland L, Attrill GH, Lee AR, Engel S, Freestone D, de Lima Moreira M, Gressier E, McBain N, Bachem A, Haque A, Dong R, Ferguson AL, Edwards JJ, Ferguson PM, Scolyer RA, Wilmott JS, Jewell CM, Brooks AG, Gyorki DE, Palendira U, Bedoui S, Waithman J, Hochheiser K, Hölzel M, Gebhardt T. CD4 + T cell immunity against cutaneous melanoma encompasses multifaceted MHC II-dependent responses. Sci Immunol 2024; 9:eadi9517. [PMID: 38241401 DOI: 10.1126/sciimmunol.adi9517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 12/18/2023] [Indexed: 01/21/2024]
Abstract
Whereas CD4+ T cells conventionally mediate antitumor immunity by providing help to CD8+ T cells, recent clinical studies have implied an important role for cytotoxic CD4+ T cells in cancer immunity. Using an orthotopic melanoma model, we provide a detailed account of antitumoral CD4+ T cell responses and their regulation by major histocompatibility complex class II (MHC II) in the skin. Intravital imaging revealed prominent interactions of CD4+ T cells with tumor debris-laden MHC II+ host antigen-presenting cells that accumulated around tumor cell nests, although direct recognition of MHC II+ melanoma cells alone could also promote CD4+ T cell control. CD4+ T cells stably suppressed or eradicated tumors even in the absence of other lymphocytes by using tumor necrosis factor-α and Fas ligand (FasL) but not perforin-mediated cytotoxicity. Interferon-γ was critical for protection, acting both directly on melanoma cells and via induction of nitric oxide synthase in myeloid cells. Our results illustrate multifaceted and context-specific aspects of MHC II-dependent CD4+ T cell immunity against cutaneous melanoma, emphasizing modulation of this axis as a potential avenue for immunotherapies.
Collapse
Affiliation(s)
- Emma G Bawden
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- Institute of Experimental Oncology (IEO), Medical Faculty, University Hospital Bonn, University of Bonn, Bonn 53105, Germany
| | - Teagan Wagner
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Jan Schröder
- Computational Sciences Initiative, Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Maike Effern
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- Institute of Experimental Oncology (IEO), Medical Faculty, University Hospital Bonn, University of Bonn, Bonn 53105, Germany
| | - Daniel Hinze
- Institute of Experimental Oncology (IEO), Medical Faculty, University Hospital Bonn, University of Bonn, Bonn 53105, Germany
| | - Lewis Newland
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- Institute of Experimental Oncology (IEO), Medical Faculty, University Hospital Bonn, University of Bonn, Bonn 53105, Germany
| | - Grace H Attrill
- Melanoma Institute Australia, University of Sydney, Sydney, NSW, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
- Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia
| | - Ariane R Lee
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Sven Engel
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - David Freestone
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Marcela de Lima Moreira
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Elise Gressier
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Nathan McBain
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Annabell Bachem
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Ashraful Haque
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Ruining Dong
- Computational Sciences Initiative, Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
- Department of Clinical Pathology and Centre for Cancer Research, University of Melbourne, Melbourne, VIC, Australia
| | - Angela L Ferguson
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
- Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia
- Centenary Institute, University of Sydney, Sydney, NSW, Australia
- Infection, Immunity and Inflammation theme, School of Medical Sciences, Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia
| | - Jarem J Edwards
- Melanoma Institute Australia, University of Sydney, Sydney, NSW, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
- Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia
| | - Peter M Ferguson
- Melanoma Institute Australia, University of Sydney, Sydney, NSW, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
- Department of Tissue Oncology and Diagnostic Pathology, Royal Prince Alfred Hospital, Sydney, NSW, Australia
- NSW Health Pathology, Sydney, NSW, Australia
| | - Richard A Scolyer
- Melanoma Institute Australia, University of Sydney, Sydney, NSW, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
- Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia
- Department of Tissue Oncology and Diagnostic Pathology, Royal Prince Alfred Hospital, Sydney, NSW, Australia
- NSW Health Pathology, Sydney, NSW, Australia
| | - James S Wilmott
- Melanoma Institute Australia, University of Sydney, Sydney, NSW, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
- Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia
| | - Christopher M Jewell
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
- United States Department of Veterans Affairs, VA Maryland Health Care System, Baltimore, MD, USA
- Robert E. Fischell Institute for Biomedical Devices, College Park, MD, USA
- Marlene and Stewart Greenebaum Cancer Center, Baltimore, MD, USA
| | - Andrew G Brooks
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - David E Gyorki
- Division of Cancer Surgery, Peter MacCallum Cancer Centre and Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
- Peter MacCallum Cancer Centre Melbourne, Melbourne, VIC, Australia
| | - Umaimainthan Palendira
- Melanoma Institute Australia, University of Sydney, Sydney, NSW, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
- Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia
| | - Sammy Bedoui
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Jason Waithman
- Telethon Kids Institute, University of Western Australia, Perth, WA, Australia
- School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| | - Katharina Hochheiser
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- Peter MacCallum Cancer Centre Melbourne, Melbourne, VIC, Australia
| | - Michael Hölzel
- Institute of Experimental Oncology (IEO), Medical Faculty, University Hospital Bonn, University of Bonn, Bonn 53105, Germany
| | - Thomas Gebhardt
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| |
Collapse
|
19
|
Shang Q, Yu X, Sun Q, Li H, Sun C, Liu L. Polysaccharides regulate Th1/Th2 balance: A new strategy for tumor immunotherapy. Biomed Pharmacother 2024; 170:115976. [PMID: 38043444 DOI: 10.1016/j.biopha.2023.115976] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/20/2023] [Accepted: 11/29/2023] [Indexed: 12/05/2023] Open
Abstract
T helper (Th) cells have received extensive attention owing to their indispensable roles in anti-tumor immune responses. Th1 and Th2 cells are two key subsets of Th cells that exist in relative equilibrium through the secretion of cytokines that suppress their respective immune response. When the type of cytokine in the tumor microenvironment is altered, this equilibrium may be disrupted, leading to a shift from Th1 to Th2 immune response. Th1/Th2 imbalance is one of the decisive factors in the development of malignant tumors. Therefore, focusing on the balance of Th1/Th2 anti-tumor immune responses may enable future breakthroughs in cancer immunotherapy. Polysaccharides can regulate the imbalance between Th1 and Th2 cells and their characteristic cytokine profiles, thereby improving the tumor immune microenvironment. To our knowledge, this study is the most comprehensive assessment of the regulation of the tumor Th1/Th2 balance by polysaccharides. Herein, we systematically summarized the intrinsic molecular mechanisms of polysaccharides in the regulation of Th1 and Th2 cells to provide a new perspective and potential target drugs for improved anti-tumor immunity and delayed tumor progression.
Collapse
Affiliation(s)
- Qihang Shang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Xiaoyun Yu
- College of Traditional Chinese Medicine, Weifang Medical University, Weifang 261000, China
| | - Qi Sun
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Huayao Li
- College of Traditional Chinese Medicine, Weifang Medical University, Weifang 261000, China
| | - Changgang Sun
- College of Traditional Chinese Medicine, Weifang Medical University, Weifang 261000, China; Department of Oncology, Weifang Traditional Chinese Hospital, Weifang 261000, China.
| | - Lijuan Liu
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang 261000, China.
| |
Collapse
|
20
|
Huff AL, Longway G, Mitchell JT, Andaloori L, Davis-Marcisak E, Chen F, Lyman MR, Wang R, Mathew J, Barrett B, Rahman S, Leatherman J, Yarchoan M, Azad NS, Yegnasubramanian S, Kagohara LT, Fertig EJ, Jaffee EM, Armstrong TD, Zaidi N. CD4 T cell-activating neoantigens enhance personalized cancer vaccine efficacy. JCI Insight 2023; 8:e174027. [PMID: 38063199 PMCID: PMC10795827 DOI: 10.1172/jci.insight.174027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/17/2023] [Indexed: 12/18/2023] Open
Abstract
Personalized cancer vaccines aim to activate and expand cytotoxic antitumor CD8+ T cells to recognize and kill tumor cells. However, the role of CD4+ T cell activation in the clinical benefit of these vaccines is not well defined. We previously established a personalized neoantigen vaccine (PancVAX) for the pancreatic cancer cell line Panc02, which activates tumor-specific CD8+ T cells but required combinatorial checkpoint modulators to achieve therapeutic efficacy. To determine the effects of neoantigen-specific CD4+ T cell activation, we generated a vaccine (PancVAX2) targeting both major histocompatibility complex class I- (MHCI-) and MHCII-specific neoantigens. Tumor-bearing mice vaccinated with PancVAX2 had significantly improved control of tumor growth and long-term survival benefit without concurrent administration of checkpoint inhibitors. PancVAX2 significantly enhanced priming and recruitment of neoantigen-specific CD8+ T cells into the tumor with lower PD-1 expression after reactivation compared with the CD8+ vaccine alone. Vaccine-induced neoantigen-specific Th1 CD4+ T cells in the tumor were associated with decreased Tregs. Consistent with this, PancVAX2 was associated with more proimmune myeloid-derived suppressor cells and M1-like macrophages in the tumor, demonstrating a less immunosuppressive tumor microenvironment. This study demonstrates the biological importance of prioritizing and including CD4+ T cell-specific neoantigens for personalized cancer vaccine modalities.
