1
|
Noorani I, Haughey M, Luebeck J, Rowan A, Grönroos E, Terenzi F, Wong ITL, Kittel J, Bailey C, Weeden C, Bell D, Joo E, Barbe V, Jones MG, Nye E, Green M, Meader L, Norton EJ, Fabian M, Kanu N, Jamal-Hanjani M, Santarius T, Nicoll J, Boche D, Chang HY, Bafna V, Huang W, Mischel PS, Swanton C, Werner B. Extrachromosomal DNA driven oncogene spatial heterogeneity and evolution in glioblastoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.22.619657. [PMID: 39484416 PMCID: PMC11526901 DOI: 10.1101/2024.10.22.619657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Oncogene amplification on extrachromosomal DNA (ecDNA) is strongly associated with treatment resistance and shorter survival for patients with cancer, including patients with glioblastoma. The non-chromosomal inheritance of ecDNA during cell division is a major contributor to intratumoral genetic heterogeneity. At present, the spatial dynamics of ecDNA, and the impact on tumor evolutionary trajectories, are not well understood. Here, we investigate the spatial-temporal evolution of ecDNA and its clinical impact by analyzing tumor samples from 94 treatment-naive human IDH -wildtype glioblastoma patients. We developed a spatial-temporal computational model of ecDNA positive tumors ('SPECIES') that integrates whole-genome sequencing, multi-region DNA FISH, and nascent RNAscope, to provide unique insight into the spatial dynamics of ecDNA evolution. Random segregation in combination with positive selection of ecDNAs induce large, predictable spatial patterns of cell-to-cell ecDNA copy number variation that are highly dependent on the oncogene encoded on the circular DNA. EGFR ecDNAs often reach high mean copy number (mean of 50 copies per tumor cell), are under strong positive selection (mean selection coefficient, s > 2) and do not co-amplify other oncogenes on the same ecDNA particles. In contrast, PDGFRA ecDNAs have lower mean copy number (mean of 15 copies per cell), are under weaker positive selection and frequently co-amplify other oncogenes on the same ecDNA. Evolutionary modeling suggests that EGFR ecDNAs often accumulate prior to clonal expansion. EGFR structural variants, including vIII and c-terminal deletions are under strong positive selection, are found exclusively on ecDNA, and are intermixed with wild-type EGFR ecDNAs. Simulations show EGFRvIII ecDNA likely arises after ecDNA formation in a cell with high wild-type EGFR copy number (> 10) before the onset of the most recent clonal expansion. This remains true even in cases of co-selection and co-amplification of multiple oncogenic ecDNA species in a subset of patients. Overall, our results suggest a potential time window in which early ecDNA detection may provide an opportunity for more effective intervention. Highlights ecDNA is the most common mechanism of focal oncogene amplification in IDH wt glioblastoma. EGFR and its variants on ecDNA are particularly potent, likely arising early in tumor development, providing a strong oncogenic stimulus to drive tumorigenesis. Wild-type and variant EGFR ecDNA heteroplasmy (co-occurrence) is common with EGFR vIII or c-terminal deletions being derived from EGFR wild-type ecDNA prior to the most recent clonal expansion. Tumors with ecDNA amplified EGFR versus PDGFRA exhibit different evolutionary trajectories. SPECIES model can infer spatial evolutionary dynamics of ecDNA in cancer.A delay between ecDNA accumulation and subsequent oncogenic mutation may give a therapeutic window for early intervention.
Collapse
|
2
|
Liu Y, Qu HQ, Chang X, Mentch FD, Qiu H, Nguyen K, Ostberg K, Wang T, Glessner J, Hakonarson H. Deciphering protective genomic factors of tumor development in pediatric down syndrome via deep learning approach to whole genome and RNA sequencing. Cancer Commun (Lond) 2024. [PMID: 39387321 DOI: 10.1002/cac2.12612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 09/10/2024] [Accepted: 09/13/2024] [Indexed: 10/15/2024] Open
Affiliation(s)
- Yichuan Liu
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Hui-Qi Qu
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Xiao Chang
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Frank D Mentch
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Haijun Qiu
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Kenny Nguyen
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Kayleigh Ostberg
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Tiancheng Wang
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Joseph Glessner
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Hakon Hakonarson
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Division of Pulmonary Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| |
Collapse
|
3
|
Rodriguez SMB, Kamel A, Ciubotaru GV, Onose G, Sevastre AS, Sfredel V, Danoiu S, Dricu A, Tataranu LG. An Overview of EGFR Mechanisms and Their Implications in Targeted Therapies for Glioblastoma. Int J Mol Sci 2023; 24:11110. [PMID: 37446288 DOI: 10.3390/ijms241311110] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 06/29/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
Despite all of the progress in understanding its molecular biology and pathogenesis, glioblastoma (GBM) is one of the most aggressive types of cancers, and without an efficient treatment modality at the moment, it remains largely incurable. Nowadays, one of the most frequently studied molecules with important implications in the pathogenesis of the classical subtype of GBM is the epidermal growth factor receptor (EGFR). Although many clinical trials aiming to study EGFR targeted therapies have been performed, none of them have reported promising clinical results when used in glioma patients. The resistance of GBM to these therapies was proven to be both acquired and innate, and it seems to be influenced by a cumulus of factors such as ineffective blood-brain barrier penetration, mutations, heterogeneity and compensatory signaling pathways. Recently, it was shown that EGFR possesses kinase-independent (KID) pro-survival functions in cancer cells. It seems imperative to understand how the EGFR signaling pathways function and how they interconnect with other pathways. Furthermore, it is important to identify the mechanisms of drug resistance and to develop better tailored therapeutic agents.
Collapse
Affiliation(s)
- Silvia Mara Baez Rodriguez
- Neurosurgical Department, Clinical Emergency Hospital "Bagdasar-Arseni", Soseaua Berceni 12, 041915 Bucharest, Romania
| | - Amira Kamel
- Neurosurgical Department, Clinical Emergency Hospital "Bagdasar-Arseni", Soseaua Berceni 12, 041915 Bucharest, Romania
| | - Gheorghe Vasile Ciubotaru
- Neurosurgical Department, Clinical Emergency Hospital "Bagdasar-Arseni", Soseaua Berceni 12, 041915 Bucharest, Romania
| | - Gelu Onose
- Neuromuscular Rehabilitation Department, Clinical Emergency Hospital "Bagdasar-Arseni", Soseaua Berceni 12, 041915 Bucharest, Romania
| | - Ani-Simona Sevastre
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, Str. Petru Rares nr. 2-4, 710204 Craiova, Romania
| | - Veronica Sfredel
- Department of Physiology, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, Str. Petru Rares nr. 2-4, 710204 Craiova, Romania
| | - Suzana Danoiu
- Department of Physiology, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, Str. Petru Rares nr. 2-4, 710204 Craiova, Romania
| | - Anica Dricu
- Department of Biochemistry, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, Str. Petru Rares nr. 2-4, 710204 Craiova, Romania
| | - Ligia Gabriela Tataranu
- Neurosurgical Department, Clinical Emergency Hospital "Bagdasar-Arseni", Soseaua Berceni 12, 041915 Bucharest, Romania
- Department of Neurosurgery, Faculty of Medicine, University of Medicine and Pharmacy "Carol Davila", 020022 Bucharest, Romania
| |
Collapse
|
4
|
Tian L, Xu B, Chen Y, Li Z, Wang J, Zhang J, Ma R, Cao S, Hu W, Chiocca EA, Kaur B, Caligiuri MA, Yu J. Specific targeting of glioblastoma with an oncolytic virus expressing a cetuximab-CCL5 fusion protein via innate and adaptive immunity. NATURE CANCER 2022; 3:1318-1335. [PMID: 36357700 PMCID: PMC10150871 DOI: 10.1038/s43018-022-00448-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 09/20/2022] [Indexed: 11/12/2022]
Abstract
Chemokines such as C-C motif ligand 5 (CCL5) regulate immune cell trafficking in the tumor microenvironment (TME) and govern tumor development, making them promising targets for cancer therapy. However, short half-lives and toxic off-target effects limit their application. Oncolytic viruses (OVs) have become attractive therapeutic agents. Here, we generate an oncolytic herpes simplex virus type 1 (oHSV) expressing a secretable single-chain variable fragment of the epidermal growth factor receptor (EGFR) antibody cetuximab linked to CCL5 by an Fc knob-into-hole strategy that produces heterodimers (OV-Cmab-CCL5). OV-Cmab-CCL5 permits continuous production of CCL5 in the TME, as it is redirected to EGFR+ glioblastoma (GBM) tumor cells. OV-Cmab-CCL5 infection of GBM significantly enhances the migration and activation of natural killer cells, macrophages and T cells; inhibits tumor EGFR signaling; reduces tumor size; and prolongs survival of GBM-bearing mice. Collectively, our data demonstrate that OV-Cmab-CCL5 offers a promising approach to improve OV therapy for solid tumors.
Collapse
Affiliation(s)
- Lei Tian
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA, USA
| | - Bo Xu
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA, USA
| | - Yuqing Chen
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA, USA
| | - Zhenlong Li
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA, USA
| | - Jing Wang
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA, USA
| | - Jianying Zhang
- Department of Computational and Quantitative Medicine, City of Hope National Medical Center, Los Angeles, CA, USA
| | - Rui Ma
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA, USA
| | - Shuai Cao
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA, USA
| | - Weidong Hu
- Department of Immunology and Theranostics, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Los Angeles, CA, USA
| | - E Antonio Chiocca
- Department of Neurosurgery, Brigham and Women's Hospital and Harvey Cushing Neurooncology Laboratories, Harvard Medical School, Boston, MA, USA
| | - Balveen Kaur
- Georgia Cancer Center, Augusta University Medical Center, Augusta, GA, USA
| | - Michael A Caligiuri
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA, USA.
- Hematologic Malignancies Research Institute, City of Hope National Medical Center, Los Angeles, CA, USA.
| | - Jianhua Yu
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA, USA.
- Hematologic Malignancies Research Institute, City of Hope National Medical Center, Los Angeles, CA, USA.
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Los Angeles, CA, USA.
| |
Collapse
|
5
|
Owen S, Alken S, Alshami J, Guiot MC, Kavan P, Reardon DA, Muanza T, Gibson N, Pemberton K, Solca F, Cseh A, Saran F. Genomic Analysis of Tumors from Patients with Glioblastoma with Long-Term Response to Afatinib. Onco Targets Ther 2022; 15:367-380. [PMID: 35422631 PMCID: PMC9005142 DOI: 10.2147/ott.s346725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 03/16/2022] [Indexed: 12/05/2022] Open
Abstract
Glioblastoma is an aggressive form of central nervous system tumor. Recurrence rates following primary therapy are high, and few second-line treatment options provide durable clinical benefit. Aberrations of the epidermal growth factor receptor (EGFR) gene are observed in up to 57% of glioblastoma cases and EGFR overexpression has been identified in approximately 60% of primary glioblastomas. In preclinical studies, afatinib, a second-generation ErbB blocker, inhibited cell proliferation in cells harboring mutations commonly found in glioblastoma. In two previous Phase I/II studies of afatinib plus temozolomide in patients with glioblastoma, limited efficacy was observed; however, there was notable benefit in patients with the EGFR variant III (EGFRvIII) mutation, EGFR amplification, and those with loss of phosphatase and tensin homolog (PTEN). This case series report details treatment histories of three long-term responders from these trials. Next-generation sequencing of tumor samples identified alterations in a number of cancer-related genes, including mutations in, and amplification of, EGFR. Tumor samples from all three patients shared favorable prognostic factors, eg O6-methylguanine-DNA methyl-transferase (MGMT) gene promoter methylation; however, negative prognostic factors were also observed, suggesting that these shared genetic features did not completely account for the favorable responses. The genetic profile of the tumor from Patient 1 showed clear differences from the other two tumors: lack of involvement of EGFR aberrations but with a mutation occurring in PTPN11. Preclinical studies showed that single-agent afatinib and temozolomide both separately inhibit the growth of tumors with a C-terminal EGFR truncation, thus providing further rationale for combining these two agents in the treatment of glioblastomas harboring EGFR aberrations. These findings suggest that afatinib may provide treatment benefit in patients with glioblastomas that harbor ErbB family aberrations and, potentially, other genetic aberrations. Further studies are needed to establish which patients with newly diagnosed/recurrent glioblastomas may potentially benefit from treatment with afatinib.
Collapse
Affiliation(s)
- Scott Owen
- Clinical Research Unit, Montreal Neurological Institute and Hospital, McGill University Health Center, Montreal, Canada
| | - Scheryll Alken
- Radiation Oncology Unit, Royal Marsden Hospital, London, UK
- St James’s Hospital, Dublin, Ireland
| | - Jad Alshami
- Clinical Research Unit, Montreal Neurological Institute and Hospital, McGill University Health Center, Montreal, Canada
| | - Marie-Christine Guiot
- Clinical Research Unit, Montreal Neurological Institute and Hospital, McGill University Health Center, Montreal, Canada
- Neuropathology Division, Montreal Neurological Institute and Hospital, McGill University Health Center, Montreal, Canada
| | - Petr Kavan
- Clinical Research Unit, Montreal Neurological Institute and Hospital, McGill University Health Center, Montreal, Canada
| | - David A Reardon
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Thierry Muanza
- Clinical Research Unit, Montreal Neurological Institute and Hospital, McGill University Health Center, Montreal, Canada
- Neuropathology Division, Montreal Neurological Institute and Hospital, McGill University Health Center, Montreal, Canada
- Radiation Oncology, Jewish General Hospital, Montreal, Canada
| | - Neil Gibson
- Drug Metabolism & Pharmacokinetics, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | | | - Flavio Solca
- Department of Pharmacology, Boehringer Ingelheim RCV GmbH & Co. KG, Vienna, Austria
| | - Agnieszka Cseh
- Department of Medical Affairs, Boehringer Ingelheim International, Ingelheim am Rhein, Germany
| | - Frank Saran
- Radiation Oncology Unit, Royal Marsden Hospital, London, UK
- Department of Blood and Cancer, Auckland City Hospital, Auckland, New Zealand
- Correspondence: Frank Saran, Auckland City Hospital, Cancer and Blood Service, Building 8, 99 Park Road, Grafton, Private Bag 92024, Auckland, 1142, New Zealand, Tel +64 09 623 6046, Email
| |
Collapse
|
6
|
Law ME, Yaaghubi E, Ghilardi AF, Davis BJ, Ferreira RB, Koh J, Chen S, DePeter SF, Schilson CM, Chiang CW, Heldermon CD, Nørgaard P, Castellano RK, Law BK. Inhibitors of ERp44, PDIA1, and AGR2 induce disulfide-mediated oligomerization of Death Receptors 4 and 5 and cancer cell death. Cancer Lett 2022; 534:215604. [PMID: 35247515 DOI: 10.1016/j.canlet.2022.215604] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/27/2022] [Accepted: 02/21/2022] [Indexed: 01/08/2023]
Abstract
Breast cancer mortality remains unacceptably high, indicating a need for safer and more effective therapeutic agents. Disulfide bond Disrupting Agents (DDAs) were previously identified as a novel class of anticancer compounds that selectively kill cancers that overexpress the Epidermal Growth Factor Receptor (EGFR) or its family member HER2. DDAs kill EGFR+ and HER2+ cancer cells via the parallel downregulation of EGFR, HER2, and HER3 and activation/oligomerization of Death Receptors 4 and 5 (DR4/5). However, the mechanisms by which DDAs mediate these effects are unknown. Affinity purification analyses employing biotinylated-DDAs reveal that the Protein Disulfide Isomerase (PDI) family members AGR2, PDIA1, and ERp44 are DDA target proteins. Further analyses demonstrate that shRNA-mediated knockdown of AGR2 and ERp44, or expression of ERp44 mutants, enhance basal DR5 oligomerization. DDA treatment of breast cancer cells disrupts PDIA1 and ERp44 mixed disulfide bonds with their client proteins. Together, the results herein reveal DDAs as the first small molecule, active site inhibitors of AGR2 and ERp44, and demonstrate roles for AGR2 and ERp44 in regulating the activity, stability, and localization of DR4 and DR5, and activation of Caspase 8.
Collapse
Affiliation(s)
- Mary E Law
- Department of Pharmacology & Therapeutics, University of Florida, Gainesville, FL, 32610, USA
| | - Elham Yaaghubi
- Department of Chemistry, University of Florida, Gainesville, FL, 32611, USA
| | - Amanda F Ghilardi
- Department of Chemistry, University of Florida, Gainesville, FL, 32611, USA
| | - Bradley J Davis
- Department of Pharmacology & Therapeutics, University of Florida, Gainesville, FL, 32610, USA
| | - Renan B Ferreira
- Department of Chemistry, University of Florida, Gainesville, FL, 32611, USA
| | - Jin Koh
- Proteomics and Mass Spectrometry Facility, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL, 32610, USA
| | - Sixue Chen
- Proteomics and Mass Spectrometry Facility, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL, 32610, USA; Department of Biology, Genetics Institute, University of Florida, Gainesville, FL, 32610, USA
| | - Sadie F DePeter
- Department of Chemistry, University of Florida, Gainesville, FL, 32611, USA
| | | | - Chi-Wu Chiang
- Institute of Molecular Medicine, College of Medicine and Center for Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan
| | - Coy D Heldermon
- Department of Medicine, University of Florida, Gainesville, FL, 32610, USA; UF-Health Cancer Center, University of Florida, Gainesville, FL, 32610, USA
| | - Peter Nørgaard
- Department of Pathology, Copenhagen University Hospital Herlev, DK, 2730, Herlev, Denmark
| | - Ronald K Castellano
- Department of Chemistry, University of Florida, Gainesville, FL, 32611, USA; UF-Health Cancer Center, University of Florida, Gainesville, FL, 32610, USA.
| | - Brian K Law
- Department of Pharmacology & Therapeutics, University of Florida, Gainesville, FL, 32610, USA; UF-Health Cancer Center, University of Florida, Gainesville, FL, 32610, USA.
| |
Collapse
|
7
|
Kadry YA, Lee JY, Witze ES. Regulation of EGFR signalling by palmitoylation and its role in tumorigenesis. Open Biol 2021; 11:210033. [PMID: 34610265 PMCID: PMC8492172 DOI: 10.1098/rsob.210033] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The epidermal growth factor receptor (EGFR) is an essential driver of oncogenic signalling, and EGFR inhibitors are some of the earliest examples of successful targeted therapies in multiple types of cancer. The tractability of EGFR as a therapeutic target is overshadowed by the inevitable drug resistance that develops. Overcoming resistance mechanisms requires a deeper understanding of EGFR regulation in cancer cells. In this review, we discuss our recent discovery that the palmitoyltransferase DHHC20 palmitoylates EGFR on the C-terminal domain and plays a critical role in signal regulation during oncogenesis. Inhibiting DHHC20 expression or mutating the palmitoylation site on EGFR alters the EGF-induced signalling kinetics from a transient signal to a sustained signal. The change in signalling is accompanied by a decrease in cell proliferation in multiple human cancer cell lines. Our in vivo studies demonstrate that ablating the gene Zdhhc20 by CRISPR/Cas9-mediated inhibition in a mouse model of oncogenic Kras-driven lung adenocarcinoma potently inhibits tumorigenesis. The negative effect on tumorigenesis is mediated by EGFR since the expression of a palmitoylation-resistant mutant form of EGFR also inhibits Kras-driven lung adenocarcinoma. Finally, reducing EGFR palmitoylation increases the sensitivity of multiple cancer cell lines to existing inhibitors of EGFR and downstream signalling effector pathways. We will discuss the implications of these effects and strategies for targeting these new vulnerabilities.
