1
|
Galán-Vidal J, García-Gaipo L, Molinuevo R, Dias S, Tsoi A, Gómez-Román J, Elder JT, Hochegger H, Gandarillas A. Sumo-regulatory SENP2 controls the homeostatic squamous mitosis-differentiation checkpoint. Cell Death Dis 2024; 15:596. [PMID: 39152119 PMCID: PMC11329632 DOI: 10.1038/s41419-024-06969-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 07/29/2024] [Accepted: 08/01/2024] [Indexed: 08/19/2024]
Abstract
Squamous or epidermoid cancer arises in stratified epithelia but also is frequent in the non-epidermoid epithelium of the lung by unclear mechanisms. A poorly studied mitotic checkpoint drives epithelial cells bearing irreparable genetic damage into epidermoid differentiation. We performed an RNA-sequencing gene search to target unknown regulators of this response and selected the SUMO regulatory protein SENP2. Alterations of SENP2 expression have been associated with some types of cancer. We found the protein to be strongly localised to mitotic spindles of freshly isolated human epidermal cells. Primary cells rapidly differentiated after silencing SENP2 with specific shRNAs. Loss of SENP2 produced in synchronised epithelial cells delays in mitotic entry and exit and defects in chromosomal alignment. The results altogether strongly argue for an essential role of SENP2 in the mitotic spindle and hence in controlling differentiation. In addition, the expression of SENP2 displayed an inverse correlation with the immuno-checkpoint biomarker PD-L1 in a pilot collection of aggressive lung carcinomas. Consistently, metastatic head and neck cancer cells that do not respond to the mitosis-differentiation checkpoint were resistant to depletion of SENP2. Our results identify SENP2 as a novel regulator of the epithelial mitosis-differentiation checkpoint and a potential biomarker in epithelial cancer.
Collapse
Affiliation(s)
- Jesús Galán-Vidal
- Cell cycle, Stem Cell Fate and Cancer Laboratory, Institute for Research Marqués de Valdecilla (IDIVAL), 39011, Santander, Spain
| | - Lorena García-Gaipo
- Cell cycle, Stem Cell Fate and Cancer Laboratory, Institute for Research Marqués de Valdecilla (IDIVAL), 39011, Santander, Spain
| | - Rut Molinuevo
- Cell cycle, Stem Cell Fate and Cancer Laboratory, Institute for Research Marqués de Valdecilla (IDIVAL), 39011, Santander, Spain
| | - Samantha Dias
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, BN19RQ, UK
| | - Alex Tsoi
- Department of Dermatology, University of Michigan, Ann Arbor, MI, USA
- Dermatology Service, Ann Arbor Veterans Affairs Hospital, Ann Arbor, MI, USA
| | - Javier Gómez-Román
- Pathology Department, Marqués de Valdecilla University Hospital, Institute of Research Valdecilla (IDIVAL), School of Medicine, University of Cantabria, 39008, Santander, Spain
| | - James T Elder
- Department of Dermatology, University of Michigan, Ann Arbor, MI, USA
- Dermatology Service, Ann Arbor Veterans Affairs Hospital, Ann Arbor, MI, USA
| | - Helfrid Hochegger
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, BN19RQ, UK
| | - Alberto Gandarillas
- Cell cycle, Stem Cell Fate and Cancer Laboratory, Institute for Research Marqués de Valdecilla (IDIVAL), 39011, Santander, Spain.
- Institut national de la santé et de la recherche médicale, (INSERM), Délégation Occitanie, 34394, Montpellier, France.
| |
Collapse
|
2
|
Li H, Tang X, Sun Z, Qu Z, Zou X. Integrating bioinformatics and experimental models to investigate the mechanism of the chelidonine-induced mitotic catastrophe via the AKT/FOXO3/FOXM1 axis in breast cancer cells. BIOMOLECULES & BIOMEDICINE 2024; 24:560-574. [PMID: 37976368 PMCID: PMC11088894 DOI: 10.17305/bb.2023.9665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/25/2023] [Accepted: 11/15/2023] [Indexed: 11/19/2023]
Abstract
Breast cancer (BC) is currently the most frequent and lethal cancer among women, and therefore, identification of novel biomarkers and potential anticancer agents for BC is crucial. Chelidonine is one of the main active ingredients of Chelidonium majus, which has been applied in Chinese medicine prescriptions to treat cancer. This paper aimed to evaluate the ability of chelidonine to trigger mitotic catastrophe in BC cells and to clarify its mechanism through the AKT/FOXO3/FOXM1 pathway. Bioinformatics analysis revealed that forkhead box O3 (FOXO3) was downregulated in different subtypes of BC. Factors such as age, stage, Scarff-Bloom-Richardson (SBR) grade, diverse BC subclasses, and triple-negative status were inversely correlated to FOXO3 levels in BC patients compared with healthy controls. Notably, patients exhibiting higher FOXO3 expression levels demonstrated better overall survival (OS) and relapse-free survival (RFS). Moreover, FOXM1 levels were negatively correlated with both OS and RFS in BC patients. These results revealed that FOXO3 might be considered a predictive biomarker for the prognosis of BC. By utilizing Gene Set Enrichment Analysis (GSEA), we delved into the main Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment pathways of FOXO3, and the results suggested that FOXO3 was mainly involved in cancer-related pathways and the cell cycle. Thereafter, MTT and flow cytometry (FCM) analysis indicated that chelidonine inhibited BC cell line proliferation and induced M phase arrest. It was found that chelidonine treatment induced MCF-7 cell apoptosis, significantly reduced the expression of survivin and promoted the expression of p53 and caspase-9. Further morphological observation illustrated depolymerization of the actin skeleton and shortening of actin filaments in BC cells, leading to the typical characteristics of mitotic catastrophe, such as abnormal mitosis and multinucleated cells. Western blot analysis demonstrated that chelidonine inhibited the expression of p-AKT to promote the expression of FOXO3 protein and weaken the expression levels of FOXM1 and polo-like kinase 1 (PLK1). Taken together, our present work proved that FOXO3 might be considered a potential therapeutic target for BC. Chelidonine emerges as a promising agent to treat BC by inducing M phase arrest of BC cells and hindering the AKT/FOXO3/FOXM1 axis, thereby inducing mitotic catastrophe in BC.
Collapse
Affiliation(s)
- Huimin Li
- College of Pharmacy, Harbin University of Commerce, Harbin, China
| | - Xiyu Tang
- College of Pharmacy, Harbin University of Commerce, Harbin, China
| | - Zhiwei Sun
- Pharmaceutical Engineering Technology Research Center, Harbin University of Commerce, Harbin, China
| | - Zhongyuan Qu
- College of Pharmacy, Harbin University of Commerce, Harbin, China
| | - Xiang Zou
- Pharmaceutical Engineering Technology Research Center, Harbin University of Commerce, Harbin, China
| |
Collapse
|
3
|
Jefferson TB, Wang T, Jefferson WN, Li Y, Hamilton KJ, Wade PA, Williams CJ, Korach KS. Multiple tissue-specific epigenetic alterations regulate persistent gene expression changes following developmental DES exposure in mouse reproductive tissues. Epigenetics 2023; 18:2139986. [PMID: 36328762 PMCID: PMC9980695 DOI: 10.1080/15592294.2022.2139986] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 10/12/2022] [Indexed: 11/06/2022] Open
Abstract
Clinically, developmental exposure to the endocrine disrupting chemical, diethylstilboestrol (DES), results in long-term male and female infertility. Experimentally, developmental exposure to DES results in abnormal reproductive tract phenotypes in male and female mice. Previously, we reported that neonatal DES exposure causes ERα-mediated aberrations in the transcriptome and in DNA methylation in seminal vesicles (SVs) of adult mice. However, only a subset of DES-altered genes could be explained by changes in DNA methylation. We hypothesized that alterations in histone modification may also contribute to the altered transcriptome during SV development. To test this idea, we performed a series of genome-wide analyses of mouse SVs at pubertal and adult developmental stages in control and DES-exposed wild-type and ERα knockout mice. Neonatal DES exposure altered ERα-mediated mRNA and lncRNA expression in adult SV, including genes encoding chromatin-modifying proteins that can impact histone H3K27ac modification. H3K27ac patterns, particularly at enhancers, and DNA methylation were reprogrammed over time during normal SV development and after DES exposure. Some of these reprogramming changes were ERα-dependent, but others were ERα-independent. A substantial number of DES-altered genes had differential H3K27ac peaks at nearby enhancers. Comparison of gene expression changes, H3K27ac marks and DNA methylation marks between adult SV and adult uterine tissue from ovariectomized mice neonatally exposed to DES revealed that most of the epigenetic changes and altered genes were distinct in the two tissues. These findings indicate that the effects of developmental DES exposure cause reprogramming of reproductive tract tissue differentiation through multiple epigenetic mechanisms.
Collapse
Affiliation(s)
- Tanner B. Jefferson
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, 27709, USA
| | - Tianyuan Wang
- Integrative Bioinformatics, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, 27709, USA
| | - Wendy N. Jefferson
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, 27709, USA
| | - Yin Li
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, 27709, USA
| | - Katherine J. Hamilton
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, 27709, USA
| | - Paul A. Wade
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, 27709, USA
| | - Carmen J. Williams
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, 27709, USA
| | - Kenneth S. Korach
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, 27709, USA
| |
Collapse
|
4
|
Padilla-Banks E, Jefferson WN, Papas BN, Suen AA, Xu X, Carreon DV, Willson CJ, Quist EM, Williams CJ. Developmental estrogen exposure in mice disrupts uterine epithelial cell differentiation and causes adenocarcinoma via Wnt/β-catenin and PI3K/AKT signaling. PLoS Biol 2023; 21:e3002334. [PMID: 37856394 PMCID: PMC10586657 DOI: 10.1371/journal.pbio.3002334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 09/12/2023] [Indexed: 10/21/2023] Open
Abstract
Tissue development entails genetically programmed differentiation of immature cell types to mature, fully differentiated cells. Exposure during development to non-mutagenic environmental factors can contribute to cancer risk, but the underlying mechanisms are not understood. We used a mouse model of endometrial adenocarcinoma that results from brief developmental exposure to an estrogenic chemical, diethylstilbestrol (DES), to determine causative factors. Single-cell RNA sequencing (scRNAseq) and spatial transcriptomics of adult control uteri revealed novel markers of uterine epithelial stem cells (EpSCs), identified distinct luminal and glandular progenitor cell (PC) populations, and defined glandular and luminal epithelium (LE) cell differentiation trajectories. Neonatal DES exposure disrupted uterine epithelial cell differentiation, resulting in a failure to generate an EpSC population or distinguishable glandular and luminal progenitors or mature cells. Instead, the DES-exposed epithelial cells were characterized by a single proliferating PC population and widespread activation of Wnt/β-catenin signaling. The underlying endometrial stromal cells had dramatic increases in inflammatory signaling pathways and oxidative stress. Together, these changes activated phosphoinositide 3-kinase/AKT serine-threonine kinase signaling and malignant transformation of cells that were marked by phospho-AKT and the cancer-associated protein olfactomedin 4. Here, we defined a mechanistic pathway from developmental exposure to an endocrine disrupting chemical to the development of adult-onset cancer. These findings provide an explanation for how human cancers, which are often associated with abnormal activation of PI3K/AKT signaling, could result from exposure to environmental insults during development.
Collapse
Affiliation(s)
- Elizabeth Padilla-Banks
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, United States of America
| | - Wendy N. Jefferson
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, United States of America
| | - Brian N. Papas
- Integrative Bioinformatics, Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, United States of America
| | - Alisa A. Suen
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, United States of America
| | - Xin Xu
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, United States of America
| | - Diana V. Carreon
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, United States of America
| | - Cynthia J. Willson
- Inotiv-RTP, Research Triangle Park, North Carolina, United States of America
| | - Erin M. Quist
- Experimental Pathology Laboratories, Research Triangle Park, North Carolina, United States of America
| | - Carmen J. Williams
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, United States of America
| |
Collapse
|
5
|
Wan X, Zhao S, Dai Y, Zhang J, Shen Y, Gong L, Le Q. WNT16b promotes the proliferation and self-renewal of human limbal epithelial stem/progenitor cells via activating the calcium/calcineurin A/NFATC2 pathway. Cell Prolif 2023; 56:e13460. [PMID: 36974338 PMCID: PMC10542615 DOI: 10.1111/cpr.13460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 03/06/2023] [Accepted: 03/15/2023] [Indexed: 03/29/2023] Open
Abstract
Our previous finding revealed that WNT16b promoted the proliferation of human limbal epithelial stem cells (hLESCs) through a β-catenin independent pathway. Here, we aimed to explore its underlying molecular mechanism and evaluate its potential in the treatment of limbal stem cell deficiency (LSCD). Based on the findings of mRNA-sequencing, the expression of key molecules in WNT/calcineurin A/NFATC2 signalling pathway was investigated in WNT16b-co-incubated hLESCs and control hLESCs. An epithelial wound healing model was established on Wnt16b-KO mice to confirm the regulatory effect of WNT16b in vivo. The therapeutic potential of WNT16b-co-incubated hLESCs was also evaluated in mice with LSCD. Our findings showed that WNT16b bound with Frizzled7, promoted the release of Ca2+ and activated calcineurin A and NFATC2. With the translocation of NFATC2 into cell nucleus and the activation of HDAC3, WDR5 and GCN5L2, the expression of H3K4me3, H3K14ac and H3K27ac in the promoter regions of FoxM1 and c-MYC increased, which led to hLESC proliferation. The effect of the WNT16b/calcium/calcineurin A/NFATC2 pathway on LESC homeostasis maintenance and corneal epithelial repair was confirmed in Wnt16b-KO mice. Moreover, WNT16b-coincubated hLESCs could reconstruct a stable ocular surface and inhibit corneal neovascularization in mice with LSCD. In conclusion, WNT16b enhances the proliferation and maintains the stemness of hLESCs by activating the non-canonical calcium/calcineurin A/NFATC2 pathway in vitro and in vivo, and accelerates corneal epithelial wound healing.
Collapse
Affiliation(s)
- Xichen Wan
- Department of OphthalmologyEye, Ear, Nose and Throat Hospital of Fudan UniversityFudanChina
| | - Songjiao Zhao
- Department of Ophthalmology, Shanghai General HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yiqin Dai
- Department of OphthalmologyEye, Ear, Nose and Throat Hospital of Fudan UniversityFudanChina
- Research CentreEye, Ear, Nose and Throat Hospital of Fudan UniversityFudanChina
| | - Jing Zhang
- Department of OphthalmologyEye, Ear, Nose and Throat Hospital of Fudan UniversityFudanChina
- Research CentreEye, Ear, Nose and Throat Hospital of Fudan UniversityFudanChina
| | - Yan Shen
- Department of OphthalmologyEye, Ear, Nose and Throat Hospital of Fudan UniversityFudanChina
| | - Lan Gong
- Department of OphthalmologyEye, Ear, Nose and Throat Hospital of Fudan UniversityFudanChina
- Myopia Key Laboratory of Ministry of HealthEye, Ear, Nose and Throat Hospital of Fudan UniversityFudanChina
| | - Qihua Le
- Department of OphthalmologyEye, Ear, Nose and Throat Hospital of Fudan UniversityFudanChina
- Research CentreEye, Ear, Nose and Throat Hospital of Fudan UniversityFudanChina
- Myopia Key Laboratory of Ministry of HealthEye, Ear, Nose and Throat Hospital of Fudan UniversityFudanChina
| |
Collapse
|
6
|
Parikh AS, Yu VX, Flashner S, Okolo OB, Lu C, Henick BS, Momen-Heravi F, Puram SV, Teknos T, Pan Q, Nakagawa H. Patient-derived three-dimensional culture techniques model tumor heterogeneity in head and neck cancer. Oral Oncol 2023; 138:106330. [PMID: 36773387 PMCID: PMC10126876 DOI: 10.1016/j.oraloncology.2023.106330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/08/2022] [Accepted: 01/25/2023] [Indexed: 02/11/2023]
Abstract
Head and neck squamous cell carcinoma (HNSCC) outcomes remain stagnant, in part due to a poor understanding of HNSCC biology. The importance of tumor heterogeneity as an independent predictor of outcomes and treatment failure in HNSCC has recently come to light. With this understanding, 3D culture systems, including patient derived organoids (PDO) and organotypic culture (OTC), that capture this heterogeneity may allow for modeling and manipulation of critical subpopulations, such as p-EMT, as well as interactions between cancer cells and immune and stromal cells in the microenvironment. Here, we review work that has been done using PDO and OTC models of HNSCC, which demonstrates that these 3D culture models capture in vivo tumor heterogeneity and can be used to model tumor biology and treatment response in a way that faithfully recapitulates in vivo characteristics. As such, in vitro 3D culture models represent an important bridge between 2D monolayer culture and in vivo models such as patient derived xenografts.