Collapse
Affiliation(s)
- Amanda L. Huff
- Johns Hopkins Convergence Institute and
- Johns Hopkins Bloomberg Kimmel Institute for Immunotherapy, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland, USA
| | - Gabriella Longway
- Johns Hopkins Convergence Institute and
- Johns Hopkins Bloomberg Kimmel Institute for Immunotherapy, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland, USA
| | - Jacob T. Mitchell
- Johns Hopkins Convergence Institute and
- Johns Hopkins Bloomberg Kimmel Institute for Immunotherapy, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Human Genetics, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Lalitya Andaloori
- Johns Hopkins Convergence Institute and
- Johns Hopkins Bloomberg Kimmel Institute for Immunotherapy, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland, USA
| | - Emily Davis-Marcisak
- Johns Hopkins Convergence Institute and
- Johns Hopkins Bloomberg Kimmel Institute for Immunotherapy, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Human Genetics, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Fangluo Chen
- Johns Hopkins Convergence Institute and
- Johns Hopkins Bloomberg Kimmel Institute for Immunotherapy, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland, USA
| | - Melissa R. Lyman
- Johns Hopkins Convergence Institute and
- Johns Hopkins Bloomberg Kimmel Institute for Immunotherapy, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland, USA
| | - Rulin Wang
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland, USA
| | - Jocelyn Mathew
- Johns Hopkins Bloomberg Kimmel Institute for Immunotherapy, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland, USA
| | - Benjamin Barrett
- Johns Hopkins Bloomberg Kimmel Institute for Immunotherapy, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland, USA
| | - Sabahat Rahman
- Johns Hopkins Bloomberg Kimmel Institute for Immunotherapy, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland, USA
| | - James Leatherman
- Johns Hopkins Convergence Institute and
- Johns Hopkins Bloomberg Kimmel Institute for Immunotherapy, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland, USA
| | - Mark Yarchoan
- Johns Hopkins Convergence Institute and
- Johns Hopkins Bloomberg Kimmel Institute for Immunotherapy, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland, USA
| | - Nilofer S. Azad
- Johns Hopkins Convergence Institute and
- Johns Hopkins Bloomberg Kimmel Institute for Immunotherapy, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland, USA
| | - Srinivasan Yegnasubramanian
- Johns Hopkins Convergence Institute and
- Johns Hopkins Bloomberg Kimmel Institute for Immunotherapy, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland, USA
- inHealth Precision Medicine Program
| | - Luciane T. Kagohara
- Johns Hopkins Convergence Institute and
- Johns Hopkins Bloomberg Kimmel Institute for Immunotherapy, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Human Genetics, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
- Department of Applied Mathematics and Statistics, and
| | - Elana J. Fertig
- Johns Hopkins Convergence Institute and
- Johns Hopkins Bloomberg Kimmel Institute for Immunotherapy, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Applied Mathematics and Statistics, and
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Elizabeth M. Jaffee
- Johns Hopkins Convergence Institute and
- Johns Hopkins Bloomberg Kimmel Institute for Immunotherapy, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland, USA
| | - Todd D. Armstrong
- Johns Hopkins Convergence Institute and
- Johns Hopkins Bloomberg Kimmel Institute for Immunotherapy, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland, USA
| | - Neeha Zaidi
- Johns Hopkins Convergence Institute and
- Johns Hopkins Bloomberg Kimmel Institute for Immunotherapy, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
21
|
Malviya M, Aretz Z, Molvi Z, Lee J, Pierre S, Wallisch P, Dao T, Scheinberg DA. Challenges and solutions for therapeutic TCR-based agents. Immunol Rev 2023; 320:58-82. [PMID: 37455333 PMCID: PMC11141734 DOI: 10.1111/imr.13233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 06/18/2023] [Indexed: 07/18/2023]
Abstract
Recent development of methods to discover and engineer therapeutic T-cell receptors (TCRs) or antibody mimics of TCRs, and to understand their immunology and pharmacology, lag two decades behind therapeutic antibodies. Yet we have every expectation that TCR-based agents will be similarly important contributors to the treatment of a variety of medical conditions, especially cancers. TCR engineered cells, soluble TCRs and their derivatives, TCR-mimic antibodies, and TCR-based CAR T cells promise the possibility of highly specific drugs that can expand the scope of immunologic agents to recognize intracellular targets, including mutated proteins and undruggable transcription factors, not accessible by traditional antibodies. Hurdles exist regarding discovery, specificity, pharmacokinetics, and best modality of use that will need to be overcome before the full potential of TCR-based agents is achieved. HLA restriction may limit each agent to patient subpopulations and off-target reactivities remain important barriers to widespread development and use of these new agents. In this review we discuss the unique opportunities for these new classes of drugs, describe their unique antigenic targets, compare them to traditional antibody therapeutics and CAR T cells, and review the various obstacles that must be overcome before full application of these drugs can be realized.
Collapse
Affiliation(s)
- Manish Malviya
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065
| | - Zita Aretz
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065
- Physiology, Biophysics & Systems Biology Program, Weill Cornell Graduate School of Medical Sciences, 1300 York Avenue, New York, NY 10021
| | - Zaki Molvi
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065
- Physiology, Biophysics & Systems Biology Program, Weill Cornell Graduate School of Medical Sciences, 1300 York Avenue, New York, NY 10021
| | - Jayop Lee
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065
| | - Stephanie Pierre
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065
- Tri-Institutional Medical Scientist Program, 1300 York Avenue, New York, NY 10021
| | - Patrick Wallisch
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065
- Pharmacology Program, Weill Cornell Graduate School of Medical Sciences, 1300 York Avenue, New York, NY 10021
| | - Tao Dao
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065
| | - David A. Scheinberg
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065
- Pharmacology Program, Weill Cornell Graduate School of Medical Sciences, 1300 York Avenue, New York, NY 10021
| |
Collapse
|
22
|
Wu M, Luo Z, Cai Z, Mao Q, Li Z, Li H, Zhang C, Zhang Y, Zhong A, Wu L, Liu X. Spleen-targeted neoantigen DNA vaccine for personalized immunotherapy of hepatocellular carcinoma. EMBO Mol Med 2023; 15:e16836. [PMID: 37552209 PMCID: PMC10565630 DOI: 10.15252/emmm.202216836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 07/21/2023] [Accepted: 07/25/2023] [Indexed: 08/09/2023] Open
Abstract
Neoantigens are emerging as attractive targets to develop personalized cancer vaccines, but their immunization efficacy is severely hampered by their restricted accessibility to lymphoid tissues where immune responses are initiated. Leveraging the capability of red blood cells (RBCs) to capture and present pathogens in peripheral blood to the antigen-presenting cells (APCs) in spleen, we developed a RBC-driven spleen targeting strategy to deliver DNA vaccine encoding hepatocellular carcinoma (HCC) neoantigen. The DNA vaccine-encapsulating polymeric nanoparticles that were intentionally hitchhiked on the preisolated RBCs could preferentially accumulate in the spleen to promote the neoantigen expression by APCs, resulting in the burst of neoantigen-specific T-cell immunity to prevent tumorigenesis in a personalized manner, and slow down tumor growth in the established aggressively growing HCC. Remarkably, when combined with anti-PD-1, the vaccine achieved complete tumor regression and generated a robust systemic immune response with long-term tumor-specific immunological memory, which thoroughly prevented tumor recurrence and spontaneous lung metastasis. This study offers a prospective strategy to develop personalized neoantigen vaccines for augmenting cancer immunotherapy efficiency in immune "cold" HCC.
Collapse
Affiliation(s)
- Ming Wu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian ProvinceMengchao Hepatobiliary Hospital of Fujian Medical UniversityFuzhouChina
- The Liver Center of Fujian ProvinceFujian Medical UniversityFuzhouChina
- Mengchao Med‐X CenterFuzhou UniversityFuzhouChina
| | - Zijin Luo
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian ProvinceMengchao Hepatobiliary Hospital of Fujian Medical UniversityFuzhouChina
| | - Zhixiong Cai
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian ProvinceMengchao Hepatobiliary Hospital of Fujian Medical UniversityFuzhouChina
- The Liver Center of Fujian ProvinceFujian Medical UniversityFuzhouChina
- Mengchao Med‐X CenterFuzhou UniversityFuzhouChina
| | - Qianqian Mao
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian ProvinceMengchao Hepatobiliary Hospital of Fujian Medical UniversityFuzhouChina
| | - Zhenli Li
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian ProvinceMengchao Hepatobiliary Hospital of Fujian Medical UniversityFuzhouChina
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang Provincial Key Laboratory of Pancreatic Disease, School of MedicineZhejiang UniversityHangzhouChina
| | - Hao Li
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian ProvinceMengchao Hepatobiliary Hospital of Fujian Medical UniversityFuzhouChina
- Mengchao Med‐X CenterFuzhou UniversityFuzhouChina
| | - Cao Zhang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian ProvinceMengchao Hepatobiliary Hospital of Fujian Medical UniversityFuzhouChina
- Mengchao Med‐X CenterFuzhou UniversityFuzhouChina
| | - Yuting Zhang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian ProvinceMengchao Hepatobiliary Hospital of Fujian Medical UniversityFuzhouChina
- Mengchao Med‐X CenterFuzhou UniversityFuzhouChina
| | - Aoxue Zhong
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian ProvinceMengchao Hepatobiliary Hospital of Fujian Medical UniversityFuzhouChina
- Mengchao Med‐X CenterFuzhou UniversityFuzhouChina
| | - Liming Wu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian ProvinceMengchao Hepatobiliary Hospital of Fujian Medical UniversityFuzhouChina
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang Provincial Key Laboratory of Pancreatic Disease, School of MedicineZhejiang UniversityHangzhouChina
| | - Xiaolong Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian ProvinceMengchao Hepatobiliary Hospital of Fujian Medical UniversityFuzhouChina
- The Liver Center of Fujian ProvinceFujian Medical UniversityFuzhouChina
- Mengchao Med‐X CenterFuzhou UniversityFuzhouChina
| |
Collapse
|
23
|
Raman V, Howell LM, Bloom SMK, Hall CL, Wetherby VE, Minter LM, Kulkarni AA, Forbes NS. Intracellular Salmonella delivery of an exogenous immunization antigen refocuses CD8 T cells against cancer cells, eliminates pancreatic tumors and forms antitumor immunity. Front Immunol 2023; 14:1228532. [PMID: 37868996 PMCID: PMC10585021 DOI: 10.3389/fimmu.2023.1228532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 09/12/2023] [Indexed: 10/24/2023] Open
Abstract
Introduction Immunotherapies have shown great promise, but are not effective for all tumors types and are effective in less than 3% of patients with pancreatic ductal adenocarcinomas (PDAC). To make an immune treatment that is effective for more cancer patients and those with PDAC specifically, we genetically engineered Salmonella to deliver exogenous antigens directly into the cytoplasm of tumor cells. We hypothesized that intracellular delivery of an exogenous immunization antigen would activate antigen-specific CD8 T cells and reduce tumors in immunized mice. Methods To test this hypothesis, we administered intracellular delivering (ID) Salmonella that deliver ovalbumin as a model antigen into tumor-bearing, ovalbumin-vaccinated mice. ID Salmonella delivers antigens by autonomously lysing in cells after the induction of cell invasion. Results We showed that the delivered ovalbumin disperses throughout the cytoplasm of cells in culture and in tumors. This delivery into the cytoplasm is essential for antigen cross-presentation. We showed that co-culture of ovalbumin-recipient cancer cells with ovalbumin-specific CD8 T cells triggered a cytotoxic T cell response. After the adoptive transfer of OT-I CD8 T cells, intracellular delivery of ovalbumin reduced tumor growth and eliminated tumors. This effect was dependent on the presence of the ovalbumin-specific T cells. Following vaccination with the exogenous antigen in mice, intracellular delivery of the antigen cleared 43% of established KPC pancreatic tumors, increased survival, and prevented tumor re-implantation. Discussion This response in the immunosuppressive KPC model demonstrates the potential to treat tumors that do not respond to checkpoint inhibitors, and the response to re-challenge indicates that new immunity was established against intrinsic tumor antigens. In the clinic, ID Salmonella could be used to deliver a protein antigen from a childhood immunization to refocus pre-existing T cell immunity against tumors. As an off-the-shelf immunotherapy, this bacterial system has the potential to be effective in a broad range of cancer patients.
