1
|
Kuczak M, Cieślik W, Musioł R, Mrozek-Wilczkiewicz A. 4-Furanylvinylquinoline derivative as a new scaffold for the design of oxidative stress initiator and glucose transporter inhibitor drugs. Sci Rep 2024; 14:28454. [PMID: 39557921 PMCID: PMC11574108 DOI: 10.1038/s41598-024-79698-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 11/11/2024] [Indexed: 11/20/2024] Open
Abstract
In the present study, a detailed analysis of the effect of a substitution at the C4 position of the quinoline ring by styryl or furanylvinyl substituents on the structure-antitumour activity relationship was conducted. After analysing a library of derivatives from the styrylquinoline and furanylvinylquinoline groups, we selected the most active (IC50 below 100 nM) derivative 13, which contained the strongly electron-withdrawing nitro group in the furan substituent. The mechanism of action of this compound was studied on cell lines that differed in their p53 protein status. For this derivative, both cell cycle arrest (in G2/M phase in both HCT 116 cell lines and S phase for U-251 cell line) and the induction of apoptosis (up to 66% for U-251 cell line) were revealed. These studies were then confirmed by other methods at the gene and protein levels. Interestingly, we observed differences in the mechanism of action depending on the presence and mutation of the p53 protein, thus confirming its key role in cellular processes. Incubation with derivative 13 resulted in the induction of oxidative stress and triggered a cascade of cellular defence proteins that failed in the face of such an active compound. In addition, the results showed an inhibition of the GLUT-1 glucose transporter, which is extremely important in the context of anti-cancer activity.
Collapse
Affiliation(s)
- Michał Kuczak
- A. Chelkowski Institute of Physics, University of Silesia in Katowice, 75 Pulku Piechoty 1a, Chorzow, 41- 500, Poland
- Institute of Chemistry, University of Silesia in Katowice, Szkolna 9, Katowice, 40-006, Poland
| | - Wioleta Cieślik
- Institute of Chemistry, University of Silesia in Katowice, Szkolna 9, Katowice, 40-006, Poland
| | - Robert Musioł
- Institute of Chemistry, University of Silesia in Katowice, Szkolna 9, Katowice, 40-006, Poland
| | - Anna Mrozek-Wilczkiewicz
- A. Chelkowski Institute of Physics, University of Silesia in Katowice, 75 Pulku Piechoty 1a, Chorzow, 41- 500, Poland.
- Department of Systems Biology and Engineering, Silesian University of Technology, Akademicka 2A, Gliwice, 44-100, Poland.
| |
Collapse
|
2
|
Panda B, Tripathy A, Patra S, Kullu B, Tabrez S, Jena M. Imperative connotation of SODs in cancer: Emerging targets and multifactorial role of action. IUBMB Life 2024; 76:592-613. [PMID: 38600696 DOI: 10.1002/iub.2821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 03/14/2024] [Indexed: 04/12/2024]
Abstract
Superoxide dismutase (SOD) is a crucial enzyme responsible for the redox homeostasis inside the cell. As a part of the antioxidant defense system, it plays a pivotal role in the dismutation of the superoxide radicals (O 2 - ) generated mainly by the oxidative phosphorylation, which would otherwise bring out the redox dysregulation, leading to higher reactive oxygen species (ROS) generation and, ultimately, cell transformation, and malignancy. Several studies have shown the involvement of ROS in a wide range of human cancers. As SOD is the key enzyme in regulating ROS, any change, such as a transcriptional change, epigenetic remodeling, functional alteration, and so forth, either activates the proto-oncogenes or aberrant signaling cascades, which results in cancer. Interestingly, in some cases, SODs act as tumor promoters instead of suppressors. Furthermore, SODs have also been known to switch their role during tumor progression. In this review, we have tried to give a comprehensive account of SODs multifactorial role in various human cancers so that SODs-based therapeutic strategies could be made to thwart cancers.
Collapse
Affiliation(s)
- Biswajit Panda
- Department of Zoology, College of Basic Science and Humanities, Odisha University of Agriculture and Technology, Bhubaneswar, India
| | - Ankita Tripathy
- Post Graduate Department of Botany, Utkal University, Bhubaneswar, India
| | - Srimanta Patra
- Post Graduate Department of Botany, Berhampur University, Berhampur, India
| | - Bandana Kullu
- Post Graduate Department of Botany, Utkal University, Bhubaneswar, India
| | - Shams Tabrez
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mrutyunjay Jena
- Post Graduate Department of Botany, Berhampur University, Berhampur, India
| |
Collapse
|
3
|
Zhang L, Hsu JI, Braekeleer ED, Chen CW, Patel TD, Martell AG, Guzman AG, Wohlan K, Waldvogel SM, Uryu H, Tovy A, Callen E, Murdaugh RL, Richard R, Jansen S, Vissers L, de Vries BBA, Nussenzweig A, Huang S, Coarfa C, Anastas J, Takahashi K, Vassiliou G, Goodell MA. SOD1 is a synthetic-lethal target in PPM1D-mutant leukemia cells. eLife 2024; 12:RP91611. [PMID: 38896450 PMCID: PMC11186636 DOI: 10.7554/elife.91611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024] Open
Abstract
The DNA damage response is critical for maintaining genome integrity and is commonly disrupted in the development of cancer. PPM1D (protein phosphatase Mg2+/Mn2+-dependent 1D) is a master negative regulator of the response; gain-of-function mutations and amplifications of PPM1D are found across several human cancers making it a relevant pharmacological target. Here, we used CRISPR/Cas9 screening to identify synthetic-lethal dependencies of PPM1D, uncovering superoxide dismutase-1 (SOD1) as a potential target for PPM1D-mutant cells. We revealed a dysregulated redox landscape characterized by elevated levels of reactive oxygen species and a compromised response to oxidative stress in PPM1D-mutant cells. Altogether, our results demonstrate a role for SOD1 in the survival of PPM1D-mutant leukemia cells and highlight a new potential therapeutic strategy against PPM1D-mutant cancers.
Collapse
Affiliation(s)
- Linda Zhang
- Translational Biology and Molecular Medicine Graduate Program, Baylor College of MedicineHoustonUnited States
- Medical Scientist Training Program, Baylor College of MedicineHoustonUnited States
- Stem Cells and Regenerative Medicine Center, Baylor College of MedicineHoustonUnited States
- Department of Molecular and Cellular Biology, Baylor College of MedicineHoustonUnited States
- Center for Cell and Gene TherapyHoustonUnited States
| | - Joanne I Hsu
- Translational Biology and Molecular Medicine Graduate Program, Baylor College of MedicineHoustonUnited States
- Medical Scientist Training Program, Baylor College of MedicineHoustonUnited States
- Stem Cells and Regenerative Medicine Center, Baylor College of MedicineHoustonUnited States
| | - Etienne D Braekeleer
- Department of Haematology, Wellcome-MRC Cambridge Stem Cell Institute, University of CambridgeCambridgeUnited Kingdom
| | - Chun-Wei Chen
- Stem Cells and Regenerative Medicine Center, Baylor College of MedicineHoustonUnited States
- Department of Molecular and Cellular Biology, Baylor College of MedicineHoustonUnited States
- Center for Cell and Gene TherapyHoustonUnited States
- Integrated Molecular and Biomedical Sciences Graduate Program, Baylor College of MedicineHoustonUnited States
| | - Tajhal D Patel
- Texas Children’s Hospital Department of Hematology/Oncology, Baylor College of MedicineHoustonUnited States
| | - Alejandra G Martell
- Department of Molecular and Cellular Biology, Baylor College of MedicineHoustonUnited States
| | - Anna G Guzman
- Department of Molecular and Cellular Biology, Baylor College of MedicineHoustonUnited States
| | - Katharina Wohlan
- Department of Molecular and Cellular Biology, Baylor College of MedicineHoustonUnited States
| | - Sarah M Waldvogel
- Medical Scientist Training Program, Baylor College of MedicineHoustonUnited States
- Stem Cells and Regenerative Medicine Center, Baylor College of MedicineHoustonUnited States
- Department of Molecular and Cellular Biology, Baylor College of MedicineHoustonUnited States
- Center for Cell and Gene TherapyHoustonUnited States
- Cancer and Cell Biology Graduate Program, Baylor College of MedicineHoustonUnited States
| | - Hidetaka Uryu
- Department of Leukemia, The University of Texas MD Anderson Cancer CenterHoustonUnited States
| | - Ayala Tovy
- Stem Cells and Regenerative Medicine Center, Baylor College of MedicineHoustonUnited States
- Department of Molecular and Cellular Biology, Baylor College of MedicineHoustonUnited States
- Center for Cell and Gene TherapyHoustonUnited States
| | - Elsa Callen
- Laboratory of Genome Integrity, National Cancer Institute, National Institute of HealthBethesdaUnited States
| | - Rebecca L Murdaugh
- Stem Cells and Regenerative Medicine Center, Baylor College of MedicineHoustonUnited States
- Department of Molecular and Cellular Biology, Baylor College of MedicineHoustonUnited States
- Center for Cell and Gene TherapyHoustonUnited States
- Department of Neurosurgery, Baylor College of MedicineHoustonUnited States
| | - Rosemary Richard
- Stem Cells and Regenerative Medicine Center, Baylor College of MedicineHoustonUnited States
- Department of Molecular and Cellular Biology, Baylor College of MedicineHoustonUnited States
- Center for Cell and Gene TherapyHoustonUnited States
- Department of Neurosurgery, Baylor College of MedicineHoustonUnited States
| | - Sandra Jansen
- Donders Centre for Neuroscience, Radboud University Medical CenterNijmegenNetherlands
| | - Lisenka Vissers
- Donders Centre for Neuroscience, Radboud University Medical CenterNijmegenNetherlands
| | - Bert BA de Vries
- Donders Centre for Neuroscience, Radboud University Medical CenterNijmegenNetherlands
| | - Andre Nussenzweig
- Laboratory of Genome Integrity, National Cancer Institute, National Institute of HealthBethesdaUnited States
| | - Shixia Huang
- Department of Molecular and Cellular Biology, Baylor College of MedicineHoustonUnited States
- Department of Education, Innovation and Technology, Advanced Technology Cores, University of TexasHoustonUnited States
| | - Cristian Coarfa
- Department of Molecular and Cellular Biology, Baylor College of MedicineHoustonUnited States
| | - Jamie Anastas
- Stem Cells and Regenerative Medicine Center, Baylor College of MedicineHoustonUnited States
- Department of Molecular and Cellular Biology, Baylor College of MedicineHoustonUnited States
- Center for Cell and Gene TherapyHoustonUnited States
- Department of Neurosurgery, Baylor College of MedicineHoustonUnited States
| | - Koichi Takahashi
- Department of Leukemia, The University of Texas MD Anderson Cancer CenterHoustonUnited States
- Department of Genome Medicine, The University of Texas MD Anderson Cancer CenterHoustonUnited States
| | - George Vassiliou
- Department of Haematology, Wellcome-MRC Cambridge Stem Cell Institute, University of CambridgeCambridgeUnited Kingdom
| | - Margaret A Goodell
- Stem Cells and Regenerative Medicine Center, Baylor College of MedicineHoustonUnited States
- Department of Molecular and Cellular Biology, Baylor College of MedicineHoustonUnited States
- Center for Cell and Gene TherapyHoustonUnited States
| |
Collapse
|
4
|
Vilchis-Landeros MM, Vázquez-Meza H, Vázquez-Carrada M, Uribe-Ramírez D, Matuz-Mares D. Antioxidant Enzymes and Their Potential Use in Breast Cancer Treatment. Int J Mol Sci 2024; 25:5675. [PMID: 38891864 PMCID: PMC11171593 DOI: 10.3390/ijms25115675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/20/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
According to the World Health Organization (WHO), breast cancer (BC) is the deadliest and the most common type of cancer worldwide in women. Several factors associated with BC exert their effects by modulating the state of stress. They can induce genetic mutations or alterations in cell growth, encouraging neoplastic development and the production of reactive oxygen species (ROS). ROS are able to activate many signal transduction pathways, producing an inflammatory environment that leads to the suppression of programmed cell death and the promotion of tumor proliferation, angiogenesis, and metastasis; these effects promote the development and progression of malignant neoplasms. However, cells have both non-enzymatic and enzymatic antioxidant systems that protect them by neutralizing the harmful effects of ROS. In this sense, antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GR), thioredoxin reductase (TrxR), and peroxiredoxin (Prx) protect the body from diseases caused by oxidative damage. In this review, we will discuss mechanisms through which some enzymatic antioxidants inhibit or promote carcinogenesis, as well as the new therapeutic proposals developed to complement traditional treatments.
Collapse
Affiliation(s)
- María Magdalena Vilchis-Landeros
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Cd. Universitaria, Mexico City C.P. 04510, Mexico; (M.M.V.-L.); (H.V.-M.)
| | - Héctor Vázquez-Meza
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Cd. Universitaria, Mexico City C.P. 04510, Mexico; (M.M.V.-L.); (H.V.-M.)
| | - Melissa Vázquez-Carrada
- Institute of Microbiology, Cluster of Excellence on Plant Sciences, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany;
| | - Daniel Uribe-Ramírez
- Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu 399, Nueva Industrial Vallejo, Gustavo A. Madero, Mexico City C.P. 07738, Mexico;
| | - Deyamira Matuz-Mares
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Cd. Universitaria, Mexico City C.P. 04510, Mexico; (M.M.V.-L.); (H.V.-M.)
| |
Collapse
|
5
|
Xu L, Cao Y, Xu Y, Li R, Xu X. Redox-Responsive Polymeric Nanoparticle for Nucleic Acid Delivery and Cancer Therapy: Progress, Opportunities, and Challenges. Macromol Biosci 2024; 24:e2300238. [PMID: 37573033 DOI: 10.1002/mabi.202300238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/25/2023] [Indexed: 08/14/2023]
Abstract
Cancer development and progression of cancer are closely associated with the activation of oncogenes and loss of tumor suppressor genes. Nucleic acid drugs (e.g., siRNA, mRNA, and DNA) are widely used for cancer therapy due to their specific ability to regulate the expression of any cancer-associated genes. However, nucleic acid drugs are negatively charged biomacromolecules that are susceptible to serum nucleases and cannot cross cell membrane. Therefore, specific delivery tools are required to facilitate the intracellular delivery of nucleic acid drugs. In the past few decades, a variety of nanoparticles (NPs) are designed and developed for nucleic acid delivery and cancer therapy. In particular, the polymeric NPs in response to the abnormal redox status in cancer cells have garnered much more attention as their potential in redox-triggered nanostructure dissociation and rapid intracellular release of nucleic acid drugs. In this review, the important genes or signaling pathways regulating the abnormal redox status in cancer cells are briefly introduced and the recent development of redox-responsive NPs for nucleic acid delivery and cancer therapy is systemically summarized. The future development of NPs-mediated nucleic acid delivery and their challenges in clinical translation are also discussed.