Collapse
Affiliation(s)
- Yasmin A. Kadry
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jia-Ying Lee
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Eric S. Witze
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
8
|
Randon G, Yaeger R, Hechtman JF, Manca P, Fucà G, Walch H, Lee J, Élez E, Seligmann J, Mussolin B, Pagani F, Germani MM, Ambrosini M, Rossini D, Ratti M, Salvà F, Richman SD, Wood H, Nanjangud G, Gloghini A, Milione M, Bardelli A, de Braud F, Morano F, Cremolini C, Pietrantonio F. EGFR Amplification in Metastatic Colorectal Cancer. J Natl Cancer Inst 2021; 113:1561-1569. [PMID: 33825902 DOI: 10.1093/jnci/djab069] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/05/2021] [Accepted: 04/05/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND EGFR amplification occurs in about 1% of metastatic colorectal cancers (mCRCs) but is not routinely tested as a prognostic or predictive biomarker for patients treated with anti-EGFR monoclonal antibodies (mAbs). Herein, we aimed to characterize the clinical and molecular landscape of EGFR-amplified metastatic colorectal cancer (mCRC). METHODS In this multinational cohort study, we compared clinical data of 62 patients with EGFR-amplified vs. 1459 EGFR non-amplified mCRC, as well as comprehensive genomic data of 35 EGFR-amplified vs. 439 EGFR non-amplified RAS/BRAF wild-type and microsatellite stable (MSS) tumor samples. RESULTS EGFR amplification was statistically significantly associated with left primary tumor sidedness and RAS/BRAF wild-type status. All EGFR-amplified tumors were MSS and HER2 non-amplified. Overall, EGFR-amplified samples had higher median fraction of genome altered compared to EGFR non-amplified, RAS/BRAF wild-type MSS cohort. Patients with EGFR-amplified tumors reported longer overall survival (OS) (median OS = 71.3 months; 95% confidence interval [CI] = 50.7-NA) vs. EGFR non-amplified ones (24.0 months; 95% CI = 22.8-25.6; hazard ratio [HR] = 0.30, 95% CI = 0.20-0.44, P<.001; adjusted HR = 0.46, 95%CI = 0.30-0.69, P<.001). In the subgroup of patients with RAS/BRAF wild-type mCRC exposed to anti-EGFR-based therapy, EGFR amplification was again associated with better OS (median OS = 54.0 months [95% CI = 35.2-NA] vs. 29.1 months [95% CI = 27.0-31.9], respectively; HR = 0.46, 95%CI = 0.28-0.76, P=.002). CONCLUSION Patients with EGFR-amplified mCRC represent a biologically defined subgroup and merit dedicated clinical trials with novel and more potent EGFR targeting strategies beyond single-agent monoclonal antibodies.
Collapse
Affiliation(s)
- Giovanni Randon
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milano, Italy
| | - Rona Yaeger
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jaclyn F Hechtman
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Paolo Manca
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milano, Italy
| | - Giovanni Fucà
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milano, Italy
| | - Henry Walch
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jeeyun Lee
- Department of Medicine, Division of Hematology-Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Elena Élez
- Vall D'Hebron University Hospital (HUVH) and Vall D'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Jenny Seligmann
- St James's Institute of Oncology, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | | | - Filippo Pagani
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milano, Italy
| | - Marco Maria Germani
- Unit of Medical Oncology 2, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy.,Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Margherita Ambrosini
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milano, Italy
| | - Daniele Rossini
- Unit of Medical Oncology 2, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy.,Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Margherita Ratti
- Oncology Unit, Oncology Department, ASST of Cremona, 26100 Cremona, Italy
| | - Francesc Salvà
- Vall D'Hebron University Hospital (HUVH) and Vall D'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Susan D Richman
- St James's Institute of Oncology, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Henry Wood
- St James's Institute of Oncology, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Gouri Nanjangud
- Molecular Cytogenetics Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Annunziata Gloghini
- Department of the Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Massimo Milione
- Department of the Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Alberto Bardelli
- Candiolo Cancer Institute, FPO - IRCCS, Candiolo, Torino, Italy.,University of Torino, Department of Oncology, Candiolo, Torino, Italy
| | - Filippo de Braud
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milano, Italy.,Oncology and Hemato-oncology Department, University of Milan, Milan, Italy
| | - Federica Morano
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milano, Italy
| | - Chiara Cremolini
- Unit of Medical Oncology 2, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy.,Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Filippo Pietrantonio
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milano, Italy.,Oncology and Hemato-oncology Department, University of Milan, Milan, Italy
| |
Collapse
|
9
|
Golebiewska A, Hau AC, Oudin A, Stieber D, Yabo YA, Baus V, Barthelemy V, Klein E, Bougnaud S, Keunen O, Wantz M, Michelucci A, Neirinckx V, Muller A, Kaoma T, Nazarov PV, Azuaje F, De Falco A, Flies B, Richart L, Poovathingal S, Arns T, Grzyb K, Mock A, Herold-Mende C, Steino A, Brown D, May P, Miletic H, Malta TM, Noushmehr H, Kwon YJ, Jahn W, Klink B, Tanner G, Stead LF, Mittelbronn M, Skupin A, Hertel F, Bjerkvig R, Niclou SP. Patient-derived organoids and orthotopic xenografts of primary and recurrent gliomas represent relevant patient avatars for precision oncology. Acta Neuropathol 2020; 140:919-949. [PMID: 33009951 PMCID: PMC7666297 DOI: 10.1007/s00401-020-02226-7] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/11/2020] [Accepted: 09/12/2020] [Indexed: 11/29/2022]
Abstract
Patient-based cancer models are essential tools for studying tumor biology and for the assessment of drug responses in a translational context. We report the establishment a large cohort of unique organoids and patient-derived orthotopic xenografts (PDOX) of various glioma subtypes, including gliomas with mutations in IDH1, and paired longitudinal PDOX from primary and recurrent tumors of the same patient. We show that glioma PDOXs enable long-term propagation of patient tumors and represent clinically relevant patient avatars that retain histopathological, genetic, epigenetic, and transcriptomic features of parental tumors. We find no evidence of mouse-specific clonal evolution in glioma PDOXs. Our cohort captures individual molecular genotypes for precision medicine including mutations in IDH1, ATRX, TP53, MDM2/4, amplification of EGFR, PDGFRA, MET, CDK4/6, MDM2/4, and deletion of CDKN2A/B, PTCH, and PTEN. Matched longitudinal PDOX recapitulate the limited genetic evolution of gliomas observed in patients following treatment. At the histological level, we observe increased vascularization in the rat host as compared to mice. PDOX-derived standardized glioma organoids are amenable to high-throughput drug screens that can be validated in mice. We show clinically relevant responses to temozolomide (TMZ) and to targeted treatments, such as EGFR and CDK4/6 inhibitors in (epi)genetically defined subgroups, according to MGMT promoter and EGFR/CDK status, respectively. Dianhydrogalactitol (VAL-083), a promising bifunctional alkylating agent in the current clinical trial, displayed high therapeutic efficacy, and was able to overcome TMZ resistance in glioblastoma. Our work underscores the clinical relevance of glioma organoids and PDOX models for translational research and personalized treatment studies and represents a unique publicly available resource for precision oncology.
Collapse
Affiliation(s)
- Anna Golebiewska
- NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, 84, Val Fleuri, 1526, Luxembourg, Luxembourg
| | - Ann-Christin Hau
- NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, 84, Val Fleuri, 1526, Luxembourg, Luxembourg
| | - Anaïs Oudin
- NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, 84, Val Fleuri, 1526, Luxembourg, Luxembourg
| | - Daniel Stieber
- NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, 84, Val Fleuri, 1526, Luxembourg, Luxembourg
- National Center of Genetics, Laboratoire National de Santé, 3555, Dudelange, Luxembourg
| | - Yahaya A Yabo
- NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, 84, Val Fleuri, 1526, Luxembourg, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, 4367, Belvaux, Luxembourg
| | - Virginie Baus
- NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, 84, Val Fleuri, 1526, Luxembourg, Luxembourg
| | - Vanessa Barthelemy
- NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, 84, Val Fleuri, 1526, Luxembourg, Luxembourg
| | - Eliane Klein
- NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, 84, Val Fleuri, 1526, Luxembourg, Luxembourg
| | - Sébastien Bougnaud
- NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, 84, Val Fleuri, 1526, Luxembourg, Luxembourg
| | - Olivier Keunen
- NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, 84, Val Fleuri, 1526, Luxembourg, Luxembourg
- Quantitative Biology Unit, Luxembourg Institute of Health, 1445, Strassen, Luxembourg
| | - May Wantz
- NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, 84, Val Fleuri, 1526, Luxembourg, Luxembourg
| | - Alessandro Michelucci
- NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, 84, Val Fleuri, 1526, Luxembourg, Luxembourg
- Neuro-Immunology Group, Department of Oncology, Luxembourg Institute of Health, 1526, Luxembourg, Luxembourg
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 4367, Belvaux, Luxembourg
| | - Virginie Neirinckx
- NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, 84, Val Fleuri, 1526, Luxembourg, Luxembourg
| | - Arnaud Muller
- Quantitative Biology Unit, Luxembourg Institute of Health, 1445, Strassen, Luxembourg
| | - Tony Kaoma
- Quantitative Biology Unit, Luxembourg Institute of Health, 1445, Strassen, Luxembourg
| | - Petr V Nazarov
- Quantitative Biology Unit, Luxembourg Institute of Health, 1445, Strassen, Luxembourg
| | - Francisco Azuaje
- Quantitative Biology Unit, Luxembourg Institute of Health, 1445, Strassen, Luxembourg
| | - Alfonso De Falco
- National Center of Genetics, Laboratoire National de Santé, 3555, Dudelange, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, 4367, Belvaux, Luxembourg
- Luxembourg Center of Neuropathology, Luxembourg, Luxembourg
| | - Ben Flies
- National Center of Genetics, Laboratoire National de Santé, 3555, Dudelange, Luxembourg
| | - Lorraine Richart
- Faculty of Science, Technology and Medicine, University of Luxembourg, 4367, Belvaux, Luxembourg
- Luxembourg Center of Neuropathology, Luxembourg, Luxembourg
- National Center of Pathology, Laboratoire National de Santé, 3555, Dudelange, Luxembourg
- Department of Oncology, Luxembourg Institute of Health, 1526, Luxembourg, Luxembourg
| | - Suresh Poovathingal
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 4367, Belvaux, Luxembourg
| | - Thais Arns
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 4367, Belvaux, Luxembourg
| | - Kamil Grzyb
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 4367, Belvaux, Luxembourg
| | - Andreas Mock
- Division of Experimental Neurosurgery, Department of Neurosurgery, University of Heidelberg, 69120, Heidelberg, Germany
- Department of Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg University Hospital, 69120, Heidelberg, Germany
- German Cancer Research Center (DKFZ) Heidelberg, 69120, Heidelberg, Germany
- German Cancer Consortium (DKTK), 69120, Heidelberg, Germany
| | - Christel Herold-Mende
- Division of Experimental Neurosurgery, Department of Neurosurgery, University of Heidelberg, 69120, Heidelberg, Germany
| | - Anne Steino
- DelMar Pharmaceuticals, Inc., Vancouver, BC, Canada
- DelMar Pharmaceuticals, Inc., Menlo Park, CA, USA
| | - Dennis Brown
- DelMar Pharmaceuticals, Inc., Vancouver, BC, Canada
- DelMar Pharmaceuticals, Inc., Menlo Park, CA, USA
| | - Patrick May
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 4367, Belvaux, Luxembourg
| | - Hrvoje Miletic
- Department of Biomedicine, University of Bergen, 5019, Bergen, Norway
- Department of Pathology, Haukeland University Hospital, Bergen, Norway
| | - Tathiane M Malta
- Department of Neurosurgery, Henry Ford Health System, Detroit, MI, 48202, USA
| | - Houtan Noushmehr
- Department of Neurosurgery, Henry Ford Health System, Detroit, MI, 48202, USA
| | - Yong-Jun Kwon
- Department of Oncology, Luxembourg Institute of Health, 1526, Luxembourg, Luxembourg
| | - Winnie Jahn
- German Cancer Consortium (DKTK), 01307, Dresden, Germany
- Core Unit for Molecular Tumor Diagnostics (CMTD), National Center for Tumor Diseases (NCT), 01307, Dresden, Germany
| | - Barbara Klink
- National Center of Genetics, Laboratoire National de Santé, 3555, Dudelange, Luxembourg
- Department of Oncology, Luxembourg Institute of Health, 1526, Luxembourg, Luxembourg
- German Cancer Consortium (DKTK), 01307, Dresden, Germany
- Core Unit for Molecular Tumor Diagnostics (CMTD), National Center for Tumor Diseases (NCT), 01307, Dresden, Germany
- Institute for Clinical Genetics, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307, Dresden, Germany
| | - Georgette Tanner
- Leeds Institute of Medical Research at St James's, St James's University Hospital, Leeds, UK
| | - Lucy F Stead
- Leeds Institute of Medical Research at St James's, St James's University Hospital, Leeds, UK
| | - Michel Mittelbronn
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 4367, Belvaux, Luxembourg
- Luxembourg Center of Neuropathology, Luxembourg, Luxembourg
- National Center of Pathology, Laboratoire National de Santé, 3555, Dudelange, Luxembourg
- Department of Oncology, Luxembourg Institute of Health, 1526, Luxembourg, Luxembourg
| | - Alexander Skupin
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 4367, Belvaux, Luxembourg
| | - Frank Hertel
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 4367, Belvaux, Luxembourg
- Department of Neurosurgery, Centre Hospitalier Luxembourg, 1210, Luxembourg, Luxembourg
| | - Rolf Bjerkvig
- NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, 84, Val Fleuri, 1526, Luxembourg, Luxembourg
- Department of Biomedicine, University of Bergen, 5019, Bergen, Norway
| | - Simone P Niclou
- NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, 84, Val Fleuri, 1526, Luxembourg, Luxembourg.
- Department of Biomedicine, University of Bergen, 5019, Bergen, Norway.
| |
Collapse
|
10
|
Cho J. Mechanistic insights into differential requirement of receptor dimerization for oncogenic activation of mutant EGFR and its clinical perspective. BMB Rep 2020. [PMID: 32172728 PMCID: PMC7118354 DOI: 10.5483/bmbrep.2020.53.3.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The epidermal growth factor receptor (EGFR), a member of the ErbB family (EGFR, ErbB2, ErbB3 and ErbB4), plays a crucial role in regulating various cellular responses such as proliferation, differentiation, and survival. As a result, aberrant activation of EGFR, mostly mediated through different classes of genomic alterations occurring within EGFR, is closely associated with the pathogenesis of numerous human cancers including lung adenocarcinoma, glioblastoma, and colorectal cancer. Thus, specific suppression of oncogenic activity of mutant EGFR with its targeted drugs has been routinely used in the clinic as a very effective anti-cancer strategy in treating a subset of tumors driven by such oncogenic EGFR mutants. However, the clinical efficacy of EGFR-targeted therapy does not last long due to several resistance mechanisms that emerge in the patients following the drug treatment. Thus, there is an urgent need for the development of novel therapeutic tactics specifically targeting mutant EGFR with the focus on the unique biological features of various mutant EGFR. Regarding this point, our review specifically emphasizes the recent findings about distinct requirements of receptor dimerization and autophosphorylation, which are critical steps for enzymatic activation of EGFR and signaling cascades, respectively, among wildtype and mutant EGFR and further discuss their clinical significance. In addition, the molecular mechanisms regulating EGFR dimerization and enzymatic activity by a key negative feedback inhibitor Mig6 as well as the clinical use for developing potential novel drugs targeting it are described in this review.