Collapse
Affiliation(s)
- Vishnu Raman
- Department of Chemical Engineering, University of Massachusetts, Amherst, MA, United States
- Ernest Pharmaceuticals, LLC, Hadley, MA, United States
| | - Lars M. Howell
- Department of Chemical Engineering, University of Massachusetts, Amherst, MA, United States
| | - Shoshana M. K. Bloom
- Department of Chemical Engineering, University of Massachusetts, Amherst, MA, United States
| | - Christopher L. Hall
- Department of Chemical Engineering, University of Massachusetts, Amherst, MA, United States
- Ernest Pharmaceuticals, LLC, Hadley, MA, United States
| | | | - Lisa M. Minter
- Molecular and Cell Biology Program, University of Massachusetts, Amherst, MA, United States
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, United States
- Institute for Applied Life Science, University of Massachusetts, Amherst, MA, United States
| | - Ashish A. Kulkarni
- Department of Chemical Engineering, University of Massachusetts, Amherst, MA, United States
- Institute for Applied Life Science, University of Massachusetts, Amherst, MA, United States
| | - Neil S. Forbes
- Department of Chemical Engineering, University of Massachusetts, Amherst, MA, United States
- Molecular and Cell Biology Program, University of Massachusetts, Amherst, MA, United States
- Institute for Applied Life Science, University of Massachusetts, Amherst, MA, United States
| |
Collapse
|
24
|
Yao Y, Xuan H, Wang J, Gong L, Gao W. Integrative analysis of tertiary lymphoid structures and immune microenvironment in patients with esophageal carcinoma. TUMORI JOURNAL 2023; 109:466-480. [PMID: 37249074 DOI: 10.1177/03008916231176857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
BACKGROUND Esophageal squamous cell carcinoma (ESCC) is one of the most common upper gastrointestinal malignancies worldwide. Tertiary lymphoid structures (TLS) are tumor-infiltrating immune cells aggregates coupled with stromal cells which are similar to secondary lymphoid organs. The objective of this study is to explore the predictive effects of two common genes associated with TLS models on prognosis and immunotherapy effects in ESCC patients. METHODS Clinical information for ESCC patients in the TCGA(The Cancer Genome Altas) cohort and GSE 53625 were collected. All of the samples were classified as either high score group or low score group based on two TLS signatures, and the association between TLS signatures and survival, clinical indicators, genomic burden, stemness indices analysis, tumor microenvironment and immunotherapy response were performed. Furthermore, the mature TLS was also assessed in ESCC tissue microarray. RESULTS In our study, we quantified the score of TLS_9 and TLS_12, respectively, reflecting the different statuses of TLS (TLS_9 = B and T cells in TLSs; TLS_12 = neogenesis of TLSs). Subsequently, we explored the effect of TLS score on ESCC tumor microenvironment quantified by multiple algorithms. We found that a correlation analysis indicated that TLS_9 and TLS_12 were all positively correlated with CD8+ T cell, NK cells, CD4+ T cells, M1 macrophages and so on. Meanwhile, some cells present a different correlation pattern of TLS_9 and TLS_12, including activated CD4+ memory T cells and Tgd cells. Immune-related analysis revealed that the TLS_12 and TLS_9 scores were all positively correlated with immune dysfunction, yet negatively correlated with immune exclusion. Following this, the biological roles of TLS_9 and TLS_12 scores were investigated. Also, we noticed that the TLS score could significantly affect the CAFs infiltration and be associated with the genomic burden and tumor stemness. In addition, we explored the prognostic value of mature TLS through tissue microarray (TMA). Our result displayed ESCC patients with the presence of mature TLS had a better prognosis than ESCC patients without it. CONCLUSIONS Our study indicated that ESCC patients with the presence of TLS had better outcomes and an inflamed immune microenvironment. In addition, both TLS-9 and TLS-12 gene signatures could be used as potential biomarkers for the immunotherapy of ESCC patients.
Collapse
Affiliation(s)
- Yuanshan Yao
- Department of Thoracic Surgery, Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Haojie Xuan
- Department of Thoracic Surgery, Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Jing Wang
- Department of Thoracic Surgery, Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Libao Gong
- Department of abdominal oncology, The cancer center of the fifth affiliated hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
| | - Wen Gao
- Department of Thoracic Surgery, Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| |
Collapse
|
25
|
Topchyan P, Lin S, Cui W. The Role of CD4 T Cell Help in CD8 T Cell Differentiation and Function During Chronic Infection and Cancer. Immune Netw 2023; 23:e41. [PMID: 37970230 PMCID: PMC10643329 DOI: 10.4110/in.2023.23.e41] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 09/29/2023] [Accepted: 10/17/2023] [Indexed: 11/17/2023] Open
Abstract
CD4 and CD8 T cells are key players in the immune response against both pathogenic infections and cancer. CD4 T cells provide help to CD8 T cells via multiple mechanisms, including licensing dendritic cells (DCs), co-stimulation, and cytokine production. During acute infection and vaccination, CD4 T cell help is important for the development of CD8 T cell memory. However, during chronic viral infection and cancer, CD4 helper T cells are critical for the sustained effector CD8 T cell response, through a variety of mechanisms. In this review, we focus on T cell responses in conditions of chronic Ag stimulation, such as chronic viral infection and cancer. In particular, we address the significant role of CD4 T cell help in promoting effector CD8 T cell responses, emerging techniques that can be utilized to further our understanding of how these interactions may take place in the context of tertiary lymphoid structures, and how this key information can be harnessed for therapeutic utility against cancer.
Collapse
Affiliation(s)
- Paytsar Topchyan
- Blood Research Institute, Versiti Wisconsin, Milwaukee, WI 53213, USA
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Siying Lin
- Blood Research Institute, Versiti Wisconsin, Milwaukee, WI 53213, USA
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Pathology, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Weiguo Cui
- Blood Research Institute, Versiti Wisconsin, Milwaukee, WI 53213, USA
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Pathology, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| |
Collapse
|
26
|
Zareinejad M, Mehdipour F, Roshan-Zamir M, Faghih Z, Ghaderi A. Dual Functions of T Lymphocytes in Breast Carcinoma: From Immune Protection to Orchestrating Tumor Progression and Metastasis. Cancers (Basel) 2023; 15:4771. [PMID: 37835465 PMCID: PMC10571747 DOI: 10.3390/cancers15194771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 09/23/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
Breast cancer (BC) is the most common cancer type in women and the second leading cause of death. Despite recent advances, the mortality rate of BC is still high, highlighting a need to develop new treatment strategies including the modulation of the immune system and immunotherapies. In this regard, understanding the complex function of the involved immune cells and their crosstalk with tumor cells is of great importance. T-cells are recognized as the most important cells in the tumor microenvironment and are divided into several subtypes including helper, cytotoxic, and regulatory T-cells according to their transcription factors, markers, and functions. This article attempts to provide a comprehensive review of the role of T-cell subsets in the prognosis and treatment of patients with BC, and crosstalk between tumor cells and T-cells. The literature overwhelmingly contains controversial findings mainly due to the plasticity of T-cell subsets within the inflammatory conditions and the use of different panels for their phenotyping. However, investigating the role of T-cells in BC immunity depends on a variety of factors including tumor types or subtypes, the stage of the disease, the localization of the cells in the tumor tissue and the presence of different cells or cytokines.
Collapse
Affiliation(s)
| | | | | | - Zahra Faghih
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz 71348-45505, Iran; (M.Z.); (F.M.); (M.R.-Z.)
| | - Abbas Ghaderi
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz 71348-45505, Iran; (M.Z.); (F.M.); (M.R.-Z.)
| |
Collapse
|
27
|
Ramirez F, Zambrano A, Hennis R, Holland N, Lakshmanaswamy R, Chacon J. Sending a Message: Use of mRNA Vaccines to Target the Tumor Immune Microenvironment. Vaccines (Basel) 2023; 11:1465. [PMID: 37766141 PMCID: PMC10534833 DOI: 10.3390/vaccines11091465] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/25/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
While cancer immunotherapies have become central to treatment, challenges associated with the ability of tumors to evade the immune system remain significant obstacles. At the heart of this issue is the tumor immune microenvironment, the complex interplay of the tumor microenvironment and the immune response. Recent advances in mRNA cancer vaccines represent major progress towards overcoming some of the challenges posed by deleterious components of the tumor immune microenvironment. Indeed, major breakthroughs in mRNA vaccine technology, such as the use of replacement nucleotides and lipid nanoparticle delivery, led to the vital success of mRNA vaccine technology in fighting COVID-19. This has in turn generated massive additional interest and investment in the platform. In this review, we detail recent research in the nature of the tumor immune microenvironment and in mRNA cancer vaccines and discuss applications by which mRNA cancer vaccines, often in combination with various adjuvants, represent major areas of potential in overcoming tumor immune microenvironment-imposed obstacles. To this end, we also review current mRNA cancer vaccine clinical trials.
Collapse
Affiliation(s)
- Fabiola Ramirez
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA; (F.R.); (A.Z.); (R.H.); (N.H.); (R.L.)
| | - Angelica Zambrano
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA; (F.R.); (A.Z.); (R.H.); (N.H.); (R.L.)
| | - Robert Hennis
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA; (F.R.); (A.Z.); (R.H.); (N.H.); (R.L.)
| | - Nathan Holland
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA; (F.R.); (A.Z.); (R.H.); (N.H.); (R.L.)
| | - Rajkumar Lakshmanaswamy
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA; (F.R.); (A.Z.); (R.H.); (N.H.); (R.L.)
- L. Frederick Francis Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
| | - Jessica Chacon
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA; (F.R.); (A.Z.); (R.H.); (N.H.); (R.L.)
| |
Collapse
|
28
|
Hartmann AK, Bartneck J, Pielenhofer J, Meiser SL, Arnold-Schild D, Klein M, Stassen M, Schild H, Muth S, Probst HC, Langguth P, Grabbe S, Radsak MP. Optimized dithranol-imiquimod-based transcutaneous immunization enables tumor rejection. Front Immunol 2023; 14:1238861. [PMID: 37727790 PMCID: PMC10505723 DOI: 10.3389/fimmu.2023.1238861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/11/2023] [Indexed: 09/21/2023] Open
Abstract
Introduction Transcutaneous immunization (TCI) is a non-invasive vaccination method promoting strong cellular immune responses, crucial for the immunological rejection of cancer. Previously, we reported on the combined application of the TLR7 agonist imiquimod (IMQ) together with the anti-psoriatic drug dithranol as novel TCI platform DIVA (dithranol/IMQ based vaccination). In extension of this work, we further optimized DIVA in terms of drug dose, application pattern and established a new IMQ formulation. Methods C57BL/6 mice were treated on the ear skin with dithranol and IMQ-containing ointments together with ovalbumin-derived peptides. T cell responses were determined by flow cytometry and IFN-ɤ ELISpot assay, local skin inflammation was characterized by ear swelling. Results Applying the adjuvants on separate skin sites, a reduced number of specific CD8+ T cells with effector function was detectable, indicating that the local concurrence of adjuvants and peptide antigens is required for optimal vaccination. Likewise, changing the order of dithranol and IMQ resulted in an increased skin inflammatory reaction, but lower frequencies of antigen-specific CD8+ T cells indicating that dithranol is essential for superior T cell priming upon DIVA. Dispersing nanocrystalline IMQ in a spreadable formulation (IMI-Sol+) facilitated storage and application rendering comparable immune responses. DIVA applied one or two weeks after the first immunization resulted in a massive increase in antigen-specific T cells and up to a ten-fold increased memory response. Finally, in a prophylactic tumor setting, double but no single DIVA treatment enabled complete control of tumor growth, resulting in full tumor protection. Discussion Taken together, the described optimized transcutaneous vaccination method leads to the generation of a strong cellular immune response enabling the effective control of tumor growth and has the potential for clinical development as a novel non-invasive vaccination method for peptide-based cancer vaccines in humans.