Collapse
Affiliation(s)
- Anuraag S Parikh
- Department of Otolaryngology-Head and Neck Surgery, Columbia University, New York, NY, United States; Columbia University Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, United States
| | - Victoria X Yu
- Department of Otolaryngology-Head and Neck Surgery, Columbia University, New York, NY, United States
| | - Samuel Flashner
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, New York, NY, United States
| | - Ogoegbunam B Okolo
- Columbia University Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, United States
| | - Chao Lu
- Department of Genetics and Development, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, United States
| | - Brian S Henick
- Division of Hematology/Oncology, Department of Medicine, Columbia Unversity, New York, NY, United States
| | - Fatemeh Momen-Heravi
- Columbia University College of Dental Medicine, Columbia University, New York, NY, United States
| | - Sidharth V Puram
- Department of Otolaryngology-Head and Neck Surgery, Washington University School of Medicine, St. Louis, MO, United States; Department of Genetics, Washington University School of Medicine, St. Louis, MO, United States
| | - Theodoros Teknos
- Department of Otolaryngology, Case Western Reserve University, Cleveland, OH, United States
| | - Quintin Pan
- Department of Otolaryngology, Case Western Reserve University, Cleveland, OH, United States
| | - Hiroshi Nakagawa
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, New York, NY, United States.
| |
Collapse
|
7
|
Pan Z, Zhang M, Zhang F, Pan H, Li Y, Shao Y, Yuan X, Wang J, Chen J. Single-Cell Transcriptomics Unveils the Dedifferentiation Mechanism of Lung Adenocarcinoma Stem Cells. Int J Mol Sci 2022; 24:ijms24010482. [PMID: 36613925 PMCID: PMC9820263 DOI: 10.3390/ijms24010482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/14/2022] [Accepted: 12/17/2022] [Indexed: 12/30/2022] Open
Abstract
Lung adenocarcinoma (LUAD) is a major subtype of lung cancer, and its prognosis is still poor due to therapy resistance, metastasis, and recurrence. In recent years, increasing evidence has shown that the existence of lung cancer stem cells is responsible for the propagation, metastasis, therapy resistance, and recurrence of the tumor. During their transition to cancer stem cells, tumor cells need to inhibit cell differentiation and acquire invasive characteristics. However, our understanding of the property and role of such lung cancer stem cells is still limited. In this study, lung adenocarcinoma cancer stem cells (LCSCs) were enriched from the PC-9 cell line in a serum-free condition. PC-9 cells grew into spheres and showed higher survival rates when exposed to gefitinib: the drug used for the treatment of LUAD. Additionally, we found that the canonical stemness marker protein CD44 was significantly increased in the enriched LCSCs. Then, LCSCs were inoculated into the groin of nude mice for 1.5 months, and tumors were detected in the animals, indicating the strong stemness of the cells. After that, we performed single-cell RNA sequencing (scRNA-seq) on 7320 LCSCs and explored the changes in their transcriptomic signatures. We identified cell populations with a heterogeneous expression of cancer stem marker genes in LCSCs and subsets with different degrees of differentiation. Further analyses revealed that the activation of the FOXM1 (oncoprotein) transcription factor is a key factor in cell dedifferentiation, which enables tumor cells to acquire an epithelial-mesenchymal transition phenotype and increases the LCSC surface marker CD44. Moreover, we found that the combination of CD44, ABCG2, and ALCAM was a specific marker for LCSCs. In summary, this study identified the potential factors and molecular mechanisms underlying the stemness properties of LUAD cancer cells; it could also provide insight into developing novel and effective therapeutic approaches.
Collapse
Affiliation(s)
- Zhenhua Pan
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Meidi Zhang
- School of Biomedical Engineering, Tianjin Medical University, Tianjin 300070, China
| | - Fengyu Zhang
- School of Biomedical Engineering, Tianjin Medical University, Tianjin 300070, China
| | - Hongli Pan
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yongwen Li
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yi Shao
- Department of Lung Cancer Surgery, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Xin Yuan
- School of Biomedical Engineering, Tianjin Medical University, Tianjin 300070, China
| | - Ju Wang
- School of Biomedical Engineering, Tianjin Medical University, Tianjin 300070, China
- Correspondence: (J.W.); (J.C.)
| | - Jun Chen
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
- Department of Lung Cancer Surgery, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
- Correspondence: (J.W.); (J.C.)
| |
Collapse
|
8
|
Kanojia D, Kirtonia A, Srujana NSV, Jeevanandan SP, Shyamsunder P, Sampath SS, Dakle P, Mayakonda A, Kaur H, Yanyi J, Koeffler HP, Garg M. Transcriptome analysis identifies TODL as a novel lncRNA associated with proliferation, differentiation, and tumorigenesis in liposarcoma through FOXM1 Running Title: TODL lncRNA as a potential therapeutic target for liposarcoma. Pharmacol Res 2022; 185:106462. [PMID: 36167276 DOI: 10.1016/j.phrs.2022.106462] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/14/2022] [Accepted: 09/19/2022] [Indexed: 11/15/2022]
Abstract
Liposarcoma, the most common soft tissue sarcoma, is a group of fat cell mesenchymal tumors with different histological subtypes. The dysregulation of long non-coding RNAs (lncRNAs) has been observed in human cancers including a few studies in sarcoma. However, the global transcriptome analysis and potential role of lncRNAs remain unexplored in liposarcoma. The present investigation uncovers the transcriptomic profile of liposarcoma by RNA sequencing to gain insight into the global transcriptional changes in liposarcoma. Our RNA sequencing analysis has identified that many oncogenic lncRNAs are differentially expressed in different subtypes of liposarcoma including MALAT1, PVT1, SNHG15, LINC00152, and MIR210HG. Importantly, we identified a highly overexpressed, unannotated, and novel lncRNA in dedifferentiated liposarcomas. We have named it TODL, transcript overexpressed in dedifferentiated liposarcoma. TODL lncRNA displayed significantly higher expression in dedifferentiated liposarcoma cell lines and patient samples. Interestingly, functional studies revealed that TODL lncRNA has an oncogenic function in liposarcoma cells by regulating proliferation, cell cycle, apoptosis, differentiation, and tumorigenesis in the murine model. Silencing of TODL lncRNA highlighted the enrichment of several key oncogenic signaling pathways including cell cycle, transcriptional misregulation, FOXM1 network, p53 signaling, PLK1 signaling, FoxO, and signaling Aurora signaling pathways. RNA pull-down assay revealed the binding of TODL lncRNA with FOXM1, an oncogenic transcription factor, and the key regulator of the cell cycle. Silencing of TODL lncRNA also induces adipogenesis in dedifferentiated liposarcomas. Altogether, our finding indicates that TODL could be utilized as a novel, specific diagnostic biomarker, and a pharmacological target for therapeutic development in controlling aggressive and metastatic dedifferentiated liposarcomas.
Collapse
Affiliation(s)
- Deepika Kanojia
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore.
| | - Anuradha Kirtonia
- Amity Institute of Molecular Medicine & Stem Cell Research (AIMMSCR), Amity University, Sector-125, Noida, Uttar Pradesh, 201313, India
| | | | | | - Pavithra Shyamsunder
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore
| | | | - Pushkar Dakle
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore
| | - Anand Mayakonda
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore; Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Heidelberg, 69120, Germany
| | - Harvinder Kaur
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore
| | - Jiang Yanyi
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore
| | - H Phillip Koeffler
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore; Division of Hematology/Oncology, Cedars-Sinai Medical Center, University of California, School of Medicine, Los Angeles, California, 90048, USA
| | - Manoj Garg
- Amity Institute of Molecular Medicine & Stem Cell Research (AIMMSCR), Amity University, Sector-125, Noida, Uttar Pradesh, 201313, India.
| |
Collapse
|
9
|
Liang SK, Hsu CC, Song HL, Huang YC, Kuo CW, Yao X, Li CC, Yang HC, Hung YL, Chao SY, Wu SC, Tsai FR, Chen JK, Liao WN, Cheng SC, Tsou TC, Wang IC. FOXM1 is required for small cell lung cancer tumorigenesis and associated with poor clinical prognosis. Oncogene 2021; 40:4847-4858. [PMID: 34155349 DOI: 10.1038/s41388-021-01895-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 05/26/2021] [Accepted: 06/04/2021] [Indexed: 12/12/2022]
Abstract
Small cell lung cancer (SCLC) continues to cause poor clinical outcomes due to limited advances in sustained treatments for rapid cancer cell proliferation and progression. The transcriptional factor Forkhead Box M1 (FOXM1) regulates cell proliferation, tumor initiation, and progression in multiple cancer types. However, its biological function and clinical significance in SCLC remain unestablished. Analysis of the Cancer Cell Line Encyclopedia and SCLC datasets in the present study disclosed significant upregulation of FOXM1 mRNA in SCLC cell lines and tissues. Gene set enrichment analysis (GSEA) revealed that FOXM1 is positively correlated with pathways regulating cell proliferation and DNA damage repair, as evident from sensitization of FOXM1-depleted SCLC cells to chemotherapy. Furthermore, Foxm1 knockout inhibited SCLC formation in the Rb1fl/flTrp53fl/flMycLSL/LSL (RPM) mouse model associated with increased levels of neuroendocrine markers, Ascl1 and Cgrp, and decrease in Yap1. Consistently, FOXM1 depletion in NCI-H1688 SCLC cells reduced migration and enhanced apoptosis and sensitivity to cisplatin and etoposide. SCLC with high FOXM1 expression (N = 30, 57.7%) was significantly correlated with advanced clinical stage, extrathoracic metastases, and decrease in overall survival (OS), compared with the low-FOXM1 group (7.90 vs. 12.46 months). Moreover, the high-FOXM1 group showed shorter progression-free survival after standard chemotherapy, compared with the low-FOXM1 group (3.90 vs. 8.69 months). Our collective findings support the utility of FOXM1 as a prognostic biomarker and potential molecular target for SCLC.
Collapse
Affiliation(s)
- Sheng-Kai Liang
- Department of Internal Medicine, National Taiwan University Hospital Hsinchu Branch, Hsinchu, 300, Taiwan
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, 300, Taiwan
| | - Chia-Chan Hsu
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, 300, Taiwan
| | - Hsiang-Lin Song
- Department of Pathology, National Taiwan University Hospital Hsinchu Branch, Hsinchu, Taiwan
| | - Yu-Chi Huang
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, 300, Taiwan
- Brain Research Center, National Tsing Hua University, Hsinchu, 300, Taiwan
| | - Chun-Wei Kuo
- Department of Pathology, National Taiwan University Hospital Hsinchu Branch, Hsinchu, Taiwan
| | - Xiang Yao
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, 300, Taiwan
| | - Chien-Cheng Li
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, 300, Taiwan
| | - Hui-Chen Yang
- Department of Internal Medicine, National Taiwan University Hospital Hsinchu Branch, Hsinchu, 300, Taiwan
| | - Yu-Ling Hung
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, 300, Taiwan
- Brain Research Center, National Tsing Hua University, Hsinchu, 300, Taiwan
| | - Sheng-Yang Chao
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, 300, Taiwan
| | - Shun-Chi Wu
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu, 300, Taiwan
| | - Feng-Ren Tsai
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu, 300, Taiwan
| | - Jen-Kun Chen
- Institute of Biomedical Engineering & Nanomedicine, National Health Research Institutes, Zhunan, Miaoli, 350, Taiwan
| | - Wei-Neng Liao
- Institute of Biomedical Engineering & Nanomedicine, National Health Research Institutes, Zhunan, Miaoli, 350, Taiwan
| | - Shih-Chin Cheng
- School of Life Sciences, Xiamen University, Xiamen, Fujian Province, 361102, China
| | - Tsui-Chun Tsou
- National Institute of Environmental Health Sciences, National Health Research Institutes, Zhunan, Miaoli, 350, Taiwan
| | - I-Ching Wang
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, 300, Taiwan.
- Brain Research Center, National Tsing Hua University, Hsinchu, 300, Taiwan.
- Department of Life Sciences, National Tsing Hua University, Hsinchu, 300, Taiwan.
| |
Collapse
|
10
|
Li Y, Pang X, Cui Z, Zhou Y, Mao F, Lin Y, Zhang X, Shen S, Zhu P, Zhao T, Sun Q, Zhang J. Genetic factors associated with cancer racial disparity - an integrative study across twenty-one cancer types. Mol Oncol 2020; 14:2775-2786. [PMID: 32920960 PMCID: PMC7607166 DOI: 10.1002/1878-0261.12799] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 08/07/2020] [Accepted: 08/19/2020] [Indexed: 12/13/2022] Open
Abstract
It is well known that different racial groups have significantly different incidence and mortality rates for certain cancers. It has been suggested that biological factors play a major role in these cancer racial disparities. Previous studies on the biological factors contributing to cancer racial disparity have generated a very large number of candidate factors, although there is modest agreement among the results of the different studies. Here, we performed an integrative analysis using genomic data of 21 cancer types from TCGA, GTEx, and the 1000 Genomes Project to identify biological factors contributing to racial disparity in cancer. We also built a companion website with additional results for cancer researchers to freely mine. Our study identified genes, gene families, and pathways displaying similar differential expression patterns between different racial groups across multiple cancer types. Among them, XKR9 gene expression was found to be significantly associated with overall survival for all cancers combined as well as for several individual cancers. Our results point to the interesting hypothesis that XKR9 could be a novel drug target for cancer immunotherapy. Bayesian network modeling showed that XKR9 is linked to important cancer-related genes, including FOXM1, cyclin B1, and RB1CC1 (RB1 regulator). In addition, metabolic pathways, neural signaling pathways, and several cancer-related gene families were found to be significantly associated with cancer racial disparities for multiple cancer types. Single nucleotide polymorphisms (SNPs) discovered through integrating data from the TCGA, GTEx, and 1000 Genomes databases provide biologists the opportunity to test highly promising, targeted hypotheses to gain a deeper understanding of the genetic drivers of cancer racial disparity and cancer biology in general.
Collapse
Affiliation(s)
- Yan Li
- Department of Breast SurgeryPeking Union Medical College HospitalPeking Union Medical CollegeChinese Academy of Medical SciencesBeijingChina
| | | | - Zihan Cui
- Department of StatisticsFlorida State UniversityTallahasseeFLUSA
| | - Yidong Zhou
- Department of Breast SurgeryPeking Union Medical College HospitalPeking Union Medical CollegeChinese Academy of Medical SciencesBeijingChina
| | - Feng Mao
- Department of Breast SurgeryPeking Union Medical College HospitalPeking Union Medical CollegeChinese Academy of Medical SciencesBeijingChina
| | - Yan Lin
- Department of Breast SurgeryPeking Union Medical College HospitalPeking Union Medical CollegeChinese Academy of Medical SciencesBeijingChina
| | - Xiaohui Zhang
- Department of Breast SurgeryPeking Union Medical College HospitalPeking Union Medical CollegeChinese Academy of Medical SciencesBeijingChina
| | - Songjie Shen
- Department of Breast SurgeryPeking Union Medical College HospitalPeking Union Medical CollegeChinese Academy of Medical SciencesBeijingChina
| | - Peixin Zhu
- Boston Biosciences Inc.BostonMAUSA
- Broad Institute of Harvard & MITCambridgeMAUSA
- McGovern Institute for Brain ResearchMITCambridgeMAUSA
| | - Tingting Zhao
- Department of GeographyFlorida State UniversityTallahasseeFLUSA
| | - Qiang Sun
- Department of Breast SurgeryPeking Union Medical College HospitalPeking Union Medical CollegeChinese Academy of Medical SciencesBeijingChina
| | - Jinfeng Zhang
- Department of StatisticsFlorida State UniversityTallahasseeFLUSA
| |
Collapse
|
11
|
Bryja A, Sujka-Kordowska P, Konwerska A, Ciesiółka S, Wieczorkiewicz M, Bukowska D, Antosik P, Bryl R, Skowroński MT, Jaśkowski JM, Mozdziak P, Angelova Volponi A, Shibli JA, Kempisty B, Dyszkiewicz-Konwińska M. New Gene Markers Involved in Molecular Processes of Tissue Repair, Response to Wounding and Regeneration Are Differently Expressed in Fibroblasts from Porcine Oral Mucosa during Long-Term Primary Culture. Animals (Basel) 2020; 10:ani10111938. [PMID: 33105567 PMCID: PMC7690285 DOI: 10.3390/ani10111938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/16/2020] [Accepted: 10/19/2020] [Indexed: 11/21/2022] Open
Abstract
Simple Summary Wound healing and vascularization mechanisms are key steps in the complex morphological process of tissue reconstruction. Additionally, these processes in the oral cavity are more rapid than in the skin and result in less scar formation. Epithelial cells and fibroblasts play an important role in the process of wound healing. In our study, we focused on fibroblasts and monitored changes in gene expression during their in vitro culture. Based on the analysis, we distinguished three groups of processes that play important roles in tissue regeneration: response to wounding, wound healing and vascularization. We identified genes that were involved in all three processes. These genes could be selected as tissue specific repair markers for oral fibroblasts. Abstract The mechanisms of wound healing and vascularization are crucial steps of the complex morphological process of tissue reconstruction. In addition to epithelial cells, fibroblasts play an important role in this process. They are characterized by dynamic proliferation and they form the stroma for epithelial cells. In this study, we have used primary cultures of oral fibroblasts, obtained from porcine buccal mucosa. Cells were maintained long-term in in vitro conditions, in order to investigate the expression profile of the molecular markers involved in wound healing and vascularization. Based on the Affymetrix assays, we have observed three ontological groups of markers as wound healing group, response to wounding group and vascularization group, represented by different genes characterized by their expression profile during long-term primary in vitro culture (IVC) of porcine oral fibroblasts. Following the analysis of gene expression in three previously identified groups of genes, we have identified that transforming growth factor beta 1 (TGFB1), ITGB3, PDPN, and ETS1 are involved in all three processes, suggesting that these genes could be recognized as markers of repair specific for oral fibroblasts within the porcine mucosal tissue.
Collapse
Affiliation(s)
- Artur Bryja
- Department of Anatomy, Poznan University of Medical Science, 60-781 Poznań, Poland; (A.B.); (R.B.); (M.D.-K.)
| | - Patrycja Sujka-Kordowska
- Department of Histology and Embryology, Poznan University of Medical Science, 60-781 Poznań, Poland; (P.S.-K.); (A.K.); (S.C.)
- Department of Anatomy and Histology, University of Zielona Gora, 65-046 Zielona Góra, Poland
| | - Aneta Konwerska
- Department of Histology and Embryology, Poznan University of Medical Science, 60-781 Poznań, Poland; (P.S.-K.); (A.K.); (S.C.)
| | - Sylwia Ciesiółka
- Department of Histology and Embryology, Poznan University of Medical Science, 60-781 Poznań, Poland; (P.S.-K.); (A.K.); (S.C.)
| | - Maria Wieczorkiewicz
- Department of Basic and Preclinical Sciences, Institute of Veterinary Medicine, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, 87-100 Toruń, Poland; (M.W.); (M.T.S.)
| | - Dorota Bukowska
- Department of Diagnostics and Clinical Sciences, Nicolaus Copernicus University in Torun, 87-100 Toruń, Poland; (D.B.); (J.M.J.)
| | - Paweł Antosik
- Department of Veterinary Surgery, Nicolaus Copernicus University in Torun, 87-100 Toruń, Poland;
| | - Rut Bryl
- Department of Anatomy, Poznan University of Medical Science, 60-781 Poznań, Poland; (A.B.); (R.B.); (M.D.-K.)
| | - Mariusz T. Skowroński
- Department of Basic and Preclinical Sciences, Institute of Veterinary Medicine, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, 87-100 Toruń, Poland; (M.W.); (M.T.S.)
| | - Jędrzej M. Jaśkowski
- Department of Diagnostics and Clinical Sciences, Nicolaus Copernicus University in Torun, 87-100 Toruń, Poland; (D.B.); (J.M.J.)
| | - Paul Mozdziak
- Physiology Graduate Program, North Carolina State University, Raleigh, NC 27695, USA;
| | - Ana Angelova Volponi
- Department of Craniofacial Development and Stem Cell Biology, King’s College University of London, London WC2R 2LS, UK;
| | - Jamil A. Shibli
- Department of Periodontology and Oral Implantology, Dental Research Division, University of Guarulhos, Guarulhos SP 07030-010, Brazil;
| | - Bartosz Kempisty
- Department of Anatomy, Poznan University of Medical Science, 60-781 Poznań, Poland; (A.B.); (R.B.); (M.D.-K.)