Collapse
Affiliation(s)
- Jeonghee Cho
- Department of Nanobiomedical Science, Dankook University, Cheonan 31116, Korea
| |
Collapse
|
11
|
Matini AH, Mofidi Naeini M, Haddad Kashani H, Vakili Z. Evaluation of Nestin and EGFR in Patients with Glioblastoma Multiforme in a Public Hospital in Iran. Asian Pac J Cancer Prev 2020; 21:2889-2894. [PMID: 33112545 PMCID: PMC7798165 DOI: 10.31557/apjcp.2020.21.10.2889] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Indexed: 01/01/2023] Open
Abstract
Introduction: Glioblastoma multiforme (GBM) is a grade IV glioma and accounts for 15% of all primary brain tumors. This GBM has a median survival range of less than 2 years after diagnosis and it is highly vascularized by neoformed vessels. Neoangiogenesis is a crucial factor in the malignant tumoral behavior and prognosis of patients and Nestin protein belongs to class VI which is expressed in endothelial cells of neoformed vessels in GBM. Our study shows the correlation between EGFR mutation and Nestin expression in endothelial of neoformed vessels in GBM. Methods: We analyzed 40 GBM samples by immunohistochemistry staining. The immunohistochemical expression of EGFR in tumoral cells and Nestin in endothelial cells in paraffin sections were analyzed. EGFR scoring was the based on staining intensity. Score 0 shows No staining, Score1, mild to moderate staining and score2 sever staining. Microvascular density (MVD) was evaluated with Nestin-immunoreactive. Results: The mean of MVD was 14.6 ±8.25. Nestin-MVD was significantly higher in GBM with sever vascular prolifration (p-value=0.01). EGFR was expressed in 92.5% of samples. The EGFR scoring for tumoral tissue was 7.5%(score:0), 22.5% (score:1) and 70% (score:2). There was a significant relationship between EGFR expression and MVD (p-value=0.017). Conclusion: We suggest that some important mutations as like as EGFR in GBM is responsible for inducing angiogenesis and vascular proliferation. Nestin overexpression as a novel marker might reflect the extent of neoangiogenesis, thus target therapy against EGFR pathway and anti angiogenic may be useful for GBM treatment.
Collapse
Affiliation(s)
- Amir Hassan Matini
- Department of Pathology, Kashan University of Medical Sciences, Kashan, Iran
| | | | - Hamed Haddad Kashani
- Anatomical Sciences Research Center, Basic Sciences Research Institute, Kashan University of Medical Sciences, Kashan, Iran
| | - Zarichehr Vakili
- Department of Pathology, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
12
|
Tian L, Li Y, Edmonson MN, Zhou X, Newman S, McLeod C, Thrasher A, Liu Y, Tang B, Rusch MC, Easton J, Ma J, Davis E, Trull A, Michael JR, Szlachta K, Mullighan C, Baker SJ, Downing JR, Ellison DW, Zhang J. CICERO: a versatile method for detecting complex and diverse driver fusions using cancer RNA sequencing data. Genome Biol 2020; 21:126. [PMID: 32466770 PMCID: PMC7325161 DOI: 10.1186/s13059-020-02043-x] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 05/13/2020] [Indexed: 02/08/2023] Open
Abstract
To discover driver fusions beyond canonical exon-to-exon chimeric transcripts, we develop CICERO, a local assembly-based algorithm that integrates RNA-seq read support with extensive annotation for candidate ranking. CICERO outperforms commonly used methods, achieving a 95% detection rate for 184 independently validated driver fusions including internal tandem duplications and other non-canonical events in 170 pediatric cancer transcriptomes. Re-analysis of TCGA glioblastoma RNA-seq unveils previously unreported kinase fusions (KLHL7-BRAF) and a 13% prevalence of EGFR C-terminal truncation. Accessible via standard or cloud-based implementation, CICERO enhances driver fusion detection for research and precision oncology. The CICERO source code is available at https://github.com/stjude/Cicero.
Collapse
Affiliation(s)
- Liqing Tian
- Department of Computational Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Yongjin Li
- Department of Computational Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Michael N Edmonson
- Department of Computational Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Xin Zhou
- Department of Computational Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Scott Newman
- Department of Computational Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Clay McLeod
- Department of Computational Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Andrew Thrasher
- Department of Computational Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Yu Liu
- Department of Computational Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bo Tang
- Department of Pathology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Michael C Rusch
- Department of Computational Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - John Easton
- Department of Computational Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Jing Ma
- Department of Pathology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Eric Davis
- Department of Computational Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Austyn Trull
- Department of Computational Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - J Robert Michael
- Department of Computational Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Karol Szlachta
- Department of Computational Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Charles Mullighan
- Department of Pathology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Suzanne J Baker
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - James R Downing
- Department of Pathology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - David W Ellison
- Department of Pathology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Jinghui Zhang
- Department of Computational Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA.
| |
Collapse
|
13
|
Lei L, Stohr BA, Berry S, Lockwood CM, Davis JL, Rudzinski ER, Kunder CA. Recurrent EGFR alterations in NTRK3 fusion negative congenital mesoblastic nephroma. Pract Lab Med 2020; 21:e00164. [PMID: 32490123 PMCID: PMC7260589 DOI: 10.1016/j.plabm.2020.e00164] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 03/31/2020] [Accepted: 04/27/2020] [Indexed: 12/12/2022] Open
Abstract
Objectives To identify oncogenic driver mutations in congenital mesoblastic nephroma (CMN) cases lacking ETV6-NTRK3 fusion and discuss their diagnostic value. Design The institutional pathology database was queried for cases with a morphologic diagnosis of CMN. Cases positive for ETV6 rearrangement or with unavailable blocks were excluded. Four cases met the inclusion criteria and were sequenced by next-generation sequencing. Three additional cases were contributed by our collaborators. Results Three of four internal cases harbor an EGFR kinase domain duplication (KDD), which is known to be oncogenic yet exceedingly rare in other histologies. All three outside cases are positive for EGFR alterations, including KDD in two and a splicing site mutation in one. The splicing site mutation is predicted to be EGFR activating. One of the outside cases was a retroperitoneal mass without a clear site of origin. A diagnosis of CMN is suggested based on exclusion of differential diagnoses by expert consultation and detection of EGFR KDD. Conclusions EGFR activation, predominantly via EGFR KDD, is a common recurrent genetic alteration in CMN lacking NTRK3 fusions. CMN can be molecularly classified into NTRK3 fusion type, EGFR activation type and others.
Collapse
Affiliation(s)
- Li Lei
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Bradley A Stohr
- Department of Pathology, University of California, San Francisco, San Francisco, CA, USA
| | - Stacey Berry
- Department of Pathology, Cook Children's Medical Center, Fort Worth, TX, USA
| | | | - Jessica L Davis
- Department of Pathology, Oregon Health & Science University, Portland, OR, USA
| | - Erin R Rudzinski
- Department of Laboratories, Seattle Children's Hospital, Seattle, WA, USA.,Department of Pathology, University of California, San Francisco, San Francisco, CA, USA
| | - Christian A Kunder
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
14
|
Alhabbab RY. Targeting Cancer Stem Cells by Genetically Engineered Chimeric Antigen Receptor T Cells. Front Genet 2020; 11:312. [PMID: 32391048 PMCID: PMC7188929 DOI: 10.3389/fgene.2020.00312] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 03/16/2020] [Indexed: 12/11/2022] Open
Abstract
The term cancer stem cell (CSC) starts 25 years ago with the evidence that CSC is a subpopulation of tumor cells that have renewal ability and can differentiate into several distinct linages. Therefore, CSCs play crucial role in the initiation and the maintenance of cancer. Moreover, it has been proposed throughout several studies that CSCs are behind the failure of the conventional chemo-/radiotherapy as well as cancer recurrence due to their ability to resist the therapy and their ability to re-regenerate. Thus, the need for targeted therapy to eliminate CSCs is crucial; for that reason, chimeric antigen receptor (CAR) T cells has currently been in use with high rate of success in leukemia and, to some degree, in patients with solid tumors. This review outlines the most common CSC populations and their common markers, in particular CD133, CD90, EpCAM, CD44, ALDH, and EGFRVIII, the interaction between CSCs and the immune system, CAR T cell genetic engineering and signaling, CAR T cells in targeting CSCs, and the barriers in using CAR T cells as immunotherapy to treat solid cancers.
Collapse
Affiliation(s)
- Rowa Y. Alhabbab
- Division of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
15
|
González-Tablas M, Arandia D, Jara-Acevedo M, Otero Á, Vital AL, Prieto C, González-Garcia N, Nieto-Librero AB, Tao H, Pascual D, Ruiz L, Sousa P, Galindo-Villardón P, Orfao A, Tabernero MD. Heterogeneous EGFR, CDK4, MDM4, and PDGFRA Gene Expression Profiles in Primary GBM: No Association with Patient Survival. Cancers (Basel) 2020; 12:cancers12010231. [PMID: 31963499 PMCID: PMC7016708 DOI: 10.3390/cancers12010231] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/08/2020] [Accepted: 01/14/2020] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND The prognostic impact of the expression profile of genes recurrently amplified in glioblastoma multiforme (GBM) remains controversial. METHODS We investigated the RNA gene expression profile of epidermal growth factor receptor (EGFR), cyclin-dependent kinase 4 (CDK4), murine doble minute 4 (MDM4), and platelet derived growth factor receptor alpha (PDGFRA) in 83 primary GBM tumors vs. 42 normal brain tissue samples. Interphase FISH (iFISH) analysis for the four genes, together with analysis of intragenic deletions in EGFR and PDGFRA, were evaluated in parallel at the DNA level. As validation cohort, publicly available RNA gene expression data on 293 samples from 10 different GBM patient series were also studied. RESULTS At the RNA level, CDK4 was the most frequently overexpressed gene (90%) followed by EGFR (58%) and PDGFRA (58%). Chromosome 7 copy number alterations, i.e., trisomy (49%) and polysomy (44%), showed no clear association with EGFR gene expression levels. In turn, intragenic EGFR deletions were found in 39 patients (47%), including EGFRvIII (46%) in association with EGFRvIVa (4%), EGFRvII (2%) or other EGFR deletions (3%) and PDGFRA deletion of exons 8-9 was found in only two tumors (2%). CONCLUSIONS Overall, none of the gene expression profiles and/or intragenic EGFR deletions showed a significant impact on overall survival of GBM supporting the notion that other still unraveled features of the disease might play a more relevant prognostic role in GBM.
Collapse
Affiliation(s)
- María González-Tablas
- Instituto de Investigación Biomédica de Salamanca, IBSAL—University Hospital of Salamanca, 37007 Salamanca, Spain; (M.G.-T.); (D.A.); (M.J.-A.); (Á.O.); (C.P.); (N.G.-G.); (A.B.N.-L.); (D.P.); (L.R.); (P.S.)
- Centre for Cancer Research (CIC-IBMCC, CSIC/USAL, IBSAL) and Department of Medicine, University of Salamanca, 37007 Salamanca, Spain
| | - Daniel Arandia
- Instituto de Investigación Biomédica de Salamanca, IBSAL—University Hospital of Salamanca, 37007 Salamanca, Spain; (M.G.-T.); (D.A.); (M.J.-A.); (Á.O.); (C.P.); (N.G.-G.); (A.B.N.-L.); (D.P.); (L.R.); (P.S.)
- Neurosurgery Service of the University Hospital of Salamanca, 37007 Salamanca, Spain
| | - María Jara-Acevedo
- Instituto de Investigación Biomédica de Salamanca, IBSAL—University Hospital of Salamanca, 37007 Salamanca, Spain; (M.G.-T.); (D.A.); (M.J.-A.); (Á.O.); (C.P.); (N.G.-G.); (A.B.N.-L.); (D.P.); (L.R.); (P.S.)
- Biomedical Research Networking Centre on Cancer–CIBER-CIBERONC, Institute of Health Carlos III, 28029 Madrid, Spain
- Sequencing DNA Service (NUCLEUS), University of Salamanca, 37007 Salamanca, Spain
| | - Álvaro Otero
- Instituto de Investigación Biomédica de Salamanca, IBSAL—University Hospital of Salamanca, 37007 Salamanca, Spain; (M.G.-T.); (D.A.); (M.J.-A.); (Á.O.); (C.P.); (N.G.-G.); (A.B.N.-L.); (D.P.); (L.R.); (P.S.)
- Neurosurgery Service of the University Hospital of Salamanca, 37007 Salamanca, Spain
| | - Ana-Luisa Vital
- Centre for Neuroscience and Cell Biology and Faculty of Pharmacy, University of Coimbra, 3004-561 Coimbra, Portugal;
| | - Carlos Prieto
- Instituto de Investigación Biomédica de Salamanca, IBSAL—University Hospital of Salamanca, 37007 Salamanca, Spain; (M.G.-T.); (D.A.); (M.J.-A.); (Á.O.); (C.P.); (N.G.-G.); (A.B.N.-L.); (D.P.); (L.R.); (P.S.)
- Bioinformatics Service (NUCLEUS), University of Salamanca, 37007 Salamanca, Spain
| | - Nerea González-Garcia
- Instituto de Investigación Biomédica de Salamanca, IBSAL—University Hospital of Salamanca, 37007 Salamanca, Spain; (M.G.-T.); (D.A.); (M.J.-A.); (Á.O.); (C.P.); (N.G.-G.); (A.B.N.-L.); (D.P.); (L.R.); (P.S.)
- Department of Statistics, University of Salamanca, 37007 Salamanca, Spain;
| | - Ana Belén Nieto-Librero
- Instituto de Investigación Biomédica de Salamanca, IBSAL—University Hospital of Salamanca, 37007 Salamanca, Spain; (M.G.-T.); (D.A.); (M.J.-A.); (Á.O.); (C.P.); (N.G.-G.); (A.B.N.-L.); (D.P.); (L.R.); (P.S.)
- Department of Statistics, University of Salamanca, 37007 Salamanca, Spain;
| | - Herminio Tao
- Neurosurgery Service, University Hospital of Coimbra, 3004-561 Coimbra, Portugal;
| | - Daniel Pascual
- Instituto de Investigación Biomédica de Salamanca, IBSAL—University Hospital of Salamanca, 37007 Salamanca, Spain; (M.G.-T.); (D.A.); (M.J.-A.); (Á.O.); (C.P.); (N.G.-G.); (A.B.N.-L.); (D.P.); (L.R.); (P.S.)
- Neurosurgery Service of the University Hospital of Salamanca, 37007 Salamanca, Spain
| | - Laura Ruiz
- Instituto de Investigación Biomédica de Salamanca, IBSAL—University Hospital of Salamanca, 37007 Salamanca, Spain; (M.G.-T.); (D.A.); (M.J.-A.); (Á.O.); (C.P.); (N.G.-G.); (A.B.N.-L.); (D.P.); (L.R.); (P.S.)
- Neurosurgery Service of the University Hospital of Salamanca, 37007 Salamanca, Spain
| | - Pablo Sousa
- Instituto de Investigación Biomédica de Salamanca, IBSAL—University Hospital of Salamanca, 37007 Salamanca, Spain; (M.G.-T.); (D.A.); (M.J.-A.); (Á.O.); (C.P.); (N.G.-G.); (A.B.N.-L.); (D.P.); (L.R.); (P.S.)
- Neurosurgery Service of the University Hospital of Salamanca, 37007 Salamanca, Spain
| | | | - Alberto Orfao
- Instituto de Investigación Biomédica de Salamanca, IBSAL—University Hospital of Salamanca, 37007 Salamanca, Spain; (M.G.-T.); (D.A.); (M.J.-A.); (Á.O.); (C.P.); (N.G.-G.); (A.B.N.-L.); (D.P.); (L.R.); (P.S.)
- Centre for Cancer Research (CIC-IBMCC, CSIC/USAL, IBSAL) and Department of Medicine, University of Salamanca, 37007 Salamanca, Spain
- Biomedical Research Networking Centre on Cancer–CIBER-CIBERONC, Institute of Health Carlos III, 28029 Madrid, Spain
- Correspondence: (A.O.); (M.D.T.); Tel.: +34923-29-11-00 (M.D.T.)
| | - María Dolores Tabernero
- Instituto de Investigación Biomédica de Salamanca, IBSAL—University Hospital of Salamanca, 37007 Salamanca, Spain; (M.G.-T.); (D.A.); (M.J.-A.); (Á.O.); (C.P.); (N.G.-G.); (A.B.N.-L.); (D.P.); (L.R.); (P.S.)
- Centre for Cancer Research (CIC-IBMCC, CSIC/USAL, IBSAL) and Department of Medicine, University of Salamanca, 37007 Salamanca, Spain
- Biomedical Research Networking Centre on Cancer–CIBER-CIBERONC, Institute of Health Carlos III, 28029 Madrid, Spain
- Instituto de Estudios de Ciencias de la Salud de Castilla y León (IECSCYL-IBSAL), 37007 Salamanca, Spain
- Correspondence: (A.O.); (M.D.T.); Tel.: +34923-29-11-00 (M.D.T.)
| |
Collapse
|
16
|
Rutkowska A, Stoczyńska-Fidelus E, Janik K, Włodarczyk A, Rieske P. EGFR vIII: An Oncogene with Ambiguous Role. JOURNAL OF ONCOLOGY 2019; 2019:1092587. [PMID: 32089685 PMCID: PMC7024087 DOI: 10.1155/2019/1092587] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 11/22/2019] [Indexed: 12/21/2022]
Abstract
Epidermal growth factor receptor variant III (EGFRvIII) seems to constitute the perfect therapeutic target for glioblastoma (GB), as it is specifically present on up to 28-30% of GB cells. In case of other tumor types, expression and possible role of this oncogene still remain controversial. In spite of EGFRvIII mechanism of action being crucial for the design of small active anticancer molecules and immunotherapies, i.e., CAR-T technology, it is yet to be precisely defined. EGFRvIII is known to be resistant to degradation, but it is still unclear whether it heterodimerizes with EGF-activated wild-type EGFR (EGFRWT) or homodimerizes (including covalent homodimerization). Constitutive kinase activity of this mutated receptor is relatively low, and some researchers even claim that a nuclear, but not a membrane function, is crucial for its activity. Based on the analyses of recurrent tumors that are often lacking EGFRvIII expression despite its initial presence in corresponding primary foci, this oncogene is suggested to play a marginal role during later stages of carcinogenesis, while even in primary tumors EGFRvIII expression is detected only in a small percentage of tumor cells, undermining the rationality of EGFRvIII-targeting therapies. On the other hand, EGFRvIII-positive cells are resistant to apoptosis, more invasive, and characterized with enhanced proliferation rate. Moreover, expression of this oncogenic receptor was also postulated to be a marker of cancer stem cells. Opinions regarding the role that EGFRvIII plays in tumorigenesis and for tumor aggressiveness are clearly contradictory and, therefore, it is crucial not only to determine its mechanism of action, but also to unambiguously define its role at early and advanced cancer stages.