Collapse
Affiliation(s)
- Ann-Kathrin Hartmann
- IIIrd Department of Medicine – Hematology and Oncology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Joschka Bartneck
- IIIrd Department of Medicine – Hematology and Oncology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Jonas Pielenhofer
- Biopharmaceutics and Pharmaceutical Technology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg-University, Mainz, Germany
| | - Sophie Luise Meiser
- Biopharmaceutics and Pharmaceutical Technology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg-University, Mainz, Germany
| | - Danielle Arnold-Schild
- Institute of Immunology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Matthias Klein
- Institute of Immunology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
- Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Michael Stassen
- Institute of Immunology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
- Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Hansjörg Schild
- Institute of Immunology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
- Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
- Mainz Research School of Translational Biomedicine (TransMed), University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Sabine Muth
- Institute of Immunology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
- Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Hans Christian Probst
- Institute of Immunology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
- Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Peter Langguth
- Biopharmaceutics and Pharmaceutical Technology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg-University, Mainz, Germany
- Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Stephan Grabbe
- Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
- Mainz Research School of Translational Biomedicine (TransMed), University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Markus P. Radsak
- IIIrd Department of Medicine – Hematology and Oncology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
- Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
- Mainz Research School of Translational Biomedicine (TransMed), University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| |
Collapse
|
29
|
Goodman RS, Jung S, Balko JM, Johnson DB. Biomarkers of immune checkpoint inhibitor response and toxicity: Challenges and opportunities. Immunol Rev 2023; 318:157-166. [PMID: 37470280 PMCID: PMC10528475 DOI: 10.1111/imr.13249] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 06/28/2023] [Indexed: 07/21/2023]
Abstract
Immune checkpoint inhibitors have transformed cancer therapy, but their optimal use is still constrained by lack of response and toxicity. Biomarkers of response may facilitate drug development by allowing appropriate therapy selection and focusing clinical trial enrollment. However, aside from PD-L1 staining in a subset of tumors and rarely mismatch repair deficiency, no biomarkers are routinely used in the clinic. In addition, severe toxicities may cause severe morbidity, therapy discontinuation, and even death. Here, we review the state of the field with a focus on our research in therapeutic biomarkers and toxicities from immune checkpoint inhibitors.
Collapse
Affiliation(s)
| | - Seungyeon Jung
- Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Justin M. Balko
- Department of Medicine, Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Douglas B. Johnson
- Department of Hematology/Oncology, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
30
|
Dolina JS, Lee J, Brightman SE, McArdle S, Hall SM, Thota RR, Zavala KS, Lanka M, Ramamoorthy Premlal AL, Greenbaum JA, Cohen EEW, Peters B, Schoenberger SP. Linked CD4+/CD8+ T cell neoantigen vaccination overcomes immune checkpoint blockade resistance and enables tumor regression. J Clin Invest 2023; 133:e164258. [PMID: 37655661 PMCID: PMC10471175 DOI: 10.1172/jci164258] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 07/11/2023] [Indexed: 09/02/2023] Open
Abstract
Therapeutic benefit to immune checkpoint blockade (ICB) is currently limited to the subset of cancers thought to possess a sufficient tumor mutational burden (TMB) to allow for the spontaneous recognition of neoantigens (NeoAg) by autologous T cells. We explored whether the response to ICB of an aggressive low-TMB squamous cell tumor could be improved through combination immunotherapy using functionally defined NeoAg as targets for endogenous CD4+ and CD8+ T cells. We found that, whereas vaccination with CD4+ or CD8+ NeoAg alone did not offer prophylactic or therapeutic immunity, vaccines containing NeoAg recognized by both subsets overcame ICB resistance and led to the eradication of large established tumors that contained a subset of PD-L1+ tumor-initiating cancer stem cells (tCSC), provided the relevant epitopes were physically linked. Therapeutic CD4+/CD8+ T cell NeoAg vaccination produced a modified tumor microenvironment (TME) with increased numbers of NeoAg-specific CD8+ T cells existing in progenitor and intermediate exhausted states enabled by combination ICB-mediated intermolecular epitope spreading. We believe that the concepts explored herein should be exploited for the development of more potent personalized cancer vaccines that can expand the range of tumors treatable with ICB.
Collapse
Affiliation(s)
- Joseph S. Dolina
- Division of Developmental Immunology, La Jolla Institute for Immunology, La Jolla, California, USA
- Cancer Immunology Discovery, Pfizer, San Diego, California, USA
| | - Joey Lee
- Division of Developmental Immunology, La Jolla Institute for Immunology, La Jolla, California, USA
| | - Spencer E. Brightman
- Division of Developmental Immunology, La Jolla Institute for Immunology, La Jolla, California, USA
| | | | - Samantha M. Hall
- Division of Developmental Immunology, La Jolla Institute for Immunology, La Jolla, California, USA
| | - Rukman R. Thota
- Division of Developmental Immunology, La Jolla Institute for Immunology, La Jolla, California, USA
| | - Karla S. Zavala
- Division of Developmental Immunology, La Jolla Institute for Immunology, La Jolla, California, USA
| | - Manasa Lanka
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, California, USA
| | | | - Jason A. Greenbaum
- Bioinformatics Core, La Jolla Institute for Immunology, La Jolla, California, USA
| | - Ezra E. W. Cohen
- Division of Hematology and Oncology, University of California San Diego Moores Cancer Center, La Jolla, California, USA
| | - Bjoern Peters
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, California, USA
- Department of Medicine, University of California San Diego, La Jolla, California, USA
| | - Stephen P. Schoenberger
- Division of Developmental Immunology, La Jolla Institute for Immunology, La Jolla, California, USA
- Division of Hematology and Oncology, University of California San Diego Moores Cancer Center, La Jolla, California, USA
| |
Collapse
|
31
|
Brightman SE, Becker A, Thota RR, Naradikian MS, Chihab L, Zavala KS, Ramamoorthy Premlal AL, Griswold RQ, Dolina JS, Cohen EEW, Miller AM, Peters B, Schoenberger SP. Neoantigen-specific stem cell memory-like CD4 + T cells mediate CD8 + T cell-dependent immunotherapy of MHC class II-negative solid tumors. Nat Immunol 2023; 24:1345-1357. [PMID: 37400675 PMCID: PMC10382322 DOI: 10.1038/s41590-023-01543-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 05/22/2023] [Indexed: 07/05/2023]
Abstract
CD4+ T cells play key roles in a range of immune responses, either as direct effectors or through accessory cells, including CD8+ T lymphocytes. In cancer, neoantigen (NeoAg)-specific CD8+ T cells capable of direct tumor recognition have been extensively studied, whereas the role of NeoAg-specific CD4+ T cells is less well understood. We have characterized the murine CD4+ T cell response against a validated NeoAg (CLTCH129>Q) expressed by the MHC-II-deficient squamous cell carcinoma tumor model (SCC VII) at the level of single T cell receptor (TCR) clonotypes and in the setting of adoptive immunotherapy. We find that the natural CLTCH129>Q-specific repertoire is diverse and contains TCRs with distinct avidities as measured by tetramer-binding assays and CD4 dependence. Despite these differences, CD4+ T cells expressing high or moderate avidity TCRs undergo comparable in vivo proliferation to cross-presented antigen from growing tumors and drive similar levels of therapeutic immunity that is dependent on CD8+ T cells and CD40L signaling. Adoptive cellular therapy (ACT) with NeoAg-specific CD4+ T cells is most effective when TCR-engineered cells are differentiated ex vivo with IL-7 and IL-15 rather than IL-2 and this was associated with both increased expansion as well as the acquisition and stable maintenance of a T stem cell memory (TSCM)-like phenotype in tumor-draining lymph nodes (tdLNs). ACT with TSCM-like CD4+ T cells results in lower PD-1 expression by CD8+ T cells in the tumor microenvironment and an increased frequency of PD-1+CD8+ T cells in tdLNs. These findings illuminate the role of NeoAg-specific CD4+ T cells in mediating antitumor immunity via providing help to CD8+ T cells and highlight their therapeutic potential in ACT.
Collapse
Affiliation(s)
- Spencer E Brightman
- Division of Developmental Immunology, La Jolla Institute for Immunology, La Jolla, CA, USA
- Biomedical Sciences Program, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Angelica Becker
- Division of Developmental Immunology, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Rukman R Thota
- Division of Developmental Immunology, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Martin S Naradikian
- Division of Developmental Immunology, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Leila Chihab
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Karla Soria Zavala
- Division of Developmental Immunology, La Jolla Institute for Immunology, La Jolla, CA, USA
| | | | - Ryan Q Griswold
- Division of Developmental Immunology, La Jolla Institute for Immunology, La Jolla, CA, USA
- Biomedical Sciences Program, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Joseph S Dolina
- Division of Developmental Immunology, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Ezra E W Cohen
- Division of Hematology and Oncology, University of California San Diego Moores Cancer Center, UCSD, La Jolla, CA, USA
| | - Aaron M Miller
- Division of Developmental Immunology, La Jolla Institute for Immunology, La Jolla, CA, USA
- Division of Hematology and Oncology, University of California San Diego Moores Cancer Center, UCSD, La Jolla, CA, USA
| | - Bjoern Peters
- Division of Hematology and Oncology, University of California San Diego Moores Cancer Center, UCSD, La Jolla, CA, USA
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Stephen P Schoenberger
- Division of Developmental Immunology, La Jolla Institute for Immunology, La Jolla, CA, USA.
| |
Collapse
|
32
|
Wen M, Li Y, Qin X, Qin B, Wang Q. Insight into Cancer Immunity: MHCs, Immune Cells and Commensal Microbiota. Cells 2023; 12:1882. [PMID: 37508545 PMCID: PMC10378520 DOI: 10.3390/cells12141882] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/16/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
Cancer cells circumvent immune surveillance via diverse strategies. In accordance, a large number of complex studies of the immune system focusing on tumor cell recognition have revealed new insights and strategies developed, largely through major histocompatibility complexes (MHCs). As one of them, tumor-specific MHC-II expression (tsMHC-II) can facilitate immune surveillance to detect tumor antigens, and thereby has been used in immunotherapy, including superior cancer prognosis, clinical sensitivity to immune checkpoint inhibition (ICI) therapy and tumor-bearing rejection in mice. NK cells play a unique role in enhancing innate immune responses, accounting for part of the response including immunosurveillance and immunoregulation. NK cells are also capable of initiating the response of the adaptive immune system to cancer immunotherapy independent of cytotoxic T cells, clearly demonstrating a link between NK cell function and the efficacy of cancer immunotherapies. Eosinophils were shown to feature pleiotropic activities against a variety of solid tumor types, including direct interactions with tumor cells, and accessorily affect immunotherapeutic response through intricating cross-talk with lymphocytes. Additionally, microbial sequencing and reconstitution revealed that commensal microbiota might be involved in the modulation of cancer progression, including positive and negative regulatory bacteria. They may play functional roles in not only mucosal modulation, but also systemic immune responses. Here, we present a panorama of the cancer immune network mediated by MHCI/II molecules, immune cells and commensal microbiota and a discussion of prospective relevant intervening mechanisms involved in cancer immunotherapies.