Collapse
Affiliation(s)
- Lei Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
- Guangzhou Key Laboratory of Medical Nanomaterials, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, 528200, P. R. China
| | - Yuan Cao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
- Guangzhou Key Laboratory of Medical Nanomaterials, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, 528200, P. R. China
| | - Ya Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
- Guangzhou Key Laboratory of Medical Nanomaterials, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, 528200, P. R. China
| | - Rong Li
- The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, P. R. China
| | - Xiaoding Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
- Guangzhou Key Laboratory of Medical Nanomaterials, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, 528200, P. R. China
- The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, P. R. China
| |
Collapse
|
6
|
Zhang L, Hsu JI, Braekeleer ED, Chen CW, Patel TD, Martell AG, Guzman AG, Wohlan K, Waldvogel SM, Urya H, Tovy A, Callen E, Murdaugh R, Richard R, Jansen S, Vissers L, de Vries BB, Nussenzweig A, Huang S, Coarfa C, Anastas JN, Takahashi K, Vassiliou G, Goodell MA. SOD1 is a synthetic lethal target in PPM1D-mutant leukemia cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.31.555634. [PMID: 37693622 PMCID: PMC10491179 DOI: 10.1101/2023.08.31.555634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
The DNA damage response is critical for maintaining genome integrity and is commonly disrupted in the development of cancer. PPM1D (protein phosphatase, Mg2+/Mn2+ dependent 1D) is a master negative regulator of the response; gain-of-function mutations and amplifications of PPM1D are found across several human cancers making it a relevant pharmacologic target. Here, we used CRISPR/Cas9 screening to identify synthetic-lethal dependencies of PPM1D, uncovering superoxide dismutase-1 (SOD1) as a potential target for PPM1D-mutant cells. We revealed a dysregulated redox landscape characterized by elevated levels of reactive oxygen species and a compromised response to oxidative stress in PPM1D-mutant cells. Altogether, our results demonstrate the protective role of SOD1 against oxidative stress in PPM1D-mutant leukemia cells and highlight a new potential therapeutic strategy against PPM1D-mutant cancers.
Collapse
Affiliation(s)
- Linda Zhang
- Translational Biology and Molecular Medicine Graduate Program, Baylor College of Medicine, Houston, TX
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston TX
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
- Center for Cell and Gene Therapy, Houston, TX
| | - Joanne I. Hsu
- Translational Biology and Molecular Medicine Graduate Program, Baylor College of Medicine, Houston, TX
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston TX
| | - Etienne D. Braekeleer
- Department of Haematology, Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge
| | - Chun-Wei Chen
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston TX
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
- Center for Cell and Gene Therapy, Houston, TX
- Integrated Molecular and Biomedical Sciences Graduate Program, Baylor College of Medicine, Houston, TX
| | - Tajhal D. Patel
- Texas Children’s Hospital Department of Hematology/Oncology, Baylor College of Medicine, Houston, TX
| | - Alejandra G. Martell
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
| | - Anna G. Guzman
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
| | - Katharina Wohlan
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
| | - Sarah M. Waldvogel
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston TX
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
- Center for Cell and Gene Therapy, Houston, TX
- Cancer and Cell Biology Graduate Program, Baylor College of Medicine, Houston, TX
| | - Hidetaka Urya
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Ayala Tovy
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston TX
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
- Center for Cell and Gene Therapy, Houston, TX
| | - Elsa Callen
- Laboratory of Genome Integrity, National Cancer Institute, National Institute of Health, Bethesda, MD
| | - Rebecca Murdaugh
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston TX
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
- Center for Cell and Gene Therapy, Houston, TX
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX
| | - Rosemary Richard
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston TX
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
- Center for Cell and Gene Therapy, Houston, TX
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX
| | - Sandra Jansen
- Donders Centre for Neuroscience, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Lisenka Vissers
- Donders Centre for Neuroscience, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Bert B.A. de Vries
- Donders Centre for Neuroscience, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Andre Nussenzweig
- Cancer and Cell Biology Graduate Program, Baylor College of Medicine, Houston, TX
| | - Shixia Huang
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
- Department of Education, Innovation and Technology, Advanced Technology Cores
| | - Cristian Coarfa
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
| | - Jamie N. Anastas
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston TX
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
- Center for Cell and Gene Therapy, Houston, TX
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX
| | - Koichi Takahashi
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
- Department of Education, Innovation and Technology, Advanced Technology Cores
| | - George Vassiliou
- Department of Haematology, Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge
| | - Margaret A. Goodell
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston TX
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
- Center for Cell and Gene Therapy, Houston, TX
| |
Collapse
|
7
|
Hoffman TR, Emsley SA, Douglas JC, Reed KR, Esquivel AR, Koyack MJ, Paddock BE, Videau P. Assessing Curcumin Uptake and Clearance and Their Influence on Superoxide Dismutase Activity in Drosophila melanogaster. BIOTECH 2023; 12:58. [PMID: 37754202 PMCID: PMC10526445 DOI: 10.3390/biotech12030058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/25/2023] [Accepted: 09/04/2023] [Indexed: 09/28/2023] Open
Abstract
While normal levels of reactive oxygen and nitrogen species (RONS) are required for proper organismal function, increased levels result in oxidative stress. Oxidative stress may be managed via the scavenging activities of antioxidants (e.g., curcumin) and the action of enzymes, including superoxide dismutase (SOD). In this work, the uptake and clearance of dietary curcuminoids (consisting of curcumin, demethoxycurcumin, and bisdemethoxycurcumin) was assessed in Drosophila melanogaster larvae following chronic or acute exposure. High levels of curcuminoid uptake and loss were observed within a few hours and leveled off within eight hours post treatment onset. The addition or removal of curcuminoids from media resulted in corresponding changes in SOD activity, and the involvement of each of the three SOD genes was assessed for their contribution to total SOD activity. Taken together, these data provide insight into the uptake and clearance dynamics of curcuminoids and indicate that, while SOD activity generally increases following curcuminoid treatment, the individual SOD genes appear to contribute differently to this response.
Collapse
Affiliation(s)
- Tammy R. Hoffman
- Department of Biology, Southern Oregon University, Ashland, OR 97520, USA
| | - Sarah A. Emsley
- Department of Biology, Southern Oregon University, Ashland, OR 97520, USA
| | - Jenna C. Douglas
- Department of Biology, Southern Oregon University, Ashland, OR 97520, USA
| | - Kaela R. Reed
- Department of Chemistry, Southern Oregon University, Ashland, OR 97520, USA
| | - Abigail R. Esquivel
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33602, USA
| | - Marc J. Koyack
- School of Arts and Sciences, Gwynedd Mercy University, Gwynedd Valley, PA 19437, USA
| | - Brie E. Paddock
- Department of Biology, Southern Oregon University, Ashland, OR 97520, USA
| | - Patrick Videau
- Department of Biology, Southern Oregon University, Ashland, OR 97520, USA
| |
Collapse
|
8
|
Zheng M, Liu Y, Zhang G, Yang Z, Xu W, Chen Q. The Applications and Mechanisms of Superoxide Dismutase in Medicine, Food, and Cosmetics. Antioxidants (Basel) 2023; 12:1675. [PMID: 37759978 PMCID: PMC10525108 DOI: 10.3390/antiox12091675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/17/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
Superoxide dismutase (SOD) is a class of enzymes that restrict the biological oxidant cluster enzyme system in the body, which can effectively respond to cellular oxidative stress, lipid metabolism, inflammation, and oxidation. Published studies have shown that SOD enzymes (SODs) could maintain a dynamic balance between the production and scavenging of biological oxidants in the body and prevent the toxic effects of free radicals, and have been shown to be effective in anti-tumor, anti-radiation, and anti-aging studies. This research summarizes the types, biological functions, and regulatory mechanisms of SODs, as well as their applications in medicine, food production, and cosmetic production. SODs have proven to be a useful tool in fighting disease, and mimetics and conjugates that report SODs have been developed successively to improve the effectiveness of SODs. There are still obstacles to solving the membrane permeability of SODs and the persistence of enzyme action, which is still a hot spot and difficulty in mining the effect of SODs and promoting their application in the future.
Collapse
Affiliation(s)
| | | | | | | | | | - Qinghua Chen
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
9
|
Carrillo-Beltrán D, Osorio JC, Blanco R, Oliva C, Boccardo E, Aguayo F. Interaction between Cigarette Smoke and Human Papillomavirus 16 E6/E7 Oncoproteins to Induce SOD2 Expression and DNA Damage in Head and Neck Cancer. Int J Mol Sci 2023; 24:ijms24086907. [PMID: 37108069 PMCID: PMC10138975 DOI: 10.3390/ijms24086907] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 03/31/2023] [Accepted: 04/02/2023] [Indexed: 04/29/2023] Open
Abstract
Even though epidemiological studies suggest that tobacco smoking and high-risk human papillomavirus (HR-HPV) infection are mutually exclusive risk factors for developing head and neck cancer (HNC), a portion of subjects who develop this heterogeneous group of cancers are both HPV-positive and smokers. Both carcinogenic factors are associated with increased oxidative stress (OS) and DNA damage. It has been suggested that superoxide dismutase 2 (SOD2) can be independently regulated by cigarette smoke and HPV, increasing adaptation to OS and tumor progression. In this study, we analyzed SOD2 levels and DNA damage in oral cells ectopically expressing HPV16 E6/E7 oncoproteins and exposed to cigarette smoke condensate (CSC). Additionally, we analyzed SOD2 transcripts in The Cancer Genome Atlas (TCGA) Head and Neck Cancer Database. We found that oral cells expressing HPV16 E6/E7 oncoproteins exposed to CSC synergistically increased SOD2 levels and DNA damage. Additionally, the SOD2 regulation by E6, occurs in an Akt1 and ATM-independent manner. This study suggests that HPV and cigarette smoke interaction in HNC promotes SOD2 alterations, leading to increased DNA damage and, in turn, contributing to development of a different clinical entity.
Collapse
Affiliation(s)
- Diego Carrillo-Beltrán
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile
| | - Julio C Osorio
- Laboratorio de Oncovirología, Programa de Virología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago 8380000, Chile
| | - Rancés Blanco
- Laboratorio de Oncovirología, Programa de Virología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago 8380000, Chile
| | - Carolina Oliva
- Laboratorio de Oncovirología, Programa de Virología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago 8380000, Chile
| | - Enrique Boccardo
- Department of Microbiology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo 05508-900, Brazil
| | - Francisco Aguayo
- Departamento de Biomedicina, Facultad de Medicina, Universidad de Tarapacá, Arica 1000000, Chile
| |
Collapse
|
10
|
Santos LLD, Silva ATF, Ferreira ICC, Souza AV, Justino AB, Santos DW, Goulart LR, Paiva CE, Espíndola FS, Maia YCP. A Lower Serum Antioxidant Capacity as a Distinctive Feature for Women with HER2+ Breast Cancer: A Preliminary Study. Cancers (Basel) 2022; 14:cancers14235973. [PMID: 36497455 PMCID: PMC9739610 DOI: 10.3390/cancers14235973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/23/2022] [Accepted: 11/29/2022] [Indexed: 12/11/2022] Open
Abstract
The overexpression of HER2 in breast cancer (BC) can contribute to redox imbalance, which is related to damage and structural modification in many biomolecules. To the best of our knowledge, this is the first study that has investigated the infrared spectrum wavenumbers obtained by ATR-FTIR and their relationship with the levels of redox status markers such as reduced glutathione, superoxide dismutase (SOD), catalase, Ferric Reducing Antioxidant Power (FRAP), and protein carbonyl among women with HER2+ BC, HER2- BC, and benign breast disease (BBD). The study was conducted with 25 women, 17 of whom were diagnosed with BC (6 HER2+ and 11 HER2-) and 8 with BBD. Our results indicate HER2+ BC cases could be distinguished from HER2- BC and BBD cases by their serum's antioxidant capacity [HER2+ BC vs. HER2- BC (AUC = 0.818; specificity = 81.82%; sensitivity = 66.67%); HER2+ BC vs. BBD (AUC = 0.875; specificity = 75%; sensitivity = 83.33%)]. The changes in biochemical terms that occur in serum as a result of the scarcity of antioxidants are related to a peculiar fingerprint in the infrared spectrum obtained by ATR-FTIR. In the serum of women with BBD, the SOD enzyme level is the highest, and this characteristic allowed us to distinguish them from HER2- BC. Finally, data regarding the serological antioxidant capacity of FRAP and the infrared spectrum by ATR-FTIR will allow us to assess biochemical changes that occur before clinical signs, indicating whether changes in therapy or interventions are necessary.
Collapse
Affiliation(s)
- Letícia L. D. Santos
- Laboratory of Nanobiotechnology Luiz Ricardo Goulart Filho, Institute of Biotechnology, Federal University of Uberlandia, Uberlandia 38402-022, Brazil
- Molecular Biology and Nutrition Research Group (BioNut), School of Medicine, Federal University of Uberlandia, Uberlandia 38405-320, Brazil
| | - Alinne T. F. Silva
- Laboratory of Nanobiotechnology Luiz Ricardo Goulart Filho, Institute of Biotechnology, Federal University of Uberlandia, Uberlandia 38402-022, Brazil
- Molecular Biology and Nutrition Research Group (BioNut), School of Medicine, Federal University of Uberlandia, Uberlandia 38405-320, Brazil
| | - Izabella C. C. Ferreira
- Laboratory of Nanobiotechnology Luiz Ricardo Goulart Filho, Institute of Biotechnology, Federal University of Uberlandia, Uberlandia 38402-022, Brazil
- Molecular Biology and Nutrition Research Group (BioNut), School of Medicine, Federal University of Uberlandia, Uberlandia 38405-320, Brazil
| | - Adriele V. Souza
- Laboratory of Biochemistry and Molecular Biology, Institute of Biotechnology, Federal University of Uberlandia, Uberlandia 38405-302, Brazil
| | - Allisson B. Justino
- Laboratory of Biochemistry and Molecular Biology, Institute of Biotechnology, Federal University of Uberlandia, Uberlandia 38405-302, Brazil
| | - Donizeti W. Santos
- Gynecologic Division, University Hospital, Federal University of Uberlandia, Uberlandia 38405-320, Brazil
| | - Luiz Ricardo Goulart
- Laboratory of Nanobiotechnology Luiz Ricardo Goulart Filho, Institute of Biotechnology, Federal University of Uberlandia, Uberlandia 38402-022, Brazil
| | - Carlos Eduardo Paiva
- Palliative Care and Quality of Life Research Group (GPQual), Learning and Research Institute, Barretos Cancer Hospital, Barretos 14784-400, Brazil
| | - Foued S. Espíndola
- Laboratory of Biochemistry and Molecular Biology, Institute of Biotechnology, Federal University of Uberlandia, Uberlandia 38405-302, Brazil
| | - Yara C. P. Maia
- Laboratory of Nanobiotechnology Luiz Ricardo Goulart Filho, Institute of Biotechnology, Federal University of Uberlandia, Uberlandia 38402-022, Brazil
- Molecular Biology and Nutrition Research Group (BioNut), School of Medicine, Federal University of Uberlandia, Uberlandia 38405-320, Brazil
- Correspondence:
| |
Collapse
|
11
|
Circulating SOD2 Is a Candidate Response Biomarker for Neoadjuvant Therapy in Breast Cancer. Cancers (Basel) 2022; 14:cancers14163858. [PMID: 36010852 PMCID: PMC9405919 DOI: 10.3390/cancers14163858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/28/2022] [Accepted: 08/08/2022] [Indexed: 11/16/2022] Open
Abstract
There is a great need for non-invasive tools that inform of an early molecular response to cancer therapeutic treatment. Here, we tested the hypothesis that proteolytically resistant proteins could be candidate circulating tumor biomarkers for cancer therapy. Proteins resistant to proteolysis are drastically under-sampled by current proteomic workflows. These proteins could be reliable sensors for the response to therapy since they are likely to stay longer in circulation. We selected manganese superoxide dismutase (SOD2), a mitochondrial redox enzyme, from a screening of proteolytic resistant proteins in breast cancer (BC). First, we confirmed the robustness of SOD2 and determined that its proteolytic resistance is mediated by its quaternary protein structure. We also proved that the release of SOD2 upon chemotherapy treatment correlates with cell death in BC cells. Then, after confirming that SOD2 is very stable in human serum, we sought to measure its circulating levels in a cohort of BC patients undergoing neoadjuvant therapy. The results showed that circulating levels of SOD2 increased when patients responded to the treatment according to the tumor shrinkage during neoadjuvant chemotherapy. Therefore, the measurement of SOD2 levels in plasma could improve the non-invasive monitoring of the therapeutic treatment in breast cancer patients. The identification of circulating biomarkers linked to the tumor cell death induced by treatment could be useful for monitoring the action of the large number of cancer drugs currently used in clinics. We envision that our approach could help uncover candidate tumor biomarkers to measure a tumor’s response to cancer therapy in real time by sampling the tumor throughout the course of treatment.