Collapse
Affiliation(s)
- Adrianna Rutkowska
- Department of Tumor Biology, Medical University of Lodz, Zeligowskiego 7/9, 90-752 Lodz, Poland
| | - Ewelina Stoczyńska-Fidelus
- Department of Tumor Biology, Medical University of Lodz, Zeligowskiego 7/9, 90-752 Lodz, Poland
- Department of Research and Development, Celther Polska Ltd., Milionowa 23, 93-193 Lodz, Poland
- Department of Research and Development, Personather Ltd., Milionowa 23, 93-193 Lodz, Poland
| | - Karolina Janik
- Department of Tumor Biology, Medical University of Lodz, Zeligowskiego 7/9, 90-752 Lodz, Poland
| | - Aneta Włodarczyk
- Department of Tumor Biology, Medical University of Lodz, Zeligowskiego 7/9, 90-752 Lodz, Poland
| | - Piotr Rieske
- Department of Tumor Biology, Medical University of Lodz, Zeligowskiego 7/9, 90-752 Lodz, Poland
- Department of Research and Development, Celther Polska Ltd., Milionowa 23, 93-193 Lodz, Poland
- Department of Research and Development, Personather Ltd., Milionowa 23, 93-193 Lodz, Poland
| |
Collapse
|
17
|
Matini AH, Tayebi MS, Rezvani Z, Vakili Z, Haddad Kashani H. Association of EGFR gene mutations exons 18–21 with glioblastoma multiform cancer: A descriptive and cross-sectional study. GENE REPORTS 2019. [DOI: 10.1016/j.genrep.2019.100526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
18
|
Makhlin I, Salinas RD, Zhang D, Jacob F, Ming GL, Song H, Saxena D, Dorsey JF, Nasrallah MP, Morrissette JJD, Binder ZA, O'Rourke DM, Desai AS, Brem S, Bagley SJ. Clinical activity of the EGFR tyrosine kinase inhibitor osimertinib in EGFR-mutant glioblastoma. CNS Oncol 2019; 8:CNS43. [PMID: 31769726 PMCID: PMC6880297 DOI: 10.2217/cns-2019-0014] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 09/18/2019] [Indexed: 12/31/2022] Open
Abstract
Glioblastoma (GBM) is the most common primary malignant brain tumor in adults and carries a dismal prognosis. The EGFR gene is among the most commonly deranged genes in GBM and thus an important therapeutic target. We report the case of a young female with heavily pretreated EGFR-mutated GBM, for whom we initiated osimertinib, an oral, third-generation tyrosine kinase inhibitor that irreversibly inhibits EGFR and has significant brain penetration. We then review some of the main challenges in targeting EGFR, including lack of central nervous system penetration with most tyrosine kinase inhibitors, molecular heterogeneity of GBM and the need for enhanced specificity for the EGFR mutations relevant in GBM.
Collapse
Affiliation(s)
- Igor Makhlin
- Division of Hematology & Oncology, Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ryan D Salinas
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Daniel Zhang
- Biochemistry & Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Fadi Jacob
- Department of Neuroscience & Mahoney Institute for Neurosciences, University of Pennsylvania, Philadelphia, PA 19104, USA
- The Solomon H Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Gou-li Ming
- Department of Neuroscience & Mahoney Institute for Neurosciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hongjun Song
- Department of Neuroscience & Mahoney Institute for Neurosciences, University of Pennsylvania, Philadelphia, PA 19104, USA
- GBM Translational Center of Excellence, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Deeksha Saxena
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jay F Dorsey
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - MacLean P Nasrallah
- GBM Translational Center of Excellence, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Pathology & Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jennifer JD Morrissette
- Department of Pathology & Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Personalized Diagnostics, Department of Pathology & Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Zev A Binder
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA 19104, USA
- GBM Translational Center of Excellence, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Donald M O'Rourke
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA 19104, USA
- GBM Translational Center of Excellence, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Arati S Desai
- Division of Hematology & Oncology, Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- GBM Translational Center of Excellence, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Steven Brem
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA 19104, USA
- GBM Translational Center of Excellence, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Stephen J Bagley
- Division of Hematology & Oncology, Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- GBM Translational Center of Excellence, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
19
|
Kim N, Cho D, Kim H, Kim S, Cha YJ, Greulich H, Bass A, Cho HS, Cho J. Colorectal adenocarcinoma-derived EGFR mutants are oncogenic and sensitive to EGFR-targeted monoclonal antibodies, cetuximab and panitumumab. Int J Cancer 2019; 146:2194-2200. [PMID: 31290142 DOI: 10.1002/ijc.32499] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 05/08/2019] [Accepted: 05/29/2019] [Indexed: 12/19/2022]
Abstract
Somatic mutations of epidermal growth factor receptor (EGFR) occur in ~3% of colorectal cancer (CRC) patients. Here, through systematic functional screening of 21 recurrent EGFR mutations selected from public data sets, we show that 11 colon cancer-derived EGFR mutants (G63R, E114K, R165Q, R222C, S492R, P596L, K708R, E709K, G719S, G724S and L858R) are oncogenic and able to transform cells in a ligand-independent manner. We demonstrate that cellular transformation by these mutants requires receptor dimerization. Importantly, the EGF-induced and constitutive oncogenic potential of these EGFR mutants are inhibited by cetuximab or panitumumab in vivo and in vitro. Taken together, we propose that a subset of EGFR mutations can serve as genomic predictors for response to anti-EGFR antibodies and that metastatic CRC patients with such mutations may benefit from these drugs as part of the first-line therapy.
Collapse
Affiliation(s)
- Nayoung Kim
- Department of Nanobiomedical Science, Dankook University, Cheonan, Republic of Korea.,Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea
| | - Daseul Cho
- Department of Nanobiomedical Science, Dankook University, Cheonan, Republic of Korea
| | - Hyunjin Kim
- Department of Nanobiomedical Science, Dankook University, Cheonan, Republic of Korea
| | - Sujin Kim
- Department of Nanobiomedical Science, Dankook University, Cheonan, Republic of Korea
| | - Young-Je Cha
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Heidi Greulich
- Broad Institute of Harvard and MIT, Cambridge, MA.,Division of Molecular and Cellular Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Adam Bass
- Division of Molecular and Cellular Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Hyun-Soo Cho
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Jeonghee Cho
- Department of Nanobiomedical Science, Dankook University, Cheonan, Republic of Korea
| |
Collapse
|
20
|
Lam I, Pickering CM, Mac Gabhann F. Context-dependent regulation of receptor tyrosine kinases: Insights from systems biology approaches. WILEY INTERDISCIPLINARY REVIEWS. SYSTEMS BIOLOGY AND MEDICINE 2019; 11:e1437. [PMID: 30255986 PMCID: PMC6537588 DOI: 10.1002/wsbm.1437] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 06/07/2018] [Accepted: 08/08/2018] [Indexed: 12/14/2022]
Abstract
Receptor tyrosine kinases (RTKs) are cell membrane proteins that provide cells with the ability to sense proteins in their environments. Many RTKs are essential to development and organ growth. Derangement of RTKs-by mutation or by overexpression-is central to several developmental and adult disorders including cancer, short stature, and vascular pathologies. The mechanism of action of RTKs is complex and is regulated by contextual components, including the existence of multiple competing ligands and receptors in many families, the intracellular location of the RTK, the dynamic and cell-specific coexpression of other RTKs, and the commonality of downstream signaling pathways. This means that both the state of the cell and the microenvironment outside the cell play a role, which makes sense given the pivotal location of RTKs as the nexus linking the extracellular milieu to intracellular signaling and modification of cell behavior. In this review, we describe these different contextual components through the lens of systems biology, in which both computational modeling and experimental "omics" approaches have been used to better understand RTK networks. The complexity of these networks is such that using these systems biology approaches is necessary to get a handle on the mechanisms of pathology and the design of therapeutics targeting RTKs. In particular, we describe in detail three concrete examples (involving ErbB3, VEGFR2, and AXL) that illustrate how systems approaches can reveal key mechanistic and therapeutic insights. This article is categorized under: Biological Mechanisms > Cell Signaling Models of Systems Properties and Processes > Mechanistic Models Translational, Genomic, and Systems Medicine > Therapeutic Methods.
Collapse
Affiliation(s)
- Inez Lam
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland
- Institute for Computational Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Christina M Pickering
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland
- Institute for Computational Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Feilim Mac Gabhann
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland
- Institute for Computational Medicine, Johns Hopkins University, Baltimore, Maryland
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
21
|
Cho J, Kim S, Du J, Meyerson M. Autophosphorylation of the carboxyl-terminal domain is not required for oncogenic transformation by lung-cancer derived EGFR mutants. Int J Cancer 2018; 143:679-685. [PMID: 29464683 PMCID: PMC6033109 DOI: 10.1002/ijc.31332] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 01/06/2018] [Accepted: 02/05/2018] [Indexed: 12/23/2022]
Abstract
Aberrant activation of cancer-derived mutants of the epidermal growth factor receptor (EGFR) is closely associated with cancer pathogenesis and is thought to be mediated through multiple tyrosine phosphorylations within the C-terminal domain. Here, we examined the consequences of the loss of these C-terminal phosphorylation sites on cellular transformation in the context of lung-cancer-derived L858R, exon 19 deletion and exon 20 insertion mutant EGFR. Oncogenic EGFR mutants with substitution of the 10 potential C-terminal tyrosine autophosphorylation sites for phenylalanine (CYF10) were still able to promote anchorage-independent growth in soft agar at levels comparable to the parental L858R or exon19 deletion or exon 20 insertion mutants with intact autophosphorylation sites. Furthermore, these CYF10 mutants retained the ability to transform Ba/F3 cells in the absence of IL-3. Bead-based phosphorylation and immunoprecipitation analyses demonstrated that key EGFR-associated proteins-including Grb2 and PLC-γ-are neither phosphorylated nor bound to CYF10 mutants in transformed cells. Taken together, we conclude that tyrosine phosphorylation is not required for oncogenic activity of lung-cancer-derived mutant EGFR, suggesting these mutants can lead to cellular transformation by an alternative mechanism independent of EGFR phosphorylation.
Collapse
Affiliation(s)
- Jeonghee Cho
- Department of Nanobiomedical Science, Dankook University, Cheonan, 31116, Republic of Korea.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02115.,Center for Cancer Genome Discovery, Dana-Farber Cancer Institute, Boston, MA, 02115
| | - Sujin Kim
- Department of Nanobiomedical Science, Dankook University, Cheonan, 31116, Republic of Korea
| | - Jinyan Du
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02115.,Center for Cancer Genome Discovery, Dana-Farber Cancer Institute, Boston, MA, 02115.,Discovery, Merrimack Pharmaceuticals, Cambridge, MA, 02139
| | - Matthew Meyerson
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02115.,Center for Cancer Genome Discovery, Dana-Farber Cancer Institute, Boston, MA, 02115.,The Broad Institute of MIT and Harvard, Cambridge, MA, 02112.,Department of Pathology, Harvard Medical School, Boston, MA, 02115
| |
Collapse
|
22
|
Miyai M, Tomita H, Soeda A, Yano H, Iwama T, Hara A. Current trends in mouse models of glioblastoma. J Neurooncol 2017; 135:423-432. [PMID: 29052807 PMCID: PMC5700231 DOI: 10.1007/s11060-017-2626-2] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 10/01/2017] [Indexed: 12/13/2022]
Abstract
Glioblastoma is the most deadly brain tumor type and is characterized by a severe and high rate of angiogenesis, remaining an incurable disease in the majority of cases. Mechanistic understanding of glioblastoma initiation and progression is complicated by the complexity of genetic and/or environmental initiating events and lack of clarity regarding the cell or tissue of origin. To determine these mechanisms, mouse models that recapitulate the molecular and histological characteristics of glioblastoma are required. Unlike in other malignancies, viral-mediated mouse models of glioblastoma rather than chemically induced mouse models have been developed because of its sensitivity to viruses. Based on recent molecular analyses reported for human glioblastoma, this review critically evaluates genetically engineered, xenograft, allograft, viral-mediated, and chemically induced mouse models of glioblastoma. Further, we focus on the clinical value of these models by examining their contributions to studies of glioblastoma prevention, tumorigenesis, and chemoresistance.
Collapse
Affiliation(s)
- Masafumi Miyai
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, 501-1194, Japan.,Department of Neurosurgery, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Hiroyuki Tomita
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, 501-1194, Japan.
| | - Akio Soeda
- Department of Neurosurgery, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Hirohito Yano
- Department of Neurosurgery, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Toru Iwama
- Department of Neurosurgery, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Akira Hara
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, 501-1194, Japan.
| |
Collapse
|
23
|
Runkle KB, Kharbanda A, Stypulkowski E, Cao XJ, Wang W, Garcia BA, Witze ES. Inhibition of DHHC20-Mediated EGFR Palmitoylation Creates a Dependence on EGFR Signaling. Mol Cell 2017; 62:385-396. [PMID: 27153536 DOI: 10.1016/j.molcel.2016.04.003] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 02/02/2016] [Accepted: 04/01/2016] [Indexed: 12/22/2022]
Abstract
Inappropriate activation of the receptor tyrosine kinase EGFR contributes to a variety of human malignancies. Here we show a mechanism to induce vulnerability to an existing first line treatment for EGFR-driven cancers. We find that inhibiting the palmitoyltransferase DHHC20 creates a dependence on EGFR signaling for cancer cell survival. The loss of palmitoylation increases sustained EGFR signal activation and sensitizes cells to EGFR tyrosine kinase inhibition. Our work shows that the reversible modification of EGFR with palmitate "pins" the unstructured C-terminal tail to the plasma membrane, impeding EGFR activation. We identify by mass spectrometry palmitoylated cysteine residues within the C-terminal tail where mutation of the cysteine residues to alanine is sufficient to activate EGFR signaling promoting cell migration and transformation. Our results reveal that the targeting of a peripheral modulator of EGFR signaling, DHHC20, causes a loss of signal regulation and susceptibility to EGFR inhibitor-induced cell death.
Collapse
Affiliation(s)
- Kristin B Runkle
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA 19104; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Akriti Kharbanda
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA 19104; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Ewa Stypulkowski
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA 19104; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Xing-Jun Cao
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104; Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104
| | - Wei Wang
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA 19104; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Benjamin A Garcia
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104; Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104
| | - Eric S Witze
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA 19104; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104; Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA 19104.
| |
Collapse
|
24
|
Activation of the EGF Receptor by Ligand Binding and Oncogenic Mutations: The "Rotation Model". Cells 2017; 6:cells6020013. [PMID: 28574446 PMCID: PMC5492017 DOI: 10.3390/cells6020013] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 05/17/2017] [Accepted: 05/31/2017] [Indexed: 01/17/2023] Open
Abstract
The epidermal growth factor receptor (EGFR) plays vital roles in cellular processes including cell proliferation, survival, motility, and differentiation. The dysregulated activation of the receptor is often implicated in human cancers. EGFR is synthesized as a single-pass transmembrane protein, which consists of an extracellular ligand-binding domain and an intracellular kinase domain separated by a single transmembrane domain. The receptor is activated by a variety of polypeptide ligands such as epidermal growth factor and transforming growth factor α. It has long been thought that EGFR is activated by ligand-induced dimerization of the receptor monomer, which brings intracellular kinase domains into close proximity for trans-autophosphorylation. An increasing number of diverse studies, however, demonstrate that EGFR is present as a pre-formed, yet inactive, dimer prior to ligand binding. Furthermore, recent progress in structural studies has provided insight into conformational changes during the activation of a pre-formed EGFR dimer. Upon ligand binding to the extracellular domain of EGFR, its transmembrane domains rotate or twist parallel to the plane of the cell membrane, resulting in the reorientation of the intracellular kinase domain dimer from a symmetric inactive configuration to an asymmetric active form (the “rotation model”). This model is also able to explain how oncogenic mutations activate the receptor in the absence of the ligand, without assuming that the mutations induce receptor dimerization. In this review, we discuss the mechanisms underlying the ligand-induced activation of the preformed EGFR dimer, as well as how oncogenic mutations constitutively activate the receptor dimer, based on the rotation model.
Collapse
|
25
|
Paik PK. Something Old, Something New, Something Borrowed, Something Fused: Novel EGFR Rearrangements in Lung Adenocarcinomas. Cancer Discov 2017; 6:574-5. [PMID: 27261479 DOI: 10.1158/2159-8290.cd-16-0478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Mutations in EGFR stand as the archetype for somatic alterations that lead to oncogene addiction and that predict for response to targeted therapies. In this issue of Cancer Discovery, Konduri and colleagues report on a pair of novel oncogenic and actionable EGFR fusion events in a series of patients with lung adenocarcinomas, casting new light on this model gene. Cancer Discov; 6(6); 574-5. ©2016 AACRSee related article by Konduri et al., p. 601.
Collapse
Affiliation(s)
- Paul K Paik
- Thoracic Oncology Service, Division of Solid Tumor Oncology, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York. Weill Cornell Medical College, New York, New York.
| |
Collapse
|
26
|
Abstract
The receptor for epidermal growth factor (EGFR) is a prime target for cancer therapy across a broad variety of tumor types. As it is a tyrosine kinase, small molecule tyrosine kinase inhibitors (TKIs) targeting signal transduction, as well as monoclonal antibodies against the EGFR, have been investigated as anti-tumor agents. However, despite the long-known enigmatic EGFR gene amplification and protein overexpression in glioblastoma, the most aggressive intrinsic human brain tumor, the potential of EGFR as a target for this tumor type has been unfulfilled. This review analyses the attempts to use TKIs and monoclonal antibodies against glioblastoma, with special consideration given to immunological approaches, the use of EGFR as a docking molecule for conjugates with toxins, T-cells, oncolytic viruses, exosomes and nanoparticles. Drug delivery issues associated with therapies for intracerebral diseases, with specific emphasis on convection enhanced delivery, are also discussed.