Collapse
Affiliation(s)
- Minting Wen
- School of Life Science, Guangzhou University, Guangzhou 510006, China
| | - Yingjing Li
- School of Life Science, Guangzhou University, Guangzhou 510006, China
| | - Xiaonan Qin
- School of Life Science, Guangzhou University, Guangzhou 510006, China
| | - Bing Qin
- School of Life Science, Guangzhou University, Guangzhou 510006, China
| | - Qiong Wang
- School of Life Science, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
33
|
Espinosa-Carrasco G, Scrivo A, Zumbo P, Dave A, Betel D, Hellmann M, Burt BM, Lee HS, Schietinger A. Intratumoral immune triads are required for adoptive T cell therapy-mediated elimination of solid tumors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.03.547423. [PMID: 37461721 PMCID: PMC10349998 DOI: 10.1101/2023.07.03.547423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Tumor-reactive CD8 T cells found in cancer patients are frequently dysfunctional, unable to halt tumor growth. Adoptive T cell transfer (ACT), the administration of large numbers of in vitro-generated cytolytic tumor-reactive CD8 T cells, is an important cancer immune therapy being pursued. However, a limitation of ACT is that transferred CD8 T cells often rapidly lose effector function, and despite exciting results in certain malignancies, few ACT clinical trials have shown responses in solid tumors. Here, we developed preclinical cancer mouse models to investigate if and how tumor-specific CD4 T cells can be enlisted to overcome CD8 T cell dysfunction in the setting of ACT. In situ confocal microscopy of color-coded cancer cells, tumor-specific CD8 and CD4 T cells, and antigen presenting cells (APC), combined with functional studies, revealed that the spatial positioning and interactions of CD8 and CD4 T cells, but not their numbers, dictates ACT efficacy and anti-tumor responses. We uncover a new role of antigen-specific CD4 T cells in addition to the known requirement for CD4 T cells during priming/activation of naïve CD8 T cells. CD4 T cells must co-engage with CD8 T cells and APC cross-presenting CD8- and CD4-tumor antigens during the effector phase, forming a three-cell-cluster (triad), to license CD8 T cell cytotoxicity and mediate cancer cell elimination. Triad formation transcriptionally and epigenetically reprogram CD8 T cells, prevent T cell dysfunction/exhaustion, and ultimately lead to the elimination of large established tumors and confer long-term protection from recurrence. When intratumoral triad formation was disrupted, adoptively transferred CD8 T cells could not be reprogrammed, and tumors progressed despite equal numbers of tumor-infiltrating CD8 and CD4 T cells. Strikingly, the formation of CD4 T cell::CD8 T cell::APC triads in tumors of patients with lung cancers treated with immune checkpoint blockade was associated with clinical responses, but not CD4::APC dyads or overall numbers of CD8 or CD4 T cells, demonstrating the importance of triads in non-ACT settings in humans. Our work uncovers intratumoral triads as a key requirement for anti-tumor immunity and a new role for CD4 T cells in CD8 T cell cytotoxicity and cancer cell eradication.
Collapse
Affiliation(s)
| | - Aurora Scrivo
- Department of Developmental and Molecular Biology, and Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Paul Zumbo
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Asim Dave
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Doron Betel
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Matthew Hellmann
- Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY; Weill Cornell Medical College, Cornell University, New York, NY, USA
| | - Bryan M Burt
- Systems Onco-Immunology Laboratory, David J. Sugarbaker Division of Thoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX
| | - Hyun-Sung Lee
- Systems Onco-Immunology Laboratory, David J. Sugarbaker Division of Thoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX
| | - Andrea Schietinger
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| |
Collapse
|
34
|
Teplensky MH, Evangelopoulos M, Dittmar JW, Forsyth CM, Sinegra AJ, Wang S, Mirkin CA. Multi-antigen spherical nucleic acid cancer vaccines. Nat Biomed Eng 2023; 7:911-927. [PMID: 36717738 PMCID: PMC10424220 DOI: 10.1038/s41551-022-01000-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 12/19/2022] [Indexed: 02/01/2023]
Abstract
Cancer vaccines must activate multiple immune cell types to be effective against aggressive tumours. Here we report the impact of the structural presentation of two antigenic peptides on immune responses at the transcriptomic, cellular and organismal levels. We used spherical nucleic acid (SNA) nanoparticles to investigate how the spatial distribution and placement of two antigen classes affect antigen processing, cytokine production and the induction of memory. Compared with single-antigen SNAs, a single dual-antigen SNA elicited a 30% increase in antigen-specific T cell activation and a two-fold increase in T cell proliferation. Antigen placement within dual-antigen SNAs altered the gene expression of T cells and tumour growth. Specifically, dual-antigen SNAs encapsulating antigens targeting helper T cells and with externally conjugated antigens targeting cytotoxic T cells elevated antitumour genetic pathways, stalling lymphoma tumours in mice. Additionally, when combined with the checkpoint inhibitor anti-programmed-cell-death protein-1 in a mouse model of melanoma, a specific antigen arrangement within dual-antigen SNAs suppressed tumour growth and increased the levels of circulating memory T cells. The structural design of multi-antigen vaccines substantially impacts their efficacy.
Collapse
Affiliation(s)
- Michelle H Teplensky
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, Evanston, IL, USA
| | | | - Jasper W Dittmar
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Connor M Forsyth
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, Evanston, IL, USA
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, IL, USA
| | - Andrew J Sinegra
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Shuya Wang
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, IL, USA
| | - Chad A Mirkin
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, Evanston, IL, USA.
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA.
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
35
|
Sun L, Su Y, Jiao A, Wang X, Zhang B. T cells in health and disease. Signal Transduct Target Ther 2023; 8:235. [PMID: 37332039 PMCID: PMC10277291 DOI: 10.1038/s41392-023-01471-y] [Citation(s) in RCA: 133] [Impact Index Per Article: 133.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 06/20/2023] Open
Abstract
T cells are crucial for immune functions to maintain health and prevent disease. T cell development occurs in a stepwise process in the thymus and mainly generates CD4+ and CD8+ T cell subsets. Upon antigen stimulation, naïve T cells differentiate into CD4+ helper and CD8+ cytotoxic effector and memory cells, mediating direct killing, diverse immune regulatory function, and long-term protection. In response to acute and chronic infections and tumors, T cells adopt distinct differentiation trajectories and develop into a range of heterogeneous populations with various phenotype, differentiation potential, and functionality under precise and elaborate regulations of transcriptional and epigenetic programs. Abnormal T-cell immunity can initiate and promote the pathogenesis of autoimmune diseases. In this review, we summarize the current understanding of T cell development, CD4+ and CD8+ T cell classification, and differentiation in physiological settings. We further elaborate the heterogeneity, differentiation, functionality, and regulation network of CD4+ and CD8+ T cells in infectious disease, chronic infection and tumor, and autoimmune disease, highlighting the exhausted CD8+ T cell differentiation trajectory, CD4+ T cell helper function, T cell contributions to immunotherapy and autoimmune pathogenesis. We also discuss the development and function of γδ T cells in tissue surveillance, infection, and tumor immunity. Finally, we summarized current T-cell-based immunotherapies in both cancer and autoimmune diseases, with an emphasis on their clinical applications. A better understanding of T cell immunity provides insight into developing novel prophylactic and therapeutic strategies in human diseases.
Collapse
Affiliation(s)
- Lina Sun
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, China
- Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shannxi, 710061, China
| | - Yanhong Su
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, China
- Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shannxi, 710061, China
| | - Anjun Jiao
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, China
- Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shannxi, 710061, China
| | - Xin Wang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, China
- Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shannxi, 710061, China
| | - Baojun Zhang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China.
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China.
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, China.
- Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shannxi, 710061, China.
| |
Collapse
|
36
|
Budi HS, Farhood B. Targeting oral tumor microenvironment for effective therapy. Cancer Cell Int 2023; 23:101. [PMID: 37221555 DOI: 10.1186/s12935-023-02943-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 05/11/2023] [Indexed: 05/25/2023] Open
Abstract
Oral cancers are among the common head and neck malignancies. Different anticancer therapy modalities such as chemotherapy, immunotherapy, radiation therapy, and also targeted molecular therapy may be prescribed for targeting oral malignancies. Traditionally, it has been assumed that targeting malignant cells alone by anticancer modalities such as chemotherapy and radiotherapy suppresses tumor growth. In the last decade, a large number of experiments have confirmed the pivotal role of other cells and secreted molecules in the tumor microenvironment (TME) on tumor progression. Extracellular matrix and immunosuppressive cells such as tumor-associated macrophages, myeloid-derived suppressor cells (MDSCs), cancer-associated fibroblasts (CAFs), and regulatory T cells (Tregs) play key roles in the progression of tumors like oral cancers and resistance to therapy. On the other hand, infiltrated CD4 + and CD8 + T lymphocytes, and natural killer (NK) cells are key anti-tumor cells that suppress the proliferation of malignant cells. Modulation of extracellular matrix and immunosuppressive cells, and also stimulation of anticancer immunity have been suggested to treat oral malignancies more effectively. Furthermore, the administration of some adjuvants or combination therapy modalities may suppress oral malignancies more effectively. In this review, we discuss various interactions between oral cancer cells and TME. Furthermore, we also review the basic mechanisms within oral TME that may cause resistance to therapy. Potential targets and approaches for overcoming the resistance of oral cancers to various anticancer modalities will also be reviewed. The findings for targeting cells and potential therapeutic targets in clinical studies will also be reviewed.
Collapse
Affiliation(s)
- Hendrik Setia Budi
- Department of Oral Biology, Dental Pharmacology, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia.
| | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
37
|
Mu J, Gong J, Shi M, Zhang Y. Analysis and validation of aging-related genes in prognosis and immune function of glioblastoma. BMC Med Genomics 2023; 16:109. [PMID: 37208656 DOI: 10.1186/s12920-023-01538-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 05/09/2023] [Indexed: 05/21/2023] Open
Abstract
BACKGROUND Glioblastoma (GBM) is a common malignant brain tumor with poor prognosis and high mortality. Numerous reports have identified the correlation between aging and the prognosis of patients with GBM. The purpose of this study was to establish a prognostic model for GBM patients based on aging-related gene (ARG) to help determine the prognosis of GBM patients. METHODS 143 patients with GBM from The Cancer Genomic Atlas (TCGA), 218 patients with GBM from the Chinese Glioma Genomic Atlas (CGGA) of China and 50 patients from Gene Expression Omnibus (GEO) were included in the study. R software (V4.2.1) and bioinformatics statistical methods were used to develop prognostic models and study immune infiltration and mutation characteristics. RESULTS Thirteen genes were screened out and used to establish the prognostic model finally, and the risk scores of the prognostic model was an independent factor (P < 0.001), which indicated a good prediction ability. In addition, there are significant differences in immune infiltration and mutation characteristics between the two groups with high and low risk scores. CONCLUSION The prognostic model of GBM patients based on ARGs can predict the prognosis of GBM patients. However, this signature requires further investigation and validation in larger cohort studies.