Collapse
|
12
|
Coelho DR, Palma FR, Paviani V, He C, Danes JM, Huang Y, Calado JCP, Hart PC, Furdui CM, Poole LB, Schipma MJ, Bonini MG. Nuclear-localized, iron-bound superoxide dismutase-2 antagonizes epithelial lineage programs to promote stemness of breast cancer cells via a histone demethylase activity. Proc Natl Acad Sci U S A 2022; 119:e2110348119. [PMID: 35858297 PMCID: PMC9303987 DOI: 10.1073/pnas.2110348119] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 03/27/2022] [Indexed: 01/16/2023] Open
Abstract
The dichotomous behavior of superoxide dismutase-2 (SOD2) in cancer biology has long been acknowledged and more recently linked to different posttranslational forms of the enzyme. However, a distinctive activity underlying its tumor-promoting function is yet to be described. Here, we report that acetylation, one of such posttranslational modifications (PTMs), increases SOD2 affinity for iron, effectively changing the biochemical function of this enzyme from that of an antioxidant to a demethylase. Acetylated, iron-bound SOD2 localizes to the nucleus, promoting stem cell gene expression via removal of suppressive epigenetic marks such as H3K9me3 and H3K927me3. Particularly, H3K9me3 was specifically removed from regulatory regions upstream of Nanog and Oct-4, two pluripotency factors involved in cancer stem cell reprogramming. Phenotypically, cells expressing nucleus-targeted SOD2 (NLS-SOD2) have increased clonogenicity and metastatic potential. FeSOD2 operating as H3 demethylase requires H2O2 as substrate, which unlike cofactors of canonical demethylases (i.e., oxygen and 2-oxoglutarate), is more abundant in tumor cells than in normal tissue. Therefore, our results indicate that FeSOD2 is a demethylase with unique activities and functions in the promotion of cancer evolution toward metastatic phenotypes.
Collapse
Affiliation(s)
- Diego R. Coelho
- Department of Medicine, Division of Hematology Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
- Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Flavio R. Palma
- Department of Medicine, Division of Hematology Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
- Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Veronica Paviani
- Department of Medicine, Division of Hematology Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
- Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Chenxia He
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Jeanne M. Danes
- Department of Medicine, Division of Hematology Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
- Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Yunping Huang
- Department of Medicine, Division of Hematology Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
- Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Juliana C. P. Calado
- Department of Medicine, Division of Hematology Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
- Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Peter C. Hart
- College of Science, Health and Pharmacy, Roosevelt University, Schaumburg, IL 60173
| | - Cristina M. Furdui
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157
| | - Leslie B. Poole
- Department of Biochemistry, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157
| | - Matthew J. Schipma
- Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
- Quantitative Data Sciences Core and Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Marcelo G. Bonini
- Department of Medicine, Division of Hematology Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
- Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| |
Collapse
|
13
|
Kalinina EV, Gavriliuk LA, Pokrovsky VS. Oxidative Stress and Redox-Dependent Signaling in Prostate Cancer. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:413-424. [PMID: 35790374 DOI: 10.1134/s0006297922050030] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Tumor emergence and progression is complicated by the dual role of reactive oxygen species (ROS). Low concentrations of ROS are essential for many intracellular metabolic processes and cell proliferation, while excessive ROS generation disrupts the mechanisms of cancer suppression, leading to the cell damage and death. A long-term imbalance in the ROS/antioxidant ratio and upregulation of the ROS generation due to the reduced efficacy of the antioxidant defense system cause chronic oxidative stress resulting in the damage of proteins, lipid, and DNA molecules and cancer development. Numerous data demonstrate that prostate cancer (the most common cancer in males) is associated with the development of oxidative stress. However, the reasons for the emergence of prostate cancer, as well as changes in the redox signaling and cellular redox homeostasis in this disease, are still poorly understood. The review examines the role of prooxidant and antioxidant enzyme systems, the imbalance in their activity leading to the oxidative stress development, changes in the key components of redox signaling, and the role of microRNAs in the modulation of redox status of cancer cells in prostate cancer.
Collapse
Affiliation(s)
- Elena V Kalinina
- Peoples's Friendship University of Russia (RUDN University), Moscow, 117198, Russia.
| | - Ludmila A Gavriliuk
- Peoples's Friendship University of Russia (RUDN University), Moscow, 117198, Russia
| | - Vadim S Pokrovsky
- Peoples's Friendship University of Russia (RUDN University), Moscow, 117198, Russia.,N. N. Blokhin National Medical Research Center of Oncology, Moscow, 115478, Russia
| |
Collapse
|
14
|
Dhar SK, Scott T, Wang C, Fan TWM, St Clair DK. Mitochondrial superoxide targets energy metabolism to modulate epigenetic regulation of NRF2-mediated transcription. Free Radic Biol Med 2022; 179:181-189. [PMID: 34968705 PMCID: PMC8765599 DOI: 10.1016/j.freeradbiomed.2021.12.309] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/20/2021] [Accepted: 12/23/2021] [Indexed: 02/03/2023]
Abstract
Mitochondria are central to the metabolic circuitry that generates superoxide radicals/anions (O2•-) as a by-product of oxygen metabolism. By regulating superoxide levels, manganese superoxide dismutase plays important roles in numerous biochemical and molecular events essential for the survival of aerobic life. In this study, we used MitoParaquat (mPQ) to generate mitochondria-specific O2•- and stable isotope-resolved metabolomics tracing in primary human epidermal keratinocytes to investigate how O2•- generated in mitochondria regulates gene expression. The results reveal that isocitrate is blocked from conversion to α-ketoglutarate and that acetyl-coenzyme A (CoA) accumulates, which is consistent with a reduction in oxygen consumption rate and inactivation of isocitrate dehydrogenase (IDH) activity. Since acetyl-CoA is linked to histone acetylation and gene regulation, we determined the effect of mPQ on histone acetylation. The results demonstrate an increase in histone H3 acetylation at lysines 9 and 14. Suppression of IDH increased histone acetylation, providing a direct link between metabolism and epigenetic alterations. The activity of histone acetyltransferase p300 increased after mPQ treatment, which is consistent with histone acetylation. Importantly, mPQ selectively increased the nuclear levels and activity of the oxidative stress-sensitive nuclear factor erythroid 2-related factor 2. Together, the results establish a new paradigm that recognizes O2•- as an initiator of metabolic reprogramming that activates epigenetic regulation of gene transcription in response to mitochondrial dysfunction.
Collapse
Affiliation(s)
- Sanjit K Dhar
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, 40536-0509, USA.
| | - Timothy Scott
- Markey Cancer Center, University of Kentucky, Lexington, KY, 40536-0509, USA.
| | - Chi Wang
- Markey Cancer Center, University of Kentucky, Lexington, KY, 40536-0509, USA.
| | - Teresa W M Fan
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, 40536-0509, USA; Markey Cancer Center, University of Kentucky, Lexington, KY, 40536-0509, USA.
| | - Daret K St Clair
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, 40536-0509, USA; Markey Cancer Center, University of Kentucky, Lexington, KY, 40536-0509, USA.
| |
Collapse
|
15
|
SOD2, a Potential Transcriptional Target Underpinning CD44-Promoted Breast Cancer Progression. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27030811. [PMID: 35164076 PMCID: PMC8839817 DOI: 10.3390/molecules27030811] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 11/17/2022]
Abstract
CD44, a cell-adhesion molecule has a dual role in tumor growth and progression; it acts as a tumor suppressor as well as a tumor promoter. In our previous work, we developed a tetracycline-off regulated expression of CD44's gene in the breast cancer (BC) cell line MCF-7 (B5 clone). Using cDNA oligo gene expression microarray, we identified SOD2 (superoxide dismutase 2) as a potential CD44-downstream transcriptional target involved in BC metastasis. SOD2 gene belongs to the family of iron/manganese superoxide dismutase family and encodes a mitochondrial protein. SOD2 plays a role in cell proliferation and cell invasion via activation of different signaling pathways regulating angiogenic abilities of breast tumor cells. This review will focus on the findings supporting the underlying mechanisms associated with the oncogenic potential of SOD2 in the onset and progression of cancer, especially in BC and the potential clinical relevance of its various inhibitors.
Collapse
|
16
|
Al Haq AT, Tseng HY, Chen LM, Wang CC, Hsu HL. Targeting prooxidant MnSOD effect inhibits triple-negative breast cancer (TNBC) progression and M2 macrophage functions under the oncogenic stress. Cell Death Dis 2022; 13:49. [PMID: 35017469 PMCID: PMC8752602 DOI: 10.1038/s41419-021-04486-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 11/23/2021] [Accepted: 12/17/2021] [Indexed: 12/11/2022]
Abstract
Triple-negative breast cancer (TNBC) has been shown with high mitochondrial oxidative phosphorylation and production of reactive oxygen species (ROS). MnSOD (SOD2) is a mitochondrial antioxidant defense that has been implicated in inhibition of human malignancies. However, the impact of MnSOD on immunosuppressive macrophage functions and TNBC aggressiveness has never been explored. We found here that SOD2high is primarily observed in the aggressive subtypes of HER2(+) breast cancers and TNBCs patients. Further analyses demonstrated that the oncoprotein multiple copies in T-cell malignancy-1 (MCT-1 or MCTS1) induces mitochondrial superoxide dismutase (MnSOD) in TNBC cells by stabilizing the transcription factor Nrf2. SOD2high/MCTS1high expression correlates with a poor prognosis in breast cancer patients. MnSOD in TNBC cells functions as a prooxidant peroxidase that increases mitochondrial ROS (mROS) and adaptation to oxidative stress under the oncogenic effect. Interleukin-6 (IL-6) in the MCT-1 pathway elevates Nrf2/MnSOD and mROS levels. Knockdown of MnSOD inhibits TNBC cell invasion, breast cancer stem cells (BCSCs), mROS, and IL-6 excretion promoted by MCT-1. TNBC cells deficient in MnSOD prevent the polarization and chemotaxis of M2 macrophages but improve the ability of M1 macrophages to engulf cancer cells. Quenching mROS with MitoQ, a mitochondria-targeted non-metal-based antioxidant MnSOD mimics, effectively suppresses BCSCs and M2 macrophage invasion exacerbated by MnSOD and MCT-1. Consistently, silencing MnSOD impedes TNBC progression and intratumoral M2 macrophage infiltration. We revealed a novel stratagem for TNBC management involving targeting the MCT-1 oncogene-induced mitochondrial prooxidant MnSOD pathway, which prevents the development of an immunosuppressive tumor microenvironment.
Collapse
Affiliation(s)
- Aushia Tanzih Al Haq
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli, Taiwan.,Department of Life Sciences, National Central University, Taoyuan, Taiwan
| | - Hong-Yu Tseng
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli, Taiwan
| | - Li-Mei Chen
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli, Taiwan
| | - Chien-Chia Wang
- Department of Life Sciences, National Central University, Taoyuan, Taiwan
| | - Hsin-Ling Hsu
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli, Taiwan.
| |
Collapse
|
17
|
Mitochondrial Oxidative Stress-A Causative Factor and Therapeutic Target in Many Diseases. Int J Mol Sci 2021; 22:ijms222413384. [PMID: 34948180 PMCID: PMC8707347 DOI: 10.3390/ijms222413384] [Citation(s) in RCA: 171] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/09/2021] [Accepted: 12/09/2021] [Indexed: 02/07/2023] Open
Abstract
The excessive formation of reactive oxygen species (ROS) and impairment of defensive antioxidant systems leads to a condition known as oxidative stress. The main source of free radicals responsible for oxidative stress is mitochondrial respiration. The deleterious effects of ROS on cellular biomolecules, including DNA, is a well-known phenomenon that can disrupt mitochondrial function and contribute to cellular damage and death, and the subsequent development of various disease processes. In this review, we summarize the most important findings that implicated mitochondrial oxidative stress in a wide variety of pathologies from Alzheimer disease (AD) to autoimmune type 1 diabetes. This review also discusses attempts to affect oxidative stress as a therapeutic avenue.
Collapse
|
18
|
Zahra KF, Lefter R, Ali A, Abdellah EC, Trus C, Ciobica A, Timofte D. The Involvement of the Oxidative Stress Status in Cancer Pathology: A Double View on the Role of the Antioxidants. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9965916. [PMID: 34394838 PMCID: PMC8360750 DOI: 10.1155/2021/9965916] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 07/19/2021] [Indexed: 12/24/2022]
Abstract
Oxygen-free radicals, reactive oxygen species (ROS) or reactive nitrogen species (RNS), are known by their "double-sided" nature in biological systems. The beneficial effects of ROS involve physiological roles as weapons in the arsenal of the immune system (destroying bacteria within phagocytic cells) and role in programmed cell death (apoptosis). On the other hand, the redox imbalance in favor of the prooxidants results in an overproduction of the ROS/RNS leading to oxidative stress. This imbalance can, therefore, be related to oncogenic stimulation. High levels of ROS disrupt cellular processes by nonspecifically attacking proteins, lipids, and DNA. It appears that DNA damage is the key player in cancer initiation and the formation of 8-OH-G, a potential biomarker for carcinogenesis. The harmful effect of ROS is neutralized by an antioxidant protection treatment as they convert ROS into less reactive species. However, contradictory epidemiological results show that supplementation above physiological doses recommended for antioxidants and taken over a long period can lead to harmful effects and even increase the risk of cancer. Thus, we are describing here some of the latest updates on the involvement of oxidative stress in cancer pathology and a double view on the role of the antioxidants in this context and how this could be relevant in the management and pathology of cancer.