Collapse
Affiliation(s)
- Manfred Westphal
- Department of Neurosurgery, University Hospital Hamburg Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.
| | - Cecile L. Maire
- 0000 0001 2180 3484grid.13648.38Department of Neurosurgery, University Hospital Hamburg Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Katrin Lamszus
- 0000 0001 2180 3484grid.13648.38Department of Neurosurgery, University Hospital Hamburg Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| |
Collapse
|
27
|
Wang G, Wang JJ, Du L, Fei L, To SST. Inhibitory Kinetics and Mechanism of Flavonoids Extracted from Cotinus coggygria Scop. Against Glioblastoma Cancer. Nutr Cancer 2016; 68:1357-1368. [PMID: 27673410 DOI: 10.1080/01635581.2016.1225105] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
This proposal seeks to study the potential therapeutic modality of chemoprevention and anticancer effects and mechanisms of the flavonoids from Cotinus coggygria Scop. on glioblastoma cancer. In the current study, the total flavonoids (TFs) isolated from Cotinus coggygria Scop. var. cinerea Engl. (Cotinus coggygria Scop.) and the major flavonoids of Cotinus coggygria Scop. (CCFs) were identified, and the inhibitory kinetics of TF and CCF on glioblastoma cell lines were calculated. We also investigated whether TF or CCF regulated the apoptotic mechanism in cellular models of glio-blastoma cells. Finally, we evaluated whether treatment with TF or CCF suppressed tumor growth and inhibited migration in orthotopic mouse models of glioblastoma in vivo. In this study, the CCFs were identified as rutin, myricetin, and fisetin. TF and CCF remarkably inhibited cell proliferation and downregulated the PI3K/Akt and ERK signaling pathway in glioblastoma cell lines. Furthermore, the mitochondrial caspase-dependent cascade was regulated by TF and myricetin. In addition, TF and myricetin exhibited significant antitumor effects on glioblastoma in vivo. Taken together, these results suggest that phytochemical and biological data provide evidence for the active components in Cotinus coggygria, and that the TFs are responsible for the anticancer effects on glioblastoma cell growth via induction of apoptosis. In addition, the representative compound myricetin could provide a clinically relevant therapeutic opportunity. Therefore, our data strongly suggest that myricetin-deprived CCF can serve as a potent chemopreventive herbal medicine.
Collapse
Affiliation(s)
- Gang Wang
- a Department of Pharmaceutics , Shanghai Eighth People's Hospital, Jiangsu University , Shanghai , China
| | - Jun-Jie Wang
- a Department of Pharmaceutics , Shanghai Eighth People's Hospital, Jiangsu University , Shanghai , China.,b Hubei University of Medicine , Shiyan , Hubei , China
| | - Li Du
- a Department of Pharmaceutics , Shanghai Eighth People's Hospital, Jiangsu University , Shanghai , China
| | - Li Fei
- a Department of Pharmaceutics , Shanghai Eighth People's Hospital, Jiangsu University , Shanghai , China
| | - Shing-Shun Tony To
- c Department of Health Technology and Informatics , The Hong Kong Polytechnic University , Hong Kong
| |
Collapse
|
28
|
Goldstein LD, Lee J, Gnad F, Klijn C, Schaub A, Reeder J, Daemen A, Bakalarski CE, Holcomb T, Shames DS, Hartmaier RJ, Chmielecki J, Seshagiri S, Gentleman R, Stokoe D. Recurrent Loss of NFE2L2 Exon 2 Is a Mechanism for Nrf2 Pathway Activation in Human Cancers. Cell Rep 2016; 16:2605-2617. [PMID: 27568559 DOI: 10.1016/j.celrep.2016.08.010] [Citation(s) in RCA: 141] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Revised: 06/03/2016] [Accepted: 07/31/2016] [Indexed: 12/21/2022] Open
Abstract
The Nrf2 pathway is frequently activated in human cancers through mutations in Nrf2 or its negative regulator KEAP1. Using a cell-line-derived gene signature for Nrf2 pathway activation, we found that some tumors show high Nrf2 activity in the absence of known mutations in the pathway. An analysis of splice variants in oncogenes revealed that such tumors express abnormal transcript variants from the NFE2L2 gene (encoding Nrf2) that lack exon 2, or exons 2 and 3, and encode Nrf2 protein isoforms missing the KEAP1 interaction domain. The Nrf2 alterations result in the loss of interaction with KEAP1, Nrf2 stabilization, induction of a Nrf2 transcriptional response, and Nrf2 pathway dependence. In all analyzed cases, transcript variants were the result of heterozygous genomic microdeletions. Thus, we identify an alternative mechanism for Nrf2 pathway activation in human tumors and elucidate its functional consequences.
Collapse
Affiliation(s)
- Leonard D Goldstein
- Department of Molecular Biology, Genentech Inc., South San Francisco, CA 94080, USA; Department of Bioinformatics and Computational Biology, Genentech Inc., South San Francisco, CA 94080, USA
| | - James Lee
- Department of Discovery Oncology, Genentech Inc., South San Francisco, CA 94080, USA
| | - Florian Gnad
- Department of Bioinformatics and Computational Biology, Genentech Inc., South San Francisco, CA 94080, USA
| | - Christiaan Klijn
- Department of Bioinformatics and Computational Biology, Genentech Inc., South San Francisco, CA 94080, USA
| | - Annalisa Schaub
- Department of Discovery Oncology, Genentech Inc., South San Francisco, CA 94080, USA
| | - Jens Reeder
- Department of Bioinformatics and Computational Biology, Genentech Inc., South San Francisco, CA 94080, USA
| | - Anneleen Daemen
- Department of Bioinformatics and Computational Biology, Genentech Inc., South San Francisco, CA 94080, USA
| | - Corey E Bakalarski
- Department of Bioinformatics and Computational Biology, Genentech Inc., South San Francisco, CA 94080, USA; Department of Protein Chemistry, Genentech Inc., South San Francisco, CA 94080, USA
| | - Thomas Holcomb
- Department of Oncology Biomarker Development, Genentech Inc., South San Francisco, CA 94080, USA
| | - David S Shames
- Department of Oncology Biomarker Development, Genentech Inc., South San Francisco, CA 94080, USA
| | | | | | - Somasekar Seshagiri
- Department of Molecular Biology, Genentech Inc., South San Francisco, CA 94080, USA
| | - Robert Gentleman
- Department of Bioinformatics and Computational Biology, Genentech Inc., South San Francisco, CA 94080, USA
| | - David Stokoe
- Department of Discovery Oncology, Genentech Inc., South San Francisco, CA 94080, USA.
| |
Collapse
|
29
|
Konduri K, Gallant JN, Chae YK, Giles FJ, Gitlitz BJ, Gowen K, Ichihara E, Owonikoko TK, Peddareddigari V, Ramalingam SS, Reddy SK, Eaby-Sandy B, Vavalà T, Whiteley A, Chen H, Yan Y, Sheehan JH, Meiler J, Morosini D, Ross JS, Stephens PJ, Miller VA, Ali SM, Lovly CM. EGFR Fusions as Novel Therapeutic Targets in Lung Cancer. Cancer Discov 2016; 6:601-11. [PMID: 27102076 PMCID: PMC4893907 DOI: 10.1158/2159-8290.cd-16-0075] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 04/13/2016] [Indexed: 01/07/2023]
Abstract
UNLABELLED Here, we report that novel epidermal growth factor receptor (EGFR) gene fusions comprising the N-terminal of EGFR linked to various fusion partners, most commonly RAD51, are recurrent in lung cancer. We describe five patients with metastatic lung cancer whose tumors harbored EGFR fusions, four of whom were treated with EGFR tyrosine kinase inhibitors (TKI) with documented antitumor responses. In vitro, EGFR-RAD51 fusions are oncogenic and can be therapeutically targeted with available EGFR TKIs and therapeutic antibodies. These results support the dependence of EGFR-rearranged tumors on EGFR-mediated signaling and suggest several therapeutic strategies for patients whose tumors harbor this novel alteration. SIGNIFICANCE We report for the first time the identification and therapeutic targeting of EGFR C-terminal fusions in patients with lung cancer and document responses to the EGFR inhibitor erlotinib in 4 patients whose tumors harbored EGFR fusions. Findings from these studies will be immediately translatable to the clinic, as there are already several approved EGFR inhibitors. Cancer Discov; 6(6); 601-11. ©2016 AACR.See related commentary by Paik, p. 574This article is highlighted in the In This Issue feature, p. 561.
Collapse
Affiliation(s)
- Kartik Konduri
- Baylor University Medical Center, Baylor Sammons Cancer Center, Dallas, TX,Texas Oncology PA, Dallas, TX
| | - Jean-Nicolas Gallant
- Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, TN
| | - Young Kwang Chae
- Northwestern Medicine Developmental Therapeutics Institute, Chicago, IL,Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL,Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Francis J. Giles
- Northwestern Medicine Developmental Therapeutics Institute, Chicago, IL,Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL,Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Barbara J. Gitlitz
- Department of Medicine, University of Southern California Keck School of Medicine; Los Angeles, CA,Addario Lung Cancer Medical Institute, Cambridge, MA
| | | | - Eiki Ichihara
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Taofeek K. Owonikoko
- Department of Hematology and Medical Oncology Emory University School of Medicine, Atlanta, GA,Winship Cancer Institute, Atlanta, GA
| | - Vijay Peddareddigari
- Abramson Cancer Center, Hospital of the University of Pennsylvania, Philadelphia, PA,Janssen Research & Development, LLC, Horsham, PA
| | - Suresh S. Ramalingam
- Department of Hematology and Medical Oncology Emory University School of Medicine, Atlanta, GA,Winship Cancer Institute, Atlanta, GA
| | - Satyanarayan K. Reddy
- Department of Hematology and Medical Oncology Emory University School of Medicine, Atlanta, GA,Winship Cancer Institute, Atlanta, GA
| | - Beth Eaby-Sandy
- Abramson Cancer Center, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Tiziana Vavalà
- Addario Lung Cancer Medical Institute, Cambridge, MA,Department of Oncology, Thoracic Oncology Unit, University of Turin, Italy
| | - Andrew Whiteley
- Baylor University Medical Center, Baylor Sammons Cancer Center, Dallas, TX
| | - Heidi Chen
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN
| | - Yingjun Yan
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Jonathan H. Sheehan
- Department of Biochemistry, Vanderbilt University Medical Center, Nashville, TN,Center for Structural Biology, Vanderbilt University Medical Center, Nashville, TN
| | - Jens Meiler
- Department of Chemistry, Vanderbilt University Medical Center, Nashville, TN,Center for Structural Biology, Vanderbilt University Medical Center, Nashville, TN
| | | | - Jeffrey S. Ross
- Foundation Medicine Inc., Cambridge, MA,Albany Medical College, Albany, NY
| | | | | | | | - Christine M. Lovly
- Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, TN,Addario Lung Cancer Medical Institute, Cambridge, MA,Department of Medicine, Vanderbilt University Medical Center, Nashville, TN,Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN,Corresponding author: Christine M. Lovly, MD, PhD, Vanderbilt-Ingram Cancer Center, 2220 Pierce Avenue, 777 Preston Research Building, Nashville, TN 37232-6307, Phone 615-936-3457, Fax: 615-343-7602,
| |
Collapse
|
30
|
Nakamura Y, Togashi Y, Nakahara H, Tomida S, Banno E, Terashima M, Hayashi H, de Velasco MA, Sakai K, Fujita Y, Okegawa T, Nutahara K, Hamada S, Nishio K. Afatinib against Esophageal or Head-and-Neck Squamous Cell Carcinoma: Significance of Activating Oncogenic HER4 Mutations in HNSCC. Mol Cancer Ther 2016; 15:1988-97. [PMID: 27207775 DOI: 10.1158/1535-7163.mct-15-0737] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 05/12/2016] [Indexed: 11/16/2022]
Abstract
The prognosis for patients with advanced esophageal or head-and-neck squamous cell carcinoma (ESCC or HNSCC) remains poor, and the identification of additional oncogenes and their inhibitors is needed. In this study, we evaluated the sensitivities of several ESCC and HNSCC cell lines to HER inhibitors (cetuximab, erlotinib, and afatinib) in vitro and found two cell lines that were hypersensitive to afatinib. Sequence analyses for the afatinib-targeted HER family genes in the two cell lines revealed that one cell line had a previously reported activating EGFR L861Q mutation, whereas the other had an HER4 G1109C mutation of unknown function. No amplification of HER family genes was found in either of the two cell lines. The phosphorylation level of HER4 was elevated in the HER4 G1109C mutation-overexpressed HEK293 cell line, and the mutation had a transforming potential and exhibited tumorigenicity in an NIH3T3 cell line, indicating that this HER4 mutation was an activating oncogenic mutation. Afatinib dramatically reduced the phosphorylation level of EGFR or HER4 and induced apoptosis in the two cell lines. In vivo, tumor growth was also dramatically decreased by afatinib. In a database, the frequencies of HER family gene mutations in ESCC or HNSCC ranged from 0% to 5%. In particular, HER4 mutations have been found relatively frequently in HNSCC. Considering the addiction of cancer cells to activating oncogenic EGFR or HER4 mutations for proliferation, HNSCC or ESCC with such oncogenic mutations might be suitable for targeted therapy with afatinib. Mol Cancer Ther; 15(8); 1988-97. ©2016 AACR.
Collapse
Affiliation(s)
- Yu Nakamura
- Department of Genome Biology, Kindai University Faculty of Medicine, Osaka, Japan. Department of Urology, Kyorin University School of Medicine, Tokyo, Japan
| | - Yosuke Togashi
- Department of Genome Biology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Hirokazu Nakahara
- Department of Oral and Maxillofacial Surgery, Kindai University Faculty of Medicine, Osaka, Japan. Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Shuta Tomida
- Department of Genome Biology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Eri Banno
- Department of Genome Biology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Masato Terashima
- Department of Genome Biology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Hidetoshi Hayashi
- Department of Medical Oncology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Marco A de Velasco
- Department of Genome Biology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Kazuko Sakai
- Department of Genome Biology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Yoshihiko Fujita
- Department of Genome Biology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Takatsugu Okegawa
- Department of Urology, Kyorin University School of Medicine, Tokyo, Japan
| | - Kikuo Nutahara
- Department of Urology, Kyorin University School of Medicine, Tokyo, Japan
| | - Suguru Hamada
- Department of Oral and Maxillofacial Surgery, Kindai University Faculty of Medicine, Osaka, Japan
| | - Kazuto Nishio
- Department of Genome Biology, Kindai University Faculty of Medicine, Osaka, Japan.
| |
Collapse
|
31
|
Venkatesan S, Lamfers MLM, Dirven CMF, Leenstra S. Genetic biomarkers of drug response for small-molecule therapeutics targeting the RTK/Ras/PI3K, p53 or Rb pathway in glioblastoma. CNS Oncol 2016; 5:77-90. [PMID: 26986934 DOI: 10.2217/cns-2015-0005] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Glioblastoma is the most deadly and frequently occurring primary malignant tumor of the central nervous system. Genomic studies have shown that mutated oncogenes and tumor suppressor genes in glioblastoma mainly occur in three pathways: the RTK/Ras/PI3K signaling, the p53 and the Rb pathways. In this review, we summarize the modulatory effects of genetic aberrations in these three pathways to drugs targeting these specific pathways. We also provide an overview of the preclinical efforts made to identify genetic biomarkers of response and resistance. Knowledge of biomarkers will finally promote patient stratification in clinical trials, a prerequisite for trial design in the era of precision medicine.
Collapse
Affiliation(s)
- Subramanian Venkatesan
- Department of Neurosurgery, Brain Tumor Center of the Erasmus Medical Center, Rotterdam, The Netherlands.,UCL Cancer Institute, Paul O'Gorman Building, London, UK
| | - Martine L M Lamfers
- Department of Neurosurgery, Brain Tumor Center of the Erasmus Medical Center, Rotterdam, The Netherlands
| | - Clemens M F Dirven
- Department of Neurosurgery, Brain Tumor Center of the Erasmus Medical Center, Rotterdam, The Netherlands
| | - Sieger Leenstra
- Department of Neurosurgery, Brain Tumor Center of the Erasmus Medical Center, Rotterdam, The Netherlands.,Department of Neurosurgery, Elisabeth Hospital, Tilburg, The Netherlands
| |
Collapse
|
32
|
Späth F, Andersson U, Dahlin AM, Langseth H, Hovig E, Johannesen TB, Grankvist K, Björkblom B, Wibom C, Melin B. Pre-diagnostic serum levels of EGFR and ErbB2 and genetic glioma risk variants: a nested case-control study. Tumour Biol 2016; 37:11065-72. [PMID: 26906551 PMCID: PMC4999462 DOI: 10.1007/s13277-015-4742-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 12/27/2015] [Indexed: 11/29/2022] Open
Abstract
Genetic variants have been associated with the risk of developing glioma, but functional mechanisms on disease phenotypic traits remain to be investigated. One phenotypic trait of glioblastoma is the mutation and amplification of the epidermal growth factor receptor (EGFR) gene. We investigated associations between pre-diagnostic serum protein concentrations of EGFR and ErbB2, both members of the EGFR family, and future risk of glioma. Further, we studied if EGFR glioma risk variants were associated with EGFR and ErbB2 serum levels. We assessed the associations between genetic glioma risk variants and serum concentrations of EGFR and ErbB2, as measured in pre-diagnostic cohort serum samples of 593 glioma patients and 590 matched cancer-free controls. High serum EGFR and ErbB2 levels were associated with risk of developing glioblastoma (P = 0.008; OR = 1.58, 95 % CI = 1.13–2.22 and P = 0.017, OR = 1.63, 95 % CI = 1.09–2.44, respectively). High serum ErbB2 concentration was also associated with glioma risk overall (P = 0.049; OR = 1.39, 95 % CI = 1.00–1.93). Glioma risk variants were not associated with high serum protein abundance. In contrast, the EGFR risk variant rs4947986 (T) was correlated with decreased EGFR serum levels (study cohort P = 0.024 and controls P = 0.009). To our knowledge, this is the first study showing an association of EGFR and ErbB2 serum levels with glioma more than a decade before diagnosis, indicating that EGFR and ErbB2 serum proteins are important in early gliomagenesis. However, we did not find evidence that glioma risk variants were associated with high pre-diagnostic serum concentrations of EGFR and ErbB2.