- Department of Histology and Embryology, Poznan University of Medical Science, 60-781 Poznań, Poland; (P.S.-K.); (A.K.); (S.C.)
- Department of Veterinary Surgery, Nicolaus Copernicus University in Torun, 87-100 Toruń, Poland;
- Department of Obstetrics and Gynecology, University Hospital and Masaryk University, 601 77 Brno, Czech Republic
- Correspondence: ; Tel.: +48-61-8546418
| | - Marta Dyszkiewicz-Konwińska
- Department of Anatomy, Poznan University of Medical Science, 60-781 Poznań, Poland; (A.B.); (R.B.); (M.D.-K.)
- Department of Biomaterials and Experimental Dentistry, Poznan University of Medical Sciences, 61-701 Poznań, Poland
| |
Collapse
|
12
|
Stengel S, Quickert S, Lutz P, Ibidapo-Obe O, Steube A, Köse-Vogel N, Yarbakht M, Reuken PA, Busch M, Brandt A, Bergheim I, Deshmukh SD, Stallmach A, Bruns T. Peritoneal Level of CD206 Associates With Mortality and an Inflammatory Macrophage Phenotype in Patients With Decompensated Cirrhosis and Spontaneous Bacterial Peritonitis. Gastroenterology 2020; 158:1745-1761. [PMID: 31982413 DOI: 10.1053/j.gastro.2020.01.029] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 01/13/2020] [Accepted: 01/15/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS Peritoneal macrophages (PMs) regulate inflammation and control bacterial infections in patients with decompensated cirrhosis. We aimed to characterize PMs and associate their activation with outcomes of patients with spontaneous bacterial peritonitis (SBP). METHODS We isolated PMs from ascites samples of 66 patients with decompensated cirrhosis (19 with SBP) and analyzed them by flow cytometry, quantitative real-time polymerase chain reaction, functional analysis, and RNA microarrays. We used ascites samples of a separate cohort of 111 patients with decompensated cirrhosis (67 with SBP) and quantified the soluble form of the mannose receptor (CD206) and tumor necrosis factor by enzyme-linked immunosorbent assay (test cohort). We performed logistic regression analysis to identify factors associated with 90-day mortality. We validated our findings using data from 71 patients with cirrhosis and SBP. Data from 14 patients undergoing peritoneal dialysis for end-stage renal disease but without cirrhosis were included as controls. RESULTS We used surface levels of CD206 to identify subsets of large PMs (LPM) and small PMs (SPM), which differed in granularity and maturation markers, in ascites samples from patients with cirrhosis. LPMs vs SPMs from patients with cirrhosis had different transcriptomes; we identified more than 4000 genes that were differentially regulated in LPMs vs SPMs, including those that regulate the cycle, metabolism, self-renewal, and immune cell signaling. LPMs had an inflammatory phenotype, were less susceptible to tolerance induction, and released more tumor necrosis factor than SPMs. LPMs from patients with cirrhosis produced more inflammatory cytokines than LPMs from controls. Activation of PMs by Toll-like receptor agonists and live bacteria altered levels of CD206 on the surface of LPMs and release of soluble CD206. Analysis of serial ascites fluid from patients with SBP revealed loss of LPMs in the early phase of SBP, but levels increased after treatment. In the test and validation cohorts, patients with SBP and higher concentrations of soluble CD206 in ascites fluid (>0.53 mg/L) were less likely to survive for 90 days than those with lower levels. CONCLUSIONS Surface level of CD206 can be used to identify mature, resident, inflammatory PMs in patients with cirrhosis. Soluble CD206 is released from activated LPMs and increased concentrations in patients with cirrhosis and SBP indicate reduced odds of surviving for 90 days.
Collapse
Affiliation(s)
- Sven Stengel
- Department of Internal Medicine IV (Gastroenterology, Hepatology, and Infectious Diseases), Jena University Hospital, Jena, Germany
| | - Stefanie Quickert
- Department of Internal Medicine IV (Gastroenterology, Hepatology, and Infectious Diseases), Jena University Hospital, Jena, Germany
| | - Philipp Lutz
- Department of Internal Medicine I, University of Bonn, Bonn, Germany; German Center for Infection Research, University of Bonn, Bonn, Germany
| | - Oluwatomi Ibidapo-Obe
- Department of Internal Medicine IV (Gastroenterology, Hepatology, and Infectious Diseases), Jena University Hospital, Jena, Germany
| | - Arndt Steube
- Department of Internal Medicine IV (Gastroenterology, Hepatology, and Infectious Diseases), Jena University Hospital, Jena, Germany
| | - Nilay Köse-Vogel
- Department of Internal Medicine IV (Gastroenterology, Hepatology, and Infectious Diseases), Jena University Hospital, Jena, Germany
| | - Melina Yarbakht
- Department of Internal Medicine IV (Gastroenterology, Hepatology, and Infectious Diseases), Jena University Hospital, Jena, Germany; The Integrated Research and Treatment Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| | - Philipp A Reuken
- Department of Internal Medicine IV (Gastroenterology, Hepatology, and Infectious Diseases), Jena University Hospital, Jena, Germany
| | - Martin Busch
- Department of Internal Medicine III, Jena University Hospital, Jena, Germany
| | - Annette Brandt
- Department of Nutritional Sciences, R.F. Molecular Nutritional Science, University of Vienna, Vienna, Austria
| | - Ina Bergheim
- Department of Nutritional Sciences, R.F. Molecular Nutritional Science, University of Vienna, Vienna, Austria
| | - Sachin D Deshmukh
- The Integrated Research and Treatment Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| | - Andreas Stallmach
- Department of Internal Medicine IV (Gastroenterology, Hepatology, and Infectious Diseases), Jena University Hospital, Jena, Germany
| | - Tony Bruns
- Department of Internal Medicine IV (Gastroenterology, Hepatology, and Infectious Diseases), Jena University Hospital, Jena, Germany; The Integrated Research and Treatment Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany; Department of Internal Medicine III, University Hospital Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany.
| |
Collapse
|
13
|
Shen Y, Chan G, Xie M, Zeng W, Liu L. Identification of master regulator genes of UV response and their implications for skin carcinogenesis. Carcinogenesis 2020; 40:687-694. [PMID: 30452757 DOI: 10.1093/carcin/bgy168] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 11/12/2018] [Accepted: 11/15/2018] [Indexed: 12/28/2022] Open
Abstract
Solar UV radiation is a major environmental risk factor for skin cancer. Despite decades of robust and meritorious investigation, our understanding of the mechanisms underlying UV-induced skin carcinogenesis remain incomplete. We previously performed comprehensive transcriptomic profiling in human keratinocytes following exposure to different UV radiation conditions to generate UV-specific gene expression signatures. In this study, we utilized Virtual Inference of Protein Activity by Enriched Regulon (VIPER), a robust systems biology tool, on UV-specific skin cell gene signatures to identify master regulators (MRs) of UV-induced transcriptomic changes. We identified multiple prominent candidate UV MRs, including forkhead box M1 (FOXM1), thyroid hormone receptor interactor 13 and DNA isomerase II alpha, which play important roles in cell cycle regulation and genome stability. MR protein activity was either activated or suppressed by UV in normal keratinocytes. Intriguingly, many of the UV-suppressed MRs were activated in human skin squamous cell carcinomas (SCCs), highlighting their importance in skin cancer development. We further demonstrated that selective inhibition of FOXM1, whose activity was elevated in SCC cells, was detrimental to SCC cell survival. Taken together, our study uncovered novel UV MRs that can be explored as new therapeutic targets for future skin cancer treatment.
Collapse
Affiliation(s)
- Yao Shen
- Department of Dermatology, Columbia University, Russ Berrie Medical Science Pavilion, New York, USA
| | - Gabriel Chan
- Department of Dermatology, Columbia University, Russ Berrie Medical Science Pavilion, New York, USA
| | - Michael Xie
- Department of Dermatology, Columbia University, Russ Berrie Medical Science Pavilion, New York, USA
| | - Wangyong Zeng
- Department of Dermatology, Columbia University, Russ Berrie Medical Science Pavilion, New York, USA
| | - Liang Liu
- Department of Dermatology, Columbia University, Russ Berrie Medical Science Pavilion, New York, USA
| |
Collapse
|
14
|
Roh V, Hiou-Feige A, Misetic V, Rivals JP, Sponarova J, Teh MT, Ferreira Lopes S, Truan Z, Mermod M, Monnier Y, Hess J, Tolstonog GV, Simon C. The transcription factor FOXM1 regulates the balance between proliferation and aberrant differentiation in head and neck squamous cell carcinoma. J Pathol 2019; 250:107-119. [PMID: 31465124 DOI: 10.1002/path.5342] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 08/01/2019] [Accepted: 08/22/2019] [Indexed: 12/11/2022]
Abstract
Sustained expression of FOXM1 is a hallmark of nearly all human cancers including squamous cell carcinomas of the head and neck (HNSCC). HNSCCs partially preserve the epithelial differentiation program, which recapitulates fetal and adult traits of the tissue of tumor origin but is deregulated by genetic alterations and tumor-supporting pathways. Using shRNA-mediated knockdown, we demonstrate a minimal impact of FOXM1 on proliferation and migration of HNSCC cell lines under standard cell culture conditions. However, FOXM1 knockdown in three-dimensional (3D) culture and xenograft tumor models resulted in reduced proliferation, decreased invasion, and a more differentiated-like phenotype, indicating a context-dependent modulation of FOXM1 activity in HNSCC cells. By ectopic overexpression of FOXM1 in HNSCC cell lines, we demonstrate a reduced expression of cutaneous-type keratin K1 and involucrin as a marker of squamous differentiation, supporting the role of FOXM1 in modulation of aberrant differentiation in HNSCC. Thus, our data provide a strong rationale for targeting FOXM1 in HNSCC. © 2019 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Vincent Roh
- Department of Otolaryngology - Head and Neck Surgery, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Agnès Hiou-Feige
- Department of Otolaryngology - Head and Neck Surgery, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Vinko Misetic
- Department of Otolaryngology - Head and Neck Surgery, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Jean-Paul Rivals
- Department of Otolaryngology - Head and Neck Surgery, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Jana Sponarova
- Department of Otolaryngology - Head and Neck Surgery, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Muy-Teck Teh
- Centre for Oral Immunobiology and Regenerative Medicine, Institute of Dentistry, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Silvia Ferreira Lopes
- Department of Otolaryngology - Head and Neck Surgery, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Zinnia Truan
- Department of Otolaryngology - Head and Neck Surgery, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Maxime Mermod
- Department of Otolaryngology - Head and Neck Surgery, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Yan Monnier
- Department of Otolaryngology - Head and Neck Surgery, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Jochen Hess
- Department of Otorhinolaryngology, Head and Neck Surgery, Heidelberg University Hospital and Molecular Mechanisms of Head and Neck Tumors, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Genrich V Tolstonog
- Department of Otolaryngology - Head and Neck Surgery, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Christian Simon
- Department of Otolaryngology - Head and Neck Surgery, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
15
|
Chen L, Wu M, Ji C, Yuan M, Liu C, Yin Q. Silencing transcription factor FOXM1 represses proliferation, migration, and invasion while inducing apoptosis of liver cancer stem cells by regulating the expression of ALDH2. IUBMB Life 2019; 72:285-295. [PMID: 31580537 DOI: 10.1002/iub.2166] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 08/28/2019] [Indexed: 12/19/2022]
Abstract
OBJECTIVE This study is performed to explore the role of transcription factor FOXM1 in promoting the self-renewal and proliferation of liver cancer stem cells (LCSCs) by regulating the expression of acetaldehyde dehydrogenase-2 (ALDH2). METHODS CD133+ CD24+ LCSCs were sorted and identified. A series of experiments were carried out to determine the proliferation, colony formation rate, migration, invasion, and apoptosis of LCSCs after interfering with FOXM1. Proliferation-, epithelial-mesenchymal transition (EMT)-, apoptosis-, and stemness-related factors were then detected by western blot analysis. Tumor xenograft in nude mice was used to figure out the role of FOXM1 in tumorigenesis in vivo by regulating ALDH2 expression. Luciferase activity assay was conducted to determine whether FOXM1 could target ALDH2 promoter region and thereby affecting ALDH2 expression. RESULTS The sorted CD133+ CD24+ Huh-7 cells had the characteristic of stem cells. FOXM1 was highly expressed in CD133+ CD24+ Huh-7 cells. Silencing FOXM1 inhibited the proliferation and colony formation of LCSCs and decreased the expression of proliferating cell nuclear antigen and Ki-67 protein; inhibited the migration, invasion, and EMT of LCSCs while promoting the apoptosis of LCSCs, as well as promoted the expression of Bax and cleaved-caspase-3, and inhibited the expression of Bcl-2. Silencing FOXM1 inhibited the expression of Nanog, Oct4, and Sox2 in LCSCs by decreasing the expression of ALDH2. in vivo experiment, silencing FOXM1 suppressed tumorigenesis of LCSCs by decreasing the expression of ALDH2. CONCLUSION Our study provides evidence that silencing FOXM1 inhibits stemness of LCSCs by decreasing the expression of ALDH2, and represses the proliferation, migration, invasion, and tumorigenesis while inducing the apoptosis of LCSCs.
Collapse
Affiliation(s)
- Lijian Chen
- Department of General Surgery, Hunan Children's Hospital, Changsha, China
| | - Meiyun Wu
- NP, RN, Department of Nursing, Chang Gung Memorial Hospital Kaohsiung, Doctoral student, College of Nursing, Kaohsiung Medical University
| | - Chunyi Ji
- Department of General Surgery, Hunan Children's Hospital, Changsha, China
| | - Miaoxian Yuan
- Department of General Surgery, Hunan Children's Hospital, Changsha, China
| | - Chaoyang Liu
- Department of General Surgery, Hunan Children's Hospital, Changsha, China
| | - Qiang Yin
- Department of General Surgery, Hunan Children's Hospital, Changsha, China
| |
Collapse
|
16
|
Shahoumi LA, Yeudall WA. Targeted therapies for non-HPV-related head and neck cancer: challenges and opportunities in the context of predictive, preventive, and personalized medicine. EPMA J 2019; 10:291-305. [PMID: 31462945 DOI: 10.1007/s13167-019-00177-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 07/04/2019] [Indexed: 12/19/2022]
Abstract
Head and neck squamous cell carcinoma (HNSCC) develops in the mucosal lining of the upper aerodigestive tract, principally as a result of exposure to carcinogens present in tobacco products and alcohol, with oncogenic papillomaviruses also being recognized as etiological agents in a limited proportion of cases. As such, there is considerable scope for prevention of disease development and progression. However, despite multimodal approaches to treatment, tumor recurrence and metastatic disease are common problems, and clinical outcome is unsatisfactory. As our understanding of the genetics and biochemical aberrations in HNSCC has improved, so the development and use of molecularly targeted drugs to combat the disease have come to the fore. In this article, we review molecular mechanisms that alter signal transduction downstream of the epidermal growth factor receptor (EGFR) as well as those that perturb orderly cell cycle progression, such as p53 mutation, cyclin overexpression, and loss of cyclin-dependent kinase inhibitor function. We outline some of the tactics that have been employed to combat the altered biochemistry. These include blockade of the EGFR using humanized monoclonal antibodies such as cetuximab and small molecule tyrosine kinase inhibitors (TKIs) such as erlotinib/gefitinib and subsequent generations of TKIs, restoration of p53 function using MIRA compounds, and inhibition of cyclin-dependent kinase and aurora kinase activity using drugs such as palbociclib and alisertib. Knowledge of the underlying molecular mechanisms may be utilizable in order to predict disease behavior and tailor therapeutic interventions in a more personalized approach to improve clinical response. Use of liquid biopsy, omics platforms, and salivary diagnostics hold promise in this regard.
Collapse
Affiliation(s)
- Linah A Shahoumi
- 1Department of Oral Biology and Diagnostic Sciences, The Dental College of Georgia, Augusta University, 1120 15th Street, Augusta, GA 30912 USA.,2The Graduate School, Augusta University, Augusta, GA USA
| | - W Andrew Yeudall
- 1Department of Oral Biology and Diagnostic Sciences, The Dental College of Georgia, Augusta University, 1120 15th Street, Augusta, GA 30912 USA.,2The Graduate School, Augusta University, Augusta, GA USA.,3Georgia Cancer Center, Augusta University, Augusta, GA USA
| |
Collapse
|
17
|
Li F, Jin D, Guan L, Zhang CC, Wu T, Wang YJ, Gao DS. CEP55 promoted the migration, invasion and neuroshpere formation of the glioma cell line U251. Neurosci Lett 2019; 705:80-86. [PMID: 31005653 DOI: 10.1016/j.neulet.2019.04.038] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 04/13/2019] [Accepted: 04/17/2019] [Indexed: 01/06/2023]
Abstract
Glioma stem cells (GSC) were important for Glioblastoma (GBM) initiation and chemotherapy resistance. Centrosomal protein of 55 kDa (CEP55) was a biomarker for multiple cancers. However, roles and mechanism of CEP55 in glioma tumorigenesis and stemness maintains of stem like cells was still unclear. U251 cells which stable overexpression or downregulation of CEP55 was obtained by lentivirus mediated transduction. Roles and mechanism of CEP55 in stemness maintains of stem like cells and tumorigenesis was investigated. Our results implied that knockdown the expression of CEP55 inhibited the invasion and migration of U251 cells, while overexpression of CEP55 displayed opposite results. Moreover, overexpression of CEP55 promoted neurosphere formation of glioma stem-like cells, while CEP55 knockdown decreased the number and size of neurosphere. Mechanistically, overexpression of CEP55 enhanced the expression of Forkhead box protein M1 (FOXM1), Matrix metalloproteinases (MMPs) and activated the NF-κB pathway, while knockdown CEP55 displayed opposite results. In conclusion, our results indicated that CEP55 played an important role in promoting the invasion and migration of U251 cell and self-renewal of glioma stem like cells which might be a new therapeutic target for glioma.