Collapse
Affiliation(s)
- Jianhua Mu
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Jianan Gong
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Miao Shi
- School of Biomedical Engineering, Southern Medical University, Guangzhou, China
| | - Yinian Zhang
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
38
|
Wang RA, Zhang MY, Jiang YX, Wang XD, Qu JJ, Yue YL, Qu YQ. Autophagy-related tumor subtypes associated with significant gene expression profiles and immune cell infiltration signatures to reveal the prognosis of non-small cell lung cancer. J Cancer 2023; 14:1427-1442. [PMID: 37283800 PMCID: PMC10240669 DOI: 10.7150/jca.83097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 05/06/2023] [Indexed: 06/08/2023] Open
Abstract
Autophagy plays an important role in non-small cell lung cancer (NSCLC). We aimed to establish novel autophagy-related tumor subtypes to distinguish the prognosis of NSCLC. In this study, gene expression profiles, mutation data and clinical information obtained from the Cancer Genome Atlas. Kaplan Meier-plotter could evaluate prognostic value of autophagy-related genes. Consensus clustering revealed autophagy-related tumor subtypes. Gene expression profiles, mutation data and immune infiltration signatures were identified, oncogenic pathways and gene-drug interactions were performed according to the clusters. Finally, a total of 23 prognostic genes were screened and consensus clustering analysis divided the NSCLC into 2 clusters. The mutation signature showed that 6 genes are special. Immune infiltration signatures showed that higher fraction of immune cells was associated with cluster 1. The oncogenic pathways and gene-drug interactions also showed different patterns. In conclusion, autophagy-related tumor subtypes have different prognosis. Understanding the subtypes of NSCLC are helpful to accurately identify the NSCLC and personalized treatment.
Collapse
Affiliation(s)
- Rong-Ai Wang
- The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Meng-Yu Zhang
- Department of Pulmonary and Critical Care Medicine, Laboratory of Basic Medical Sciences, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Ying-Xiao Jiang
- Department of Pulmonary and Critical Care Medicine, Laboratory of Basic Medical Sciences, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Xiao-Dong Wang
- Department of Pulmonary and Critical Care Medicine, Laboratory of Basic Medical Sciences, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Jia-Jia Qu
- Department of Pulmonary and Critical Care Medicine, Laboratory of Basic Medical Sciences, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Yue-Liang Yue
- Department of Pulmonary and Critical Care Medicine, Laboratory of Basic Medical Sciences, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Yi-Qing Qu
- Department of Pulmonary and Critical Care Medicine, Laboratory of Basic Medical Sciences, Qilu Hospital of Shandong University, Jinan, Shandong, China
| |
Collapse
|
39
|
Dolina JS, Lee J, Brightman SE, McArdle S, Hall SM, Thota RR, Lanka M, Premlal ALR, Greenbaum JA, Cohen EEW, Peters B, Schoenberger SP. Linked CD4 + /CD8 + T cell neoantigen vaccination overcomes immune checkpoint blockade resistance and enables tumor regression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.06.539290. [PMID: 37205330 PMCID: PMC10187312 DOI: 10.1101/2023.05.06.539290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Therapeutic benefit to immune checkpoint blockade (ICB) is currently limited to the subset of cancers thought to possess a sufficient tumor mutational burden (TMB) to allow for the spontaneous recognition of neoantigens (NeoAg) by autologous T cells. We explored whether the response of an aggressive low TMB squamous cell tumor to ICB could be improved through combination immunotherapy using functionally defined NeoAg as targets for endogenous CD4 + and CD8 + T cells. We found that, whereas vaccination with CD4 + or CD8 + NeoAg alone did not offer prophylactic or therapeutic immunity, vaccines containing NeoAg recognized by both subsets overcame ICB resistance and led to the eradication of large established tumors that contained a subset of PD-L1 + tumor-initiating cancer stem cells (tCSC), provided the relevant epitopes were physically linked. Therapeutic CD4 + /CD8 + T cell NeoAg vaccination produced a modified tumor microenvironment (TME) with increased numbers of NeoAg-specific CD8 + T cells existing in progenitor and intermediate exhausted states enabled by combination ICB-mediated intermolecular epitope spreading. The concepts explored herein should be exploited for the development of more potent personalized cancer vaccines that can expand the range of tumors treatable with ICB.
Collapse
|
40
|
Pandit M, Kil YS, Ahn JH, Pokhrel RH, Gu Y, Mishra S, Han Y, Ouh YT, Kang B, Jeong MS, Kim JO, Nam JW, Ko HJ, Chang JH. Methionine consumption by cancer cells drives a progressive upregulation of PD-1 expression in CD4 T cells. Nat Commun 2023; 14:2593. [PMID: 37147330 PMCID: PMC10162977 DOI: 10.1038/s41467-023-38316-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 04/25/2023] [Indexed: 05/07/2023] Open
Abstract
Programmed cell death protein 1 (PD-1), expressed on tumor-infiltrating T cells, is a T cell exhaustion marker. The mechanisms underlying PD-1 upregulation in CD4 T cells remain unknown. Here we develop nutrient-deprived media and a conditional knockout female mouse model to study the mechanism underlying PD-1 upregulation. Reduced methionine increases PD-1 expression on CD4 T cells. The genetic ablation of SLC43A2 in cancer cells restores methionine metabolism in CD4 T cells, increasing the intracellular levels of S-adenosylmethionine and yielding H3K79me2. Reduced H3K79me2 due to methionine deprivation downregulates AMPK, upregulates PD-1 expression and impairs antitumor immunity in CD4 T cells. Methionine supplementation restores H3K79 methylation and AMPK expression, lowering PD-1 levels. AMPK-deficient CD4 T cells exhibit increased endoplasmic reticulum stress and Xbp1s transcript levels. Our results demonstrate that AMPK is a methionine-dependent regulator of the epigenetic control of PD-1 expression in CD4 T cells, a metabolic checkpoint for CD4 T cell exhaustion.
Collapse
Affiliation(s)
- Mahesh Pandit
- College of Pharmacy, Yeungnam University, Gyeongsan-si, Gyeongsangbukdo, 38541, Republic of Korea
| | - Yun-Seo Kil
- College of Pharmacy, Yeungnam University, Gyeongsan-si, Gyeongsangbukdo, 38541, Republic of Korea
| | - Jae-Hee Ahn
- Department of Pharmacy, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Ram Hari Pokhrel
- College of Pharmacy, Yeungnam University, Gyeongsan-si, Gyeongsangbukdo, 38541, Republic of Korea
| | - Ye Gu
- College of Pharmacy, Yeungnam University, Gyeongsan-si, Gyeongsangbukdo, 38541, Republic of Korea
| | - Sunil Mishra
- College of Pharmacy, Yeungnam University, Gyeongsan-si, Gyeongsangbukdo, 38541, Republic of Korea
| | - Youngjoo Han
- Department of Pharmacy, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Yung-Taek Ouh
- Department of Obstetrics and Gynecology, School of medicine, Kangwon National University, Chuncheon, 24289, Republic of Korea
| | - Ben Kang
- Department of Pediatrics, School of Medicine, Kyungpook National University, 68-Gukchaebosang-ro, Jung-gu, Daegu, 41944, Republic of Korea
| | - Myeong Seon Jeong
- Chuncheon Center, Korea Basic Science Institute (KBSI), Chuncheon, 24341, Republic of Korea
- Department of Biochemistry, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Jong-Oh Kim
- College of Pharmacy, Yeungnam University, Gyeongsan-si, Gyeongsangbukdo, 38541, Republic of Korea
| | - Joo-Won Nam
- College of Pharmacy, Yeungnam University, Gyeongsan-si, Gyeongsangbukdo, 38541, Republic of Korea
| | - Hyun-Jeong Ko
- Department of Pharmacy, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| | - Jae-Hoon Chang
- College of Pharmacy, Yeungnam University, Gyeongsan-si, Gyeongsangbukdo, 38541, Republic of Korea.
| |
Collapse
|
41
|
Ahmed H, Mahmud AR, Siddiquee MFR, Shahriar A, Biswas P, Shimul MEK, Ahmed SZ, Ema TI, Rahman N, Khan MA, Mizan MFR, Emran TB. Role of T cells in cancer immunotherapy: Opportunities and challenges. CANCER PATHOGENESIS AND THERAPY 2023; 1:116-126. [PMID: 38328405 PMCID: PMC10846312 DOI: 10.1016/j.cpt.2022.12.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 12/11/2022] [Accepted: 12/16/2022] [Indexed: 09/01/2023]
Abstract
Immunotherapies boosting the immune system's ability to target cancer cells are promising for the treatment of various tumor types, yet clinical responses differ among patients and cancers. Recently, there has been increasing interest in novel cancer immunotherapy practices aimed at triggering T cell-mediated anti-tumor responses. Antigen-directed cytotoxicity mediated by T lymphocytes has become a central focal point in the battle against cancer utilizing the immune system. The molecular and cellular mechanisms involved in the actions of T lymphocytes have directed new therapeutic approaches in cancer immunotherapy, including checkpoint blockade, adoptive and chimeric antigen receptor (CAR) T cell therapy, and cancer vaccinology. This review addresses all the strategies targeting tumor pathogenesis, including metabolic pathways, to evaluate the clinical significance of current and future immunotherapies for patients with cancer, which are further engaged in T cell activation, differentiation, and response against tumors.
Collapse
Affiliation(s)
- Hossain Ahmed
- Department of Biotechnology and Genetic Engineering, University of Development Alternative (UODA), 4/4B, Block A, Lalmatia, Dhaka, 1209, Bangladesh
| | - Aar Rafi Mahmud
- Department of Biochemistry and Molecular Biology, Mawlana Bhashani Science and Technology University, Tangail, 1902, Bangladesh
| | | | - Asif Shahriar
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, 78504, USA
| | - Partha Biswas
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology (JUST), Jashore, 7408, Bangladesh
| | - Md. Ebrahim Khalil Shimul
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology (JUST), Jashore, 7408, Bangladesh
| | - Shahlaa Zernaz Ahmed
- Department of Biochemistry and Microbiology, North South University, Dhaka, 1229, Bangladesh
| | - Tanzila Ismail Ema
- Department of Biochemistry and Microbiology, North South University, Dhaka, 1229, Bangladesh
| | - Nova Rahman
- Department of Biochemistry and Molecular Biology, Jahangirnagar University, Savar, Dhaka, 1342, Bangladesh
| | - Md. Arif Khan
- Department of Biotechnology and Genetic Engineering, University of Development Alternative (UODA), 4/4B, Block A, Lalmatia, Dhaka, 1209, Bangladesh
| | | | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, 4381, Bangladesh
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| |
Collapse
|
42
|
CD4 + T cells in cancer. NATURE CANCER 2023; 4:317-329. [PMID: 36894637 DOI: 10.1038/s43018-023-00521-2] [Citation(s) in RCA: 131] [Impact Index Per Article: 131.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 01/20/2023] [Indexed: 03/11/2023]
Abstract
Cancer immunology and immunotherapy are driving forces of research and development in oncology, mostly focusing on CD8+ T cells and the tumor microenvironment. Recent progress highlights the importance of CD4+ T cells, corresponding to the long-known fact that CD4+ T cells are central players and coordinators of innate and antigen-specific immune responses. Moreover, they have now been recognized as anti-tumor effector cells in their own right. Here we review the current status of CD4+ T cells in cancer, which hold great promise for improving knowledge and therapies in cancer.