Collapse
Affiliation(s)
- Florentin Späth
- Department of Radiation Sciences, Umeå University, 901 87, Umeå, Sweden. .,Department of Oncology, Umeå University, 901 87, Umeå, Sweden.
| | - Ulrika Andersson
- Department of Radiation Sciences, Umeå University, 901 87, Umeå, Sweden.,Department of Oncology, Umeå University, 901 87, Umeå, Sweden
| | - Anna M Dahlin
- Department of Radiation Sciences, Umeå University, 901 87, Umeå, Sweden.,Department of Oncology, Umeå University, 901 87, Umeå, Sweden.,Computational Life Science Cluster (CLiC), Umeå University, 901 87, Umeå, Sweden
| | - Hilde Langseth
- Cancer Registry of Norway, Institute of Population-based Cancer Research, Oslo, Norway
| | - Eivind Hovig
- Department of Informatics, University of Oslo, Oslo, Norway.,Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.,Institute for Cancer Genetics and Informatics, Oslo University Hospital, Oslo, Norway
| | - Tom Børge Johannesen
- Cancer Registry of Norway, Institute of Population-based Cancer Research, Oslo, Norway
| | - Kjell Grankvist
- Department of Medical Biosciences, Clinical Chemistry, Umeå University, 901 85, Umeå, Sweden
| | - Benny Björkblom
- Department of Chemistry, Umeå University, 901 87, Umeå, Sweden
| | - Carl Wibom
- Department of Radiation Sciences, Umeå University, 901 87, Umeå, Sweden.,Department of Oncology, Umeå University, 901 87, Umeå, Sweden.,Computational Life Science Cluster (CLiC), Umeå University, 901 87, Umeå, Sweden
| | - Beatrice Melin
- Department of Radiation Sciences, Umeå University, 901 87, Umeå, Sweden.,Department of Oncology, Umeå University, 901 87, Umeå, Sweden
| |
Collapse
|
33
|
Park AKJ, Francis JM, Park WY, Park JO, Cho J. Constitutive asymmetric dimerization drives oncogenic activation of epidermal growth factor receptor carboxyl-terminal deletion mutants. Oncotarget 2016; 6:8839-50. [PMID: 25826094 PMCID: PMC4496187 DOI: 10.18632/oncotarget.3559] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 02/12/2015] [Indexed: 12/16/2022] Open
Abstract
Genomic alterations targeting the Epidermal Growth Factor Receptor (EGFR) gene have been strongly associated with cancer pathogenesis. The clinical effectiveness of EGFR targeted therapies, including small molecules directed against the kinase domain such as gefitinib, erlotinib and afatinib, have been proven successful in treating non-small cell lung cancer patients with tumors harboring EGFR kinase domain mutations. Recent large-scale genomic studies in glioblastoma and lung cancer have identified an additional class of oncogenic mutations caused by the intragenic deletion of carboxy-terminal coding regions. Here, we report that combinations of exonic deletions of exon 25 to 28 lead to the oncogenic activation of EGF receptor in the absence of ligand and consequent cellular transformation, indicating a significant role of C-terminal domain in modulating EGFR activation. Furthermore, we show that the oncogenic activity of the resulting C-terminal deletion mutants are efficiently inhibited by EGFR-targeted drugs including erlotinib, afatinib, dacomitinib as well as cetuximab, expanding the therapeutic rationale of cancer genome-based EGFR targeted approaches. Finally, in vivo and in vitro preclinical studies demonstrate that constitutive asymmetric dimerization in mutant EGFR is a key mechanism for oncogenic activation and tumorigenesis by C-terminal deletion mutants. Therefore, our data provide compelling evidence for oncogenic activation of C-terminal deletion mutants at the molecular level and we propose that C-terminal deletion status of EGFR can be considered as a potential genomic marker for EGFR-targeted therapy.
Collapse
Affiliation(s)
- Angela K J Park
- Samsung Genome Institute, Samsung Medical Center, Seoul, Republic of Korea.,Samsung Advanced Institute for Health Sciences and Technology, SungKyunKwan University, Seoul, Republic of Korea
| | - Joshua M Francis
- The Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
| | - Woong-Yang Park
- Samsung Genome Institute, Samsung Medical Center, Seoul, Republic of Korea.,Samsung Advanced Institute for Health Sciences and Technology, SungKyunKwan University, Seoul, Republic of Korea
| | - Joon-Oh Park
- Division of Hematology-Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jeonghee Cho
- Samsung Genome Institute, Samsung Medical Center, Seoul, Republic of Korea.,Samsung Advanced Institute for Health Sciences and Technology, SungKyunKwan University, Seoul, Republic of Korea
| |
Collapse
|
34
|
Effect and Mechanism of Total Flavonoids Extracted from Cotinus coggygria against Glioblastoma Cancer In Vitro and In Vivo. BIOMED RESEARCH INTERNATIONAL 2015; 2015:856349. [PMID: 26557705 PMCID: PMC4628721 DOI: 10.1155/2015/856349] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 07/30/2015] [Accepted: 08/02/2015] [Indexed: 12/13/2022]
Abstract
Flavonoids, a major constituent of Cotinus coggygria (CC), have been reported to possess diverse biological activities, including antigenotoxic and hepatoprotective effects; however, few studies have investigated the biological activity of the total flavonoids of Cotinus coggygria, especially in terms of its cytotoxicity in cancer cells. In the present study, the Cotinus coggygria flavonoids (CCF) were extracted from Cotinus coggygria and characterized by HPLC. These results indicated that CCF extracts could inhibit cell proliferation, with IC50 values of 128.49 µg/mL (U87), 107.62 µg/mL (U251), and 93.57 µg/mL (DBTRG-05MG). The current investigation also revealed that CCF induced apoptosis in highly malignant glioblastoma cells, a process that apparently involved the inhibition of Akt coupled with ERK protein expression. This finding suggests that the PI3K/Akt-ERK signaling pathway is regulated by CCF and leads to the inhibition of the glioblastoma cancer cells. Furthermore, a significant antitumor effect of CCF was observed in xenograft animal models of glioblastoma multiforme in vivo. Taken together, these data suggest that CCF is the active component in the Cotinus coggygria plant that offers potential therapeutic modality in the abrogation of cancer cell proliferation, including the induction of apoptosis.
Collapse
|
35
|
Acquired resistance to anti-EGFR mAb ICR62 in cancer cells is accompanied by an increased EGFR expression, HER-2/HER-3 signalling and sensitivity to pan HER blockers. Br J Cancer 2015; 113:1010-9. [PMID: 26372697 PMCID: PMC4651123 DOI: 10.1038/bjc.2015.319] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 06/15/2015] [Accepted: 08/12/2015] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The human epidermal growth factor receptor (EGFR) is an important target for cancer treatment. Currently, only the EGFR antibodies cetuximab and panitumumab are approved for the treatment of patients with colorectal cancer. However, a major clinical challenge is a short-term response owing to development of acquired resistance during the course of the treatment. METHODS In this study, we investigated the molecular mechanisms underlying development of acquired resistance in DiFi colorectal cancer cells to the anti-EGFR mAb ICR62 (termed DiFi62) and to the small molecule tyrosine kinase inhibitor (TKI) gefitinib (termed DiFiG) using a range of techniques. RESULTS Compared with the findings from parental DiFi and DiFiG cells, development of acquired resistance to anti-EGFR mAb ICR62 in DiFi62 cells was accompanied by an increase in cell surface EGFR and increased phosphorylation of HER-2 and HER-3. Interestingly, DiFi62 cells also acquired resistance to treatment with anti-EGFR mAbs cetuximab and ICR61, which bind to other distinct epitopes on the extracellular domain of EGFR, but these cells remained equally sensitive as the parental cells to treatment with pan-HER inhibitors such as afatinib. CONCLUSIONS Our results provide a novel mechanistic insight into the development of acquired resistance to EGFR antibody-based therapy in colorectal cancer cells and justify further investigations on the therapeutic benefits of pan-HER family inhibitors in the treatment of colorectal cancer patients once acquired resistance to EGFR antibody-based therapy is developed.
Collapse
|
36
|
Park E, Kim N, Ficarro SB, Zhang Y, Lee BI, Cho A, Kim K, Park AK, Park WY, Murray B, Meyerson M, Beroukhim R, Marto JA, Cho J, Eck MJ. Structure and mechanism of activity-based inhibition of the EGF receptor by Mig6. Nat Struct Mol Biol 2015; 22:703-711. [PMID: 26280531 PMCID: PMC4790445 DOI: 10.1038/nsmb.3074] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 07/24/2015] [Indexed: 12/17/2022]
Abstract
Mig6 is a feedback inhibitor that directly binds, inhibits and drives internalization of ErbB-family receptors. Mig6 selectively targets activated receptors. Here we found that the epidermal growth factor receptor (EGFR) phosphorylates Mig6 on Y394 and that this phosphorylation is primed by prior phosphorylation of an adjacent residue, Y395, by Src. Crystal structures of human EGFR-Mig6 complexes reveal the structural basis for enhanced phosphorylation of primed Mig6 and show how Mig6 rearranges after phosphorylation by EGFR to effectively irreversibly inhibit the same receptor that catalyzed its phosphorylation. This dual phosphorylation site allows Mig6 to inactivate EGFR in a manner that requires activation of the target receptor and that can be modulated by Src. Loss of Mig6 is a driving event in human cancer; analysis of 1,057 gliomas reveals frequent focal deletions of ERRFI1, the gene that encodes Mig6, in EGFR-amplified glioblastomas.
Collapse
Affiliation(s)
- Eunyoung Park
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA USA
| | - Nayoung Kim
- Samsung Genome Institute, Samsung Medical Center, Seoul, Republic of Korea
- Samsung Advanced Institute for Health Sciences and Technology, SungKyunKwan University, Seoul, Republic of Korea
| | - Scott B. Ficarro
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA USA
- Blais Proteomics Center, Dana-Farber Cancer Institute, Boston, MA USA
| | - Yi Zhang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA USA
- Blais Proteomics Center, Dana-Farber Cancer Institute, Boston, MA USA
| | - Byung Il Lee
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA USA
- Biomolecular Function Research Branch, Division of Convergence Technology, Research Institute, National Cancer Center, Goyang, Gyeonggi Republic of Korea
| | - Ahye Cho
- Samsung Genome Institute, Samsung Medical Center, Seoul, Republic of Korea
- Samsung Advanced Institute for Health Sciences and Technology, SungKyunKwan University, Seoul, Republic of Korea
| | - Kihong Kim
- Samsung Advanced Institute for Health Sciences and Technology, SungKyunKwan University, Seoul, Republic of Korea
| | - Angela K.J. Park
- Samsung Genome Institute, Samsung Medical Center, Seoul, Republic of Korea
- Samsung Advanced Institute for Health Sciences and Technology, SungKyunKwan University, Seoul, Republic of Korea
| | - Woong-Yang Park
- Samsung Genome Institute, Samsung Medical Center, Seoul, Republic of Korea
- Samsung Advanced Institute for Health Sciences and Technology, SungKyunKwan University, Seoul, Republic of Korea
| | | | - Matthew Meyerson
- Broad Institute of Harvard and MIT, Cambridge, MA USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA USA
- Department of Pathology, Harvard Medical School, Boston, MA USA
| | - Rameen Beroukhim
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA USA
- Broad Institute of Harvard and MIT, Cambridge, MA USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA USA
- Department of Medicine, Harvard Medical School, Boston, MA USA
| | - Jarrod A. Marto
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA USA
- Blais Proteomics Center, Dana-Farber Cancer Institute, Boston, MA USA
| | - Jeonghee Cho
- Samsung Genome Institute, Samsung Medical Center, Seoul, Republic of Korea
- Samsung Advanced Institute for Health Sciences and Technology, SungKyunKwan University, Seoul, Republic of Korea
| | - Michael J. Eck
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA USA
| |
Collapse
|
37
|
Maire CL, Ligon KL. Molecular pathologic diagnosis of epidermal growth factor receptor. Neuro Oncol 2015; 16 Suppl 8:viii1-6. [PMID: 25342599 DOI: 10.1093/neuonc/nou294] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Epidermal growth factor receptor (EGFR) was one of the first oncogenes identified in glioblastoma (GBM) and remains one of the most attractive therapeutic targets. Genomic alterations in EGFR are present in 57% of patients and are strikingly diverse, including gene amplification, rearrangements, and point mutations. Each aberration class has important clinical implications for diagnosis, prognosis, or therapeutic investigation of EGFR in clinical trials. Somatic copy number alterations (SCNAs) are the most common abnormalities in EGFR, with gene amplification present in >43% of patients. The presence of EGFR amplification is often used now to support the diagnosis of GBM and discriminate GBM from other gliomas. It is currently detected in clinical labs using fluorescence in situ hybridization, colorimetric in situ hybridization or, more recently multiplex genomic technologies such as array CGH or targeted next-generation sequencing approaches. Rearrangements of EGFR are most commonly internal deletions leading to activation of the receptor including EGFRvIII and, less commonly, EGFRvII and other variants, which are collectively seen in 25% of GBM patients. EGFRvIII is readily detected via mutation-specific antibodies, but heterogeneity of this and other deletion variants has hindered reliable detection of these aberrations using genomic DNA-based methods. RNA expression profiling (Nanostring and anchored multiplex PCR) has additional potential as a rapid and reliable strategy for detecting EGFR rearrangements with high sensitivity. Single nucleotide variants in EGFR are relatively rare and diverse but are efficiently detected using the targeted or exome-sequencing assays that are now entering clinical pathology practice. The advent of multiplex technologies has revealed the fact that multiple aberrations of EGFR are present in at least 30% of patients with EGFR disruption, a fact recently highlighted by more quantitative sequencing techniques and single cell analysis of GBM. Diagnostic assays used to evaluate EGFR and other receptor tyrosine kinases will therefore be increasingly used to measure and resolve this heterogeneity in order to better understand their mechanisms of resistance. In summary, the diagnostic approaches for identifying clinically relevant EGFR aberrations have rapidly advanced and are providing insights into more effective inhibition of this familiar oncogene in GBM and other cancers.
Collapse
Affiliation(s)
- Cecile L Maire
- Dana-Farber Cancer Institute, Center for Molecular Oncologic Pathology, Department of Medical Oncology, Boston, Massachusetts (C.L.M., K.L.L.); Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts (K.L.L.); Department of Pathology, Boston Children's Hospital, Boston, Massachusetts (K.L.L.); Department of Pathology, Harvard Medical School, Boston, Massachusetts (K.L.L.)
| | - Keith L Ligon
- Dana-Farber Cancer Institute, Center for Molecular Oncologic Pathology, Department of Medical Oncology, Boston, Massachusetts (C.L.M., K.L.L.); Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts (K.L.L.); Department of Pathology, Boston Children's Hospital, Boston, Massachusetts (K.L.L.); Department of Pathology, Harvard Medical School, Boston, Massachusetts (K.L.L.)