Collapse
Affiliation(s)
- Feng Li
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Dan Jin
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China; School of Nursing, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Li Guan
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Cheng-Chen Zhang
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Ting Wu
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Yu-Jue Wang
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Dian-Shuai Gao
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.
| |
Collapse
|
18
|
Fu Z, Cao X, Yang Y, Song Z, Zhang J, Wang Z. Upregulation of FoxM1 by MnSOD Overexpression Contributes to Cancer Stem-Like Cell Characteristics in the Lung Cancer H460 Cell Line. Technol Cancer Res Treat 2018; 17:1533033818789635. [PMID: 30111255 PMCID: PMC6096686 DOI: 10.1177/1533033818789635] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Manganese superoxide dismutase promotes migration and invasion in lung cancer cells via upregulation of the transcription factor forkhead box M1. Here, we assessed whether upregulation of forkhead box M1 by manganese superoxide dismutase overexpression mediates the acquisition of cancer stem-like cell characteristics in non-small cell lung cancer H460 cells. The second-generation spheroids from H460 cells were used as lung cancer stem-like cells. The levels of manganese superoxide dismutase, forkhead box M1, stemness markers (CD133, CD44, and ALDH1), and transcription factors (Bmi1, Nanog, and Sox2) were analyzed by Western blot. Sphere formation in vitro and carcinogenicity of lung cancer stem-like cells were evaluated by spheroid formation assay and limited dilution xenograft assays. Knockdown or overexpression of manganese superoxide dismutase or/and forkhead box M1 by transduction with short hairpin RNA(shRNA) or complementary DNA were performed for mechanistic studies. We showed that manganese superoxide dismutase and forkhead box M1 amounts as well as the expression levels of stemness markers and transcription factors sphere formation in vitro, and carcinogenicity of lung cancer stem-like cells were higher than in monolayer cells. Lung cancer stem-like cells transduced with manganese superoxide dismutase shRNA or FoxM1 shRNA exhibited decreased sphere formation and lower amounts of stemness markers and transcription factors. Overexpression of manganese superoxide dismutase or FoxM1 in H460 cells resulted in elevated sphere formation rates and protein levels of stemness markers and transcription factors. Meanwhile, manganese superoxide dismutase knockdown or overexpression accordingly altered forkhead box M1 levels. However, forkhead box M1 knockdown or overexpression had no effect on manganese superoxide dismutase levels but inhibited or promoted lung cancer stem-like cell functions. Interestingly, forkhead box M1 overexpression alleviated the inhibitory effects of manganese superoxide dismutase knockdown in lung cancer stem-like cells. In a panel of non-small cell lung cancer cells, including H441, H1299, and H358 cells, compared to the respective monolayer counterparts, the expression levels of manganese superoxide dismutase and forkhead box M1 were elevated in the corresponding spheroids. These findings revealed the role of forkhead box M1 upregulation by manganese superoxide dismutase overexpression in maintaining lung cancer stem-like cell properties. Therefore, inhibition of forkhead box M1 upregulation by manganese superoxide dismutase overexpression may represent an effective therapeutic strategy for non-small cell lung cancer.
Collapse
Affiliation(s)
- Zhimin Fu
- 1 Department of Cardiothoracic Surgery, the First People's Hospital of Chenzhou, Chenzhou, Hunan, People's Republic of China.,2 Department of Thoracic Surgery, The 2nd Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, Guangzhou Shi, People's Republic of China
| | - Xiaocheng Cao
- 3 Laboratory of Medicine, Medical College, Hunan Normal University, Changsha, Hunan, People's Republic of China
| | - Yi Yang
- 4 Department of Gynecology, The 2nd Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, Guangzhou, People's Republic of China
| | - Zhenwei Song
- 3 Laboratory of Medicine, Medical College, Hunan Normal University, Changsha, Hunan, People's Republic of China
| | - Jiansong Zhang
- 3 Laboratory of Medicine, Medical College, Hunan Normal University, Changsha, Hunan, People's Republic of China
| | - Zheng Wang
- 2 Department of Thoracic Surgery, The 2nd Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, Guangzhou Shi, People's Republic of China
| |
Collapse
|
19
|
Chu GCY, Chung LWK, Gururajan M, Hsieh CL, Josson S, Nandana S, Sung SY, Wang R, Wu JB, Zhau HE. Regulatory signaling network in the tumor microenvironment of prostate cancer bone and visceral organ metastases and the development of novel therapeutics. Asian J Urol 2018; 6:65-81. [PMID: 30775250 PMCID: PMC6363607 DOI: 10.1016/j.ajur.2018.11.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 10/13/2018] [Accepted: 10/18/2018] [Indexed: 12/26/2022] Open
Abstract
This article describes cell signaling network of metastatic prostate cancer (PCa) to bone and visceral organs in the context of tumor microenvironment and for the development of novel therapeutics. The article focuses on our recent progress in the understanding of: 1) The plasticity and dynamics of tumor–stroma interaction; 2) The significance of epigenetic reprogramming in conferring cancer growth, invasion and metastasis; 3) New insights on altered junctional communication affecting PCa bone and brain metastases; 4) Novel strategies to overcome therapeutic resistance to hormonal antagonists and chemotherapy; 5) Genetic-based therapy to co-target tumor and bone stroma; 6) PCa-bone-immune cell interaction and TBX2-WNTprotein signaling in bone metastasis; 7) The roles of monoamine oxidase and reactive oxygen species in PCa growth and bone metastasis; and 8) Characterization of imprinting cluster of microRNA, in tumor–stroma interaction. This article provides new approaches and insights of PCa metastases with emphasis on basic science and potential for clinical translation. This article referenced the details of the various approaches and discoveries described herein in peer-reviewed publications. We dedicate this article in our fond memory of Dr. Donald S. Coffey who taught us the spirit of sharing and the importance of focusing basic science discoveries toward translational medicine.
Collapse
Affiliation(s)
- Gina Chia-Yi Chu
- Uro-Oncology Research, Department of Medicine and Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Leland W K Chung
- Uro-Oncology Research, Department of Medicine and Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Murali Gururajan
- Uro-Oncology Research, Department of Medicine and Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Bristol-Myer Squibb Company, Princeton, NJ, USA
| | - Chia-Ling Hsieh
- Department of Urology, Emory University School of Medicine, Atlanta, GA, USA
| | - Sajni Josson
- Uro-Oncology Research, Department of Medicine and Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Oncoveda Cancer Research Center, Genesis Biotechnology Group, Hamilton, NJ, USA
| | - Srinivas Nandana
- Uro-Oncology Research, Department of Medicine and Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Texas Tech University Health Sciences Center, Department of Cell Biology and Biochemistry, Lubbock, TX, USA
| | - Shian-Ying Sung
- Department of Urology, Emory University School of Medicine, Atlanta, GA, USA
| | - Ruoxiang Wang
- Uro-Oncology Research, Department of Medicine and Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jason Boyang Wu
- Uro-Oncology Research, Department of Medicine and Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA, USA
| | - Haiyen E Zhau
- Uro-Oncology Research, Department of Medicine and Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
20
|
Sublethal UV irradiation induces squamous differentiation via a p53-independent, DNA damage-mitosis checkpoint. Cell Death Dis 2018; 9:1094. [PMID: 30361544 PMCID: PMC6202398 DOI: 10.1038/s41419-018-1130-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 10/03/2018] [Accepted: 10/08/2018] [Indexed: 12/14/2022]
Abstract
The epidermis is a self-renewal epithelium continuously exposed to the genotoxic effects of ultraviolet (UV) light, the main cause of skin cancer. Therefore, it needs robust self-protective mechanisms facing genomic damage. p53 has been shown to mediate apoptosis in sunburn cells of the epidermis. However, epidermal cells daily receive sublethal mutagenic doses of UV and massive apoptosis would be deleterious. We have recently unravelled an anti-oncogenic keratinocyte DNA damage-differentiation response to cell cycle stress. We now have studied this response to high or moderate single doses of UV irradiation. Whereas, as expected, high levels of UV induced p53-dependent apoptosis, moderate levels triggered squamous differentiation. UV-induced differentiation was not mediated by endogenous p53. Overexpression of the mitosis global regulator FOXM1 alleviated the proliferative loss caused by UV. Conversely, knocking-down the mitotic checkpoint protein Wee1 drove UV-induced differentiation into apoptosis. Therefore, the results indicate that mitosis checkpoints determine the response to UV irradiation. The differentiation response was also found in cells of head and neck epithelia thus uncovering a common regulation in squamous tissues upon chronic exposure to mutagens, with implications into homeostasis and disease.
Collapse
|
21
|
Roh YG, Mun MH, Jeong MS, Kim WT, Lee SR, Chung JW, Kim SI, Kim TN, Nam JK, Leem SH. Drug resistance of bladder cancer cells through activation of ABCG2 by FOXM1. BMB Rep 2018; 51:98-103. [PMID: 29397866 PMCID: PMC5836564 DOI: 10.5483/bmbrep.2018.51.2.222] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Indexed: 12/13/2022] Open
Abstract
Recurrence is a serious problem in patients with bladder cancer. The hypothesis for recurrence was that the proliferation of drug-resistant cells was reported, and this study focused on drug resistance due to drug efflux. Previous studies have identified FOXM1 as the key gene for recurrence. We found that FOXM1 inhibition decreased drug efflux activity and increased sensitivity to Doxorubicin. Therefore, we examined whether the expression of ABC transporter gene related to drug efflux is regulated by FOXM1. As a result, ABCG2, one of the genes involved in drug efflux, has been identified as a new target for FOXM1. We also demonstrated direct transcriptional regulation of ABCG2 by FOXM1 using ChIP assay. Consequently, in the presence of the drug, FOXM1 is proposed to directly activate ABCG2 to increase the drug efflux activation and drug resistance, thereby involving chemoresistance of bladder cancer cells. Therefore, we suggest that FOXM1 and ABCG2 may be useful targets and important parameters in the treatment of bladder cancer. [BMB Reports 2018; 51(2): 98-103].
Collapse
Affiliation(s)
- Yun-Gil Roh
- Department of Biological Science, College of Natural Science, Dong-A University, Busan 49315, Korea
| | - Mi-Hye Mun
- Department of Biological Science, College of Natural Science, Dong-A University, Busan 49315, Korea
| | - Mi-So Jeong
- Department of Biological Science, College of Natural Science, Dong-A University, Busan 49315, Korea
| | - Won-Tae Kim
- Department of Biological Science, College of Natural Science, Dong-A University, Busan 49315, Korea
| | - Se-Ra Lee
- Division of Drug Development & Optimization, Osong Medical Innovation Foundation (KBio), Chungbuk 28160, Korea
| | - Jin-Woong Chung
- Department of Biological Science, College of Natural Science, Dong-A University, Busan 49315, Korea
| | - Seung Il Kim
- Drug & Disease Target Team, Korea Basic Science Institute, Daejeon 34133; Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon 34114, Korea
| | - Tae Nam Kim
- Department of Urology, Medical Research Institute, Pusan National University Hospital, Busan 49241, Korea
| | - Jong Kil Nam
- Department of Urology, Research Institute for Convergence of Biochemical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Korea
| | - Sun-Hee Leem
- Department of Biological Science, College of Natural Science, Dong-A University, Busan 49315, Korea
| |
Collapse
|
22
|
Riddle ES, Bender EL, Thalacker-Mercer AE. Transcript profile distinguishes variability in human myogenic progenitor cell expansion capacity. Physiol Genomics 2018; 50:817-827. [PMID: 30004837 DOI: 10.1152/physiolgenomics.00041.2018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Primary human muscle progenitor cells (hMPCs) are commonly used to understand skeletal muscle biology, including the regenerative process. Variability from unknown origin in hMPC expansion capacity occurs independently of disease, age, or sex of the donor. We sought to determine the transcript profile that distinguishes hMPC cultures with greater expansion capacity and to identify biological underpinnings of these transcriptome profile differences. Sorted (CD56+/CD29+) hMPC cultures were clustered by unbiased, K-means cluster analysis into FAST and SLOW based on growth parameters (saturation density and population doubling time). FAST had greater expansion capacity indicated by significantly reduced population doubling time (-60%) and greater saturation density (+200%), nuclei area under the curve (AUC, +250%), and confluence AUC (+120%). Additionally, FAST had fewer % dead cells AUC (-44%, P < 0.05). RNA sequencing was conducted on RNA extracted during the expansion phase. Principal component analysis distinguished FAST and SLOW based on the transcript profiles. There were 2,205 differentially expressed genes (DEgenes) between FAST and SLOW (q value ≤ 0.05); 362 DEgenes met a more stringent cut-off (q value ≤ 0.001 and 2.0 fold-change). DEgene enrichment suggested FAST (vs. SLOW) had promotion of the cell cycle, reduced apoptosis and cellular senescence, and enhanced DNA replication. Novel (RABL6, IRGM1, and AREG) and known (FOXM1, CDKN1A, Rb) genes emerged as regulators of identified functional pathways. Collectively the data suggest that variation in hMPC expansion capacity occurs independently of age and sex and is driven, in part, by intrinsic mechanisms that support the cell cycle.
Collapse
Affiliation(s)
- Emily S Riddle
- Division of Nutritional Sciences, Cornell University , Ithaca, New York
| | - Erica L Bender
- Division of Nutritional Sciences, Cornell University , Ithaca, New York
| | | |
Collapse
|
23
|
Yeudall A, Patel V. EPS8 signaling as a therapeutic target in oral cancer. Oral Dis 2018; 24:128-131. [DOI: 10.1111/odi.12766] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 08/15/2017] [Indexed: 12/28/2022]
Affiliation(s)
- A Yeudall
- Department of Oral Biology; The Dental College of Georgia at Augusta University; Augusta GA USA
| | - V Patel
- Department of Oral Biology; The Dental College of Georgia at Augusta University; Augusta GA USA
| |
Collapse
|
24
|
Foxm1 controls a pro-stemness microRNA network in neural stem cells. Sci Rep 2018; 8:3523. [PMID: 29476172 PMCID: PMC5824884 DOI: 10.1038/s41598-018-21876-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 02/12/2018] [Indexed: 01/07/2023] Open
Abstract
Cerebellar neural stem cells (NSCs) require Hedgehog-Gli (Hh-Gli) signalling for their maintenance and Nanog expression for their self-renewal. To identify novel molecular features of this regulatory pathway, we used next-generation sequencing technology to profile mRNA and microRNA expression in cerebellar NSCs, before and after induced differentiation (Diff-NSCs). Genes with higher transcript levels in NSCs (vs. Diff-NSCs) included Foxm1, which proved to be directly regulated by Gli and Nanog. Foxm1 in turn regulated several microRNAs that were overexpressed in NSCs: miR-130b, miR-301a, and members of the miR-15~16 and miR-17~92 clusters and whose knockdown significantly impaired the neurosphere formation ability. Our results reveal a novel Hh-Gli-Nanog-driven Foxm1-microRNA network that controls the self-renewal capacity of NSCs.
Collapse
|
25
|
Restoring miR122 in human stem-like hepatocarcinoma cells, prompts tumor dormancy through Smad-independent TGF-β pathway. Oncotarget 2018; 7:71309-71329. [PMID: 27612430 PMCID: PMC5342080 DOI: 10.18632/oncotarget.11885] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 06/29/2016] [Indexed: 12/16/2022] Open
Abstract
miR122 is the prevalent miRNA in adult healthy liver and it is responsible for liver stem cell differentiation towards hepatocyte lineage. Its expression is frequently lost in hepatocellular carcinoma (HCC). We studied the effects of restoring miR122 expression in a distinctive cell line derived from human HCC-BCLC9 cells-with a solid stem-like cell profile, high tumor initiating ability and undetectable miR122 expression. We generated a stable BCLC9 cell line that expresses miR122 (BCLC9-miR122). Restitution of miR122 in BCLC9 cells, decreases cell proliferation rate and reduces significantly tumor size in vivo. BCLC9-miR122 cells down-regulate expression of MYC, KLF4, FOXM1, AKT2 and AKT3 genes and up-regulate FOXO1 and FOXO3A gene expression. In addition, miR122 transfected cells decreased AKT2 kinase activation while decreased FOXO1 and FOXO3A protein inactivation. Reduction in tumor size in BCLC9-miR122 associated with an increase in p38MAPK protein expression and activation leading to a low phospho-ERK1/2 to phospho-p38 ratio. Treatment of miR122 positive cells with an inhibitor of TGFBR1 activation, abolished tumor dormancy program and recovered cell proliferation rate through a Smad-independent TGF-β response. HCC stem-like cells can be directed towards cell differentiation and tumor dormancy by restoring miR122 expression. We demonstrate, for the first time, that dormancy program is achieved through a Smad-independent TGF-β pathway. Reestablishing miR122 expression is a promising therapeutic strategy that would work concurrently reducing tumor aggressiveness and decreasing disease recurrence.
Collapse
|
26
|
Parida S, Chakraborty S, Maji RK, Ghosh Z. Elucidating the gene regulatory networks modulating cancer stem cells and non-stem cancer cells in high grade serous ovarian cancer. Genomics 2018; 111:103-113. [PMID: 29355597 DOI: 10.1016/j.ygeno.2018.01.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Revised: 11/16/2017] [Accepted: 01/08/2018] [Indexed: 02/07/2023]
Abstract
The origin and pathogenesis of epithelial ovarian cancer have perplexed investigators for decades. The most prevalent type of it is the high-grade serous ovarian carcinoma (HGSOv) which is a highly aggressive disease with high relapse rates and insurgence of chemo-resistance at later stages of treatment. These are driven by a rare population of stem cell like cancer cells called cancer stem cells (CSCs). We have taken up a systems approach to find out the common gene interaction paths between non-CSC tumor cells (CCs) and CSCs in HGSOv. Detailed investigation reveals a set of 17 Transcription Factors (named as pivot-TFs) which can govern changes in the mode of gene regulation along these paths. Overall, this work highlights a divergent road map of functional information relayed by these common key players in the two cell states, which might aid towards designing novel therapeutic measures to target the CSCs for ovarian cancer therapy.