Collapse
Affiliation(s)
- Kamal Fatima Zahra
- Faculty of Sciences and Techniques, Laboratory of Physical Chemistry of Processes and Materials/Agri-Food and Health, Hassan First University, B.P. 539, 26000 Settat, Morocco
| | - Radu Lefter
- Center of Biomedical Research, Romanian Academy, 8th Carol I Avenue, 700506 Iasi, Romania
| | - Ahmad Ali
- Department of Life Sciences, University of Mumbai, Vidyanagari, Santacruz (East), Mumbai 400098, India
| | - Ech-Chahad Abdellah
- Faculty of Sciences and Techniques, Laboratory of Physical Chemistry of Processes and Materials, Hassan First University, B.P. 539, 26000 Settat, Morocco
| | - Constantin Trus
- Department of Morphological and Functional Sciences, Faculty of Medicine, Dunarea de Jos University, 800008 Galati, Romania
| | - Alin Ciobica
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University, 11th Carol I Avenue, 700506 Iasi, Romania
| | - Daniel Timofte
- Faculty of Medicine, “Grigore T. Popa”, University of Medicine and Pharmacy, Strada Universitatii 16, 700115 Iasi, Romania
| |
Collapse
|
19
|
Liu F, Yuan Q, Cao X, Zhang J, Cao J, Zhang J, Xia L. Isovitexin Suppresses Stemness of Lung Cancer Stem-Like Cells through Blockage of MnSOD/CaMKII/AMPK Signaling and Glycolysis Inhibition. BIOMED RESEARCH INTERNATIONAL 2021; 2021:9972057. [PMID: 34195288 PMCID: PMC8203360 DOI: 10.1155/2021/9972057] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 05/10/2021] [Indexed: 12/27/2022]
Abstract
BACKGROUND Manganese superoxide dismutase (MnSOD) has been reported to promote stemness of lung cancer stem-like cells (LCSLCs) which had higher glycolytic rates compared with non-CSLCs. Isovitexin exhibited an inhibitory effect on the stemness of hepatocellular carcinoma cells. However, whether isovitexin could inhibit the promotion of stemness of LCSLCs mediated by MnSOD through glycolysis remains unclear. OBJECTIVE Our study was aimed at investigating whether isovitexin inhibits lung cancer stem-like cells (LCSLCs) through MnSOD signaling blockage and glycolysis suppression. METHODS Sphere formation and soft agar assays were conducted to determine self-renewal ability. The migration and invasion of LCSLCs were determined by wound healing and transwell assay. The glycolytic activity was assessed by determination of L-lactate metabolism rate. The influences of isovitexin on MnSOD, CaMKII, and AMPK activations as well as the metabolic shift to glycolysis were determined by manipulating MnSOD expression. RESULTS It was found that MnSOD and glycolysis enhanced simultaneously in LCSLCs compared with parental H460 cells. Overexpression of MnSOD activated CaMKII/AMPK signaling and glycolysis in LCSLCs with increased self-renewal, migration, invasion, and expression of stemness-associated markers in vitro and elevated carcinogenicity in vivo. Knockdown of MnSOD induced an inverse effect in LCSLCs. Isovitexin blocked MnSOD/CaMKII/AMPK signaling axis and suppressed glycolysis in LCSLCs, resulting in inhibition of stemness features in LCSLCs. The knockdown of MnSOD significantly augmented isovitexin-associated inhibition of CaMKII/AMPK signaling, glycolysis, and stemness in LCSLCs. However, the overexpression of MnSOD could attenuate the inhibition of isovitexin on LCSLCs. Importantly, isovitexin notably suppressed tumor growth in nude mice bearing LCSLCs by downregulation of MnSOD expression. CONCLUSION MnSOD promotion of stemness of LCSLCs derived from H460 cell line is involved in the activation of the CaMKII/AMPK pathway and induction of glycolysis. Isovitexin-associated inhibition of stemness in LCSLCs is partly dependent on blockage of the MnSOD/CaMKII/AMPK signaling axis and glycolysis suppression.
Collapse
Affiliation(s)
- Fei Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha 410081, China
- Department of Preclinical Medicine, Medical College, Hunan Normal University, Changsha, Hunan Province 410013, China
| | - Qing Yuan
- Department of Preclinical Medicine, Medical College, Hunan Normal University, Changsha, Hunan Province 410013, China
| | - Xiaocheng Cao
- Department of Pharmaceutical Science, Medical College, Hunan Normal University, Changsha 410013, China
| | - Jinlin Zhang
- Department of Pharmaceutical Science, Medical College, Hunan Normal University, Changsha 410013, China
| | - Jianguo Cao
- Department of Pharmaceutical Science, Medical College, Hunan Normal University, Changsha 410013, China
| | - Jiansong Zhang
- Department of Preclinical Medicine, Medical College, Hunan Normal University, Changsha, Hunan Province 410013, China
| | - Liqiu Xia
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha 410081, China
| |
Collapse
|
20
|
Bonetta R, Hunter GJ, Trinh CH, Borowski T, Fenech AG, Kulp M, Tabares LC, Un S, Hunter T. Substitution of histidine 30 by asparagine in manganese superoxide dismutase alters biophysical properties and supports proliferation in a K562 leukemia cell line. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2021; 50:571-585. [PMID: 34021366 PMCID: PMC8190026 DOI: 10.1007/s00249-021-01544-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 02/07/2023]
Abstract
We have generated a mutant of C. elegans manganese superoxide dismutase at histidine 30 by site-directed mutagenesis. The structure was solved at a resolution of 1.52 Å by X-ray crystallography (pdb: 6S0D). His30 was targeted, as it forms as a gateway residue at the top of the solvent access funnel to the active site, together with Tyr34. In the wild-type protein, these gateway residues are involved in the hydrogen-bonding network providing the protons necessary for the catalytic reaction at the metal center. However, biophysical characterization and cell viability experiments reveal that a mutation from histidine to asparagine in the H30N mutant modifies metal selectivity in the protein, favoring the uptake of iron over manganese in minimal media conditions, alters active-site coordination from the characteristic trigonal bipyramidal to octahedral geometry, and encourages cellular proliferation in K562 cells, when added exogenously to the cells.
Collapse
Affiliation(s)
- Rosalin Bonetta
- Centre of Molecular Medicine & Biobanking, University of Malta, Msida, Malta. .,Barts and the London, School of Medicine and Dentistry, QMUL, Victoria, Malta.
| | - Gary J Hunter
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
| | - Chi H Trinh
- Astbury Centre for Structural Molecular Biology, Institute of Molecular and Cellular Biology, University of Leeds, Leeds, UK
| | - Tomasz Borowski
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Krakow, Poland
| | - Anthony G Fenech
- Department of Clinical Pharmacology and Therapeutics, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
| | - Maria Kulp
- Department of Chemistry, Tallinn University of Technology, Tallinn, Estonia
| | - Leandro C Tabares
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 91198, Gif-sur-Yvette, France
| | - Sun Un
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 91198, Gif-sur-Yvette, France
| | - Thérèse Hunter
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
| |
Collapse
|
21
|
Tassone G, Kola A, Valensin D, Pozzi C. Dynamic Interplay between Copper Toxicity and Mitochondrial Dysfunction in Alzheimer's Disease. Life (Basel) 2021; 11:life11050386. [PMID: 33923275 PMCID: PMC8146034 DOI: 10.3390/life11050386] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 11/16/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder, affecting millions of people worldwide, a number expected to exponentially increase in the future since no effective treatments are available so far. AD is characterized by severe cognitive dysfunctions associated with neuronal loss and connection disruption, mainly occurring in specific brain areas such as the hippocampus, cerebral cortex, and amygdala, compromising memory, language, reasoning, and social behavior. Proteomics and redox proteomics are powerful techniques used to identify altered proteins and pathways in AD, providing relevant insights on cellular pathways altered in the disease and defining novel targets exploitable for drug development. Here, we review the main results achieved by both -omics techniques, focusing on the changes occurring in AD mitochondria under oxidative stress and upon copper exposure. Relevant information arises by the comparative analysis of these results, evidencing alterations of common mitochondrial proteins, metabolic cycles, and cascades. Our analysis leads to three shared mitochondrial proteins, playing key roles in metabolism, ATP generation, oxidative stress, and apoptosis. Their potential as targets for development of innovative AD treatments is thus suggested. Despite the relevant efforts, no effective drugs against AD have been reported so far; nonetheless, various compounds targeting mitochondria have been proposed and investigated, reporting promising results.
Collapse
Affiliation(s)
| | | | - Daniela Valensin
- Correspondence: (D.V.); (C.P.); Tel.: +39-0577-232428 (D.V.); +39-0577-232132 (C.P.)
| | - Cecilia Pozzi
- Correspondence: (D.V.); (C.P.); Tel.: +39-0577-232428 (D.V.); +39-0577-232132 (C.P.)
| |
Collapse
|
22
|
Chong SJF, Iskandar K, Lai JXH, Qu J, Raman D, Valentin R, Herbaux C, Collins M, Low ICC, Loh T, Davids M, Pervaiz S. Serine-70 phosphorylated Bcl-2 prevents oxidative stress-induced DNA damage by modulating the mitochondrial redox metabolism. Nucleic Acids Res 2021; 48:12727-12745. [PMID: 33245769 PMCID: PMC7736805 DOI: 10.1093/nar/gkaa1110] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 10/25/2020] [Accepted: 10/29/2020] [Indexed: 12/16/2022] Open
Abstract
Bcl-2 phosphorylation at serine-70 (S70pBcl2) confers resistance against drug-induced apoptosis. Nevertheless, its specific mechanism in driving drug-resistance remains unclear. We present evidence that S70pBcl2 promotes cancer cell survival by acting as a redox sensor and modulator to prevent oxidative stress-induced DNA damage and execution. Increased S70pBcl2 levels are inversely correlated with DNA damage in chronic lymphocytic leukemia (CLL) and lymphoma patient-derived primary cells as well as in reactive oxygen species (ROS)- or chemotherapeutic drug-treated cell lines. Bioinformatic analyses suggest that S70pBcl2 is associated with lower median overall survival in lymphoma patients. Empirically, sustained expression of the redox-sensitive S70pBcl2 prevents oxidative stress-induced DNA damage and cell death by suppressing mitochondrial ROS production. Using cell lines and lymphoma primary cells, we further demonstrate that S70pBcl2 reduces the interaction of Bcl-2 with the mitochondrial complex-IV subunit-5A, thereby reducing mitochondrial complex-IV activity, respiration and ROS production. Notably, targeting S70pBcl2 with the phosphatase activator, FTY720, is accompanied by an enhanced drug-induced DNA damage and cell death in CLL primary cells. Collectively, we provide a novel facet of the anti-apoptotic Bcl-2 by demonstrating that its phosphorylation at serine-70 functions as a redox sensor to prevent drug-induced oxidative stress-mediated DNA damage and execution with potential therapeutic implications.
Collapse
Affiliation(s)
- Stephen Jun Fei Chong
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Kartini Iskandar
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore
| | - Jolin Xiao Hui Lai
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore
| | - Jianhua Qu
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore
| | - Deepika Raman
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore
| | - Rebecca Valentin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Charles Herbaux
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Mary Collins
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Ivan Cherh Chiet Low
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore
| | - Thomas Loh
- Department of Otolaryngology, National University of Healthcare System (NUHS), Singapore, Singapore
| | - Matthew Davids
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Shazib Pervaiz
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore.,NUS Graduate School of Integrative Science and Engineering, NUS, Singapore, Singapore.,National University Cancer Institute, NUHS, Singapore, Singapore.,Faculté de Médecine, Université de Paris, Paris, France
| |
Collapse
|
23
|
Sero JE, Stevens MM. Nanoneedle-Based Materials for Intracellular Studies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1295:191-219. [PMID: 33543461 DOI: 10.1007/978-3-030-58174-9_9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Nanoneedles, defined as high aspect ratio structures with tip diameters of 5 to approximately 500 nm, are uniquely able to interface with the interior of living cells. Their nanoscale dimensions mean that they are able to penetrate the plasma membrane with minimal disruption of normal cellular functions, allowing researchers to probe the intracellular space and deliver or extract material from individual cells. In the last decade, a variety of strategies have been developed using nanoneedles, either singly or as arrays, to investigate the biology of cancer cells in vitro and in vivo. These include hollow nanoneedles for soluble probe delivery, nanocapillaries for single-cell biopsy, nano-AFM for direct physical measurements of cytosolic proteins, and a wide range of fluorescent and electrochemical nanosensors for analyte detection. Nanofabrication has improved to the point that nanobiosensors can detect individual vesicles inside the cytoplasm, delineate tumor margins based on intracellular enzyme activity, and measure changes in cell metabolism almost in real time. While most of these applications are currently in the proof-of-concept stage, nanoneedle technology is poised to offer cancer biologists a powerful new set of tools for probing cells with unprecedented spatial and temporal resolution.
Collapse
Affiliation(s)
- Julia E Sero
- Biology and Biochemistry Department, University of Bath, Claverton Down, Bath, UK
| | - Molly M Stevens
- Institute for Biomedical Engineering, Imperial College London, London, UK.
| |
Collapse
|
24
|
Butterfield DA, Boyd-Kimball D. Mitochondrial Oxidative and Nitrosative Stress and Alzheimer Disease. Antioxidants (Basel) 2020; 9:E818. [PMID: 32887505 PMCID: PMC7554713 DOI: 10.3390/antiox9090818] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/22/2020] [Accepted: 08/29/2020] [Indexed: 12/29/2022] Open
Abstract
Oxidative and nitrosative stress are widely recognized as critical factors in the pathogenesis and progression of Alzheimer disease (AD) and its earlier stage, amnestic mild cognitive impairment (MCI). A major source of free radicals that lead to oxidative and nitrosative damage is mitochondria. This review paper discusses oxidative and nitrosative stress and markers thereof in the brain, along with redox proteomics, which are techniques that have been pioneered in the Butterfield laboratory. Selected biological alterations in-and oxidative and nitrosative modifications of-mitochondria in AD and MCI and systems of relevance thereof also are presented. The review article concludes with a section on the implications of mitochondrial oxidative and nitrosative stress in MCI and AD with respect to imaging studies in and targeted therapies toward these disorders. Taken together, this review provides support for the notion that brain mitochondrial alterations in AD and MCI are key components of oxidative and nitrosative stress observed in these two disorders, and as such, they provide potentially promising therapeutic targets to slow-and hopefully one day stop-the progression of AD, which is a devastating dementing disorder.
Collapse
Affiliation(s)
- D. Allan Butterfield
- Department of Chemistry and Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40506, USA
| | - Debra Boyd-Kimball
- Department of Chemistry and Biochemistry, University of Mount Union, Alliance, OH 44601, USA;
| |
Collapse
|
25
|
Li J, Liu Y, Liu Q. [Expression of superoxide dismutase 2 in breast cancer and its clinical significance]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2020; 40:1103-1111. [PMID: 32895185 DOI: 10.12122/j.issn.1673-4254.2020.08.06] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To evaluate the expression and prognostic value of superoxide dismutase 2 (SOD2) in breast cancer and explore its possible role in the occurrence and progression of breast cancer. METHODS We performed bioinformatics analysis of the TCGA data for the expression and clinical relevance of SOD2 in patients with breast cancer. Gene enrichment analysis (GSEA) was performed using the KEGG gene set, the protein interaction network was constructed using the STRING database, and the key genes were screened using Cytoscape software. We also collected 60 pairs of primary breast cancer tissue samples and adjacent samples for detecting SOD2 expressions using immunohistochemistry and RT-qPCR and analyzed the correlation of SOD2 expression with the clinicopathological parameters of the patients. RESULTS The expression of SOD2 was significantly lower in breast cancer tissue than in adjacent tissues with significant correlation with TNM stage and axillary lymph node metastasis (P < 0.05). Kaplan-Meier survival analysis showed that the recurrence-free survival, distant metastasis-free survival (RFS) and post-progressive survival were significantly shorted in patients with high SOD2 expression than in those with low SOD2 expression (P < 0.05). GSEA enrichment analysis indicated that SOD2 played an important role in the JAK-STAT signaling pathway. IL10 and STAT4 were identified as the key genes in the PPI network, and they were both positively correlated with SOD2. In the 60 pairs of clinical samples, SOD2 was highly expressed in breast cancer tissues with close correlation with axillary lymph node metastasis and the expressions of estrogen receptor and androgen receptor (P < 0.05). CONCLUSIONS The expression of SOD2 in breast cancer is significantly correlated with TNM stage and axillary lymph node metastasis. SOD2 may affect the proliferation, invasion and metastasis of breast cancer cells possibly by regulating IL10 and/or STAT4 to affect the JAK/STAT signaling pathway.