| |
Collapse
|
38
|
Brat DJ, Verhaak RGW, Aldape KD, Yung WKA, Salama SR, Cooper LAD, Rheinbay E, Miller CR, Vitucci M, Morozova O, Robertson AG, Noushmehr H, Laird PW, Cherniack AD, Akbani R, Huse JT, Ciriello G, Poisson LM, Barnholtz-Sloan JS, Berger MS, Brennan C, Colen RR, Colman H, Flanders AE, Giannini C, Grifford M, Iavarone A, Jain R, Joseph I, Kim J, Kasaian K, Mikkelsen T, Murray BA, O'Neill BP, Pachter L, Parsons DW, Sougnez C, Sulman EP, Vandenberg SR, Van Meir EG, von Deimling A, Zhang H, Crain D, Lau K, Mallery D, Morris S, Paulauskis J, Penny R, Shelton T, Sherman M, Yena P, Black A, Bowen J, Dicostanzo K, Gastier-Foster J, Leraas KM, Lichtenberg TM, Pierson CR, Ramirez NC, Taylor C, Weaver S, Wise L, Zmuda E, Davidsen T, Demchok JA, Eley G, Ferguson ML, Hutter CM, Mills Shaw KR, Ozenberger BA, Sheth M, Sofia HJ, Tarnuzzer R, Wang Z, Yang L, Zenklusen JC, Ayala B, Baboud J, Chudamani S, Jensen MA, Liu J, Pihl T, Raman R, Wan Y, Wu Y, Ally A, Auman JT, Balasundaram M, Balu S, Baylin SB, Beroukhim R, Bootwalla MS, Bowlby R, Bristow CA, Brooks D, Butterfield Y, Carlsen R, Carter S, Chin L, Chu A, Chuah E, Cibulskis K, Clarke A, Coetzee SG, Dhalla N, Fennell T, Fisher S, Gabriel S, Getz G, Gibbs R, Guin R, Hadjipanayis A, Hayes DN, Hinoue T, Hoadley K, Holt RA, Hoyle AP, Jefferys SR, Jones S, Jones CD, Kucherlapati R, Lai PH, Lander E, Lee S, Lichtenstein L, Ma Y, Maglinte DT, Mahadeshwar HS, Marra MA, Mayo M, Meng S, Meyerson ML, Mieczkowski PA, Moore RA, Mose LE, Mungall AJ, Pantazi A, Parfenov M, Park PJ, Parker JS, Perou CM, Protopopov A, Ren X, Roach J, Sabedot TS, Schein J, Schumacher SE, Seidman JG, Seth S, Shen H, Simons JV, Sipahimalani P, Soloway MG, Song X, Sun H, Tabak B, Tam A, Tan D, Tang J, Thiessen N, Triche T, Van Den Berg DJ, Veluvolu U, Waring S, Weisenberger DJ, Wilkerson MD, Wong T, Wu J, Xi L, Xu AW, Yang L, Zack TI, Zhang J, Aksoy BA, Arachchi H, Benz C, Bernard B, Carlin D, Cho J, DiCara D, Frazer S, Fuller GN, Gao J, Gehlenborg N, Haussler D, Heiman DI, Iype L, Jacobsen A, Ju Z, Katzman S, Kim H, Knijnenburg T, Kreisberg RB, Lawrence MS, Lee W, Leinonen K, Lin P, Ling S, Liu W, Liu Y, Liu Y, Lu Y, Mills G, Ng S, Noble MS, Paull E, Rao A, Reynolds S, Saksena G, Sanborn Z, Sander C, Schultz N, Senbabaoglu Y, Shen R, Shmulevich I, Sinha R, Stuart J, Sumer SO, Sun Y, Tasman N, Taylor BS, Voet D, Weinhold N, Weinstein JN, Yang D, Yoshihara K, Zheng S, Zhang W, Zou L, Abel T, Sadeghi S, Cohen ML, Eschbacher J, Hattab EM, Raghunathan A, Schniederjan MJ, Aziz D, Barnett G, Barrett W, Bigner DD, Boice L, Brewer C, Calatozzolo C, Campos B, Carlotti CG, Chan TA, Cuppini L, Curley E, Cuzzubbo S, Devine K, DiMeco F, Duell R, Elder JB, Fehrenbach A, Finocchiaro G, Friedman W, Fulop J, Gardner J, Hermes B, Herold-Mende C, Jungk C, Kendler A, Lehman NL, Lipp E, Liu O, Mandt R, McGraw M, Mclendon R, McPherson C, Neder L, Nguyen P, Noss A, Nunziata R, Ostrom QT, Palmer C, Perin A, Pollo B, Potapov A, Potapova O, Rathmell WK, Rotin D, Scarpace L, Schilero C, Senecal K, Shimmel K, Shurkhay V, Sifri S, Singh R, Sloan AE, Smolenski K, Staugaitis SM, Steele R, Thorne L, Tirapelli DPC, Unterberg A, Vallurupalli M, Wang Y, Warnick R, Williams F, Wolinsky Y, Bell S, Rosenberg M, Stewart C, Huang F, Grimsby JL, Radenbaugh AJ, Zhang J. Comprehensive, Integrative Genomic Analysis of Diffuse Lower-Grade Gliomas. N Engl J Med 2015; 372:2481-98. [PMID: 26061751 PMCID: PMC4530011 DOI: 10.1056/nejmoa1402121] [Citation(s) in RCA: 2219] [Impact Index Per Article: 246.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Diffuse low-grade and intermediate-grade gliomas (which together make up the lower-grade gliomas, World Health Organization grades II and III) have highly variable clinical behavior that is not adequately predicted on the basis of histologic class. Some are indolent; others quickly progress to glioblastoma. The uncertainty is compounded by interobserver variability in histologic diagnosis. Mutations in IDH, TP53, and ATRX and codeletion of chromosome arms 1p and 19q (1p/19q codeletion) have been implicated as clinically relevant markers of lower-grade gliomas. METHODS We performed genomewide analyses of 293 lower-grade gliomas from adults, incorporating exome sequence, DNA copy number, DNA methylation, messenger RNA expression, microRNA expression, and targeted protein expression. These data were integrated and tested for correlation with clinical outcomes. RESULTS Unsupervised clustering of mutations and data from RNA, DNA-copy-number, and DNA-methylation platforms uncovered concordant classification of three robust, nonoverlapping, prognostically significant subtypes of lower-grade glioma that were captured more accurately by IDH, 1p/19q, and TP53 status than by histologic class. Patients who had lower-grade gliomas with an IDH mutation and 1p/19q codeletion had the most favorable clinical outcomes. Their gliomas harbored mutations in CIC, FUBP1, NOTCH1, and the TERT promoter. Nearly all lower-grade gliomas with IDH mutations and no 1p/19q codeletion had mutations in TP53 (94%) and ATRX inactivation (86%). The large majority of lower-grade gliomas without an IDH mutation had genomic aberrations and clinical behavior strikingly similar to those found in primary glioblastoma. CONCLUSIONS The integration of genomewide data from multiple platforms delineated three molecular classes of lower-grade gliomas that were more concordant with IDH, 1p/19q, and TP53 status than with histologic class. Lower-grade gliomas with an IDH mutation either had 1p/19q codeletion or carried a TP53 mutation. Most lower-grade gliomas without an IDH mutation were molecularly and clinically similar to glioblastoma. (Funded by the National Institutes of Health.).
Collapse
|
39
|
Tseng JS, Wang CL, Huang MS, Chen CY, Chang CY, Yang TY, Tsai CR, Chen KC, Hsu KH, Tsai MH, Yu SL, Su KY, Wu CW, Yang CT, Chen YM, Chang GC. Impact of EGFR mutation detection methods on the efficacy of erlotinib in patients with advanced EGFR-wild type lung adenocarcinoma. PLoS One 2014; 9:e107160. [PMID: 25215536 PMCID: PMC4162576 DOI: 10.1371/journal.pone.0107160] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 08/06/2014] [Indexed: 11/22/2022] Open
Abstract
INTRODUCTION Methods used for epidermal growth factor receptor (EGFR) mutation testing vary widely. The impact of detection methods on the rates of response to EGFR-tyrosine kinase inhibitors (TKIs) in EGFR-wild type (wt) lung adenocarcinoma patients is unknown. METHODS We recruited the Group-I patients to evaluate the efficacy of erlotinib in patients with EGFR-wt lung adenocarcinoma by either direct sequencing (DS) or mutant type-specific sensitive (MtS) methods in six medical centers in Taiwan. Cross recheck of EGFR mutations was performed in patients who achieved objective response to erlotinib and had adequate specimens. The independent Group-II lung adenocarcinoma patients whose EGFR mutation status determined by DS were recruited to evaluate the potential limitations of three MtS methods. RESULTS In Group-I analysis, 38 of 261 EGFR-wt patients (14.6%) achieved partial response to erlotinib treatment. Nineteen patients (50.0%) had adequate specimens for cross recheck of EGFR mutations and 10 of them (52.6%) had changes in EGFR mutation status, 5 in 10 by DS and 5 in 9 by MtS methods originally. In Group-II analysis, 598 of 996 lung adenocarcinoma patients (60.0%) had detectable EGFR mutations. The accuracy rates of the three MtS methods, MALDI-TOF MS, Scorpions ARMS and Cobas, were 87.8%, 86.8% and 85.8%, respectively. CONCLUSIONS A significant portion of the erlotinib responses in EGFR-wt lung adenocarcinoma patients were related to the limitations of detection methods, not only DS but also MtS methods with similar percentages. Prospective studies are needed to define the proper strategy for EGFR mutation testing.
Collapse
Affiliation(s)
- Jeng-Sen Tseng
- Division of Chest Medicine, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Chih-Liang Wang
- Department of Thoracic Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Department of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ming-Shyan Huang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chung-Yu Chen
- Department of Internal Medicine, National Taiwan University Hospital Yunlin Branch, Yunlin County, Taiwan
| | - Cheng-Yu Chang
- Division of Chest Medicine, Department of Internal Medicine, Far Eastern Memorial Hospital, Taipei, Taiwan
| | - Tsung-Ying Yang
- Division of Chest Medicine, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
- Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Chi-Ren Tsai
- Department of Pediatrics, Taichung Veterans General Hospital, Taichung, Taiwan
- Institute of Molecular Biology, National Chung-Hsing University, Taichung, Taiwan
| | - Kun-Chieh Chen
- Division of Chest Medicine, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Kuo-Hsuan Hsu
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan
- Division of Critical Care and Respiratory Therapy, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Meen-Hsin Tsai
- Division of Chest Medicine, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
- Institute of Statistical Science, Academia Sinica, Taipei, Taiwan
| | - Sung-Liang Yu
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
- Center for Optoelectronic Biomedicine, College of Medicine, National Taiwan University, Taipei, Taiwan
- Graduate Institute of Pathology, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Kang-Yi Su
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
- Center of Genomic Medicine, National Taiwan University, Taipei, Taiwan
| | - Chih-Wei Wu
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Cheng-Ta Yang
- Department of Thoracic Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Department of Respiratory Therapy, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yuh-Min Chen
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Gee-Chen Chang
- Division of Chest Medicine, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
- Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
- Comprehensive Cancer Center, Taichung Veterans General Hospital, Taichung, Taiwan
| |
Collapse
|
40
|
Cho J, Bass AJ, Lawrence MS, Cibulskis K, Cho A, Lee SN, Yamauchi M, Wagle N, Pochanard P, Kim N, Park AK, Won J, Hur HS, Greulich H, Ogino S, Sougnez C, Voet D, Tabernero J, Jimenez J, Baselga J, Gabriel SB, Lander ES, Getz G, Eck MJ, Park WY, Meyerson M. Colon cancer-derived oncogenic EGFR G724S mutant identified by whole genome sequence analysis is dependent on asymmetric dimerization and sensitive to cetuximab. Mol Cancer 2014; 13:141. [PMID: 24894453 PMCID: PMC4072491 DOI: 10.1186/1476-4598-13-141] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 05/23/2014] [Indexed: 12/19/2022] Open
Abstract
Background Inhibition of the activated epidermal growth factor receptor (EGFR) with either enzymatic kinase inhibitors or anti-EGFR antibodies such as cetuximab, is an effective modality of treatment for multiple human cancers. Enzymatic EGFR inhibitors are effective for lung adenocarcinomas with somatic kinase domain EGFR mutations while, paradoxically, anti-EGFR antibodies are more effective in colon and head and neck cancers where EGFR mutations occur less frequently. In colorectal cancer, anti-EGFR antibodies are routinely used as second-line therapy of KRAS wild-type tumors. However, detailed mechanisms and genomic predictors for pharmacological response to these antibodies in colon cancer remain unclear. Findings We describe a case of colorectal adenocarcinoma, which was found to harbor a kinase domain mutation, G724S, in EGFR through whole genome sequencing. We show that G724S mutant EGFR is oncogenic and that it differs from classic lung cancer derived EGFR mutants in that it is cetuximab responsive in vitro, yet relatively insensitive to small molecule kinase inhibitors. Through biochemical and cellular pharmacologic studies, we have determined that cells harboring the colon cancer-derived G719S and G724S mutants are responsive to cetuximab therapy in vitro and found that the requirement for asymmetric dimerization of these mutant EGFR to promote cellular transformation may explain their greater inhibition by cetuximab than small-molecule kinase inhibitors. Conclusion The colon-cancer derived G719S and G724S mutants are oncogenic and sensitive in vitro to cetuximab. These data suggest that patients with these mutations may benefit from the use of anti-EGFR antibodies as part of the first-line therapy.
Collapse
Affiliation(s)
- Jeonghee Cho
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston MA 02115, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Francis JM, Zhang CZ, Maire CL, Jung J, Manzo VE, Adalsteinsson VA, Homer H, Haidar S, Blumenstiel B, Pedamallu CS, Ligon AH, Love JC, Meyerson M, Ligon KL. EGFR variant heterogeneity in glioblastoma resolved through single-nucleus sequencing. Cancer Discov 2014; 4:956-71. [PMID: 24893890 DOI: 10.1158/2159-8290.cd-13-0879] [Citation(s) in RCA: 223] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
UNLABELLED Glioblastomas (GBM) with EGFR amplification represent approximately 50% of newly diagnosed cases, and recent studies have revealed frequent coexistence of multiple EGFR aberrations within the same tumor, which has implications for mutation cooperation and treatment resistance. However, bulk tumor sequencing studies cannot resolve the patterns of how the multiple EGFR aberrations coexist with other mutations within single tumor cells. Here, we applied a population-based single-cell whole-genome sequencing methodology to characterize genomic heterogeneity in EGFR-amplified glioblastomas. Our analysis effectively identified clonal events, including a novel translocation of a super enhancer to the TERT promoter, as well as subclonal LOH and multiple EGFR mutational variants within tumors. Correlating the EGFR mutations onto the cellular hierarchy revealed that EGFR truncation variants (EGFRvII and EGFR carboxyl-terminal deletions) identified in the bulk tumor segregate into nonoverlapping subclonal populations. In vitro and in vivo functional studies show that EGFRvII is oncogenic and sensitive to EGFR inhibitors currently in clinical trials. Thus, the association between diverse activating mutations in EGFR and other subclonal mutations within a single tumor supports an intrinsic mechanism for proliferative and clonal diversification with broad implications in resistance to treatment. SIGNIFICANCE We developed a novel single-cell sequencing methodology capable of identifying unique, nonoverlapping subclonal alterations from archived frozen clinical specimens. Using GBM as an example, we validated our method to successfully define tumor cell subpopulations containing distinct genetic and treatment resistance profiles and potentially mutually cooperative combinations of alterations in EGFR and other genes.
Collapse
Affiliation(s)
- Joshua M Francis
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts. Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | | | - Cecile L Maire
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Joonil Jung
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Veronica E Manzo
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Viktor A Adalsteinsson
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts. Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts. The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Heather Homer
- Center for Molecular Oncologic Pathology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Sam Haidar
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | | | - Chandra Sekhar Pedamallu
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts. Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Azra H Ligon
- Center for Molecular Oncologic Pathology, Dana-Farber Cancer Institute, Boston, Massachusetts. Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts. Department of Pathology, Boston Children's Hospital, Boston, Massachusetts. Department of Pathology, Harvard Medical School, Boston, Massachusetts
| | - J Christopher Love
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts. Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts. The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Matthew Meyerson
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts. Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts. Department of Pathology, Harvard Medical School, Boston, Massachusetts. Center for Cancer Genome Discovery, Dana-Farber Cancer Institute, Boston, Massachusetts.
| | - Keith L Ligon
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts. Center for Molecular Oncologic Pathology, Dana-Farber Cancer Institute, Boston, Massachusetts. Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts. Department of Pathology, Boston Children's Hospital, Boston, Massachusetts. Department of Pathology, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
42
|
Addeo R, Zappavigna S, Parlato C, Caraglia M. Erlotinib: early clinical development in brain cancer. Expert Opin Investig Drugs 2014; 23:1027-37. [PMID: 24836441 DOI: 10.1517/13543784.2014.918950] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Glioblastoma (GBM) is the most common brain cancer in adults. It is also, unfortunately, the most aggressive type and the least responsive to therapy. Overexpression of EGFR and/or EGFRvIII is frequently found in GBM and is frequently associated with the more malignant phenotype of the disease and a poor clinical outcome. EGFR-targeted therapy represents a promising anti-GBM therapy. Two EGFR kinase inhibitors, gefitinib and erlotinib have been tested in clinical trials for malignant gliomas. However, the clinical efficacy of EGFR-targeted therapy has been only modest in GBM patients. AREAS COVERED The authors provide an evaluation of erlotinib as a potential therapy for GBM. The authors highlight experiences drawn from clinical trials and discuss the challenges, which include the insufficient penetration through the blood-brain barrier (BBB) and chemoresistance. EXPERT OPINION Malignant brain tumours have a very complex signalling network that is not only driven by EGFR. This complexity dictates tumour sensitivity to EGFR-targeted therapies. Alternative kinase signalling pathways may be involved in parallel with the inhibited target, so that a single target's inactivation is not sufficient to block downstream oncogenic signalling. The use of nanocarriers offers many opportunities, such as the release of the drug to specific cells or tissues, together with the ability to overcome different biological barriers, like the BBB.
Collapse
|
43
|
Quantitative assessment of intragenic receptor tyrosine kinase deletions in primary glioblastomas: their prevalence and molecular correlates. Acta Neuropathol 2014; 127:747-59. [PMID: 24292886 PMCID: PMC3984672 DOI: 10.1007/s00401-013-1217-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 11/10/2013] [Accepted: 11/13/2013] [Indexed: 01/14/2023]
Abstract
Intragenic deletion is the most common form of activating mutation among receptor tyrosine kinases (RTK) in glioblastoma. However, these events are not detected by conventional DNA sequencing methods commonly utilized for tumor genotyping. To comprehensively assess the frequency, distribution, and expression levels of common RTK deletion mutants in glioblastoma, we analyzed RNA from a set of 192 glioblastoma samples from The Cancer Genome Atlas for the expression of EGFRvIII, EGFRvII, EGFRvV (carboxyl-terminal deletion), and PDGFRAΔ8,9. These mutations were detected in 24, 1.6, 4.7, and 1.6 % of cases, respectively. Overall, 29 % (55/189) of glioblastomas expressed at least one RTK intragenic deletion transcript in this panel. For EGFRvIII, samples were analyzed by both quantitative real-time PCR (QRT-PCR) and single mRNA molecule counting on the Nanostring nCounter platform. Nanostring proved to be highly sensitive, specific, and linear, with sensitivity comparable or exceeding that of RNA seq. We evaluated the prognostic significance and molecular correlates of RTK rearrangements. EGFRvIII was only detectable in tumors with focal amplification of the gene. Moreover, we found that EGFRvIII expression was not prognostic of poor outcome and that neither recurrent copy number alterations nor global changes in gene expression differentiate EGFRvIII-positive tumors from tumors with amplification of wild-type EGFR. The wide range of expression of mutant alleles and co-expression of multiple EGFR variants suggests that quantitative RNA-based clinical assays will be important for assessing the relative expression of intragenic deletions as therapeutic targets and/or candidate biomarkers. To this end, we demonstrate the performance of the Nanostring assay in RNA derived from routinely collected formalin-fixed paraffin-embedded tissue.