Collapse
Affiliation(s)
- Sibun Parida
- Bioinformatics Centre, Bose Institute, Kolkata 700054, India
| | | | | | - Zhumur Ghosh
- Bioinformatics Centre, Bose Institute, Kolkata 700054, India.
| |
Collapse
|
27
|
Lv C, Zhao G, Sun X, Wang P, Xie N, Luo J, Tong T. Acetylation of FOXM1 is essential for its transactivation and tumor growth stimulation. Oncotarget 2018; 7:60366-60382. [PMID: 27542221 PMCID: PMC5312389 DOI: 10.18632/oncotarget.11332] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Accepted: 07/10/2016] [Indexed: 11/25/2022] Open
Abstract
Forkhead box transcription factor M1 (FOXM1) plays crucial roles in a wide array of biological processes, including cell proliferation and differentiation, the cell cycle, and tumorigenesis by regulating the expression of its target genes. Elevated expression of FOXM1 is frequently observed in a multitude of malignancies. Here we show that FOXM1 can be acetylated by p300/CBP at lysines K63, K422, K440, K603 and K614 in vivo. This modification is essential for its transactivation on the target genes. Acetylation of FOXM1 increases during the S phase and remains high throughout the G2 and M phases, when FOXM1 transcriptional activity is required. We find that the acetylation-deficient FOXM1 mutant is less active and exhibits significantly weaker tumorigenic activities compared to wild-type FOXM1. Mechanistically, the acetylation of FOXM1 enhances its transcriptional activity by increasing its DNA binding affinity, protein stability, and phosphorylation sensitivity. In addition, we demonstrate that NAD-dependent histone deacetylase SIRT1 physically binds to and deacetylates FOXM1 in vivo. The deacetylation of FOXM1 by SIRT1 attenuates its transcriptional activity and decreases its protein stability. Together, our findings demonstrate that the reversible acetylation of FOXM1 by p300/CBP and SIRT1 modulates its transactivation function.
Collapse
Affiliation(s)
- Cuicui Lv
- Research Center on Aging, Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing, China
| | - Ganye Zhao
- Research Center on Aging, Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing, China
| | - Xinpei Sun
- Research Center on Aging, Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing, China
| | - Pan Wang
- Research Center on Aging, Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing, China
| | - Nan Xie
- Research Center on Aging, Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing, China
| | - Jianyuan Luo
- Center for Medical Genetics, Department of Medical Genetics, Peking University Health Science Center, Beijing, China
| | - Tanjun Tong
- Research Center on Aging, Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing, China
| |
Collapse
|
28
|
Mammalian endoreplication emerges to reveal a potential developmental timer. Cell Death Differ 2018; 25:471-476. [PMID: 29352263 PMCID: PMC5864232 DOI: 10.1038/s41418-017-0040-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 11/07/2017] [Accepted: 11/08/2017] [Indexed: 01/27/2023] Open
Abstract
Among the most intriguing and relevant questions in physiology is how developing tissues correctly coordinate proliferation with differentiation. Endoreplication, in a broad sense, is a consequence of a cell division block in the presence of an active cell cycle, and it typically occurs as cells differentiate terminally to fulfill a specialised function. Until recently, endoreplication was thought to be a rare variation of the cell cycle in mammals, more common in invertebrates and plants. However, in the last years, endoreplication has been uncovered in various tissues in mammalian organisms, including human. A recent report showing that cells in the mammary gland become binucleate at lactation sheds new insight into the importance of mammalian polyploidisation. We here propose that endoreplication is a widespread phenomenon in mammalian developing tissues that results from an automatic, robust and simple self-limiting mechanism coordinating cell multiplication with differentiation. This mechanism might act as a developmental timer. The model has implications for homeostasis control and carcinogenesis.
Collapse
|
29
|
Ghahramani A, Donati G, Luscombe NM, Watt FM. Epidermal Wnt signalling regulates transcriptome heterogeneity and proliferative fate in neighbouring cells. Genome Biol 2018; 19:3. [PMID: 29334988 PMCID: PMC5769491 DOI: 10.1186/s13059-017-1384-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 12/22/2017] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Canonical Wnt/beta-catenin signalling regulates self-renewal and lineage selection within the mammalian epidermis. Although the transcriptional response of keratinocytes that receive a Wnt signal is well characterized, little is known about the mechanism by which keratinocytes in proximity to the Wnt-receiving cell are co-opted to undergo a change in cell fate. RESULTS To address this, we perform single-cell RNA-sequencing on mouse keratinocytes co-cultured with and without beta-catenin-activated neighbouring cells. We identify five distinct cell states in cultures that had not been exposed to the beta-catenin stimulus and show that the stimulus redistributes wild-type subpopulation proportions. Using temporal single-cell analysis, we reconstruct the cell fate change induced by Wnt activation from neighbouring cells. Gene expression heterogeneity is reduced in neighbouring cells and this effect is most dramatic for protein synthesis-associated genes. Changes in gene expression are accompanied by a shift to a more proliferative stem cell state. By integrating imaging and reconstructed sequential gene expression changes during the state transition we identify transcription factors, including Smad4 and Bcl3, that are responsible for effecting the transition in a contact-dependent manner. CONCLUSIONS Our data indicate that non-cell autonomous Wnt/beta-catenin signalling decreases transcriptional heterogeneity. This furthers our understanding of how epidermal Wnt signalling orchestrates regeneration and self-renewal.
Collapse
Affiliation(s)
- Arsham Ghahramani
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
- King's College London, Centre for Stem Cells and Regenerative Medicine, 28th Floor, Tower Wing, Guy's Hospital, Great Maze Pond, London, SE1 9RT, UK
| | - Giacomo Donati
- King's College London, Centre for Stem Cells and Regenerative Medicine, 28th Floor, Tower Wing, Guy's Hospital, Great Maze Pond, London, SE1 9RT, UK
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123, Torino, Italy
| | - Nicholas M Luscombe
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.
- UCL Genetics Institute, University College London, London, WC1E 6BT, UK.
- Okinawa Institute of Science & Technology Graduate University, Okinawa, 904-0495, Japan.
| | - Fiona M Watt
- King's College London, Centre for Stem Cells and Regenerative Medicine, 28th Floor, Tower Wing, Guy's Hospital, Great Maze Pond, London, SE1 9RT, UK.
| |
Collapse
|
30
|
Yao S, Fan LYN, Lam EWF. The FOXO3-FOXM1 axis: A key cancer drug target and a modulator of cancer drug resistance. Semin Cancer Biol 2017; 50:77-89. [PMID: 29180117 PMCID: PMC6565931 DOI: 10.1016/j.semcancer.2017.11.018] [Citation(s) in RCA: 148] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 10/30/2017] [Accepted: 11/23/2017] [Indexed: 12/11/2022]
Abstract
The FOXO3 and FOXM1 forkhead box transcription factors, functioning downstream of the essential PI3K-Akt, Ras-ERK and JNK/p38MAPK signalling cascades, are crucial for cell proliferation, differentiation, cell survival, senescence, DNA damage repair and cell cycle control. The development of resistance to both conventional and newly emerged molecularly targeted therapies is a major challenge confronting current cancer treatment in the clinic. Intriguingly, the mechanisms of resistance to ‘classical’ cytotoxic chemotherapeutics and to molecularly targeted therapies are invariably linked to deregulated signalling through the FOXO3 and FOXM1 transcription factors. This is owing to the involvement of FOXO3 and FOXM1 in the regulation of genes linked to crucial drug action-related cellular processes, including stem cell renewal, DNA repair, cell survival, drug efflux, and deregulated mitosis. A better understanding of the mechanisms regulating the FOXO3-FOXM1 axis, as well as their downstream transcriptional targets and functions, may render these proteins reliable and early diagnostic/prognostic factors as well as crucial therapeutic targets for cancer treatment and importantly, for overcoming chemotherapeutic drug resistance.
Collapse
Affiliation(s)
- Shang Yao
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London W12 0NN, UK
| | - Lavender Yuen-Nam Fan
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London W12 0NN, UK
| | - Eric Wing-Fai Lam
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London W12 0NN, UK.
| |
Collapse
|
31
|
Smirnov A, Panatta E, Lena A, Castiglia D, Di Daniele N, Melino G, Candi E. FOXM1 regulates proliferation, senescence and oxidative stress in keratinocytes and cancer cells. Aging (Albany NY) 2017; 8:1384-97. [PMID: 27385468 PMCID: PMC4993337 DOI: 10.18632/aging.100988] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 06/12/2016] [Indexed: 02/07/2023]
Abstract
Several transcription factors, including the master regulator of the epidermis, p63, are involved in controlling human keratinocyte proliferation and differentiation. Here, we report that in normal keratinocytes, the expression of FOXM1, a member of the Forkhead superfamily of transcription factors, is controlled by p63. We observe that, together with p63, FOXM1 strongly contributes to the maintenance of high proliferative potential in keratinocytes, whereas its expression decreases during differentiation, as well as during replicative-induced senescence. Depletion of FOXM1 is sufficient to induce keratinocyte senescence, paralleled by an increased ROS production and an inhibition of ROS-scavenger genes (SOD2, CAT, GPX2, PRDX). Interestingly, FOXM1 expression is strongly reduced in keratinocytes isolated from old human subjects compared with young subjects. FOXM1 depletion sensitizes both normal keratinocytes and squamous carcinoma cells to apoptosis and ROS-induced apoptosis. Together, these data identify FOXM1 as a key regulator of ROS in normal dividing epithelial cells and suggest that squamous carcinoma cells may also use FOXM1 to control oxidative stress to escape premature senescence and apoptosis.
Collapse
Affiliation(s)
- Artem Smirnov
- University of Rome "Tor Vergata", Department of Experimental Medicine and Surgery, 00133, Rome, Italy
| | - Emanuele Panatta
- University of Rome "Tor Vergata", Department of Experimental Medicine and Surgery, 00133, Rome, Italy
| | - AnnaMaria Lena
- University of Rome "Tor Vergata", Department of Experimental Medicine and Surgery, 00133, Rome, Italy
| | - Daniele Castiglia
- Istituto Dermopatico dell'Immacolata (IDI-IRCCS), 00166, Rome, Italy
| | - Nicola Di Daniele
- University of "Tor Vergata", Department of Systems Medicine, 00133, Rome, Italy
| | - Gerry Melino
- University of Rome "Tor Vergata", Department of Experimental Medicine and Surgery, 00133, Rome, Italy
| | - Eleonora Candi
- University of Rome "Tor Vergata", Department of Experimental Medicine and Surgery, 00133, Rome, Italy.,Istituto Dermopatico dell'Immacolata (IDI-IRCCS), 00166, Rome, Italy
| |
Collapse
|
32
|
Hasanpourghadi M, Pandurangan AK, Mustafa MR. Modulation of oncogenic transcription factors by bioactive natural products in breast cancer. Pharmacol Res 2017; 128:376-388. [PMID: 28923544 DOI: 10.1016/j.phrs.2017.09.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 09/11/2017] [Accepted: 09/14/2017] [Indexed: 12/17/2022]
Abstract
Carcinogenesis, a multi-step phenomenon, characterized by alterations at genetic level and affecting the main intracellular pathways controlling cell growth and development. There are growing number of evidences linking oncogenes to the induction of malignancies, especially breast cancer. Modulations of oncogenes lead to gain-of-function signals in the cells and contribute to the tumorigenic phenotype. These signals yield a large number of proteins that cause cell growth and inhibit apoptosis. Transcription factors such as STAT, p53, NF-κB, c-JUN and FOXM1, are proteins that are conserved among species, accumulate in the nucleus, bind to DNA and regulate the specific genes targets. Oncogenic transcription factors resulting from the mutation or overexpression following aberrant gene expression relay the signals in the nucleus and disrupt the transcription pattern. Activation of oncogenic transcription factors is associated with control of cell cycle, apoptosis, migration and cell differentiation. Among different cancer types, breast cancer is one of top ten cancers worldwide. There are different subtypes of breast cancer cell-lines such as non-aggressive MCF-7 and aggressive and metastatic MDA-MB-231 cells, which are identified with distinct molecular profile and different levels of oncogenic transcription factor. For instance, MDA-MB-231 carries mutated and overexpressed p53 with its abnormal, uncontrolled downstream signalling pathway that account for resistance to several anticancer drugs compared to MCF-7 cells with wild-type p53. Appropriate enough, inhibition of oncogenic transcription factors has become a potential target in discovery and development of anti-tumour drugs against breast cancer. Plants produce diverse amount of organic metabolites. Universally, these metabolites with biological activities are known as "natural products". The chemical structure and function of natural products have been studied since 1850s. Investigating these properties leaded to recognition of their molecular effects as anticancer drugs. Numerous natural products extracted from plants, fruits, mushrooms and mycelia, show potential inhibitory effects against several oncogenic transcription factors in breast cancer. Natural compounds that target oncogenic transcription factors have increased the number of candidate therapeutic agents. This review summarizes the current findings of natural products in targeting specific oncogenic transcription factors in breast cancer.
Collapse
Affiliation(s)
- Mohadeseh Hasanpourghadi
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Ashok Kumar Pandurangan
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Mohd Rais Mustafa
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia; Centre for Natural Products Research and Drug Discovery, Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| |
Collapse
|
33
|
Haas TL, Sciuto MR, Brunetto L, Valvo C, Signore M, Fiori ME, di Martino S, Giannetti S, Morgante L, Boe A, Patrizii M, Warnken U, Schnölzer M, Ciolfi A, Di Stefano C, Biffoni M, Ricci-Vitiani L, Pallini R, De Maria R. Integrin α7 Is a Functional Marker and Potential Therapeutic Target in Glioblastoma. Cell Stem Cell 2017; 21:35-50.e9. [DOI: 10.1016/j.stem.2017.04.009] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 02/16/2017] [Accepted: 04/20/2017] [Indexed: 12/26/2022]
|
34
|
Xu QL, Furuhashi A, Zhang QZ, Jiang CM, Chang TH, Le AD. Induction of Salivary Gland-Like Cells from Dental Follicle Epithelial Cells. J Dent Res 2017; 96:1035-1043. [PMID: 28541773 DOI: 10.1177/0022034517711146] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The dental follicle (DF), most often associated with unerupted teeth, is a condensation of ectomesenchymal cells that surrounds the tooth germ in early stages of tooth development. In the present study, we aim to isolate epithelial stem-like cells from the human DF and explore their potential differentiation into salivary gland (SG) cells. We demonstrated the expression of stem cell-related genes in the epithelial components of human DF tissues, and these epithelial progenitor cells could be isolated and ex vivo expanded in a reproducible manner. The human DF-derived epithelial cells possessed clonogenic and sphere-forming capabilities, as well as expressed a panel of epithelial stem cell-related genes, thus conferring stem cell properties (hDF-EpiSCs). When cultured under in vitro 3-dimensional induction conditions, hDF-EpiSCs were capable to differentiate into SG acinar and duct cells. Furthermore, transplantation of hDF-EpiSC-loaded native de-cellularized rat parotid gland scaffolds into the renal capsule of nude mice led to the differentiation of transplanted hDF-EpiSCs into salivary gland-like cells. These findings suggest that hDF-EpiSCs might be a promising source of epithelial stem cells for the development of stem cell-based therapy or bioengineering SG tissues to repair/regenerate SG dysfunction.
Collapse
Affiliation(s)
- Q L Xu
- 1 Department of Oral & Maxillofacial Surgery & Pharmacology, University of Pennsylvania School of Dental Medicine, Philadelphia, PA, USA
| | - A Furuhashi
- 1 Department of Oral & Maxillofacial Surgery & Pharmacology, University of Pennsylvania School of Dental Medicine, Philadelphia, PA, USA.,2 Section of Implant and Rehabilitative Dentistry, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Q Z Zhang
- 1 Department of Oral & Maxillofacial Surgery & Pharmacology, University of Pennsylvania School of Dental Medicine, Philadelphia, PA, USA
| | - C M Jiang
- 1 Department of Oral & Maxillofacial Surgery & Pharmacology, University of Pennsylvania School of Dental Medicine, Philadelphia, PA, USA
| | - T-H Chang
- 1 Department of Oral & Maxillofacial Surgery & Pharmacology, University of Pennsylvania School of Dental Medicine, Philadelphia, PA, USA
| | - A D Le
- 1 Department of Oral & Maxillofacial Surgery & Pharmacology, University of Pennsylvania School of Dental Medicine, Philadelphia, PA, USA.,3 Department of Oral & Maxillofacial Surgery, Penn Medicine Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
35
|
Molinuevo R, Freije A, de Pedro I, Stoll SW, Elder JT, Gandarillas A. FOXM1 allows human keratinocytes to bypass the oncogene-induced differentiation checkpoint in response to gain of MYC or loss of p53. Oncogene 2017; 36:956-965. [PMID: 27452522 PMCID: PMC5318665 DOI: 10.1038/onc.2016.262] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 06/02/2016] [Accepted: 06/16/2016] [Indexed: 02/06/2023]
Abstract
Tumour suppressor p53 or proto-oncogene MYC is frequently altered in squamous carcinomas, but this is insufficient to drive carcinogenesis. We have shown that overactivation of MYC or loss of p53 via DNA damage triggers an anti-oncogenic differentiation-mitosis checkpoint in human epidermal keratinocytes, resulting in impaired cell division and squamous differentiation. Forkhead box M1 (FOXM1) is a transcription factor recently proposed to govern the expression of a set of mitotic genes. Deregulation of FOXM1 occurs in a wide variety of epithelial malignancies. We have ectopically expressed FOXM1 in keratinocytes of the skin after overexpression of MYC or inactivation of endogenous p53. Ectopic FOXM1 rescues the proliferative capacity of MYC- or p53-mutant cells in spite of higher genetic damage and a larger cell size typical of differentiation. As a consequence, differentiation induced by loss of p53 or MYC is converted into increased proliferation and keratinocytes displaying genomic instability are maintained within the proliferative compartment. The results demonstrate that keratinocyte oncogene-induced differentiation is caused by mitosis control and provide new insight into the mechanisms driving malignant progression in squamous cancer.