Collapse
Affiliation(s)
- Jinping Li
- General Hospital of Ningxia Medical University, Yinchuan 750004, China
| | - Yaobang Liu
- General Hospital of Ningxia Medical University, Yinchuan 750004, China
| | - Qilun Liu
- General Hospital of Ningxia Medical University, Yinchuan 750004, China
| |
Collapse
|
26
|
Stephenie S, Chang YP, Gnanasekaran A, Esa NM, Gnanaraj C. An insight on superoxide dismutase (SOD) from plants for mammalian health enhancement. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.103917] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
27
|
Patil S, Subbannayya T, Mohan SV, Babu N, Advani J, Sathe G, Rajagopalan P, Patel K, Bhandi S, Solanki H, Sidransky D, Gowda H, Chatterjee A, Ferrari M. Proteomic Changes in Oral Keratinocytes Chronically Exposed to Shisha (Water Pipe). OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2020; 23:86-97. [PMID: 30767727 DOI: 10.1089/omi.2018.0173] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Shisha (water pipe) smoking is falsely believed to be a hazard-free habit and has become a major public health concern. Studies have reported shisha smoking to be associated with oral lesions, as well as carcinomas of the lung, esophagus, bladder, and pancreas. A deeper understanding of the underlying molecular mechanisms would contribute to identification of biomarkers for targeted public health screening, therapeutic innovation, and better prognosis of associated diseases. In this study, we have established an in vitro chronic cellular model of shisha-exposed oral keratinocytes to study the effect of shisha on oral cells. Normal nontransformed, immortalized oral keratinocytes were chronically exposed to shisha extract for 8 months. This resulted in significant increase in cellular proliferation and cell invasion in shisha-exposed cells compared to the parental cells. Quantitative proteomic analysis of OKF6/TERT1-Parental and OKF6/TERT1-Shisha cells resulted in the identification of 5515 proteins. Forty-three differentially expressed proteins were found to be common across all conditions. Bioinformatic analysis of the dysregulated proteins identified in the proteomic study revealed dysregulation of interferon pathway, upregulation of proteins involved in cell growth, and downregulation of immune processes. The present findings reveal that chronic exposure of normal oral keratinocytes to shisha leads to cellular transformation and dysregulation of immune response. To the best of our knowledge, this is the first report that has developed a model of oral keratinocytes chronically exposed to shisha and identified proteomic alterations associated with shisha exposure. However, further research is required to evaluate the health burden of shisha smoking.
Collapse
Affiliation(s)
- Shankargouda Patil
- 1 Department of Medical Biotechnologies, School of Dental Medicine, University of Siena, Siena, Italy.,2 Department of Maxillofacial Surgery and Diagnostic Sciences, Division of Oral Pathology, College of Dentistry, Jazan University, Jazan, Saudi Arabia
| | | | | | - Niraj Babu
- 3 Institute of Bioinformatics, Bangalore, India.,4 Manipal Academy of Higher Education, Manipal, India
| | | | | | | | | | - Shilpa Bhandi
- 5 Department of Restorative Dental Sciences, Division of Operative Dentistry, College of Dentistry, Jazan University, Jazan, Saudi Arabia
| | | | - David Sidransky
- 6 Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Harsha Gowda
- 3 Institute of Bioinformatics, Bangalore, India.,4 Manipal Academy of Higher Education, Manipal, India
| | - Aditi Chatterjee
- 3 Institute of Bioinformatics, Bangalore, India.,4 Manipal Academy of Higher Education, Manipal, India
| | - Marco Ferrari
- 1 Department of Medical Biotechnologies, School of Dental Medicine, University of Siena, Siena, Italy.,7 Department of Restorative Dentistry, School of Dentistry, University of Leeds, Leeds, West Yorkshire, United Kingdom
| |
Collapse
|
28
|
Palma FR, He C, Danes JM, Paviani V, Coelho DR, Gantner BN, Bonini MG. Mitochondrial Superoxide Dismutase: What the Established, the Intriguing, and the Novel Reveal About a Key Cellular Redox Switch. Antioxid Redox Signal 2020; 32:701-714. [PMID: 31968997 PMCID: PMC7047081 DOI: 10.1089/ars.2019.7962] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Significance: Reactive oxygen species (ROS) are now widely recognized as central mediators of cell signaling. Mitochondria are major sources of ROS. Recent Advances: It is now clear that mitochondrial ROS are essential to activate responses to cellular microenvironmental stressors. Mediators of these responses reside in large part in the cytosol. Critical Issues: The primary form of ROS produced by mitochondria is the superoxide radical anion. As a charged radical anion, superoxide is restricted in its capacity to diffuse and convey redox messages outside of mitochondria. In addition, superoxide is a reductant and not particularly efficient at oxidizing targets. Because there are many opportunities for superoxide to be neutralized in mitochondria, it is not completely clear how redox cues generated in mitochondria are converted into diffusible signals that produce transient oxidative modifications in the cytosol or nucleus. Future Directions: To efficiently intervene at the level of cellular redox signaling, it seems that understanding how the generation of superoxide radicals in mitochondria is coupled with the propagation of redox messages is essential. We propose that mitochondrial superoxide dismutase (SOD2) is a major system converting diffusion-restricted superoxide radicals derived from the electron transport chain into highly diffusible hydrogen peroxide (H2O2). This enables the coupling of metabolic changes resulting in increased superoxide to the production of H2O2, a diffusible secondary messenger. As such, to determine whether there are other systems coupling metabolic changes to redox messaging in mitochondria as well as how these systems are regulated is essential.
Collapse
Affiliation(s)
- Flavio R Palma
- Division of Endocrinology, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Chenxia He
- Division of Endocrinology, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Jeanne M Danes
- Division of Endocrinology, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Veronica Paviani
- Division of Endocrinology, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Diego R Coelho
- Division of Endocrinology, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Benjamin N Gantner
- Division of Endocrinology, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Marcelo G Bonini
- Division of Endocrinology, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin.,Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
29
|
Cramer-Morales KL, Heer CD, Mapuskar KA, Domann FE. Succinate Accumulation Links Mitochondrial MnSOD Depletion to Aberrant Nuclear DNA Methylation and Altered Cell Fate. JOURNAL OF EXPERIMENTAL PATHOLOGY 2020; 1:60-70. [PMID: 33585836 PMCID: PMC7876477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Previous studies showed that human cell line HEK293 lacking mitochondrial superoxide dismutase (MnSOD) exhibited decreased succinate dehydrogenase (SDH) activity, and mice lacking MnSOD displayed significant reductions in SDH and aconitase activities. Since MnSOD has significant effects on SDH activity, and succinate is a key regulator of TET enzymes needed for proper differentiation, we hypothesized that SOD2 loss would lead to succinate accumulation, inhibition of TET activity, and impaired erythroid precursor differentiation. To test this hypothesis, we genetically disrupted the SOD2 gene using the CRISPR/Cas9 genetic strategy in a human erythroleukemia cell line (HEL 92.1.7) capable of induced differentiation toward an erythroid phenotype. Cells obtained in this manner displayed significant inhibition of SDH activity and ~10-fold increases in cellular succinate levels compared to their parent cell controls. Furthermore, SOD2 -/- cells exhibited significantly reduced TET enzyme activity concomitant with decreases in genomic 5-hmC and corresponding increases in 5-mC. Finally, when stimulated with δ-aminolevulonic acid (δ-ALA), SOD2 -/- HEL cells failed to properly differentiate toward an erythroid phenotype, likely due to failure to complete the necessary global DNA demethylation program required for erythroid maturation. Together, our findings support the model of an SDH/succinate/TET axis and a role for succinate as a retrograde signaling molecule of mitochondrial origin that significantly perturbs nuclear epigenetic reprogramming and introduce MnSOD as a governor of the SDH/succinate/TET axis.
Collapse
Affiliation(s)
- Kimberly L. Cramer-Morales
- Department of Radiation Oncology, The University of Iowa, Iowa City, Iowa 52242, USA,Department of Surgery, The University of Iowa, Iowa City, Iowa 52242, USA
| | - Collin D. Heer
- Department of Radiation Oncology, The University of Iowa, Iowa City, Iowa 52242, USA
| | - Kranti A. Mapuskar
- Department of Radiation Oncology, The University of Iowa, Iowa City, Iowa 52242, USA
| | - Frederick E. Domann
- Department of Radiation Oncology, The University of Iowa, Iowa City, Iowa 52242, USA,Department of Surgery, The University of Iowa, Iowa City, Iowa 52242, USA,Department of Pathology, The University of Iowa, Iowa City, Iowa 52242, USA,Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, Iowa 52242, USA,Correspondence should be addressed to Frederick E. Domann;
| |
Collapse
|
30
|
A novel metadherinΔ7 splice variant enhances triple negative breast cancer aggressiveness by modulating mitochondrial function via NFĸB-SIRT3 axis. Oncogene 2019; 39:2088-2102. [PMID: 31806873 DOI: 10.1038/s41388-019-1126-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 11/15/2019] [Accepted: 11/20/2019] [Indexed: 12/15/2022]
Abstract
Metadherin (MTDH) expression inversely correlates with prognosis of several cancers including mammary carcinomas. In this work, we identified a novel splice variant of MTDH with exon7 skipping (MTDHΔ7) and its levels were found significantly high in triple negative breast cancer (TNBC) cells and in patients diagnosed with TNBC. Selective overexpression of MTDHΔ7 in MDA-MB-231 and BT-549 cells enhanced proliferation, invasion, and epithelial-to-mesenchymal (EMT) transition markers in comparison to its wildtype counterpart. In contrast, knockdown of MTDHΔ7 induced antiproliferative/antiinvasive effects. Mechanistically, MTDH-NFĸB-p65 complex activated SIRT3 transcription by binding to its promoter that in turn enhanced MnSOD levels and promoted EMT in TNBC cells. Intriguingly, mitochondrial OCR through Complex-I and -IV, and glycolytic rate (ECAR) were significantly high in MDA-MB-231 cells stably expressing MTDHΔ7. While depletion of SIRT3 inhibited MTDH-Wt/Δ7-induced OCR and ECAR, knockdown of MnSOD inhibited only ECAR. In addition, MTDH-Wt/Δ7-mediated pro-proliferative/-invasive effects were greatly obviated with either siSIRT3 or siMnSOD in these cells. The functional relevance of MTDHΔ7 was further proved under in vivo conditions in an orthotopic mouse model of breast cancer. Mice bearing labeled MDA-MB-231 cells stably expressing MTDHΔ7 showed significantly more tumor growth and metastatic ability to various organs in comparison to MTDH-Wt bearing mice. Taken together, MTDHΔ7 promotes TNBC aggressiveness through enhanced mitochondrial biogenesis/function, which perhaps serves as a biomarker.
Collapse
|
31
|
He C, Danes JM, Hart PC, Zhu Y, Huang Y, de Abreu AL, O'Brien J, Mathison AJ, Tang B, Frasor JM, Wakefield LM, Ganini D, Stauder E, Zielonka J, Gantner BN, Urrutia RA, Gius D, Bonini MG. SOD2 acetylation on lysine 68 promotes stem cell reprogramming in breast cancer. Proc Natl Acad Sci U S A 2019; 116:23534-23541. [PMID: 31591207 PMCID: PMC6876149 DOI: 10.1073/pnas.1902308116] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Mitochondrial superoxide dismutase (SOD2) suppresses tumor initiation but promotes invasion and dissemination of tumor cells at later stages of the disease. The mechanism of this functional switch remains poorly defined. Our results indicate that as SOD2 expression increases acetylation of lysine 68 ensues. Acetylated SOD2 promotes hypoxic signaling via increased mitochondrial reactive oxygen species (mtROS). mtROS, in turn, stabilize hypoxia-induced factor 2α (HIF2α), a transcription factor upstream of "stemness" genes such as Oct4, Sox2, and Nanog. In this sense, our findings indicate that SOD2K68Ac and mtROS are linked to stemness reprogramming in breast cancer cells via HIF2α signaling. Based on these findings we propose that, as tumors evolve, the accumulation of SOD2K68Ac turns on a mitochondrial pathway to stemness that depends on HIF2α and may be relevant for the progression of breast cancer toward poor outcomes.
Collapse
Affiliation(s)
- Chenxia He
- Department of Medicine, Division of Endocrinology, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Jeanne M Danes
- Department of Medicine, Division of Endocrinology, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Peter C Hart
- Department of Pathology, University of Illinois at Chicago, Chicago, IL 60612
| | - Yueming Zhu
- Department of Radiation Oncology, Northwestern University, Chicago, IL 60657
| | - Yunping Huang
- Department of Medicine, Division of Endocrinology, Medical College of Wisconsin, Milwaukee, WI 53226
| | | | - Joseph O'Brien
- Department of Radiation Oncology, Northwestern University, Chicago, IL 60657
| | - Angela J Mathison
- Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Binwu Tang
- Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892
| | - Jonna M Frasor
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL 60612
| | - Lalage M Wakefield
- Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892
| | - Douglas Ganini
- Free Radical Metabolism Group, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709
| | - Erich Stauder
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Jacek Zielonka
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Benjamin N Gantner
- Department of Medicine, Division of Endocrinology, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Raul A Urrutia
- Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, WI 53226
| | - David Gius
- Department of Radiation Oncology, Northwestern University, Chicago, IL 60657
| | - Marcelo G Bonini
- Department of Medicine, Division of Endocrinology, Medical College of Wisconsin, Milwaukee, WI 53226;
| |
Collapse
|
32
|
Farrugia G, Azzopardi M, Saliba C, Grech G, Gross AS, Pistolic J, Benes V, Vassallo N, Borg J, Madeo F, Eisenberg T, Balzan R. Aspirin impairs acetyl-coenzyme A metabolism in redox-compromised yeast cells. Sci Rep 2019; 9:6152. [PMID: 30992471 PMCID: PMC6468118 DOI: 10.1038/s41598-019-39489-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 12/20/2018] [Indexed: 02/06/2023] Open
Abstract
Aspirin is a widely used anti-inflammatory and antithrombotic drug also known in recent years for its promising chemopreventive antineoplastic properties, thought to be mediated in part by its ability to induce apoptotic cell death. However, the full range of mechanisms underlying aspirin's cancer-preventive properties is still elusive. In this study, we observed that aspirin impaired both the synthesis and transport of acetyl-coenzyme A (acetyl-CoA) into the mitochondria of manganese superoxide dismutase (MnSOD)-deficient Saccharomyces cerevisiae EG110 yeast cells, but not of the wild-type cells, grown aerobically in ethanol medium. This occurred at both the gene level, as indicated by microarray and qRT-PCR analyses, and at the protein level as indicated by enzyme assays. These results show that in redox-compromised MnSOD-deficient yeast cells, but not in wild-type cells, aspirin starves the mitochondria of acetyl-CoA and likely causes energy failure linked to mitochondrial damage, resulting in cell death. Since acetyl-CoA is one of the least-studied targets of aspirin in terms of the latter's propensity to prevent cancer, this work may provide further mechanistic insight into aspirin's chemopreventive behavior with respect to early stage cancer cells, which tend to have downregulated MnSOD and are also redox-compromised.