Collapse
|
43
|
Innocenti L, Ortenzi V, Scarpitta R, Montemurro N, Pasqualetti F, Asseri R, Lazzi S, Szumera-Cieckiewicz A, De Ieso K, Perrini P, Naccarato AG, Scatena C, Fanelli GN. The Prognostic Impact of Gender, Therapeutic Strategies, Molecular Background, and Tumor-Infiltrating Lymphocytes in Glioblastoma: A Still Unsolved Jigsaw. Genes (Basel) 2023; 14:501. [PMID: 36833428 PMCID: PMC9956148 DOI: 10.3390/genes14020501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/21/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023] Open
Abstract
Despite the adoption of novel therapeutical approaches, the outcomes for glioblastoma (GBM) patients remain poor. In the present study, we investigated the prognostic impact of several clinico-pathological and molecular features as well as the role of the cellular immune response in a series of 59 GBM. CD4+ and CD8+ tumor-infiltrating lymphocytes (TILs) were digitally assessed on tissue microarray cores and their prognostic role was investigated. Moreover, the impact of other clinico-pathological features was evaluated. The number of CD4+ and CD8+ is higher in GBM tissue compared to normal brain tissue (p < 0.0001 and p = 0.0005 respectively). A positive correlation between CD4+ and CD8+ in GBM is present (rs = 0.417-p = 0.001). CD4+ TILs are inversely related to overall survival (OS) (HR = 1.79, 95% CI 1.1-3.1, p = 0.035). The presence of low CD4+ TILs combined with low CD8+ TILs is an independent predictor of longer OS (HR 0.38, 95% CI 0.18-0.79, p = 0.014). Female sex is independently related to longer OS (HR 0.42, 95% CI 0.22-0.77, p = 0.006). Adjuvant treatment, methylguanine methyltransferase (MGMT) promoter methylation, and age remain important prognostic factors but are influenced by other features. Adaptive cell-mediated immunity can affect the outcomes of GBM patients. Further studies are needed to elucidate the commitment of the CD4+ cells and the effects of different TILs subpopulations in GBM.
Collapse
Affiliation(s)
- Lorenzo Innocenti
- Division of Pathology, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
| | - Valerio Ortenzi
- Department of Laboratory Medicine, Pisa University Hospital, 56126 Pisa, Italy
| | - Rosa Scarpitta
- Division of Pathology, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
| | - Nicola Montemurro
- Department of Neurosurgery, Pisa University Hospital, 56126 Pisa, Italy
| | - Francesco Pasqualetti
- Department of Radiation Oncology, Pisa University Hospital, 56126 Pisa, Italy
- Department of Oncology, Oxford University, Oxford OX1 4BH, UK
| | - Roberta Asseri
- Division of Pathology, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
| | - Stefano Lazzi
- Anatomic Pathology Unit, Department of Medical Biotechnology, University of Siena, 53100 Siena, Italy
| | - Anna Szumera-Cieckiewicz
- Department of Pathology, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
- Department of Diagnostic Hematology, Institute of Hematology and Transfusion Medicine, 02-776 Warsaw, Poland
| | - Katia De Ieso
- Department of Laboratory Medicine, Pisa University Hospital, 56126 Pisa, Italy
| | - Paolo Perrini
- Department of Neurosurgery, Pisa University Hospital, 56126 Pisa, Italy
| | - Antonio Giuseppe Naccarato
- Division of Pathology, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
- Department of Laboratory Medicine, Pisa University Hospital, 56126 Pisa, Italy
| | - Cristian Scatena
- Division of Pathology, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
- Department of Laboratory Medicine, Pisa University Hospital, 56126 Pisa, Italy
| | - Giuseppe Nicolò Fanelli
- Division of Pathology, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
- Department of Laboratory Medicine, Pisa University Hospital, 56126 Pisa, Italy
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| |
Collapse
|
44
|
Th1-involved immune infiltrates improve neoadjuvant chemoradiotherapy response of esophageal squamous cell carcinoma. Cancer Lett 2023; 553:215959. [PMID: 36279981 DOI: 10.1016/j.canlet.2022.215959] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/28/2022] [Accepted: 10/08/2022] [Indexed: 11/20/2022]
Abstract
Neoadjuvant chemoradiotherapy (NCRT) followed by surgery is recommended for locally advanced esophageal squamous cell carcinoma (ESCC) treatment. Patients who achieve a pathological complete response (pCR) have better survival. Our study aimed to discover immune-associated predictors of pCR in ESCC. Herein, we found that Th1-cell infiltration inferred from RNA sequencing was higher in the pCR group than in the non-pCR group. Multiplexed immunohistochemistry (mIHC) confirmed that Th1-, CD8+ T-, NK-, NKT-, and dendritic-cell infiltration was positively associated with pCR. The spatial relationships between Th1 cells and CD8+ T, NK, NKT, dendritic, or ESCC cells were significant pCR predictors. The active and desert subtypes were identified based on immune cell infiltration, and showed different pCR rates. In vitro experiments confirmed that Th1 cells inhibited the proliferation and improved the chemosensitivity and radiosensitivity of ESCC cells. Th1 cells upregulated interferon-gamma response signaling and antigen presentation pathways and downregulated lipid metabolism and MAPK pathways of ESCC cells. These findings highlight the important role of Th1 cells as the predictor of pCR and the regulator of chemosensitivity and radiosensitivity of ESCC, and suggest elevating Th1-infiltration as a strategy to improve NCRT response.
Collapse
|
45
|
Brightman SE, Naradikian MS, Thota RR, Becker A, Montero L, Bahmanof M, Premlal ALR, Greenbaum JA, Peters B, Cohen EE, Miller AM, Schoenberger SP. Tumor cells fail to present MHC-II-restricted epitopes derived from oncogenes to CD4+ T cells. JCI Insight 2023; 8:165570. [PMID: 36512410 PMCID: PMC9977289 DOI: 10.1172/jci.insight.165570] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 12/07/2022] [Indexed: 12/15/2022] Open
Abstract
CD4+ T cells play a critical role in antitumor immunity via recognition of peptide antigens presented on MHC class II (MHC-II). Although some solid cancers can be induced to express MHC-II, the extent to which this enables direct recognition by tumor-specific CD4+ T cells is unclear. We isolated and characterized T cell antigen receptors (TCRs) from naturally primed CD4+ T cells specific for 2 oncoproteins, HPV-16 E6 and the activating KRASG12V mutation, from patients with head and neck squamous cell carcinoma and pancreatic ductal adenocarcinoma, respectively, and determined their ability to recognize autologous or human leukocyte antigen-matched antigen-expressing tumor cells. We found in both cases that the TCRs were capable of recognizing peptide-loaded target cells expressing the relevant MHC-II or B cell antigen-presenting cells (APCs) when the antigens were endogenously expressed and directed to the endosomal pathway but failed to recognize tumor cells expressing the source protein even after induction of surface MHC-II expression by IFN-γ or transduction with CIITA. These results suggest that priming and functional recognition of both a nuclear (E6) and a membrane-associated (KRAS) oncoprotein are predominantly confined to crosspresenting APCs rather than via direct recognition of tumor cells induced to express MHC-II.
Collapse
Affiliation(s)
- Spencer E. Brightman
- Division of Developmental Immunology, La Jolla Institute for Immunology, La Jolla, California, USA.,Biomedical Sciences Program, School of Medicine, UCSD, La Jolla, California, USA
| | - Martin S. Naradikian
- Division of Developmental Immunology, La Jolla Institute for Immunology, La Jolla, California, USA.,Division of Hematology and Oncology, UCSD Moores Cancer Center, La Jolla, California, USA.,Novartis, San Diego, California, USA
| | - Rukman R. Thota
- Division of Developmental Immunology, La Jolla Institute for Immunology, La Jolla, California, USA
| | - Angelica Becker
- Division of Developmental Immunology, La Jolla Institute for Immunology, La Jolla, California, USA.,IconOVir Bio, San Diego, California, USA
| | - Leslie Montero
- Division of Developmental Immunology, La Jolla Institute for Immunology, La Jolla, California, USA
| | - Milad Bahmanof
- Division of Developmental Immunology, La Jolla Institute for Immunology, La Jolla, California, USA
| | | | | | - Bjoern Peters
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, California, USA.,Department of Medicine, UCSD, La Jolla, California, USA
| | - Ezra E.W. Cohen
- Division of Hematology and Oncology, UCSD Moores Cancer Center, La Jolla, California, USA
| | - Aaron M. Miller
- Division of Developmental Immunology, La Jolla Institute for Immunology, La Jolla, California, USA.,Division of Hematology and Oncology, UCSD Moores Cancer Center, La Jolla, California, USA
| | - Stephen P. Schoenberger
- Division of Developmental Immunology, La Jolla Institute for Immunology, La Jolla, California, USA
| |
Collapse
|
46
|
Shi H, Li J, Liu F, Bi S, Huang W, Luo Y, Zhang M, Song L, Yu R, Zhu J. Characterization of a novel polysaccharide from Arca subcrenata and its immunoregulatory activities in vitro and in vivo. Food Funct 2023; 14:822-835. [PMID: 36622059 DOI: 10.1039/d2fo03483b] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Arca subcrenata is an economical edible shellfish. A novel water-soluble α-D-glucan (ASPG-1) with a molecular weight of 2.56 × 106 Da was purified and characterized from A. subcrenata. Its structure was characterized as a repeating unit consisting of α-D-Glcp, (1 → 6)-α-D-Glcp and (1 → 4,6)-α-D-Glcp. ASPG-1 exerted potent immunoregulatory activity by promoting the viability of splenic lymphocytes. Moreover, it enhanced pinocytic capacity, and promoted the secretion of NO and cytokines in RAW264.7 cells. The immunomodulatory mechanism of ASPG-1 involved the activation of the TLR4-MAPK/Akt-NF-κB signaling pathway. ASPG-1 inhibited tumor growth in 4T1 breast cancer mice and its combination with doxorubicin increased antitumor efficacy. The ASPG-1 combination with DOX-treated group (64.8%) showed an improved tumor inhibition rate compared to that of the DOX-treated group (53.3%). The antitumor mechanism of ASPG-1 may involve an enhancement of the immune response of mice to tumors. These results indicated that ASPG-1 could be developed as a potential adjuvant in tumor immunotherapy.