Collapse
Affiliation(s)
- R Molinuevo
- Cell Cycle, Stem Cell Fate and Cancer Laboratory, Institute of Research Marqués de Valdecilla (IDIVAL), Santander, Spain
| | - A Freije
- Cell Cycle, Stem Cell Fate and Cancer Laboratory, Institute of Research Marqués de Valdecilla (IDIVAL), Santander, Spain
| | - I de Pedro
- Cell Cycle, Stem Cell Fate and Cancer Laboratory, Institute of Research Marqués de Valdecilla (IDIVAL), Santander, Spain
| | - S W Stoll
- Department of Dermatology, University of Michigan, Ann Arbor, MI, USA
| | - J T Elder
- Department of Dermatology, University of Michigan, Ann Arbor, MI, USA
- Department of Ann Arbor Veterans Affairs Health System, Ann Arbor, MI, USA
| | - A Gandarillas
- Cell Cycle, Stem Cell Fate and Cancer Laboratory, Institute of Research Marqués de Valdecilla (IDIVAL), Santander, Spain
- INSERM, Languedoc-Roussillon, Montpellier, France
| |
Collapse
|
36
|
Shiao SL, Chu GCY, Chung LWK. Regulation of prostate cancer progression by the tumor microenvironment. Cancer Lett 2016; 380:340-8. [PMID: 26828013 PMCID: PMC5317350 DOI: 10.1016/j.canlet.2015.12.022] [Citation(s) in RCA: 158] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 12/14/2015] [Accepted: 12/15/2015] [Indexed: 12/26/2022]
Abstract
Prostate cancer remains the most frequently diagnosed cancer in men in North America, and despite recent advances in treatment patients with metastatic disease continue to have poor five-year survival rates. Recent studies in prostate cancer have revealed the critical role of the tumor microenvironment in the initiation and progression to advanced disease. Experimental data have uncovered a reciprocal relationship between the cells in the microenvironment and malignant tumor cells in which early changes in normal tissue microenvironment can promote tumorigenesis and in turn tumor cells can promote further pro-tumor changes in the microenvironment. In the tumor microenvironment, the presence of persistent immune infiltrates contributes to the recruitment and reprogramming of other non-immune stromal cells including cancer-associated fibroblasts and a unique recently identified population of metastasis-initiating cells (MICs). These MICs, which can also be found as part of the circulating tumor cell (CTC) population in PC patients, promote cancer cell transformation, enhance metastatic potential and confer therapeutic resistance. MICs act can on other cells within the tumor microenvironment in part by secreting exosomes that reprogram adjacent stromal cells to create a more favorable tumor microenvironment to support continued cancer growth and progression. We review here the current data on the intricate relationship between inflammation, reactive stroma, tumor cells and disease progression in prostate cancer.
Collapse
Affiliation(s)
- Stephen L Shiao
- Departments of Radiation Oncology and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.
| | - Gina Chia-Yi Chu
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.
| | - Leland W K Chung
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| |
Collapse
|
37
|
Ma H, Dai H, Duan X, Tang Z, Liu R, Sun K, Zhou K, Chen H, Xiang H, Wang J, Gao Q, Zou Y, Wan H, Teh MT. Independent evaluation of a FOXM1-based quantitative malignancy diagnostic system (qMIDS) on head and neck squamous cell carcinomas. Oncotarget 2016; 7:54555-54563. [PMID: 27409343 PMCID: PMC5342363 DOI: 10.18632/oncotarget.10512] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 05/23/2016] [Indexed: 01/29/2023] Open
Abstract
The forkhead box M1 (FOXM1) transcription factor gene has been implicated in almost all human cancer types. It would be an ideal biomarker for cancer detection but, to date, its translation into a cancer diagnostic tool is yet to materialise. The quantitative Malignancy Index Diagnostic System (qMIDS) was the first FOXM1 oncogene-based diagnostic test developed for quantifying squamous cell carcinoma aggressiveness. The test was originally validated using head and neck squamous cell carcinomas (HNSCC) from European patients. The HNSCC gene expression signature across geographical and ethnic differences is unknown. This is the first study evaluated the FOXM1-based qMIDS test using HNSCC specimens donated by ethnic Chinese patients. We tested 50 Chinese HNSCC patients and 18 healthy subjects donated 68 tissues in total. qMIDS scores from the Chinese cohort were compared with the European datasets (n = 228). The median ± SD scores for the Chinese cohort were 1.13 ± 0.66, 4.02 ± 1.66 and 5.83 ± 3.13 in healthy oral tissues, adjacent tumour margin and HNSCC core tissue, respectively. Diagnostic test efficiency between the Chinese and European datasets was almost identical. Consistent with previous European data, qMIDS scores for HNSCC samples were not influenced by gender or age. The degree of HNSCC differentiation, clinical stage and lymphatic metastasis status were found to be correlated with qMIDS scores. This study provided the first evidence that the pathophysiology of HNSCC was molecularly indistinguishable between the Chinese and European specimens. The qMIDS test robustly quantifies a universal FOXM1-driven oncogenic program, at least in HNSCC, which transcends ethnicity, age, gender and geographic origins.
Collapse
Affiliation(s)
- Hong Ma
- China-British Joint Molecular Head and Neck Cancer Research Laboratory, Department of Oral and Maxillofacial Surgery, Hospital and School of Stomatology, Guizhou Medical University, Guizhou, China
| | - Haiyan Dai
- China-British Joint Molecular Head and Neck Cancer Research Laboratory, Department of Oral and Maxillofacial Surgery, Hospital and School of Stomatology, Guizhou Medical University, Guizhou, China
| | - Xiaofeng Duan
- China-British Joint Molecular Head and Neck Cancer Research Laboratory, Department of Oral and Maxillofacial Surgery, Hospital and School of Stomatology, Guizhou Medical University, Guizhou, China
| | - Zhenglong Tang
- China-British Joint Molecular Head and Neck Cancer Research Laboratory, Department of Oral and Maxillofacial Surgery, Hospital and School of Stomatology, Guizhou Medical University, Guizhou, China
| | - Rui Liu
- China-British Joint Molecular Head and Neck Cancer Research Laboratory, Department of Oral and Maxillofacial Surgery, Hospital and School of Stomatology, Guizhou Medical University, Guizhou, China
| | - Kunjun Sun
- China-British Joint Molecular Head and Neck Cancer Research Laboratory, Department of Oral and Maxillofacial Surgery, Hospital and School of Stomatology, Guizhou Medical University, Guizhou, China
| | - Ke Zhou
- China-British Joint Molecular Head and Neck Cancer Research Laboratory, Department of Oral and Maxillofacial Surgery, Hospital and School of Stomatology, Guizhou Medical University, Guizhou, China
| | - Hao Chen
- China-British Joint Molecular Head and Neck Cancer Research Laboratory, Department of Oral and Maxillofacial Surgery, Hospital and School of Stomatology, Guizhou Medical University, Guizhou, China
| | - Hang Xiang
- China-British Joint Molecular Head and Neck Cancer Research Laboratory, Department of Oral and Maxillofacial Surgery, Hospital and School of Stomatology, Guizhou Medical University, Guizhou, China
| | - Jinsheng Wang
- China-British Joint Molecular Head and Neck Cancer Research Laboratory, Department of Oral and Maxillofacial Surgery, Hospital and School of Stomatology, Guizhou Medical University, Guizhou, China
| | - Qiong Gao
- China-British Joint Molecular Head and Neck Cancer Research Laboratory, Department of Oral and Maxillofacial Surgery, Hospital and School of Stomatology, Guizhou Medical University, Guizhou, China
| | - Yuan Zou
- China-British Joint Molecular Head and Neck Cancer Research Laboratory, Department of Oral and Maxillofacial Surgery, Hospital and School of Stomatology, Guizhou Medical University, Guizhou, China
| | - Hong Wan
- China-British Joint Molecular Head and Neck Cancer Research Laboratory, Department of Oral and Maxillofacial Surgery, Hospital and School of Stomatology, Guizhou Medical University, Guizhou, China
- Institute of Dentistry, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, England, United Kingdom
| | - Muy-Teck Teh
- China-British Joint Molecular Head and Neck Cancer Research Laboratory, Department of Oral and Maxillofacial Surgery, Hospital and School of Stomatology, Guizhou Medical University, Guizhou, China
- Institute of Dentistry, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, England, United Kingdom
| |
Collapse
|
38
|
Osei-Sarfo K, Urvalek AM, Tang XH, Scognamiglio T, Gudas LJ. Initiation of esophageal squamous cell carcinoma (ESCC) in a murine 4-nitroquinoline-1-oxide and alcohol carcinogenesis model. Oncotarget 2016; 6:6040-52. [PMID: 25714027 PMCID: PMC4467420 DOI: 10.18632/oncotarget.3339] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 01/04/2015] [Indexed: 01/14/2023] Open
Abstract
Esophageal squamous cell carcinomas (ESCCs) are very common, aggressive tumors, and are often associated with alcohol and tobacco abuse. Because ESCCs exhibit high recurrence rates and are diagnosed at late stages, identification of prognostic and drug targets for prevention and treatment is critical. We used the 4-nitroquinoline-1-oxide (4-NQO) murine model of oral carcinogenesis and the Meadows-Cook model of alcohol abuse to assess changes in the expression of molecular markers during the initial stages of ESCC. Combining these two models, which mimic chronic alcohol and tobacco abuse in humans, we detected increased cellular proliferation (EGFR and Ki67 expression), increased canonical Wnt signaling and downstream elements (β-catenin, FoxM1, and S100a4 protein levels), changes in cellular adhesive properties (reduced E-cadherin in the basal layer of the esophageal epithelium), and increased levels of phosphorylated ERK1/2 and p38. Additionally, we found that treatment with ethanol alone increased the numbers of epithelial cells expressing solute carrier family 2 (facilitated glucose transporter, member 1) (SLC2A1) and carbonic anhydrase IX (CAIX), and increased the phosphorylation of p38. Thus, we identified both 4-NQO- and ethanol-specific targets in the initial stages of esophageal carcinogenesis, which should lead to the development of potential markers and therapeutic targets for human ESCC.
Collapse
Affiliation(s)
- Kwame Osei-Sarfo
- Department of Pharmacology, Weill Cornell Medical College, New York, USA
| | - Alison M Urvalek
- Department of Pharmacology, Weill Cornell Medical College, New York, USA
| | - Xiao-Han Tang
- Department of Pharmacology, Weill Cornell Medical College, New York, USA
| | | | - Lorraine J Gudas
- Department of Pharmacology, Weill Cornell Medical College, New York, USA.,The Meyer Cancer Center, Weill Cornell Medical College, New York, USA
| |
Collapse
|
39
|
Chiu WT, Huang YF, Tsai HY, Chen CC, Chang CH, Huang SC, Hsu KF, Chou CY. FOXM1 confers to epithelial-mesenchymal transition, stemness and chemoresistance in epithelial ovarian carcinoma cells. Oncotarget 2016; 6:2349-65. [PMID: 25537512 PMCID: PMC4385856 DOI: 10.18632/oncotarget.2957] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 12/09/2015] [Indexed: 12/31/2022] Open
Abstract
Chemoresistance to anti-cancer drugs substantially reduces survival in epithelial ovarian cancer. In this study, we showed that chemoresistance to cisplatin and paclitaxel induced the epithelial-mesenchymal transition (EMT) and a stem cell phenotype in ovarian cancer cells. Chemoresistance was associated with the downregulation of epithelial markers and the upregulation of mesenchymal markers, EMT-related transcription factors, and cancer stem cell markers, which enhanced invasion and sphere formation ability. Overexpression of FOXM1 increased cisplatin-resistance and sphere formation in cisplatin-sensitive and low FOXM1-expressing ovarian cancer cells. Conversely, depletion of FOXM1 via RNA interference reduced cisplatin resistance and sphere formation in cisplatin-resistant and high FOXM1-expressing cells. Overexpression of FOXM1 also increased the expression, nuclear accumulation, and activity of β-CATENIN in chemoresistant cells, whereas downregulation of FOXM1 suppressed these events. The combination of cisplatin and the FOXM1 inhibitor thiostrepton inhibited the expression of stem cell markers in chemoresistant cells and subcutaneous ovarian tumor growth in mouse xenografts. In an analysis of 106 ovarian cancer patients, high FOXM1 levels in tumors were associated with cancer progression and short progression-free intervals. Collectively, our findings highlight the importance of FOXM1 in chemoresistance and suggest that FOXM1 inhibitors may be useful for treatment of ovarian cancer.
Collapse
Affiliation(s)
- Wen-Tai Chiu
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan.,Institute of Basic Medical Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Fang Huang
- Department of Obstetrics and Gynecology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Huei-Yu Tsai
- Cancer Research Center, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chien-Chin Chen
- Department of Pathology, Chia-Yi Christian Hospital, Chiayi, Taiwan.,Department of Cosmetic Science, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
| | - Chang-Hwa Chang
- Institute of Basic Medical Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Soon-Cen Huang
- Department of Obstetrics and Gynecology, Chi Mei Medical Center, Liouying Campus, Tainan, Taiwan
| | - Keng-Fu Hsu
- Department of Obstetrics and Gynecology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Cancer Research Center, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Cheng-Yang Chou
- Department of Obstetrics and Gynecology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Cancer Research Center, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
40
|
Parker MO, Evans AMD, Brock AJ, Combe FJ, Teh MT, Brennan CH. Moderate alcohol exposure during early brain development increases stimulus-response habits in adulthood. Addict Biol 2016; 21:49-60. [PMID: 25138642 DOI: 10.1111/adb.12176] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Exposure to alcohol during early central nervous system development has been shown variously to affect aspects of physiological and behavioural development. In extreme cases, this can extend to craniofacial defects, severe developmental delay and mental retardation. At more moderate levels, subtle differences in brain morphology and behaviour have been observed. One clear effect of developmental alcohol exposure is an increase in the propensity to develop alcoholism and other addictions. The mechanisms by which this occurs, however, are not currently understood. In this study, we tested the hypothesis that adult zebrafish chronically exposed to moderate levels of ethanol during early brain ontogenesis would show an increase in conditioned place preference for alcohol and an increased propensity towards habit formation, a key component of drug addiction in humans. We found support for both of these hypotheses and found that the exposed fish had changes in mRNA expression patterns for dopamine receptor, nicotinic acetylcholine receptor and μ-opioid receptor encoding genes. Collectively, these data show an explicit link between the increased proclivity for addiction and addiction-related behaviour following exposure to ethanol during early brain development and alterations in the neural circuits underlying habit learning.
Collapse
Affiliation(s)
- Matthew O. Parker
- School of Biological and Chemical Sciences; Barts and The London School of Medicine and Dentistry; Queen Mary University of London; UK
| | - Alexandra M-D. Evans
- School of Biological and Chemical Sciences; Barts and The London School of Medicine and Dentistry; Queen Mary University of London; UK
| | - Alistair J. Brock
- School of Biological and Chemical Sciences; Barts and The London School of Medicine and Dentistry; Queen Mary University of London; UK
| | - Fraser J. Combe
- School of Biological and Chemical Sciences; Barts and The London School of Medicine and Dentistry; Queen Mary University of London; UK
| | - Muy-Teck Teh
- Centre for Clinical and Diagnostic Oral Sciences; Barts and The London School of Medicine and Dentistry; Queen Mary University of London; UK
| | - Caroline H. Brennan
- School of Biological and Chemical Sciences; Barts and The London School of Medicine and Dentistry; Queen Mary University of London; UK
| |
Collapse
|
41
|
Chong YK, Sandanaraj E, Koh LWH, Thangaveloo M, Tan MSY, Koh GRH, Toh TB, Lim GGY, Holbrook JD, Kon OL, Nadarajah M, Ng I, Ng WH, Tan NS, Lim KL, Tang C, Ang BT. ST3GAL1-Associated Transcriptomic Program in Glioblastoma Tumor Growth, Invasion, and Prognosis. J Natl Cancer Inst 2015; 108:djv326. [PMID: 26547933 PMCID: PMC4755447 DOI: 10.1093/jnci/djv326] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 10/08/2015] [Indexed: 02/06/2023] Open
Abstract
Background: Cell surface sialylation is associated with tumor cell invasiveness in many cancers. Glioblastoma is the most malignant primary brain tumor and is highly infiltrative. ST3GAL1 sialyltransferase gene is amplified in a subclass of glioblastomas, and its role in tumor cell self-renewal remains unexplored. Methods: Self-renewal of patient glioma cells was evaluated using clonogenic, viability, and invasiveness assays. ST3GAL1 was identified from differentially expressed genes in Peanut Agglutinin–stained cells and validated in REMBRANDT (n = 390) and Gravendeel (n = 276) clinical databases. Gene set enrichment analysis revealed upstream processes. TGFβ signaling on ST3GAL1 transcription was assessed using chromatin immunoprecipitation. Transcriptome analysis of ST3GAL1 knockdown cells was done to identify downstream pathways. A constitutively active FoxM1 mutant lacking critical anaphase-promoting complex/cyclosome ([APC/C]-Cdh1) binding sites was used to evaluate ST3Gal1-mediated regulation of FoxM1 protein. Finally, the prognostic role of ST3Gal1 was determined using an orthotopic xenograft model (3 mice groups comprising nontargeting and 2 clones of ST3GAL1 knockdown in NNI-11 [8 per group] and NNI-21 [6 per group]), and the correlation with patient clinical information. All statistical tests on patients’ data were two-sided; other P values below are one-sided. Results: High ST3GAL1 expression defines an invasive subfraction with self-renewal capacity; its loss of function prolongs survival in a mouse model established from mesenchymal NNI-11 (P < .001; groups of 8 in 3 arms: nontargeting, C1, and C2 clones of ST3GAL1 knockdown). ST3GAL1 transcriptomic program stratifies patient survival (hazard ratio [HR] = 2.47, 95% confidence interval [CI] = 1.72 to 3.55, REMBRANDT P = 1.92x10-8; HR = 2.89, 95% CI = 1.94 to 4.30, Gravendeel P = 1.05x10-11), independent of age and histology, and associates with higher tumor grade and T2 volume (P = 1.46x10-4). TGFβ signaling, elevated in mesenchymal patients, correlates with high ST3GAL1 (REMBRANDT gliomacor = 0.31, P = 2.29x10-10; Gravendeel gliomacor = 0.50, P = 3.63x10-20). The transcriptomic program upon ST3GAL1 knockdown enriches for mitotic cell cycle processes. FoxM1 was identified as a statistically significantly modulated gene (P = 2.25x10-5) and mediates ST3Gal1 signaling via the (APC/C)-Cdh1 complex. Conclusions: The ST3GAL1-associated transcriptomic program portends poor prognosis in glioma patients and enriches for higher tumor grades of the mesenchymal molecular classification. We show that ST3Gal1-regulated self-renewal traits are crucial to the sustenance of glioblastoma multiforme growth.