Collapse
Affiliation(s)
- Gianluca Farrugia
- Centre for Molecular Medicine and Biobanking, University of Malta, Msida, Malta
- Department of Physiology & Biochemistry, University of Malta, Msida, Malta
| | - Maria Azzopardi
- Centre for Molecular Medicine and Biobanking, University of Malta, Msida, Malta
- Department of Physiology & Biochemistry, University of Malta, Msida, Malta
| | - Christian Saliba
- Centre for Molecular Medicine and Biobanking, University of Malta, Msida, Malta
| | - Godfrey Grech
- Department of Pathology, University of Malta, Msida, Malta
| | - Angelina S Gross
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
| | - Jelena Pistolic
- Genomics Core Facility, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Vladimir Benes
- Genomics Core Facility, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Neville Vassallo
- Department of Physiology & Biochemistry, University of Malta, Msida, Malta
| | - Joseph Borg
- Department of Applied Biomedical Science, University of Malta, Msida, Malta
| | - Frank Madeo
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
| | - Tobias Eisenberg
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
- Central Lab Gracia, NAWI Graz, University of Graz, Graz, Austria
| | - Rena Balzan
- Centre for Molecular Medicine and Biobanking, University of Malta, Msida, Malta.
- Department of Physiology & Biochemistry, University of Malta, Msida, Malta.
| |
Collapse
|
33
|
Dhar SK, Batinic-Haberle I, St Clair DK. UVB-induced inactivation of manganese-containing superoxide dismutase promotes mitophagy via ROS-mediated mTORC2 pathway activation. J Biol Chem 2019; 294:6831-6842. [PMID: 30858178 DOI: 10.1074/jbc.ra118.006595] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 03/05/2019] [Indexed: 12/23/2022] Open
Abstract
Mitochondria are major sites of energy metabolism that influence numerous cellular events, including immunity and cancer development. Previously, we reported that the mitochondrion-specific antioxidant enzyme, manganese-containing superoxide dismutase (MnSOD), has dual roles in early- and late-carcinogenesis stages. However, how defective MnSOD impacts the chain of events that lead to cell transformation in pathologically normal epidermal cells that have been exposed to carcinogens is unknown. Here, we show that UVB radiation causes nitration and inactivation of MnSOD leading to mitochondrial injury and mitophagy. In keratinocytes, exposure to UVB radiation decreased mitochondrial oxidative phosphorylation, increased glycolysis and the expression of autophagy-related genes, and enhanced AKT Ser/Thr kinase (AKT) phosphorylation and cell growth. Interestingly, UVB initiated a prosurvival mitophagy response by mitochondria-mediated reactive oxygen species (ROS) signaling via the mammalian target of the mTOR complex 2 (mTORC2) pathway. Knockdown of rictor but not raptor abrogated UVB-induced mitophagy responses. Furthermore, fractionation and proximity-ligation assays reveal that ROS-mediated mTOC2 activation in mitochondria is necessary for UVB-induced mitophagy. Importantly, pretreatment with the MnSOD mimic MnTnBuOE-2-PyP5+ (MnP) attenuates mTORC2 activation and suppresses UVB-induced mitophagy. UVB radiation exposure also increased cell growth as assessed by soft-agar colony survival and cell growth assays, and pretreatment with MnP or the known autophagy inhibitor 3-methyladenine abrogated UVB-induced cell growth. These results indicate that MnSOD is a major redox regulator that maintains mitochondrial health and show that UVB-mediated MnSOD inactivation promotes mitophagy and thereby prevents accumulation of damaged mitochondria.
Collapse
Affiliation(s)
- Sanjit K Dhar
- From the Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, Kentucky 40536 and
| | - Ines Batinic-Haberle
- the Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina 27710
| | - Daret K St Clair
- From the Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, Kentucky 40536 and
| |
Collapse
|
34
|
Yen HC, Lin CL, Chen BS, Chen CW, Wei KC, Yang ML, Hsu JC, Hsu YH. Alterations of the levels of primary antioxidant enzymes in different grades of human astrocytoma tissues. Free Radic Res 2019; 52:856-871. [PMID: 29862858 DOI: 10.1080/10715762.2018.1483580] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Malignant astrocytoma is the most commonly occurring brain tumour in humans. Oxidative stress is implicated in the development of cancers. Superoxide dismutase 2 (SOD2) was found to exert tumour suppressive effect in basic research, but increased SOD2 protein level was associated with higher aggressiveness of human astrocytomas. However, studies reporting alterations of antioxidant enzymes in human astrocytomas often employed less accurate methods or included different types of tumours. Here we analysed the mRNA levels, activities, and protein levels of primary antioxidant enzymes in control brain tissues and various grades of astrocytomas obtained from 40 patients. SOD1 expression, SOD1 activity, and SOD1 protein level were lower in Grade IV astrocytomas. SOD2 expression was lower in low-grade (Grades I and II) and Grade III astrocytomas than in controls, but SOD2 expression and SOD2 protein level were higher in Grade IV astrocytomas than in Grade III astrocytomas. Although there was no change in SOD2 activity and a lower activity of citrate synthase (CS), the MnSOD:CS ratio increased in Grade IV astrocytomas compared with controls and low-grade astrocytomas. Furthermore, SOD1 activity, CS activity, SOD1 expression, GPX4 expression, and GPX4 protein level were inversely correlated with the malignancy, whereas catalase activity, catalase protein, SOD2 protein level, and the SOD2:CS ratio were positively correlated with the degree of malignancy. Lower SOD2:CS ratio was associated with poor outcomes for Grade IV astrocytomas. This is the first study to quantify changes of various primary antioxidant enzymes in different grades of astrocytomas at different levels concurrently in human astrocytomas.
Collapse
Affiliation(s)
- Hsiu-Chuan Yen
- a Department of Medical Biotechnology and Laboratory Science, College of Medicine , Chang Gung University , Taoyuan , Taiwan.,b Department of Nephrology , Linkou Chang Gung Memorial Hospital , Taoyuan , Taiwan
| | - Chih-Lung Lin
- c Department of Neurosurgery , Chang Gung Memorial Hospital and Chang Gung University , Taoyuan , Taiwan.,d Department of Neurosurgery , Asia University Hospital , Taichuang , Taiwan.,e Department of Occupational Therapy , Asia University , Taichuang , Taiwan
| | - Bing-Shian Chen
- a Department of Medical Biotechnology and Laboratory Science, College of Medicine , Chang Gung University , Taoyuan , Taiwan
| | - Chih-Wei Chen
- a Department of Medical Biotechnology and Laboratory Science, College of Medicine , Chang Gung University , Taoyuan , Taiwan
| | - Kuo-Chen Wei
- c Department of Neurosurgery , Chang Gung Memorial Hospital and Chang Gung University , Taoyuan , Taiwan
| | - Mei-Lin Yang
- a Department of Medical Biotechnology and Laboratory Science, College of Medicine , Chang Gung University , Taoyuan , Taiwan
| | - Jee-Ching Hsu
- f Department of Anesthesiology , Chang Gung Memorial Hospital and Chang Gung University , Taoyuan , Taiwan.,g Department of Anesthesiology , Lotung Poh-Ai Hospital , Yilan , Taiwan
| | - Yung-Hsing Hsu
- c Department of Neurosurgery , Chang Gung Memorial Hospital and Chang Gung University , Taoyuan , Taiwan.,d Department of Neurosurgery , Asia University Hospital , Taichuang , Taiwan
| |
Collapse
|
35
|
Chen X, Mims J, Huang X, Singh N, Motea E, Planchon SM, Beg M, Tsang AW, Porosnicu M, Kemp ML, Boothman DA, Furdui CM. Modulators of Redox Metabolism in Head and Neck Cancer. Antioxid Redox Signal 2018; 29:1660-1690. [PMID: 29113454 PMCID: PMC6207163 DOI: 10.1089/ars.2017.7423] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 11/04/2017] [Indexed: 12/12/2022]
Abstract
SIGNIFICANCE Head and neck squamous cell cancer (HNSCC) is a complex disease characterized by high genetic and metabolic heterogeneity. Radiation therapy (RT) alone or combined with systemic chemotherapy is widely used for treatment of HNSCC as definitive treatment or as adjuvant treatment after surgery. Antibodies against epidermal growth factor receptor are used in definitive or palliative treatment. Recent Advances: Emerging targeted therapies against other proteins of interest as well as programmed cell death protein 1 and programmed death-ligand 1 immunotherapies are being explored in clinical trials. CRITICAL ISSUES The disease heterogeneity, invasiveness, and resistance to standard of care RT or chemoradiation therapy continue to constitute significant roadblocks for treatment and patients' quality of life (QOL) despite improvements in treatment modality and the emergence of new therapies over the past two decades. FUTURE DIRECTIONS As reviewed here, alterations in redox metabolism occur at all stages of HNSCC management, providing opportunities for improved prevention, early detection, response to therapies, and QOL. Bioinformatics and computational systems biology approaches are key to integrate redox effects with multiomics data from cells and clinical specimens and to identify redox modifiers or modifiable target proteins to achieve improved clinical outcomes. Antioxid. Redox Signal.
Collapse
Affiliation(s)
- Xiaofei Chen
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Jade Mims
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Xiumei Huang
- Departments of Pharmacology, Radiation Oncology, and Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, Texas
| | - Naveen Singh
- Departments of Pharmacology, Radiation Oncology, and Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, Texas
| | - Edward Motea
- Departments of Pharmacology, Radiation Oncology, and Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, Texas
| | | | - Muhammad Beg
- Department of Internal Medicine, Division of Hematology-Oncology, UT Southwestern Medical Center, Dallas, Texas
| | - Allen W. Tsang
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Mercedes Porosnicu
- Department of Internal Medicine, Section of Hematology and Oncology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Melissa L. Kemp
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia
| | - David A. Boothman
- Departments of Pharmacology, Radiation Oncology, and Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, Texas
| | - Cristina M. Furdui
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| |
Collapse
|
36
|
Chong SJF, Lai JXH, Eu JQ, Bellot GL, Pervaiz S. Reactive Oxygen Species and Oncoprotein Signaling-A Dangerous Liaison. Antioxid Redox Signal 2018; 29:1553-1588. [PMID: 29186971 DOI: 10.1089/ars.2017.7441] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
SIGNIFICANCE There is evidence to implicate reactive oxygen species (ROS) in tumorigenesis and its progression. This has been associated with the interplay between ROS and oncoproteins, resulting in enhanced cellular proliferation and survival. Recent Advances: To date, studies have investigated specific contributions of the crosstalk between ROS and signaling networks in cancer initiation and progression. These investigations have challenged the established dogma of ROS as agents of cell death by demonstrating a secondary function that fuels cell proliferation and survival. Studies have thus identified (onco)proteins (Bcl-2, STAT3/5, RAS, Rac1, and Myc) in manipulating ROS level as well as exploiting an altered redox environment to create a milieu conducive for cancer formation and progression. CRITICAL ISSUES Despite these advances, drug resistance and its association with an altered redox metabolism continue to pose a challenge at the mechanistic and clinical levels. Therefore, identifying specific signatures, altered protein expressions, and modifications as well as protein-protein interplay/function could not only enhance our understanding of the redox networks during cancer initiation and progression but will also provide novel targets for designing specific therapeutic strategies. FUTURE DIRECTIONS Not only a heightened realization is required to unravel various gene/protein networks associated with cancer formation and progression, particularly from the redox standpoint, but there is also a need for developing more sensitive tools for assessing cancer redox metabolism in clinical settings. This review attempts to summarize our current knowledge of the crosstalk between oncoproteins and ROS in promoting cancer cell survival and proliferation and treatment strategies employed against these oncoproteins. Antioxid. Redox Signal.
Collapse
Affiliation(s)
- Stephen Jun Fei Chong
- 1 Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore , Singapore, Singapore
| | - Jolin Xiao Hui Lai
- 1 Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore , Singapore, Singapore
| | - Jie Qing Eu
- 2 Cancer Science Institute , Singapore, Singapore
| | - Gregory Lucien Bellot
- 1 Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore , Singapore, Singapore .,3 Department of Hand and Reconstructive Microsurgery, National University Health System , Singapore, Singapore
| | - Shazib Pervaiz
- 1 Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore , Singapore, Singapore .,4 NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore , Singapore, Singapore .,5 National University Cancer Institute, National University Health System , Singapore, Singapore .,6 School of Biomedical Sciences, Curtin University , Perth, Australia
| |
Collapse
|
37
|
Ashtekar A, Huk D, Magner A, La Perle KMD, Boucai L, Kirschner LS. Alterations in Sod2-Induced Oxidative Stress Affect Endocrine Cancer Progression. J Clin Endocrinol Metab 2018; 103:4135-4145. [PMID: 30165401 PMCID: PMC6194813 DOI: 10.1210/jc.2018-01039] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 08/21/2018] [Indexed: 12/18/2022]
Abstract
CONTEXT Although important advances have been made in understanding the genetics of endocrine tumors, cellular physiology is relatively understudied as a determinant of tumor behavior. Oxidative stress and reactive oxygen species are metabolic factors that may affect tumor behavior, and these are, in part, controlled by manganese-dependent superoxide dismutase (MnSod), the mitochondrial superoxide dismutase (encoded by SOD2). OBJECTIVE We sought to understand the role of MnSod in the prognosis of aggressive human endocrine cancers and directly assessed the effect of MnSod under- or overexpression on tumor behavior, using established mouse thyroid cancer models. METHODS We performed transcriptome analysis of human and mouse models of endocrine cancer. To address the role of Sod2 in endocrine tumors, we introduced a Sod2 null allele or a transgenic Sod2 overexpression allele into mouse models of benign thyroid follicular neoplasia or aggressive, metastatic follicular thyroid cancer (FTC) and monitored phenotypic changes in tumor initiation and progression. RESULTS In the thyroid, SOD2/Sod2 was downregulated in FTC but not papillary thyroid cancer. Reduced expression of SOD2 was correlated with poorer survival of patients with aggressive thyroid or adrenal cancers. In mice with benign thyroid tumors, Sod2 overexpression increased tumor burden. In contrast, in mice with aggressive FTC, overexpression of Sod2 reduced tumor proliferation and improved mortality rates, whereas its deficiency enhanced tumor growth. CONCLUSION Overall, our results indicate that SOD2 has dichotomous roles in cancer progression and acts in a context-specific manner.