Collapse
Affiliation(s)
- Hui Shi
- Biotechnological Institute of Chinese Materia Medica, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China. .,Shandong Academy of Pharmaceutical Sciences, Jinan 250101, PR China
| | - Jianhuan Li
- Biotechnological Institute of Chinese Materia Medica, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China.
| | - Fei Liu
- Shandong Academy of Pharmaceutical Sciences, Jinan 250101, PR China
| | - Sixue Bi
- Biotechnological Institute of Chinese Materia Medica, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China.
| | - Weijuan Huang
- Department of Pharmacology, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China.
| | - Yuanyuan Luo
- Department of Pharmacology, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China.
| | - Man Zhang
- Biotechnological Institute of Chinese Materia Medica, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China.
| | - Liyan Song
- Department of Pharmacology, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China.
| | - Rongmin Yu
- Biotechnological Institute of Chinese Materia Medica, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China. .,Shandong Academy of Pharmaceutical Sciences, Jinan 250101, PR China
| | - Jianhua Zhu
- Biotechnological Institute of Chinese Materia Medica, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China. .,Shandong Academy of Pharmaceutical Sciences, Jinan 250101, PR China
| |
Collapse
|
47
|
Nakamura T, Kajihara N, Hama N, Kobayashi T, Otsuka R, Han N, Wada H, Hasegawa Y, Suzuki N, Seino KI. Interleukin-34 cancels anti-tumor immunity by PARP inhibitor. J Gynecol Oncol 2022; 34:e25. [PMID: 36603850 PMCID: PMC10157335 DOI: 10.3802/jgo.2023.34.e25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 10/05/2022] [Accepted: 11/30/2022] [Indexed: 01/05/2023] Open
Abstract
OBJECTIVE Breast cancer susceptibility gene 1 (BRCA1)-associated ovarian cancer patients have been treated with A poly (ADP-ribose) polymerase (PARP) inhibitor, extending the progression-free survival; however, they finally acquire therapeutic resistance. Interleukin (IL)-34 has been reported as a poor prognostic factor in several cancers, including ovarian cancer, and it contributes to the therapeutic resistance of chemotherapies. IL-34 may affect the therapeutic effect of PARP inhibitor through the regulation of tumor microenvironment (TME). METHODS In this study, The Cancer Genome Atlas (TCGA) data set was used to evaluate the prognosis of IL-34 and human ovarian serous carcinoma. We also used CRISPR-Cas9 genome editing technology in a mouse model to evaluate the efficacy of PARP inhibitor therapy in the presence or absence of IL-34. RESULTS We found that IL34 was an independent poor prognostic factor in ovarian serous carcinoma, and its high expression significantly shortens overall survival. Furthermore, in BRCA1-associated ovarian cancer, PARP inhibitor therapy contributes to anti-tumor immunity via the XCR1+ DC-CD8+ T cell axis, however, it is canceled by the presence of IL-34. CONCLUSION These results suggest that tumor-derived IL-34 benefits tumors by creating an immunosuppressive TME and conferring PARP inhibitor therapeutic resistance. Thus, we showed the pathological effect of IL-34 and the need for it as a therapeutic target in ovarian cancer.
Collapse
Affiliation(s)
- Takayoshi Nakamura
- Division of Immunobiology, Graduate School of Medicine, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan.,Department of Obstetrics and Gynecology, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Nabeel Kajihara
- Division of Immunobiology, Graduate School of Medicine, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Naoki Hama
- Division of Immunobiology, Graduate School of Medicine, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Takuto Kobayashi
- Division of Immunobiology, Graduate School of Medicine, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Ryo Otsuka
- Division of Immunobiology, Graduate School of Medicine, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Nanumi Han
- Division of Immunobiology, Graduate School of Medicine, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Haruka Wada
- Division of Immunobiology, Graduate School of Medicine, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Yoshinori Hasegawa
- Department of Applied Genomics, Kazusa DNA Research Institute, Kisarazu, Japan
| | - Nao Suzuki
- Department of Obstetrics and Gynecology, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Ken-Ichiro Seino
- Division of Immunobiology, Graduate School of Medicine, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan.
| |
Collapse
|
48
|
Al-Saafeen BH, Al-Sbiei A, Bashir G, Mohamed YA, Masad RJ, Fernandez-Cabezudo MJ, al-Ramadi BK. Attenuated Salmonella potentiate PD-L1 blockade immunotherapy in a preclinical model of colorectal cancer. Front Immunol 2022; 13:1017780. [PMID: 36605208 PMCID: PMC9807881 DOI: 10.3389/fimmu.2022.1017780] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 11/24/2022] [Indexed: 12/24/2022] Open
Abstract
The use of immune checkpoint inhibitors to treat cancer resulted in unprecedented and durable clinical benefits. However, the response rate among patients remains rather modest. Previous work from our laboratory demonstrated the efficacy of using attenuated bacteria as immunomodulatory anti-cancer agents. The current study investigated the potential of utilizing a low dose of attenuated Salmonella typhimurium to enhance the efficacy of PD-L1 blockade in a relatively immunogenic model of colon cancer. The response of MC38 tumors to treatment with αPD-L1 monoclonal antibody (mAb) was variable, with only 30% of the mice being responsive. Combined treatment with αPD-L1 mAb and Salmonella resulted in 75% inhibition of tumor growth in 100% of animals. Mechanistically, the enhanced response correlated with a decrease in the percentage of tumor-associated granulocytic cells, upregulation in MHC class II expression by intratumoral monocytes and an increase in tumor infiltration by effector T cells. Collectively, these alterations resulted in improved anti-tumor effector responses and increased apoptosis within the tumor. Thus, our study demonstrates that a novel combination treatment utilizing attenuated Salmonella and αPD-L1 mAb could improve the outcome of immunotherapy in colorectal cancer.
Collapse
Affiliation(s)
- Besan H. Al-Saafeen
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Ashraf Al-Sbiei
- Department of Biochemistry and Molecular Biology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Ghada Bashir
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Yassir A. Mohamed
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Razan J. Masad
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Maria J. Fernandez-Cabezudo
- Department of Biochemistry and Molecular Biology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates,Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Basel K. al-Ramadi
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates,Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates,*Correspondence: Basel K. al-Ramadi,
| |
Collapse
|
49
|
Tong Y, Huang J, Ren W, Yu J, Zhang X, Wang Z, Hong J, Gao W, Wu J, Ji M, Shen K, Chen X. Association of tumor immune microenvironment profiling and 21-gene recurrence assay in early breast cancer patients. Eur J Med Res 2022; 27:293. [PMID: 36528658 PMCID: PMC9758791 DOI: 10.1186/s40001-022-00917-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022] Open
Abstract
INTRODUCTION Tumor immune microenvironment (TIME) plays a vital role in breast cancer development, treatment resistance, and prognosis. This study evaluates the association of TIME profiling and 21-gene recurrence score (RS) in early Luminal breast cancer patients. METHODS ER+ /HER2-, pN0 breast cancer patients with available RS results who received surgery between January 2009 and December 2013 were enrolled. TIME markers, including stromal tumor infiltrating lymphocytes (TILs), CD3, CD4, CD8, and tumor PD-L1 expression, were comprehensively analyzed. Association of TIME markers with RS, as well as their correlation with breast cancer-specific survival (BCSS) were tested. RESULTS Overall, 385 patients were included, of whom 341 (88.6%) had TILs ≤10%. TIME markers were positively but moderately correlated with each other (Spearman r 0.28-0.53, all P < 0.05). Continuous RS showed a weak correlation with continuous TILs, CD3, CD8, and PD-L1. Regarding single gene mRNA level in the 21-gene RS panel, higher expression of TIME markers was related to lower ER group genes expression, but higher proliferation and invasion group genes level. After a median follow-up of 91.67 (range 5.03-134.03) months, TILs (P = 0.049) and PD-L1 (P = 0.034) were inversely associated with BCSS. CONCLUSIONS Breast cancer TIME markers, including TILs, CD3, CD4, CD8, and PD-L1, were correlated with 21-gene RS score. Lower expression of ER group genes, as well as higher expression of proliferation and invasion group genes were associated with a higher level of these TIME markers, warranting further exploration.
Collapse
Affiliation(s)
- Yiwei Tong
- grid.412277.50000 0004 1760 6738Department of General Surgery, Comprehensive Breast Health Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025 China
| | - Jiahui Huang
- grid.412277.50000 0004 1760 6738Department of General Surgery, Comprehensive Breast Health Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025 China
| | - Weili Ren
- Department of Breast Surgery, Shaoxing Shangyu People’s Hospital, Shaoxing, 312300 Zhejiang China
| | - Jing Yu
- grid.412277.50000 0004 1760 6738Department of General Surgery, Comprehensive Breast Health Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025 China
| | - Xu Zhang
- grid.412277.50000 0004 1760 6738Department of General Surgery, Comprehensive Breast Health Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025 China
| | - Zheng Wang
- grid.412277.50000 0004 1760 6738Department of General Surgery, Comprehensive Breast Health Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025 China
| | - Jin Hong
- grid.412277.50000 0004 1760 6738Department of General Surgery, Comprehensive Breast Health Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025 China
| | - Weiqi Gao
- grid.412277.50000 0004 1760 6738Department of General Surgery, Comprehensive Breast Health Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025 China
| | - Jiayi Wu
- grid.412277.50000 0004 1760 6738Department of General Surgery, Comprehensive Breast Health Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025 China
| | - Min Ji
- grid.452587.9Department of Breast, International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, 910 Hengshan Road, Shanghai, 200030 China
| | - Kunwei Shen
- grid.412277.50000 0004 1760 6738Department of General Surgery, Comprehensive Breast Health Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025 China
| | - Xiaosong Chen
- grid.412277.50000 0004 1760 6738Department of General Surgery, Comprehensive Breast Health Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025 China
| |
Collapse
|
50
|
Impact of the selective A2 AR and A2 BR dual antagonist AB928/etrumadenant on CAR T cell function. Br J Cancer 2022; 127:2175-2185. [PMID: 36266575 PMCID: PMC9726885 DOI: 10.1038/s41416-022-02013-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 09/13/2022] [Accepted: 10/04/2022] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Chimeric antigen receptor (CAR) T cell therapy has been successfully translated to clinical practice for the treatment of B cell malignancies. The suppressive microenvironment of many malignancies is a bottleneck preventing treatment success of CAR T cells in a broader range of tumours. Among others, the immunosuppressive metabolite adenosine is present in high concentrations within many tumours and dampens anti-tumour function of immune cells and consequently therapeutic response. METHODS Here, we present the impact of the selective adenosine A2A and A2B receptor antagonist AB928/etrumadenant on CAR T cell cytokine secretion, proliferation, and cytotoxicity. Using phosphorylation-specific flow cytometry, we evaluated the capability of AB928 to shield CAR T cells from adenosine-mediated signalling. The effect of orally administered AB928 on CAR T cells was assessed in a syngeneic mouse model of colon carcinoma. RESULTS We found that immunosuppressive signalling in CAR T cells in response to adenosine was fully blocked by the small molecule inhibitor. AB928 treatment enhanced CAR T cell cytokine secretion and proliferation, granted efficient cytolysis of tumour cells in vitro and augmented CAR T cell activation in vivo. CONCLUSIONS Together our results suggest that combination therapy with AB928 represents a promising approach to improve adoptive cell therapy.
Collapse
|