Collapse
Affiliation(s)
- Yuk Kien Chong
- Department of Research (YKC, ES, LWHK, MT, MSYT, GRHK, TBT, GGYL, KLL, CT), Department of Neuroradiology (MN), and Department of Neurosurgery (IN, WHN, BTA), National Neuroscience Institute, Singapore; Department of Physiology (YKC, KLL, BTA) and Department of Biochemistry (OLK), Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Singapore Institute for Clinical Sciences (ES, JDH, BTA) and Institute of Molecular and Cell Biology (NST), Agency for Science, Technology and Research (A*STAR), Singapore; School of Biological Sciences, Nanyang Technological University, Singapore (ES, LWHK, MSYT, NST); Division of Medical Sciences, Humphrey Oei Institute of Cancer Research, National Cancer Centre, Singapore (OLK, CT); Duke-National University of Singapore Graduate Medical School, Singapore (IN, WHN, KLL, CT, BTA)
| | - Edwin Sandanaraj
- Department of Research (YKC, ES, LWHK, MT, MSYT, GRHK, TBT, GGYL, KLL, CT), Department of Neuroradiology (MN), and Department of Neurosurgery (IN, WHN, BTA), National Neuroscience Institute, Singapore; Department of Physiology (YKC, KLL, BTA) and Department of Biochemistry (OLK), Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Singapore Institute for Clinical Sciences (ES, JDH, BTA) and Institute of Molecular and Cell Biology (NST), Agency for Science, Technology and Research (A*STAR), Singapore; School of Biological Sciences, Nanyang Technological University, Singapore (ES, LWHK, MSYT, NST); Division of Medical Sciences, Humphrey Oei Institute of Cancer Research, National Cancer Centre, Singapore (OLK, CT); Duke-National University of Singapore Graduate Medical School, Singapore (IN, WHN, KLL, CT, BTA)
| | - Lynnette W H Koh
- Department of Research (YKC, ES, LWHK, MT, MSYT, GRHK, TBT, GGYL, KLL, CT), Department of Neuroradiology (MN), and Department of Neurosurgery (IN, WHN, BTA), National Neuroscience Institute, Singapore; Department of Physiology (YKC, KLL, BTA) and Department of Biochemistry (OLK), Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Singapore Institute for Clinical Sciences (ES, JDH, BTA) and Institute of Molecular and Cell Biology (NST), Agency for Science, Technology and Research (A*STAR), Singapore; School of Biological Sciences, Nanyang Technological University, Singapore (ES, LWHK, MSYT, NST); Division of Medical Sciences, Humphrey Oei Institute of Cancer Research, National Cancer Centre, Singapore (OLK, CT); Duke-National University of Singapore Graduate Medical School, Singapore (IN, WHN, KLL, CT, BTA)
| | - Moogaambikai Thangaveloo
- Department of Research (YKC, ES, LWHK, MT, MSYT, GRHK, TBT, GGYL, KLL, CT), Department of Neuroradiology (MN), and Department of Neurosurgery (IN, WHN, BTA), National Neuroscience Institute, Singapore; Department of Physiology (YKC, KLL, BTA) and Department of Biochemistry (OLK), Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Singapore Institute for Clinical Sciences (ES, JDH, BTA) and Institute of Molecular and Cell Biology (NST), Agency for Science, Technology and Research (A*STAR), Singapore; School of Biological Sciences, Nanyang Technological University, Singapore (ES, LWHK, MSYT, NST); Division of Medical Sciences, Humphrey Oei Institute of Cancer Research, National Cancer Centre, Singapore (OLK, CT); Duke-National University of Singapore Graduate Medical School, Singapore (IN, WHN, KLL, CT, BTA)
| | - Melanie S Y Tan
- Department of Research (YKC, ES, LWHK, MT, MSYT, GRHK, TBT, GGYL, KLL, CT), Department of Neuroradiology (MN), and Department of Neurosurgery (IN, WHN, BTA), National Neuroscience Institute, Singapore; Department of Physiology (YKC, KLL, BTA) and Department of Biochemistry (OLK), Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Singapore Institute for Clinical Sciences (ES, JDH, BTA) and Institute of Molecular and Cell Biology (NST), Agency for Science, Technology and Research (A*STAR), Singapore; School of Biological Sciences, Nanyang Technological University, Singapore (ES, LWHK, MSYT, NST); Division of Medical Sciences, Humphrey Oei Institute of Cancer Research, National Cancer Centre, Singapore (OLK, CT); Duke-National University of Singapore Graduate Medical School, Singapore (IN, WHN, KLL, CT, BTA)
| | - Geraldene R H Koh
- Department of Research (YKC, ES, LWHK, MT, MSYT, GRHK, TBT, GGYL, KLL, CT), Department of Neuroradiology (MN), and Department of Neurosurgery (IN, WHN, BTA), National Neuroscience Institute, Singapore; Department of Physiology (YKC, KLL, BTA) and Department of Biochemistry (OLK), Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Singapore Institute for Clinical Sciences (ES, JDH, BTA) and Institute of Molecular and Cell Biology (NST), Agency for Science, Technology and Research (A*STAR), Singapore; School of Biological Sciences, Nanyang Technological University, Singapore (ES, LWHK, MSYT, NST); Division of Medical Sciences, Humphrey Oei Institute of Cancer Research, National Cancer Centre, Singapore (OLK, CT); Duke-National University of Singapore Graduate Medical School, Singapore (IN, WHN, KLL, CT, BTA)
| | - Tan Boon Toh
- Department of Research (YKC, ES, LWHK, MT, MSYT, GRHK, TBT, GGYL, KLL, CT), Department of Neuroradiology (MN), and Department of Neurosurgery (IN, WHN, BTA), National Neuroscience Institute, Singapore; Department of Physiology (YKC, KLL, BTA) and Department of Biochemistry (OLK), Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Singapore Institute for Clinical Sciences (ES, JDH, BTA) and Institute of Molecular and Cell Biology (NST), Agency for Science, Technology and Research (A*STAR), Singapore; School of Biological Sciences, Nanyang Technological University, Singapore (ES, LWHK, MSYT, NST); Division of Medical Sciences, Humphrey Oei Institute of Cancer Research, National Cancer Centre, Singapore (OLK, CT); Duke-National University of Singapore Graduate Medical School, Singapore (IN, WHN, KLL, CT, BTA)
| | - Grace G Y Lim
- Department of Research (YKC, ES, LWHK, MT, MSYT, GRHK, TBT, GGYL, KLL, CT), Department of Neuroradiology (MN), and Department of Neurosurgery (IN, WHN, BTA), National Neuroscience Institute, Singapore; Department of Physiology (YKC, KLL, BTA) and Department of Biochemistry (OLK), Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Singapore Institute for Clinical Sciences (ES, JDH, BTA) and Institute of Molecular and Cell Biology (NST), Agency for Science, Technology and Research (A*STAR), Singapore; School of Biological Sciences, Nanyang Technological University, Singapore (ES, LWHK, MSYT, NST); Division of Medical Sciences, Humphrey Oei Institute of Cancer Research, National Cancer Centre, Singapore (OLK, CT); Duke-National University of Singapore Graduate Medical School, Singapore (IN, WHN, KLL, CT, BTA)
| | - Joanna D Holbrook
- Department of Research (YKC, ES, LWHK, MT, MSYT, GRHK, TBT, GGYL, KLL, CT), Department of Neuroradiology (MN), and Department of Neurosurgery (IN, WHN, BTA), National Neuroscience Institute, Singapore; Department of Physiology (YKC, KLL, BTA) and Department of Biochemistry (OLK), Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Singapore Institute for Clinical Sciences (ES, JDH, BTA) and Institute of Molecular and Cell Biology (NST), Agency for Science, Technology and Research (A*STAR), Singapore; School of Biological Sciences, Nanyang Technological University, Singapore (ES, LWHK, MSYT, NST); Division of Medical Sciences, Humphrey Oei Institute of Cancer Research, National Cancer Centre, Singapore (OLK, CT); Duke-National University of Singapore Graduate Medical School, Singapore (IN, WHN, KLL, CT, BTA)
| | - Oi Lian Kon
- Department of Research (YKC, ES, LWHK, MT, MSYT, GRHK, TBT, GGYL, KLL, CT), Department of Neuroradiology (MN), and Department of Neurosurgery (IN, WHN, BTA), National Neuroscience Institute, Singapore; Department of Physiology (YKC, KLL, BTA) and Department of Biochemistry (OLK), Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Singapore Institute for Clinical Sciences (ES, JDH, BTA) and Institute of Molecular and Cell Biology (NST), Agency for Science, Technology and Research (A*STAR), Singapore; School of Biological Sciences, Nanyang Technological University, Singapore (ES, LWHK, MSYT, NST); Division of Medical Sciences, Humphrey Oei Institute of Cancer Research, National Cancer Centre, Singapore (OLK, CT); Duke-National University of Singapore Graduate Medical School, Singapore (IN, WHN, KLL, CT, BTA)
| | - Mahendran Nadarajah
- Department of Research (YKC, ES, LWHK, MT, MSYT, GRHK, TBT, GGYL, KLL, CT), Department of Neuroradiology (MN), and Department of Neurosurgery (IN, WHN, BTA), National Neuroscience Institute, Singapore; Department of Physiology (YKC, KLL, BTA) and Department of Biochemistry (OLK), Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Singapore Institute for Clinical Sciences (ES, JDH, BTA) and Institute of Molecular and Cell Biology (NST), Agency for Science, Technology and Research (A*STAR), Singapore; School of Biological Sciences, Nanyang Technological University, Singapore (ES, LWHK, MSYT, NST); Division of Medical Sciences, Humphrey Oei Institute of Cancer Research, National Cancer Centre, Singapore (OLK, CT); Duke-National University of Singapore Graduate Medical School, Singapore (IN, WHN, KLL, CT, BTA)
| | - Ivan Ng
- Department of Research (YKC, ES, LWHK, MT, MSYT, GRHK, TBT, GGYL, KLL, CT), Department of Neuroradiology (MN), and Department of Neurosurgery (IN, WHN, BTA), National Neuroscience Institute, Singapore; Department of Physiology (YKC, KLL, BTA) and Department of Biochemistry (OLK), Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Singapore Institute for Clinical Sciences (ES, JDH, BTA) and Institute of Molecular and Cell Biology (NST), Agency for Science, Technology and Research (A*STAR), Singapore; School of Biological Sciences, Nanyang Technological University, Singapore (ES, LWHK, MSYT, NST); Division of Medical Sciences, Humphrey Oei Institute of Cancer Research, National Cancer Centre, Singapore (OLK, CT); Duke-National University of Singapore Graduate Medical School, Singapore (IN, WHN, KLL, CT, BTA)
| | - Wai Hoe Ng
- Department of Research (YKC, ES, LWHK, MT, MSYT, GRHK, TBT, GGYL, KLL, CT), Department of Neuroradiology (MN), and Department of Neurosurgery (IN, WHN, BTA), National Neuroscience Institute, Singapore; Department of Physiology (YKC, KLL, BTA) and Department of Biochemistry (OLK), Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Singapore Institute for Clinical Sciences (ES, JDH, BTA) and Institute of Molecular and Cell Biology (NST), Agency for Science, Technology and Research (A*STAR), Singapore; School of Biological Sciences, Nanyang Technological University, Singapore (ES, LWHK, MSYT, NST); Division of Medical Sciences, Humphrey Oei Institute of Cancer Research, National Cancer Centre, Singapore (OLK, CT); Duke-National University of Singapore Graduate Medical School, Singapore (IN, WHN, KLL, CT, BTA)
| | - Nguan Soon Tan
- Department of Research (YKC, ES, LWHK, MT, MSYT, GRHK, TBT, GGYL, KLL, CT), Department of Neuroradiology (MN), and Department of Neurosurgery (IN, WHN, BTA), National Neuroscience Institute, Singapore; Department of Physiology (YKC, KLL, BTA) and Department of Biochemistry (OLK), Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Singapore Institute for Clinical Sciences (ES, JDH, BTA) and Institute of Molecular and Cell Biology (NST), Agency for Science, Technology and Research (A*STAR), Singapore; School of Biological Sciences, Nanyang Technological University, Singapore (ES, LWHK, MSYT, NST); Division of Medical Sciences, Humphrey Oei Institute of Cancer Research, National Cancer Centre, Singapore (OLK, CT); Duke-National University of Singapore Graduate Medical School, Singapore (IN, WHN, KLL, CT, BTA)
| | - Kah Leong Lim
- Department of Research (YKC, ES, LWHK, MT, MSYT, GRHK, TBT, GGYL, KLL, CT), Department of Neuroradiology (MN), and Department of Neurosurgery (IN, WHN, BTA), National Neuroscience Institute, Singapore; Department of Physiology (YKC, KLL, BTA) and Department of Biochemistry (OLK), Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Singapore Institute for Clinical Sciences (ES, JDH, BTA) and Institute of Molecular and Cell Biology (NST), Agency for Science, Technology and Research (A*STAR), Singapore; School of Biological Sciences, Nanyang Technological University, Singapore (ES, LWHK, MSYT, NST); Division of Medical Sciences, Humphrey Oei Institute of Cancer Research, National Cancer Centre, Singapore (OLK, CT); Duke-National University of Singapore Graduate Medical School, Singapore (IN, WHN, KLL, CT, BTA)
| | - Carol Tang
- Department of Research (YKC, ES, LWHK, MT, MSYT, GRHK, TBT, GGYL, KLL, CT), Department of Neuroradiology (MN), and Department of Neurosurgery (IN, WHN, BTA), National Neuroscience Institute, Singapore; Department of Physiology (YKC, KLL, BTA) and Department of Biochemistry (OLK), Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Singapore Institute for Clinical Sciences (ES, JDH, BTA) and Institute of Molecular and Cell Biology (NST), Agency for Science, Technology and Research (A*STAR), Singapore; School of Biological Sciences, Nanyang Technological University, Singapore (ES, LWHK, MSYT, NST); Division of Medical Sciences, Humphrey Oei Institute of Cancer Research, National Cancer Centre, Singapore (OLK, CT); Duke-National University of Singapore Graduate Medical School, Singapore (IN, WHN, KLL, CT, BTA).
| | - Beng Ti Ang
- Department of Research (YKC, ES, LWHK, MT, MSYT, GRHK, TBT, GGYL, KLL, CT), Department of Neuroradiology (MN), and Department of Neurosurgery (IN, WHN, BTA), National Neuroscience Institute, Singapore; Department of Physiology (YKC, KLL, BTA) and Department of Biochemistry (OLK), Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Singapore Institute for Clinical Sciences (ES, JDH, BTA) and Institute of Molecular and Cell Biology (NST), Agency for Science, Technology and Research (A*STAR), Singapore; School of Biological Sciences, Nanyang Technological University, Singapore (ES, LWHK, MSYT, NST); Division of Medical Sciences, Humphrey Oei Institute of Cancer Research, National Cancer Centre, Singapore (OLK, CT); Duke-National University of Singapore Graduate Medical School, Singapore (IN, WHN, KLL, CT, BTA).
| |
Collapse
|
42
|
Kang SYC, Kannan N, Zhang L, Martinez V, Rosin MP, Eaves CJ. Characterization of Epithelial Progenitors in Normal Human Palatine Tonsils and Their HPV16 E6/E7-Induced Perturbation. Stem Cell Reports 2015; 5:1210-1225. [PMID: 26527383 PMCID: PMC4682068 DOI: 10.1016/j.stemcr.2015.09.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 09/25/2015] [Accepted: 09/28/2015] [Indexed: 11/30/2022] Open
Abstract
Human palatine tonsils are oropharyngeal lymphoid tissues containing multiple invaginations (crypts) in which the continuity of the outer surface epithelium is disrupted and the isolated epithelial cells intermingle with other cell types. We now show that primitive epithelial cells detectable in vitro in 2D colony assays and in a 3D culture system are CD44+NGFR+ and present in both surface and crypt regions. Transcriptome analysis indicated a high similarity between CD44+NGFR+ cells in both regions, although those isolated from the crypt contained a higher proportion of the most primitive (holo)clonogenic cells. Lentiviral transduction of CD44+NGFR+ cells from both regions with human papillomavirus 16-encoded E6/E7 prolonged their growth in 2D cultures and caused aberrant differentiation in 3D cultures. Our findings therefore reveal a shared, site-independent, hierarchical organization, differentiation potential, and transcriptional profile of normal human tonsillar epithelial progenitor cells. They also introduce a new model for investigating the mechanisms of their transformation. Tonsillar surface and crypt epithelial progenitor cells are detected similarly Both surface and crypt epithelial progenitors in the tonsil are CD44+NGFR+ Stratified epithelium can be regenerated from primitive tonsillar crypt cells HPV16 E6/E7 deregulates crypt epithelial progenitor growth and differentiation
Collapse
Affiliation(s)
- Sung Yoon Catherine Kang
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC V5A 1S6, Canada; Department of Cancer Control Research, British Columbia Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Nagarajan Kannan
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC V5Z 1L3, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Lewei Zhang
- Faculty of Dentistry, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Victor Martinez
- Department of Integrative Oncology, British Columbia Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Miriam P Rosin
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC V5A 1S6, Canada; Department of Cancer Control Research, British Columbia Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Connie J Eaves
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC V5Z 1L3, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
| |
Collapse
|
43
|
Parker MO, Brock AJ, Sudwarts A, Teh MT, Combe FJ, Brennan CH. Developmental role of acetylcholinesterase in impulse control in zebrafish. Front Behav Neurosci 2015; 9:271. [PMID: 26528153 PMCID: PMC4607786 DOI: 10.3389/fnbeh.2015.00271] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 09/22/2015] [Indexed: 01/25/2023] Open
Abstract
Cellular and molecular processes that mediate individual variability in impulsivity, a key behavioral component of many neuropsychiatric disorders, are poorly understood. Zebrafish heterozygous for a nonsense mutation in ache (achesb55/+) showed lower levels of impulsivity in a 5-choice serial reaction time task (5-CSRTT) than wild type and ache+∕+. Assessment of expression of cholinergic (nAChR), serotonergic (5-HT), and dopamine (DR) receptor mRNA in both adult and larval (9 dpf) achesb55/+ revealed significant downregulation of chrna2, chrna5, and drd2 mRNA in achesb55/+ larvae, but no differences in adults. Acute exposure to cholinergic agonist/antagonists had no effect on impulsivity, supporting the hypothesis that behavioral effects observed in adults were due to lasting impact of developmental alterations in cholinergic and dopaminergic signaling. This shows the cross-species role of cholinergic signaling during brain development in impulsivity, and suggests zebrafish may be a useful model for the role of cholinergic pathways as a target for therapeutic advances in addiction medicine.