Collapse
Affiliation(s)
- Amruta Ashtekar
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, Ohio
| | - Danielle Huk
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, Ohio
| | - Alexa Magner
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, Ohio
| | - Krista M D La Perle
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio
| | - Laura Boucai
- Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Lawrence S Kirschner
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, Ohio
- Division of Endocrinology, Diabetes, and Metabolism, The Ohio State University, Columbus, Ohio
- Correspondence and Reprint Requests: Lawrence S. Kirschner, MD, PhD, The Ohio State University, BRT 510, 460 W 12th Avenue, Columbus, Ohio 43210. E-mail:
| |
Collapse
|
38
|
Ribeiro CCD, Silva RM, Campanholo VMDLP, Ribeiro DA, Ribeiro Paiotti AP, Forones NM. Effects of Grape Juice in Superoxide Dismutase and Catalase in Colorectal Cancer Carcinogenesis Induced by Azoxymethane. Asian Pac J Cancer Prev 2018; 19:2839-2844. [PMID: 30362310 PMCID: PMC6291046 DOI: 10.22034/apjcp.2018.19.10.2839] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Background: The intestinal mucosa is commonly exposed to oxidant nutrients and carcinogens, which can lead to the generation of free radicals. The antioxidants present in the diet assume great importance as possible protective agents, reducing the oxidative damage. In this way, we evaluated the antioxidant action of grape juice on preneoplastic lesions induced by azoxymethane (AOM) in Wistar rats. Methods: The colorectal carcinogenesis was induced by two intraperitoneal injections of 15mg/kg of AOM in Wistar rats. The animals were divided in 7 groups and treated with 1 and 2% concentrations of grape juice before and after carcinogen administration. After euthanasia, the expression of antioxidant enzymes catalase (CAT), copper-zinc superoxide dismutase (Cu/Zn-SOD) and manganese superoxide dismutase (Mn-SOD) CAT, SOD1 and SOD2 were evaluated by immunohistochemistry. Results: AOM decreased the expression of CAT and Mn-SOD enzymes, but not for Cu/Zn-SOD. We observed an increase expression of CAT and Mn-SOD after grape juice administration in some concentrations according to the time of administration of the grape juice before the carcinogen or just after the carcinogen. Conclusion: Our results suggest an independent action of each enzyme and a possible antioxidant action of the grape juice components in the diet being able to balance the body to neutralize the superoxide radicals and not leave them in the cell-damaging form.
Collapse
Affiliation(s)
- Carla Caroline Dias Ribeiro
- Department of Medicine – Discipline of Gastroenterology – Universidade Federal de São Paulo – Escola Paulista de Medicina, UNIFESP/EPM, SP, Brazil.
| | | | | | | | | | | |
Collapse
|
39
|
Zhao Z, Lu J, Qu H, Wang Z, Liu Q, Yang X, Liu S, Ge J, Xu Y, Li N, Yuan Y. Evaluation and prognostic significance of manganese superoxide dismutase in clear cell renal cell carcinoma. Hum Pathol 2018; 80:87-93. [PMID: 29935195 DOI: 10.1016/j.humpath.2017.12.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 12/05/2017] [Accepted: 12/13/2017] [Indexed: 02/07/2023]
Abstract
The antioxidant enzyme manganese superoxide dismutase (MnSOD) is up-regulated in renal cell carcinoma (RCC) and has been implicated in multiple stages of RCC tumorigenesis and progression. However, the prognostic significance of MnSOD in RCC has not been fully elucidated. This study aimed to investigate the expression profile of MnSOD in clear cell RCC (ccRCC) tissues and evaluate the clinical significance of this enzyme in ccRCC patients. MnSOD mRNA was assessed in 42 ccRCC and 33 normal kidney tissues using the Oncomine database, and its protein was detected in 145 ccRCCs and 3 normal tissues by immunohistochemistry staining. The Oncomine database confirmed higher MnSOD mRNA expression in ccRCC than in normal tissues, and immunohistochemistry analysis revealed that MnSOD protein expression was inversely associated with pathologic grade, clinical stage, tumor size, M status, and cancer-specific survival. In addition, univariate survival analysis demonstrated that high-grade, late-stage, large tumors, stage M1, and low MnSOD expression were associated with a poorer prognosis for cancer-specific survival, and further multivariate analysis revealed that tumor grade, stage, M1 stage, and MnSOD were identified as independent prognostic factors for cancer-specific survival in patients with ccRCC. Collectively, these findings imply that MnSOD is a promising prognostic marker in ccRCC and implies that oxidative stress might be involved in the tumorigenesis and progression of ccRCC.
Collapse
Affiliation(s)
- Zuohui Zhao
- Department of Pediatric Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, China.
| | - Jiaju Lu
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, China
| | - Hongyi Qu
- Department of Pediatric Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, China
| | - Zunsong Wang
- Department of Nephrology, Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, China
| | - Qiang Liu
- Laboratory of Microvascular Medicine, Medical Research Center, Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, China
| | - Xiaoqing Yang
- Department of Pathology, Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, China
| | - Shuai Liu
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, China
| | - Juntao Ge
- Department of Pediatric Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, China
| | - Yue Xu
- Department of Pediatric Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, China
| | - Na Li
- Department of Pediatric Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, China
| | - Yijiao Yuan
- Department of Pediatric Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, China
| |
Collapse
|
40
|
Wang Y, Branicky R, Noë A, Hekimi S. Superoxide dismutases: Dual roles in controlling ROS damage and regulating ROS signaling. J Cell Biol 2018; 217:1915-1928. [PMID: 29669742 PMCID: PMC5987716 DOI: 10.1083/jcb.201708007] [Citation(s) in RCA: 1086] [Impact Index Per Article: 155.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 03/13/2018] [Accepted: 04/04/2018] [Indexed: 02/07/2023] Open
Abstract
Wang et al. review the dual role of superoxide dismutases in controlling reactive oxygen species (ROS) damage and regulating ROS signaling across model systems as well as their involvement in human diseases. Superoxide dismutases (SODs) are universal enzymes of organisms that live in the presence of oxygen. They catalyze the conversion of superoxide into oxygen and hydrogen peroxide. Superoxide anions are the intended product of dedicated signaling enzymes as well as the byproduct of several metabolic processes including mitochondrial respiration. Through their activity, SOD enzymes control the levels of a variety of reactive oxygen species (ROS) and reactive nitrogen species, thus both limiting the potential toxicity of these molecules and controlling broad aspects of cellular life that are regulated by their signaling functions. All aerobic organisms have multiple SOD proteins targeted to different cellular and subcellular locations, reflecting the slow diffusion and multiple sources of their substrate superoxide. This compartmentalization also points to the need for fine local control of ROS signaling and to the possibility for ROS to signal between compartments. In this review, we discuss studies in model organisms and humans, which reveal the dual roles of SOD enzymes in controlling damage and regulating signaling.
Collapse
Affiliation(s)
- Ying Wang
- Department of Biology, McGill University, Montreal, Canada
| | - Robyn Branicky
- Department of Biology, McGill University, Montreal, Canada
| | - Alycia Noë
- Department of Biology, McGill University, Montreal, Canada
| | | |
Collapse
|
41
|
Khan AA, Paget JT, McLaughlin M, Kyula JN, Wilkinson MJ, Pencavel T, Mansfield D, Roulstone V, Seth R, Halle M, Somaiah N, Boult JKR, Robinson SP, Pandha HS, Vile RG, Melcher AA, Harris PA, Harrington KJ. Genetically modified lentiviruses that preserve microvascular function protect against late radiation damage in normal tissues. Sci Transl Med 2018; 10:eaar2041. [PMID: 29367346 PMCID: PMC6020074 DOI: 10.1126/scitranslmed.aar2041] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Revised: 10/15/2017] [Accepted: 11/08/2017] [Indexed: 12/25/2022]
Abstract
Improvements in cancer survival mean that long-term toxicities, which contribute to the morbidity of cancer survivorship, are being increasingly recognized. Late adverse effects (LAEs) in normal tissues after radiotherapy (RT) are characterized by vascular dysfunction and fibrosis causing volume loss and tissue contracture, for example, in the free flaps used for immediate breast reconstruction after mastectomy. We evaluated the efficacy of lentivirally delivered superoxide dismutase 2 (SOD2) overexpression and connective tissue growth factor (CTGF) knockdown by short hairpin RNA in reducing the severity of LAEs in an animal model of free flap LAEs. Vectors were delivered by intra-arterial injection, ex vivo, to target the vascular compartment. LVSOD2 and LVshCTGF monotherapy before irradiation resulted in preservation of flap volume or reduction in skin contracture, respectively. Flaps transduced with combination therapy experienced improvements in both volume loss and skin contracture. Both therapies reduced the fibrotic burden after irradiation. LAEs were associated with impaired vascular perfusion, loss of endothelial permeability, and stromal hypoxia, which were all reversed in the treatment model. Using a tumor recurrence model, we showed that SOD2 overexpression in normal tissues did not compromise the efficacy of RT against tumor cells but appeared to enhance it. LVSOD2 and LVshCTGF combination therapy by targeted, intravascular delivery reduced LAE severities in normal tissues without compromising the efficacy of RT and warrants translational evaluation as a free flap-targeted gene therapy.
Collapse
Affiliation(s)
- Aadil A Khan
- Targeted Therapy Team, Division of Radiotherapy and Imaging, The Institute of Cancer Research, London SW3 6JB, UK
- Department of Plastic Surgery, The Royal Marsden Hospital, London SW3 6JJ, UK
| | - James T Paget
- Targeted Therapy Team, Division of Radiotherapy and Imaging, The Institute of Cancer Research, London SW3 6JB, UK
- Department of Plastic Surgery, The Royal Marsden Hospital, London SW3 6JJ, UK
| | - Martin McLaughlin
- Targeted Therapy Team, Division of Radiotherapy and Imaging, The Institute of Cancer Research, London SW3 6JB, UK
| | - Joan N Kyula
- Targeted Therapy Team, Division of Radiotherapy and Imaging, The Institute of Cancer Research, London SW3 6JB, UK
| | - Michelle J Wilkinson
- Targeted Therapy Team, Division of Radiotherapy and Imaging, The Institute of Cancer Research, London SW3 6JB, UK
| | - Timothy Pencavel
- Targeted Therapy Team, Division of Radiotherapy and Imaging, The Institute of Cancer Research, London SW3 6JB, UK
| | - David Mansfield
- Targeted Therapy Team, Division of Radiotherapy and Imaging, The Institute of Cancer Research, London SW3 6JB, UK
| | - Victoria Roulstone
- Targeted Therapy Team, Division of Radiotherapy and Imaging, The Institute of Cancer Research, London SW3 6JB, UK
| | - Rohit Seth
- Targeted Therapy Team, Division of Radiotherapy and Imaging, The Institute of Cancer Research, London SW3 6JB, UK
| | - Martin Halle
- Department of Molecular Medicine and Surgery, Section of Plastic Surgery, Karolinska Institute, Stockholm 17176, Sweden
- Department of Reconstructive Plastic Surgery, Karolinska University Hospital, Stockholm 17176, Sweden
| | - Navita Somaiah
- Targeted Therapy Team, Division of Radiotherapy and Imaging, The Institute of Cancer Research, London SW3 6JB, UK
| | - Jessica K R Boult
- Magnetic Resonance Team, Division of Radiotherapy and Imaging, The Institute of Cancer Research, London SM2 5NG, UK
| | - Simon P Robinson
- Magnetic Resonance Team, Division of Radiotherapy and Imaging, The Institute of Cancer Research, London SM2 5NG, UK
| | - Hardev S Pandha
- Postgraduate Medical School, University of Surrey, Guildford GU2 7XH, UK
| | - Richard G Vile
- Molecular Medicine Program, Mayo Clinic, Rochester, MN 55905, USA
| | - Alan A Melcher
- Translational Immunotherapy Team, Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, SW3 6JB, UK
| | - Paul A Harris
- Department of Plastic Surgery, The Royal Marsden Hospital, London SW3 6JJ, UK
| | - Kevin J Harrington
- Targeted Therapy Team, Division of Radiotherapy and Imaging, The Institute of Cancer Research, London SW3 6JB, UK.
| |
Collapse
|
42
|
Li S, Mao Y, Zhou T, Luo C, Xie J, Qi W, Yang Z, Ma J, Gao G, Yang X. Manganese superoxide dismutase mediates anoikis resistance and tumor metastasis in nasopharyngeal carcinoma. Oncotarget 2017; 7:32408-20. [PMID: 27083052 PMCID: PMC5078022 DOI: 10.18632/oncotarget.8717] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Accepted: 03/28/2016] [Indexed: 11/25/2022] Open
Abstract
Metastatic cancer cells are able to survive the loss of attachment to the extracellular matrix (ECM) by developing resistance to anoikis, a specialized form of apoptosis. Here we investigated resistance to anoikis in nasopharyngeal carcinoma cells (NPC). When detached in culture, the highly metastatic S18 NPC cell line exhibited strong resistance to anoikis, as compared to the poorly metastatic S26 NPC cell line. With loss of attachment, S18 cells had lower levels of reactive oxygen species (ROS) and higher levels of manganese superoxide dismutase (MnSOD), an essential mitochondrial antioxidant enzyme. MnSOD knockdown increased the levels of ROS and diminished resistance to anoikis in S18 cells. Conversely, removal of reactive oxygen species (ROS) using NAC or overexpression of MnSOD in S26 cells induced resistance to anoikis. Blocking β-catenin through RNA interference down-regulated MnSOD expression and enhanced anoikis in S18 cells, while β-catenin overexpression enhanced MnSOD expression and suppressed anoikis in S26 cells. In addition, knockdown of MnSOD in S18 cells reduced colony formation in vitro and ameliorated lung metastasis in vivo. In patients with NPC, MnSOD expression was positively correlated with pathologic tumor stages and negatively correlated with overall survival. These results establish MnSOD as a key mediator of anoikis resistance and tumor metastasis and suggest that β-catenin/MnSOD could be a therapeutic target in NPC.
Collapse
Affiliation(s)
- Shuai Li
- Program of Molecular Medicine, Affiliated Guangzhou Women and Children's Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.,Department of Biochemistry, Guangzhou Medical University, Guangzhou, China
| | - Yuling Mao
- Program of Molecular Medicine, Affiliated Guangzhou Women and Children's Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Ti Zhou
- Program of Molecular Medicine, Affiliated Guangzhou Women and Children's Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Chuanghua Luo
- Program of Molecular Medicine, Affiliated Guangzhou Women and Children's Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Jinye Xie
- Program of Molecular Medicine, Affiliated Guangzhou Women and Children's Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Weiwei Qi
- Program of Molecular Medicine, Affiliated Guangzhou Women and Children's Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Zhonghan Yang
- Program of Molecular Medicine, Affiliated Guangzhou Women and Children's Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - JianXing Ma
- Department of Physiology, University of Oklahoma, Health Sciences Center, Oklahoma City, USA
| | - Guoquan Gao
- Program of Molecular Medicine, Affiliated Guangzhou Women and Children's Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.,China Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Guangzhou, China
| | - Xia Yang
- Program of Molecular Medicine, Affiliated Guangzhou Women and Children's Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.,Key Laboratory of Functional Molecules from Marine Microorganisms (Sun Yat-Sen University), Department of Education of Guangdong Province, Guangzhou, China
| |
Collapse
|
43
|
Insights into the Dichotomous Regulation of SOD2 in Cancer. Antioxidants (Basel) 2017; 6:antiox6040086. [PMID: 29099803 PMCID: PMC5745496 DOI: 10.3390/antiox6040086] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 10/24/2017] [Accepted: 11/01/2017] [Indexed: 12/14/2022] Open
Abstract
While loss of antioxidant expression and the resultant oxidant-dependent damage to cellular macromolecules is key to tumorigenesis, it has become evident that effective oxidant scavenging is conversely necessary for successful metastatic spread. This dichotomous role of antioxidant enzymes in cancer highlights their context-dependent regulation during different stages of tumor development. A prominent example of an antioxidant enzyme with such a dichotomous role and regulation is the mitochondria-localized manganese superoxide dismutase SOD2 (MnSOD). SOD2 has both tumor suppressive and promoting functions, which are primarily related to its role as a mitochondrial superoxide scavenger and H₂O₂ regulator. However, unlike true tumor suppressor- or onco-genes, the SOD2 gene is not frequently lost, or rarely mutated or amplified in cancer. This allows SOD2 to be either repressed or activated contingent on context-dependent stimuli, leading to its dichotomous function in cancer. Here, we describe some of the mechanisms that underlie SOD2 regulation in tumor cells. While much is known about the transcriptional regulation of the SOD2 gene, including downregulation by epigenetics and activation by stress response transcription factors, further research is required to understand the post-translational modifications that regulate SOD2 activity in cancer cells. Moreover, future work examining the spatio-temporal nature of SOD2 regulation in the context of changing tumor microenvironments is necessary to allows us to better design oxidant- or antioxidant-based therapeutic strategies that target the adaptable antioxidant repertoire of tumor cells.