Collapse
|
44
|
Tabone T, Abuhusain HJ, Nowak AK, Erber WN, McDonald KL. Multigene profiling to identify alternative treatment options for glioblastoma: a pilot study. J Clin Pathol 2014; 67:550-5. [PMID: 24695838 DOI: 10.1136/jclinpath-2014-202173] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
UNLABELLED Glioblastoma (GBM) is a highly aggressive malignancy and the most effective treatment regime has a high relapse rate. Increasingly, the development of therapies involves defining drug-diagnostic combinations where the presence of a molecular target or marker identifies patients who are most likely to respond to a specific therapy. Trials in other solid cancers have demonstrated clear utility in the incorporation of biomarkers to stratify patients to targeted treatment, however, there are no mutations that are currently used to inform treatment options for GBM. AIMS We piloted the use of high-throughput next-generation sequencing technology to identify genetic mutations in 44 GBM specimens that may be amenable to current or future targeted therapeutic strategies. METHOD Somatic mutation profiling was performed using the AmpliSeq Cancer Hotspot Panel v2 and semiconductor sequencing technology. RESULTS A total of 66 mutations were detected in 35/44 (80%) patients. The number of mutations per tumour ranged from 0 to 4 (average per tumour=1.5). The most frequent mutations were in TP53 (n=12), PTEN (n=9), EGFR (n=8) and PIK3CA (n=5). Clinically actionable somatic mutations were detected in 24/35 (69%) patients. CONCLUSIONS This study demonstrates that the use of an 'off-the-shelf' oncogene primer panel and benchtop next-generation sequencer can identify mutations and potentially actionable targets in the majority of GBM patients. Data from this pilot highlights the potential for targeted genetic resequencing to identify mutations that may inform treatment options and predict outcomes.
Collapse
Affiliation(s)
- Tania Tabone
- Translational Cancer Pathology Laboratory, School of Pathology and Laboratory Medicine, University of Western Australia, Crawley, Western Australia, Australia
| | - Hazem J Abuhusain
- Cure Brain Cancer Neuro-oncology Group, Prince of Wales Clinical School, UNSW Australia
| | - Anna K Nowak
- Department of Medical Oncology, School of Medicine and Pharmacology, University of Western Australia, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
| | | | - Wendy N Erber
- Translational Cancer Pathology Laboratory, School of Pathology and Laboratory Medicine, University of Western Australia, Crawley, Western Australia, Australia
| | - Kerrie L McDonald
- Cure Brain Cancer Neuro-oncology Group, Prince of Wales Clinical School, UNSW Australia
| |
Collapse
|
45
|
Sturm D, Bender S, Jones DT, Lichter P, Grill J, Becher O, Hawkins C, Majewski J, Jones C, Costello JF, Iavarone A, Aldape K, Brennan CW, Jabado N, Pfister SM. Paediatric and adult glioblastoma: multiform (epi)genomic culprits emerge. Nat Rev Cancer 2014; 14:92-107. [PMID: 24457416 PMCID: PMC4003223 DOI: 10.1038/nrc3655] [Citation(s) in RCA: 403] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We have extended our understanding of the molecular biology that underlies adult glioblastoma over many years. By contrast, high-grade gliomas in children and adolescents have remained a relatively under-investigated disease. The latest large-scale genomic and epigenomic profiling studies have yielded an unprecedented abundance of novel data and provided deeper insights into gliomagenesis across all age groups, which has highlighted key distinctions but also some commonalities. As we are on the verge of dissecting glioblastomas into meaningful biological subgroups, this Review summarizes the hallmark genetic alterations that are associated with distinct epigenetic features and patient characteristics in both paediatric and adult disease, and examines the complex interplay between the glioblastoma genome and epigenome.
Collapse
Affiliation(s)
- Dominik Sturm
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) Heidelberg, Im Neuenheimer Feld 580, D-69120 Heidelberg, Germany
- Department of Pediatric Oncology, Hematology, and Immunology, Heidelberg University Hospital, Im Neuenheimer Feld 430, D-69120 Heidelberg, Germany
| | - Sebastian Bender
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) Heidelberg, Im Neuenheimer Feld 580, D-69120 Heidelberg, Germany
- Department of Pediatric Oncology, Hematology, and Immunology, Heidelberg University Hospital, Im Neuenheimer Feld 430, D-69120 Heidelberg, Germany
| | - David T.W. Jones
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) Heidelberg, Im Neuenheimer Feld 580, D-69120 Heidelberg, Germany
| | - Peter Lichter
- Division of Molecular Genetics, German Cancer Research Center (DKFZ) Heidelberg, Im Neuenheimer Feld 580, D-69120 Heidelberg, Germany
| | - Jacques Grill
- Brain Tumor Program, Department of Pediatric and Adolescent Oncology, Gustave Roussy Cancer Institute, Universite Paris Sud, 114 Rue Eduoard Vaillant, 94805 Villejuif, France
| | - Oren Becher
- Division of Pediatric Hematology/Oncology, Duke University Medical Center, DUMC 91001, Durham, NC 27710, USA
| | - Cynthia Hawkins
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, 555 University Avenue, Toronto, ON, M5G 1X8, Canada
| | - Jacek Majewski
- Division of Experimental Medicine and Department of Human Genetics, McGill University and McGill University Health Centre, 2155 Guy Street, Montreal, QC, H3H 2R9, Canada
| | - Chris Jones
- Divisions of Molecular Pathology and Cancer Therapeutics, The Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey, SM2 5NG, UK
| | - Joseph F. Costello
- Brain Tumor Research Center, Department of Neurosurgery, University of California, 2340 Sutter St., San Francisco, CA 94143, USA
| | - Antonio Iavarone
- Institute for Cancer Genetics and Departments of Pathology and Neurology, Columbia University Medical Center, 1130 St. Nicholas Avenue, New York, NY 10032, USA
| | - Kenneth Aldape
- Department of Neuro-Oncology, University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd. Unit 0085, Houston, TX 77030, USA
| | - Cameron W. Brennan
- Human Oncology & Pathogenesis Program and Department of Neurosurgery, Brain Tumor Center, Memorial Sloan-Kettering Cancer Center, 1275 York Ave, New York, NY 10065, USA
| | - Nada Jabado
- Division of Experimental Medicine and Department of Human Genetics, McGill University and McGill University Health Centre, 2155 Guy Street, Montreal, QC, H3H 2R9, Canada
| | - Stefan M. Pfister
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) Heidelberg, Im Neuenheimer Feld 580, D-69120 Heidelberg, Germany
- Department of Pediatric Oncology, Hematology, and Immunology, Heidelberg University Hospital, Im Neuenheimer Feld 430, D-69120 Heidelberg, Germany
| |
Collapse
|
46
|
Mariotti ET, Premanandan C, Lorch G. Canine pulmonary adenocarcinoma tyrosine kinase receptor expression and phosphorylation. BMC Vet Res 2014; 10:19. [PMID: 24423144 PMCID: PMC3896673 DOI: 10.1186/1746-6148-10-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 01/08/2014] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND This study evaluated tyrosine kinase receptor (TKR) expression and activation in canine pulmonary adenocarcinoma (cpAC) biospecimens. As histological similarities exist between human and cpAC, we hypothesized that cpACs will have increased TKR mRNA and protein expression as well as TKR phosphorylation. The molecular profile of cpAC has not been well characterized making the selection of therapeutic targets that would potentially have relevant biological activity impossible. Therefore, the objectives of this study were to define TKR expression and their phosphorylation state in cpAC as well as to evaluate the tumors for the presence of potential epidermal growth factor receptor (EGFR) tyrosine kinase activating mutations in exons 18-21. Immunohistochemistry (IHC) for TKR expression was performed using a tissue microarray (TMA) constructed from twelve canine tumors and companion normal lung samples. Staining intensities of the IHC were quantified by a veterinary pathologist as well as by two different digitalized algorithm image analyses software programs. An antibody array was used to evaluate TKR phosphorylation of the tumor relative to the TKR phosphorylation of normal tissues with the resulting spot intensities quantified using array analysis software. Each EGFR exon PCR product from all of the tumors and non-affected lung tissues were sequenced using sequencing chemistry and the sequencing reactions were run on automated sequencer. Sequence alignments were made to the National Center for Biotechnology Information canine EGFR reference sequence. RESULTS The pro-angiogenic growth factor receptor, PDGFRα, had increased cpAC tumor mRNA, protein expression and phosphorylation when compared to the normal lung tissue biospecimens. Similar to human pulmonary adenocarcinoma, significant increases in cpAC tumor mRNA expression and receptor phosphorylation of the anaplastic lymphoma kinase (ALK) tyrosine receptor were present when compared to the corresponding normal lung tissue. The EGFR mRNA, protein expression and phosphorylation were not increased compared to the normal lung and no activating mutations were identified in exons 18-21. CONCLUSIONS Canine pulmonary adenocarcinoma TKRs are detected at both the mRNA and protein levels and are activated. Further investigation into the contribution of TKR activation in cpAC tumorigenesis is warranted.
Collapse
Affiliation(s)
| | | | - Gwendolen Lorch
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
47
|
Brennan CW, Verhaak RGW, McKenna A, Campos B, Noushmehr H, Salama SR, Zheng S, Chakravarty D, Sanborn JZ, Berman SH, Beroukhim R, Bernard B, Wu CJ, Genovese G, Shmulevich I, Barnholtz-Sloan J, Zou L, Vegesna R, Shukla SA, Ciriello G, Yung WK, Zhang W, Sougnez C, Mikkelsen T, Aldape K, Bigner DD, Van Meir EG, Prados M, Sloan A, Black KL, Eschbacher J, Finocchiaro G, Friedman W, Andrews DW, Guha A, Iacocca M, O'Neill BP, Foltz G, Myers J, Weisenberger DJ, Penny R, Kucherlapati R, Perou CM, Hayes DN, Gibbs R, Marra M, Mills GB, Lander E, Spellman P, Wilson R, Sander C, Weinstein J, Meyerson M, Gabriel S, Laird PW, Haussler D, Getz G, Chin L. The somatic genomic landscape of glioblastoma. Cell 2013; 155:462-77. [PMID: 24120142 DOI: 10.1016/j.cell.2013.09.034] [Citation(s) in RCA: 3510] [Impact Index Per Article: 319.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 07/28/2013] [Accepted: 09/17/2013] [Indexed: 12/12/2022]
Abstract
We describe the landscape of somatic genomic alterations based on multidimensional and comprehensive characterization of more than 500 glioblastoma tumors (GBMs). We identify several novel mutated genes as well as complex rearrangements of signature receptors, including EGFR and PDGFRA. TERT promoter mutations are shown to correlate with elevated mRNA expression, supporting a role in telomerase reactivation. Correlative analyses confirm that the survival advantage of the proneural subtype is conferred by the G-CIMP phenotype, and MGMT DNA methylation may be a predictive biomarker for treatment response only in classical subtype GBM. Integrative analysis of genomic and proteomic profiles challenges the notion of therapeutic inhibition of a pathway as an alternative to inhibition of the target itself. These data will facilitate the discovery of therapeutic and diagnostic target candidates, the validation of research and clinical observations and the generation of unanticipated hypotheses that can advance our molecular understanding of this lethal cancer.
Collapse
Affiliation(s)
- Cameron W Brennan
- Human Oncology and Pathogenesis Program, Brain Tumor Center, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA; Department of Neurosurgery, Memorial Sloan-Kettering Cancer Center, Department of Neurological Surgery, Weill Cornell Medical Center, New York, NY 10065, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Shah N, Lankerovich M, Lee H, Yoon JG, Schroeder B, Foltz G. Exploration of the gene fusion landscape of glioblastoma using transcriptome sequencing and copy number data. BMC Genomics 2013; 14:818. [PMID: 24261984 PMCID: PMC4046790 DOI: 10.1186/1471-2164-14-818] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 11/04/2013] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND RNA-seq has spurred important gene fusion discoveries in a number of different cancers, including lung, prostate, breast, brain, thyroid and bladder carcinomas. Gene fusion discovery can potentially lead to the development of novel treatments that target the underlying genetic abnormalities. RESULTS In this study, we provide comprehensive view of gene fusion landscape in 185 glioblastoma multiforme patients from two independent cohorts. Fusions occur in approximately 30-50% of GBM patient samples. In the Ivy Center cohort of 24 patients, 33% of samples harbored fusions that were validated by qPCR and Sanger sequencing. We were able to identify high-confidence gene fusions from RNA-seq data in 53% of the samples in a TCGA cohort of 161 patients. We identified 13 cases (8%) with fusions retaining a tyrosine kinase domain in the TCGA cohort and one case in the Ivy Center cohort. Ours is the first study to describe recurrent fusions involving non-coding genes. Genomic locations 7p11 and 12q14-15 harbor majority of the fusions. Fusions on 7p11 are formed in focally amplified EGFR locus whereas 12q14-15 fusions are formed by complex genomic rearrangements. All the fusions detected in this study can be further visualized and analyzed using our website: http://ivygap.swedish.org/fusions. CONCLUSIONS Our study highlights the prevalence of gene fusions as one of the major genomic abnormalities in GBM. The majority of the fusions are private fusions, and a minority of these recur with low frequency. A small subset of patients with fusions of receptor tyrosine kinases can benefit from existing FDA approved drugs and drugs available in various clinical trials. Due to the low frequency and rarity of clinically relevant fusions, RNA-seq of GBM patient samples will be a vital tool for the identification of patient-specific fusions that can drive personalized therapy.
Collapse
Affiliation(s)
- Nameeta Shah
- The Ben and Catherine Ivy Center for Advanced Brain Tumor Treatment, Swedish Neuroscience Institute, Seattle, WA USA
| | - Michael Lankerovich
- The Ben and Catherine Ivy Center for Advanced Brain Tumor Treatment, Swedish Neuroscience Institute, Seattle, WA USA
| | - Hwahyung Lee
- The Ben and Catherine Ivy Center for Advanced Brain Tumor Treatment, Swedish Neuroscience Institute, Seattle, WA USA
| | - Jae-Geun Yoon
- The Ben and Catherine Ivy Center for Advanced Brain Tumor Treatment, Swedish Neuroscience Institute, Seattle, WA USA
| | - Brett Schroeder
- The Ben and Catherine Ivy Center for Advanced Brain Tumor Treatment, Swedish Neuroscience Institute, Seattle, WA USA
| | - Greg Foltz
- The Ben and Catherine Ivy Center for Advanced Brain Tumor Treatment, Swedish Neuroscience Institute, Seattle, WA USA
| |
Collapse
|
49
|
Tanase CP, Enciu AM, Mihai S, Neagu AI, Calenic B, Cruceru ML. Anti-cancer Therapies in High Grade Gliomas. CURR PROTEOMICS 2013; 10:246-260. [PMID: 24228024 PMCID: PMC3821381 DOI: 10.2174/1570164611310030007] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 05/10/2013] [Accepted: 06/11/2013] [Indexed: 12/28/2022]
Abstract
High grade gliomas represent one of the most aggressive and treatment-resistant types of human cancer, with only 1–2 years median survival rate for patients with grade IV glioma. The treatment of glioblastoma is a considerable therapeutic challenge; combination therapy targeting multiple pathways is becoming a fast growing area of research. This review offers an up-to-date perspective of the literature about current molecular therapy targets in high grade glioma, that include angiogenic signals, tyrosine kinase receptors, nodal signaling proteins and cancer stem cells related approaches. Simultaneous identification of proteomic signatures could provide biomarker panels for diagnostic and personalized treatment of different subsets of glioblastoma. Personalized medicine is starting to gain importance in clinical care, already having recorded a series of successes in several types of cancer; nonetheless, in brain tumors it is still at an early stage.
Collapse
Affiliation(s)
- Cristiana Pistol Tanase
- Victor Babes National Institute of Pathology, Department of Biochemistry-Proteomics, no 99-101 Splaiul Inde-pendentei, 050096 sect 5 Bucharest, Romania
| | | | | | | | | | | |
Collapse
|
50
|
Cho J, Chen L, Sangji N, Okabe T, Yonesaka K, Francis JM, Flavin RJ, Johnson W, Kwon J, Yu S, Greulich H, Johnson BE, Eck MJ, Jänne PA, Wong KK, Meyerson M. Cetuximab response of lung cancer-derived EGF receptor mutants is associated with asymmetric dimerization. Cancer Res 2013; 73:6770-9. [PMID: 24063894 DOI: 10.1158/0008-5472.can-13-1145] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Kinase domain mutations of the EGF receptor (EGFR) are common oncogenic events in lung adenocarcinoma. Here, we explore the dependency upon asymmetric dimerization of the kinase domain for activation of lung cancer-derived EGFR mutants. We show that whereas wild-type EGFR and the L858R mutant require dimerization for activation and oncogenic transformation, the exon 19 deletion, exon 20 insertion, and L858R/T790M EGFR mutants do not require dimerization. In addition, treatment with the monoclonal antibody, cetuximab, shrinks mouse lung tumors induced by the dimerization-dependent L858R mutant, but exerts only a modest effect on tumors driven by dimerization-independent EGFR mutants. These data imply that different EGFR mutants show differential requirements for dimerization and that disruption of dimerization may be among the antitumor mechanisms of cetuximab.
Collapse
Affiliation(s)
- Jeonghee Cho
- Authors' Affiliations: Departments of Medical Oncology and Cancer Biology; Center for Cancer Genome Discovery, Lowe Center for Thoracic Oncology, and Center for Molecular Oncologic Pathology, Dana-Farber Cancer Institute; Departments of Medicine, Brigham and Women's Hospital; Departments of Biological Chemistry and Molecular Pharmacology and Pathology, Harvard Medical School, Boston, Massachusetts; Samsung Genome Institute, Samsung Medical Center, Seoul, Republic of Korea; and The Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|