Collapse
Affiliation(s)
- Matthew O Parker
- School of Biological and Chemical Sciences, Queen Mary University of London London, UK ; School of Health Sciences and Social Work, University of Portsmouth Portsmouth, UK
| | - Alistair J Brock
- School of Biological and Chemical Sciences, Queen Mary University of London London, UK
| | - Ari Sudwarts
- School of Biological and Chemical Sciences, Queen Mary University of London London, UK
| | - Muy-Teck Teh
- Centre for Clinical and Diagnostic Oral Sciences, Institute of Dentistry, Barts and The London School of Medicine and Dentistry, Queen Mary University of London London, UK
| | - Fraser J Combe
- School of Biological and Chemical Sciences, Queen Mary University of London London, UK
| | - Caroline H Brennan
- School of Biological and Chemical Sciences, Queen Mary University of London London, UK
| |
Collapse
|
44
|
Consolaro F, Basso G, Ghaem-Magami S, Lam EWF, Viola G. FOXM1 is overexpressed in B-acute lymphoblastic leukemia (B-ALL) and its inhibition sensitizes B-ALL cells to chemotherapeutic drugs. Int J Oncol 2015; 47:1230-40. [PMID: 26316295 PMCID: PMC4583527 DOI: 10.3892/ijo.2015.3139] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 06/10/2015] [Indexed: 12/31/2022] Open
Abstract
The Forkhead box protein M1 (FOXM1) is a transcription factor that plays a central role in the regulation of cell cycle, proliferation, DNA repair, and apoptosis. FOXM1 is overexpressed in many human tumors and its upregulation has been linked to high proliferation rates and poor prognosis. We therefore studied the role of FOXM1 in B-lymphoblastic leukemia (B-ALL) in order to understand whether FOXM1 could be a key target for leukemia therapy. RT-PCR and western blot analysis were carried out in a small cohort of pediatric B-ALL patients to evaluate FOXM1 levels. To assess its biological relevance, its expression was down-modulated by transient RNA interference in B-ALL cell lines (REH and NALM-6). Our results show that FOXM1 expression is higher in both B-ALL patients and cell lines when compared to PBMC or normal B-cells (CD19+) from healthy donors. Furthermore, blocking FOXM1 activity in two B-ALL cell lines, by either knockdown or treatment with the FOXM1 inhibitor thiostrepton, causes significant decrease in their cell proliferation. This decrease in cell proliferation was coupled with both an induction of the G2/M cell cycle arrest and with a reduction in the S phase population. Finally, we noted how thiostrepton synergises with chemotherapeutic agents commonly used in B-ALL therapy, thus increasing their efficiency. Therefore our results suggest that FOXM1 is highly expressed in both patients and B-ALL cell lines, and that targeting FOXM1 could be an attractive strategy for leukemia therapy and for overcoming drug resistance.
Collapse
Affiliation(s)
- Francesca Consolaro
- Department of Woman's and Child's Health, Oncohematology Laboratory, University of Padova, Padova, Italy
| | - Giuseppe Basso
- Department of Woman's and Child's Health, Oncohematology Laboratory, University of Padova, Padova, Italy
| | - Sadaf Ghaem-Magami
- Department of Surgery and Cancer, Imperial College London, Imperial Centre for Translational and Experimental Medicine (ICTEM), London, UK
| | - Eric W-F Lam
- Department of Surgery and Cancer, Imperial College London, Imperial Centre for Translational and Experimental Medicine (ICTEM), London, UK
| | - Giampietro Viola
- Department of Woman's and Child's Health, Oncohematology Laboratory, University of Padova, Padova, Italy
| |
Collapse
|
45
|
Calenic B, Greabu M, Caruntu C, Tanase C, Battino M. Oral keratinocyte stem/progenitor cells: specific markers, molecular signaling pathways and potential uses. Periodontol 2000 2015; 69:68-82. [DOI: 10.1111/prd.12097] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/11/2015] [Indexed: 12/18/2022]
|
46
|
Kopanja D, Pandey A, Kiefer M, Wang Z, Chandan N, Carr JR, Franks R, Yu DY, Guzman G, Maker A, Raychaudhuri P. Essential roles of FoxM1 in Ras-induced liver cancer progression and in cancer cells with stem cell features. J Hepatol 2015; 63:429-436. [PMID: 25828473 PMCID: PMC4508215 DOI: 10.1016/j.jhep.2015.03.023] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 03/13/2015] [Accepted: 03/19/2015] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS Overexpression of FoxM1 correlates with poor prognosis in hepatocellular carcinoma (HCC). Moreover, the Ras-signaling pathway is found to be ubiquitously activated in HCC through epigenetic silencing of the Ras-regulators. We investigated the roles of FoxM1 in Ras-driven HCC, and on HCC cells with stem-like features. METHODS We employed a transgenic mouse model that expresses the oncogenic Ras in the liver. That strain was crossed with a strain that harbor floxed alleles of FoxM1 and the MxCre gene that allows conditional deletion of FoxM1. FoxM1 alleles were deleted after development of HCC, and the effects on the tumors were analyzed. Also, FoxM1 siRNA was used in human HCC cell lines to determine its role in the survival of the HCC cells with stem cell features. RESULTS Ras-driven tumors overexpress FoxM1. Deletion of FoxM1 inhibits HCC progression. There was increased accumulation of reactive oxygen species (ROS) in the FoxM1 deleted HCC cells. Moreover, FoxM1 deletion caused a disproportionate loss of the CD44+ and EpCAM+ HCC cells in the tumors. We show that FoxM1 directly activates expression of CD44 in human HCC cells. Moreover, the human HCC cells with stem cell features are addicted to FoxM1 for ROS-regulation and survival. CONCLUSION Our results provide genetic evidence for an essential role of FoxM1 in the progression of Ras-driven HCC. In addition, FoxM1 is required for the expression of CD44 in HCC cells. Moreover, FoxM1 plays a critical role in the survival of the HCC cells with stem cell features by regulating ROS.
Collapse
Affiliation(s)
- Dragana Kopanja
- Department of Biochemistry and Molecular Genetics (M/C 669), University of Illinois, College of Medicine, 900 S. Ashland Ave., Chicago, IL 60607, United States
| | - Akshay Pandey
- Department of Biochemistry and Molecular Genetics (M/C 669), University of Illinois, College of Medicine, 900 S. Ashland Ave., Chicago, IL 60607, United States
| | - Megan Kiefer
- Department of Biochemistry and Molecular Genetics (M/C 669), University of Illinois, College of Medicine, 900 S. Ashland Ave., Chicago, IL 60607, United States
| | - Zebin Wang
- Department of Biochemistry and Molecular Genetics (M/C 669), University of Illinois, College of Medicine, 900 S. Ashland Ave., Chicago, IL 60607, United States
| | - Neha Chandan
- Department of Biochemistry and Molecular Genetics (M/C 669), University of Illinois, College of Medicine, 900 S. Ashland Ave., Chicago, IL 60607, United States
| | - Janai R Carr
- Department of Biochemistry and Molecular Genetics (M/C 669), University of Illinois, College of Medicine, 900 S. Ashland Ave., Chicago, IL 60607, United States; Department of Medicine, University of California, San Francisco, CA, United States
| | - Roberta Franks
- Transgenic Production Facility, University of Illinois, College of Medicine, 909 S. Wolcott Ave, Chicago, IL 60612, United States
| | - Dae-Yeul Yu
- Laboratory of Human Genomics, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 305-806, Republic of Korea
| | - Grace Guzman
- Department of Pathology, University of Illinois, College of Medicine, 840 S. Wood St, Chicago, IL 60612, United States
| | - Ajay Maker
- Department of Medicine, University of Illinois, College of Medicine, 909 S. Wolcott Ave, Chicago, IL 60612, United States
| | - Pradip Raychaudhuri
- Department of Biochemistry and Molecular Genetics (M/C 669), University of Illinois, College of Medicine, 900 S. Ashland Ave., Chicago, IL 60607, United States; Jesse Brown VA Medical Center, 820 S. Damen Ave., Chicago, IL 60612, United States.
| |
Collapse
|
47
|
Sanders DA, Gormally MV, Marsico G, Beraldi D, Tannahill D, Balasubramanian S. FOXM1 binds directly to non-consensus sequences in the human genome. Genome Biol 2015; 16:130. [PMID: 26100407 PMCID: PMC4492089 DOI: 10.1186/s13059-015-0696-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 06/15/2015] [Indexed: 02/07/2023] Open
Abstract
Background The Forkhead (FKH) transcription factor FOXM1 is a key regulator of the cell cycle and is overexpressed in most types of cancer. FOXM1, similar to other FKH factors, binds to a canonical FKH motif in vitro. However, genome-wide mapping studies in different cell lines have shown a lack of enrichment of the FKH motif, suggesting an alternative mode of chromatin recruitment. We have investigated the role of direct versus indirect DNA binding in FOXM1 recruitment by performing ChIP-seq with wild-type and DNA binding deficient FOXM1. Results An in vitro fluorescence polarization assay identified point mutations in the DNA binding domain of FOXM1 that inhibit binding to a FKH consensus sequence. Cell lines expressing either wild-type or DNA binding deficient GFP-tagged FOXM1 were used for genome-wide mapping studies comparing the distribution of the DNA binding deficient protein to the wild-type. This shows that interaction of the FOXM1 DNA binding domain with target DNA is essential for recruitment. Moreover, analysis of the protein interactome of wild-type versus DNA binding deficient FOXM1 shows that the reduced recruitment is not due to inhibition of protein-protein interactions. Conclusions A functional DNA binding domain is essential for FOXM1 chromatin recruitment. Even in FOXM1 mutants with almost complete loss of binding, the protein-protein interactions and pattern of phosphorylation are largely unaffected. These results strongly support a model whereby FOXM1 is specifically recruited to chromatin through co-factor interactions by binding directly to non-canonical DNA sequences. Electronic supplementary material The online version of this article (doi:10.1186/s13059-015-0696-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Deborah A Sanders
- Cancer Research UK, Cambridge Research Institute, Li Ka Shing Center, Robinson Way, Cambridge, CB2 0RE, UK. .,Present address: Domainex, 162 Cambridge Science Park, Milton Road, Cambridge, CB4 0GH, UK.
| | - Michael V Gormally
- Cancer Research UK, Cambridge Research Institute, Li Ka Shing Center, Robinson Way, Cambridge, CB2 0RE, UK.
| | - Giovanni Marsico
- Cancer Research UK, Cambridge Research Institute, Li Ka Shing Center, Robinson Way, Cambridge, CB2 0RE, UK.
| | - Dario Beraldi
- Cancer Research UK, Cambridge Research Institute, Li Ka Shing Center, Robinson Way, Cambridge, CB2 0RE, UK.
| | - David Tannahill
- Cancer Research UK, Cambridge Research Institute, Li Ka Shing Center, Robinson Way, Cambridge, CB2 0RE, UK.
| | - Shankar Balasubramanian
- Cancer Research UK, Cambridge Research Institute, Li Ka Shing Center, Robinson Way, Cambridge, CB2 0RE, UK. .,Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK. .,School of Clinical Medicine, The University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0SP, UK.
| |
Collapse
|
48
|
De Luca A, Fiorillo M, Peiris-Pagès M, Ozsvari B, Smith DL, Sanchez-Alvarez R, Martinez-Outschoorn UE, Cappello AR, Pezzi V, Lisanti MP, Sotgia F. Mitochondrial biogenesis is required for the anchorage-independent survival and propagation of stem-like cancer cells. Oncotarget 2015; 6:14777-95. [PMID: 26087310 PMCID: PMC4558115 DOI: 10.18632/oncotarget.4401] [Citation(s) in RCA: 198] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 05/30/2015] [Indexed: 02/07/2023] Open
Abstract
Here, we show that new mitochondrial biogenesis is required for the anchorage independent survival and propagation of cancer stem-like cells (CSCs). More specifically, we used the drug XCT790 as an investigational tool, as it functions as a specific inhibitor of the ERRα-PGC1 signaling pathway, which governs mitochondrial biogenesis. Interestingly, our results directly demonstrate that XCT790 efficiently blocks both the survival and propagation of tumor initiating stem-like cells (TICs), using the MCF7 cell line as a model system. Mechanistically, we show that XCT790 suppresses the activity of several independent signaling pathways that are normally required for the survival of CSCs, such as Sonic hedgehog, TGFβ-SMAD, STAT3, and Wnt signaling. We also show that XCT790 markedly reduces oxidative mitochondrial metabolism (OXPHOS) and that XCT790-mediated inhibition of CSC propagation can be prevented or reversed by Acetyl-L-Carnitine (ALCAR), a mitochondrial fuel. Consistent with our findings, over-expression of ERRα significantly enhances the efficiency of mammosphere formation, which can be blocked by treatment with mitochondrial inhibitors. Similarly, mammosphere formation augmented by FOXM1, a downstream target of Wnt/β-catenin signaling, can also be blocked by treatment with three different classes of mitochondrial inhibitors (XCT790, oligomycin A, or doxycycline). In this context, our unbiased proteomics analysis reveals that FOXM1 drives the expression of >90 protein targets associated with mitochondrial biogenesis, glycolysis, the EMT and protein synthesis in MCF7 cells, processes which are characteristic of an anabolic CSC phenotype. Finally, doxycycline is an FDA-approved antibiotic, which is very well-tolerated in patients. As such, doxycycline could be re-purposed clinically as a 'safe' mitochondrial inhibitor, to target FOXM1 and mitochondrial biogenesis in CSCs, to prevent tumor recurrence and distant metastasis, thereby avoiding patient relapse.
Collapse
Affiliation(s)
- Arianna De Luca
- The Breakthrough Breast Cancer Research Unit, Institute of Cancer Sciences, University of Manchester, UK
- The Manchester Centre for Cellular Metabolism (MCCM), Institute of Cancer Sciences, University of Manchester, UK
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende (CS), Italy
| | - Marco Fiorillo
- The Breakthrough Breast Cancer Research Unit, Institute of Cancer Sciences, University of Manchester, UK
- The Manchester Centre for Cellular Metabolism (MCCM), Institute of Cancer Sciences, University of Manchester, UK
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende (CS), Italy
| | - Maria Peiris-Pagès
- The Breakthrough Breast Cancer Research Unit, Institute of Cancer Sciences, University of Manchester, UK
- The Manchester Centre for Cellular Metabolism (MCCM), Institute of Cancer Sciences, University of Manchester, UK
| | - Bela Ozsvari
- The Breakthrough Breast Cancer Research Unit, Institute of Cancer Sciences, University of Manchester, UK
- The Manchester Centre for Cellular Metabolism (MCCM), Institute of Cancer Sciences, University of Manchester, UK
| | - Duncan L. Smith
- The Cancer Research UK Manchester Institute, University of Manchester, UK
| | - Rosa Sanchez-Alvarez
- The Breakthrough Breast Cancer Research Unit, Institute of Cancer Sciences, University of Manchester, UK
- The Manchester Centre for Cellular Metabolism (MCCM), Institute of Cancer Sciences, University of Manchester, UK
| | | | - Anna Rita Cappello
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende (CS), Italy
| | - Vincenzo Pezzi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende (CS), Italy
| | - Michael P. Lisanti
- The Breakthrough Breast Cancer Research Unit, Institute of Cancer Sciences, University of Manchester, UK
- The Manchester Centre for Cellular Metabolism (MCCM), Institute of Cancer Sciences, University of Manchester, UK
| | - Federica Sotgia
- The Breakthrough Breast Cancer Research Unit, Institute of Cancer Sciences, University of Manchester, UK
- The Manchester Centre for Cellular Metabolism (MCCM), Institute of Cancer Sciences, University of Manchester, UK
| |
Collapse
|
49
|
Eriksson P, Aine M, Veerla S, Liedberg F, Sjödahl G, Höglund M. Molecular subtypes of urothelial carcinoma are defined by specific gene regulatory systems. BMC Med Genomics 2015; 8:25. [PMID: 26008846 PMCID: PMC4446831 DOI: 10.1186/s12920-015-0101-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 05/20/2015] [Indexed: 12/13/2022] Open
Abstract
Background Molecular stratification of bladder cancer has revealed gene signatures differentially expressed across tumor subtypes. While these signatures provide important insights into subtype biology, the transcriptional regulation that governs these signatures is not well characterized. Methods In this study, we use publically available ChIP-Seq data on regulatory factor binding in order to link transcription factors to gene signatures defining molecular subtypes of urothelial carcinoma. Results We identify PPARG and STAT3, as well as ADIRF, a novel regulator of fatty acid metabolism, as putative mediators of the SCC-like phenotype. We link the PLK1-FOXM1 axis to the rapidly proliferating Genomically Unstable and SCC-like subtypes and show that differentiation programs involving PPARG/RXRA, FOXA1/GATA3 and HOXA/HOXB are differentially expressed in UC molecular subtypes. We show that gene signatures and regulatory systems defined in urothelial carcinoma operate in breast cancer in a subtype specific manner, suggesting similarities at the gene regulatory level of these two tumor types. Conclusions At the gene regulatory level Urobasal, Genomically Unstable and SCC-like tumors represents three fundamentally different tumor types. Urobasal tumors maintain an apparent urothelial differentiation axis composed of PPARG/RXRA, FOXA1/GATA3 and anterior HOXA and HOXB genes. Genomically Unstable and SCC-like tumors differ from Urobasal tumors by a strong increase of proliferative activity through the PLK1-FOXM1 axis operating in both subtypes. However, whereas SCC-like tumors evade urothelial differentiation by a block in differentiation through strong downregulation of PPARG/RXRA, FOXA1/GATA3, our data indicates that Genomically Unstable tumors evade differentiation in a more dynamic manner. Electronic supplementary material The online version of this article (doi:10.1186/s12920-015-0101-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Pontus Eriksson
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, Lund, Skåne, SE-223 81, Sweden.
| | - Mattias Aine
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, Lund, Skåne, SE-223 81, Sweden.
| | - Srinivas Veerla
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, Lund, Skåne, SE-223 81, Sweden.
| | - Fredrik Liedberg
- Division of Urological Research, Department of Clinical Sciences Malmö, Lund University, Malmö, Skåne, SE-205 02, Sweden.
| | - Gottfrid Sjödahl
- Division of Urological Research, Department of Clinical Sciences Malmö, Lund University, Malmö, Skåne, SE-205 02, Sweden.
| | - Mattias Höglund
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, Lund, Skåne, SE-223 81, Sweden.
| |
Collapse
|
50
|
Young MJ, Wu YH, Chiu WT, Weng TY, Huang YF, Chou CY. All-trans retinoic acid downregulates ALDH1-mediated stemness and inhibits tumour formation in ovarian cancer cells. Carcinogenesis 2015; 36:498-507. [DOI: 10.1093/carcin/bgv018] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 02/25/2015] [Indexed: 12/16/2022] Open
|