Collapse
|
44
|
Pang Y, Liu J, Li X, Zhang Y, Zhang B, Zhang J, Du N, Xu C, Liang R, Ren H, Tang SC, Sun X. Nano Let‑7b sensitization of eliminating esophageal cancer stem‑like cells is dependent on blockade of Wnt activation of symmetric division. Int J Oncol 2017; 51:1077-1088. [PMID: 28902370 PMCID: PMC5592862 DOI: 10.3892/ijo.2017.4104] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 08/03/2017] [Indexed: 12/13/2022] Open
Abstract
The poor therapy response and poor prognosis of esophageal cancer has made it one of the most malignant carcinoma, and the complicated multidisciplinary treatment failed to achieve a long-term disease-free survival. To diagnose esophageal cancer at an earlier stage, and to improve the effect of anticancer therapy would improve the therapeutic efficacy. After retrospective analysis of the cancer samples of patients who received esophagectomy, we found the relevance between ratio of either ALDH1 or CD133-positive cancer stem cells and 2-year recurrence. Higher ratios of cancer stem cells indicated later clinical stages, and Wnt signaling activation was more frequent in later esophageal carcinoma. Further in bench studies, we explored the suppressive roles and the mechanisms involved in Let‑7 on self-renewal in ECA‑109 and ECA‑9706 esophageal cancer stem cells. Isolated cancer stem cells naturally divide symmetrically and are therapy resistant. Therapy of fluorouracil and docetaxel both enriched the stem cells, proving the resistant characteristics of cancer stem cells. Wnt activation stimulated more symmetric division of stem cells, resulting in self-renewal promotion, which could be blocked by Let‑7 overexpression. Furthermore, enforced Let‑7 sensitized the stem cells to chemotherapies in a Wnt pathway inhibition-dependent manner, contributing to Let‑7 sensitization of chemotherapeutic response. Wnt activation weakened the suppressive Let‑7b through the sponge functions of CCAT-1, forming the negative feedback loop of Let‑7b/Wnt/CCAT1. These results identified the crucial participation of stem cells in esophageal cancer occurrence and progression as the potent indicator, and also indicate the potential powerful agent of Let‑7 nano-particles in treatment of cancer.
Collapse
Affiliation(s)
- Yamei Pang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Jian Liu
- Department of Thoracic Surgery and Oncology, The Second Department of Thoracic Surgery, Cancer Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Xiang Li
- Department of Thoracic Surgery and Oncology, The Second Department of Thoracic Surgery, Cancer Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Yiwen Zhang
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Boxiang Zhang
- Department of Thoracic Surgery and Oncology, The Second Department of Thoracic Surgery, Cancer Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Jing Zhang
- Department of Thoracic Surgery and Oncology, The Second Department of Thoracic Surgery, Cancer Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Ning Du
- Department of Thoracic Surgery and Oncology, The Second Department of Thoracic Surgery, Cancer Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Chongwen Xu
- Department of Otorhinolaryngology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Rui Liang
- Department of Hepatobiliary Chest Surgery, Shaanxi Provincial Corps Hospital of Chinese People's Armed Police Force, Xi'an, Shaanxi 710066, P.R. China
| | - Hong Ren
- Department of Thoracic Surgery and Oncology, The Second Department of Thoracic Surgery, Cancer Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Shou-Ching Tang
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Xin Sun
- Department of Thoracic Surgery and Oncology, The Second Department of Thoracic Surgery, Cancer Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
45
|
Kang KA, Piao MJ, Ryu YS, Hyun YJ, Park JE, Shilnikova K, Zhen AX, Kang HK, Koh YS, Jeong YJ, Hyun JW. Luteolin induces apoptotic cell death via antioxidant activity in human colon cancer cells. Int J Oncol 2017; 51:1169-1178. [DOI: 10.3892/ijo.2017.4091] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 06/30/2017] [Indexed: 11/06/2022] Open
|
46
|
Zhang TT, Liu YJ, Yang L, Jiang JG, Zhao JW, Zhu W. Extraction of antioxidant and antiproliferative ingredients from fruits of Rubus chingii Hu by active tracking guidance. MEDCHEMCOMM 2017; 8:1673-1680. [PMID: 30108878 PMCID: PMC6072464 DOI: 10.1039/c7md00240h] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 06/24/2017] [Indexed: 12/14/2022]
Abstract
Rubus chingii Hu, namely "Fu-pen-zi" in Chinese, has been used as a functional food in China for a long time. This study aims to identify its bioactive constituents with antioxidant and anti-tumor properties. R. chingii was extracted with 95% ethanol and then partitioned into four fractions: petroleum ether fraction, ethyl acetate fraction, n-butanol fraction, and water fraction. Results showed that the ethyl acetate fraction had the strongest antioxidant activity and cytotoxicity against human cancer cell lines (HepG-2, Bel-7402, A549 and MCF-7). Therefore, four compounds were isolated from the ethyl acetate fraction, and they were identified as ent-16α,17-dihydroxy-kauran-19-oic acid, tormentic acid, oleanolic acid and β-daucosterol, the first two of which were isolated and identified from R. chingii for the first time. In particular, tormentic acid exhibited excellent cytotoxicity activities against human tumor cell lines. The results obtained in this work might contribute to the understanding of biological activities of R. chingii and further investigation on its potential application is valued for food and drugs.
Collapse
Affiliation(s)
- Tian-Tian Zhang
- College of Food and Bioengineering , South China University of Technology , Guangzhou , 510640 , China . ; ; Tel: +86 20 87113849
- College of Food Science and Engineering , Ocean University of China , Qingdao 266003 , China
| | - Ya-Jun Liu
- The First Affiliated Hospital , Guangzhou University of Chinese Medicine , Guangzhou 510405 , China
| | - Li Yang
- College of Food and Bioengineering , South China University of Technology , Guangzhou , 510640 , China . ; ; Tel: +86 20 87113849
| | - Jian-Guo Jiang
- College of Food and Bioengineering , South China University of Technology , Guangzhou , 510640 , China . ; ; Tel: +86 20 87113849
| | - Jing-Wen Zhao
- The second Affiliated Hospital , Guangzhou University of Chinese Medicine , Guangzhou 510120 , China . ; ; Tel: +86 20 39318571
| | - Wei Zhu
- The second Affiliated Hospital , Guangzhou University of Chinese Medicine , Guangzhou 510120 , China . ; ; Tel: +86 20 39318571
| |
Collapse
|
47
|
Blajszczak C, Bonini MG. Mitochondria targeting by environmental stressors: Implications for redox cellular signaling. Toxicology 2017; 391:84-89. [PMID: 28750850 DOI: 10.1016/j.tox.2017.07.013] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 06/22/2017] [Accepted: 07/21/2017] [Indexed: 01/07/2023]
Abstract
Mitochondria are cellular powerhouses as well as metabolic and signaling hubs regulating diverse cellular functions, from basic physiology to phenotypic fate determination. It is widely accepted that reactive oxygen species (ROS) generated in mitochondria participate in the regulation of cellular signaling, and that some mitochondria chronically operate at a high ROS baseline. However, it is not completely understood how mitochondria adapt to persistently high ROS states and to environmental stressors that disturb the redox balance. Here we will review some of the current concepts regarding how mitochondria resist oxidative damage, how they are replaced when excessive oxidative damage compromises function, and the effect of environmental toxicants (i.e. heavy metals) on the regulation of mitochondrial ROS (mtROS) production and subsequent impact.
Collapse
Affiliation(s)
- Chuck Blajszczak
- Departments of Medicine and Pathology, University of Illinois College of Medicine at Chicago, IL, USA
| | - Marcelo G Bonini
- Departments of Medicine and Pathology, University of Illinois College of Medicine at Chicago, IL, USA.
| |
Collapse
|
48
|
Benfeitas R, Uhlen M, Nielsen J, Mardinoglu A. New Challenges to Study Heterogeneity in Cancer Redox Metabolism. Front Cell Dev Biol 2017; 5:65. [PMID: 28744456 PMCID: PMC5504267 DOI: 10.3389/fcell.2017.00065] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 06/26/2017] [Indexed: 12/13/2022] Open
Abstract
Reactive oxygen species (ROS) are important pathophysiological molecules involved in vital cellular processes. They are extremely harmful at high concentrations because they promote the generation of radicals and the oxidation of lipids, proteins, and nucleic acids, which can result in apoptosis. An imbalance of ROS and a disturbance of redox homeostasis are now recognized as a hallmark of complex diseases. Considering that ROS levels are significantly increased in cancer cells due to mitochondrial dysfunction, ROS metabolism has been targeted for the development of efficient treatment strategies, and antioxidants are used as potential chemotherapeutic drugs. However, initial ROS-focused clinical trials in which antioxidants were supplemented to patients provided inconsistent results, i.e., improved treatment or increased malignancy. These different outcomes may result from the highly heterogeneous redox responses of tumors in different patients. Hence, population-based treatment strategies are unsuitable and patient-tailored therapeutic approaches are required for the effective treatment of patients. Moreover, due to the crosstalk between ROS, reducing equivalents [e.g., NAD(P)H] and central metabolism, which is heterogeneous in cancer, finding the best therapeutic target requires the consideration of system-wide approaches that are capable of capturing the complex alterations observed in all of the associated pathways. Systems biology and engineering approaches may be employed to overcome these challenges, together with tools developed in personalized medicine. However, ROS- and redox-based therapies have yet to be addressed by these methodologies in the context of disease treatment. Here, we review the role of ROS and their coupled redox partners in tumorigenesis. Specifically, we highlight some of the challenges in understanding the role of hydrogen peroxide (H2O2), one of the most important ROS in pathophysiology in the progression of cancer. We also discuss its interplay with antioxidant defenses, such as the coupled peroxiredoxin/thioredoxin and glutathione/glutathione peroxidase systems, and its reducing equivalent metabolism. Finally, we highlight the need for system-level and patient-tailored approaches to clarify the roles of these systems and identify therapeutic targets through the use of the tools developed in personalized medicine.
Collapse
Affiliation(s)
- Rui Benfeitas
- Science for Life Laboratory, KTH Royal Institute of TechnologyStockholm, Sweden
| | - Mathias Uhlen
- Science for Life Laboratory, KTH Royal Institute of TechnologyStockholm, Sweden
| | - Jens Nielsen
- Science for Life Laboratory, KTH Royal Institute of TechnologyStockholm, Sweden.,Department of Biology and Biological Engineering, Chalmers University of TechnologyGothenburg, Sweden
| | - Adil Mardinoglu
- Science for Life Laboratory, KTH Royal Institute of TechnologyStockholm, Sweden.,Department of Biology and Biological Engineering, Chalmers University of TechnologyGothenburg, Sweden
| |
Collapse
|
49
|
Hardiany NS, Sadikin M, Siregar N, Wanandi SI. The suppression of manganese superoxide dismutase decreased the survival of human glioblastoma multiforme T98G cells. MEDICAL JOURNAL OF INDONESIA 2017. [DOI: 10.13181/mji.v26i1.1511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Background: Glioblastoma multiforme (GBM) is a primary malignant brain tumor which has poor prognosis. High incidence of oxidative stress-based therapy resistance could be related to the high antioxidant status of GBM cells. Our previous study has reported that manganese superoxide dismutase (MnSOD) antioxidant expression was significantly higher in high grade glioma than in low grade. The aim of this study was to analyze the impact of MnSOD suppression toward GBM cell survival.Methods: This study is an experimental study using human glioblastoma multiforme T98G cell line. Suppression of MnSOD expression was performed using in vitro transfection MnSOD-siRNA. The MnSOD expression was analyzed by measuring the mRNA using real time RT-PCR, protein using ELISA technique, and specific activity of enzyme using inhibition of xantine oxidase. Concentration of reactive oxygen species (ROS) intracellular was determined by measuring superoxide radical and hydrogen peroxide. Cell survival was analyzed by measuring viability, proliferation, and cell apoptosis.Results: In vitro transfection of MnSOD-siRNA suppressed the mRNA, protein, and specific activity of MnSOD. This treatment significantly increased the concentration of superoxide radical; however, it did not influence the concentration of hydrogen peroxide. Moreover, viability MnSOD-suppressing cell significantly decreased, accompanied by increase of cell apoptosis without affecting cell proliferation.Conclusion: The suppression of MnSOD expression leads to decrease glioblastoma multiforme cell survival, which was associated to the increase of cell apoptotic.
Collapse
|
50
|
Tseng HY, Chen YA, Jen J, Shen PC, Chen LM, Lin TD, Wang YC, Hsu HL. Oncogenic MCT-1 activation promotes YY1-EGFR-MnSOD signaling and tumor progression. Oncogenesis 2017; 6:e313. [PMID: 28394354 PMCID: PMC5520490 DOI: 10.1038/oncsis.2017.13] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 01/10/2017] [Accepted: 02/10/2017] [Indexed: 12/20/2022] Open
Abstract
Tumor cells often produce high levels of reactive oxygen species (ROS) and display an increased ROS scavenging system. However, the molecular mechanism that balances antioxidative and oxidative stress in cancer cells is unclear. Here, we determined that oncogenic multiple copies in T-cell malignancy 1 (MCT-1) activity promotes the generation of intracellular ROS and mitochondrial superoxide. Overexpression of MCT-1 suppresses p53 accumulation but elevates the manganese-dependent superoxide dismutase (MnSOD) level via the YY1-EGFR signaling cascade, which protects cells against oxidative damage. Conversely, restricting ROS generation and/or targeting YY1 in lung cancer cells effectively inhibits the EGFR-MnSOD signaling pathway and cell invasiveness induced by MCT-1. Significantly, MCT-1 overexpression in lung cancer cells promotes tumor progression, necrosis and angiogenesis, and increases the number of tumor-promoting M2 macrophages and cancer-associated fibroblasts in the microenvironment. Clinical evidence further confirms that high expression of MCT-1 is associated with an increase in YY1, EGFR and MnSOD expression, accompanied by tumor recurrence, poor overall survival and EGFR mutation status in patients with lung cancers. Together, these data indicate that the MCT-1 oncogenic pathway is implicated in oxidative metabolism and lung carcinogenesis.
Collapse
Affiliation(s)
- H-Y Tseng
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
| | - Y-A Chen
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
| | - J Jen
- Department of Pharmacology, National Cheng Kung University, Tainan, Taiwan
| | - P-C Shen
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
| | - L-M Chen
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
| | - T-D Lin
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
| | - Y-C Wang
- Department of Pharmacology, National Cheng Kung University, Tainan, Taiwan
| | - H-L Hsu
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
| |
Collapse
|